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Colorations à distan
e deux dans les graphes
Résumé : Dans 
ette thèse, on s'intéresse en parti
ulier à la 
olorationdu 
arré des graphes planaires (deux sommets à distan
e au plus deux ontdes 
ouleurs distin
tes) et à la 
oloration 
y
lique des graphes planaires(deux sommets in
idents à la même fa
e ont des 
ouleurs distin
tes).On montre un résultat général qui implique que deux 
onje
tures im-portantes sur 
es 
olorations (Wegner 1977 et Borodin 1984) sont vraiesasymptotiquement.On s'intéresse également à d'autres 
olorations à distan
e deux, quiont des liens (plus ou moins vagues) ave
 l'allo
ation de fréquen
es dansles réseaux radios, la théorie des jeux, la so
iologie, et l'é
ologie.
Mots 
lés :théorie des graphes
oloration de graphesgraphes planairesDis
ipline: Informatique
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ours de la libération33405 Talen
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Distan
e-two 
olorings of graphs

Abstra
t: In this thesis, we study the 
oloring of the square of planargraphs (two verti
es at distan
e at most two re
eive distin
t 
olors) andthe 
y
li
 
oloring of plane graphs (two verti
es in
ident to the samefa
e re
eive distin
t 
olors). We show a general result implying thattwo important 
onje
tures on these 
olorings (Wegner 1977 and Borodin1984) hold asymptoti
ally.We also study other types of distan
e-two 
olorings, (more or less) re-lated to frequen
y assignment in radio networks, game theory, so
iology,and e
ology.
Keywords:graph theorygraph 
oloringplanar graphsDis
ipline: Computer-S
ien
e
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Introdu
tionUn des points de départ de 
ette thèse est le problème d'allo
ation defréquen
es dans les réseaux. Dans un réseau radio, on 
her
he à assignerdes fréquen
es aux antennes de manière à éviter les interféren
es. Pour
ela deux antennes très pro
hes l'une de l'autre doivent émettre sur desfréquen
es très éloignées, tandis que deux antennes relativement pro
hesdoivent simplement émettre sur des fréquen
es su�samment éloignées.Ce problème peut être modélisé par le L(p, q)-étiquetage des graphes,introduit par Griggs et Yeh [GY92℄. Un L(p, q)-étiquetage d'un graphe

G est une assignation d'entiers aux sommets de G telle que deux som-mets adja
ents reçoivent des entiers distants d'au moins p, tandis quedeux sommets à distan
e deux dans G reçoivent des entiers distants d'aumoins q. On suppose en général que p ≥ q, étant donné que deux an-tennes très pro
hes sont plus sujettes aux interféren
es que deux antennesrelativement pro
hes.Le nombre λp,q de G, noté λp,q(G), est le plus petit entier t tel qu'ilexiste un L(p, q)-étiquetage de G utilisant des étiquettes de {1, 2, . . . , t}.On remarque qu'un L(0, 1)-étiquetage d'un graphe G est équivalent àune 
oloration propre de G, on a don
 λ1,0(G) = χ(G). Si l'on dé�nit le
arré G2 d'un graphe G = (V, E) 
omme le graphe ayant pour ensemblede sommets V et dans lequel deux sommets sont adja
ents s'ils sont àdistan
e au plus deux dans G, on observe qu'un L(1, 1)-étiquetage de Gest exa
tement une 
oloration propre de G2; on a don
 λ1,1(G) = χ(G2).En général, il est NP-di�
ile de déterminer le nombre λp,q d'un graphe[GMW94℄. Toutefois, il est possible d'obtenir des bornes intéressantes ense restreignant à des 
lasses de graphes spé
i�ques. Dans le Chapitre2 on donnera des détails sur le L(p, q)-étiquetages des graphes planaires,dans le Chapitre 3, on utilisera des résultats existants sur le L(p, q)-étiquetage des graphes planaires de maille bornée, et en�n dans leChapitre 5, on étudiera le L(p, q)-étiquetage des graphes d'in
iden
e.Pour plus de détails sur le L(p, q)-étiquetage, le le
teur est invité à 
on-sulter [Cal06℄.Dans le 
as des graphes de degré maximum∆, il est fa
ile de voir qu'enappliquant un algorithme glouton on peut obtenir la borne λ2,1(G) ≤
∆2 + 2∆ + 1. Griggs et Yeh ont proposé la 
onje
ture suivante:Conje
ture 1 [GY92℄ Pour tout graphe G de degré maximum ∆ ≥ 2,on a λ2,1(G) ≤ ∆2 + 1.
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Cette borne est optimale étant donné que pour ∆ = 2, 3, 7 il existedes graphes de diamètre deux et de degré maximum ∆ ayant ∆2 +1 som-mets. Cette 
onje
ture a été ré
emment prouvée pour ∆ assez grand parHavet et al. [HRS08℄ en utilisant des te
hniques de preuves probabilistes.Étant donné que les antennes dans les réseaux radios sont générale-ment réparties sur la surfa
e de la terre, un intérêt parti
ulier a été a
-
ordé 
ette dernière dé
ennie au L(p, q)-étiquetage des graphes planaires.Dans le 
as où p = q = 1, il est 
onnu depuis une trentaine d'annéesqu'il existe des graphes planaires G∆ de degré maximum ∆ tels que

λ1,1(G∆) = χ(G2
∆) = ⌊3

2
∆⌋ + 1. Wegner [Weg77℄ a 
onje
turé que 
ettevaleur est optimale.Conje
ture 2 [Weg77℄ Pour tout graphe planaire G de degré maximum

∆ ≥ 8 on a χ(G2) ≤
⌊

3
2
∆
⌋

+ 1.La première borne supérieure sur le nombre 
hromatique du 
arré desgraphes planaires en terme de ∆, χ(G2) ≤ 8 ∆ − 22, était impli
ite dansun manus
rit de Jonas [Jon93℄. Cette borne a été ensuite améliorée parWong [Won96℄, qui a montré χ(G2) ≤ 3 ∆ + 5 puis par Van den Heuvelet M
Guinness [HM03℄, qui ont prouvé χ(G2) ≤ 2 ∆ +25. De meilleuresbornes ont ensuite été obtenues pour des valeurs su�samment grandesde ∆. Agnarsson et Halldórsson [AH00℄ ont montré χ(G2) ≤ ⌈9
5
∆⌉ + 1lorsque ∆ ≥ 750, et la même borne lorsque ∆ ≥ 47 a ensuite été montréepar Borodin et al. [BBG+01℄. Molloy et Salavatipour [MS05℄ ont prouvéque χ(G2) ≤ ⌈5

3
∆⌉ + 78, et ont montré que la 
onstante 78 pouvait êtreréduite lorsque ∆ était su�samment grand.Ré
emment, Havet et al. ont montré le théorème suivant :Théorème 3 [HHM+07℄ Pour tout p �xé et pour tout graphe planaire

G de degré maximum ∆, on a λp,1(G) ≤
(

3
2

+ o(1)
)

∆.En prenant p = 1, 
ela implique que le 
arré de tout graphe planaire dedegré maximum ∆ admet une 
oloration propre ave
 au plus (3
2
+o(1)

)

∆
ouleurs, 
e qui améliore le résultat de Molloy et Salavatipour [MS05℄.Notre but dans le Chapitre 2 est d'étendre leur appro
he à une familleplus large de 
olorations à distan
e deux.Une 
oloration 
y
lique d'un graphe planaire G (dont le dessin dansle plan est �xé) est une 
oloration des sommets de G telle que toute pairede sommets in
idents à la même fa
e reçoive des 
ouleurs di�érentes. Lenombre minimum de 
ouleurs dans une 
oloration 
y
lique de G est ap-pelé le nombre 
hromatique 
y
lique de G, noté χ∗(G). Si on note ∆∗(G)la taille (nombre de sommets) de la plus grande fa
e de G, il est 
lair que
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χ∗(G) ≥ ∆∗(G) pour tout graphe planaire G. Ore and Plummer [OP69℄,qui ont introduit la notion de 
oloration 
y
lique, ont également montréque pour tout graphe planaire G, on a χ∗(G) ≤ 2 ∆∗(G). Borodin [Bor84℄(voir également Jensen et Toft [JT95, page 37℄) a proposé la 
onje
turesuivante :Conje
ture 4 [Bor84℄ Pour tout graphe planaire G, on a

χ∗(G) ≤
⌊

3
2
∆∗(G)

⌋

.Il a donné des exemples montrant que 
ette borne était atteinte eta prouvé la 
onje
ture pour ∆∗ = 4. Pour des valeurs générales de ∆∗,la borne originale χ∗(G) ≤ 2 ∆∗(G) d'Ore et Plummer [OP69℄ a étéaméliorée par Borodin et al. [BSZ99℄, qui ont montré χ∗(G) ≤
⌊

9
5
∆∗(G)

⌋.La meilleure borne 
onnue dans le 
as général est due à Sanders etZhao [SZ01℄ : χ∗(G) ≤
⌈

5
3
∆∗(G)

⌉.En étudiant 
es 
olorations, il apparaît non seulement que les 
onje
-tures de Wegner et de Borodin ont une ressemblan
e frappante, mais aussique les te
hniques utilisées pour obtenir des bornes sur la 
oloration du
arré et sur la 
oloration 
y
lique sont similaires. Pourtant, au
un liendire
t permettant de relier les deux 
olorations n'a été trouvé jusqu'àprésent.Dans le Chapitre 2, on introduit une notion qui uni�e la 
olorationdu 
arré et la 
oloration 
y
lique des graphes planaires, et on utilise desidées de [HHM+07℄ pour prouver un résultat général [AEH08℄ impliquantque :
• tout graphe planaire G admet une 
oloration 
y
lique ave
 au plus
(

3
2

+ o(1)
)

∆∗(G) 
ouleurs ;
• tout graphe planaire G admet une 
oloration de son 
arré ave
 auplus (3

2
+ o(1)

)

∆(G) 
ouleurs.Notre preuve est légèrement plus dire
te que la preuve de [HHM+07℄,et améliore le résultat de Sanders et Zhao [SZ01℄. De plus, notre résultataméliore également la meilleure borne 
onnue sur la taille d'une 
liquemaximale dans le 
arré d'un graphe planaire. Comme dans [HHM+07℄,on réduit le problème à un problème de 
oloration par listes des arêtesd'un multigraphe, et on utilise ensuite le fait que l'indi
e 
hromatiquepar listes est pro
he de l'indi
e 
hromatique fra
tionnaire.On a vu dans 
e qui pré
ède que le L(p, q)-étiquetage peut être 
on-sidéré 
omme une généralisation de la 
oloration du 
arré. Il existe uneautre généralisation qui permet d'établir des liens entre la 
oloration du
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arré et la 
oloration 
y
lique des graphes planaires. Une 
oloration p-frugale d'un graphe G est une 
oloration propre des sommets de G tellequ'au
une 
ouleur n'apparaît plus de p fois dans le voisinage d'un som-met. Le nombre 
hromatique p-frugal de G, noté χp(G), est le nombreminimum de 
ouleurs dans une 
oloration p-frugale de G.Cette 
oloration a été introduite par Hind, Molloy et Reed [HMR97℄dans le but de montrer des résultats sur la 
oloration totale des graphes.Une 
oloration totale d'un graphe G est une 
oloration des sommets etdes arêtes de G telle que (i) toute paire de sommets adja
ents reçoive des
ouleurs distin
tes, (ii) toute paire d'arêtes in
identes reçoive des 
ouleursdistin
tes, et (iii) la 
ouleur d'une arête est distin
te des 
ouleurs de sesextrémités. Le nombre minimum de 
ouleurs dans une 
oloration totalede G est appelé le nombre 
hromatique total de G, noté χT (G). À la �ndes années 60, Behzad [Beh65℄ et Vizing [Viz68℄ ont proposé de manièreindépendante la 
onje
ture suivante :Conje
ture 5 (Conje
ture de la Coloration Totale)Pour tout graphe G de degré maximum ∆, χT (G) ≤ ∆ + 2.Hind, Molloy et Reed [HMR97℄ ont prouvé que tout graphe de degrémaximum ∆ su�samment grand admet une 
oloration (log8∆)-frugaleave
 au plus ∆ + 1 
ouleurs, et ont utilisé 
e résultat pour en déduireque tout graphe de degré maximum ∆ su�samment grand admet une
oloration totale ave
 ∆ + log10∆ 
ouleurs [HMR99℄.Une 
oloration p-frugale peut aussi être vue 
omme une 
olorationpropre dans laquelle toute paire de 
lasses de 
ouleurs induit une graphe(biparti) de degré maximum au plus p. Le 
as p = 1 étant équivalentà la 
oloration du 
arré, il est intéressant de voir de quelle manière la
onje
ture de Wegner se généralise à la 
oloration p-frugale des graphesplanaires. Dans le Chapitre 3 on propose la 
onje
ture suivante :Conje
ture 6 [AEH07℄ Pour tout entier p ≥ 1 et tout graphe planaire
G de degré maximum ∆ ≥ max { 2 p, 8 } on a

χp(G) ≤
{
⌊

∆−1
p

⌋

+ 2, si p est pair ;
⌊

3∆−2
3 p−1

⌋

+ 2, si p est impair.On prouve également des résultats sur les graphes planaires, les graphesplanaires de maille bornée, et les graphes planaire-extérieurs [AEH07℄.Pour 
ela, on montre qu'il existe des 
onne
tions reliant la 
olorationfrugale, le L(p, q)-étiquetage, et la 
oloration 
y
lique des graphes.Une arête 
oloration p-frugale d'un multigraphe G est une 
oloration(potentiellement impropre) des arêtes de G telle qu'au
une 
ouleur
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n'apparaît plus de p fois parmi les arêtes in
identes à un sommet. Lenombre minimum de 
ouleurs dans une arête 
oloration p-frugale de G estappelé l'indi
e 
hromatique p-frugal de G, noté χ′

p(G). On peut observerqu'une arête 
oloration 1-frugale 
orrespond exa
tement à une 
olorationpropre des arêtes, on a don
 χ′(G) = χ′
1(G) pour tout graphe G.Hilton et al. [HSS01℄ ont prouvé que lorsque p est pair, tout graphevéri�e χ′

p(G) =
⌈

1
p
∆(G)

⌉. Dans le Chapitre 3 on montre que quand pest impair, tout multigraphe G véri�e χ′
p(G) ≤

⌈

3∆(G)
3 p−1

⌉.Lorsque p = 2, une 
oloration p-frugale des sommets d'un graphe
G est une 
oloration propre telle que l'union de toute paire de 
lassesde 
ouleurs est un graphe de degré maximum au plus deux (une uniondisjointe de 
haînes et de 
y
les). De manière surprenante, il y a peu dedi�éren
es si l'on autorise seulement l'union de toute paire de 
lasses de
ouleurs à être une forêt de 
haînes. Une 
oloration linéaire d'un graphe
G est dé�nie 
omme une 
oloration propre des sommets de G telle quel'union de toute paire de 
lasses de 
ouleurs est une forêt de 
haînes (uneforêt de degré maximum au plus deux).Cette 
oloration, équivalente à une 
oloration a
y
lique et 2-frugale,a été introduite par Yuster [Yus98℄, qui a prouvé que tout graphe de de-gré maximum ∆ admet une 
oloration linéaire ave
 O(∆

3
2 ) 
ouleurs (lamême borne avait été montrée dans le 
as de la 
oloration 2-frugale parHind et al. [HMR97℄). Dans le Chapitre 4, on étudie plusieurs 
lassesde graphes, 
omme les graphes de degré borné, les graphes planaires,les graphes planaires de degré moyen maximum borné, et les graphesplanaire-extérieurs [EMR08℄, et on obtient (la plupart du temps) des ré-sultats assez pro
hes des résultats obtenus pour la 
oloration 2-frugaledans le Chapitre 3. On étudie également la 
omplexité de la 
olorationlinéaire : on montre que déterminer si un graphe planaire biparti de degrémaximum trois admet une 
oloration linéaire ave
 au plus trois 
ouleursest un problème NP-
omplet.Pour tout graphe G, soit G⋆ le graphe d'in
iden
e de G, 
'est-à-dire legraphe obtenu à partir de G en remplaçant 
haque arête par une 
haîne delongueur (nombre d'arêtes) deux. On peut remarquer que les 
olorationsà distan
e deux dans les graphes d'in
iden
e ont une signi�
ation parti
-ulière : pour tout graphe G, la 
oloration du 
arré de G⋆ est par exempleéquivalente à une 
oloration totale de G.Un L(p, 1)-étiquetage de G⋆ 
orrespond à une assignation d'entiersaux sommets de G telle que (i) toute paire de sommets adja
ents reçoivedes entiers distin
ts, (ii) toute paire d'arêtes in
identes reçoive des entiersdistin
ts, et (iii) les entiers assignés à une arête et à ses extrémités sontdistants d'au moins p. Cet étiquetage est appelé un (p, 1)-étiquetage totalde G, et le plus petit entier t tel qu'il existe un (p, 1)-étiquetage total
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de G utilisant des étiquettes de {1, . . . , t} est appelé le nombre (p, 1)-total λT

p (G) de G. Cette notion a été introduite par Havet et Yu [HY08℄,et 
orrespond exa
tement à la 
oloration totale quand p = 1. Havet et Yuont proposé une 
onje
ture qui généralise la Conje
ture de la ColorationTotale :Conje
ture 7 [HY08℄ Si G est un graphe de degré maximum ∆, on a
λT

p (G) ≤ ∆ + 2p.Dans le Chapitre 5 on étudie le nombre (p, 1)-total des graphes
lairsemés et on montre que pour tout 0 < ε < 1
2
, et pour tout entier

p, il existe une 
onstante Cp,ε telle que tout graphe ε∆-
lairsemé G dedegré maximum ∆ véri�e λT
p (G) ≤ ∆ + Cp,ε [EMR06℄. Cela impliquenotamment que les graphes aléatoires du modèle Erdös-Rényi satisfont
ette propriété ave
 une probabilité tendant vers 1 lorsque ∆ tend versl'in�ni.Nous avons également étudié les 
olorations à distan
e deux sousl'angle d'un jeu à deux joueurs. Ali
e et Bob 
olorient 
ha
un leur touret de manière propre le 
arré d'un graphe (à 
haque étape, toute pairede sommets à distan
e au plus deux doit avoir des 
ouleurs distin
tes).Si le jeu s'arrête avant que tous les sommets ne soient 
oloriés, Bob estle vainqueur et sinon 
'est Ali
e qui gagne. Dans le Chapitre 6, onétudie des stratégies gagnantes pour Ali
e dans les arbres, les graphesplanaires-extérieurs, les 2-arbres partiels, et les graphes planaires [EZ08℄.On peut remarquer qu'une stratégie gagnante dans un graphe G nel'est pas né
essairement dans un sous-graphe H de G. De plus, avoirune stratégie gagnante ave
 k 
ouleurs ne garantit pas qu'il existe unestratégie gagnante ave
 k+1 
ouleurs. Pour 
es raisons, l'étude de 
e jeuà deux joueurs né
essite d'utiliser des te
hniques de preuve profondémentdi�érentes des te
hniques utilisées dans les 
hapitres pré
édents.Dans le 
hapitre �nal, on montre 
omment utiliser des te
hniques de
oloration à distan
e deux pour obtenir des informations sur la stru
turedes graphes. La boxi
ité d'un graphe G = (V, E) est le plus petit entier

k pour lequel il existe k graphes d'intervalle Gi = (V, Ei), 1 ≤ i ≤ k, telsque E = E1 ∩ . . . ∩ Ek. Les graphes de boxi
ité au plus d sont exa
te-ment les graphes d'interse
tion de boîtes en dimension d. La boxi
ité desgraphes a été introduite par Roberts [Rob69℄ et a de nombreuses appli-
ations dans les réseaux so
iaux et dans les réseaux é
ologiques. Le 
as
d = 2 
orrespond également à un problème de gestion de par
 automobile.Dans le Chapitre 7, on utilise une 
oloration à distan
e deux spé
i-�que pour montrer que les graphes de degré maximum ∆ ont une boxi
itéau plus ∆2 + 2 [Esp08℄. *****
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En annexe, nous ajoutons à 
e mémoire des arti
les sur la 
olorationorientée des graphes planaire-2-extérieurs [EO07a℄, la densité des graphesde 
ordes de maille au moins 
inq [EO07b℄, les graphes universel-induits[ELO07℄, la 
oloration a
y
lique impropre des graphes de degré maxi-mum borné [AEK+07℄, et la 
oloration adaptable des graphes planaires[EMZ08℄.
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Introdu
tionOne of the main motivations of the work presented in this manus
riptis the 
hannel assignment problem: in a radio or mobile phone network,we need to assign radio frequen
y bands to transmitters (every station isassigned an integer, whi
h 
orresponds to a spe
i�
 
hannel). In order tominimize interferen
e, the separation between the 
hannels assigned totwo stations that are very 
lose must be su�
iently large. Additionally,two stations that are 
lose (but not very 
lose) must also re
eive 
hannelsthat are su�
iently far apart.This problem may be modelled by L(p, q)-labellings of graphs, �rstintrodu
ed by Griggs and Yeh [GY92℄. An L(p, q)-labelling of a graph

G is an assignment of integers to the verti
es of G in su
h way that anytwo adja
ent verti
es re
eive integers that di�er by at least p, and anytwo verti
es at distan
e two re
eive integers that di�er by at least q. Weoften assume that p ≥ q, sin
e very 
lose stations are more subje
t tointerferen
e than 
lose stations.The λp,q-number of G, denoted by λp,q(G), is the smallest t su
hthat there exists an L(p, q)-labelling of G using labels from {1, 2, . . . , t}.Observe that an L(0, 1)-labelling of a graph G is equivalent to a proper
oloring of G, so λ1,0(G) = χ(G). De�ne the square G2 of a graph
G = (V, E) as the graph with vertex set V in whi
h two verti
es areadja
ent if they are at distan
e at most two in G, then an L(1, 1)-labellingof a graph G is exa
tly a proper 
oloring of G2, thus λ1,1(G) = χ(G2).In general, it is NP-hard to determine the λp,q-number of a graph[GMW94℄. However, general bounds 
an be given for spe
i�
 
lasses ofgraphs. In Chapter 2 we will give details about L(p, q)-labellings ofplanar graphs, in Chapter 3, we will use existing results on L(p, q)-labellings of planar graphs with bounded girth, and in Chapter 5, wewill study L(p, q)-labellings of in
iden
e graphs. For a survey on L(p, q)-labellings of graphs, the reader is referred to [Cal06℄.For a graph G with maximum degree ∆, it is easy to see that agreedy algorithm gives the bound λ2,1(G) ≤ ∆2 + 2∆ + 1. Griggs andYeh 
onje
tured the following:Conje
ture 1 [GY92℄ For every graph G with maximum degree ∆ ≥ 2,we have λ2,1(G) ≤ ∆2 + 1.This bound would be tight sin
e for ∆ = 2, 3, 7 there exist graphswith diameter two, maximum degree ∆, and order ∆2 + 1. This 
on-
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je
ture was re
ently proved for large enough ∆ by Havet et al. [HRS08℄using probabilisti
 te
hniques.Sin
e transmitters are in general spread over the surfa
e of the earth,a parti
ular interest has been shown over the last de
ade for L(p, q)-labellings of planar graphs. For the 
ase p = q = 1, its is known formore that thirty years that there exist planar graphs G∆ with maximumdegree ∆ su
h that χ(G2

∆) = ⌊3
2
∆⌋+1. Wegner [Weg77℄ 
onje
tured thatthis is optimal:Conje
ture 2 [Weg77℄ For any planar graph G of maximum degree

∆ ≥ 8 we have χ(G2) ≤
⌊

3
2
∆
⌋

+ 1.The �rst upper bound on χ(G2) for planar graphs in terms of ∆,
χ(G2) ≤ 8 ∆−22, was impli
it in the work of Jonas [Jon93℄. This boundwas later improved by Wong [Won96℄ to χ(G2) ≤ 3 ∆ + 5 and then byVan den Heuvel and M
Guinness [HM03℄ to χ(G2) ≤ 2 ∆ + 25. Bet-ter bounds were then obtained for large values of ∆. It was shown that
χ(G2) ≤ ⌈9

5
∆⌉ + 1 for ∆ ≥ 750 by Agnarsson and Halldórsson [AH00℄,and the same bound for ∆ ≥ 47 by Borodin et al. [BBG+01℄. Molloy andSalavatipour [MS05℄ proved that χ(G2) ≤ ⌈5

3
∆⌉ + 78, and showed thatthe 
onstant 78 
ould be redu
ed for su�
iently large ∆. For example,it was improved to 24 when ∆ ≥ 241.Re
ently, Havet et al. proved the following:Theorem 3 [HHM+07℄ For any �xed p, and any planar graph G ofmaximum degree ∆, we have λp,1(G) ≤

(

3
2

+ o(1)
)

∆.If we take p = 1, this theorem implies that the square of any planargraph with maximum degree ∆ 
an be 
olored with (3
2

+ o(1)
)

∆ 
olors,whi
h improves the result of Molloy and Salavatipour [MS05℄. Our aim inChapter 2 is to extend their approa
h to a wider family of distan
e-two
olorings.A 
y
li
 
oloring of a plane graph G (a planar graph with a pre-s
ribed embedding) is a vertex 
oloring of G su
h that any two verti
esin
ident to the same fa
e have distin
t 
olors. The minimum number of
olors required in a 
y
li
 
oloring of a plane graph G is 
alled the 
y
li

hromati
 number χ∗(G). Denote by ∆∗(G) the size (number of verti
esin its boundary) of a largest fa
e of G. It is 
lear that χ∗(G) ≥ ∆∗(G)for any plane graph G. Ore and Plummer [OP69℄, who introdu
ed the
on
ept of 
y
li
 
oloring, also proved that for any plane graph G, wehave χ∗(G) ≤ 2 ∆∗(G). Borodin [Bor84℄ (see also Jensen and Toft [JT95,page 37℄) 
onje
tured the following:
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Conje
ture 4 [Bor84℄ For a plane graph G of maximum fa
e degree ∆∗we have χ∗(G) ≤

⌊

3
2
∆∗⌋.He gave examples showing that this would be best possible and alsoproved Conje
ture 4 for ∆∗ = 4. For general values of ∆∗, the origi-nal bound χ∗(G) ≤ 2 ∆∗ of Ore and Plummer [OP69℄ was improved byBorodin et al. [BSZ99℄ to χ∗(G) ≤

⌊

9
5
∆∗⌋. The best known upper boundin the general 
ase is due to Sanders and Zhao [SZ01℄ : χ∗(G) ≤

⌈

5
3
∆∗⌉.The main point is that not only Wegner's and Borodin's 
onje
tureslook the same, but the proof te
hniques used in order to obtain boundson the 
hromati
 number of the square and the 
y
li
 
hromati
 numberare very similar. However, it seems that no one ever found a dire
t 
on-ne
tion between these two 
olorings.In Chapter 2, we introdu
e a notion that uni�es 
olorings of thesquare and 
y
li
 
olorings of plane graphs, and then use ideas from[HHM+07℄ to prove a general result [AEH08℄ implying that

• every planar graphG admits a 
y
li
 
oloring with at most (3
2

+ o(1)
)

∆∗(G) 
olors;
• every planar graph G admits a 
oloring of its square with at most
(

3
2

+ o(1)
)

∆(G) 
olors.Our proof is slightly more dire
t than the proof of [HHM+07℄, andimproves the result of Sanders and Zhao [SZ01℄. Besides, our result alsoimproves the best known bound on the size of a largest 
lique in thesquare of a planar graph. As in [HHM+07℄, we redu
e the problem to alist edge 
oloring problem, and then use the fa
t that the list 
hromati
index is 
lose from the fra
tional 
hromati
 index.Another way to relate 
y
li
 
oloring and 
oloring of the square ofplane graphs is through frugal 
oloring. A p-frugal 
oloring of a graph Gis a proper 
oloring of the verti
es of G su
h that no 
olor appears morethan p times in the neighborhood of a vertex. The p-frugal 
hromati
number of G, denoted χp(G), is the smallest number of 
olors in a p-frugal 
oloring of G.This 
oloring was introdu
ed by Hind, Molloy and Reed [HMR97℄ inorder to obtain bounds on the total 
oloring of graphs. A total 
oloringof a graph G is a 
oloring of the verti
es and edges of G so that (i) anytwo adja
ent verti
es have distin
t 
olors, (ii) any two in
ident edgeshave distin
t 
olors, and (iii) the 
olor of any edge is distin
t from the
olors of its ends. The minimum number of 
olors in a total 
oloring of
G is 
alled the total 
hromati
 number of G, denoted χT (G). In the latesixties, Behzad [Beh65℄ and Vizing [Viz68℄ independently proposed thefollowing 
onje
ture:
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Conje
ture 5 (The Total Coloring Conje
ture) For any graph Gwith maximum degree ∆, χT (G) ≤ ∆ + 2.Hind, Molloy and Reed [HMR97℄ proved that any graph with largeenough maximum degree ∆ has a (log8∆)-frugal 
oloring using at most
∆ + 1 
olors, and used this result to prove that any graph with largeenough maximum degree ∆ has a total 
oloring with ∆ + log10∆ 
ol-ors [HMR99℄.A p-frugal 
oloring 
an also be seen as a proper 
oloring su
h thatany two 
olor 
lasses indu
e a (bipartite) graph with maximum degree
p. The 
ase p = 1 is equivalent to a 
oloring of the square of G, so it isinteresting to see how Wegner's 
onje
ture 
an be generalized to frugal
oloring of planar graphs. In Chapter 3 we propose the following 
on-je
ture:Conje
ture 6 [AEH07℄ For any integer p ≥ 1 and planar graph G withmaximum degree ∆ ≥ max { 2 p, 8 } we have

χp(G) ≤
{
⌊

∆−1
p

⌋

+ 2, if p is even;
⌊

3∆−2
3 p−1

⌋

+ 2, if p is odd.We also prove results on planar graphs, planar graphs with givengirth, and outerplanar graphs [AEH07℄. To show these results, we relatefrugal 
oloring with L(p, q)-labelling of graphs and 
y
li
 
oloring of planegraphs.A p-frugal edge 
oloring of a multigraph G is a (possibly improper)
oloring of the edges of G su
h that no 
olor appears more than p timeson the edges in
ident with a vertex. The least number of 
olors in a
p-frugal edge 
oloring of G, the p-frugal 
hromati
 index of G, is denotedby χ′

p(G). Remark that for p = 1 we have χ′
1(G) = χ′(G), the usual
hromati
 index of G.Hilton et al. [HSS01℄ proved that for even p, any multigraph G sat-is�es χ′

p(G) =
⌈

1
p
∆(G)

⌉. In Chapter 3 we prove that for odd p, anymultigraph G satis�es χ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉, whi
h is optimal.When p = 2, a p-frugal 
oloring of the verti
es of a graph G is su
hthat the union of any two 
olor 
lasses is a graph with maximum degreetwo (a union of paths and 
y
les). Surprisingly, there are only few di�er-en
es if we only allow the union of any two 
olor 
lasses to be a union ofpaths: de�ne a linear 
oloring of a graph G as a proper 
oloring of theverti
es of G su
h that the subgraph indu
ed by any two 
olor 
lasses isa forest of paths (a forest with maximum degree at most two), then alinear 
oloring is exa
tly an a
y
li
 and 2-frugal 
oloring.
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This 
oloring was introdu
ed by Yuster [Yus98℄, who proved that anygraph with maximum degree ∆ has a linear 
oloring with O(∆

3
2 ) 
ol-ors (the same bound was proven by Hind et al. for 2-frugal 
oloringin [HMR97℄). In Chapter 4, we study several 
lasses of graphs, su
has planar graphs, planar graphs with bounded maximum average degree,outerplanar graphs [EMR08℄, and we obtain bounds whi
h are (most ofthe time) 
lose from the bounds obtained for the 2-frugal 
hromati
 num-ber in [AEH07℄. We also study 
omplexity aspe
ts of linear 
oloring: weshow that de
iding whether a bipartite planar graph with maximum de-gree three admits a linear 
oloring with three 
olors is an NP-
ompleteproblem.For a graph G, let G⋆ be the in
iden
e graph of G, that is the graphobtained from G by inserting one vertex along ea
h edge. Observe thatan L(p, 1)-labelling of G⋆ 
orresponds to an assignment of integers tothe verti
es and edges of G su
h that two adja
ent verti
es have distin
tintegers, any two in
ident edges have distin
t integers, and the di�eren
ebetween the integer assigned to an edge and the integers assigned to itsends is at least p. This 
oloring is 
alled a (p, 1)-total labelling of G, andthe smallest t su
h that there exists a (p, 1)-total labelling of G usinglabels from {1, 2, . . . , t} is the (p, 1)-total number λT

p (G) of the graph G.This 
oloring was introdu
ed by Havet and Yu [HY08℄, and 
orrespondsexa
tly to the notion of total 
oloring when p = 1. Havet and Yu proposedthe following 
onje
ture, whi
h generalizes the total 
oloring 
onje
ture:Conje
ture 7 [HY08℄ Let G be a graph with maximum degree ∆, then
λT

p (G) ≤ ∆ + 2p.In Chapter 5 we study the (p, 1)-total number of sparse graphs andprove that for any 0 < ε < 1
2
, and for any integer p, there exists a 
on-stant Cp,ε su
h that every ε∆-sparse graph G with maximum degree ∆satis�es λT

p (G) ≤ ∆ + Cp,ε [EMR06℄. This implies that Erdös-Rényi ran-dom graphs satisfy this property asymptoti
ally almost surely.Consider a two player game in whi
h Ali
e and Bob alternatively 
olorthe square of a graph G properly (that is, at any step, any two verti
esat distan
e at most two in G have distin
t 
olors). If the game stopsbefore all the verti
es are 
olored, Bob wins and otherwise Ali
e wins. InChapter 6, we study winning strategies for Ali
e in trees, outerplanargraphs, partial 2-trees, and planar graphs [EZ08℄.Observe that if we have a winning strategy for a graph G, we 
annotne
essarily use it to obtain a winning strategy in a subgraph H of G.Furthermore, having a winning strategy with k 
olors for a graph G doesnot mean that we have a strategy with k + 1 
olors for G. As a 
onse-quen
e, we have to use 
ompletely di�erent te
hniques than the one used
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in the previous 
hapters.In the �nal 
hapter, we show how to use distan
e-two 
olorings toobtain spe
i�
 information on the stru
ture of graphs. The boxi
ity of agraph G = (V, E) is the smallest integer k for whi
h there exist k intervalgraphs Gi = (V, Ei), 1 ≤ i ≤ k, su
h that E = E1∩ . . .∩Ek. Graphs withboxi
ity at most d are exa
tly the interse
tion graphs of (axis-parallel)
d-dimensional boxes. Boxi
ity of graphs has been introdu
ed by Roberts[Rob69℄ and has several appli
ations in so
ial networks and e
ology. The
ase d = 2 also 
orresponds to a �eet maintenan
e problem.In Chapter 7, we use a spe
i�
 distan
e-two 
oloring to prove thatgraphs with maximum degree ∆ have boxi
ity at most ∆2 + 2 [Esp08℄.*****In appendix, we add arti
les about oriented 
oloring of 2-outerplanargraphs [EO07a℄, the density of 
ir
le graphs with girth at least �ve[EO07b℄, indu
ed-universal graphs [ELO07℄, a
y
li
 improper 
olorings[AEK+07℄, and adapted 
oloring of planar graphs [EMZ08℄.
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Chapter 1Preliminaries
Contents1.1 Graph theory . . . . . . . . . . . . . . . . . . . 291.1.1 Basi
 de�nitions . . . . . . . . . . . . . . . . 291.1.2 Relations between graphs . . . . . . . . . . . 301.1.3 Degree and neighborhood . . . . . . . . . . . 311.1.4 Distan
e . . . . . . . . . . . . . . . . . . . . . 311.1.5 Conne
tivity . . . . . . . . . . . . . . . . . . 321.1.6 Trees and bipartite graphs . . . . . . . . . . . 321.1.7 Some 
lasses of graphs . . . . . . . . . . . . . 331.2 Graph 
oloring . . . . . . . . . . . . . . . . . . 331.3 Probabilisti
 tools . . . . . . . . . . . . . . . . 34
1.1 Graph theoryMost of the terminology and notation we use in this thesis is standardand 
an be found in any text book on graph theory (su
h as [BM76℄ or[Die05℄). For the Fren
h terminology, please refer to [Ber69℄.1.1.1 Basi
 de�nitionsA graph is a pairG = (V (G), E(G)) of sets, su
h thatE(G) ⊆ {{x, y}, x, y ∈ G =

(V (G), E(G))V (G)}. The elements of V (G) are 
alled the verti
es of G, whereas theelements of E(G) are 
alled the edges of G. We usually write xy or yxinstead of {x, y} when 
onsidering an edge. If e = xy is an edge of a29



30 Graph theory
graph G, the verti
es x and y are said to be in
ident with or to the edge
e. The two verti
es in
ident to an edge e are 
alled the end points, or endverti
es of e. Two verti
es x and y are adja
ent or neighbors in a graph
G if xy is an edge of G. Two edges e 6= f are said to be in
ident if theyhave a 
ommon end vertex.The number of verti
es of a graph G is 
alled the order of G. Most ofthe graphs we 
onsider in this thesis are �nite (they have �nite order),and simple : for any edge xy, x 6= y (we say that there are no loops) andfor any two verti
es x and y, there is at most one edge xy (we say thatthere are no multiple edges). Su
h requirements 
orrespond exa
tly tothe de�nition of graphs given above. In Chapters 2 and 3, however, wewill study multigraphs (graphs with multiple edges). The only di�eren
eis that in this 
ase, E(G) is a multiset (instead of a set).A subset U of verti
es of a graph G is 
alled a stable or independentset if any two verti
es of U are non adja
ent in G. If any two verti
es of
U are adja
ent in G, the set U is 
alled a 
lique of G.1.1.2 Relations between graphsWe say that ϕ : V (G) → V (H) is a homomorphism between G and H ,if for every edge xy of G, ϕ(x)ϕ(y) is an edge of H . The existen
e of ahomomorphism between G and H is denoted by G → H .G → H Two graphs G and H are said to be isomorphi
 if there exists a bi-je
tive homomorphism between G and H . Usually, we do not make anydistin
tion between isomorphi
 graphs. In other words, when 
onsideringa graph G, we impli
itly 
onsider the equivalen
e 
lass for the relationbeing isomorphi
 to 
ontaining the graph G.Let G = (V, E) and G′ = (V ′, E ′) be two graphs. If V ⊆ V ′ and
E ⊆ E ′ we say that G is a subgraph of G′, denoted by G ⊆ G′. If G ⊆ G′G ⊆ G′ and G 
ontains all the edges xy ∈ E ′ with x, y ∈ V , we say that G isthe subgraph of G′ indu
ed by V , or more simply that G is an indu
edsubgraph of G′, and we denote this by G = G′[V ]. If G ⊆ G′ and V = V ′,G[X ] we say that G is a spanning subgraph of G′.We now de�ne basi
 operations on graphs. Let G be a graph and Ube a subset of verti
es of G. We denote by G − U the graph obtainedG − U from G by removing all the verti
es from U as well as the edges in
identto any vertex of U . Observe that G−U is the subgraph of G indu
ed by
V (G)\U . If U is a single vertex u, we write G−u instead of G−{u}. Let
F be a subset of edges of G, we denote by G − F (or G − f if F = {f})G − F the graph obtained from G by removing all the edges from F . We 
all
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these two operations the deletion of verti
es and edges from G.Let e = xy be an edge of a graph G. We denote by G/e the graph G/eobtained from G by deleting the verti
es x and y and adding a vertex zadja
ent to all the neighbors of x or y in G. This operation is 
alled the
ontra
tion of the edge e.If a graph G 
an be obtained from a subgraph of H by a sequen
e ofedge 
ontra
tions, we 
all G a minor of H , denoted by G � H . G � H1.1.3 Degree and neighborhoodLet G be a non-empty graph and x be a vertex of G. The set of verti
esadja
ent to x in G is 
alled the neighborhood of x, denoted NG(x) or N(x) N(x)when the graph G is 
lear from the 
ontext. The number of neighbors ofthe vertex x in G is 
alled the degree of x in G, denoted dG(x) or d(x) d(x)when G is 
lear from the 
ontext.We 
all k-vertex (resp. ≤k-vertex, ≥k-vertex ) a vertex of degree k(resp. at most k, at least k). If for some k, all the verti
es of G are
k-verti
es, then G is said to be k-regular, or regular. A 3-regular graphis also 
alled a 
ubi
 graph.The value δ(G) = min{d(x), x ∈ V (G)} is 
alled the minimum degree δ(G)of G and the value ∆(G) = max{d(x), x ∈ V (G)} is 
alled the maximum ∆(G)degree of G. Let n and m be the order and the number of edges of G.The value ad(G) =

∑

v∈V (G) d(v)/n = 2m/n is 
alled the average degree ad(G)of G. The maximum average degree of G, denoted by mad(G), is the mad(G)maximum of ad(H) over all subgraphs H of G.If for some integer k, any subgraph H of G is su
h that δ(H) ≤ k, then
G is said to be k-degenerate. Observe that every graph G is ⌊mad(G)⌋-degenerate, and every k-degenerate graph has maximum average degreeat most 2k.1.1.4 Distan
eA path P is a graph with vertex set V = {x0, x1, . . . , xk} and edge set
E = {x0x1, x1x2, . . . , xk−1xk}, where all the xi are distin
t verti
es and
k ≥ 0 is an integer. We often write P = x0x1 . . . xk to denote su
h apath, and say that P is path between x0 and xk (resp. between xk and
x0), or from x0 to xk (resp. from xk to x0). The number of edges in apath is 
alled the length of the path. A path of length k is denoted by Pk. PkThe graph obtained from a path P = x0x1 . . . xk−1 by adding an edgebetween x0 and xk−1 is 
alled a 
y
le of length k, denoted by Ck. We also Ck
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all k-
y
le (resp. ≤k-
y
le, ≥k-
y
le) a 
y
le of length k (resp. at most
k, at least k). The girth g(G) of a graph G is the length of a shortestg(G) 
y
le 
ontained by G. If G does not 
ontain any 
y
le, we set g(G) to bein�nite. An edge joining two non-
onse
utive verti
es of a 
y
le is 
alleda 
hord. An indu
ed 
y
le in a graph G is a 
hordless 
y
le of G (that is,a 
y
le whi
h is an indu
ed subgraph of G).The distan
e dG(x, y) or d(x, y) of two verti
es x and y in G is thed(x, y) length of a shortest path between x and y in G (if su
h a path does notexist, we set d(x, y) to be in�nite). Given a graph G, the square of G,denoted G2, is the graph having the same vertex set as G, with an edgeG2 between any two di�erent verti
es that have distan
e at most two in G(see Figure 1.1).

G2GFigure 1.1: The square of G.
1.1.5 Conne
tivityLet G be a non-empty graph. If for any two verti
es x and y of G, there isa path in G between x and y, then G is said to be 
onne
ted. A maximal
onne
ted subgraph of G is 
alled a 
omponent of G. If a vertex x of Gis su
h that G − x has more 
omponents than G, then x is said to be a
ut-vertex of G. If an edge e of G is su
h that G−e has more 
omponentsthan G, then e is said to be a bridge of G.A graph G is said to be k-
onne
ted if for some integer k ≥ 1, G hasat least k + 1 verti
es and the graph G − X is 
onne
ted for any set Xof at most k − 1 verti
es of G.1.1.6 Trees and bipartite graphsA graph without 
y
les is 
alled a forest, and a 
onne
ted forest is 
alleda tree. A vertex of degree 1 in a tree is 
alled a leaf. Observe that a path
P = x0x1 . . . xk is a tree with exa
tly two leaves: x0 and xk. Sometimeswe distinguish one vertex of a tree, and 
all it the root. In this 
ase, we
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say that we 
onsider a rooted tree.A graph G is bipartite if its set of verti
es 
an be partitioned into twosets V and V ′, su
h that every edge of G has one end point in V and theother one in V ′. Observe that forests are bipartite. A bipartite graphis said to be a 
omplete bipartite graph if it 
ontains all possible edgesbetween the two sets V and V ′ of the bipartition. The 
omplete bipartitegraph with m verti
es in the �rst set and n verti
es in the se
ond set isdenoted by Km,n. Km,n1.1.7 Some 
lasses of graphsIn this subse
tion, we de�ne some 
lasses of graphs that will be studiedthroughout this thesis.The graph with n verti
es and all possible edges is 
alled the 
ompletegraph of order n, denoted by Kn. KnA plane graph is a graph drawn in the plane in su
h a way that thereis no 
rossing of edges. A planar graph is a graph that admits a drawingin the plane with this property. An outerplanar graph is a planar graphthat 
an be drawn in the plane without 
rossing of edges, in su
h a waythat every vertex lies on the outer fa
e.A graph is 
hordal if it 
ontains no 
y
le of length at least four asan indu
ed subgraph. A 
lique of G is a set a pairwise adja
ent verti
esof G. For any integer k ≥ 1, a k-tree is a 
hordal graph in whi
h every(in
lusion-) maximal 
lique as order exa
tly k + 1. A partial k-tree is asubgraph of a k-tree. For example, the 
lass of partial 2-trees is exa
tlythe 
lass of graphs whi
h do not 
ontain the 
omplete graph K4 as aminor.The treewidth of a graph G, denoted by tw(G), is the smallest integer tw(G)

k su
h that G is a partial k-tree.1.2 Graph 
oloringFor some integer k ≥ 1, a (proper) k-
oloring of the verti
es of G is a map
c : V (G) → {1, . . . , k} su
h that for every edge xy of G, c(x) 6= c(y).The elements from {1, . . . , k} are 
alled 
olors, and the set of all verti
es
olored with a spe
i�
 
olor is 
alled a 
olor 
lass. Observe that a proper
oloring of a graph is a partition of its set of verti
es into 
olor 
lasses,ea
h of whi
h is an independent set. If a graph admits a k-
oloring, it issaid to be k-
olorable. The smallest k su
h that a graph G is k-
olorableis 
alled the 
hromati
 number of G, denoted by χ(G). χ(G)
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A list assignment L : V (G) → 2N on the verti
es of a graph is amap whi
h assigns to ea
h vertex v of the graph a list L(v) of pres
ribedintegers. If for some integer t, every list has size at least t, then L is
alled a t-list assignment.Let L be a list assignment on the verti
es of a graph G. A 
olor-ing c of the verti
es of G su
h that for any vertex v, c(v) ∈ L(v) is
alled an L-
oloring of G. If su
h a 
oloring exists, then G is said to be

L-
olorable. The list 
hromati
 number or 
hoi
e number ch(G) is thech(G) minimum value t, so that for every t-list assignment L on the verti
es of
G, the graph G is L-
olorable.The 
on
ept of 
hoosability was introdu
ed by Vizing [Viz76℄, andErdös, Rubin, and Taylor [ERT79℄. This generalization of the notionof 
oloring has been applied to various problems, espe
ially to the �eldof 
oloring under 
onstraints ((a, b)-
hoosability [Tuz97℄, k-improper l-
hoosability [EH99, Skr99℄, a
y
li
 
hoosability [BFK+02℄).

G L(G)Figure 1.2: The line graph of G.For any graph G = (V, E), we de�ne the line graph L(G) of G to beL(G) the graph with vertex set E, where two verti
es u, v ∈ E are adja
ent in
L(G) if and only if the 
orresponding edges are in
ident in G (see Figure1.2 for an example).The smallest integer k, su
h that the edges of a graph G 
an be
olored with k 
olors in su
h a way that any two in
ident edges havedistin
t 
olors, is 
alled the 
hromati
 index of G, denoted by χ′(G).χ′(G) Su
h a 
oloring is 
alled a (proper) edge 
oloring of G. Note that χ′(G) =
χ(L(G)). We also de�ne the list 
hromati
 index ch ′(G) of G as the 
hoi
ech

′(G) number of the line graph of G.1.3 Probabilisti
 toolsIn this se
tion, we re
all some notions of dis
rete probabilities, as well assome useful probabilisti
 tools, as they appear in [MR02℄.
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We only 
onsider experiments whi
h have a �nite number of possibleout
omes. For example when tossing a 
oin, there are only two pos-sible out
omes: head and tail. The set of all possible out
omes of anexperiment is 
alled the sample spa
e, denoted by Ω. A �nite probabil- Ωity spa
e (Ω,Pr) 
onsists of a sample spa
e Ω and a probability fun
tion Pr

Pr : Ω → [0, 1] (where [0, 1] denotes the 
losed real interval between 0and 1) su
h that:
∑

x∈Ω

Pr(x) = 1.When 
onsidering a probability fun
tion verifying Pr(x) = 1/|Ω| forevery x ∈ Ω, we say that the distribution is uniform.We extend Pr to 2Ω (the set of events) by setting for every A ⊆ Ω :
Pr(A) =

∑

x∈A

Pr(x)If we denote by Ā the event that A does not o

ur, then we have :1. Pr(Ā) = 1 − Pr(A),2. Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B),3. Pr (∪n
i=1Ai) ≤

∑n
i=1 Pr(Ai).The 
onditional probability of A given B, denoted by Pr(A|B), is Pr(A|B)de�ned as the ratio between Pr(A ∩ B) and Pr(B). Two events A and

B are said to be independent if Pr(A|B) = Pr(A), or equivalently if
Pr(A ∩ B) = Pr(A)Pr(B). A set of events E is mutually independent iffor any subset {A0, . . . , An} of E , we have

Pr (A0| ∩n
i=1 Ai) = Pr(A0).Note that a set of events whi
h is pairwise independent (every two eventsare independent) is not ne
essarily mutually independent. We also saythat an event A is mutually independent from a set of events E if for anysubset {B1, . . . , Bn} of E , we have

Pr (A| ∩n
i=1 Bi) = Pr(A).A random variable de�ned on a probability spa
e (Ω,Pr) is a fun
tion

X : Ω → R. The expe
ted value, or expe
tation of a random variable X Eis
E(X) =

∑

x∈Ω

Pr(x)X(x).Amajor property of expe
tation is its linearity : E (
∑n

i=1 Xi) =
∑n

i=1 E(Xi).The 
onditional expe
tation of X given B, denoted by E(X|B) is equal E(X |B)
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to ∑x∈ΩX

Pr (X = x|B), where ΩX denotes the range of X. Note thatlinearity of expe
tation extends to 
onditional expe
tation :if X =
n
∑

i=1

Xi, then E(X|B) =
n
∑

i=1

E(Xi|B).The next results 
hara
terize the 
on
entration of random variableswith spe
i�
 properties, in other words they give bounds on the probabil-ity that the value taken by a random variable is 
lose from its expe
tation.Lemma 1.1 (Simple Con
entration Bound) Let X be a random vari-able determined by n independent trials T1, . . . , Tn and satisfying:1. Changing the out
ome of any one trial 
an a�e
t X by at most c.Then,
Pr(|X − E(X)| > t) ≤ 2e−

t2

2c2nLemma 1.2 (Talagrand's Inequality) Let X be a non-negative ran-dom variable, not identi
ally 0, whi
h is determined by n independenttrials T1, . . . , Tn, and satisfying the following for some c, r > 0 :1. Changing the out
ome of any one trial 
an a�e
t X by at most c.2. For any s, if X ≥ s then there is a set of at most rs trials whoseout
omes 
ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr
(

|X −E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)Lemma 1.3 (M
Diarmid's Inequality) Let X be a non-negative ran-dom variable, not identi
ally 0, whi
h is determined by n independent tri-als T1, . . . , Tn and m independent permutations Π1, . . . , Πm and satisfyingthe following for some c, r > 0 :1. Changing the out
ome of any trial 
an a�e
t X by at most c.2. Inter
hanging two elements in any one permutation 
an a�e
t Xby at most c.3. For any s, if X ≥ s then there is a set of at most rs 
hoi
es whoseout
omes 
ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr
(

|X −E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)
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We denote by BIN(n, p) the variable whi
h is the sum of n variablesea
h of whi
h is 1 with probability p and 0 with probability 1 − p. Theexpe
tation of BIN(n, p) is known to be np, so the next result gives abound on the 
on
entration of BIN(n, p).Lemma 1.4 (Cherno� Bound) For any 0 ≤ t ≤ np:

Pr (|BIN(n, p) − np| > t) < 2e−t2/3np.It is easy to see that if {A1, . . . An} is a mutually independent set ofevents with Pr(Ai) < 1 for every i, then with positive probability, noneof the events o

ur. The last result shows that under 
ertain assumption,the same is true even if the events are not mutually independent.Lemma 1.5 (Lovász Lo
al Lemma) Consider a set E of (typi
allybad) events su
h that for ea
h A ∈ E1. Pr(A) ≤ p < 1, and2. A is mutually independent of a set of all but at most d of the otherevents.If 4pd ≤ 1 then with positive probability, none of the events in E o

ur.
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Chapter 2Coloring of the square and
y
li
 
oloring
Contents2.1 Introdu
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hing Polytope and Edge-Colorings . 492.3 Proofs of the Main Lemmas . . . . . . . . . . 512.3.1 Proof of Lemma 2.12 . . . . . . . . . . . . . . 512.3.2 Proof of Lemma 2.19 . . . . . . . . . . . . . . 572.4 Proof of Theorem 2.11 . . . . . . . . . . . . . 612.5 Con
lusion . . . . . . . . . . . . . . . . . . . . . 632.5.1 About the Proof . . . . . . . . . . . . . . . . 632.5.2 Further Work . . . . . . . . . . . . . . . . . . 64In this 
hapter, we prove a general result on the stru
ture of planargraphs, whi
h implies that

• the verti
es of any planar graph with maximum degree ∆ 
an be
olored with (3
2

+ o(1)
)

∆ 
olors, in su
h a way that any two verti
esat distan
e at most two apart have distin
t 
olors;
• the fa
es of any plane graph with maximum degree ∆ 
an be 
oloredwith (3

2
+ o(1)

)

∆ 
olors, in su
h a way that any two fa
es sharinga vertex have distin
t 
olors. 39
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2.1 Introdu
tionThe Four Color Theorem 
an be stated as follows: the fa
es of any planegraph 
an be 
olored with four 
olors, su
h that any two fa
es sharingan edge have distin
t 
olors. In [OP69℄, Ore and Plummer 
onsideredthe same problem, but requiring that any two fa
es sharing a vertex havedistin
t 
olors.To study this problem, it is 
onvenient to 
onsider the 
orrespondingvertex 
oloring problem: a 
y
li
 
oloring of a plane graph G is a vertex
oloring of G su
h that any two verti
es in
ident to the same fa
e havedistin
t 
olors. The minimum number of 
olors in a 
y
li
 
oloring of Gis 
alled the 
y
li
 
hromati
 number χ∗(G).χ∗(G) A list version of this 
oloring 
an also be 
onsidered: the least integer
t su
h that for any t-list assignment L, there exists a 
y
li
 
oloring c of
G satisfying c(v) ∈ L(v) for every vertex v of G is 
alled the 
y
li
 
hoi
enumber of G, denoted by ch∗(G).ch

∗(G) Let us denote by G∗ the dual graph of G, that is the plane graph inwhi
h the verti
es are the fa
es of G, and su
h that two verti
es are adja-
ent in G∗ if and only if the 
orresponding fa
es share an edge. Clearly, a
y
li
 
oloring of G∗ is a 
oloring of the fa
es of G in whi
h any two fa
essharing a vertex have distin
t 
olors. If we denote the size of the largestfa
e of any plane graph H by ∆∗(H), we 
learly have ∆∗(G∗) = ∆(G).∆∗(H) Ore and Plummer [OP69℄ proved that any plane graph G has a 
y
li

oloring with at most 2∆∗(G) 
olors, whi
h implies that the fa
es ofany plane graph with maximum degree ∆ 
an be 
olored with 2∆ 
ol-ors in su
h a way that any two fa
es sharing a vertex have distin
t 
olors.From now on, we forget about the original fa
e 
oloring problem, and
on
entrate on 
y
li
 
oloring of plane graphs. Borodin [Bor84℄ ( see alsoJensen and Toft [JT95, page 37℄ ) 
onje
tured the following:Conje
ture 2.1 [Bor84℄ Any plane graph G has a 
y
li
 
oloring with
⌊

3
2
∆∗(G)

⌋ 
olors.Additionally, he proved this 
onje
ture for ∆∗ = 4. The best knownupper bound in the general 
ase is due to Sanders and Zhao [SZ01℄, whoproved that any plane graph G has a 
y
li
 
oloring with ⌈5
3
∆∗(G)

⌉ 
ol-ors. Observe that Borodin's 
onje
ture is optimal: in the graph depi
tedin Figure 2.1(a), every pair of verti
es is in
ident to the same fa
e, andmust re
eive distin
t 
olors in any 
y
li
 
oloring. There are 3k + 1 ver-ti
es, and every fa
e has size 2k + 1, hen
e at least ⌊3
2
∆∗⌋ 
olors arene
essary.
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In this 
hapter, we relate 
y
li
 
oloring with another vertex 
oloringof graphs. Re
all that the square G2 of a graph G is the graph withvertex set V (G), with an edge between any two di�erent verti
es thathave distan
e at most two in G. The 
hromati
 number of G2, denoted

χ(G2), is the least number of 
olors needed in a proper 
oloring of G2:that is, su
h that any two adja
ent verti
es of G2 have distin
t 
olors (orequivalently, su
h that any two verti
es at distan
e at most two in G havedistin
t 
olors). A 
onje
ture by Wegner [Weg77℄ about the 
hromati
number of planar graphs has been the starting point of several arti
les,the most re
ent of whi
h proves an asymptoti
 version of the 
onje
ture[HHM+07℄.Conje
ture 2.2 [Weg77℄ For a planar graph G of maximum degree
∆ ≥ 8 we have χ(G2) ≤

⌊

3
2
∆
⌋

+ 1.Observe that Wegner's 
onje
ture is also optimal. In the graph de-pi
ted in Figure 2.1(b), all the verti
es ex
ept z are pairwise at distan
eat most two. Hen
e the graph needs at least 3k + 1 =
⌊

3
2
∆
⌋

+ 1 
olors,sin
e ∆ = 2k.
k

vertices

vertices
k

k
vertices(a)

r r r p p p p r

r
r

r
p
p
p
p
r

r
r

r
p
p
p
p
r

s

s
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k verti
esz
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y(b)Figure 2.1: (a) A graph showing that Borodin's 
onje
ture is optimal (b) A graphshowing that Wegners's 
onje
ture is optimal.An L(p, q)-labelling of a graph G is an assignment of integers to theverti
es of G in su
h way that any two adja
ent verti
es re
eive integersthat di�er by at least p, and any two verti
es at distan
e two re
eiveintegers that di�er by at least q. The λp,q-number of G, denoted by
λp,q(G), is the smallest integer t su
h that there exists an L(p, q)-labelling λp,q(G)of G using labels from {1, 2, . . . , t}.Of 
ourse we 
an also 
onsider the list version of L(p, q)-labellings.Given a graph G, the list λp,q-number, denoted λl

p,q(G), is the smallest λl
p,q(G)integer t su
h that, for every t-list assignment L on the verti
es of G,there exists an L(p, q)-labelling f su
h that f(v) ∈ L(v) for every ver-tex v.
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Havet et al. re
ently proved the following result, whi
h implies thatWegner's 
onje
ture holds asymptoti
ally:Theorem 2.3 [HHM+07℄ For any �xed p, and any planar graph G withmaximum degree ∆, we have λl

p,1(G) ≤
(

3
2

+ o(1)
)

∆.Although Wegner's and Borodin's 
onje
tures seem to be tightly re-lated, nobody has ever been able to bring to light a dire
t 
onne
tionbetween them. Most of the results approa
hing these 
onje
tures use thesame ideas, but at this point (as far as we know), no one proved a generaltheorem implying a result on the 
oloring of the square and a result anthe 
y
li
 
oloring of plane graphs.This is exa
tly our approa
h in this 
hapter: we de�ne a 
oloring thatgeneralizes both the 
oloring of the square and the 
y
li
 
oloring of planegraphs, and we prove a result on this 
oloring whi
h implies asymptoti
versions of both 
onje
tures.Let A and B be two subsets of the vertex set V . ( Note that wedo not require A and B to be disjoint. ) An (A, B)-
oloring of G is anassignment of 
olors to the verti
es in B so that :
• verti
es of B that are adja
ent must re
eive di�erent 
olors, and
• verti
es of B that have a 
ommon neighbor from A must re
eivedi�erent 
olors.When ea
h vertex v ∈ B has its own list L(v) of 
olors from whi
hits 
olor must be 
hosen, we talk about a list (A, B)-
oloring.We denote by χ(G; A, B) the minimum number of 
olors required foran (A, B)-
oloring to exist. Its list variant is denoted by ch(G; A, B), andis de�ned as the minimum integer t so that for every t-list assignment L(v)to the verti
es v ∈ B, there exists a proper (A, B)-
oloring of G in whi
hthe verti
es in B are assigned 
olors from their own lists. Noti
e that wetrivially have χ(G) = χ(G; ∅, V ) and χ(G2) = χ(G; V, V ); and the samerelations hold for the list variant.For a vertex v ∈ V , let NB(v) = N(v) ∩ B, and dB(v) = |NB(v)| ( so
dG(v) = dV (v) ). If we set ∆(G; A, B) = max{ dB(v) | v ∈ A }, thenit is 
lear that we always need at least ∆(G; A, B) 
olors in a proper
(A, B)-
oloring.Our main result in this 
hapter is the following:Theorem 2.4 [AEH08℄ Let G be a planar graph and A, B ⊆ V . Then
ch(G; A, B) ≤ (1 + o(1)) 3

2
∆(G; A, B).In other words, for all ε > 0, there exists Dε, so that for all D ≥ Dεwe have : If G is a planar graph, with A, B ⊆ V so that ∆(G; A, B) ≤ D,and L is a list assignment so that ea
h vertex v in B gets a list L(v) of at
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least (3

2
+ ε
)

D 
olors, then there exists an (A, B)-
oloring of G in whi
hthe verti
es in B are assigned 
olors from their own lists.A trivial lower bound for the ( list ) 
hromati
 number of a graph G isthe 
lique number ω(G), the maximal size of a 
lique in G. For (A, B)- ω(G)
olorings, where A, B ⊆ V , we 
an de�ne the following related 
on
ept.An (A, B)-
lique is a subset C ⊆ B so that every two di�erent ver-ti
es in C are adja
ent or have a 
ommon neighbor in A. Denote by
ω(G; A, B) the maximal size of an (A, B)-
lique in G. Then we triviallyhave ch(G; A, B) ≥ ω(G; A, B), and so Theorem 2.4 means that for aplanar graph G we have ω(G; A, B) ≤ (1 + o(1)) 3

2
∆(G; A, B).But in fa
t, the stru
tural result we use to prove Theorem 2.4 fairlyeasily gives a better estimate.Theorem 2.5 [AEH08℄ Let G be a planar graph and A, B ⊆ V . Then

ω(G; A, B) ≤ 3
2
∆(G; A, B) + O(1).We now dis
uss two spe
ial 
onsequen
es of these results. These spe-
ial versions of Theorems 2.4 and 2.5 also show that the term 3

2
β in theseresults is best possible.Sin
e ch(G2) = ch(G; V, V ), as immediate 
orollaries of Theorems 2.4and 2.5 we obtain.Corollary 2.6 The square of every planar graph G of maximum de-gree ∆ has list 
hromati
 number at most (1 + o(1)) 3

2
∆.Corollary 2.7 The square of every planar graph G of maximum de-gree ∆ has 
lique number at most 3

2
∆ + O(1).In order to show that our Theorem 2.4 provides an asymptoti
ally bestpossible upper bound for the 
y
li
 
hromati
 number of plane graphs G,we need some extra notation. For ea
h fa
e f of G, add a vertex xfand 
all XF the set of verti
es that were added to G. For any fa
e fof G, and any vertex v in
ident with f , add an edge between v and xf .We denote by GF the graph obtained from G by this 
onstru
tion, so

V (GF ) = V (G)∪XF . Observe that a (list) (XF , V (G))-
oloring of GF isexa
tly a 
y
li
 (list) 
oloring of G and that ∆(GF ; XF , V (G)) = ∆∗(G).We get the following 
orollary of Theorem 2.4.Corollary 2.8 Every plane graph G of maximum fa
e degree ∆∗ has
y
li
 list 
hromati
 number at most (1 + o(1)) 3
2
∆∗.For a plane graph G, the 
y
li
 
lique number ω∗(G) is the maximal size ω∗(G)of a set C ⊆ V so that every two verti
es in C have some fa
e they areboth in
ident with. Note that the plane graph depi
ted in Figure 2.1(a)satis�es ω∗(G) = 3 k =

⌊

3
2
∆∗⌋. This shows that the following 
orollaryof Theorem 2.5 is best possible, up to the 
onstant term.
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Corollary 2.9 Every plane graph G of maximum fa
e degree ∆∗ has
y
li
 
lique number at most 3

2
∆∗ + O(1).To prove Theorems 2.4 and 2.5 we 
an as well assume that A 
ontainsall verti
es of degree at most ∆(G; A, B). To simplify things, de�ne

Bβ = { v ∈ V | dB(v) ≤ β }. So to prove Theorems 2.4 and 2.5 it isenough to prove the following theorems.Theorem 2.10 For all real ε > 0, there exists a βε so that the followingholds for all β ≥ βε. Let G be a planar graph, with B ⊆ V a set ofverti
es, and suppose every vertex v ∈ B has a list L(v) of at least (3
2

+
ε
)

β 
olors. Then a list (Bβ, B)-
oloring of G with those 
olors exist.Theorem 2.11 There exist 
onstants γ1, β1 so that the following holdsfor all β ≥ β1. Let G be a planar graph, with B ⊆ V a set of verti
es.Then every (Bβ, B)-
lique in G has size at most 3
2
β + γ1.The main steps in the proof of Theorem 2.10 
an be found in Se
tion 2.2.The proof relies on two te
hni
al lemmas; the proofs of those 
an befound in Se
tion 2.3. After that we use one of those lemmas to providethe relatively short proof of Theorem 2.11 in Se
tion 2.4. In Se
tion 2.5we dis
uss some of the aspe
ts of our work, give details about the maindi�eren
es with the proof of [HHM+07℄, and dis
uss open problems re-lated to ( list ) (A, B)-
oloring of graphs.2.2 Proof of Theorem 2.10We use the terminology and notation from the previous se
tion. Through-out this se
tion we assume that G = (V, E) is a plane graph with B ⊆ V ,and β is a positive integer. Re
all the notation Uβ = { v ∈ V | dU(v) ≤

β } for a subset U ⊆ V . Note that this means that V β is the set of allverti
es of degree at most βOur goal is to show that for all ε > 0, if we take β large enough,then for every assignment L(v) of at least (3
2
+ ε
)

β 
olors to the verti
es
v ∈ B, there is a list (Bβ, B)-
oloring of G where ea
h vertex in B re
eivesa 
olor from its own list. In other words, we want an assignment c(v) forea
h v ∈ B so that :
• for all v ∈ B we have c(v) ∈ L(v);
• for all u, v ∈ B with uv ∈ E we have c(u) 6= c(v); and
• for all u, v ∈ B with a 
ommon neighbor in Bβ ( i.e., with a 
ommonneighbor of degree at most β ) we have c(u) 6= c(v).
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2.2.1 The First StepsA β-neighbor of v is a vertex u 6= v, so that u and v are adja
ent, or uand v have a 
ommon neighbor in Bβ. Denote the set of β-neighbors of vby Nβ(v), and its number by dβ(v). Note that we have

dβ(v) ≤ d(v) +
∑

u∈N(v)∩Bβ

(d(u) − 1).For P, Q ⊆ V , the set of edges between P and Q is denoted by E(P, Q),and the number of edges between P and Q by e(P, Q) ( edges with bothends in P ∩ Q are 
ounted twi
e ).An important tool in our proof of Theorem 2.10 is the following stru
-tural result.Lemma 2.12 There exist 
onstants γ, γ′, so that for all β ≥ γ′ andplane graphs G = (V, E) we have that G 
ontains one of the following :(S1) a vertex with degree zero or one;(S2) a fa
e f and two verti
es u, v on the boundary of f with d(u) +
d(v) ≤ β and dβ(u) ≤ 3

2
β;(S3) two disjoint nonempty sets X, Y ⊆ V β with the following proper-ties :(i) Every vertex y ∈ Y has degree at most four. Moreover, y isadja
ent to exa
tly two verti
es of X and the other neighborsof y have degree at most four as well.For y ∈ Y , let Xy be the set of its two neighbors in X. And for

W ⊆ X, let Y W be the set of verti
es y ∈ Y with Xy ⊆ W ( that is,the set of verti
es of Y having their two neighbors from X in W ).(ii) For all pairs of verti
es y, z ∈ Y , if y and z are adja
ent orhave a 
ommon neighbor w /∈ X, then Xy = Xz.(iii) For all nonempty subsets W ⊆ X, we have the followinginequality :
e(W, V \ W ) ≤ e(W, Y ) + e(W, Y \ Y W ) + γ |W |.The proof of Lemma 2.12 
an be found in Subse
tion 2.3.1. In the proofwe obtain γ = 132 and γ′ = 1060, values that are probably far from bestpossible. The important point, to our mind, is that these are 
onstant.We 
ontinue with a des
ription how to apply the lemma to proveTheorem 2.10, assuming that β ≥ γ′. We use indu
tion on the numberof verti
es of G. By Lemma 2.12, G 
ontains one of (S1), (S2) or (S3).(S1) If G 
ontains a vertex v of degree at most one, we 
onsider thegraph G1 obtained from G by removing v. If v /∈ B, then a
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list (Bβ, B)-
oloring of G1 is also a list (Bβ, B)-
oloring of G.Otherwise set B1 = B \ {v}. Now �nd a list (Bβ

1 , B1)-
oloringof G1, and give an appropriate 
olor to v at the end. This isalways possible sin
e v is in 
on�i
t with at most β other verti
es,and we have (3
2

+ ε
)

β ≥ β + 1 
olors available for v.(S2) Let f be a fa
e with two verti
es u, v on its boundary su
h that
d(u) + d(v) ≤ β and dβ(u) ≤ 3

2
β. In this 
ase we 
onstru
t anew planar graph G2 by identifying u and v into a new vertex w.Set V2 = (V \ {u, v})∪ {w}, and noti
e that G2 has stri
tly fewerverti
es than G, and w has degree at most dG(u)+dG(v) ≤ β in G2.In other words, w ∈ V β

2 . If v /∈ B, then set B2 = B. Otherwise,set B2 = (B \ {u, v}) ∪ {w} and give w a list of 
olors L(w) with
L(w) = L(v).By indu
tion there exists a list (Bβ

2 , B2)-
oloring of G2. Wede�ne a 
oloring of G as follows : every vertex di�erent from uand v keeps its 
olor from the 
oloring of G2. If v ∈ B, then we
olor v with the 
olor given to w in G2. And if u ∈ B, then weuse the assumption, dβ
G(u) ≤ 3

2
β, and hen
e there exists a 
olorfor u di�erent from the 
olor of all the verti
es in 
on�i
t with u.We 
olor u with one of these 
olors. It is easy to verify that thisde�nes a list (Bβ, B)-
oloring of G.(S3) This is the only non-trivial 
ase. In the remaining of this sub-se
tion we des
ribe how to redu
e this 
ase to a list edge-
oloringproblem. In the next subse
tion, we then des
ribe how Kahn'sapproa
h to prove that the list edge-
hromati
 number is asymp-toti
ally equal to the fra
tional edge-
hromati
 number 
an beused to 
on
lude the proof of Theorem 2.10.Let X and Y be the two disjoint sets as in (S3). This means that everyvertex in X has degree at most β. Also re
all that by (S3)(i), everyvertex y ∈ Y has degree at most four. Moreover, y is adja
ent to exa
tlytwo verti
es of X and the other neighbors of y have degree at most fouras well. As in (S3), let Xy be the set of the two neighbors of y in X.Suppose there is a vertex y ∈ Y with y /∈ B. If N(y) = Xy, then
ontra
t y to one of its two neighbors in Xy. If y has a neighbor uoutside Xy, then 
ontra
t the edge uy. Call the resulting graph G3. It iseasy to 
he
k that a list (Bβ, B)-
oloring of G3, whi
h exists by indu
tion,also is a proper list (Bβ , B)-
oloring of G.So from now on we assume that all verti
es in Y are 
ontained in B.Let Y0 be the set of verti
es from Y with no neighbor outside X ∪ Y .Consider the graph G[V \ Y0] indu
ed on the set of verti
es outside Y0.For every vertex y ∈ Y \ Y0 with a unique neighbor u outside X ∪ Y , orwith exa
tly two neighbors u and v outside X ∪ Y , 
ontra
t the edge yuinto a new vertex u∗. The graph obtained is denoted by G0. And let B0



The First Steps 47
be the union of B \ Y0 and all new verti
es u∗ that originated from anedge yu with u ∈ B.By the 
onstru
tion of G0, it is easy to verify the following statement.Claim 2.13 For all u ∈ V (G0) we have (Nβ

G(u) \ Y ) ⊆ Nβ
G0

(u).For ea
h vertex u∗ of B0 
orresponding to the 
ontra
tion of an edge uy( y ∈ Y \ Y0 ) in G, set L0(u
∗) = L(u) and for all other verti
es v of B0set L0(v) = L(v). By the indu
tion hypothesis, the graph G0 admits alist (Bβ

0 , B0)-
oloring c0 with respe
t to the list assignment L0.We now transform this 
oloring into a list (Bβ, B)-
oloring of G withrespe
t to the original list assignment L. For ea
h vertex u ∈ B \Y , if anedge in
ident to u has been 
ontra
ted in the 
onstru
tion of G0 to forma new vertex u∗, set c(u) = c0(u
∗). Otherwise set c(u) = c0(u). UsingClaim 2.13, this is a good partial (Bβ, B)-
oloring of all the verti
es of

B \ Y . The di�
ult part of the proof is to show that c 
an be extendedto Y .By assumption, at the beginning every vertex in Y has a list of atleast (3
2

+ ε
)

β available 
olors. For ea
h vertex y in Y , let us removefrom L(y) the 
olors whi
h are forbidden for y a

ording to the partial
(Bβ, B)-
oloring c of G. In the worst 
ase, these forbidden 
olors areexa
tly the 
olors of the verti
es of V \Y at distan
e at most two from y.Let us de�ne the multigraph H as follows : H has vertex set X. Andfor ea
h vertex y ∈ Y we add an edge ey between the two neighbors of yin X ( in other words, between the two verti
es from Xy ). We asso
iatea list L(ey) to ey in H by taking the list of y obtained after removing theset of forbidden 
olors for y from the original list L(y). Finally, for everyedge e in G[X], we add the same edge e to H and asso
iate a list L(e) ofat least (3

2
+ ε
)

β 
olors to su
h an edge. (The 
olors within these listsare irrelevant for what follows, we just have to make sure that the listsof these spe
i�
 edges of H are large enough. )We now prove the following lemma.Lemma 2.14 A list edge-
oloring for H, with the list assignment L de-�ned as above, provides an extension of c to a list (Bβ , B)-
oloring of Gby giving to ea
h vertex y ∈ Y the 
olor of the edge ey in H.Proof. This follows from property (S3)(ii) in Lemma 2.12 : for everytwo verti
es y, z ∈ Y , if y and z are adja
ent or have a 
ommon neighbor
w /∈ X, then Xy = Xz. This proves that the two verti
es adja
ent in Yor with a 
ommon neighbor not in X de�ne parallel edges in H and sowill have di�erent 
olors. If two verti
es y1 and y2 of Y have a 
ommonneighbor in X, ey1 and ey2 will be adja
ent in H and so will get di�erent
olors. Sin
e we have already removed from the list of verti
es in Y theset of forbidden 
olors ( de�ned by the 
olors of the verti
es in V \ Y ),
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there will be no 
on�i
t between the 
olors of a vertex from Y and avertex from V \Y . We 
on
lude that the edge 
oloring of H will providean extension of c to a list (Bβ, B)-
oloring of G.The following lemma provides a lower bound on the size of L(e) for theedges e in H .Lemma 2.15 Let e = uv be an edge in H. Then we have

|L(e)| ≥
(

3
2

+ ε
)

β − (dG(u) − dH(u)) − (dG(v) − dH(v)) − 10.Proof. If e originated be
ause there was already an edge in G[X], then by
onstru
tion we have |L(e)| ≥
(

3
2
+ε
)

β. On the other hand, suppose that
e = ey, i.e., e originated be
ause of a vertex y ∈ Y in G with Xy = {u, v}.Let Z be the set of verti
es adja
ent in G to y in V \ X. Then by (S3),
|Z| ≤ 2 and |NG(Z) \ Y | ≤ 6. The 
olors that are forbidden for y arethe 
olors of {u, v}, plus the 
olors of verti
es in (NG(u) ∪ NG(v)) \ Y ,plus the 
olors of verti
es in (Z ∪NG(Z)) \ Y . The number of verti
es inthese three sets add up to (dG(u) − dH(u)) + (dG(v) − dH(v)) + 10. Thelemma follows.In the remainder of this subse
tion, we apply Lemma 2.12 to obtaininformation on the density of subgraphs in H , whi
h we will need in thenext subse
tion. As in Lemma 2.12, for all non-empty subsets W ⊆ X,we de�ne Y W as the set of verti
es y ∈ Y with Xy ⊆ W ( that is, the setof verti
es of Y having their two neighbors from X in W ). By (S3)(iii)we have :

eG(W, V \ W ) ≤ eG(W, Y ) + eG(W, Y \ Y W ) + γ |W |.This inequality has the following interpretation in H .Lemma 2.16 For all non-empty subsets W ⊆ X( = V (H) ) we have
∑

w∈W

(dG(w) − dH(w)) ≤ eH(W, X \ W ) + γ |W |.Proof. We partition EG(W, V \ W ) into three parts E1, E2 and E3 asfollows : For E1 we take the set of edges from W to V \ (X ∪ Y ), i.e.,
|E1| = eG(W, V \(X∪Y )) =

∑

w∈W

(dG(w)−dH(w)). The set E2 
ontains theedges from W to Y , |E2| = eG(W, Y ), and E3 is the set of edges from Wto X \ W in G. By (S3)(iii) ( see also the inequality for eG(W, V \ W )above ), we have
|E1| + |E2| + |E3| ≤ eG(W, Y ) + eG(W, Y \ Y W ) + γ |W |.
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Note that eG(W, Y \ Y W ) = eH(W, X \ W ) − eG(W, X \ W ) and |E2| =
eG(W, Y ). This results in the following stronger inequality, whi
h in turnimplies the lemma :

|E1| + |E3| ≤ eH(W, X \ W ) − |E3| + γ |W |,and so
∑

w∈W

(dG(w) − dH(w)) ≤ eH(W, X \ W ) − 2 |E3| + γ |W |.At this point, our aim will be to apply Kahn's approa
h to the multi-graph H with the list assignment L, to prove the existen
e of a properlist edge-
oloring for H . This is des
ribed in the next subse
tion.We summarize the properties we assume are satis�ed by the multi-graph H and the list assignment L of the edges of H . For these 
onditionswe just 
onsider dG(v) as an integer with 
ertain properties, assigned toea
h vertex of H .(H1) For all verti
es v in H we have dH(v) ≤ dG(v) ≤ β.(H2) For all edges e = uv in H : |L(e)| ≥
(

3
2
+ ε
)

β − (dG(u)−dH(u))−
(dG(v) − dH(v)) − 10.(H3) For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(dG(w) − dH(w)) ≤
eH(W, X \ W ) + γ |W |, for some 
onstant γ.2.2.2 The Mat
hing Polytope and Edge-ColoringsWe brie�y des
ribe the mat
hing polytope of a multigraph. More aboutthis subje
t 
an be found in [S
h03, Chapter 25℄.Let H be a multigraph with m edges. Let M(H) be the set of allmat
hings of H , in
luding the empty mat
hing. For ea
h M ∈ M(H), letus de�ne the m-dimensional 
hara
teristi
 ve
tor 1M as follows : 1M =

(xe)e∈E(H), where xe = 1 for an edge e ∈ M , and xe = 0 otherwise. Themat
hing polytope of H , denoted by MP(H), is the polytope de�ned bytaking the 
onvex hull of all the ve
tors 1M for M ∈ M(H).Edmonds [Edm65℄ gave the following 
hara
terisation of the mat
hingpolytope:Theorem 2.17 [Edm65℄ A ve
tor ~x = (xe) is in MP(H) if and only if
xe ≥ 0 for all xe and the following two types of inequalities are satis�ed :
• For all verti
es v ∈ V (H) : ∑

e: v in
ident to e

xe ≤ 1;
• for all subsets W ⊆ V (H) with |W | ≥ 3 and |W | odd : ∑

e∈E(W )

xe ≤
1
2
(|W | − 1).
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The signi�
an
e of the mat
hing polytope and its relation with list edge-
oloring is indi
ated by the following important result. Re
all the nota-tion λMP(H) = { λ x | x ∈ MP(H) }, for a real number λ.Theorem 2.18 [Kah00℄ For all real numbers δ, µ, 0 < δ < 1 and µ > 0,there exists a ∆δ,µ so that for all ∆ ≥ ∆δ,µ the following holds. If H is amultigraph and L is a list assignment of 
olors to the edges of H so that
• H has maximum degree at most ∆;
• for all edges e ∈ E(H) : |L(e)| ≥ µ ∆;
• the ve
tor ~x = (xe) with xe =

1

|L(e)| for all e ∈ E(H) is an elementof (1 − δ)MP(H).Then there exists a proper edge-
oloring of H where ea
h edge gets a 
olorfrom its own list.The theorem above is a
tually not expli
itly stated this way in [Kah00℄,but 
an be obtained from the appropriate parts of that paper. For fur-ther details, the reader is referred to [AEH08℄.The next lemma shows how to use Theorem 2.18 to 
omplete theindu
tion.Lemma 2.19 Let γ be a real number. Then there exists Kγ > 0, so thatfor all K ≥ Kγ the following holds. Let H be a multigraph, so that forea
h vertex v an integer D(v) is assigned and for ea
h edge e a positivereal number be is given. Suppose that the following three 
onditions aresatis�ed :(H1') For all verti
es v in H : d(v) ≤ D(v) ≤ β.(H2') For all edges e = uv in H : be ≥
(

3
2
β + K) − (D(u) − d(u)) −

(D(v) − d(v)).(H3') For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(D(w) − d(w)) ≤
eH(W, V (H) \ W ) + γ |W |.Then for all edges e ∈ E(H) we have be ≥ 1

2
β. And the ve
tor

~x = (xe) de�ned by xe =
1

be

for e ∈ E(H) is an element of MP(H).The proof of Lemma 2.19 will be given in Subse
tion 2.3.2. Thislemma guarantees that for all ε > 0, there exists a βε, so that for all
β ≥ βε Theorem 2.18 
an be applied to a multigraph H with an edge listassignment L satisfying properties (H1) � (H3) stated at the end of theprevious subse
tion.
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To see this, take 0 < δε = ε

3+2 ε
< 1. In order to be able to applyTheorem 2.18, we want to prove the existen
e of βε,γ su
h that for any

β ≥ βε,γ the ve
tor ~x = (xe), xe = 1
|L(e)| , is in (1 − δε)MP(H). Let Kγbe the number given by Lemma 2.19. By 
ondition (H2) we have

(1 − δε)|L(e)| ≥ (1 − δε)
((

3
2

+ ε
)

β − (D(u) − d(u)) − (D(v) − d(v)) − 10
)

≥ (1 − δε)
(

3
2

+ ε
)

β − (D(u) − d(u)) − (D(v) − d(v)) − 10

=
(

3
2
β + ε

2
β
)

− (D(u) − d(u)) − (D(v) − d(v)) − 10.Let βε,γ = 2(Kγ+10)
ε

. For β ≥ βε,γ, we have
(1 − δε)|L(e)| ≥

(

3
2
β + Kγ

)

− (D(u) − d(u)) − (D(v) − d(v)).So by Lemma 2.19, for be = (1 − δε)|L(e)|, the ve
tor ~x′ = (x′
e), x′

e =
1

(1−δε)
xe is in MP(H). We infer that ~x ∈ (1−δε)MP(H) and the lemmafollows.Now assume β ≥ max{ γ′, βε,γ, ∆δε,1/2 } (where γ, γ′ are determinedby Lemma 2.12, βε,γ and δε are related to Kγ from Lemma 2.19 as ex-plained above, and ∆δε,1/2 is a

ording to Theorem 2.18 ). Then usingLemma 2.19, we 
an now apply Theorem 2.18 whi
h implies that themultigraph H de�ned in Subse
tion 2.2.1 has a list edge-
oloring 
or-responding to the list assignment L. Lemma 2.14 then implies thatthe 
oloring c 
an be extended to a list (Bβ, B)-
oloring of the origi-nal graph G. This 
on
ludes the indu
tion and also 
ompletes the proofof Theorem 2.10.2.3 Proofs of the Main LemmasWe use the terminology and notation from the previous se
tions.2.3.1 Proof of Lemma 2.12In what follows, we take γ = 132 and γ′ = 1060. So take β ≥ 1060 andlet G be a plane graph. We need some further notation and terminology.The set of fa
es of G is denoted by F . For a fa
e f , a boundary walkof f is a walk 
onsisting of verti
es and edges as they are en
ounteredwhen walking along the whole boundary of f , starting at some vertex.The degree of a fa
e f , denoted d(f), is the number of edges on theboundary walk of f . Note that this means that if f is in
ident with abridge ( 
ut edge ) of G, that bridge will be 
ounted twi
e in d(f). Thesize of a fa
e f is the number of verti
es on its boundary. We alwayshave that the size of f is at most d(f), with stri
t inequality if and onlyif the fa
e has a 
ut vertex on its boundary.



52 Proofs of the Main Lemmas
We start by proving that we 
an assume that G is a 2-
onne
tedtriangulation of the plane. First suppose that G is not 
onne
ted. Thenwe 
an take two verti
es u, v from di�erent 
omponents so that addingthe edge uv to G gives a simple plane graph G′.Next, 
onsider the 
ase that G is 
onne
ted but 
ontains a fa
e fof degree more than three. If this fa
e 
ontains a vertex v that is a
ut vertex, then the verti
es u and w that 
ome before and after v ona boundary walk of f are di�erent and not adja
ent. Form the simpleplane graph G′ by adding the edge uw to G. If f 
ontains no 
ut vertex,then it has four verti
es u1, u2, u3, u4 that are 
onse
utive on a boundarywalk. And sin
e G is planar, at least one of the pairs u1, u3 and u2, u4are not adja
ent. Form the simple plane graph G′ by adding an edgebetween one of these non-adja
ent pairs.Suppose G′ 
ontains one of the stru
tures (S1) � (S3) in the lemma.We 
laim that then also G 
ontains one of these stru
tures. This isobvious if G′ 
ontains (S1) or (S2). So suppose G′ has sets X, Y a

ordingto (S3), and let uv be the edge that was added to G to give G′.It is easy to 
he
k that exa
tly the same pair X, Y works for G aswell in the following 
ases : if {u, v} ∩ (X ∪ Y ) = ∅, or if u, v ∈ X, or if

u, v ∈ Y , or if u ∈ Y and v ∈ V \ (X ∪Y ). If u ∈ X and v ∈ V \ (X ∪Y ),then going from G′ to G for W ⊆ X with x ∈ W , we loose one on theleft hand side of the inequality in (iii). Hen
e the pair X, Y also worksfor G. If u ∈ X and v ∈ Y , then in G either v has degree at most one,and then G 
ontains stru
ture (S1), or v is adja
ent to one vertex x ∈ Xand at most two more verti
es of degree at most four. But then v has aneighbor w with d(v) + d(w) ≤ 7 ≤ β. Moreover, sin
e x ∈ X ⊆ V β , wehave dβ(v) ≤ 8 + β ≤ 3
2
β. Hen
e in this 
ase G 
ontains stru
ture (S2).Finally, the possibilities v ∈ Y and u ∈ V \ (X ∪ Y ), or v ∈ X and

u ∈ V \ (X ∪ Y ), or v ∈ X and u ∈ Y , 
an be done by symmetry withthe 
ases above.So, by adding edges we 
an transform G to a 
onne
ted graph G∗in whi
h ea
h fa
e has degree three (whi
h implies that G∗ is indeed 2-
onne
ted ) and so that if G∗ satis�es the lemma, then so does G. Hen
ewe might as well assume the following :(a) The graph G is 2-
onne
ted and all its fa
es have degree three.Now suppose that G does not 
ontain any of the stru
tures (S1) or (S2).In order to prove Lemma 2.12, we only need to prove that G 
ontainsstru
ture (S3). We 
an observe that :(b) All verti
es have degree at least three. ( Sin
e G does not 
on-tain (S1), degrees must be at least two. And we 
annot have avertex of degree two, sin
e otherwise, for ea
h fa
e to have degreethree, we have a multiple edge as well. )(
) For all pairs of adja
ent verti
es u, v we have d(u) + d(v) > β or
dβ(u) > 3

2
β ( otherwise we have stru
ture (S2) ).
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Let B ⊆ V , the big verti
es, be the verti
es of degree at least 133; theother verti
es are 
alled small. De�ne Bβ = B∩V β ( the big verti
es withdegree at most β ) and B>β = B \ Bβ.(d) If a vertex u of degree three has a small neighbor, then its othertwo neighbors are in Bβ.This follows sin
e if u has a small neighbor v, then d(u) + d(v) ≤ β. Butthen, by observation (
), we must have dβ(u) > 3

2
β, whi
h is only possibleif both its other neighbors are in Bβ ( note that a neighbor from B>β addsat most one to dβ(u) ).In the same way we 
an prove :(e) If a vertex of degree four has a small neighbor, then it also has atleast two neighbors from Bβ.(f) A vertex u of degree �ve has at least two big neighbors ( otherwisewe have dβ(u) ≤ 5+4 · (132−1)+ (β−1) ≤ 3

2
β, sin
e β ≥ 1060 ).We 
ontinue our analysis using the 
lassi
al te
hnique of dis
harging.Give ea
h vertex v ∈ V an initial 
harge µ(v) = 2

3
d(v) − 4. Using thefa
t that every fa
e has degree three, Euler's Formula |V |− |E|+ |F | = 2
an be rewritten as ∑

x∈V

µ(x) = −8.We next redistribute initial 
harges a

ording to the following rules :(R1) Ea
h vertex of degree three that is adja
ent to three big verti
esre
eives a 
harge 2/3 from ea
h of its neighbors.(R2) Ea
h vertex of degree three that is adja
ent to two big verti
esre
eives a 
harge 1 from ea
h of its big neighbors.(R3) Ea
h vertex of degree four that is adja
ent to four big verti
esre
eives a 
harge 1/3 from ea
h of its big neighbors.(R4) Ea
h vertex of degree four that is adja
ent to three big verti
esre
eives a 
harge 4/9 from ea
h of its big neighbors.(R5) Ea
h vertex of degree four that is adja
ent to two big verti
esre
eives a 
harge 2/3 from ea
h of its big neighbors.(R6) Ea
h vertex of degree �ve re
eives a 
harge 1/3 from ea
h of itsbig neighbors.Denote the resulting 
harge of an element v ∈ V after applying rules(R1) � (R6) by µ′(v). Sin
e the global 
harge has been preserved, we have
∑

v∈V

µ′(v) = −8. We will show that for most v ∈ V , µ′(v) is non-negative.Combining observations (d) � (f) with rules (R1) � (R6) and our knowl-edge that µ(v) = 2
3
d(v) − 4, we �nd that µ′(v) = 0 if d(v) = 3, 4, while

µ′(v) ≥ 0 if d(v) = 5.For a small vertex v with d(v) ≥ 6, we have µ′(v) = µ(v) = 2
3
d(v) −

4 ≥ 0.So we are left to 
onsider verti
es v ∈ B. The plane embedding of Gimposes a 
lo
kwise order on the neighbors of v. If u is a neighbor of v,
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then by u− ( resp. u+ ) we indi
ate the neighbor of v that 
omes before( resp. after ) u in that order. Similarly, we denote by u−− ( resp. u++ )the neighbor of v that 
omes before u− ( resp. after u+ ) in the sameorder.Let us take a vertex v ∈ B>β. We distinguish 5 di�erent types ofneighbors of v :
N3(v) = { u ∈ N(v) | d(u) = 3 and all neighbors of u are big };

N4a(v) = { u ∈ N(v) | d(u) = 4 and all neighbors of u are big };
N4b(v) = { u ∈ N(v) | d(u) = 4 and u has exa
tly one small neighbor };
N5(v) = { u ∈ N(v) | d(u) = 5 };
N6(v) = { u ∈ N(v) | d(u) ≥ 6 }.Noti
e that ea
h neighbor of v is in one of these sets. ( For a neighbor ofdegree three, this follows from observation (d). And for a neighbor u ofdegree four, it follows from observation (e) that, sin
e v ∈ B>β, if u hasa small neighbor, then the remaining two neighbors are in Bβ. )Moreover, by observation (d) we must have that if u ∈ N3(v), then

u−, u+ ∈ N6(v). Similarly, if u ∈ N4a(v), then we also have u−, u+ ∈
N6(v). While if u ∈ N4b(v), then at least one of u−, u+ is in N6(v).Set n3 = |N3(v)|, n4a = |N4a(v)|, n4b = |N4b(v)|, n5 = |N5(v)|, and
n6 = |N6(v)|. From the previous observation, we dedu
e

n6 ≥ n3 + n4a +
1

2
n4b.We also have, using µ(v) = 2

3
d(v)− 4 and applying rules (R1), (R3),(R4) and (R6), that

µ′(v) = 2
3
d(v) − 4 − 2

3
n3 − 1

3
n4a − 4

9
n4b − 1

3
n5.Combining this with d(v) = n3 + n4a + n4b + n5 + n6 and 1

3
n6 ≥ 1

3
n3 +

1
3
n4a + 1

6
n4b, we �nd

µ′(v) = 2
3
n6 + 1

3
n4a + 2

9
n4b + 1

3
n5 − 4

≥ 1
3
n6 + 1

3
n3 + 2

3
n4a + 7

18
n4b + 1

3
n5 − 4

≥ 1
3
(n6 + n3 + n4a + n4b + n5) − 4

≥ 1
3
d(v) − 4 ≥ 0.So we found that for all v /∈ Bβ we have µ′(v) ≥ 0, and hen
e we musthave
∑

v∈Bβ

µ′(v) ≤ −8 < 0.To derive the relevant 
onsequen
e of that formula, we must make a de-tailed analysis of the neighbors of a vertex v ∈ Bβ . We again distinguish
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di�erent types of neighbors of v :
M1(v) = { u ∈ N(v) | {u−, u−−, u+, u++} ∩ Bβ 6= ∅ };

M4a(v) = { u ∈ N(v) \ M1(v) | d(u) = 4 and u− or u+ have degree at least �ve };
M4b(v) = { u ∈ N(v) \ M1(v) | d(u) = d(u−) = d(u+) = 4 };
M5(v) = { u ∈ N(v) \ M1(v) | d(u) = 5 };
M6(v) = { u ∈ N(v) \ M1(v) | d(u) ≥ 6 }.First observe that if u ∈ N(v) \ M1(v) is a small vertex, then u−and u+ both have degree at least four : Assume that u− has degree three,then by observation (d) the neighbor w of u− distin
t from v and u isin Bβ . By observation (a), w = u−−, whi
h 
ontradi
ts the fa
t that

u /∈ M1(v). If u+ has degree three, we �nd that u++ ∈ Bβ , whi
h again
ontradi
ts u /∈ M1(v).As a 
onsequen
e, every neighbor of v is in exa
tly one set. Our aimin the following, in order to prove Lemma 2.12, is to show that mostneighbors of v are in M4b(v).We now evaluate the 
harge that a vertex v ∈ Bβ has given to itsneighbors. If u ∈ M1(v), then v gave at most 1+1+1 = 3 to {u−, u, u+};if u ∈ M4a(v), then v gave at most 1/3 + 2/3 + 2/3 = 5/3 to {u−, u, u+};if u ∈ M4b(v), then v gave at most 2/3 + 2/3 + 2/3 = 2 to {u−, u, u+};if u ∈ M5(v), then v gave at most 1/3 + 2/3 + 2/3 = 5/3 to {u−, u, u+};and, �nally, if u ∈ M6(v), then v gave at most 2/3 + 0 + 2/3 = 4/3to {u−, u, u+}. Setting m1 = |M1(v)|, m4a = |M4a(v)|, m4b = |M4b(v)|,
m5 = |M5(v)|, and m6 = |M6(v)|, we 
an 
on
lude that v gave at most
1
3

(

3 m1 + 5
3
m4a + 2 m4b + 5

3
m5 + 4

3
m6

)

≤ m1 + 2
3
m4b + 5

9
(m4a + m5 + m6)

≤ 5
9
d(v) + 4

9
m1 + 1

9
m4bto its neighborhood. This means that the remaining 
harge µ′(v) of avertex v ∈ Bβ must satisfy

µ′(v) ≥
(

2
3
d(v)−4

)

−
(

5
9
d(v)+ 4

9
m1+ 1

9
m4b

)

= 1
9
(d(v)−m4b)− 4

9
m1−4.By de�nition, M1(v) is at most four times the number of neighbors of vin Bβ. Sin
e the subgraph of G indu
ed by Bβ is planar, it has at most

3 |Bβ| − 6 edges, and so
∑

v∈Bβ

|M1(v)| < 24 |Bβ|.Combining the last two inequalities gives
0 >

∑

v∈Bβ

µ′(v) ≥
(

∑

v∈Bβ

1
9
(d(v) − |M4b(v)|)

)

− 4
9
· 24 |Bβ| − 4 |Bβ|,
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whi
h 
an be written as

∑

v∈Bβ

(d(v) − |M4b(v)|) < 132 |Bβ|.We 
an assume Bβ 6= ∅, otherwise G 
ontains stru
ture (S1) or (S2).De�ne X0 = Bβ and Y0 =
⋃

v∈Bβ M4b(v). Note that the previous inequal-ity 
an be written e(X0, V \ Y0) < 132 |X0|. Also observe that the pair
(X0, Y0) satis�es the 
onditions (i) and (ii) for X and Y in part (S3) ofLemma 2.12 :(i) For all verti
es u ∈ M4b(v), u− and u+ have degree four in G, andthe fourth neighbor of u is in Bβ = X0 by observation (e).(ii) By observation (a), all pairs of adja
ent verti
es u, v ∈ Y0, satisfy

Xu
0 = Xv

0 . If u, v ∈ Y0 share a neighbor w /∈ X0, then w has degreeat most four and its possible neighbors distin
t from u and v arein Xu
0 . Again by observation (a), we must have Xu

0 = Xv
0 .So we are done if the pair (X0, Y0) also satis�es 
ondition (iii) ( with

X = X0 and Y = Y0 ). Suppose this is not the 
ase. So there must exista set Z1 ⊆ X0 with
e(Z1, V \ Z1) > e(Z1, Y0) + e(Z1, Y0 \ Y Z1

0 ) + 132 |Z1|.De�ne X1 = X0 \ Z1 and Y1 = Y X1
0 . Again, by 
onstru
tion, (X1, Y1)satis�es 
onditions (i) and (ii) of (S3). If it does not satisfy 
ondition (iii)we iterate the pro
ess ( see Figure 2.2 ) and eventually obtain a pair

(Xk, Yk) satisfying 
onditions (i), (ii) and (iii) of (S3). We only need to
he
k that Xk 6= ∅ and Yk 6= ∅.
Zi

Xi
Yi

Xi−1 Yi−1Figure 2.2: Xi = Xi−1 \ Zi and Yi = Y Xi

i−1.Let 1 ≤ i ≤ k. Sin
e Xi = Xi−1 \ Zi, we have
e(Xi, V \ Yi) = e(Xi−1, V \ Yi) − e(Zi, V \ Yi)

= e(Xi−1, V \ Yi−1) + e(Xi−1, Yi−1 \ Yi)

− e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Yi)

= e(Xi−1, V \ Yi−1) − e(Zi, V \ Yi−1) + e(Xi, Yi−1 \ Yi).
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Sin
e Yi = Y Xi

i−1, every neighbor u ∈ Yi−1 \ Yi of a vertex from Xi hasexa
tly one neighbor in Zi ( see Figure 2.2 ). Hen
e, e(Xi, Yi−1 \ Yi) =
e(Zi, Yi−1 \ Y Zi

i−1). So we have
e(Xi−1, V \ Yi−1) = e(Xi, V \ Yi) + e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Y Zi

i−1)

= e(Xi, V \ Yi) + e(Zi, V ) − e(Zi, Yi−1) − e(Zi, Yi−1 \ Y Zi
i−1).By the de�nition of Zi, we have e(Zi, V ) ≥ e(Zi, V \ Zi) > e(Zi, Yi−1) +

e(Zi, Yi−1 \ Y Zi
i−1) + 132 |Zi|. Hen
e we obtain

e(Xi−1, V \ Yi−1) ≥ e(Xi, V \ Yi) − e(Zi, Yi−1) − e(Zi, Yi−1 \ Y Zi
i−1) + e(Zi, Yi−1)

+ e(Zi, Yi−1 \ Y Zi
i−1) + 132 |Zi|

≥ e(Xi, V \ Yi) + 132 |Zi|.Setting Z∗ =
⋃

1≤i≤k

Zi, we have e(Xk, V \ Yk) ≤ e(X0, V \ Y0) − 132 |Z∗|.As a 
onsequen
e,
|Z∗| ≤ e(X0, V \ Y0) − e(Xk, V \ Yk)

132
≤ e(X0, V \ Y0)

132
<

132 |X0|
132

= |X0|.Sin
e Xk = X0 \ Z∗, this implies |Xk| > 0, whi
h leads to Xk 6= ∅.Finally, let v ∈ Xk. Taking W = {v} in the inequality (iii) of (S3)(whi
h by 
onstru
tion is satis�ed by (Xk, Yk) ), we obtain d(v) ≤ 2 dYk
(v)+

132, where dYk
(v) denotes the number of neighbors of v in Yk. Sin
e v isa big vertex, d(v) ≥ 133 and so dYk

(v) ≥ 1
2
(133 − 132) > 0. This meansthat we must have Yk 6= ∅, whi
h 
on
ludes the proof of Lemma 2.12.2.3.2 Proof of Lemma 2.19We re
all the hypotheses of the lemma : We have a real number γ; H isa multigraph; ea
h vertex v of H has an asso
iated integer D(v); and forea
h edge e a positive number be is given. The following three 
onditionsare satis�ed :(H1') For all verti
es v in H : d(v) ≤ D(v) ≤ β.(H2') For all edges e = uv in H : be ≥
(

3
2
β + K) − (D(u) − d(u)) −

(D(v) − d(v)).(H3') For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(D(w) − d(w)) ≤
eH(W, V (H) \ W ) + γ |W |.In the proof that follows, at 
ertain moments we will give lower boundsfor K so that any K satisfying all these lower bounds will satisfy thelemma, i.e., su
h that the ve
tor ~x = (xe), xe = 1

be
will be in MP(H).
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For an edge e = uv in H , de�ne

ae =
(

3
2
β+K

)

−(D(u)−d(u))−(D(v)−d(v)) and ye =
1

ae
. (2.1)We will in fa
t prove that the ve
tor ~y = (ye) is in the mat
hing poly-tope MP(H). Sin
e be ≥ ae, we have xe =

1

be

≤ 1

ae

= ye. So, byEdmonds' 
hara
terisation of the mat
hing polytope, if ~y ∈ MP(H),this guarantees that ~x ∈ MP(H), as required.Applying 
ondition (H3') to the set W = {v} gives D(v) − d(v) ≤
d(v) + γ, whi
h implies :(a) For all verti
es v ∈ V (H) we have d(v) ≥ 1

2
(D(v) − γ).Let e = uv be an edge of H . If we use the estimate above for both uand v in the de�nition of ae in (2.1), and re
alling that D(u), D(v) ≤ β,we obtain

ae ≥ 3
2
β − 1

2
D(u) − 1

2
D(v) + K − γ ≥ 1

2
β + K − γ.On the other hand, if we use observation (a) to u only we get

ae ≥ d(v) + 3
2
β − 1

2
D(u) − D(v) + K − 1

2
γ ≥ d(v) + K − 1

2
γ.So if we make sure that K ≥ 2 γ, then the following two 
on
lusions hold.(b) For all edges e = uv in E(H) we have ae ≥ d(v) + 1

2
K.(
) For all edges e ∈ E(H) we have ae ≥ 1

2
β + 1

2
K.Note that observation (
) also gives be ≥ ae ≥ 1

2
β for all e ∈ E(H),as required.Next noti
e that for any κ > 0, the fun
tion x 7→ x

x+κ
is in
reas-ing in x. Together with the fa
t that d(v) ≤ β for all v ∈ V (H) andobservation (b), we �nd

∑

e∋v

1

ae

≤ d(v) · 1

d(v) + 1
2
K

≤ 1, whi
h shows thatClaim 2.20 For all verti
es v ∈ V (H) we have ∑
e∋v

ye ≤ 1.Using Theorem 2.17, all that remains is to prove that for all W ⊆ V (H)with |W | ≥ 3 and |W | odd we have ∑

e∈E(W )

ye ≤ 1
2
(|W | − 1). We a
tuallywill prove this for all |W | ≥ 3. Note that we 
ertainly 
an assume

E(W ) 6= ∅.Using observation (b), we infer that :
∑

e∈E(W )

1

ae

≤ 1

2

∑

u∈W

dH[W ](u)

d(u) + 1
2
K

=
1

2

∑

u∈W

( d(u)

d(u) + 1
2
K

−d(u) − dH[W ](u)

d(u) + 1
2
K

)

.
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Sin
e d(u)

d(u) + 1
2
K

≤ β

β + 1
2
K

and d(u) − dH[W ](u)

d(u) + 1
2
K

≥ d(u) − dH[W ](u)

β + 1
2
K

,this implies
∑

e∈E(W )

1

ae

≤ 1

2
|W | β

β + 1
2
K

− 1

2

e(W, W c)

β + 1
2
K

.Here we used that ∑
u∈W

(

d(u)−dH[W ](u)
)

= e(W, W c), where W c = V (H)\
W . If e(W, W c) ≥ β, we obtain

∑

e∈E(W )

ye ≤ 1

2
(|W | − 1) · β

β + 1
2
K

≤ 1

2
(|W | − 1),provided that K ≥ 0.So we 
an assume in the following that e(W, W c) ≤ β, in whi
h 
aseCondition (H3') of Lemma 2.19 implies

∑

u∈W

(D(u) − d(u)) ≤ e(W, W c) + γ |W | ≤ β + γ |W |.For a vertex u set c(u) = D(u) − d(u), and for a set of verti
es U wede�ne c(U) =
∑

u∈U

c(u). So we 
an write the above as c(W ) ≤ β + γ |W |.In the following we use the fa
t that all ae are large enough to �nda bound for the sum ∑

e∈E(W )

a−1
e . To this aim, re
all from de�nition (2.1)that ae =

(

3
2
β + K

)

− c(u) − c(v) for all edges e = uv in H . This gives
∑

e∈E(W )

ae ≥
(

3
2
β + K

)

|E(W )| −
∑

u∈W

c(u) dH[W ](u).Sin
e dH[W ](u) ≤ d(u) = D(u) − c(u) ≤ β − c(u), we have
∑

e∈E(W )

ae ≥
(

3
2
β + K

)

|E(W )| − β c(W ) +
∑

u∈W

c(u)2.Set p = min
uv∈E(W )

{(

3
2
β + K

)

− c(u) − c(v)
} and q = 3

2
β + K. Thismeans that q−p = max

uv∈E(W )

{

c(u)+c(v)
}. Let e = uv be an edge in E(W )so that c(u) + c(v) = q − p. Then c(u)2 + c(v)2 ≥ 1

2
(q − p)2, and hen
ewe 
an be sure that

∑

e∈E(W )

ae ≥ q |E(W )| − β c(W ) + 1
2
(q − p)2.We now use this inequality and the following 
laim to bound ∑

e∈E(W )

a−1
e .
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Claim 2.21 Let r1, . . . , rm be m real numbers so that 1 < p ≤ r1, . . . , rm ≤
q and ∑

1≤i≤m

ri ≥ q m − (q − p) S, for some S ≥ 0. Then we have
∑

1≤i≤m

r−1
i ≤ S

p
+

m − S

q
.Proof The result is trivial if p = q, so suppose p < q. For any 1 ≤

i ≤ m, set ci =
q − ri

q − p
. Now we have 0 ≤ ci ≤ 1 for all 1 ≤ i ≤ m,and ∑

1≤i≤m

ci ≤ S. Sin
e the fun
tion x 7→ 1

x
is 
onvex, we have that for

1 ≤ i ≤ m,
1

ri
=

1

q − ci (q − p)
=

1

ci p + (1 − ci) q
≤ ci

1

p
+(1−ci)

1

q
= ci

(1

p
−1

q

)

+
1

q
.As a 
onsequen
e,

∑

1≤i≤m

1

ri
≤
(1

p
− 1

q

)

∑

1≤i≤m

ci +
m

q
≤
(1

p
− 1

q

)

S +
m

q
≤ S

p
+

m − S

q
.
2We set R = β c(W ) − 1

2
(q − p)2 and S =

R

q − p
. Using Claim 2.21, atthis point we have

∑

e∈E(W )

1

ae

≤ S

p
+
|E(W )| − S

q
=

S (q − p)

p q
+
|E(W )|

q
=

R

p q
+

2 |E(W )|
3 β + 2K

.Noti
e that by 
ondition (H3') of Lemma 2.19, 2 |E(W )| ≤ ∑

u∈W

D(u) −
2 c(W ) + γ |W | ≤ β |W | − 2 c(W ) + γ |W |. Hen
e we �nd

∑

e∈E(W )

1

ae

≤ β |W |
3β + 2K

+
R

p q
− 2 c(W )

3β + 2K
+

γ |W |
3 β + 2K

. (2.2)Claim 2.22 For K large enough we have R

p q
− 2 c(W )

3 β + 2K
+

γ |W |
3 β + 2K

≤
2K

3 (3 β + 2K)
|W |.Proof Sin
e q = 3

2
β + K, we only have to prove that 2 R

p
− 2 c(W ) +

γ |W | ≤ 1
3
K |W |.Let us write q − p = α β, and so p = 1

2
(3 − 2 α) β + K and R =

β c(W ) − 1
2
α2 β2. Using that c(W ) ≤ β + γ |W |, we have

2 R

p
− 2 c(W ) + γ |W | =

2 β c(W )

p
− α2 β2

p
− 2 c(W ) + γ |W |

= c(W )
2 β − 2 p

p
− α2 β2

p
+ γ |W |

≤ β

p
(2 β − 2 p − α2 β) + γ |W | 2 β − p

p
.
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As 2 p = (3 − 2 α) β + 2K, we have 2 β − 2 p − α2 β = (−1 + 2 α −
α2) β − 2K = −(α − 1)2 β − 2K < 0. Note that by observation (a)and 
ondition (H1') we have q − p ≤ β + γ, hen
e if we 
hoose K ≥ γ,then we have q − p ≤ β + K, and hen
e p ≥ 1

2
β. We 
an 
on
lude

2 R

p
− 2 c(W ) + γ |W | ≤ 3 γ |W |. As soon as K ≥ 9

2
γ, we have 3 γ |W | ≤

2
3
K |W |, whi
h 
ompletes the proof of the 
laim. 2Combining (2.2) and Claim 2.22, we obtain that for any K ≥ 9

2
γ :

∑

e∈E(W )

ye =
∑

e∈E(W )

1

ae

≤ β|W |
3β + 2K

+
2K|W |

3 (3β + 2K)

=
(β + 2

3
K)

(3 β + 2K)
|W | = 1

3
|W |.Sin
e |W | ≥ 3, 1

3
|W | ≤ 1

2
(|W | − 1), whi
h 
ompletes the proof of thelemma.2.4 Proof of Theorem 2.11Let γ and γ′ be as given in Lemma 2.12, and take γ1 = max

{⌈

1
4
(3 γ +

37)
⌉

, 11
} and β1 = γ′. Next take β ≥ γ′. Suppose the theorem isfalse, and let the planar graph G be a 
ounterexample with the minimumnumber of verti
es, for some B ⊆ V .Suppose G 
ontains verti
es u, v that are in
ident with a 
ommonfa
e, and so that d(u) + d(v) ≤ β. Constru
t a new planar graph G1 byidentifying u and v into a new vertex w. Set V1 = (V \ {u, v}) ∪ {w},and noti
e that G1 has stri
tly fewer verti
es than G, and w has degreeat most dG(u) + dG(v) ≤ β in G1. In other words, w ∈ V β

1 . If v /∈ B,then set B1 = B; otherwise, set B1 = (B \ {u, v}) ∪ {w}.Every (Bβ , B)-
lique in G not 
ontaining u 
orresponds to a (Bβ
1 , B1)-
lique in G of the same size. Sin
e G was 
hosen as the smallest 
oun-terexample to Theorem 2.11, this means that every (Bβ, B)-
lique in Gof size larger than 3

2
β + γ1 must 
ontain u. On the other hand, any

(Bβ, B)-
lique in G 
ontaining u has size at most 1 + dβ(u).We 
an 
on
lude that for all pairs of verti
es u, v in G in
ident witha 
ommon fa
e and with d(u) + d(v) ≤ β, we have that u and v are inevery (Bβ, B)-
lique of size larger than 3
2
β+γ1, and these verti
es satisfy

dβ(u), dβ(v) ≥ 3
2
β + γ1.Sin
e β ≥ γ′, we 
an apply Lemma 2.12. We use the notation from thelemma. Be
ause of the observation above, 
on
lusions (S1) and (S2) ofthat lemma are not possible. Hen
e we know that G 
ontains X, Y ⊆ V βsatisfying (S3) from the lemma. We re
all the 
ru
ial properties :
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(i) Every vertex y ∈ Y has degree at most four. Moreover, y is adja-
ent to exa
tly two verti
es of X and the other neighbors of y havedegree at most four as well.For y ∈ Y , let Xy be the set of its two neighbors in X. And for W ⊆ X,let Y W be the set of verti
es y ∈ Y with Xy ⊆ W ( that is, the set ofverti
es of Y having their two neighbors from X in W ).(ii) For all pairs of verti
es y, z ∈ Y , if y and z are adja
ent or havea 
ommon neighbor w /∈ X, then Xy = Xz.(iii) For all nonempty subsets W ⊆ X, we have the following inequal-ity :

e(W, V \ W ) ≤ e(W, Y ) + e(W, Y \ Y W ) + γ |W |.By (i), it follows that all verti
es in Y are in every (Bβ, B)-
lique ofsize larger than 3
2
β + γ1. Hen
e in parti
ular :(a) For every y ∈ Y we have dβ(y) ≥ 3

2
β + γ1.Also by the properties of the verti
es in Y a

ording to (i) and (ii) wehave for all y ∈ Y and Xy = {x1, x2} :

dβ(y) ≤ 4 + 2 · (4 − 1) + (d(x1) − 1) + (d(x2) − 1) − |Y {x1,x2} \ {y}|
= 9 + d(x1) + d(x2) − |Y {x1,x2}|( the term |Y {x1,x2} \ {y}| is subtra
ted, sin
e these verti
es are 
ountedtwi
e in (d(x1) − 1) + (d(x2) − 1) ). Sin
e d(x1), d(x2) ≤ β, from (a) we
an 
on
lude that(b) for every pair x1, x2 ∈ X we have |Y {x1,x2}| ≤ 1

2
β − γ1 + 9.We also must have that all pairs of verti
es from Y are adja
ent orhave a 
ommon neighbor from Bβ. By (ii), this proves that for everytwo verti
es y1, y2 ∈ Y we have Xy1 ∩ Xy2 6= ∅. As a 
onsequen
e, if X ′denotes the set of verti
es of X with at least one neighbor in Y , and Hdenotes the graph with vertex set X ′ in whi
h two verti
es are adja
entif they have a 
ommon neighbor in Y , then H is either a triangle or astar.Case 1. H is a triangle or H is a star with at most two leaves.First suppose H is a triangle. Let y ∈ Y with (X ′)y = {x1, x2}, where

X ′ = {x1, x2, x3}. Then Y = Y {x1,x2} ∪ Y {x1,x3} ∪ Y {x2,x3}, hen
e by (b),
|Y | ≤ 3

2
β − 3 γ1 + 27. Sin
e all verti
es in Y are in every (Bβ, B)-
liqueof size larger than 3

2
β + γ1, we 
an estimate, using (i) :

dβ(y) ≤ 2 · (4 − 1) + |X ′| + |Y | + e({x1, x2}, V \ (X ′ ∪ Y ))

≤ 3
2
β − 3 γ1 + 36 + e({x1, x2}, V \ (X ′ ∪ Y )).By (iii) we have, using that Y X′

= Y by de�nition of X ′,
e({x1, x2}, V \(X ′∪Y )) ≤ e(X ′, V \(X ′∪Y )) = e(X ′, V \X ′)−e(X ′, Y ) ≤ 3 γ.
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These two estimates give dβ(y) ≤ 3

2
β + 3 γ + 36 − 3 γ1, whi
h 
ontra-di
ts (a), sin
e 4 γ1 ≥ 3 γ + 37.If H is a star with at most two leaves, then similar arguments willgive a 
ontradi
tion.Case 2. H is a star with at least three leaves.For any y ∈ Y , the β-neighbors of y in G are the neighbors of y, theneighbors of y's neighbors of degree four, the neighbors of the 
entre ofthe star ( there are at most β of these ), or the verti
es adja
ent to allthe leaves of the star. Sin
e H has at least three leaves and G is planar,there is at most one vertex of the last type. Subtra
ting one when y itselfappears as one of the types above, we 
an estimate

dβ(y) ≤ 4 + 2 · (4 − 1) + (β − 1) + 1 ≤ β + 10.Again we �nd a 
ontradi
tion with (a), whi
h 
ompletes the proof of thetheorem.Lemma 2.12 was proved with γ = 132 and γ′ = 1060. Following the proofabove means we 
an obtain γ1 = 109 and β1 = 1060 in Theorem 2.11.But it is 
lear that these values are far from best possible. Using moreelaborate dis
harging arguments and more 
areful reasoning in the �nalparts of the proof of Lemma 2.12 
an give signi�
antly smaller values.Sin
e our �rst goal is to show that we 
an obtain 
onstant values forthese results, we do not pursue this further.2.5 Con
lusion2.5.1 About the ProofThe proof of our main theorem in general follows the same lines as theproof of Theorem 2.3 in [HHM+07℄. In parti
ular, the proof of that the-orem also starts with a stru
tural lemma 
omparable to Lemma 2.12,uses the stru
ture of the graph to redu
e the problem to edge-
oloringa spe
i�
 multigraph, and then apply ( and extend ) Kahn's approa
h tothat multigraph. Of 
ourse, a di�eren
e is that Theorem 2.3 only dealswith list 
oloring the square of a graph, but it is probably quite straight-forward to generalize the whole proof to the 
ase of list (Bβ, B)-
oloring.Nevertheless, there are some important di�eren
es in the proofs we feeldeserve highlighting.Lemma 2.12 is stronger than the 
omparable lemma in [HHM+07℄.The properties of the set Y in Lemma 2.12 mean that in our proof we
an 
onstru
t a multigraph H so that a standard list edge-
oloring of Hprovides the information to 
olor the verti
es in Y ( see Lemma 2.14 ).In the lemma in [HHM+07℄, the translation to a list-edge 
oloring of a
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multigraph is not so 
lean; apart from the normal 
ondition in the listedge-
oloring of H ( that adja
ent edges need di�erent 
olors ), for ea
hedge there may be up to O(∆1/2) non-adja
ent edges that also need toget a di�erent 
olor. In parti
ular this means that in [HHM+07℄, Kahn'sresult in Theorem 2.18 
annot be used dire
tly. Instead, a new, stronger,version has to be proved that 
an deal with a 
ertain number of non-adja
ent edges that need to be 
olored di�erently. Lemma 2.12 allows usto use Kahn's Theorem dire
tly.A se
ond aspe
t in whi
h our Lemma 2.12 is stronger is that inthe �nal 
ondition (S3)(iii), we have an �error term� that is a 
onstanttimes |W |. In [HHM+07℄ the 
omparable term is ∆9/10 |W |, where ∆ isthe maximum degree of the graph. This in itself already means that theapproa
h in [HHM+07℄ at best 
an give a bound of the type (3

2
+o(1)

)

∆.The fa
t that we 
annot do better with the stronger stru
tural result isbe
ause of the limitations of Kahn's Theorem, Theorem 2.18. If it wouldbe possible to repla
e the 
ondition in that theorem by a 
ondition ofthe form �the ve
tor ~x = (xe) with xe =
1

|L(e)| − K
for all e ∈ E(H) isan element of MP(H)�, where K is some positive 
onstant, the work inthis paper would give an improvement for the bound in Theorem 2.10 to

3
2
β + O(1) (be
ause our version of Lemma 2.19 is strong enough to alsosupport that 
ase).Lemma 2.12 also allows us to prove a bound 3

2
β+O(1) for the (Bβ, B)-
lique number in Theorem 2.11. The important 
orollary that the squareof a planar graph has 
lique number at most 3

2
∆+O(1) would have beenimpossible without the improved bound in the lemma.Also Lemma 2.19 is stronger than its 
ompatriot in [HHM+07℄. Thelemma in [HHM+07℄ only deals with the 
ase D(v) = β for all verti
es vin H . Be
ause of this, it 
an only be applied to the 
ase that all verti
esin H have maximum degree ∆. Some non-trivial tri
kery then has tobe used to deal with the 
ase that there are verti
es in H of degreeless than ∆. Apart from that di�eren
e, the proof of Lemma 2.19 is
ompletely di�erent from the proof in [HHM+07℄. We feel that our newproof is more natural and intuitive, giving a 
lear relation between thelower bounds on the sizes of the lists and the upper bound of the sumof their inverses. The proof in [HHM+07℄ is more ad-ho
, using somenon-obvious distin
tion in a number of di�erent 
ases, depending on thesize of W and the degrees of some verti
es in W .2.5.2 Further WorkA natural way to extend Wegner's and Borodin's 
onje
tures to (A, B)-
olorings is the following:
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Conje
ture 2.23 There exist 
onstants c1, c2, c3 su
h that for all planargraphs G and A, B ⊆ V we have

χ(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ c1;

ch(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ c2;

ch(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ 1, if ∆(G; A, B) ≥ c3.If A = ∅ ( hen
e ∆(G; A, B) = 0 ) and B = V , then the Four ColorTheorem means that the smallest possible value for c1 is four; while thefa
t that planar graphs are always 5-list 
olorable but not always 4-list
olorable, shows the smallest possible value for c2 is �ve.We feel that our work is just the beginning of the study of general
(A, B)-
oloring. It should be possible to obtain deeper results taking intoa

ount the stru
ture of the two sets A and B, and not just the degreesof the verti
es. The following easy result is an example of this.Theorem 2.24 Let G = (V, E) be a planar graph and A, B ⊆ V . Sup-pose that for every two distin
t verti
es in A we have that their distan
ein G is at least three. Then ch(G; A, B) ≤ ∆(G; A, B) + 5.Proof. Sin
e G is planar, there exists an ordering v1, . . . , vn of the ver-ti
es so that ea
h vi has at most �ve neighbors in {v1, . . . , vi−1}. Wegreedily 
olor the verti
es v1, . . . , vn that are in B in that order. Notethat ea
h vertex has at most one neighbor from A.When 
oloring the vertex vi, we need to take into a

ount its neighborsin {v1, . . . , vi−1}, plus the neighbors in {v1, . . . , vi−1} of a vertex a ∈ A ad-ja
ent to vi (where that vertex a 
an be in {v1+1, . . . , vn} ). By 
onstru
-tion of the ordering, there are at most �ve neighbors of vi in {v1, . . . , vi−1}.And a neighbor a ∈ A has at most dB(a) − 1 ≤ ∆(G; A, B) − 1 neigh-bors in {v1, . . . , vi−1} di�erent from vi. So the total number of forbidden
olors when 
oloring vi is at most ∆(G; A, B) + 4. Sin
e ea
h vertex has
∆(G; A, B) + 5 
olors available, the greedy algorithm will always �nd afree 
olor.Note that saying that the verti
es in A have distan
e at least three isthe same as saying that two di�erent verti
es in A have no 
ommonneighbor. We think that it is possible to generalize our main theoremand the theorem above in the following way. For A, B ⊆ V , let k(G; A, B)be the maximum of |NB(a1) ∩ NB(a2)| over all a1, a2 ∈ A, a1 6= a2.Conje
ture 2.25 There exists a 
onstant c so that for all planar graphs Gand A, B ⊆ V we have

ch(G; A, B) ≤ ∆(G; A, B) + k(G; A, B) + c.
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This 
onje
ture would �t with our 
urrent proof of Theorem 2.10, themain part of whi
h is a redu
tion of the original problem to a list edge-
oloring problem. For this approa
h, Shannon's Theorem [Sha49℄ that amultigraph with maximum degree ∆ has an edge-
oloring using at most
⌊

3
2
∆(G)

⌋ 
olors, forms a natural base for the bounds 
onje
tured in Con-je
ture 2.23. If the relation between 
oloring the square of planar graphsand edge-
oloring multigraphs holds in a stronger sense, then Conje
-ture 2.25 forms a logi
al extension of Vizing's Theorem [Viz64℄ that amultigraph with maximum degree ∆ and maximum edge-multipli
ity µhas an edge-
oloring with at most ∆ + µ 
olors.In Borodin et al. [BBG+07℄, a weaker version of Conje
ture 2.25 for
y
li
 
oloring was proved. Re
all that if G is a plane graph, then ∆∗ isthe maximum number of verti
es in a fa
e. Let k∗ denote the maximumnumber of verti
es that two fa
es of G have in 
ommon.Theorem 2.26 [BBG+07℄ For a plane graph G with ∆∗ ≥ 4 and k∗ ≥ 4we have χ∗(G) ≤ ∆∗ + 3 k∗ + 2.



Chapter 3Frugal 
oloring
Contents3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . 673.2 Frugal 
oloring of planar graphs . . . . . . . . 693.3 Frugal 
oloring and L(p, q)-labelling . . . . . . 713.4 Frugal 
oloring of outerplanar graphs . . . . 723.5 Frugal 
oloring and 
y
li
 
oloring . . . . . . 733.6 Frugal edge 
oloring . . . . . . . . . . . . . . . 753.7 Con
lusion . . . . . . . . . . . . . . . . . . . . . 77In the previous 
hapter, we studied the 
oloring of the square of graphs(every pair of verti
es at distan
e at most two must be assigned distin
t
olors). Another way to look at this 
oloring is to say that it is proper (notwo adja
ent verti
es have the same 
olor), and no 
olor appears morethan on
e in every neighborhood.A natural way to generalize this is to 
onsider a proper 
oloring su
hthat no 
olor appears more than p times in every neighborhood, for somegiven p. This 
oloring was introdu
ed under the name of p-frugal 
oloringby Hind, Molloy and Reed [HMR97℄.In this 
hapter, we study the frugal 
oloring of planar graphs, planargraphs with large girth, and outerplanar graphs, and relate this 
olor-ing with L(p, q)-labelling and 
y
li
 
oloring, both seen in the previous
hapter. We also study frugal edge-
olorings of multigraphs.3.1 Introdu
tionFor an integer p ≥ 1, a p-frugal 
oloring of a graph G is a proper ver-tex 
oloring of G su
h that no 
olor appears more than p times in the67



68 Introdu
tion
neighborhood of any vertex. Alternatively, a p-frugal 
oloring 
an bede�ned as a proper 
oloring in whi
h every pair of 
olor 
lasses indu
esa subgraph with maximum degree at most k. The least number of 
olorsin a p-frugal 
oloring of G is 
alled the p-frugal 
hromati
 number of G,denoted χp(G). Clearly, χ1(G) is the 
hromati
 number of G2; and for pχp(G) at least the maximum degree of G, χp(G) is the usual 
hromati
 numberof G. An easy 
onsequen
e of the de�nition is that for any graph G withmaximum degree ∆, we have χp(G) ≥ ⌈∆

p
⌉ + 1.Let L be a list assignment for the verti
es of a graph G. A p-frugal
oloring c of G is 
alled a p-frugal L-
oloring if for any vertex v of G,

c(v) ∈ L(v). The smallest integer t, su
h that for any t-list assignment
L, the graph G has a p-frugal L-
oloring, is 
alled the p-frugal 
hoi
enumber of G, denoted by chp(G).chp(G) Re
all that a multigraph is a graph whi
h 
an have multiple edges(loops are not allowed). A p-frugal edge 
oloring of a multigraph G is a( possibly improper ) 
oloring of the edges of G su
h that no 
olor appearsmore than p times on the edges in
ident with a vertex. The least numberof 
olors in a p-frugal edge 
oloring of G, the p-frugal 
hromati
 index of
G, is denoted by χ′

p(G). Observe that for p = 1 we have χ′
1(G) = χ′(G),χ′

p(G) the usual 
hromati
 index of G. We 
an also de�ne the p-frugal edge
hoi
e number in the same way (see Se
tion 3.6). Again, a straightfor-ward 
onsequen
e of the de�nition is that for any graph G with maximumdegree ∆, we have χ′
p(G) ≥ ⌈∆

p
⌉.Frugal vertex 
olorings were introdu
ed by Hind et al. [HMR97℄, asa tool towards improving results about the total 
hromati
 number of agraph. One of their results is that a graph with large enough maximumdegree ∆ has a (log8∆)-frugal 
oloring using at most ∆ + 1 
olors. Theyalso show that there exist graphs for whi
h a ( log ∆

log log ∆

)-frugal 
oloring
annot be a
hieved using only O(∆) 
olors.Our aim in this 
hapter is to study some aspe
ts of frugal 
oloringsand frugal list 
olorings in their own right. In the �rst part we 
onsiderfrugal vertex 
olorings of planar graphs. We show that frugal 
oloringis related with L(p, q)-labellings in general, and with 
y
li
 
oloring inthe 
ase of planar graphs (these two notions have been introdu
ed in theprevious 
hapter).In the �nal se
tion we derive some results on frugal edge 
olorings ofmultigraphs in general.
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3.2 Frugal 
oloring of planar graphsIn the next four se
tions we 
onsider p-frugal (list) 
olorings of planargraphs. For a large part, our work in that area is inspired by Wegner's
onje
ture mentionned in the previous 
hapter.Conje
ture 3.1 [Weg77℄ For any planar graph G of maximum degree
∆(G) ≥ 8 we have χ(G2) ≤

⌊

3
2
∆(G)

⌋

+ 1.Wegner also 
onje
tured maximum values for the 
hromati
 number ofthe square of planar graph with maximum degree less than eight andgave examples showing that his bounds would be tight. For even ∆ ≥ 8,these examples are sket
hed in Figure 3.1.
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yFigure 3.1: The planar graphs Gk.Inspired by Wegner's Conje
ture, we 
onje
ture the following boundsfor the p-frugal 
hromati
 number of planar graphs.Conje
ture 3.2 [AEH07℄ For any integer p ≥ 1 and any planar graph
G with maximum degree ∆(G) ≥ max { 2 p, 8 } we have

χp(G) ≤







⌊∆(G)−1
p

⌋

+ 2, if p is even;
⌊3∆(G)−2

3 p−1

⌋

+ 2, if p is odd.Note that the graphs Gk in Figure 3.1 also show that the bounds in this
onje
ture 
annot be de
reased. The graph Gk has maximum degree 2 k.First 
onsider a p-frugal 
oloring with p = 2 ℓ even. We 
an use the same
olor at most 3
2
p times on the verti
es of Gk, and every 
olor that appearsexa
tly 3

2
p = 2 ℓ times must appear exa
tly ℓ times on ea
h of the threesets of 
ommon neighbors of x and y, of x and z, and of y and z. Sowe 
an take at most 1

ℓ
(k − 1) = 1

p
(∆(Gk) − 1) 
olors that are used 3

2
ptimes. In this 
ase, x and y must then be 
olored with two new 
olors,
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sin
e otherwise the neighborhood of x or y 
ontains more than p timesthe same 
olor.If p = 2 ℓ + 1 is odd, then ea
h 
olor 
an appear at most 3 ℓ + 1 =
1
2
(3 p − 1) times, and the only way to use a 
olor so many times is byusing it on the verti
es in V (Gk)\{x, y, z}. Doing this at most 3 k−1

(3 p−1)/2
=

3∆(G)−2
3 p−1

times, we are left with a graph that requires at least two new
olors.We next derive some upper bounds on the p-frugal 
hromati
 numberof planar graphs. The �rst one is a simple extension of the approa
hfrom [HM03℄. In that paper, Van den Heuvel and M
Guinness prove thefollowing stru
tural lemma:Lemma 3.3 [HM03℄ Let G be a planar simple graph. Then there existsa vertex v with m neighbors v1, . . . , vk with d(v1) ≤ · · · ≤ d(vk) su
h thatone of the following holds :(i) k ≤ 2;(ii) k = 3 with d(v1) ≤ 11;(iii) k = 4 with d(v1) ≤ 7 and d(v2) ≤ 11;(iv) k = 5 with d(v1) ≤ 6, d(v2) ≤ 7, and d(v3) ≤ 11.In [HM03℄, this stru
tural lemma is used to prove that the 
hromati
number of the square of a planar graph is at most 2 ∆ + 25. Makingslight 
hanges in their proof, it is not di�
ult to obtain a �rst boundon chp ( and hen
e on χp ) for planar graphs.Theorem 3.4 [AEH07℄ For any planar graph G with ∆(G) ≥ 12 andinteger p ≥ 1 we have chp(G) ≤
⌊2∆(G)+19

p

⌋

+ 6.Proof. We will prove that if a planar graph satis�es ∆(G) ≤ C for some
C ≥ 12, then chp(G) ≤

⌊

2 C+19
p

⌋

+ 6. We use indu
tion on the number ofverti
es, noting that the result is obvious for small graphs. So let G bea graph with |V (G)| > 1, 
hoose C ≥ 12 so that ∆(G) ≤ C, and assumeea
h vertex v has a list L(v) of ⌊2 C+19
p

⌋

+ 6 
olors. Take v, v1, . . . , vk asin Lemma 3.3. Contra
ting the edge vv1 to a new vertex v′ will result ina planar graph G′ in whi
h all verti
es ex
ept v′ have degree at most asmu
h as they had in G, while v′ has degree at most ∆(G) ( for 
ase (i) )or at most 12. ( for the 
ases (ii) � (iv) ). In parti
ular we have that
∆(G′) ≤ C. If we give v′ the same list of 
olors as v1 had ( all verti
es in
V (G) \ {v, v1} keep their list ), then, using indu
tion, G′ has a p-frugal
oloring. Using the same 
oloring for G, where v1 gets the 
olor v′ hadin G′, we obtain a p-frugal 
oloring of G with the one de�
it that v has no
olor yet. But the 
olors forbidden for v are the 
olors on its neighbors,and for ea
h neighbor vi, the 
olors that already appear p times around vi.
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So the number of forbidden 
olors is at most k +

k
∑

i=1

⌊d(vi)−1
p

⌋. Using theknowledge from the 
ases (i) � (iv), we get that |L(v)| =
⌊

2 C+19
p

⌋

+6 is atleast one more than this number of forbidden 
olors, hen
e we 
an always�nd an allowed 
olor for v.In the next se
tion we will obtain ( asymptoti
ally ) better resultsbased on more re
ent work on spe
ial labellings of planar graphs.3.3 Frugal 
oloring and L(p, q)-labellingIn this se
tion, we relate frugal 
olorings with L(p, q)-labelling, a gen-eralization of the 
oloring of the square of graphs seen in the previous
hapter. Our main tool is the following proposition:Proposition 3.5 For any graph G and integer p ≥ 1 we have χp(G) ≤
⌈

1
p
λp,1(G)

⌉ and chp(G) ≤
⌈

1
p
λl

p,1(G)
⌉.Proof. We only prove the se
ond part, the �rst one 
an be done in asimilar way. Set ℓ =

⌈

1
p
λl

p,1(G)
⌉, and let L be an ℓ-list assignment onthe verti
es of G. Using that all elements in the lists are integers, we
an de�ne a new list assignment L∗ by setting L∗(v) =

⋃

x∈L(v){p x, p x+

1, . . . , p x + p − 1}. Then L∗ is a (p ℓ)-list assignment. Sin
e p ℓ ≥
λl

p,1(G), there exists an L(p, 1)-labelling f ∗ of G with f ∗(v) ∈ L∗(v) forall verti
es v. De�ne a new labelling f of G by taking f(v) =
⌊

1
p
f ∗(v)

⌋.We immediately get that f(v) ∈ L(v) for all v. Sin
e adja
ent verti
esre
eived an f ∗-label at least p apart, their f -labels are di�erent. Also,all verti
es in a neighborhood of a vertex v re
eived a di�erent f ∗-label.Sin
e the map x 7→
⌊

1
p
x
⌋ maps at most p di�erent integers x to the sameimage, ea
h f -label 
an appear at most p times in ea
h neighborhood.So f is a p-frugal 
oloring using labels from ea
h vertex' list. This provesthat chp(G) ≤ ℓ, as required.We will 
ombine this proposition with the following re
ent result fromHavet et al., already mentionned in the previous 
hapter.Theorem 3.6 [HHM+07℄ For any �xed p, and any planar graph G withmaximum degree ∆, we have λl

p,1(G) ≤
(

3
2

+ o(1)
)

∆.Combining this with Proposition 3.5 gives the asymptoti
ally best upperbound for χp and chp for planar graphs we 
urrently have.Corollary 3.7 Fix ε > 0 and an integer p ≥ 1. Then there exists aninteger ∆ε,p so that if G is a planar graph with maximum degree ∆(G) ≥
∆ε,p, then chp(G) ≤ (3+ε)∆(G)

2 p
.
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oloring of outerplanar graphs
In [MS05℄, Molloy and Salavatipour proved that for any planar graph Gand any integer p ≥ 1, we have λp,1(G) ≤

⌈

5
3
∆(G)

⌉

+18 p+60. Togetherwith Proposition 3.5, this re�nes the result of Theorem 3.4 and gives abetter bound than Corollary 3.7 for small values of ∆. Note that this
orollary only 
on
erns frugal 
oloring, and not frugal list 
oloring.Corollary 3.8 For any planar graph G and integer p ≥ 1, we have
χp(G) ≤

⌈

5∆(G)+180
3 p

⌉

+ 18.Proposition 3.5 has another 
orollary for planar graphs of large girththat we des
ribe below. Re
all that the girth of a graph is the length ofa shortest 
y
le in the graph.In [LW03℄, Lih and Wang proved that for planar graphs of large girththe following holds :
• λp,q(G) ≤ (2 q − 1) ∆(G) + 6 p + 12 q − 8 for planar graphs of girthat least six, and
• λp,q(G) ≤ (2 q − 1) ∆(G) + 6 p + 24 q − 14 for planar graphs of girthat least �ve.Furthermore, Dvo°ák et al. [DKN+08℄ proved the following tight boundfor L(p, 1)-labellings of planar graphs of girth at least seven, and of largedegree.Theorem 3.9 [DKN+08℄ Let G be a planar graph of girth at leastseven, and maximum degree ∆(G) ≥ 190 + 2 p, for some integer p ≥ 1.Then we have λp,1(G) ≤ ∆(G) + 2 p − 1.Moreover, this bound is tight, i.e., there exist planar graphs whi
ha
hieve the upper bound.A dire
t 
orollary of these results are the following bounds for planargraphs with large girth.Corollary 3.10 Let G be a planar graph with girth g and maximumdegree ∆(G). For any integer p ≥ 1, we have

χp(G) ≤















⌈

∆(G)−1
p

⌉

+ 2, if g ≥ 7 and ∆(G) ≥ 190 + 2 p;
⌈∆(G)+4

p

⌉

+ 6, if g ≥ 6;
⌈∆(G)+10

p

⌉

+ 6, if g ≥ 5.3.4 Frugal 
oloring of outerplanar graphsWe now prove a variant of Conje
ture 3.2 for outerplanar graphs (graphsthat 
an be drawn in the plane so that all verti
es are lying on theoutside fa
e). For p = 1, i.e., if we are 
oloring the square of the graph,Hetherington and Woodall [HW06℄ proved the best possible bound forouterplanar graphs G : ch1(G) ≤ ∆(G) + 2 if ∆(G) ≥ 3, and ch1(G) =
∆(G) + 1 if ∆(G) ≥ 6.
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Theorem 3.11 [AEH07℄ For any integer p ≥ 2 and any outerplanargraph G with maximum degree ∆(G) ≥ 3, we have χp(G) ≤ chp(G) ≤
⌊∆(G)−1

p

⌋

+ 3.Proof. In [EO07a℄ (see Appendix A for further details), we proved aresult implying that any outerplanar graph 
ontains a vertex u su
h thatone of the following holds : (i) u has degree at most one; (ii) u has degreetwo and is adja
ent to another vertex of degree two; or (iii) u has degreetwo and its neighbors v and w are adja
ent, and either v has degree threeor v has degree four and its two other neighbors ( i.e., distin
t from uand w ) are adja
ent (see Figure 3.2).
a) b)

v

ww

u v u

Figure 3.2: Unavoidable 
on�gurations in an outerplanar graph without 1-verti
esand without two adja
ent 2-verti
es.We prove the theorem by indu
tion on the number of verti
es, ob-serving that it is trivial for graphs with at most two verti
es. If G has atleast three verti
es, let u be a vertex of G having one of the propertiesdes
ribed above. By the indu
tion hypothesis, there exists a p-frugal list
oloring c of G − u if the lists L(v) 
ontain at least ⌊∆(G)−1
p

⌋

+ 3 
olors.If u has property (i) or (ii), let t be the neighbor of u whose degree is notne
essarily bounded by two. It is easy to see that at most 2 +
⌊∆(G)−1

p

⌋
olors are forbidden for u : the 
olors of the neighbors of u and the 
olorsappearing p times in the neighborhood of t. If u has property (iii), atmost 2 +
⌊∆(G)−2

p

⌋ 
olors are forbidden for u : the 
olors of the neighborsof u and the 
olors appearing p times in the neighborhood of w. Notethat if v has degree four, its two other neighbors are adja
ent and the
p-frugality of v is respe
ted sin
e p ≥ 2. In all 
ases we found that atmost ⌊∆(G)−1

p

⌋

+2 
olors are forbidden for u. If u has a list with one more
olor, we 
an extend c to a p-frugal list 
oloring of G, whi
h 
ompletesthe indu
tion.3.5 Frugal 
oloring and 
y
li
 
oloringIn this se
tion, we dis
uss the link between frugal 
oloring and 
y
li

oloring of plane graphs. Re
all that a plane graph is a planar graph with
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oloring and 
y
li
 
oloring
a pres
ribed planar embedding, and that the size (number of verti
es inits boundary) of a largest fa
e of a plane graph G is denoted by ∆∗(G).The previous 
hapter was devoted to the study of 
y
li
 
oloring ofplane graphs: a vertex 
oloring su
h that any two verti
es in
ident tothe same fa
e have distin
t 
olors. Re
all that Borodin [Bor84℄ (see alsoJensen and Toft [JT95, page 37℄) 
onje
tured that any plane graph Ghas a 
y
li
 
oloring with ⌊3

2
∆∗(G)

⌋ 
olors, and proved this 
onje
turefor ∆∗(G) = 4.In this se
tion we show that if there is an even p ≥ 4 su
h thatBorodin's 
onje
ture holds for all plane graphs with ∆∗ ≤ p, and if ourConje
ture 3.2 is true for the same value p, then Wegner's 
onje
ture istrue up to an additive 
onstant fa
tor.Theorem 3.12 [AEH07℄ Let p ≥ 4 be an even integer su
h that everyplane graph H with ∆∗(H) ≤ p has a 
y
li
 
oloring using at most 3
2
p
olors. Then, if G is a planar graph satisfying χp(G) ≤

⌊

∆(G)−1
p

⌋

+ 2, wealso have χ(G2) = χ1(G) ≤
⌊

3
2
∆(G)

⌋

+ 3p.Proof. Let G be a planar graph with a given embedding and let p ≥ 4 bean even integer su
h that t = χp(G) ≤
⌊∆(G)−1

p

⌋

+2. Consider an optimal
p-frugal 
oloring c of G, with 
olor 
lasses C1, . . . , Ct. For i = 1, . . . , t,
onstru
t the graph Gi as follows : Firstly, Gi has vertex set Ci, whi
hwe assume to be embedded in the plane in the same way they were for G.For ea
h vertex v ∈ V (G) \ Ci with exa
tly two neighbors in Ci, we addan edge in Gi between these two neighbors. For a vertex v ∈ V (G) \ Ciwith ℓ ≥ 3 neighbors in Ci, let x1, . . . , xℓ be those neighbors in Ci in a
y
li
 order around v ( determined by the plane embedding of G ). Nowadd edges x1x2, x2x3, . . . , xℓ−1xℓ and xℓx1 to Gi. These edges will form afa
e of size ℓ in the graph we have 
onstru
ted so far. Call su
h a fa
e aspe
ial fa
e. Note that sin
e Ci is a 
olor 
lass in a p-frugal 
oloring, thisfa
e has size at most p.Do the above for all verti
es v ∈ V (G) \ Ci that have at least twoneighbors in Ci. The resulting graph is a plane graph with some fa
eslabelled spe
ial. Add edges to triangulate all fa
es that are not spe
ial.The resulting graph is a plane graph with vertex set Gi and every fa
esize at most p. From the �rst hypothesis it follows that there is a 
y
li

oloring of ea
h Gi with 3

2
p new 
olors. Sin
e every two verti
es in Cithat have a 
ommon neighbor in G are adja
ent in Gi or are in
ident tothe same ( spe
ial ) fa
e, verti
es in Ci that are adja
ent in the squareof G re
eive di�erent 
olors. Hen
e, 
ombining these t 
olorings, usingdi�erent 
olors for ea
h Gi, we obtain a 
oloring of the square of G, usingat most 3

2
p ·
(⌊∆(G)−1

p

⌋

+ 2
)

≤
⌊

3
2
∆
⌋

+ 3p 
olors.Sin
e Borodin [Bor84℄ proved his 
y
li
 
oloring 
onje
ture in the 
ase
∆∗ = 4, we have the following 
orollary.
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Corollary 3.13 If G is a planar graph so that χ4(G) ≤

⌊∆(G)−1
4

⌋

+ 2,then χ(G2) ≤
⌊

3
2
∆(G)

⌋

+ 12.3.6 Frugal edge 
oloringAn important element in the proof of Theorem 2.10 in the previous 
hap-ter is the derivation of a relation between (list) 
oloring square of planargraphs and (list) edge 
olorings of multigraphs. Be
ause of this, it seemsto be opportune to have a short look at a frugal variant of edge 
oloringsof multigraphs in general.Edge 
olorings of multigraphs have the same de�nitions as for simplegraphs: given a multigraph G, the minimum number of 
olors required isthe 
hromati
 index, denoted χ′(G). The list 
hromati
 index ch ′(G) is χ′(G)

ch
′(G)de�ned analogously as the minimum length of lists that needs to be givento ea
h edge so that we 
an use 
olors from ea
h edge's list to obtain aproper 
oloring.A p-frugal edge 
oloring of a multigraph G is a ( possibly improper )
oloring of the edges of G su
h that no 
olor appears more than p timeson the edges in
ident with a vertex. The least number of 
olors in a p-frugal edge 
oloring of G, the p-frugal edge 
hromati
 number ( or p-frugal
hromati
 index ), is denoted by χ′

p(G). χ′
p(G)Note that a p-frugal edge 
oloring of G is not the same as a p-frugal
oloring of the verti
es of the line graph L(G) of G. Sin
e the neighbor-hood of any vertex in the line graph L(G) 
an be partitioned into at mosttwo 
liques, every proper 
oloring of L(G) is also a p-frugal 
oloring for

p ≥ 2. A 1-frugal 
oloring of L(G) ( i.e., a vertex 
oloring of the squareof L(G) ) would 
orrespond to a proper edge 
oloring of G in whi
h ea
h
olor 
lass indu
es a mat
hing. Su
h 
olorings are known as strong edge
olorings, see, e.g., [FF83℄.The list version of p-frugal edge 
oloring 
an also be de�ned in thesame way : given lists of size t for ea
h edge of G, one should be ableto �nd a p-frugal edge 
oloring su
h that the 
olor of ea
h edge belongsto its list. The smallest t with this property is 
alled the p-frugal edge
hoi
e number, denoted ch ′
p(G). ch

′
p(G)Frugal edge 
olorings and their list version were studied under thename improper edge-
olorings and improper L-edge-
olorings by Hiltonet al. [HSS01℄.It is obvious that the 
hromati
 index and the edge 
hoi
e numbersare always at least the maximum degree ∆. The best possible upperbounds in terms of the maximum degree only are given by the followingresults.Theorem 3.14(a) [Viz64℄ For any simple graph G we have χ′(G) ≤ ∆(G) + 1.
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oloring
(b) [Sha49℄ For any multigraph G we have χ′(G) ≤

⌊

3
2
∆(G)

⌋.(
) [Gal95℄ For any bipartite multigraph G we have ch ′(G) = ∆(G).(d) [BKW97℄ For any multigraph G we have ch ′(G) ≤
⌊

3
2
∆(G)

⌋.We will use Theorem 3.14 (
) and (d) to prove two results on the p-frugal
hromati
 index and the p-frugal edge 
hoi
e number. The �rst resultshows that for even p, the maximum degree 
ompletely determines thevalues of these two numbers. This result was earlier proved by Hilton etal [HSS01℄ in a slightly more general setting, involving a more 
ompli-
ated proof. We now give a short proof of this theorem:Theorem 3.15 [HSS01℄ Let G be a multigraph, and let p be an eveninteger. Then we have χ′
p(G) = ch ′

p(G) =
⌈

1
p
∆(G)

⌉.Proof. It is obvious that ch ′
p(G) ≥ χ′

p(G) ≥
⌈

1
p
∆
⌉, so it su�
es to prove

ch ′
p(G) ≤

⌈

1
p
∆
⌉.Let p = 2 ℓ. Without loss of generality, we 
an assume that ∆ is amultiple of p and G is a ∆-regular multigraph. (Otherwise, we 
an addsome new edges and, if ne
essary, some new verti
es. If this larger multi-graph is p-frugal edge 
hoosable with lists of size ⌈1

p
∆
⌉, then so is G. )As p, and hen
e ∆, is even, we 
an �nd an Euler tour in ea
h 
omponentof G. By giving these tours a dire
tion, we obtain an orientation D of theedges of G su
h that the in-degree and the out-degree of every vertex is

1
2
∆. Let us de�ne the bipartite multigraph H = (V1 ∪ V2, E) as follows :

V1, V2 are both 
opies of V (G). For every ar
 (a, b) in D, we add an edgebetween a ∈ V1 and b ∈ V2.Sin
e D is a dire
ted multigraph with in- and out-degree equal to
1
2
∆, H is a (1

2
∆)-regular bipartite multigraph. This means that we 
ande
ompose the edges of H into 1

2
∆ perfe
t mat
hings M1, M2, . . . , M∆/2.De�ne disjoint subgraphs H1, H2, . . . , Hℓ as follows : for i = 0, 1, . . . , ℓ−1set Hi+1 = M i

p
∆+1∪M i

p
∆+2 · · ·∪M i+1

p
∆. Noti
e that ea
h Hi is a (1

p
∆
)-regular bipartite multigraph.Now, suppose that ea
h edge 
omes with a list of 
olors of size 1

p
∆.Ea
h subgraph Hi has maximum degree 1

p
∆, so by Theorem 3.14(
) we
an �nd a proper edge 
oloring of ea
h Hi su
h that the 
olor of ea
hedge is inside its list. We 
laim that the same 
oloring of edges in G is

p-frugal. For this we need the following observation :Observation Let M be a mat
hing in H. Then the set of 
orrespondingedges in G form a subgraph of maximum degree at most two.To see this, remark that ea
h vertex has two 
opies in H : one in V1 andone in V2. The 
ontribution of the edges of M to a vertex v in the originalmultigraph is then at most two, at most one from ea
h 
opy of v.
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To 
on
lude, we observe that ea
h 
olor 
lass in H is the union ofat most ℓ mat
hings, one in ea
h Hi. So at ea
h vertex, ea
h 
olor 
lassappears at most two times the number of Hi's, i.e., at most 2 ℓ = p times.This is exa
tly the p-frugality 
ondition we set out to satisfy.For odd values of p we give a tight upper bound of the p-frugal edge
hromati
 number.Theorem 3.16 [AEH07℄ Let p be an odd integer. Then we have ⌈∆(G)

p

⌉

≤
χ′

p(G) ≤ ch ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉.Proof. Again, all we have to prove is ch ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉.Let p = 2 ℓ + 1. Sin
e 3 p − 1 is even and not divisible by three, we
an again assume, without loss of generality, that ∆ is even and divisibleby 3 p − 1, and that G is ∆-regular. Set ∆ = m (3 p − 1) = 6 ℓ m + 2 m.Using the same idea as in the previous proof, we 
an de
ompose G intotwo subgraphs G1, G2, where G1 is (6 ℓ m)-regular and G2 is (2 m)-regular.(Alternatively, we 
an use Petersen's Theorem [Pet91℄ that every evenregular multigraph has a 2-fa
tor, to de
ompose the edge set in 2-fa
tors,and 
ombine these 2-fa
tors appropriately. ) Sin
e 1
2 ℓ

· 6 ℓ m = 3
3 p−1

∆,by Theorem 3.15 we know that G1 has a 2 ℓ-frugal edge 
oloring usingthe 
olors from ea
h edge's lists. Similarly we have 3
2
· 2 m = 3

3 p−1
∆, andhen
e Theorem 3.14 (d) guarantees that we 
an properly 
olor the edgesof G2 using 
olors from those edges' lists. The 
ombination of these two
olorings is a (2 ℓ + 1)-frugal list edge 
oloring, as required.Note that Theorem 3.16 is best possible : For k ≥ 1, let T (k) be themultigraph with three verti
es and k parallel edges between ea
h pair. If

p = 2 ℓ + 1 is odd, then the maximum number of edges with the same
olor a p-frugal edge 
oloring of T (k) 
an have is 3 ℓ + 1. Hen
e theminimum number of 
olors needed for a p-frugal edge 
oloring of T (k) is
⌈

3 k
3 ℓ+1

⌉

=
⌈

3
3 p−1

∆(T (k))
⌉.3.7 Con
lusionWe sum up the upper bounds obtained for the frugal 
hoi
e number ofgraphs with maximum degree ∆ in Table 3.1, where ∆ is supposed to belarge enough.Many possible dire
tions for future resear
h are still open. An in-triguing question is inspired by the results on frugal edge 
oloring inthe previous se
tion. These results demonstrate an essential di�eren
ebetween even and odd p as far as p-frugal edge 
oloring is 
on
erned.Based on what we think are the extremal examples of planar graphs for

p-frugal vertex 
oloring, also our Conje
ture 3.2 gives di�erent values for
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G chp(G) 
onje
ture (p even | odd)planar (3+ε)∆

2 p

⌊

∆−1
p

⌋

+ 2 | ⌊3∆−2
3 p−1

⌋

+ 2planar with g(G) ≥ 5
⌈

∆+10
p

⌉

+ 6

⌈

∆
p

⌉

+ 1

planar with g(G) ≥ 6
⌈

∆+4
p

⌉

+ 6planar with g(G) ≥ 7
⌈∆(G)−1

p

⌉

+ 2outerplanar ⌊

∆−1
p

⌋

+ 3Table 3.1: chp(G) for G with large enough maximum degree ∆.even and odd p. But for frugal vertex 
olorings of planar graphs in gen-eral we have not been able to obtain results that are di�erent for evenand odd p. Most of our results for vertex 
oloring of planar graphs are
onsequen
es of Proposition 3.5 and known results on L(p, 1)-labellingof planar graphs, for whi
h no fundamental di�eren
e between odd andeven p has ever been demonstrated. Hen
e, a major step would be toprove that Proposition 3.5 is far from tight when p is even.A se
ond line of future resear
h 
ould be to investigate whi
h 
lassesof graphs have p-frugal 
hromati
 number equal to the minimum possiblevalue ⌈∆
p

⌉

+ 1. Corollary 3.10 and Theorem 3.11 give bounds for planargraphs with large girth and outerplanar graphs that are very 
lose to thebest possible bound. We 
onje
ture that, in fa
t, planar graphs with largeenough girth and outerplanar graphs of large enough maximum degreedo satisfy χp(G) =
⌈∆(G)

p

⌉

+1 for all p ≥ 1. A step toward this 
onje
turewould be to minimize the value g∗ (resp. to maximize the value d∗) su
hthat for some 
onstant C, every planar graph G with g(G) ≥ g∗ (resp.every graph G with mad(G) < d∗) satis�es χp(G) ≤
⌈

∆(G)
p

⌉

+ C for all
p ≥ 1.In [KW01℄, Kosto
hka and Woodall 
onje
tured that for any graph G,the 
hromati
 number and the list 
hromati
 number of G2 are thesame. We 
onje
ture the following, whi
h 
orresponds to the 
onje
tureof [KW01℄ when p = 1.Conje
ture 3.17 For any multigraph G and any integer p ≥ 1, we have
χp(G) = chp(G).The famous List Coloring Conje
ture ( see, e.g., the book of Jensen andToft [JT95℄ ) states that for any multigraph G the 
hromati
 index andthe list 
hromati
 index of G are the same. Again, this 
an be seen as aspe
ial 
ase of the following 
onje
ture :
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Conje
ture 3.18 For any multigraph G and any integer p ≥ 1, we have
χ′

p(G) = ch ′
p(G).When p is even, this has already been proved in [HSS01℄, as explainedin Se
tion 3.6. On the other hand, Galvin [Gal95℄ proved the List Col-oring Conje
ture for bipartite multigraphs. It 
ould be interesting to seewhether Conje
ture 3.18 (when p ≥ 3 is odd) is easier to solve when Gis a bipartite multigraph.
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 graphs . . . . . . . . . . . . . . . . 864.5.2 Graphs with maximum degree 4 . . . . . . . . 884.6 Graphs with bounded maximum average degree 894.7 NP-
ompleteness . . . . . . . . . . . . . . . . . 964.8 Con
lusion . . . . . . . . . . . . . . . . . . . . . 98In the previous 
hapter, we studied p-frugal 
olorings, that is proper
olorings su
h that no 
olor appears more than p times in the neighbor-hood of a vertex. This is equivalent to a proper 
oloring su
h that theunion of any two 
olor 
lasses indu
es a subgraph of maximum degreeat most p. We saw that a 1-frugal 
oloring of a graph G was a proper
oloring of G2. A 2-frugal 
oloring is by de�nition a proper 
oloring su
hthat the union of any two 
olor 
lasses indu
es a disjoint union of 
y
lesand paths. If instead of this, we require that the union of any two 
olor
lasses indu
es a forest of paths, we obtain a linear 
oloring, introdu
edby Yuster [Yus98℄.Out aim in this 
hapter is to investigate linear 
olorings and showthat most of the results we 
an obtain for 
ertain families of graphs(outerplanar and planar graphs, graphs with small maximum degree,and graphs with bounded maximum average degree) are 
lose from theresults we obtained for 2-frugal 
olorings in the previous 
hapter.81



82 Introdu
tion
4.1 Introdu
tionThe notion of a
y
li
 
olorings was introdu
ed by Grünbaum [Gru73℄:a vertex 
oloring is said to be a
y
li
 if it is proper (no two adja
entverti
es have the same 
olor), and if there is no bi
olored 
y
le (thesubgraph indu
ed by the union of any two 
olor 
lasses is a forest).Yuster [Yus98℄ mixed this notion and the 
on
ept of frugal 
oloringsseen in the previous 
hapter, while introdu
ing the 
on
ept of linear 
ol-oring. A linear 
oloring of a graph is an a
y
li
 and 2-frugal 
oloring.It 
an also be seen as a 
oloring su
h that the subgraph indu
ed by theunion of any two 
olor 
lasses is a forest of paths (an a
y
li
 graph withmaximum degree at most two). The linear 
hromati
 number of a graph
G, denoted by Λ(G), is the minimum number of 
olors in a linear 
oloringΛ(G) of G.A graph G is linearly L-
olorable if for a given list assignment L =
{L(v) : v ∈ V (G)}, there exists a linear 
oloring c of G su
h that
c(v) ∈ L(v) for ea
h vertex v. Su
h a 
oloring is 
alled a linear L-
oloring of G. If G is linearly L-
olorable for any k-list assignment L,then G is said to be linearly k-
hoosable. The smallest integer k su
hthat the graph G is linearly k-
hoosable is 
alled the linear 
hoi
e num-ber, denoted by Λl(G).Λl(G) Using Lovász Lo
al Lemma (see Lemma 1.5 in Chapter 1), Yusterproved that Λ(G) = O(∆(G)3/2) in the general 
ase, and he 
onstru
tedgraphs for whi
h Λ(G) = Ω(∆(G)3/2).We begin with some basi
 results (Se
tion 4.2). In Se
tion 4.3, weshow that every outerplanar graph G with maximum degree ∆ veri�es
Λl(G) ≤ ⌈∆/2⌉ + 2. In Se
tion 4.4, we prove that every planar graphof maximum degree ∆ ≥ 12 has linear 
hoi
e number at most ∆ + 26.Se
tion 4.5 is dedi
ated to the study of graphs with small maximum de-gree: we prove that Λl(G) ≤ 5 when ∆(G) ≤ 3, and Λl(G) ≤ 9 when
∆(G) ≤ 4. In Se
tion 4.6, we give bounds for graphs with bounded max-imum average degree. Finally, in Se
tion 4.7, we prove that determiningwhether a bipartite sub
ubi
 planar graph is linearly 3-
olorable is anNP-
omplete problem.In the following, we will use a slight abuse of terminology, by sayingthat the 2-frugality of a vertex v is respe
ted or preserved, when no 
olorappears more than twi
e in N(v).
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4.2 First resultsA linear 
oloring is a 2-frugal 
oloring, so there are at least ⌈d/2⌉ distin
t
olors in the neighborhood of ea
h d-vertex. Hen
e, for any graph G withmaximum degree ∆, we have Λl(G) ≥ Λ(G) ≥ ⌈∆/2⌉ + 1. The followingproposition shows that this bound is tight for some families of graphs,su
h as trees.Proposition 4.1 If G is a tree with maximum degree ∆, then Λl(G) =
⌈∆/2⌉ + 1.Proof. Let L be a (⌈∆/2⌉ + 1)-list assignment to the verti
es of G.We pro
eed by indu
tion on the order of the graph. Let v be a leafof G, and let u be its unique neighbor. By the indu
tion assumption,there exists a linear L-
oloring c of G − v. We now extend c to v by�nding a 
olor c(v) ∈ L(v) su
h that the 
oloring obtained is linear. Weonly forbid to v the 
olor c(u) and the 
olors appearing at least twi
ein u's neighborhood. This is su�
ient to obtain a proper and 2-frugal
oloring, and thus a linear 
oloring of the tree G. There are at most
1 + ⌊∆−1

2
⌋ = ⌈∆/2⌉ forbidden 
olors. Sin
e |L(v)| ≥ ⌈∆/2⌉ + 1, it ispossible to 
olor v with a 
olor from its list.Let Km,n be the 
omplete bipartite graph with stable sets V and V ′of size m and n respe
tively. We show the following result:Proposition 4.2 If m ≥ n, Λ(Km,n) = ⌈m/2⌉ + n.Proof. To prove that Λ(Km,n) ≥ ⌈m/2⌉+n, observe that if two verti
esof a same set V or V ′ have the same 
olor, then all the verti
es of theother set must have distin
t 
olors (otherwise there would be a bi
olored
y
le of length four). Moreover a given 
olor 
annot appear more thantwi
e in V ∪ V ′ sin
e otherwise the 2-frugality would not be respe
ted.Hen
e, the best solution is to assign ea
h 
olor to a pair of verti
es inthe largest set, and to 
olor all the remaining verti
es with distin
t 
olors(see Figure 4.1).

2

1

5

3

4

Figure 4.1: A linear 
oloring of K3,3.
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Observe that the linear 
hromati
 number of Kn,n is asymptoti
allyequivalent to 3∆

2
.Re
all that a 2-degenerate graph is a graph every subgraph of whi
h
ontains a vertex of degree at most two. We prove the following propo-sition:Proposition 4.3 If G is a 2-degenerate graph of maximum degree ∆,then Λl(G) ≤ ∆ + 2.Proof. We prove the theorem by indu
tion on the order of G. Let L bea (∆ + 2)-list assignment for the verti
es of G. Sin
e G is 2-degenerate,it 
ontains a vertex v with degree at most two. Consider the graph

H = G− v. H is a proper subgraph of G, thus it is a 2-degenerate graphwith order stri
tly less than that of G. By the indu
tion hypothesis, thereexist a linear L-
oloring c of H .Assume that the vertex v has degree one. To extend the 
oloring c tothe whole graph G, we shall 
hoose for v a 
olor distin
t from the 
olor ofits neighbor w and from the 
olors appearing twi
e in w's neighborhood.At most ⌊∆−1
2

⌋+ 1 = ⌈∆/2⌉ 
olors are forbidden to v, so it is possible to
olor it with a 
olor from its list L(v), sin
e |L(v)| ≥ ∆ + 2.If the vertex v has degree two, let u and w be its neighbors. We forbidto v the 
olors belonging to the set C de�ned as follows. A 
olor a is in
C if one of the following 
onditions is veri�ed:

• one neighbor of u and one neighbor of w are both 
olored with a(a bi
olored 
y
le 
ould be 
reated if v was also 
olored with a);
• two neighbors of u are 
olored with a (the 2-frugality of u wouldnot be preserved if v was also 
olored with a);
• two neighbors of w are 
olored with a (2-frugality of w).Observe that |C| ≤ ∆ − 1, sin
e any 
olor of C appears at least twi
ein (N(u) ∪ N(w)) \ {v}. Sin
e v must re
eive a 
olor distin
t from the
olors of u and w, there are at most ∆−1+2 = ∆+1 forbidden 
olors for

v. Sin
e |L(v)| ≥ ∆+2, there remains at least one 
olor in L(v) that 
anbe assigned to v. We obtain a linear L-
oloring of G, whi
h 
ompletesthe indu
tion.4.3 Outerplanar graphsSin
e outerplanar graphs are 2-degenerate, it follows from Proposition4.3 that outerplanar graphs with maximum degree ∆ have linear 
hoi
e
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number at most ∆+2. In this se
tion, we improve this bound by provingthe following theorem:Theorem 4.4 [EMR08℄ If G is an outerplanar graph with maximumdegree ∆, then Λl(G) ≤ ⌈∆/2⌉ + 2.Proof. We prove the theorem by indu
tion on the order of G. Let L bea (⌈∆/2⌉ + 2)-list assignment for the verti
es of G. As in the previous
hapter, we use a result from [EO07a℄ (see Appendix A for further de-tails), whi
h states that any outerplanar graph 
ontains a vertex u su
hthat one of the following holds : (i) u has degree at most one; (ii) u hasdegree two and is adja
ent to another vertex of degree two; or (iii) u hasdegree two and its neighbors v and w are adja
ent, and either v has de-gree three or v has degree four and its two other neighbors (i.e., distin
tfrom u and w) are adja
ent (see Figure 3.2).Let u be as des
ribed above. If (i) u has degree at most one, let v bethe neighbor of u, if it exists, and let c be a linear L-
oloring of G − u.Color u with a 
olor distin
t from c(v) and the 
olors appearing twi
e in
N(v). At most ⌊∆−1

2

⌋

+ 1 = ⌈∆/2⌉ are forbidden for u, and the 
oloringobtained is linear.If (ii) u has degree two and is adja
ent with a 2-vertex, say v, let c bea linear L-
oloring of G−{u, v}. Let u′ be the neighbor of u distin
t from
v and let v′ be the neighbor of v distin
t from u. Choose for v a 
olor c(v)distin
t from c(u′), c(v′), and the 
olors appearing twi
e in N(v′). Then
olor u with a 
olor distin
t from c(u′), c(v), and the 
olors appearingtwi
e in N(u′). At most ⌊∆−1

2

⌋

+ 2 ≤ ⌈∆/2⌉ + 1 are forbidden for u and
v, and the 
oloring obtained is linear (having c(v) 6= c(u′) ensures thatthe 
oloring c is a
y
li
).If (iii) u has degree two and its neighbors v and w are adja
ent, andeither v has degree three or v has degree four and its two other neighbors(i.e., distin
t from u and w) are adja
ent, let c be a linear L-
oloring of
G−u. Take c(u) distin
t from c(v) and c(w), and from the 
olors appear-ing twi
e in N(w)\{v}. At most ⌊∆−2

2

⌋

+ 2 ≤ ⌈∆/2⌉ + 1 are forbiddenfor u, and the 
oloring obtained is linear: sin
e v and w are adja
ent, the
oloring is a
y
li
, and (iii) ensures that the only 
olor that may appearstwi
e in N(v) is c(v) (wi
h is forbidden for u).In any 
ase, it is possible to 
olor the un
olored verti
es given lists ofsize at least ⌈∆/2⌉+2, in order to obtain a linear L-
oloring of G, whi
h
ompletes the indu
tion.



86 Graphs with small maximum degree
4.4 Planar graphsAs in Chapter 3, we use Lemma 3.3 from Van den Heuvel and M
Guinness[HM03℄ to prove the following result.Theorem 4.5 [EMR08℄ If G is a planar graph with maximum degree
∆ ≥ 12, then Λl(G) ≤ ∆ + 26.Proof. We prove the theorem by indu
tion on the order of G. Let L bea (∆ + 26)-list assignment to the verti
es of G.Let k, v, v1, . . . , vk be as in Lemma 3.3, and let H be the graph ob-tained from G by 
ontra
ting the edge vv1 into the vertex v1. Thisgraph has maximum degree 12 (
ase (ii)) or ∆, so by indu
tion, thereexists a linear 
oloring c of H su
h that any vertex u ∈ V (H) is 
ol-ored with a 
olor c(u) ∈ L(u). In order to extend c to G, we only needto 
olor v with a 
olor from its list L(v). Choose the 
olor of v di�er-ent from the 
olors of v1, . . . , vk as well as the 
olors of the neighbors of
v1, . . . , vk−2 if k ≥ 3. Choose it also di�erent from the 
olors appearingtwi
e among the verti
es adja
ent to vk−1 or vk. In total we forbid at most
5 + 5 + 6 + 10 + (2∆− 2)/2 = ∆ + 25 
olors to v. Sin
e |L(v)| ≥ ∆ + 26,it is possible to �nd an appropriate 
olor for this vertex.We now prove that the 
oloring obtained is linear. Sin
e the 
oloring
c of H is linear, no 
olor appears more than twi
e in the neighborhood of
v in G. If k ≥ 3, the 
olors of the neighbors of v1, . . . , vk−2 are forbiddento v, so the 2-frugality of v1, . . . , vk−2 is preserved and any bi
olored 
y
lepassing through v 
ontains vk−1 and vk. The 
olors appearing twi
e in
N(vk−1) or twi
e in N(vk) are forbidden, so the 2-frugality of vk−1 and
vk is preserved. The 
olors appearing in N(vk−1) and N(vk) are alsoforbidden, so v 
annot belong to any bi
olored 
y
le. We thus obtain alinear L-
oloring of G, whi
h 
ompletes the indu
tion.4.5 Graphs with small maximum degree4.5.1 Sub
ubi
 graphsAs seen in Se
tion 4.2, the graph K3,3 is not linearly 4-
olorable. Let
G be a graph with maximum degree three, 
ontaining at least one ≤2-vertex. Then G is 2-degenerate and we have Λl(G) ≤ 5 by Proposition4.3. So the hardest part is to prove that 3-regular graphs have linear
hoi
e number at most �ve. To show this, we prove a slightly strongerstatement:Theorem 4.6 [EMR08℄ Let G be a graph with maximum degree ∆ ≤ 3,and L be a 5-list-assignment to the verti
es of G. Then there exists a
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linear L-
oloring of G su
h that the two neighbors of any 2-vertex havedistin
t 
olors.Proof. We prove the theorem by indu
tion on the order of G. let L bea 5-list-assignment to the verti
es of G. We 
an assume that G is 
on-ne
ted, otherwise we 
an 
olor ea
h 
onne
ted 
omponent by indu
tionand obtain a linear list L-
oloring of G with the desired property.If G 
ontains a 1-vertex v adja
ent to a vertex u, then by indu
tion,the graph G − v has a linear L-
oloring c su
h that the neighbors ofany 2-vertex have distin
t 
olors. By 
oloring v with a 
olor distin
tfrom c(u) and from the 
olors of the neighbors of u, we obtain a linear L-
oloring of G su
h that the neighbors of any 2-vertex have distin
t 
olors.If G 
ontains a 2-vertex v with neighbors u and w, let H be the graphobtained from G by removing the vertex v and adding an edge uw ifit does not already exist. H has maximum degree at most three andis smaller than G, so there exists a linear L-
oloring c of H , su
h thatthe neighbors of any 2-vertex have distin
t 
olors. We 
hoose for v a
olor distin
t from c(u), c(w), and from the 
olors appearing twi
e in theneighborhood of u, or twi
e in the neighborhood of w. Sin
e c(u) 6= c(w),we do not 
reate any bi
olored 
y
le. We forbid at most four 
olors to v,so we 
an 
hoose a 
olor for v and obtain a linear L-
oloring of G su
hthat the neighbors of any 2-vertex have distin
t 
olors.

v1

v2

v3

vk

vk−1

u1

u2

u3

uk−1
ukFigure 4.2: A shortest 
y
le in a minimum 
ounterexample.Otherwise the graph G is 3-regular. Let u1, . . . , uk, with k ≥ 3 bea shortest 
y
le (see Figure 4.2). For all 1 ≤ i ≤ k, we denote by vithe neighbor of ui outside the 
y
le (that is, distin
t from ui−1 and ui+1,where all values are taken modulo k). Observe that two verti
es vi and vj
ould be the same vertex, but that ea
h vi is distin
t from all the verti
es

uj, sin
e otherwise there would be a 
y
le with less than k verti
es. Let
H be the graph obtained from G by removing the verti
es u1, . . . , uk. Byindu
tion there exists a linear L-
oloring c of H , su
h that the neighbors
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of any 2-vertex have distin
t 
olors. In parti
ular, ea
h vertex vi hasdegree at most two in H , so its neighbors have distin
t 
olors and the2-frugality of vi will be preserved regardless of the 
olor we assign to ui.We now 
olor the verti
es u1, . . . , uk in this order. We 
hoose for u1a 
olor distin
t from c(v1) and c(v2). For any 2 ≤ i ≤ k − 1, we 
hoosefor ui a 
olor distin
t from c(ui−1), c(vi), and c(vi+1). For uk, we 
hoosea 
olor distin
t from c(u1), c(uk−1), c(vk), and c(v1). By doing so, weprevent any bi
olored 
y
le 
ontaining a vertex vi, and the 2-frugality ofevery vertex ui is respe
ted. But at this point, the 
y
le u1, . . . , uk 
ouldstill be a bi
olored 
y
le. Hen
e, if k ≥ 4, we also forbid the 
olor of u1 to
u3 while we are 
oloring this vertex (if k = 3 the 
y
le is a triangle and it
annot be properly bi
olored). At most four 
olors are forbidden to ea
hvertex ui, so we 
an 
hoose a 
olor c(ui) ∈ L(ui) for any of them, andthe 
oloring obtained is a linear L-
oloring of G. Sin
e G is 3-regular,the additional property that the neighbors of any 2-vertex have distin
t
olors is trivially veri�ed.Sin
e K3,3 seems to be the only sub
ubi
 graph whi
h linear 
hoi
enumber is equal to 5, we propose the following 
onje
ture :Conje
ture 4.7 If G has maximum degree 3, and is di�erent from K3,3,then Λl(G) ≤ 4.4.5.2 Graphs with maximum degree 4A

ording to Proposition 4.2, we have Λl(K4,4) ≥ 6. Applying the samemethod of redu
ible 
on�gurations to graphs with maximum degree 4,we obtain the following theorem, whi
h we suspe
t not to be tight.Theorem 4.8 [EMR08℄ If G is a graph with maximum degree ∆ ≤ 4,then Λl(G) ≤ 9.Proof. Let G be a 
ounterexample of minimum order: there exists a 9-list-assignment L su
h that G is not linearly L-
olorable. Using the samearguments as in the previous proof, we show that G does not 
ontain any
≤3-vertex. Hen
e, the graph is 4-regular. We now show that G does not
ontain any 4-verti
es.Let u be a 4-vertex and let v, w, x, and y be its neighbors. Let G′be the graph obtained from G − v by adding the edges vw and xy ifthey are not already there (see Figure 4.3). Let c be a linear L-
oloringof G′. We now extend c to the initial graph G: we only have to 
olorthe vertex u with a 
olor from its list L(u). We have to 
hoose a 
olordistin
t from the 
olors of v, w, x, and y. The 
ondition of 2-frugalityfor these four verti
es forbids at most four additional 
olors. If v, w, x,and y have distin
t 
olors, it is impossible to 
reate a bi
olored 
y
le,
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so we 
an 
olor u with the ninth 
olor of L(u), and thus obtain a linear
L-
oloring of G.Otherwise, we have for example c(v) = c(y) and c(w) 6= c(x). Theneighbors of u forbid only three 
olors, and their 2-frugality forbids atmost 4 
olors. But it is possible to 
reate a bi
olored 
y
le passingthrough v and y. To avoid this, we forbid to u the 
olors of v's neigh-bors. This makes only two additional 
olors, as the third one was already
ounted to ensure v's 2-frugality. There are still at most eight forbidden
olors for the 
hoi
e of c(u).In the last 
ase, we have without loss of generality c(v) = c(x) and
c(w) = c(y). The neighbors of u forbid two 
olors to this vertex. To en-sure the 2-frugality of v, w, x, and y we forbid at most four other 
olorsto u. To prevent any bi
olored 
y
le it su�
es to forbid to u the 
olorsof v's and w's neighbors (six 
olors, among whi
h two have already been
ounted). This makes at most eight forbidden 
olors for the 
hoi
e of u.So it is possible to 
olor this vertex with a 
olor of its list, and to obtaina linear L-
oloring of G. This 
ompletes the proof.

w

v

y

x

y

v

x

u w

G′GFigure 4.3: Elimination of a 4-vertex.
As noti
ed by Frédéri
 Havet, there exists a simpler way to proveTheorem 4.8 when we restri
t ourselves to linear 
oloring (instead oflinear list 
oloring): sin
e G is 4-regular, it is the union of two 
y
le-fa
tors F1 and F2. Ea
h Fi admits a linear 
oloring ci with three 
olors,and the produ
t of c1 and c2 gives a linear 
oloring of G with 9 
olors.4.6 Graphs with bounded maximum averagedegreeRe
all that the maximum average degree of a graph G, denoted bymad(G) is de�ned by:
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mad(G) = max{2|E(H)|/|V (H)|, H ⊆ G}.Theorem 4.9 [EMR08℄ Let G be a graph with maximum degree ∆:1. If ∆ ≥ 3 and mad(G) < 16

7
, then Λl(G) =

⌈

∆
2

⌉

+ 1.2. If mad(G) < 5
2
, then Λl(G) ≤

⌈

∆
2

⌉

+ 2.3. If mad(G) < 8
3
, then Λl(G) ≤

⌈

∆
2

⌉

+ 3.Sin
e every planar or proje
tive-planar graph G with girth g(G) veri�esmad(G) < 2g(G)
g(G)−2

, we obtain the following 
orollary:Corollary 4.10 Let G be a planar or proje
tive-planar graph with max-imum degree ∆:1. If ∆ ≥ 3 and g(G) ≥ 16, then Λl(G) =
⌈

∆
2

⌉

+ 1.2. If g(G) ≥ 10, then Λl(G) ≤
⌈

∆
2

⌉

+ 2.3. If g(G) ≥ 8, then Λl(G) ≤
⌈

∆
2

⌉

+ 3.Observe that 
y
les are linearly 3-
hoosable; hen
e, we 
annot removethe 
ondition on ∆ in Theorem 4.9.1 and Corollary 4.10.1.Proof of Theorem 4.9.1 Let G be a 
ounterexample of minimumorder, with ∆ ≥ 3 and mad(G) < 16
7
. There exists an assignment of listsof size at least ⌈∆

2
⌉ + 1 su
h that G is not linearly L-
olorable. Usingthe method of redu
ible 
on�gurations, we �rst prove that G satis�es thefollowing 
laim:Claim 4.11 G does not 
ontain any of the following 
on�gurations:(C4.11.1) a 1-vertex,(C4.11.2) a 2-vertex adja
ent to two 2-verti
es,(C4.11.3) a 3-vertex adja
ent to three 2-verti
es, ea
h of them adja
entto a 2-vertex.Proof.
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(C4.11.1) If G 
ontains a 1-vertex v, let c be a linear L-
oloring of G− v(whi
h exists as G − v is a subgraph of G and thus veri�esmad(G − v) < 16

7
). We now extend c to v: the neighbor u of

v forbids one 
olor; we also have to preserve u's 2-frugality:among its d already 
olored neighbors (d ≤ ∆ − 1), there areat worst ⌈∆
2
⌉ − 1 pairs of verti
es having the same 
olor. Thisforbids at most ⌈∆

2
⌉ 
olors to v. Thus v 
an be 
olored with aremaining 
olor in its list L(v), and the 
oloring obtained is alinear L-
oloring of G, whi
h is a 
ontradi
tion.(C4.11.2) If G 
ontains a 2-vertex v adja
ent to two 2-verti
es u and w,we 
olor the graph G− v linearly with 
olors belonging to thelists of L (it is possible by the minimality of G). If u and whave distin
t 
olors, we 
hoose for v a 
olor distin
t from the
olors of its neighbors, and it is impossible to 
reate a bi
ol-ored 
y
le. If u and w have the same 
olor, we forbid it to v,as well as the 
olor of the se
ond neighbor of u. This preventsthe 
reation of any bi
olored 
y
le. There are at most twoforbidden 
olors, what enables us to 
olor v sin
e ⌈∆

2
⌉+ 1 ≥ 3when ∆ ≥ 3.

v2 v1

u

x1

x2

x3

w1

w2

v2

w2

x3

x2

G HFigure 4.4: Elimination of Con�guration (C4.11.3).(C4.11.3) If G 
ontains a 3-vertex adja
ent to three 2-verti
es, ea
h ofthem being adja
ent to another 2-vertex, then we 
olor theredu
ed graph H obtained from G by removing the verti
es
u, v1, w1, and x1 (see Figure 4.4). This redu
ed graph H isa subgraph of G, and so mad(H) < 16/7. We now have to
olor the verti
es u, v1, w1, and x1. For v1, we 
hoose a 
olordi�erent from the 
olor of v2. For w1 we take a 
olor di�erentfrom those of w2 and v1. We 
olor u with a 
olor di�erent fromthose of v1 and w1. For the last vertex, we have to handle twodi�erent 
ases: if u and x2 have di�erent 
olors it is impossi-ble to 
reate a bi
olored 
y
le, so we 
an take for x1 a 
olor



92 Graphs with bounded maximum average degree
di�erent from those of u and x2. If u and x2 have the same
olor, we 
hoose for x1 a 
olor di�erent from those of x2 and
x3 (what prevents bi
olored 
y
les 
oming from x3). As in theprevious situation, there are at most two forbidden 
olors forea
h vertex, what enables us to 
olor ea
h of them with a 
olorof its own list. We then obtain a linear L-
oloring of G, whi
his a 
ontradi
tion.

We 
omplete the proof of Theorem 4.9.1 with a dis
harging pro
edure.First, we assign to ea
h vertex v a 
harge ω(v) equal to its degree. Wethen apply the following dis
harging rules:Rule 1. Ea
h ≥4-vertex gives 2
7
to ea
h adja
ent 2-vertex.Rule 2. Ea
h 3-vertex gives 2

7
to ea
h adja
ent 2-vertex neighbor of another2-vertex, and 1

7
to ea
h adja
ent 2-vertex whi
h is not neighbor ofa 2-vertex.Let ω∗(v) be the 
harge of v after the pro
edure. Let v be a k-vertex(k ≥ 2, as G does not 
ontain Con�guration (C4.11.1)).

• If k = 2, v re
eives 2
7
if it is adja
ent to a ≥4-vertex or to a 3-vertexand a 2-vertex. Otherwise v must be adja
ent to two 3-verti
es(Con�guration (C4.11.2) does not appear in the graph), and willre
eive two times 1

7
, so ω∗(v) ≥ 2 + 2

7
= 16

7
.

• If k = 3, v gives at most 2
7

+ 2
7

+ 1
7
(the graph does not 
ontainCon�guration (C4.11.3)), thus ω∗(v) ≥ 3 − 5

7
= 16

7
.

• If k ≥ 4, then by Rule 1 ω∗(v) ≥ k − k × 2
7
≥ 20

7
.In any 
ase, ω∗(v) ≥ 16

7
, so∑v∈V (G) ω∗(v) ≥ 16n

7
. Sin
e∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 16/7|V (G)|
|V (G)| =

16

7We obtain a 
ontradi
tion, sin
e mad(G) < 16
7
a

ording to the thede�nition of G.
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Proof of Theorem 4.9.2 Let G be a 
ounterexample of minimumorder, with mad(G) < 5

2
. There exists an assignment L of lists of size

⌈∆
2
⌉+ 2 su
h that G is not linearly L-
olorable. Using the method of re-du
ible 
on�gurations, we �rst prove that G satis�es the following 
laim:Claim 4.12 G does not 
ontain any of the following 
on�gurations:(C4.12.1) a 1-vertex,(C4.12.2) two adja
ent 2-verti
es,(C4.12.3) a 3-vertex adja
ent to three 2-verti
es.Proof.(C4.12.1) The 
ase of the 1-vertex has already been handled in the pre-vious proof (see Con�guration (C4.11.1)).(C4.12.2) If G 
ontains two adja
ent 2-verti
es v and w, let c be a linear

L-
oloring of G − {v, w}. We extend c to the whole graph by�nding 
olors c(v) ∈ L(v) and c(w) ∈ L(w) for v and w su
hthat the new 
oloring c is a linear 
oloring of G. Let u be theneighbor of v in G distin
t from w and let x be the neighbor of
w in G distin
t from v. For v, we 
hoose a 
olor distin
t fromthose of u and x. We also need to preserve u's 2-frugality; todo this we forbid at most ⌈∆

2
⌉ − 1 other 
olors to v. We takefor w a 
olor di�erent from those of v and x; x's 2-frugalityalso forbids at most ⌈∆

2
⌉−1 other 
olors to w. At most ⌈∆

2
⌉+1
olors are forbidden to v and w, so it is possible to 
olor themwith 
olors from their own lists. We obtain a linear L-
oloringof G, whi
h is a 
ontradi
tion.(C4.12.3) If G 
ontains a 3-vertex adja
ent to three 2-verti
es, let c be alinear L-
oloring of the redu
ed graph H obtained from G byremoving the verti
es u, x1, and w1 (see Figure 4.5). In orderto extend c to the whole graph G, we have to �nd 
olors for theremaining verti
es: w1, x1, and u. We 
hoose for w1 a 
olordistin
t from the 
olors of w2 and v1, and from the at most

⌈∆
2
⌉−1 
olors appearing twi
e in w2's neighborhood. We takefor u a 
olor di�erent from those of v1, w1, and x2. Finally weforbid to x1 the 
olors of x2 and u, as well as most ⌈∆

2
⌉ − 1
olors appearing twi
e in x2's neighborhood. Su
h a 
oloringpreserves the property of 2-frugality of all the verti
es, andsin
e c(w1) 6= c(v1) and c(u) 6= c(x2) no bi
olored 
y
le 
anbe 
reated. So we 
an 
olor ea
h of these verti
es with a 
olor
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from its own list in order to obtain a linear L-
oloring of G,whi
h is a 
ontradi
tion.

v2

v1

w1

w2

u
x1

x2

G

v1

v2

x2 w2

HFigure 4.5: Elimination of Con�guration (C4.12.3).
We 
omplete the proof of Theorem 4.9.2 with a dis
harging pro
edure.First, we assign to ea
h vertex v a 
harge ω(v) equal to its degree. Wethen apply the following dis
harging rule:Rule. Ea
h ≥3-vertex gives 1

4
to ea
h adja
ent 2-vertex.Let ω∗(v) be the 
harge of v after the pro
edure. Let v be a k-vertexof G (k ≥ 2, as G does not 
ontain Con�guration (C4.12.1)).

• If k = 2, v is adja
ent to two ≥3-verti
es (the graph does not 
ontainCon�guration (C4.12.2)), thus ω∗(v) ≥ 2 + 2 × 1
4

= 5
2
.

• If k = 3, v is adja
ent to at most two 2-verti
es (the graph doesnot 
ontain Con�guration (C4.12.3)), thus ω∗(v) ≥ 3 − 2 × 1
4

= 5
2
.

• If k ≥ 4, v 
an be adja
ent to k 2-verti
es, so ω∗(v) ≥ k−k× 1
4
≥ 3.In any 
ase, ω∗(v) ≥ 5

2
, so∑v∈V (G) ω∗(v) ≥ 5n

2
. Sin
e∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 5/2|V (G)|
|V (G)| =

5

2We obtain a 
ontradi
tion, sin
e mad(G) < 5
2
a

ording to the thede�nition of G.
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Proof of Theorem 4.9.3 Let G be a 
ounterexample of minimumorder, with mad(G) < 8

3
. There exists an assignment L of lists of size

⌈∆
2
⌉+ 3 su
h that G is not linearly L-
olorable. Using the method of re-du
ible 
on�gurations, we �rst show that G satis�ed the following 
laim:Claim 4.13 G does not 
ontain any of the following 
on�gurations:(C4.13.1) a 1-vertex,(C4.13.2) two adja
ent 2-verti
es,(C4.13.3) a 3-vertex adja
ent to two 2-verti
es.Proof.(C4.13.1) see Con�guration (C4.11.1).(C4.13.2) see Con�guration (C4.12.2).(C4.13.3) If G 
ontains a 3-vertex adja
ent to two 2-verti
es, let c bea linear L-
oloring of the redu
ed graph H obtained from Gby removing the verti
es u, x1, and w1 (see Figure 4.6. This
oloring exists, as H is a subgraph of G, and thus mad(H) ≤mad(G) < 8

3
. We extend c to the whole graph G, by 
oloring

w1, x1, and u with 
olors of L(w1), L(x1), and L(u) respe
-tively. We take for w1 a 
olor di�erent from the 
olors of v and
w2, and from the ⌈∆

2
⌉−1 
olors appearing twi
e in w2's neigh-borhood. We then 
olor u with a 
olor di�erent from those of

w1, v, x2, and from the ⌈∆
2
⌉ − 1 
olors appearing twi
e in v'sneighbors (2-frugality of v). Finally, we 
olor x1 with a 
olordi�erent from those of u, x2, and from at most ⌈∆

2
⌉ − 1 
olorsamong the 
olors of x2's neighbors. So we 
an 
olor ea
h ver-tex with a 
olor from its list, and we obtain a linear L-
oloringof G, whi
h is a 
ontradi
tion.

v

u
w1

w2

x1

x2
x2 w2

v

G HFigure 4.6: Elimination of Con�guration (C4.13.3).
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We 
omplete the proof of Theorem 4.9.3 with a dis
harging pro
edure.First, we assign to ea
h vertex v a 
harge ω(v) equal to its degree. Wethen apply the following dis
harging rule:Rule. Ea
h ≥3-vertex gives 1

3
to ea
h adja
ent 2-vertex.Let ω∗(v) be the 
harge of v after the pro
edure. Let v be a k-vertexof G (k ≥ 2, as G does not 
ontain Con�guration (C4.13.1)).

• If k = 2, v is adja
ent to two ≥3-verti
es (G does not 
ontainCon�guration (C4.13.2)), thus ω∗(v) ≥ 2 + 2 × 1
3

= 8
3
.

• If k = 3, v is adja
ent to at most one 2-vertex (G does not 
ontainCon�guration (C4.13.3)), thus ω∗(v) ≥ 3 − 1
3

= 8
3
.

• If k ≥ 4, v 
an be adja
ent to k 2-verti
es, thus ω∗(v) ≥ k−k× 1
3
≥

8
3
.In any 
ase, ω∗(v) ≥ 8

3
, so∑v∈V (G) ω∗(v) ≥ 8n

3
. Sin
e∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 8/3|V (G)|
|V (G)| =

8

3We obtain a 
ontradi
tion, sin
e mad(G) < 8
3
a

ording to the thede�nition of G.4.7 NP-
ompletenessTheorem 4.14 [EMR08℄ De
iding whether a bipartite sub
ubi
 planargraph is linearly 3-
olorable is an NP-
omplete problem.Proof. The proof of the NP-
ompleteness pro
eeds by a redu
tion to theproblem of 3-
oloring of planar graphs, whi
h is an NP-
omplete prob-lem [GJS76℄. Given an instan
e of this problem �a planar graph H , weneed to 
reate a bipartite sub
ubi
 planar graph G of a size polynomialin |V (H)| su
h that G is linearly 3-
olorable if and only ifH is 3-
olorable.Let M be the 7 × 2 grid (see Figure 4.7). Observe that in any linear3-
oloring c of M, we have c(x1) = c(x2) and c(y1) = c(y2).Let N (z1, z2) be the graph depi
ted in Figure 4.8. This graph isbipartite, sub
ubi
, planar, and linearly 3-
olorable. Moreover, by theproperty of M we have c(z1) = c(z2) in any linear 3-
oloring c of N .
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a
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y1 Figure 4.7: A linear 3-
oloring of the graph M.
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Figure 4.8: The graph N (z1, z2). The two stable sets are represented with whiteand bla
k dots respe
tively.To make the redu
tion, we �rst repla
e ea
h d-vertex u ∈ V (H) bya tree Tu with maximum degree at most 3, having d leaves (ea
h leaf uv
orresponds to a link to a neighbor v of u in H). We then repla
e ea
hedge xy of these trees by the graph N (x, y). We then link ea
h vertex uvto the vertex vu by an edge (see Figure 4.9). Ea
h tree is bipartite, butour 
onstru
tion may not be bipartite at this point: if we 
olor ea
h tree
Tu properly with the 
olors bla
k and white, two leaves vw and wv maybe 
olored with the same 
olor. If this is the 
ase, we subdivide the edge
vwwv, thus 
reating a new vertex mvw adja
ent to vw and wv. We thenrepla
e the edge vwmvw by the graph N (vw, mvw). We repeat this pro
essuntil the graph obtained is properly 2-
olorable, and thus bipartite.

Tv
Tu

v u v
uv uvu

Figure 4.9: Transformation of the planar graph into a sub
ubi
 bipartite planargraph.
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The graph G obtained is planar, bipartite, and sub
ubi
. Ea
h ver-tex of the tree Tu re
eives the 
olor of u in the 3-
oloring of H . This3-
oloring of the graph G is linear : there is no problem of 2-frugality inthe trees, and there are no bi
olored 
y
les (there are no bi
olored pathsof size at least four in the widgets).Conversely, in a linear 3-
oloring of G, the verti
es of a given tree Tuhave the same 
olor, whi
h 
an be used to 
olor u in H . So we easilyobtain a 3-
oloring of H .We 
ould have used a 4 × 2 grid instead of a 7 × 2 grid to build thewidget. All the properties would have been 
onserved, but the widgetwould not have been bipartite (it would have 
ontained some C5). Thetheorem of NP-
ompleteness would have been a little weaker.4.8 Con
lusionTable 4.1 sums up the upper bounds obtained for the linear 
hoi
enumber of graphs with maximum degree ∆.

G Λl
k(G)

∆ ≤ 3 5
∆ ≤ 4 9

∆ ≥ 3 and mad(G) < 16
7

⌈

∆
2

⌉

+ 1mad(G) < 5
2

⌈

∆
2

⌉

+ 2mad(G) < 8
3

⌈

∆
2

⌉

+ 3outerplanar ⌈

∆
2

⌉

+ 2planar with ∆ ≥ 12 ∆ + 26Table 4.1: Λl(G) for G with maximum degree ∆.Sin
e this work has been written, the bound of Theorem 4.5 has beenredu
ed from ∆ + 26 down to 9
10

∆ + 5 (when ∆ ≥ 85) by Raspaud andWang [RW06℄. It is believed that the right bound should be ∆/2 + C,where C is an absolute 
onstant, but this seems to be a di�
ult prob-lem. It is also an open problem to know whether Λl(G) = Λ(G) for everygraph G.
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A generalization of linear 
oloring 
an be made, by repla
ing the 
on-dition of 2-frugality by a 
ondition of k-frugality. More pre
isely, wede�ne the k-forested 
oloring of a graph G as a proper 
oloring of theverti
es of G su
h that the union of any two 
olor 
lasses is a forest ofmaximum degree at most k. The k-forested number of a graph G, de-noted by Λk(G), is the smallest number of 
olors appearing in a k-forested
oloring of G.The lower bound Λ(G) ≥ ⌈∆(G)

2
⌉ + 1 
an be easily generalized to

Λk(G) ≥ ⌈∆
k
⌉ + 1 for all graph G of maximum degree ∆. The exam-ple des
ribed by Yuster in [Yus98℄ 
an also be generalized in k dimen-sions in order to prove that Λk(G) = Ω(∆

k+1
k ). However, as soon as

k ≥ 4, this 
onstru
tion is less interesting than the probabilisti
 boundof Ω
(

∆4/3

(log ∆)1/3

) given by Alon, M
Diarmid and Reed [AMR91℄ for thea
y
li
 
hromati
 number.Re
ently, Kang and Müller [KM07℄ investigated this 
oloring andfound some 
onne
tions with t-improper 
olorings (
olorings su
h thatevery 
olor 
lass indu
es a graph with maximum degree t).
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Chapter 5
(p, 1)-total labelling
Contents5.1 Introdu
tion . . . . . . . . . . . . . . . . . . . 1015.2 Proof of Theorem 5.6 . . . . . . . . . . . . . . 1055.2.1 Sket
h of Proof . . . . . . . . . . . . . . . . . 1065.2.2 The Naive Coloring Pro
edure . . . . . . . . 1065.3 Analysis of the pro
edure . . . . . . . . . . . 1075.3.1 The �rst iteration . . . . . . . . . . . . . . . 1075.3.2 The next iterations . . . . . . . . . . . . . . . 1105.3.3 The �nal phase . . . . . . . . . . . . . . . . . 1135.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . 115In the previous 
hapters, we investigated distan
e-two 
olorings of spe-
i�
 families of graphs: graphs with bounded maximum degree, withbounded maximum average degree, forests, outerplanar graphs, planargraphs, and planar graphs with large girth. In this 
hapter, we studyin
iden
e graphs, for whi
h distan
e-two 
olorings are of parti
ular inter-est.5.1 Introdu
tionFor a graph G, let us de�ne the in
iden
e graph G⋆ of G as the graph G⋆obtained from G by repla
ing every edge by a path of length two (seeFigure 5.1 for an example). Observe that for a graph G, 
oloring thesquare of G⋆ is equivalent to 
oloring the verti
es and edges of G su
hthat:
(i) the edge-
oloring is proper, i.e. no two in
ident edges re
eive thesame 
olor; 101
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(ii) the vertex-
oloring is proper, i.e. no two adja
ent verti
es re
eivethe same 
olor;
(iii) every edge has a 
olor distin
t from the 
olors of its end verti
es.Su
h a 
oloring is 
alled a total 
oloring of G, and the smallest number of
olors in a total 
oloring of G is the total 
hromati
 number of G, denotedby χT (G). By the observation above, χT (G) is equal to the 
hromati
χT (G) number of the square of G⋆. In the late sixties, Behzad [Beh65℄ andVizing [Viz68℄ independently proposed the following 
onje
ture, whi
h isstill an open problem:Conje
ture 5.1 (The Total Coloring Conje
ture) For any graph Gwith maximum degree ∆, χT (G) ≤ ∆ + 2.

G G⋆Figure 5.1: An example of in
iden
e graph.Kosto
hka [Kos77℄ proved that for a graph G with maximum degree
∆, we have χT (G) ≤ ⌊3

2
∆⌋. The �rst bound in ∆ + o(∆) was givenby Hind [Hin90℄, who proved that χT (G) ≤ ∆ + 2

√
∆. This was laterimproved to ∆ + 18∆1/3 log(3∆) by Häggkvist and Chetwynd [HC92℄. Asigni�
ant step was then made by Hind, Molloy and Reed [HMR99℄, whoproved a bound of ∆+poly(log ∆) using frugal 
olorings (see Chapter 3).The best bound so far is due to Molloy and Reed [MR98℄, who provedthat the total 
hromati
 number of any graph with maximum degree ∆is at most ∆ plus an absolute 
onstant.Re
all that for integers p, q ≥ 0, an L(p, q)-labelling of G is an assign-ment f of integers to the verti
es of G su
h that :

• |f(u) − f(v)| ≥ p, if dG(u, v) = 1,
• |f(u) − f(v)| ≥ q, if dG(u, v) = 2.In 1995, Georges, Mauro, and Whittlesey [GMW95℄ studied the L(2, 1)-labelling of in
iden
e graphs. An L(2, 1)-labelling of the in
iden
e graphof G is equivalent to an assignment of integers to ea
h element of V (G)∪

E(G) su
h that :
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(i) the edge-
oloring is proper,
(ii) the vertex-
oloring is proper,
(iii) the di�eren
e between the integer assigned to a vertex and thoseassigned to its in
ident edges is at least 2.This labelling is 
alled a (2, 1)-total labelling of G. Havet and Yu [HY08℄generalized it to the (p, 1)-total labelling of a graph: a (p, 1)-total labellingof a graph G = (V, E) is a map c : V ∪ E → N verifying:
(i) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ c(u) 6= c(v),
(ii) ∀(u, v, w) ∈ V 3 : uv ∈ E, uw ∈ E ⇒ c(uv) 6= c(uw),
(iii) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ |c(u) − c(uv)| ≥ p.The (p, 1)-total number of a graph G, denoted by λT

p (G), is the mini-mum integer k su
h that G has a (p, 1)-total labelling1 with labels from
{1, . . . , k}. Figure 5.2 gives an example of a (2, 1)-total labelling with 6
olors.

6 4

2

2 2

4 6
46

46

5 5

5

3 1

4 61

1

2

3

6

1

2

Figure 5.2: A (2, 1)-total labelling of Petersen's graph.Observe that (1, 1)-total labelling is the usual total 
oloring (whi
h,again, is basi
ally the same as 
oloring the square of the in
iden
e graph):for any graph G, λT
1 (G) = χT (G) = χ(G⋆2).We re
all some bounds and a 
onje
ture for the (p, 1)-total number:Theorem 5.2 [HY08℄ Let G be a graph with maximum degree ∆, then:

(i) λT
p (G) ≥ ∆ + p.

(ii) If G is ∆-regular, λT
p (G) ≥ ∆ + p + 1.1As in Chapter 3, our de�nition of λT

p (G) may di�er by one from some of thede�nitions found in the literature, sin
e we 
onsider labels from {1, . . . k} instead of
{0, . . . k}. We 
hoose this 
onvention in order to be 
oherent with the de�nition of
L(p, q)-labelling given in Chapter 3 and to have λT

1 (G) equal to the total 
hromati
number of G.
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(iii) If p ≥ ∆, λT

p (G) ≥ ∆ + p + 1.Observe that if we 
olor the verti
es properly with 
olors belonging toan interval IV 
ontaining χ(G) 
olors and the edges with 
olors belongingto an interval IE 
ontaining χ′(G) 
olors, IV and IE being separated byan interval of size p− 1, we obtain a (p, 1)-total labelling of the graph G.Theorem 5.3 is dedu
ed from this observation :Theorem 5.3 [HY08℄ Let G be a graph, then
(i) λT

p (G) ≤ χ(G) + χ′(G) + p − 1

(ii) λT
p (G) ≤ 2∆ + pObserve that the following 
onje
ture is a generalization of the TotalColoring Conje
ture:Conje
ture 5.4 [HY08℄ Let G be a graph with maximum degree ∆,then λT

p (G) ≤ ∆ + 2p.Montassier and Raspaud [MR03℄ proved this 
onje
ture for graphswith large maximum degree and small maximum average degree.Theorem 5.5 [MR03℄ Let G be a 
onne
ted graph with maximum de-gree ∆, and let p ≥ 2 be an integer, then λT
p (G) ≤ ∆ + 2p − 1 in thefollowing 
ases :

(i) ∆ ≥ 2p + 1 and mad(G) < 5
2
;

(ii) ∆ ≥ 2p + 2 and mad(G) < 3;
(iii) ∆ ≥ 2p + 3 and mad(G) < 10

3
.As mentionned above, Molloy and Reed [MR98℄ proved that the total
hromati
 number of any graph with maximum degree ∆ is at most ∆plus an absolute 
onstant. Moreover, in [MR02℄, they gave a slightlysimpler proof of this result for sparse graphs. In this 
hapter, our aimis to generalize their approa
h to the (p, 1)-total number. Our proof fol-lows the lines of the proof in [MR02℄, but the analysis is signi�
antlymore 
omplex. Besides, we �ll in some blanks of [MR02℄, whi
h is morea sket
h than a 
omplete proof.A vertex v ∈ V (G) is said to be α-sparse if the subgraph of G indu
edby N(v) 
ontains at most (∆

2

)

−α∆ edges. An α-sparse graph is a graphin whi
h all the verti
es are α-sparse. In this 
hapter, we will 
onsider
ε∆-sparse graph for �xed 0 < ε < 1

2
, in other words, graphs su
h that the
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(subgraph indu
ed by the) neighborhood of any vertex 
ontains at most
c
(

∆
2

) edges, for some absolute 
onstant c < 1. Note that every Gn,p with
p < 1 is asymptoti
ally almost surely (that is, with probability tendingto 1 when n tends to in�nity) ε∆-sparse for some 0 < ε < 1

2
.Our main result is the following :Theorem 5.6 [EMR06℄ For any 0 < ε < 1

2
, and any positive integer

p, there exists a 
onstant Cp,ε su
h that for any ε∆-sparse graph G withmaximum degree ∆, we have λT
p (G) ≤ ∆ + Cp,ε.The proof of Theorem 5.6 is based on a probabilisti
 approa
h. Ituses intensively 
on
entration inequalities and Lovász Lo
al Lemma. Wealso 
onje
ture the following, whi
h is a weakening of Conje
ture 5.4:Conje
ture 5.7 For any positive integer p, there exists a 
onstant Cp,su
h that for any graph G with maximum degree ∆, we have λT

p (G) ≤
∆ + Cp.In Se
tion 5.2, we present the pro
edure used to prove Theorem 5.6and in Se
tion 5.3, we analyze this pro
edure. The probabilisti
 toolsused in the proof are des
ribed in Chapter 1 (for further details, see[MR02℄).5.2 Proof of Theorem 5.6Sin
e λT

p (G) ≤ 2∆+p, if we prove that for some ∆0(p, ε) and some Dp,ε,any ε∆-sparse graph G of maximum degree ∆ ≥ ∆0 veri�es λT
p (G) ≤

∆ + Dp,ε, then Theorem 5.6 will be proved.The se
ond observation is that it su�
es to prove the theorem for ∆-regular graphs (graphs in whi
h all the verti
es have degree ∆). If G isnot ∆-regular, take two 
opies of G and join the two 
opies of any vertexwith degree less than ∆ (see Figure 5.3 for an example). Sin
e the min-imum degree in
reases by one, by repeating this pro
ess we eventuallyobtain a ∆-regular graph 
ontaining G. Moreover it is easy to see that if
G is ε∆-sparse, then the graph obtained from the 
onstru
tion is also ε∆-sparse. Hen
e, we 
an assume from now on that the graph G is ∆-regular.Let φ be a full or partial 
oloring of G. Any edge e = uv su
h that
|φ(u) − φ(e)| < p or/and |φ(v) − φ(e)| < p is 
alled a reje
t edge. Thegraph R indu
ed by the reje
t edges is 
alled the reje
t graph. It will be
onvenient for us to 
onsider the reje
t degree of a vertex v, whi
h is thenumber of edges e = uv su
h that |φ(u)− φ(e)| < p. Observe that dR(v)is at most the reje
t degree of v plus 2p − 1.
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G G

HFigure 5.3: G ⊆ H , ∆(G) = ∆(H), and δ(H) = δ(G) + 1.5.2.1 Sket
h of ProofSet C = ∆ + 1. To prove Theorem 5.6, we apply the following steps :Step 1. First, we will 
olor the edges by Vizing's Theorem using 
olors from
{1, . . . , C}.Step 2. Then we will use the Naive Coloring Pro
edure to 
olor the verti
eswith 
olors {1, . . . , C}. This pro
edure 
reates reje
t edges. How-ever, we 
an prove that after the pro
edure, the maximum degreeof the reje
t graph R is a 
onstant Dp,ε whi
h does not depend on
∆.Step 3. Finally, we remove the 
olor of the verti
es of R and re
olor theseverti
es greedily with the 
olors from {∆+p+1, . . . , ∆+p+2+Dp,ε}.Taking Cp,ε = Dp,ε + p − 2, this proves that λT

p (G) ≤ ∆ + Cp,ε.We now present the Naive Coloring Pro
edure.5.2.2 The Naive Coloring Pro
edureFor ea
h vertex v, we maintain two lists of 
olors: Lv and Fv. Lv isthe set of 
olors whi
h do not appear in the neighborhood of v. Initially,
Lv = {1, . . . , C}. After iteration I (spe
i�ed later), Fv will be a set offorbidden 
olors. Until iteration I, Fv = ∅.During the Naive Coloring Pro
edure, we will perform i∗ (spe
i�edlater) iterations of the following pro
edure :Step 1. Assign to ea
h un
olored vertex v a 
olor 
hosen uniformly at ran-dom in Lv.Step 2. Un
olor any vertex whi
h re
eives the same 
olor as a neighbor inthis iteration.
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Step 3. Iteration i ≤ I. Let v be a vertex having more than T (spe
i�edlater) neighbors u whi
h are assigned a 
olor c(u) su
h that

|c(uv) − c(u)| < p in this iteration. For any v, we un
olor allsu
h neighbors.Iteration i > I.(a) Un
olor any vertex v whi
h re
eives a 
olor from Fv inthis iteration.(b) Let v be a vertex having more than one neighbor u whi
his assigned a 
olor su
h that |c(uv) − c(u)| < p in thisiteration. For any v, we un
olor all su
h neighbor.(
) Let v be a vertex having at least one neighbor u su
h that
|c(uv) − c(u)| < p in this iteration. For any v, we pla
e
{c(vw) − p + 1, . . . , c(vw), . . . , c(vw) + p − 1} in Fw forevery w ∈ N(v).Step 4. For any vertex v whi
h retained its 
olor (i.e. whi
h was not un-
olored during a previous step), we remove c(v) from Lu for any

u ∈ N(v).After i∗ iterations of this pro
edure, we have a partial 
oloring of G.We 
omplete this 
oloring in order to obtain a reje
t graph R with abounded maximum degree whi
h does not depend on ∆.5.3 Analysis of the pro
edure5.3.1 The �rst iterationLet ζ = ε
2e3 . In this subse
tion, we prove that:Claim 5.8 The �rst iteration produ
es a partial 
oloring with boundedreje
t degree for whi
h every vertex has at least ζ

2
∆ repeated 
olors in itsneighborhood.We re
all that C = ∆ + 1 is the initial size of ea
h 
olor list Lv.Let Av be the number of 
olors c su
h that at least two neighbors of vre
eive the 
olor c and all su
h verti
es retain their 
olor during Step 2.Let Bv be the number of neighbors of v whi
h are un
olored at Step 3.Noti
e that verti
es are un
olored at Step 3 regardless of what happenedat Step 2. Let Xv be the event that �Av < ζ∆�. Let Yv be the eventthat �Bv ≥ ζ

2
∆�. If no type X event o

urs, every vertex has at least ζ∆repeated 
olors in its neighborhood at the end of Step 2. If no type Yevent o

urs, less than ζ

2
∆ verti
es are un
olored in ea
h neighborhood.As a 
onsequen
e, if we show that with positive probability, no type Xor Y event o

urs, Claim 5.8 will be proved.



108 Analysis of the pro
edure
Claim 5.9 Pr(Xv) < e−α log2 ∆, for a parti
ular 
onstant α > 0.Proof. We �rst bound the expe
ted value of Av. Let A′

v be the num-ber of 
olors c su
h that exa
tly two neighbors of v re
eive the 
olor cand are not un
olored during Step 2. Noti
e that Av ≥ A′
v, and thus

E(Av) ≥ E(A′
v). Let u and w be two non adja
ent neighbors of v. Theprobability that u and w are 
olored with c, while no other neighborof v is 
olored with c, and while no neighbor of u or w is 
olored with

c is exa
tly ( 1
C
)2 (

1 − 1
C
)3∆−3

>
(

1
C
)2 (

1 − 1
C
)3∆. Sin
e G is ε∆-sparse,

|E(N(v))| ≤
(

∆
2

)

− ε∆2. We assumed without loss of generality that Gwas ∆-regular, so there are at least ε∆2 pairs of non adja
ent verti
esamong the neighbors of v. There are C 
hoi
es for the 
olor c, thus
E(A′

v) > Cε∆2

(

1

C

)2(

1 − 1

C

)3∆

=
ε∆2

C

(

1 − 1

C

)3∆For∆ > 2, we have ln(1− 1
C ) ≥ − 1

C− 1
C2 , and thus (1 − 1

C
)3∆ ≥ e−3e−

3
C .For ∆ large enough, ∆/C >

√
3/2 and e−

3
C >

√
3/2, so:

E(A′
v) >

3ε∆

4e3
=

3

2
ζ∆Sin
e E(Av) ≥ E(A′

v), we also have E(Av) > 3
2
ζ∆. Let ATv be thenumber of 
olors assigned to at least two neighbors of v, and let Delvbe the number of 
olors assigned to at least two neighbors of v and notretained by at least one of them. Note that Av = ATv − Delv, andby linearity of expe
tation, E(Av) = E(ATv) − E(Delv). The randomvariable ATv only depends on the ∆ 
olors assigned to the neighbors of

v. Moreover, 
hanging one of these 
olors 
an only a�e
t ATv by at most1. Using the Simple Con
entration bound, we obtain:
Pr (|ATv − E(ATv)| > t) < 2e−

t2

2∆ . (5.1)The random variable Delv only depends on the nearly ∆2 
olors as-signed to the verti
es at distan
e at most 2 from v. As previously, 
hang-ing one of these 
olors 
an only a�e
t Delv by at most 1. Furthermore,if Delv ≥ s, we 
an �nd at most 3s verti
es, whose 
olors 
ertify thatDelv ≥ s (for ea
h 
olor α 
ounted by Delv ≥ s, we take two neighbors
x and y of v 
olored with α and a neighbor z of x or y also 
olored with
α). Applying Talagrand's Inequality with c = 1 and r = 3, we obtain forall t ≥ √

∆ log ∆

Pr (|Delv − E(Delv)| > t) < 4e−
(t−60

√
3E(Delv))

2

24E(Delv) < 4e−
t2

25∆ , (5.2)
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sin
e E(Delv) ≤ ∆. Re
all that E(Av) = E(ATv) − E(Delv). Let

t = 1
2
log ∆

√

E(Av). If |Av − E(Av)| > log ∆
√

E(Av) we have either
|ATv − E(ATv)| > t or |Delv − E(Delv)| > t. Using (5.1) and (5.2), theprobability that this happens is at most

2e−
t2

2∆ + 4e−
t2

25∆ < 2e−
3
16

ζ log2 ∆ + 4e−
3

200
ζ log2 ∆ < e−

ζ
100

log2 ∆So, for∆ large enough, Pr
(

|Av − E(Av)| > log ∆
√

E(Av)
)

< e−
ζ

100
log2 ∆.

Pr
(

|Av − E(Av)| > log ∆
√

E(Av)
)

≥ Pr
(

Av < E(Av) − log ∆
√

E(Av)
)

≥ Pr

(

Av <
3

2
ζ∆ − log ∆

√
∆

)

≥ Pr (Av < ζ∆)Sin
e Pr(Xv) = Pr(Av < ζ∆), we proved that Pr(Xv) < e−
ζ

100
log2 ∆.Claim 5.10 Pr(Yv) < e−β∆, for a parti
ular 
onstant β > 0.Proof. Let u be a neighbor of v. The vertex u will be un
olored inStep 3 if for some neighbor w of u, u and T other neighbors x1, . . . , xTof w are ea
h assigned a 
olor c(xi) su
h that |c(u) − c(wu)| < p and

|c(xi)− c(wxi)| < p for all 1 ≤ i ≤ T . The probability that this happensis at most
∆

(

∆ − 1

T

)(

2p − 1

C

)T+1

<
(2p − 1)T+1

T !For T large enough, (2p− 1)T+1/T ! < ζ/4, and thus E(Bv) < ζ∆
4
. Therandom variable Bv only depends on the nearly ∆3 
olors assigned to theverti
es at distan
e at most 3 from v. Changing one of these 
olors 
ana�e
t Bv by at most T + 1. Moreover, if Bv ≥ s there is a set of at most

(T + 1)s verti
es whose 
olors 
ertify that Bv ≥ s (for ea
h un
oloredneighbor u of v, take u and T other neighbors x1, . . . , xT of some neighbor
w of u, su
h that |c(u) − c(wu)| < p and |c(xi) − c(wxi)| < p for all
1 ≤ i ≤ T ). Applying Talagrand's Inequality to Bv with c = T + 1 and
r = T + 1, we obtain for all t ≥ √

∆ log ∆

Pr (|Bv − E(Bv)| > t) < 4e
−(t−60(T+1)

√
(T+1)E(Bv))

2

8(T+1)3E(Bv) < 4e
− t2

9(T+1)3∆ .Taking t = ζ∆
8
, we obtain Pr

(

|Bv − E(Bv)| > ζ∆
8

)

< 4e
− ζ2∆

576(T+1)3 <

e
− ζ2∆

577(T+1)3 . Now, sin
e
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Pr

(

|Bv −E(Bv)| >
ζ∆

8

)

≥ Pr

(

Bv > E(Bv) +
ζ∆

8

)

≥ Pr

(

Bv >
3

8
ζ∆

)

≥ Pr

(

Bv ≥ ζ∆

2

)

we have Pr(Yv) < e
− ζ2

577(T+1)3
∆.We now use Lovász Lo
al Lemma to prove Claim 5.8. Ea
h event Xvonly depends on the 
olors assigned to the verti
es at distan
e at most 2from v, and ea
h event Yv depends on the 
olors assigned to the verti
es atdistan
e at most 3 from v. Hen
e, ea
h event is mutually independent ofall but at most 2∆6 other events. For ∆ su�
iently large, Pr(Xv) < 1

8∆6and Pr(Yv) < 1
8∆6 . Using Lovász Lo
al Lemma, this proves that withpositive probability no type X or Y event happens. Thus with positiveprobability, the �rst iteration produ
es a partial 
oloring with boundedreje
t degree, su
h that ea
h vertex has at least ζ∆

2
repeated 
olors in itsneighborhood.5.3.2 The next iterationsLet di =

(

1 − 1
4
e−

2
ζ

)i

∆ and fi = 4(2p−1)
ζ

∑i−1
j=I+1 dj. Let i∗ be the smallestinteger i su
h that di ≤

√
∆. Observe that for any i ≤ i∗, we have

di ≥ (1 − 1
4
e−

2
ζ )
√

∆.Claim 5.11 At the end of ea
h iteration 1 ≤ i ≤ i∗, with positive prob-ability every vertex has at most di un
olored neighbors, and ea
h list Fvhas size at most fi.Proof. We prove Claim 5.11 by indu
tion on i. At the end of the �rst it-eration, every vertex has at least ζ∆
2

repeated 
olors in its neighborhood.So the number of un
olored verti
es in the neighborhood of any vertexis at most (1− ζ)∆, whi
h is less than d1 =
(

1 − 1
4
e−

2
ζ

)

∆. Morever, forany vertex v, the list Fv is still empty at the end of the �rst iteration,thus |Lv| = 0 = f1.Suppose i > 1. By indu
tion, there are at most di−1 un
olored verti
esin ea
h neighborhood at the beginning of iteration i, and ea
h Fv hassize at most fi−1. We de�ne the random variable Di
v as the number ofun
olored neighbors of v after iteration i, and the random variable F i

v as
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the size of the list Fv after iteration i. To 
omplete the indu
tion, weshow that with positive probability, Di

v ≤ di and F i
v ≤ fi for any vertex v.Sin
e every vertex v has at least ζ∆

2
repeated 
olors in its neighborhood,every list Lv has size at least ζ∆

2
. Thus, the probability that a newly
olored vertex is not un
olored during Step 2 is at least (1 − 2

ζ∆

)∆. Sothe probability that a newly 
olored vertex is un
olored during Step 2 isat most:
1 −

(

1 − 2

ζ∆

)∆

≤ 1 − 3

4
e−

2
ζFor i ≤ I, the probability that the newly 
olored vertex v is un
oloredduring Step 3 is at most:

∆

(

di−1

T

)(

2p − 1

ζ∆/2

)T+1

≤
(

2(2p − 1)

ζ∆

)T+1
1

T !
≤ 1

4
e−

2
ζObserve that for I su�
iently large in terms of ζ and p, we have

fi =
4(2p − 1)∆

ζ

i−1
∑

j=I+1

(

1 − 1

4
e−

2
ζ

)j

≤ 4(2p − 1)∆

ζ
× 4e

2
ζ

(

1 − 1

4
e−

2
ζ

)I+1

<
ζ∆

16
e−

2
ζ .Thus, for i > I, the probability that the vertex v is un
olored duringStep 3(a) is at most:

|Fv|
|Lv|

≤ 2

ζ∆
fi−1 <

1

8
e−

2
ζAnd the probability that v is un
olored during Step 3(b) is at most:

∆di−1

(

2(2p − 1)

ζ∆

)2

≤
(

1 − 1

4
e−

2
ζ

)I (
2(2p − 1)

ζ

)2

≤ 1

8
e−

2
ζCombining these results, the probability that a newly 
olored vertexis un
olored during Step 2 or Step 3 is at most 1− 3

4
e−

2
ζ + 1

4
e−

2
ζ = 1− 1

2
e−

2
ζ .As a 
onsequen
e,

E(Di
v) ≤

(

1 − 1

2
e−

2
ζ

)

di−1Let X i
v be the event that Di

v >
(

1 − 1
4
e−

2
ζ

)

di−1. We de�ne the ran-dom variable NF i
v as the number of 
olors added to Fv during iteration i.Let Y i

v be the event that NF i
v > 4(2p−1)

ζ
di−1. Using Lovász Lo
al Lemma,we prove that with positive probability none of the type X or Y eventso

urs.
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Claim 5.12 Pr(X i

v) < e−δ log2 di−1, for a parti
ular 
onstant δ > 0.Proof. Let v be a vertex of G. Let A be the number of neighbors of vthat are un
olored during Step 2. For i ≤ I we de�ne B as the numberof neighbors of v that are un
olored during Step 3. For i > I we de�ne
C (resp. D) as the number of neighbors of v that are un
olored duringStep 3.(a) (resp. 3.(b)). Using the Simple Con
entration Bound on A,Talagrand's Inequality on B and D, and Cherno� Bound on C, 
ombinedwith E(Di

v) ≤ (1 − 1
2
e−

2
ζ )di−1, we prove the following inequalities:

Pr

(

|A −E(A)| >
1

2
log di−1

√

E(A + B)

)

< 2e−
e
− 2

ζ

64
log2 di−1 (5.3)

Pr

(

|B −E(B)| >
1

2
log di−1

√

E(A + B)

)

< 4e
− e

− 2
ζ

64(T+1)3
log2 di−1 (5.4)

Pr

(

|A − E(A)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
− 2

ζ

144
log2 di−1 (5.5)

Pr

(

|C − E(C)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
1

144
log2 di−1 (5.6)

Pr

(

|D −E(D)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
− 2

ζ

1152
log2 di−1 (5.7)The proof of these results is very 
lose from the proofs of Claims 5.9and 5.10. Combining (5.3), (5.4), (5.5), (5.6) and (5.7), we obtain for Tand ∆ large enough :

Pr(X i
v) < e

− e
− 2

ζ

65(T+1)3
log2 di−1

Claim 5.13 Pr(Y i
v ) < e−γdi−1 , for a parti
ular 
onstant γ > 0.Proof. The probability that a neighbor u of v is assigned a 
olor c(u)su
h that |c(u)−c(uv)| < p is 2p−1

|Lu| ≤ 2(2p−1)
ζ∆

. Thus E(NFv) ≤ 2(2p−1)
ζ∆

di−1.Applying Talagrand's Inequality to the random variable NFv with c =
(2p − 1)2 and r = 1, we obtain :

Pr (|NFv − E(NFv)| > t) < 4e
− ζt2

16(2p−1)5di−1for any t > log di−1

√

di−1. Taking t = 2p−1
ζ

di−1, we obtain :
Pr
(

NFv > 4(2p−1)
ζ

di−1

)

≤ Pr
(

|NFv − E(NFv)| > 2p−1
ζ

di−1

)

< 4e
− di−1

2ζ(2p−1)3 .
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The variable X i

v only depends on the 
olors assigned to the verti
es atdistan
e at most 3 from v during iteration i, while the variable Y i
v dependson the 
olors assigned to the verti
es at distan
e at most 2 from v duringiteration i. Thus, ea
h type X or Y event is mutually independent fromall but at most 2d6

i−1 other events. Using Claims 5.12 and 5.13, we have
Pr(X i

v) < 1
8d6

i−1
and Pr(Y i

v ) < 1
8d6

i−1
for ∆ large enough (re
all thata

ording to our 
hoi
e of i∗ we always have di ≥ (1− 1

4
e−

2
ζ )
√

∆). LovászLo
al Lemma 
ompletes the indu
tion.5.3.3 The �nal phaseAt this point, we have a partial 
oloring su
h that:
• ea
h vertex v has at most √∆ un
olored neighbors;
• the reje
t degree of ea
h vertex is at most IT + 1;
• ea
h un
olored vertex has a list of at least ζ∆

2
available 
olors.It will be more 
onvenient to use lists of equal sizes. So we arbitrar-ily remove 
olors from ea
h list, so that for every un
olored vertex v, wehave |Lv| =

⌈

ζ∆
2

⌉. For ea
h un
olored vertex, we 
hoose a subset of 
olorsfrom Lv whi
h will be 
andidates for v and we prove that with positiveprobability, there exists a 
andidate for ea
h un
olored vertex, su
h thatwe 
an 
omplete our partial 
oloring of G.A 
andidate a for v is said to be good if:Condition 1 for every neighbor u of v, a is not 
andidate for u;Condition 2 for every neighbor u of v, and every neighbor w of
u, there is no 
andidate b of w su
h that |c(uv) − a| < p and
|c(uw)− b| < p.If we �nd a good 
andidate for every un
olored vertex, Condition1 ensures that the vertex 
oloring obtained is proper, and Condition 2ensures that no reje
t degree in
reases by more than one.Claim 5.14 There exists a set of 
andidates Sv for ea
h un
olored vertex

v, su
h that ea
h set 
ontains at least one good 
andidate.Proof. For ea
h un
olored vertex v, we 
hoose a random permutation of
Lv, and take the �rst twenty 
olors of the list as set of 
andidates for v.Let Cv be the event that none of the 
andidates for v is a good 
andidate.Ea
h event Cv depends on at most ∆4 other events. We now show that
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Pr(Cv) < 1

4∆4 . Lovász Lo
al Lemma will 
omplete the proof.Let v be an un
olored vertex of G. We de�ne:
Bad1 = {c ∈ Lv : c is 
andidate for some neighbor of v}

Bad2 = {c ∈ Lv : 
hoosing c for v violates Condition 2}
Bad = Bad1 ∪ Bad2Note that a 
andidate for v is good if and only if it does not belongto Bad. Let D be the event that |Bad| ≤ 60(2p−1)2

√
∆. Observe that :

Pr(Cv|D) ≤
( |Bad|

|Lv|

)20

≤
(

60(2p − 1)2
√

∆
⌈

ζ∆
2

⌉

)20

≤ 12020(2p − 1)40

ζ20∆10So for ∆ su�
iently large, Pr(Cv|D) < 1
8∆4 .Ea
h vertex has at most √

∆ un
olored neighbors, thus |Bad1| ≤
20
√

∆ ≤ 20(2p − 1)2
√

∆. We now show that with high probability, thesize of Bad2 is at most 40(2p − 1)2
√

∆. A 
olor c belongs to Bad2 if forsome neighbor u of v su
h that |c(uv) − c| < p, there is a neighbor w of
u and a 
andidate a for w su
h that |c(uw) − a| < p. Thus we obtain:

Pr(c ∈ Bad2) ≤ (2p − 1) × 20
√

∆ × 2p − 1
⌈

ζ∆
2

⌉

E(|Bad2|) ≤
⌈

ζ∆

2

⌉

×Pr(c ∈ Bad2) ≤ 20(2p − 1)2
√

∆The random variable |Bad2| only depends on at most∆2 permutationsof 
olor lists of un
olored verti
es at distan
e at most 2 from v. Moreover,ex
hanging two members of one of the permutations 
an a�e
t |Bad2| byat most 2p − 1. If |Bad2| ≥ s, we 
an 
ertify this by giving, for ea
h
olor α ∈ Bad2, a neighbor u of v su
h that |c(uv)− α| < p, as well as aneighbor w of u having a 
andidate a su
h that |c(uw) − a| < p. Re
allthat a is a 
andidate for w if it belongs to the �rst twenty positions of thepermutation of Lw. So we only need to give s 
hoi
es of 
andidates to
ertify that |Bad2| ≥ s. We apply M
Diarmid's Inequality to X = |Bad2|with n = 0, m = ∆2, c = 2p − 1, r = 1, and t = 10(2p − 1)2
√

∆ :
Pr
(

|X − E(X)| > 10(2p − 1)2
√

∆ + 60(2p − 1)
√

E(X)
)

< 4e
− 100(2p−1)4∆

8(2p−1)2E(X)Sin
e E(X) ≤ 20(2p − 1)2
√

∆, this implies for ∆ su�
iently large:
Pr
(

|Bad2| > 40(2p − 1)2
√

∆
)

< 4e−
5
8

√
∆
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So for ∆ large enough, Pr

(

D
)

< 1
8∆4 . We 
an express the probability of

Cv as Pr(Cv) = Pr(Cv|D)Pr(D) + Pr(Cv|D)Pr(D). Hen
e,
Pr(Cv) ≤ Pr(Cv|D) + Pr(D) <

1

4∆4We obtain a 
oloring of G with maximum reje
t degree at most IT +2.So the reje
t graph R obtained has maximum degree at most IT +2p+1.We un
olor the verti
es of R and re
olor them greedily with 
olors from
{∆+p+1, . . . , ∆+IT +3p+3} using Brooks theorem. This �nal 
oloringis a (p, 1)-total labelling of G. Sin
e I and T are independent of ∆, weproved that λT

p (G) ≤ ∆ + Cp,ε.5.4 Con
lusionUsing general ideas from [MR02℄, Theorem 5.6 
an be seen as a �rststep to prove Conje
ture 5.7, whi
h would be the 
losest result fromConje
ture 5.4 so far.Indeed, we only use the sparseness of G to prove that after the �rstiteration, we obtain a partial 
oloring with many repeated 
olors in ea
hneighborhood. So the proof of Theorem 5.6 also implies the followinglemma:Lemma 5.15 For every ε, ζ > 0 and every integer p, there exists two
onstants C(ζ, p, ε) and ∆(ζ, p, ε) su
h that the following holds : 
onsiderany graph G with maximum degree ∆ ≥ ∆(ζ, p, ε), any edge 
oloring of
G, and any partial vertex 
oloring of G su
h that every un
olored vertexhas ζ∆ 
olors appearing at least twi
e in its neighborhood. The partialvertex 
oloring 
an be 
ompleted in order to obtain a (p, 1)-total labellingof G su
h that the maximum reje
t degree does not in
rease by more than
C(ζ, p, ε).It seems that Lemma 5.15 
ould be used to prove Conje
ture 5.7,by only modifying the �rst iteration of the pro
edure (for example, by
oloring �rst the dense 
omponents, and then apply the lemma to the re-maining verti
es). However, this would require mu
h deeper probabilisti
te
hniques and tools.
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Chapter 6Game 
oloring
Contents6.1 Introdu
tion . . . . . . . . . . . . . . . . . . . 1176.2 Game 
oloring of the square of forests . . . . 1206.3 Outerplanar graphs . . . . . . . . . . . . . . . 1246.4 Partial 2-trees and planar graphs . . . . . . . 1266.5 Con
lusion . . . . . . . . . . . . . . . . . . . . . 127In this 
hapter, we look at distan
e-two 
oloring through a di�erentangle. We study a two-player game in whi
h the �rst player (Ali
e) triesto 
olor the square of a graph with a given set of 
olors, whereas these
ond player (Bob) tries to prevent her from su

eeding. The aim is tounderstand why a
y
li
 game 
oloring is so di�erent from the usual game
oloring. To obtain bounds on the size of the 
olor sets for whi
h Ali
ehas a winning strategy, we re�ne the usual a
tivation strategy and adaptit to the 
ase of distan
e-two 
olorings.6.1 Introdu
tionThe game 
oloring number of a simple graph G is de�ned through a two-player game. Ali
e and Bob take turns marking unmarked verti
es of
G, with Ali
e having the �rst move. Ea
h move marks one unmarkedvertex. The game 
oloring number 
olg(G) of G is the smallest integer
k su
h that Ali
e has a strategy to ensure that at any step of the game,every unmarked vertex is adja
ent to at most k − 1 marked verti
es.The game 
oloring number was �rst expli
itly introdu
ed by Zhu[Zhu99℄ as a tool in the study of the game 
hromati
 number of graphs,whi
h is also de�ned through a two-player game: let G be a graph and C117
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tion
be a set of 
olors. Ali
e and Bob take turns 
oloring unmarked verti
esof G, with Ali
e having the �rst move. Ea
h move 
olors one unmarkedvertex, subje
t to the 
ondition that two adja
ent verti
es 
annot bemarked with the same 
olor. Ali
e wins the game if eventually every ver-tex is marked. Bob wins the game if some unmarked vertex x 
annot bemarked anymore (ea
h 
olor in C has been assigned to some neighbor of
x). The game 
hromati
 number χg(G) of G is the minimum k for whi
hAli
e has a winning strategy with 
olors from {1, . . . , k} in this game.The game 
hromati
 number was introdu
ed by Bodlaender [Bod91℄,and has been widely studied over the last ten years. The question ofdetermining the game 
hromati
 number of planar graphs has raised par-ti
ular interest [Bod91, DZ99, Kie00, KT94, Zhu99℄. Re
ently, Wu andZhu [WZ08℄ proved that there exist planar graphs with game 
oloringnumber at least 11, and Zhu [Zhu08℄ proved that every planar graph hasgame 
hromati
 number at most 17.

x
y

z

u1 v1

uk vkFigure 6.1: A partial 2-tree G with χa,g(G) ≥ ∆(G)/2.In his Ph.D Thesis, Chang [Cha07℄ re
ently investigated a
y
li
 game
olorings. The only di�eren
e with the de�nition above is that, at anystep, the partial 
oloring has to be a
y
li
 (that is, a proper 
oloring with-out bi
olored 
y
les). The a
y
li
 game 
hromati
 number of a graph Gis denoted by χa,g(G). Surprisingly, while the a
y
li
 
hromati
 num-ber of planar graphs is at most 5 [Bor79℄, their a
y
li
 game 
hromati
number is not bounded. Chang [Cha07℄ gave an example of a partial2-tree (with a
y
li
 
hromati
 number at most three) with a
y
li
 game
hromati
 number at least ∆/2 (see Figure 6.1). It is easy to 
he
k thatduring his �rst two moves, Bob 
an 
olor x and y with the same 
olor,or y and z with the same 
olor (depending on Ali
e's �rst moves). Then,either u1, . . . uk, or v1, . . . vk must have distin
t 
olors, and the a
y
li
game 
hromati
 number is at least ∆/2.
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It is easy to prove that χ(G) ≤ χg(G) ≤ 
olg(G) ≤ ∆ + 1 for anygraph G with maximum degree ∆. Unfortunately, obtaining good upperbounds for the a
y
li
 game 
hromati
 number seems di�
ult in general.However, we 
an use the following observation, whi
h is one of the mainreasons why we studied distan
e-two game 
olorings.Observation 6.1 For every graph G, χa,g(G) ≤ 
olg(G2).If Ali
e has a strategy to win the marking game in G2 with k 
olors,then by using the same strategy she 
an win the a
y
li
 game with k
olors. When playing, Ali
e pi
ks a vertex v su
h that at any step of thegame, any unmarked vertex has at most k−1 marked verti
es at distan
eone or two. She then 
olors v with a 
olor distin
t from all the 
olors atdistan
e at most two from v. She eventually obtains a proper 
oloring of

G2, whi
h is also an a
y
li
 
oloring of G.It is very important to observe that χa,g(G) ≤ χg(G
2) may not be truein general, sin
e Bob has more freedom in the ay
li
 game than in thegame 
oloring of the square (whi
h prevents Ali
e from using the exa
tlythe same strategy).Also note that if we have a winning strategy for a graph G, we 
an-not ne
essarily use it to obtain a winning strategy in a subgraph H of

G. Furthermore, having a winning strategy with k 
olors for a graph Gdoes not mean that we have a strategy with k +1 
olors for G. As a 
on-sequen
e, it seems di�
ult to use proofs by indu
tion or with minimum
ounterexamples as in Chapters 2, 3, and 4.The following is an easy observation about the game 
hromati
 num-ber of the square of graphs with bounded maximum degree (and as a
onsequen
e, about their a
y
li
 game 
hromati
 number).Observation 6.2 If G has game 
olouring number k and maximum de-gree ∆, then χg(G
2) ≤ 
olg(G2) ≤ (k − 1)(2∆ − k + 1) + 1.Assume that Ali
e has a strategy for the marking game on G to ensurethat at any moment of the game, any unmarked vertex has at most k−1marked neighbours in G. We shall show that by using the same strategy,Ali
e 
an ensure that at any moment of the game, any unmarked vertexhas at most (k−1)(2∆−k+1) marked verti
es at distan
e at most 2 in G.Indeed, if v is an unmarked vertex, then let NM(v) be the set of markedneighbours of v in G, and NU(v) be the set of unmarked neighbours of v in

G. Ea
h vertex of NM(v) has at most ∆−1 marked neighbours, and ea
hvertex of NU (v) has at most k − 1 marked neighbours. It is obvious that
k ≤ ∆+1. If k = ∆+1, then G2 has maximum degree at most (k−1)∆,and the 
on
lusion holds trivially. If k ≤ ∆, then sin
e |NM(v)| ≤ k − 1,the number of marked verti
es at distan
e at most two from v in G is atmost |NM(v)|(∆−1)+|NM(v)|+(k−1)(∆−|NM(v)|) ≤ (k−1)(2∆−k+1).



120 Game 
oloring of the square of forests
6.2 Game 
oloring of the square of forestsFor spe
ial 
lasses of graphs, the upper bound for χg(G

2) in Observation6.2 
an usually be improved. This se
tion proves a better upper boundfor χg(G
2) when G is a forest.Theorem 6.3 If G is a forest with maximum degree ∆ ≥ 9, then ∆+1 ≤

χg(G
2) ≤ 
olg(G2) ≤ ∆ + 3.For any forest G, ω(G2) = ∆ + 1. Therefore χg(G

2) ≥ ∆ + 1. Assume
G = (V, E) is a forest with ∆ ≥ 9. To prove that 
olg(G2) ≤ ∆ + 3, weshall give a strategy for Ali
e for the marking game on G2, so that at anymoment of the game, ea
h unmarked vertex has at most ∆ + 2 markedneighbors in G2.If G is not a tree, then we may add some edges to G to obtain a tree.Thus we may assume that G is a tree. Ali
e's strategy is a variation ofthe a
tivation strategy, whi
h is widely used in the study of 
oloring gameand marking game. She keeps tra
k of a set Va ⊆ V of a
tive verti
es,whi
h always indu
es a subtree of G. When a vertex v is added to Va,we say that v is a
tivated. Verti
es in Va are 
alled a
tive verti
es, andother verti
es are 
alled ina
tive.Choose a vertex r of G as the root, and view G as a rooted tree. Fora vertex x, f 1(x) (abbreviated as f(x)) is the father of x and for i ≥ 2,let f i(x) = f(f i−1(x)). For 
onvenien
e, we let f(r) = r. The verti
es in
{f i(x) : i ≥ 1} are 
alled the an
estors of x. Let S(x) be the set of sonsof x, and let S2(x) = ∪y∈S(x)S(y) be the set of grandsons of x.Ali
e's strategy:

• Initially she sets Va = {r}, and marks r.
• Assume Bob has just marked a vertex x and there are still unmarkedverti
es. Let Px be the unique path from x to the nearest vertex yof Va. In parti
ular, if x ∈ Va, then x = y and Px 
onsists of thesingle vertex x. Ali
e adds all the verti
es of Px to Va, and marksthe �rst unmarked vertex from the sequen
e: f 2(y), f(y), y, z∗, v,where v is an unmarked vertex with no unmarked an
estors, and

z∗ is de�ned as follows: Let Z = {z ∈ S(y) : |(S(z) ∪ S2(z)) ∩ Va|is maximum among all unmarked sons of y}. Let M be the setof marked verti
es. Then z∗ is a vertex in Z for whi
h |(S(z∗) ∪
S2(z∗)) ∩ M | is maximum. In 
ase Z = ∅, then ignore the vertex
z∗ in the sequen
e.This 
ompletes the des
ription of Ali
e's strategy. In the following, weshall show that by using this strategy, ea
h unmarked vertex has at most
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∆ + 2 marked neighbors in G2 (or equivalently, ea
h unmarked vertexhas at most ∆ + 2 marked verti
es at distan
e one or two in G).For ea
h vertex x marked by Bob, there is a path Px de�ned as above.If (w, f(w)) is an edge in Px for some Px, then we say that w made a
ontribution to f(w) and f(w) re
eived a 
ontribution from w. Let x′ bethe last vertex of Px. We also say that w made a 
ontribution to f(w) ifone of the following holds:1. If w = x′ and Ali
e marked f(x′).2. If w = x′ or w = f(x′) and Ali
e marked f 2(x′).Lemma 6.4 Assume Ali
e has just �nished a move and y has two a
tivesons. Then f 2(y) is marked.Proof. When the �rst son of y is a
tivated, then y and all its an
estorsare a
tivated. When the se
ond son of y is a
tivated, then the 
orre-sponding path Px ends at y, and by the strategy, Ali
e marks f 2(y),provided that f 2(y) was not marked earlier.Lemma 6.5 Assume Ali
e has just �nished a move, and one of y, f(y)is an unmarked vertex. Then the following holds:(1) y has at most 3 a
tive sons.(2) S(y)∪S2(y) 
ontains at most 6 a
tive verti
es. Moreover, if S(y)∪

S2(y) does 
ontain 6 a
tive verti
es, then y has 3 a
tive sons, ea
hof whi
h has one a
tive son.Proof. Assume y or f(y) is unmarked. A

ording to the strategy, if in amove of Ali
e, a vertex in S(y)∪S2(y) is a
tivated, then the 
orrespondingpath Px either goes through y, or ends at y or ends at a vertex z ∈
S(y). As y, f(y) are not both marked, whenever a vertex in S(y) ∪
S2(y) is a
tivated, y re
eives a 
ontribution. When y re
eives the �rst
ontribution, y, f(y), f 2(y) are all a
tivated. When y re
eives the se
ond
ontribution, if f(y) was not marked earlier, one of f(y), f 2(y) is marked.When y re
eives the third 
ontribution, one of y, f(y) is marked. Whenit re
eives the fourth 
ontribution, y must be marked. Sin
e y or f(y)is unmarked, y re
eived at most three 
ontributions. During ea
h of thethree 
orresponding moves of Ali
e, at most one vertex of S(y) and atmost one vertex of S2(y) are a
tivated. So S(y) 
ontains at most threea
tive verti
es and S2(y) 
ontains at most three a
tive verti
es. In 
ase
S(y)∪ S2(y) does 
ontain 6 a
tive verti
es, then y has three a
tive sons,ea
h of whi
h has one a
tive son.
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Lemma 6.6 Assume Ali
e has just �nished a move, and one of y, f(y)is an unmarked vertex. Then y has at most one unmarked son x su
hthat S(x) ∪ S2(x) 
ontains more than 2 a
tive verti
es.Proof. Assume to the 
ontrary that y and f(y) are not both markedand y has two unmarked sons x1, x2 su
h that for ea
h j = 1, 2, S(xj) ∪
S2(xj) 
ontains more than 2 a
tive verti
es. For j = 1, 2, if a vertex in
S(xj) ∪ S2(xj) is a
tivated, the 
orresponding path Px ends at xj or avertex z ∈ S(xj). Hen
e xj re
eives a 
ontribution. Sin
e xj is unmarked,
xj passes the 
ontribution to y. As S(xj) ∪ S2(xj) 
ontains more than
2 a
tive verti
es, there are at least two steps in whi
h some vertex in
S(xj)∪S2(xj) is a
tivated. Hen
e y re
eived at least 4 
ontributions. Asremarked in the proof of Lemma 6.5, if y re
eived 4 
ontributions, thenboth y, f(y) are marked.Lemma 6.7 Assume Ali
e has just �nished a move. Then the followingholds:

• y has at most two unmarked sons x for whi
h S(x)∪S2(x) 
ontainsmore than 2 a
tive verti
es.
• If y has 3 a
tive sons, then y has at most one unmarked son xfor whi
h S(x) ∪ S2(x) 
ontains more than 2 a
tive verti
es. If

y has 4 or more a
tive sons, then for ea
h unmarked x ∈ S(y),
S(x) ∪ S2(x) 
ontains at most two a
tive verti
es and 
ontains atmost one marked vertex.Proof. By Lemma 6.6, before y and f(y) are both marked, y has at mostone unmarked son x su
h that S(x) ∪ S2(x) 
ontains more than 2 a
tiveverti
es. Therefore at the moment the last of the two verti
es y and f(y)is marked, y has at most two unmarked sons x for whi
h S(x) ∪ S2(x)has more than 2 a
tive verti
es. Moreover, if y does have two unmarkedsons x for whi
h S(x) ∪ S2(x) 
ontains more than 2 a
tive verti
es, then

y has only two a
tive unmarked sons.Assume that at the moment that the last of the two verti
es y and
f(y) is marked, y has two unmarked sons, say x1 and x2, su
h that
S(xi)∪S2(xi) 
ontains more than 2 a
tive verti
es (i = 1, 2). By Lemma6.4, f 2(y) is marked.Suppose the third son x3 of y is a
tivated. Sin
e f 2(y), f(y), y are allmarked, by the strategy, one of x1 and x2, say x1, will be marked. At thetime x3 is a
tivated, S(x3) ∪ S2(x3) 
ontains at most two a
tive verti
esand at most one marked vertex. If one more vertex of S(x3) ∪ S2(x3) isa
tivated or marked, then Ali
e should have marked x3. When the fourthson x4 of y is a
tivated, Ali
e should have marked x2. On
e both x1 and
x2 are marked, then for any son x of y, if S(x) ∪ S2(x) 
ontains more
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olg(T 2) = ∆ + 3.than 2 a
tive verti
es or 
ontains more than one marked vertex, Ali
eshould have marked x.Lemma 6.8 Assume ∆(G) ≥ 9. If Ali
e has just �nished a move and xis an unmarked vertex, then there are at most ∆ + 1 marked verti
es atdistan
e at most 2 (in G) from x.Proof. By Lemma 6.5, S(x) ∪ S2(x) 
ontains at most 6 a
tive verti
es,and so at most 6 marked verti
es sin
e after any of Ali
e's moves allthe marked verti
es are a
tive. The other marked verti
es at distan
eat most 2 from x are f(x) and the neighbors of f(x). By Lemma 6.7,if S(x) ∪ S2(x) 
ontains at least 2 two marked verti
es then f(x) has atmost 3 a
tive sons (in
luding x), hen
e the set N [f(x)]−{x} 
ontains atmost 4 marked verti
es : f(x), f 2(x), and two sons of f(x). So in this
ase there are at most 4 + 6 = 10 ≤ ∆ + 1 marked verti
es at distan
eat most 2 from x. If S(x) ∪ S2(x) 
ontains at most one marked vertex,then again there are at most ∆ + 1 marked verti
es at distan
e at most
2 from x.After Bob's move, an unmarked vertex x has at most ∆ + 2 a
tiveverti
es that are of distan
e at most 2 from x. This proves that the game
oloring number of the square of a forest F is at most ∆ + 3.The bound colg(G) ≤ ∆+3 is tight for trees. To see this, 
onsider thegraph depi
ted in Figure 6.2. By symmetry, we 
an assume that Ali
edoes not mark x or xi during her �rst move. Let X = {xi, 1 ≤ i ≤ t},
Yi = {yi, y

′
i}, and Y =

⋃

1≤i≤t Yi. We say that Yi has been marked ifany of yi and y′
i has been marked. Bob's strategy is the following : ifthere is an unmarked vertex xi, su
h that Yi is not marked, Bob marks

yi. Otherwise he just marks any uj, vj , or v′
j.We now prove that if Bob follows this strategy, some unmarked vertexwill be adja
ent to at least ∆ + 2 marked verti
es in T 2 at some point ofthe game.
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After Bob's �rst move, the number of marked Yi's is one more thanthe number of marked xi's. If Ali
e marks an xi whenever Bob marks

Yi, then eventually x will have too many marked neighbors in T 2. Sobefore all the xi's are marked, Ali
e needs to mark x at a 
ertain move.Then before all the xi's are marked, if Bob has just �nished a move, thenumber of marked Yi's is at least two more than the number of marked
xi's.Let xi and xj be the last verti
es of X to be marked. Before xi, xj aremarked, Bob has already marked yi and yj. Without loss of generality,assume that Ali
e 
hooses to mark xi �rst, then Bob marks y′

j and afterhis move, xj is unmarked and has at least ∆ + 2 neighbors in T 2.6.3 Outerplanar graphsA graph G is an outerplanar graph if G 
an be embedded in the planein su
h a way that all the verti
es of G lie on the boundary of the in�-nite fa
e. This se
tion gives an upper bound for χg(G
2) for outerplanargraphs.Theorem 6.9 Let G be an outerplanar graph with maximum degree ∆,then χg(G

2) ≤ 
olg(G2) ≤ 2∆ + 16.Let G = (V, E) be an outerplanar graph with maximum degree ∆,and let H = (V, E ′) be a maximal outerplanar graph 
ontaining G. Sin
e
H is a 2-tree, there exists an orientation ~H of H su
h that:

• every vertex of ~H has out-degree at most two;
• the two out-neighbors of any vertex, if they exist, are adja
ent.If a vertex x of H has two out-neighbors y, z, and −→yz is an ar
 of H ,then we say that z is the major parent of x, x is a major son of z, yis the minor parent of x, and x is a minor son of z. If x has only oneout-neighbor z, then z is the major parent of x and x is a major son of

z. For a vertex x, we denote by f(x) (resp. l(x)) its major (resp. minor)parent, if it exists. We also de�ne S(x) as the set of in-neighbors of xand S2(x) as the set of in-neighbors of the verti
es of S(x).Observation 6.10 For every vertex x ∈ ~H, at most two in-neighbors of
x are minor sons of x. The minor sons of x, if any, are major sons of
f(x) or l(x).This observation is an easy 
onsequen
e of the de�nition of ~H (seeFigure 6.3, where only x1 and xt may be minor sons of x).
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xtx1

x

f (x) l(x)

x2

vtv1Figure 6.3: The neighborhood of a vertex x in ~H . The dashed ar
s may not be herein the graph.Let −→
T be the dire
ted tree de�ned by the ar
s {−−−→xf(x), x ∈ ~H}. Asin the previous se
tion, Ali
e's strategy is a variation of the a
tivationstrategy and she will keep tra
k of a set Va of a
tive verti
es.Ali
e's strategy

• At her �rst move, Ali
e will mark the root r of ~T , and set Va = {r}.
• Assume Bob just marked a vertex x. Let Px be the path 
onstru
tedas follows: At the beginning Px = {x}. Let z be the last vertexof Px. If z is ina
tive, then add f(z) to Px. Otherwise if l(z) isina
tive, add l(z) to Px. Eventually the pro
edure will stop and thelast vertex y of Px, as well as its parents, are all a
tive (note thatif z is a
tive then f(z) must be a
tive). Ali
e adds all the verti
esof Px to Va and marks the �rst unmarked vertex from the sequen
e

f(y), l(y), y, v, where v is an unmarked vertex with no unmarkedan
estors.Lemma 6.11 Let x be an unmarked vertex after a move of Ali
e, then
x has at most 2∆ + 14 a
tive verti
es at distan
e one or two in G.Proof. Assume x is an unmarked vertex. We denote by x1, . . . , xt thesons of x (see Figure 6.3). Noti
e that by Observation 6.10 only x1 and
xt may be minor sons of x. Let v1 be the minor son of x1 that is possiblya major son of f(x), and vt be the minor son of xt that is possibly amajor son of l(x).Assume that f(x) and l(x) both exist. On
e they are both markedand x is a
tivated, only two verti
es of S(x) (the two minor sons x1 and
xt of x) and four verti
es of S(x) ∪ S2(x) − {v1, vt} 
an be a
tivated. Ifsome major son of x was a
tivated, then Ali
e should have marked x.If a son of x1 distin
t from v1 was a
tivated, then x1 would have beena
tivated (x2 
ould not be a
tivated, sin
e otherwise x would have been
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marked). If a se
ond son of x1 distin
t from v1 was a
tivated, then xwould have been marked by Ali
e's strategy. The same holds for xt.The �rst time a vertex y1 of S(x)∪S2(x)−{v1, vt} is a
tivated, Ali
ea
tivates x and f(x). The se
ond time, l(x) is a
tivated. The third andfourth times, f(x) and l(x) are marked. If x1 or xt are a
tivated duringthese moves, the only 
hange is the order of a
tivation and marking of
x, f(x), and l(x). In any 
ase, at the time the last vertex of f(x), l(x)is marked and x is a
tivated (whi
hever is later), there are at most fourmoves in whi
h some verti
es in S(x) ∪ S2(x) − {v1, vt} are a
tivated.During these four moves, at most eight verti
es of S(x) ∪ S2(x) are a
ti-vated.Combining the two previous remarks, S(x)∪S2(x) 
ontains at most 14a
tive verti
es: 8 verti
es in S(x) ∪ S2(x) a
tivated before the momentthat f(x), l(x) are marked and x is a
tivated, four verti
es in S(x) ∪
S2(x) − {v1, vt} a
tivated after (in
luding x1 and xt), and �nally v1 and
vt. If l(x) does not exist, the same 
omputation shows that S(x)∪S2(x)
ontains at most 8 a
tive verti
es. If they are neighbors of x in G, theparents of x have at most 2∆− 2 neighbors in G distin
t from x. Hen
e,
x has at most 2∆ + 14 a
tive verti
es at distan
e one or two in G.After Bob's move, an unmarked vertex has at most 2∆ + 15 a
tiveverti
es at distan
e one or two in G. This proves that the game 
oloringnumber of the square of an outerplanar graph with maximum degree ∆is at most 2∆ + 16.Observe that in the des
ription and analyse of the strategy, we alwaysuse the graph H , whi
h is a triangulated outerplanar graph obtained from
G by adding some edges. But the degree of a vertex x refers to its degreein G, and ∆ is the maximum degree of G.6.4 Partial 2-trees and planar graphsThe two following lemmas are parti
ular 
ases of an impli
it lemma inthe proof of Theorem 4 in [Zhu00℄ :Lemma 6.12 [Zhu00℄ In any partial 2-tree, Ali
e has a strategy su
hthat at the end of ea
h of her moves, any unmarked vertex has at most 6marked neighbors.Lemma 6.13 [Zhu00℄ In any planar graph, Ali
e has a strategy su
hthat at the end of ea
h of her moves, any unmarked vertex has at most17 marked neighbors.We use these two results, 
ombined with the same idea as in Obser-vation 6.2 to obtain the following 
orollary.
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Corollary 6.14 Let G be a partial 2-tree with maximum degree ∆ ≥ 6,then 
olg(G2) ≤ 12∆ − 34.Corollary 6.15 Let G be a planar graph with maximum degree ∆ ≥ 17,then 
olg(G2) ≤ 34∆ − 287.Proof. Let v be an unmarked vertex just after Ali
e's move, and let
NM(v) (resp. NU(v)) be the set of marked (resp. unmarked) neighborsof v. If every unmarked vertex is adja
ent to at most l ≤ ∆ markedverti
es at this moment, then using a similar 
ounting as in Observation6.2, v has at most |NM(v)|∆+ |NU(v)|l ≤ |NM(v)|(∆− l)+ l∆ ≤ 2l∆− l2marked verti
es at distan
e one or two. Hen
e, after any of Bob's moves,no unmarked vertex has more than 2l∆−l2+1 marked verti
es at distan
eone or two. These two fa
ts prove that in this 
ase, the game 
oloringnumber is bounded by 2l∆ − l2 + 2.6.5 Con
lusionUsing Observation 6.1, Theorem 6.9, as well as Corollaries 6.14 and 6.15have immediate 
onsequen
es on the a
y
li
 game 
hromati
 number ofouterplanar graphs, partial 2-trees, and planar graphs.However, we 
onje
ture that in the 
ase of a
y
li
 games, less 
olorsare ne
essary:Conje
ture 6.16 For some 
onstant C1, any planar graph G with max-imum degree ∆ satis�es χa,g(G) ≤ ∆

2
+ C1.Based on what is known on the 
hromati
 number of the square ofpartial 2-trees and planar graphs (see Chapters 2 and 3), we also 
onje
-ture the following:Conje
ture 6.17 For some 
onstant C2, any outerplanar graph G withmaximum degree ∆ satis�es 
olg(G2) ≤ ∆ + C2.Conje
ture 6.18 For some 
onstant C3, any planar graph G with max-imum degree ∆ satis�es 
olg(G2) ≤ 3

2
∆ + C3.
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Chapter 7Boxi
ity
Contents7.1 Introdu
tion . . . . . . . . . . . . . . . . . . . 1297.2 Proof of Theorem 7.1 . . . . . . . . . . . . . . 1307.3 Con
lusion . . . . . . . . . . . . . . . . . . . . . 132In this �nal 
hapter, we de�ne a spe
i�
 
oloring at distan
e two anduse it to bound the boxi
ity of graphs with maximum degree ∆.The boxi
ity of a graph G = (V, E) is the smallest k for whi
hthere exist k interval graphs Gi = (V, Ei), 1 ≤ i ≤ k, su
h that E =
E1 ∩ . . . ∩ Ek. Graphs with boxi
ity at most d are exa
tly the interse
-tion graphs of (axis-parallel) boxes in R

d. We prove that graphs withmaximum degree ∆ have boxi
ity at most ∆2 + 2, whi
h improves theprevious bound of 2∆2 obtained by Chandran et al. (J. Combin. TheorySer. B 98 (2008) 443�445).7.1 Introdu
tionFor a family F = {S1, . . . , Sn} of subsets of a set Ω, the interse
tiongraph of F is de�ned as the graph with vertex set F , in whi
h two setsare adja
ent if and only if their interse
tion is non-empty. A d-box isthe Cartesian produ
t [x1, y1] × . . . × [xd, yd] of d 
losed intervals of thereal line. For any graph G, the boxi
ity of G, denoted by box(G), is the box(G)smallest d su
h that G is the interse
tion graph of a family of d-boxes.For a family of graphs {Gi = (V, Ei), 1 ≤ i ≤ k} de�ned on the samevertex set, we set G1 ∩ . . . ∩ Gk to be the graph with vertex set V , andedge set E1∩. . .∩Ek), and we naturally say that the graph G1∩. . .∩Gk is129
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the interse
tion of the graphs G1, . . . , Gk. The boxi
ity of a graph G 
anbe equivalently de�ned as the smallest k su
h that G is the interse
tion of
k interval graphs. Graphs with boxi
ity one are exa
tly interval graphs,whi
h 
an be re
ognized in linear time. On the other hand, Krato
hvíl[Kra94℄ proved that determining whether box(G) ≤ 2 is NP-
omplete.The 
on
ept of boxi
ity was introdu
ed in 1969 by Roberts [Rob69℄.It is used as a measure of the 
omplexity of e
ologi
al [Rob76℄ and so-
ial [Fre83℄ networks, and has appli
ations in �eet maintenan
e [OR81℄.Boxi
ity has been investigated for various 
lasses of graphs [CR83, S
h84,Tho86℄, and has been related with other parameters, su
h as treewidth[CS07℄. Re
ently, Chandran et al. [CFS08℄ proved that every graph withmaximum degree at most ∆ has boxi
ity at most 2∆2. To prove thisbound, Chandran et al. use the fa
t that if a graph G is the interse
tionof k graphs G1, . . . , Gk, we have box(G) ≤∑1≤i≤k box(Gi).In the remaining of the 
hapter, we use the same idea to prove thefollowing theorem:Theorem 7.1 [Esp08℄ Every graph with maximum degree ∆ has boxi
-ity at most 2 ⌊∆2/2⌋ + 2.7.2 Proof of Theorem 7.1Let G = (V, E) be a graph with maximum degree ∆, and let c be a(not ne
essarily proper) 
oloring of the verti
es of G with 
olors from
{1, . . . , 2k} su
h that:(i) there is no path uvw with c(u) = c(w);(ii) for any 1 ≤ j ≤ k, there is no edge between a vertex 
olored with

2j − 1 and a vertex 
olored with 2j.Observe that 
ondition (i) implies that the graph indu
ed by ea
h
olor 
lass is a graph with maximum degree at most one (the disjointunion of a stable set and a mat
hing). The �rst step of the proof is to�nd the smallest k su
h that a 2k-
oloring as de�ned above exists. De�nethe fun
tion f su
h that for every j ≥ 1, f(2j) = 2j−1 and f(2j−1) = 2j.We 
olor the verti
es of G one by one with the following pro
edure: while
oloring a vertex u ∈ V , we 
hoose for u a 
olor from {1, . . . , 2k}\(N1 ∪
N2), where N1 = {f(c(v)) | v is a 
olored neighbor of u} and N2 =
{c(v) | u and v have a 
ommon (not ne
essarily 
olored) neighbor}.If we follow this pro
edure, the partial 
oloring obtained at the endof ea
h step has the desired properties : sin
e c(u) 6∈ N1, 
ondition (ii)is still veri�ed, and sin
e c(u) 6∈ N2, 
ondition (i) is also still veri�ed.At ea
h step, N1 has size at most ∆ and N2 has size at most ∆(∆ − 1).Hen
e if k =

⌈

∆2+1
2

⌉

=
⌊

∆2

2

⌋

+ 1, a 2k-
oloring of G as de�ned aboveexists.
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From now on, we assume that k = ⌊∆2/2⌋ + 1. Hen
e, a 2k-
oloring

c of G with the properties de�ned above exists. For any 1 ≤ i ≤ k, let Gibe the graph obtained from G by adding an edge between any two non-adja
ent verti
es u, v su
h that c(u), c(v) 6∈ {2i−1, 2i}. Using 
onditions(i) and (ii), Gi 
an be de
omposed into a 
lique Ki (indu
ed by theverti
es 
olored neither with 2i− 1, nor with 2i), and two sets S2i−1 and
S2i 
orresponding to the verti
es 
olored with 2i − 1 and 2i respe
tively(see Figure 7.2(a)). By 
ondition (ii), there is no edge between S2i−1and S2i, and by 
ondition (i), every vertex of Ki is adja
ent to at mostone vertex of S2i−1 and one vertex of S2i. Moreover, S2i−1 and S2i bothindu
e a graph with maximum degree one by 
ondition (i).Now observe that G = ∩1≤i≤kGi. If two verti
es are adja
ent in Gthey are also adja
ent in any Gi, sin
e G ⊆ Gi. On the other hand, iftwo verti
es u and v are not adja
ent in G, then they are not adja
ent in
G⌈c(u)/2⌉, and so they are not adja
ent in the interse
tion of the Gi's.As a 
onsequen
e, box(G) ≤ ∑

1≤i≤k box(Gi). We now show thatevery graph Gi has boxity at most two, whi
h implies that box(G) ≤
2(⌊∆2/2⌋ + 1) and 
on
ludes the proof.

u2 u3 u4u1 us
. . .S2i−1

S2i

. . .

. . . . . .
v1 v2 v3 v4 vtFigure 7.1: The ordering of the verti
es of S2i−1 and S2i.For any 1 ≤ i ≤ k, we represent Gi as the interse
tion graph of2-dimensional boxes. We order the verti
es u1, . . . , us of S2i−1 and theverti
es v1, . . . , vt of S2i as depi
ted in Figure 7.1 (re
all that S2i−1 and

S2i both indu
e a graph with maximum degree at most one). Let r be themaximum of s and t. For every j su
h that u2j−1 and u2j are adja
ent in
S2i−1, u2j−1 is represented by the box {−r + 2j − 1}× [−2j + 2,−2j + 1]and u2j is represented by the box [−r +2j−1,−r +2j]×{−2j +1}. If avertex uj is isolated in S2i−1, it is represented by the point (−r+j,−j+1).Similarly, for every j su
h that v2j−1 and v2j are adja
ent in S2i, v2j−1is represented by the box [2j−2, 2j−1]×{r−2j+1} and v2j is representedby the box {2j − 1} × [r − 2j, r − 2j + 1]. If a vertex vj is isolated in
S2i, it is represented by the point (j − 1, r − j) (see Figure 7.2(b) for anexample).Observe that :(1) the boxes of two adja
ent verti
es u2j−1 and u2j interse
t in (−r +

2j − 1,−2j + 1);(2) the boxes of two adja
ent verti
es v2j−1 and v2j interse
t in (2j −
1, r − 2j + 1);
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S2i−1

w

u

v

v1

(b)Figure 7.2: (a) A graph Gi and (b) a representation of Gi as the interse
tion graphof 2-dimensional boxes.(3) the boxes of all the other pairs of verti
es 
olored with 2i − 1 or 2iare not interse
ting.(4) the top-right 
orner of the box of uj is the point (−r + j,−j + 1)and the bottom-left 
orner of the box of vj is the point (j−1, r− j)We now have to represent the verti
es from Ki. We represent theverti
es having no neighbor outside Ki by the point (0, 0). If a vertex ufrom Ki has only one neighbor outside Ki, say uj ∈ S2i−1, we represent
u by the box [−r + j, 0] × [−j + 1, 0]. If a vertex v from Ki has onlyone neighbor outside Ki, say vj ∈ S2i, we represent v by the box [0, j −
1] × [0, r − j]. If a vertex w of Ki has one neighbor uj ∈ S2i−1 and oneneighbor vℓ ∈ S2i, we represent w by the box [−r+j, ℓ−1]× [−j+1, r−ℓ](see Figure 7.2(b) for an example).The boxes representing the verti
es from Ki are pairwise interse
ting,sin
e they all 
ontain the point (0, 0). Moreover, using Observation (4)above, the box of every vertex v from Ki only interse
ts the boxes of theneighbors of v. Hen
e, Gi is the interse
tion graph 
orresponding to thisrepresentation, and so Gi has boxi
ity two, whi
h 
on
ludes the proof.7.3 Con
lusionThe best known lower bound for the boxi
ity of graphs with maximumdegree ∆ was given by Roberts [Rob69℄. Consider the graph H2n obtainedby removing a perfe
t mat
hing from a 
lique of 2n verti
es. If thisgraph has boxi
ity k ≤ n−1, let G1, . . . , Gk be interval graphs su
h that
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H2n = G1 ∩ . . . ∩ Gk. Sin
e k ≤ n − 1 and H2n have n non-edges, twonon-edges of H2n have to lie in the same interval graph, say Gi. Thisis impossible sin
e otherwise Gi 
ontains an indu
ed 
y
le of length fourand is not an interval graph. Hen
e, box(H2n) ≥ n ≥

⌈

1
2
∆(H2n)

⌉.Cozzens and Roberts [CR83℄ gave another 
onstru
tion of a graphwith maximum degree ∆ and boxi
ity at least ⌈∆/2⌉ based on a 
om-plete bipartite graph, but the proof is slightly more di�
ult.Chandran et al. [CFS08℄ 
onje
tured that for any graph G, box(G) ≤
O(∆). It is interesting to remark that this 
onje
ture is true when thegraphs G1, . . . , Gk with G = ∩1≤i≤kGi are only required to be 
hordal.M
Kee and S
heinerman [MS93℄ de�ned the 
hordality of a graph G,denoted by 
hord(G), as the smallest k su
h that G is the interse
tion 
hord(G)of k 
hordal graphs. Sin
e a graph is an interval graph if and only if itis 
hordal and its 
omplement is a 
omparability graph, we 
learly have
hord(G) ≤ box(G) for any graph G. M
Kee and S
heinerman provedthat the 
hordality of a graph is bounded by its 
hromati
 number. As a
orollary, it is easy to show that for any graph G with maximum degree
∆, 
hord(G) ≤ ∆.We 
on
lude with general remarks. We denote by a(G) the arbori
ity a(G)of G, that is the minimum number of indu
ed forests into whi
h the edgesof G 
an be partitioned. For outerplanar graphs, planar graphs, graphswith bounded treewidth, and graphs with bounded degree, the boxi
ityseems to be bounded by the arbori
ity. Unfortunately it seems to befalse in general: there exists trees with boxi
ity at least two, and graphswith arbori
ity two and boxi
ity at least three. This leads to two naturalquestions:1. Is there a 
onstant κ ≥ 1, su
h that any graph G satis�es box(G) ≤

a(G) + κ?2. Is there a 
onstant λ > 1, su
h that any graph G satis�es box(G) ≤
λa(G)?A positive answer to the se
ond question (and thus to the �rst), wouldimply that for any graph G with maximum degree ∆, box(G) ≤ λ

⌈

∆+1
2

⌉,proving the 
onje
ture of Chandran et al. [CFS08℄.
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Con
lusionIn Chapter 2, we proved that the verti
es of any planar graph 
anbe 
olored with (3

2
+ o(1))β 
olors, in su
h way that any two verti
esthat are adja
ent or have a 
ommon neighbor of degree at most β, havedistin
t 
olors. It might be interesting to investigate a similar problemon surfa
es of bounded genus:Question 1 Is there a fun
tion f su
h that the verti
es of any graphembeddable on a surfa
e of genus g 
an be 
olored with f(g)β 
olors,in su
h way that any two verti
es that are adja
ent or have a 
ommonneighbor of degree at most β have distin
t 
olors?A 
onsequen
e of the main result of Chapter 2 is that Wegner's 
on-je
ture [Weg77℄ that the square of any planar graph of maximum degree

∆ ≥ 8 
an be properly 
olored with ⌊3
2
∆(G)

⌋

+1 
olors is asymptoti
allytrue. In Chapter 3, we investigated a generalization of this problem: re-
all that a p-frugal 
oloring of a graph G is a proper 
oloring of the verti
esof G su
h that every 
olor appears at most p times in the neighborhoodof every vertex. We generalized Wegner's 
onje
ture in the following way:Conje
ture 2 [AEH07℄ For any integer p ≥ 1 and planar graph G withmaximum degree ∆ ≥ max { 2 p, 8 } we have
χp(G) ≤

{
⌊

∆−1
p

⌋

+ 2, if p is even;
⌊

3∆−2
3 p−1

⌋

+ 2, if p is odd.Using 
onne
tions between frugal 
oloring and L(p, q)-labelling, wethen proved that for �xed p, any planar graph G with maximum degree
∆ satis�es χp(G) ≤ 3∆

2p
+ o(∆).In [KW01℄, Kosto
hka and Woodall 
onje
tured that for any graph G,the 
hromati
 number and the list 
hromati
 number of G2 are the same.We generalize this 
onje
ture in the following way:Conje
ture 3 [AEH07℄ For any multigraph G and any integer p ≥ 1,we have χp(G) = chp(G).The List Coloring Conje
ture states that for any multigraph G the 
hro-mati
 index and the list 
hromati
 index of G are the same. Again, this
an be seen as a spe
ial 
ase of the following 
onje
ture :Conje
ture 4 [AEH07℄ For any multigraph G and any integer p ≥ 1,we have χ′

p(G) = ch ′
p(G).
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When p = 2, a p-frugal 
oloring of the verti
es of a graph G 
orre-sponds to a 
oloring in whi
h the (bipartite graph) indu
ed by every two
olor 
lasses has maximum degree two. In Chapter 4, we remarked thatin this 
ase, it does not 
ost too mu
h to also require that the 
oloringbe a
y
li
. De�ne a linear 
oloring as an a
y
li
 2-frugal 
oloring, thenthe union of any two 
olor 
lasses is a forest of paths.In Chapter 4, we gave bounds on the linear 
hromati
 number of var-ious 
lasses of graphs, su
h as graphs with small maximum degree, graphwith small maximum average degree, outerplanar graphs, and planargraphs. We give here two ni
e 
onje
tures about graphs with maximumdegree at most three and planar graphs:Conje
ture 5 [EMR08℄ If G has maximum degree three, and is di�er-ent from K3,3, then Λl(G) ≤ 4.Conje
ture 6 [RW06℄ For some 
onstant C, every planar graph G withmaximum degree ∆ satis�es Λl(G) ≤ ∆

2
+ C.In Chapter 5, we studied the (p, 1)-total number of graphs with boundedmaximum degree. Our aim was to prove a weaker version of the following
onje
ture of Havet and Yu [HY08℄.Conje
ture 7 [HY08℄ Let G be a graph with maximum degree ∆, then

λT
p (G) ≤ ∆ + 2p.Observe that any (2, 1)-total labelling of K4 requires 7 
olors. How-ever, Havet and Yu 
onje
tured the following:Conje
ture 8 [HY08℄ Let G be a graph with maximum degree at mostthree, with G 6= K4, then λT

2 (G) ≤ 6.In Chapter 6, we 
onsidered a two-player game in whi
h Ali
e and Bobare properly 
oloring the square of a graph. If the 
oloring is 
ompleted,Ali
e wins, and otherwise Bob wins. We investigated winning strategiesfor Ali
e in forests, outerplanar graphs, partial 2-trees and planar graphs,and our results had dire
t 
onsequen
es on the a
y
li
 game 
hromati
number of these graphs. However most of our bounds are 
onje
tured tobe far from tight:Conje
ture 9 There exist a 
onstant C1, su
h that if G is a planar graphwith maximum degree ∆, then χa,g(G) ≤ ∆
2

+ C1.Conje
ture 10 [EZ08℄ For some 
onstant C2, any outerplanar graph
G with maximum degree ∆ satis�es 
olg(G2) ≤ ∆ + C2.Conje
ture 11 [EZ08℄ For some 
onstant C3, any planar graph G withmaximum degree ∆ satis�es 
olg(G2) ≤ 3

2
∆ + C3.
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In Chapter 7, we investigated the boxi
ity of graphs with boundedmaximum degree. We proved that any graph with maximum degree ∆
ould be seen as the interse
tion of ∆2 + 2 interval graphs. The 
on
eptof boxi
ity seems to be related with the arbori
ity of graphs, so we askedthe following:Question 121. Is there a 
onstant κ ≥ 1, su
h that any graph G satis�es box(G) ≤

a(G) + κ?2. Is there a 
onstant λ > 1, su
h that any graph G satis�es box(G) ≤
λa(G)? *****We 
on
lude with a 
ouple of questions and 
onje
tures about distan
e-two 
olorings in general.

L(p, q)-labellings of oriented graphs have been investigated for graphswith maximum degree, trees, and Halin graphs [CL03, CW06, GRS06℄,but interesting questions remain. De�ne the 2-dipath 
hromati
 num-ber ~χ2( ~G) of an oriented graph ~G as the minimum number of 
olorsin a 
oloring of the verti
es of ~G, su
h that any two verti
es joined by adire
ted path of length (number of ar
s) at most two have distin
t 
olors.We saw in Chapter 2 that a 
oloring of the square of a non-orientedplanar graph of maximum degree ∆ might require at least 3
2
∆ 
olors.Surprisingly, a 
oloring of the square of an oriented planar graph onlyrequires a 
onstant number of 
olors. To see this, observe that for anyoriented graph ~G, ~χ2( ~G) is at most the oriented 
hromati
 number of

~G (see Appendix A for more details about oriented 
oloring). Sin
e theoriented 
hromati
 number of planar graphs is at most 80, we obtain thatfor any oriented planar graph ~G, ~χ2( ~G) ≤ 80. On the other hand, thereexists an oriented planar graph with 15 verti
es, in whi
h any two verti
esare joined by a a dire
ted path of length one or two. Hen
e, there existsan oriented planar graph ~G, with ~χ2( ~G) = 15. Note that Klostermeyerand Ma
Gillivray [KM04℄ proved that the order of an oriented planargraph in whi
h all the verti
es are joined by a a dire
ted path of lengthone or two is at most 36.The problem of improving the bound of 80 for oriented 
oloring ofplanar graphs is supposed to be quite di�
ult, but improving this boundfor the 2-dipath 
hromati
 number might be slightly easier. We proposethe following optimisti
 
onje
ture:Conje
ture 13 For any oriented planar graph ~G, we have ~χ2( ~G) ≤ 15.
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In this thesis, we mainly studied distan
e-two 
olorings of the verti
esof graphs. The problem of 
oloring the edges of graphs with a 
ondition atdistan
e two is also very interesting. Erdös and Ne²et°il (see [FGS+89℄)de�ned a strong edge-
oloring of a graph G as a (proper) 
oloring ofthe edges of G in whi
h every 
olor 
lass is an indu
ed mat
hing. This
oloring 
an be seen as a proper vertex-
oloring of the square of the linegraph of G. If G has maximum degree ∆ then L(G)2 has maximum degreeat most 2∆2 − 2∆, so it is easy to prove that any graph with maximumdegree ∆ has a strong edge-
oloring using at most 2∆2 − 2∆ + 1 
olors.Erdös and Ne²et°il 
onje
tured the following:Conje
ture 14 Every graph with maximum degree ∆ has a strong edge-
oloring with ⌊5

4
∆2
⌋ 
olors.They also provided examples showing that this bound would be bestpossible. The 
losest result so far was given by Molloy and Reed [MR97℄,who proved that for some 
onstant ε > 0, every graph with maximumdegree ∆ has a strong edge-
oloring using at most ⌊(2 − ε)∆2⌋ 
olors.An in
iden
e in a graph G is a pair (v, e) ∈ V (G)× E(G) su
h that vand e are in
ident (it 
orresponds intuitively to a half-edge of G). Twoin
iden
es (u, e) and (v, f) are adja
ent if one of the following holds: (i)

u = v, (ii) e = uv or (iii) f = uv.An in
iden
e 
oloring of a graph G, de�ned by Brualdi and Massey[BM93℄, is a 
oloring of the in
iden
es of G su
h that any two adja
entin
iden
es have distin
t 
olors. Let G⋆ denote the graph obtained from
G by subdividing every edge exa
tly on
e (see Figure 5.1 in Chapter 5 foran example). Then it is 
lear that an in
iden
e 
oloring of G is exa
tlya strong edge-
oloring of G⋆.Guiduli [Gui97℄ proved that every graph with maximum degree ∆ hasan in
iden
e 
oloring with ∆ + O(log∆) 
olors, whi
h is best possible.Hosseini et al. [HSZ04℄ proved that any planar graph with maximumdegree ∆ has an in
iden
e 
oloring with ∆+7 
olors. We ask the followingquestion:Question 15 Is it true that any planar graph with maximum degree ∆has an in
iden
e 
oloring with ∆ + 2 
olors?
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Appendix A[EO07a℄
Oriented 
olorings of 2-outerplanar graphsAbstra
tA graph G is 2-outerplanar if it has a planar embedding su
h that thesubgraph obtained by removing the verti
es of the outer fa
e is outerpla-nar. The oriented 
hromati
 number of an oriented graph H is de�nedas the minimum order of an oriented graph H ′ su
h that H has a homo-morphism to H ′. In this paper, we prove that 2-outerplanar graphs are4-degenerate. We also show that oriented 2-outerplanar graphs have ahomomorphism to the Paley tournament QR67, whi
h implies that their(strong) oriented 
hromati
 number is at most 67.

This arti
le appeared in Information Pro
essing Letters.
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Oriented 
olorings of 2-outerplanar graphsLouis Esperet∗, and Pas
al O
hem†LaBRI UMR CNRS 5800, Université Bordeaux I,33405 Talen
e CedexFRANCE.Mar
h 21, 2008Abstra
tA graph G is 2-outerplanar if it has a planar embedding su
h that the subgraph ob-tained by removing the verti
es of the outer fa
e is outerplanar. The oriented 
hromati
number of an oriented graph H is de�ned as the minimum order of an oriented graph

H ′ su
h that H has a homomorphism to H ′. In this paper, we prove that 2-outerplanargraphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a ho-momorphism to the Paley tournament QR67, whi
h implies that their (strong) oriented
hromati
 number is at most 67.Keywords: 
ombinatorial problems, oriented 
oloring, 2-outerplanar graphs.1 Introdu
tionOriented graphs are dire
ted graphs without loops nor opposite ar
s. In other words anoriented graph is an orientation of an undire
ted simple graph, obtained by assigning to everyedge one of the two possible orientations. If G is a graph, V (G) denotes its vertex set, E(G)denotes its set of edges. A homomorphism from an oriented graph G to an oriented graph
H is a mapping ϕ from V (G) to V (H) whi
h preserves the ar
s, that is (x, y) ∈ E(G) =⇒
(ϕ(x), ϕ(y)) ∈ E(H). We say that H is a target graph of G if there exists a homomorphismfrom G to H. The oriented 
hromati
 number χo(G) of an oriented graph G is de�ned asthe minimum order of a target graph of G. The oriented 
hromati
 number χo(G) of anundire
ted graph G is then de�ned as the maximum oriented 
hromati
 number taken overall orientations of G. Ne²et°il and Raspaud introdu
ed in [5℄ the strong oriented 
hromati
number of an oriented graph G (denoted by χs(G)), whi
h de�nition di�ers from that of χo(G)by requiring that the target graph is an oriented Cayley graph. They show in parti
ular thatthe strong oriented 
hromati
 number of a planar graph G 
orresponds to the antisymmetri
�ow of the dual of G. Upper bounds on the (strong) oriented 
hromati
 number have beenfound for various sub
lasses of planar graphs. In parti
ular:1. if G is a planar graph, then χo(G) ≤ 80 [8℄.2. if G is an outerplanar graph, then χs(G) ≤ 7 [9℄.

∗esperet�labri.fr
†o
hem�labri.fr 1



141A graph G is 2-outerplanar if it has a planar embedding su
h that the subgraph obtainedby removing the verti
es of the outer fa
e is outerplanar. The se
ond author proved that2-outerplanar graphs have an a
y
li
 partition into three independent sets and an outerplanargraph [7℄. By Theorem 1 in [1℄, the oriented 
hromati
 number of a 2-outerplanar graph isthus at most 24−1 × (1 + 1 + 1 + 7) = 80. The same result follows from the bound of Raspaudand Sopena [8℄ holding for planar graphs.In Se
tion 2, we prove among other results that 2-outerplanar graphs G are 4-degenerate,that is, every subgraph H of G has minimum degree at most 4. In Se
tion 3, we use theseresults to show that 2-outerplanar graphs have a homomorphism to QR67, whi
h improves theprevious bounds of 80.In the following, we 
all a k-vertex (resp. ≥k-vertex, ≤k-vertex) a vertex of degree k (resp.at least k, at most k). Figures are drawn with the following 
onvention : the star symbolindi
ates the outer fa
e, white verti
es 
orrespond to verti
es whi
h neighbors are all depi
tedin the �gure, whereas bla
k verti
es may have other neighbors in the graph.2 Stru
tural properties of 2-outerplanar graphsDe�nition 1 A 2-outerplanar graph embedded in the plane is said to be a blo
k if its outerfa
e is an indu
ed 
y
le.Theorem 2 If G is a 2-outerplanar graph, then it 
ontains a ≤4-vertex.Proof. Let G be a 2-outerplanar graph embedded in the plane. We 
onsider the subgraph
H indu
ed by the outer fa
e of G. H is an outerplanar graph, so it 
ontains an internal fa
e
F in
ident to at most one other internal fa
e of H (see Proof of Lemma 2 in [4℄). Let B bethe subgraph of G indu
ed by the verti
es of F and the verti
es inside F . By 
onstru
tion,the graph B obtained is a blo
k. Moreover, B 
ontains only two verti
es x and x′ su
h thatthe degree of x and x′ in G may be higher than their degree in B. By 
onstru
tion, x and x′are two adja
ent verti
es belonging to the outer fa
e of B (see Figure 1).

HG F
B

x x

x′x′Figure 1: The de
omposition of a 2-outerplanar graph into blo
ks.Let Bc be the graph indu
ed by the outer fa
e of B, and Bo be the graph obtained from
B by removing the verti
es of Bc. By de�nition of 2-outerplanar graphs, Bo is outerplanar.So it 
ontains two non-adja
ent 2-verti
es u and v (see Figure 2).As mentioned above, verti
es of Bo have the same degree in B and in G, so dB(u) = dG(u)and dB(v) = dG(v). Let us �nd a ≤4-vertex in B. If Bo 
ontains a ≤4-vertex, it is done.Otherwise, it means that Bo 
ontains only ≥5-verti
es; in parti
ular u (resp. v) is adja
ent to2
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u v

Bo

Bc

B

Figure 2: The de
omposition of B into Bc and Bo.three verti
es u1, u2, u3 (resp. v1, v2, v3), where u1u2u3 (resp. v1v2v3) is an indu
ed path of
Bc (see Figure 3).

u v

u1

u2

u3

v1

v2

v3Figure 3: u and v have three neighbors in Bc.We now use the fa
t that B 
ontains only two verti
es x and x′ having a degree in Gpossibly higher than their degree in B. As xx′ is an edge of Bc, this means that u2 or v2 havethe same degree in B and in G, i.e. dG(u2) = dB(u2) = 3 or dG(v2) = dB(v2) = 3. Hen
e Balways 
ontains a vertex with degree at most 4 in G. 2We now prove that outerplanar graphs have properties stronger than 2-degeneration, inorder to �nd more pre
ise 
on�gurations in 2-outerplanar graphs.Lemma 3 Let G be an outerplanar graph. G 
ontains either a 1-vertex, two adja
ent 2-verti
es, a 2-vertex adja
ent to a 3-vertex as depi
ted in Figure 4.a, or two 2-verti
es adja
entto a 4-vertex as depi
ted in Figure 4.b.
a) b)

⋆⋆

Figure 4: Unavoidable 
on�gurations in an outerplanar graph without two adja
ent 2-verti
es.Proof. We prove this lemma by indu
tion. Let G be an outerplanar graph, and let v be a2-vertex of G (v exists, see [4℄ for details). The graph H = G \ v is outerplanar, and smallerthan G. By indu
tion, H 
ontains either two adja
ent 2-verti
es, or the 
on�gurations of3



143Figure 4. If v is not adja
ent to su
h a 
on�guration of H, then it is a 
on�guration of G, andthe indu
tion is �nished. Otherwise v is adja
ent to a 
on�guration, and we have to make thedistin
tion between various 
ases. Noti
e that the neighbors of v must be adja
ent in H inorder to obtain an outerplanar graph.
v

v

v

v

v

⋆⋆

⋆ ⋆⋆

Figure 5: Indu
tion step in the proof of Lemma 3.
• If H 
ontains two adja
ent 2-verti
es, we obtain the 
on�guration of Figure 4.a.
• If H 
ontains a 
on�guration of Figure 4, we obtain either the 
on�guration of Figure4.a, or the 
on�guration of Figure 4.b (see Figure 5).In any 
ase, G 
ontains one of the three 
on�gurations des
ribed earlier. 2We now use Lemma 3 to prove a key stru
tural theorem on 2-outerplanar graphs admittinga blo
k embedding in the plane. The following result 
an be extended to the whole 
lass of2-outerplanar graphs by using the same kind of proof as in Theorem 2.Theorem 4 Let G be a 2-outerplanar graph admitting a blo
k embedding in the plane. G
ontains either a ≤3-vertex, two adja
ent 4-verti
es, or the 
on�guration depi
ted in Figure 6.

⋆

Figure 6: Unavoidable 
on�guration in a 2-outerplanar blo
k 
ontaining neither a ≤3-vertexnor two adja
ent 4-verti
es.Proof. We 
onsider a blo
k embedding of G in the plane. Then the subgraph indu
ed bythe outer fa
e is a 
y
le. Let Gc be this 
y
le and let Go be the graph obtained from G byremoving the verti
es of Gc. By de�nition of G and Gc, the graph Go is outerplanar. We then4



144 APPENDIX A. [EO07A℄know by Lemma 3 that Go 
ontains either two adja
ent 2-verti
es, a 2-vertex adja
ent to a3-vertex as depi
ted in Figure 4.a, or two 2-verti
es having a 
ommon neighbor of degree 4 asdepi
ted in Figure 4.b.
• If Go 
ontains a 1-vertex or two adja
ent 2-verti
es, we easily �nd a ≤3-vertex or twoadja
ent 4-verti
es in G.
• If Go 
ontains a 2-vertex v adja
ent to a 3-vertex u, we 
an prove that either dG(v) = 4or there is a vertex of degree 3 in G (whi
h is a neighbor of v belonging to the outerfa
e). This is done by applying the same method as in the previous proof. Thus G must
ontain the 
on�guration depi
ted in Figure 7. Noti
e that u and w are adja
ent, sin
eotherwise one of them would be a ≤3-vertex. For reasons of planarity, if u is adja
ent toanother vertex of Gc, w 
annot be adja
ent to another vertex of Go. Conversely, if w isadja
ent to another vertex of Go, u 
annot be adja
ent to a vertex of Gc. This provesthat either u or w has degree 4 in G, say u. If there is no 3-vertex in G, we found twoadja
ent 4-verti
es: u and v.

w

u
v

Gc GoFigure 7: Go 
ontains a 2-vertex v adja
ent to a 3-vertex u.
• If Go 
ontains two 2-verti
es v and v′ both adja
ent to a 4-vertex u as depi
ted in Figure4.b, we �rst prove that either v and v′ have degree 4 in G or G 
ontains a 3-vertex (inwhi
h 
ase the proof is �nished). Let v1 and v2 (resp. v′1 and v′2) be the neighbors of

v (resp. v′) belonging to the outer fa
e. As depi
ted in Figure 8, we have to make adistin
tion between two 
ases : {v1, v2} and {v′1, v′2} are disjoint (
ase 1), or they havea vertex in 
ommon, say v2 = v′1 (
ase 2).
v1

v′2

v

v1

v′2

v

v2

v′1 v2

a) b)

u u
Gc Go Gc Go

v′ v′

Figure 8: Go 
ontains two 2-verti
es v and v′ adja
ent to a 
ommon 4-vertex u.5
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ase 1 (see Figure 8.a) If v2 and v′1 have degree at least 4 in G, they both have to beadja
ent to u, in whi
h 
ase dG(v2) = dG(v′1) = 4, and we found two adja
ent4-verti
es in G.
ase 2 (see Figure 8.b) If u is adja
ent to v2 = v′1, we obtain exa
tly the 
on�gurationdepi
ted in Figure 6. Otherwise, we simply have two adja
ent 4-verti
es (v and v2).
23 Strong oriented 
oloring of 2-outerplanar graphsTheorem 5 If G is a 2-outerplanar graph, then χs(G) ≤ 67.Let q be prime power and let Fq denote the unique �nite �eld with q elements. For aprime power q ≡ 3 (mod 4), the verti
es of the Paley tournament QRq are the elements of

Fq and (i, j) is an ar
 in QRq if and only if j − i is a non-zero quadrati
 residue of Fq. Sin
e
q ≡ 3 (mod 4), we have that for i, j ∈ Fq, i 6= j, j − i is a quadrati
 residue if and only if
i − j is not a quadrati
 residue. This means that QRq is an oriented Cayley graph whoseset of generators are the non-zero quadrati
 residue of Fq. It 
an be proven [3℄ that Payleytournaments are ar
-transitive, that is, for every ar
s uv and tw, there is an automorphism ϕof QRq su
h that tw = ϕ(uv)). As a 
onsequen
e, ea
h QRq is also a 
ir
ular tournament,that is, a tournament admitting an automorphism whi
h is a 
ir
ular permutation.An orientation ve
tor of size k is a sequen
e α = {α1, α2, . . . , αk} in {0, 1}k . Let G be anoriented graph and X = (x1, x2, . . . , xk) be a sequen
e of distin
t verti
es of G. A vertex y of
G is said to be an α-su

essor of X if for every i, 1 ≤ i ≤ k, we have αi = 1 ⇒ (xi, y) ∈ E(G)and αi = 0 ⇒ (y, xi) ∈ E(G). The graph G satis�es property Sk,n if for every sequen
e
X = (s1, s2, . . . , sk) of k distin
t verti
es of G, and for every orientation ve
tor α of size k,there exist at least n verti
es in V (G) whi
h are α-su

essors of X.Noti
e that property Sk,n implies Sk′,n′ for every k′ ≤ k and n′ ≤ n.A 
omputer 
he
k (similar to the one des
ribed in [6℄) proves the following lemma:Lemma 6 The tournament QR67 satis�es properties S3,6 and S4,1.We use the method of redu
ible 
on�gurations to show that every 2-outerplanar graph is
QR67-
olorable. Let w(G) = |V (G)| + |E(G)|. We 
onsider a 2-outerplanar graph G havingno homomorphism to QR67 su
h that w(G) is minimum.Lemma 7 G is 2-
onne
ted and does not 
ontain a 
ut 
onsisting in two adja
ent verti
es.Proof. If G is not 2-
onne
ted, then we 
an obtain a QR67-
oloring of G from the 
oloring ofits 2-
onne
ted 
omponents, sin
e QR67 is a 
ir
ular tournament. Moreover G 
annot 
ontaina 
ut set 
onsisting of two adja
ent verti
es, sin
e QR67 is ar
-transitive. 2Noti
e that Lemma 7 implies that every 2-outerplanar embedding of G is a blo
k.Lemma 8 6



146 APPENDIX A. [EO07A℄1. The graph G does not 
ontain any ≤3-vertex.2. The graph G does not 
ontain two adja
ent 4-verti
es.3. The graph G does not 
ontain the 
on�guration depi
ted in Figure 6.
u v

u3

u3

u2

u1
xx u2u1

(i) (iii)(ii)

u2

u1 v1

v2

v3Figure 9: Forbidden 
on�gurations for Lemma 8.
⋆ ⋆

u2
x

y

u2

y

w2

v2 v2

w1

u1

v1

u1

v1Figure 10: Constru
tion of G′ in the proof of Lemma 8.3.Proof.1. Noti
e that G does not 
ontain ≤1-verti
es by Lemma 7. Suppose that G 
ontains a2-vertex x adja
ent to verti
es u1 and u2 (see 
on�guration (i) in Figure 9). Let G′ bethe graph obtained from G \ {x} by adding the ar
 −−→u1u2 if u1 and u2 are not alreadyadja
ent in G. Noti
e that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-
oloring
f of G′ indu
es a 
oloring of G \ {x} su
h that f(u1) 6= f(u2), whi
h 
an be extendedto G by property S2,1.Suppose that G 
ontains a 3-vertex x adja
ent to verti
es u1, u2, and u3 (see 
on�gura-tion (ii) in Figure 9). Sin
e QR67 is self-reverse, we assume w.l.o.g. that d−(x) ≤ d+(x)by 
onsidering either G or GR. We have d−(x) 6= 0, sin
e otherwise we 
ould extend any
QR67-
oloring of G \ {x} to G. Suppose now d−(x) = 1, whi
h is the only remaining
ase. Let us set N−(x) = {u1}, N+(x) = {u2, u3}. Let G′ be the graph obtained from
G\{x} by adding the ar
 −−→u1u2 (resp. −−→u1u3) if u1 and u2 (resp. u1 and u3) are not alreadyadja
ent in G. Noti
e that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-
oloring
f of G′ indu
es a 
oloring of G \ {x} su
h that f(u1) 6= f(u2) and f(u1) 6= f(u3), whi
h
an be extended to G by property S3,1.2. Suppose that G 
ontains 
on�guration (iii) in Figure 9. Let G′ be the graph obtainedfrom G by removing the ar
 
onne
ting u and v. Noti
e that G′ is 2-outerplanar and
w(G′) < w(G). Let f be any QR67-
oloring of G′. By property S3,6, we 
an 
hoose fsu
h that f(u) 6∈ {f(v1), f(v2), f(v3)}. Now by property S4,1, we 
an 
hoose f su
h that
f(v) 6∈ {f(u), f(u1), f(u2), f(u3)} and extend this 
oloring to G.7



1473. Suppose that G 
ontains the 
on�guration depi
ted in Figure 6. Let G′ be the graphobtained from G \ {w1, w2, x} by adding the ar
s −→u1y and −→yu2, and the ar
 −−→u1v1 (resp.
−−→u2v2) if u1 and v1 (resp. u2 and v2) are not adja
ent in G. This 
onstru
tion is depi
tedin Figure 10. Noti
e that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-
oloring f of
G′ indu
es a 
oloring of G \ {w1, w2, x} su
h that f(u1), f(v1), f(y) (resp. f(u2), f(v2),
f(y); resp. f(u1), f(u2), f(y)) are pairwise distin
t. By Property S3,6, we 
an assign
x a 
olor f(x) 6∈ {f(v1), f(v2)}. By Property S4,1, we 
an assign w1 a 
olor f(w1) 6∈
{f(u1), f(v1), f(y), f(x)} and assign w2 a 
olor f(w2) 6∈ {f(u2), f(v2), f(y), f(x)}. Wethus obtain a QR67-
oloring of G, whi
h is a 
ontradi
tion.

2By Lemma 7, G is a blo
k. Using Theorem 4, G must 
ontain one of the 
on�gurationsthat are forbidden by Lemma 8. This 
ontradi
tion 
ompletes the proof of Theorem 5.Referen
es[1℄ P. Boiron, E. Sopena, and L. Vignal. A
y
li
 improper 
olourings of graphs, J. GraphTheory 32 (1999), 97�107.[2℄ O.V. Borodin, A.V. Kosto
hka, J. Ne²et°il, A. Raspaud, and E. Sopena. On the maxi-mum average degree and the oriented 
hromati
 number of a graph, Dis
rete Math. 206(1999), 77�89.[3℄ E. Fried. On homogeneous tournaments, Combinatorial theory and its appli
ations II(1970), 467�476.[4℄ A. Ha
kmann and A. Kemnitz. List edge 
olorings of outerplanar graphs, Ars Combi-natoria 60 (2001), 181�185.[5℄ J. Ne²et°il and A. Raspaud. Antisymmetri
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olorings of oriented planargraphs, Ann. Inst. Fourier 49(3) (1999), 1037�1056.[6℄ P. O
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On 
ir
le graphs with girth at least �veAbstra
tCir
le graphs with girth at least �ve are known to be 2-degenerate(Ageev, 1999). In this paper, we prove that 
ir
le graphs with girth atleast g ≥ 5 
ontain a vertex of degree at most one or a 
hain of g − 4verti
es of degree two, whi
h implies Ageev's result in the 
ase g = 5. Wethen use this stru
tural property to give an upper bound on the 
ir
ular
hromati
 number of 
ir
le graphs with girth at least g ≥ 5 as well as apre
ise estimate of their maximum average degree.
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On 
ir
le graphs with girth at least �veLouis Esperet ∗ and Pas
al O
hem ∗

∗ LaBRI, Université Bordeaux 1, Talen
e, Fran
eMay 2007Abstra
tCir
le graphs with girth at least �ve are known to be 2-degenerate (Ageev, 1999). Inthis paper, we prove that 
ir
le graphs with girth at least g ≥ 5 
ontain a vertex of degreeat most one or a 
hain of g − 4 verti
es of degree two, whi
h implies Ageev's result in the
ase g = 5. We then use this stru
tural property to give an upper bound on the 
ir
ular
hromati
 number of 
ir
le graphs with girth at least g ≥ 5 as well as a pre
ise estimateof their maximum average degree.1 Introdu
tionLet C denote the unit 
ir
le, and let us take the 
lo
kwise orientation as the positive orien-tation of C. Let {x0, . . . , xk−1} ⊂ C, we say that (x0, . . . , xk−1) are in 
y
li
 order if theminimum between the sum of the length of the ar
s −−−−→xixi+1, 0 ≤ i ≤ k− 1, and the sum of thelength of the ar
s −−−−→xi+1xi, 0 ≤ i ≤ k − 1, is equal to one, where i is taken modulo k. A pair
{x, y} of elements of C is 
alled a 
hord of C with endpoints x and y. Two 
hords {x1, y1}and {x2, y2} interse
t if (x1x2y1y2) are in 
y
li
 order, otherwise they are said to be parallel.All graphs 
onsidered in this paper are simple: they do not have any loop nor paralleledges. The girth of a graph G is the size of a shortest 
y
le in G. We 
all a k-vertex (resp.
≤k-vertex, ≥k-vertex) a vertex of degree k (resp. at most k, at least k).By de�nition, every 
ir
le graph G with set of verti
es V (G) = {v1, . . . , vn} admits a rep-resentation C = {{x1, y1}, . . . , {xn, yn}} su
h that for all i, j, vi and vj are adja
ent in G ifand only if the 
hords {xi, yi} and {xj , yj} interse
t in C. We only 
onsider representationsin whi
h endpoints and interse
tion points of 
hords are all distin
t. Observe that in general,
ir
le graphs do not have a unique representation. A representation C′ obtained from C onlyby removing 
hords is 
alled a sub-representation of C. Observe that if C is a representationof G, a sub-representation of C 
orresponds to an indu
ed subgraph of G.Observation 1 Let G be a 
ir
le graph with representation C, and let v1, . . . , vk be an inde-pendent set in G. The 
hords of C 
orresponding to v1, . . . , vk are pairwise parallel.In order to prove that 
ir
le graphs with girth at least �ve are 2-degenerate, Ageev [1℄does not 
onsider their 
ir
le representation, but an equivalent representation on the real axis,1
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(b)(a)Figure 1: (a) The unique 
ir
le representation of C4. (b) The two non-equivalent representa-tions of C4 on the real axis.

(a) (c)(b)Figure 2: Three non-equivalent 
ir
le representations of the union of two paths of length two.usually 
alled interval-overlap. The major di�eren
e is that some graphs, for example 
y
les,have a unique 
ir
le representation whereas they have several non-equivalent representationson the real axis (see Figure 1). Hen
e, even if 
onsidering a real axis representation 
an bevery 
onvenient to de�ne an order on the endpoint of the 
hords, the 
ase study is then mu
hharder. Unfortunately, even in the 
ir
le representation, some very simple graphs su
h as theunion of two disjoint paths do not have a unique representation (see Figure 2). Observe that inFigure 2(a), the representation of the two paths is a sub-representation of the representationof a 
y
le. In this 
ase we make a slight abuse of notation and say that the two paths are in
y
li
 order.In Se
tion 2, we prove the following extension of Ageev's result:Theorem 1 Every 
ir
le graph with girth g ≥ 5 
ontains a ≤1-vertex or a 
hain of (g − 4)2-verti
es.In [1℄, Ageev uses his stru
tural result to prove that 
ir
le graphs with girth at least �vehave 
hromati
 number at most three. We 
an use Theorem 1 to obtain a re�nement of thisresult for 
ir
le graphs with larger girth. Instead of 
onsidering the 
hromati
 number ofthese graphs, we 
onsider their 
ir
ular 
hromati
 number. For two integers 1 ≤ q ≤ p, a
(p, q)-
oloring of a graph G is a 
oloring c of the verti
es of G with 
olors {0, . . . , p − 1} su
hthat for any pair of adja
ent verti
es x and y, we have q ≤ |c(x)− c(y)| ≤ p− q. The 
ir
ular
hromati
 number of G is

χc(G) = inf(p

q
| there exists a (p, q)-
oloring of G

)

.It is known that χ(G) − 1 < χc(G) ≤ χ(G), and so χ(G) = ⌈χc(G)⌉. The 
hromati
 number
an thus be 
onsidered as an approximation of the 
ir
ular 
hromati
 number.2



152 APPENDIX B. [EO07B℄Class Planar Outerplanar Partial 2-Tree Seg 1-String
µg 2 + 4

g−2 2 + 2
g−2 2 + 2

⌊ g−1
2 ⌋ 2 + 4

g−4 2 + 4
g−4Table 1: Values of µg for some 
lasses of graphs.Using a well-known observation on 
ir
ular 
oloring (see e.g. Corollary 2.2 in [2℄), theexisten
e of a 
hain of (g − 4) 2-verti
es implies the following result:Corollary 1 Every 
ir
le graph G with girth g ≥ 5 has 
ir
ular 
hromati
 number

χc(G) ≤ 2 +
1

⌊

g−3
2

⌋ .In Se
tion 3, we study an invariant giving a very pre
ise idea of the lo
al stru
ture ofgraphs. The maximum average degree of a graph G is de�ned asmad(G) = max {ad(H),H ⊆ G} , where ad(H) =
2|E(H)|
|V (H)| .For planar graphs, there is a simple relation between girth and maximum average degree: anyplanar graph G with girth g is su
h that mad(G) < 2g/(g − 2). On the other hand, thereexists a family (Gn)n≥0 of planar graphs with girth g, su
h that mad(Gn) → 2g/(g − 2) when

n → ∞. We would like to obtain the same kind of link between the girth and the maximumaverage degree of 
ir
le graphs. The following 
orollary is a straightforward 
onsequen
e ofTheorem 1:Corollary 2 Any 
ir
le graph G with girth g ≥ 5 is su
h that mad(G) < 2 + 2/(g − 4).note that Corollary 2 has some impli
ations on the 
ir
ular 
hoosability of 
ir
le graphs.Using Proposition 32(i) in Se
tion 5.4 of [3℄, we 
an prove :Corollary 3 Every 
ir
le graph G with girth g ≥ 5 has 
ir
ular 
hoi
e number 

h(G) ≤
2 + 4

g−2 .To improve Corollary 2, we 
onsider
µg(F) = sup {mad(G) | G ∈ F and G has girth at least g} .Let Seg denote the 
lass of graphs de�ned as interse
tion of segments in the plane, and 1-String denote the 
lass of graphs de�ned as interse
tion of jordan 
urves in the plane, su
hthat any two 
urves interse
t at most on
e. Table 1 gives an idea of the fun
tion µg for some
lasses of graphs. Note that for Seg and 1-String, g has to be at least �ve, sin
e otherwise

µg is not bounded.We 
an remark that for all these 
lasses, µg is a rational number. The following theoremshows that this is not the 
ase for the 
lass of 
ir
le graphs. It is proved in Se
tion 3.Theorem 2 For every g ≥ 5, µg(Cir
le) = 2
√

g−2
g−43



1532 Proof of Theorem 1Let G = (V,E) be a 
ir
le graph with girth g ≥ 5 and minimum degree two, and let C =
{{x1, x

′
1}, . . . , {xn, x′

n}} be a 
ir
le representation of G. We �rst de
ompose the 
hords of Cinto two sets, using the following rules:(1) for every set of 3 distin
ts 
hords {x, x′}, {y, y′}, and {z, z′}, su
h that {y, y′} is un
oloredand (xyzz′y′x′) are in 
y
li
 order, 
olour the 
hord {y, y′} in blue,(2) 
olour all the un
olored 
hords in red.By 
onstru
tion, the red 
hords are exa
tly the 
hords {x, y} su
h that at least one of thear
s −→xy and −→yx does not 
ontain both endpoints of a 
hord distin
t from {x, y}. Let CR (resp.
CB) be the representation indu
ed by the red (resp. blue) 
hords and GR (resp. GB) be the
orresponding graph. We �rst prove the following lemma.Lemma 1 CR is a sub-representation of the representation of a 
y
le.Proof. Assume that GR 
ontains a ≥3-vertex v, adja
ent to x, y, and z in GR. Sin
e
g ≥ 5, the graph G does not 
ontain any triangle, and so {x, y, z} is an independent set.Using Observation 1, this implies that the three 
orresponding red 
hords are parallel in anyrepresentation, whi
h 
ontradi
ts Rule (1).Hen
e, GR has maximum degree two. Suppose now that GR 
ontains a 
y
le. Then ifthere exists a vertex whi
h is not in the 
y
le, the 
orresponding 
hord, as well the 
hords
orresponding to two non-adja
ent verti
es of the 
y
le, are parallel (re
all that the 
y
le haslength at least �ve, sin
e g ≥ 5). This 
ontradi
ts Rule (1). So GR is either a 
y
le or a unionof disjoint paths.Suppose now that CR is not a sub-representation of a 
y
le. Then GR is ne
essarily aunion of disjoint paths, and two of them are not in 
y
li
 order in CR. This also 
ontradi
tsRule (1), so CR is a sub-representation of the representation of a 
y
le. 2Observe that ea
h blue 
hord {x, y} indu
es two 
omplementary ar
s −→xy and −→yx on the
ir
le. We denote by A1 the set of su
h ar
s. Similarly, two interse
ting blue 
hords {u, v} and
{x, y} indu
e four 
onse
utive ar
s whose lengths add up to one, say without loss of generality
−→ux, −→xv, −→vy, and −→yu. We denote by A2 the set of all su
h ar
s.For any ar
 −→xy of the 
ir
le, we de�ne ρ(−→xy) as the number of red 
hords having bothendpoints in −→xy. We 
onsider the integer t = min{ρ(−→xy),−→xy ∈ A1 ∪ A2, ρ(−→xy) > 0}.If there is no blue 
hord in our de
omposition, then G is either a 
y
le or a union of paths,and thus 
ontains a ≤1-vertex or g adja
ent 2-verti
es. So we 
an assume from now on that
GB is non empty. Observe that for any blue 
hord {x, y}, we have ρ(−→xy) > 0 and ρ(−→yx) > 0sin
e otherwise {x, y} would be red. Hen
e, the integer t exists. We now 
onsider two 
ases,depending on whether the minimum is rea
hed by two interse
ting 
hords or by a single 
hord.Case 1: The minimum t > 0 is rea
hed by two interse
ting blue 
hords, say {x, x′} and
{y, y′}, and for every blue 
hord {u, v}, we have ρ(−→uv) 6= t. Let us assume without loss ofgenerality that t = ρ(−→xy). A

ording to the 
lo
kwise order, we denote by {x1, x

′
1}, . . . {xt, x

′
t}the red 
hords having both endpoints in −→xy (see Figure 3(a)). Observe that every blue 
hord4
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x′t−1

x y

v
x′t

x2
x′1

u
x1 (a) x′t−1x2

x′1

x1

u

x y

v
x′t(b)Figure 3: A 
hain of t ≥ g − 4 verti
es of degree two in G.has at most one endpoint in −→xy, sin
e otherwise we would have a blue 
hord {u, v} with

1 ≤ ρ(−→uv) ≤ t, whi
h would 
ontradi
t the hypothesis.We �rst prove that the graph indu
ed by the 
hords {xi, x
′
i} (1 ≤ i ≤ t) is a path. If this isnot the 
ase, then for some i the 
hords {xi, x

′
i} and {xi+1, x

′
i+1} do not interse
t. Then eitherone of them 
orresponds to a ≤1-vertex, or ea
h of them interse
ts a blue 
hord. Su
h a blue
hord also interse
ts {x, x′} or {y, y′}, sin
e it has only one endpoint in −→xy. This 
ontradi
tsthe minimality of t.We now prove that the ar
 −−−−→x2x

′
t−1 does not 
ontain any endpoint of a blue 
hord. Observethat if the ar
 
ontains the endpoint u of a blue 
hord, then there exists 1 ≤ i ≤ t − 2 su
hthat u ∈ −−−−→

x′
ixi+2, sin
e otherwise this would 
reate a triangle. If su
h an endpoint u exists, therelated blue 
hord along with {x, x′} or {y, y′} 
ontradi
ts the minimality of t.Hen
e, the verti
es 
orresponding to {xi, x

′
i} (2 ≤ i ≤ t−1) are a 
hain of (t−2) 2-verti
es in

G. Sin
e G does not 
ontain any 1-vertex, the 
hord {x1, x
′
1} interse
ts a 
hord {u, u′} distin
tfrom {x2, x

′
2}. Su
h a 
hord may be blue or red, but by the minimality of t it 
annot interse
t

{y, y′}. So the 
hord {u, u′} has to interse
t {x, x′} and sin
e g ≥ 4, exa
tly one su
h {u, u′}exists. Similarly, {xt, x
′
t} interse
ts exa
tly one 
hord distin
t from {xt−1, x

′
t−1}, say {v, v′},and {v, v′} also interse
ts {y, y′}. Thus the verti
es 
orresponding to {xi, x

′
i} (1 ≤ i ≤ t) form a
hain of t 2-verti
es in G. Sin
e the 
hords {x, x′}, {u, u′}, {x1, x

′
1}, . . . , {xt, x

′
t}, {v, v′}, {y, y′}
orrespond to a 
y
le in G, we have t ≥ g − 4.Case 2: The minimum t > 0 is rea
hed by a blue 
hord {x, y}. The proof is the sameas the previous one, ex
ept that we obtain a 
hain of (g − 3) 2-verti
es instead of (g − 4)2-verti
es (see Figure 3(b)).3 Proof of Theorem 2Let us �rst give a 
onstru
tion to prove the lower bound. For every g ≥ 5, we 
onstru
t afamily (Qg,t)t≥0 of 
ir
le graphs with girth g su
h that Qg,0 = Cg (the 
y
le on n verti
es)and Qg,t+1 is obtained by adding 
hords to the representation of Qg,t.These new 
hords (represented as thin 
hords in Figure 4) indu
e a 
y
le. Every old 
hord(i.e. that belongs to Qg,t, represented as thi
k 
hords in Figure 4) interse
ts one new 
hord atea
h of its endpoints. A k-region is a region inside the 
ir
le, whi
h is in
ident to the 
ir
leand to exa
tly k 
hords. Note that in any Qg,t, every k-region is either a 2- or a 3-region. Any2-region in Qg,t produ
es in Qg,t+1 a fa
e F of size g, (g − 3) verti
es (2(g − 3) half-
hords),

(g− 2) edges, (g− 3) 2-regions, and (g− 2) 3-regions. Any 3-region in Qg,t produ
es in Qg,t+1a fa
e F of size g, (g − 4) verti
es, (g − 3) edges, (g − 4) 2-regions, and (g − 3) 3-regions.5
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2(g−4) half-chords2(g−3) half-chords

F F

Figure 4: From Qg,t to Qg,t+1

Q5,0 Q5,1Figure 5: ExamplesWe now 
onsider the ve
tor Vg,t = t (n,m,R2, R3) whose 
omponents are respe
tively thenumber of verti
es, edges, 2-regions, and 3-regions of Qg,t. By 
onstru
tion, we have that
Vg,t+1 = MgVg,t, where

Mg =









1 0 g − 3 g − 4
0 1 g − 2 g − 3
0 0 g − 3 g − 4
0 0 g − 2 g − 3







The limit of the average degree ad(Qg,t) of Qg,t when t → ∞ 
an be obtained from the uniqueeigenve
tor
V =









g − 3 +
√

(g − 2)(g − 4)

g − 2 + (g − 3)
√

(g − 2)/(g − 4)

g − 4 +
√

(g − 2)(g − 4)

g − 2 +
√

(g − 2)(g − 4)







asso
iated to the largest eigenvalue g − 3 +
√

(g − 2)(g − 4) of Mg. We thus obtain:
µg ≥ lim

t→∞
ad(Qg,t) = 2 · g − 2 + (g − 3)

√

(g − 2)/(g − 4)

g − 3 +
√

(g − 2)(g − 4)
= 2

√

g − 2

g − 4Before proving the upper bound, we make some remarks on stru
ture of the graphs Qg,t.Observe that the graphs Qg,t with t ≥ 1 are 
ir
le graphs with girth g ≥ 5 that 
ontain neither
≤1-verti
es nor 
hains of (g − 3) 2-verti
es (see Figure 5 for an example with g = 5), whi
hproves that Theorem 1 is optimal in a 
ertain way. Another interesting property of thesegraphs is that for any g ≥ 5, Qg,t 
ontains Kt+3, the 
omplete graph with t + 3 verti
es, as aminor (that is, Kt+3 
an be obtained from Qg,t by 
ontra
ting edges and removing edges andverti
es). To see this, 
ontra
t Qg,0 in order to obtain a triangle, and at ea
h step 
ontra
t6
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es into a single vertex, whi
h is universal by 
onstru
tion. The size of the
lique we 
onstru
t will in
rease by one at ea
h step, and we will eventually obtain Kt+3 as aminor of Qg,t. This implies that for any integer g ≥ 5 and any graph H, there exists a 
ir
legraph G with girth g su
h that G 
ontains H as a minor.We now prove the upper bound by 
ontradi
tion. Sin
e 
ir
le graphs of girth at least gare 
losed under taking indu
ed subgraphs, it is su�
ient to prove that every 
ir
le graph Gwith girth at least g ≥ 5 has average degree ad(G) < 2
√

g−2
g−4 .Let G be a 
ir
le graph and C be a 
ir
le representation of G. We denote by R(C) theplanar graph 
onstru
ted as follows:

• the vertex set of R(C) is the set of 
rossings of 
hords in C,
• two distin
t verti
es are adja
ent in R(C) if and only if they 
orrespond to 
onse
utive
rossings of a same 
hord in C.Observe that the 
onstru
tion above 
learly gives a natural planar embedding of R(C). In thefollowing, we only 
onsider this pre
ise planar embedding. For example, the outerfa
e of R(C)will be well-de�ned. Note that R(C) has maximum degree four.Let us 
onsider a �xed integer g ≥ 5 and a 
ir
le graph G1 with girth at least g, su
h thatad(G1) > 2

√

g−2
g−4 , and su
h that G1 is minimal with this property. That is, for any 
ir
legraph H with girth at least g and su
h that |V (H)| < |V (G1)|, we have ad(H) < 2

√

g−2
g−4 .Observe that by minimality, G1 does not 
ontain any ≤1-vertex, sin
e otherwise by removingit we would obtain a smaller graph with larger average degree.Let C1 be a representation of G1. If the outerfa
e of the planar embedding of R(C1)
ontains a 4-vertex, we apply the following operation on C1, whi
h gives a new representation

C2 and a new 
ir
le graph G2 with girth g. Let u denote a 4-vertex on the outerfa
e of R(C1).It 
orresponds to an edge between to verti
es v1 and v2 of G1, represented by two 
rossing
hords c1 and c2 in C1. Sin
e u is a 4-vertex in R(C1), the 
hords c1 and c2 respe
tively 
rosstwo 
hords c′1 and c′2 as depi
ted in Figure 6. Let v′1 and v′2 be the verti
es of G1 asso
iatedto c′1 and c′2. Sin
e u is on the outerfa
e of R(C1), v′1 and v′2 are not adja
ent in G1. Hen
e,we 
an add a path of g − 4 
hords between c′1 and c′2, as depi
ted in Figure 6. Let C2 denotethe new representation, and G2 be the asso
iated 
ir
le graph. The g−4 verti
es added to G1to obtain G2 form a 
y
le of length exa
tly g in G2 
ontaining v1, v2, v′1, and v′2. Note thatthe number of 4-verti
es on the outerfa
e of the plane graph asso
iated to the representationde
reases by one after at most two iterations of this pro
ess.Let n1 and m1 denote respe
tively the number of verti
es and edges of G1. By Corollary 2,we have that ad(G1) < 2 · g−3
g−4 . This implies that ad(G2) = 2 · m1+g−3

n1+g−4 > 2 · m1
n1

= ad(G1).Thus the average degree in
reases during this operation.We repeat this operation until we obtain a 
ir
le graph G with girth g having a representa-tion C su
h that the outerfa
e of the planar embedding of R(C) does not 
ontain any 4-vertex.The 
onsequen
e of the previous observation is that ad(G) > ad(G1) > 2
√

g−2
g−4 . Let n and mbe the number of verti
es and edges of G. This implies in parti
ular that:

√

g − 2

g − 4
n < m (1)7
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C1

C2

c2c1

c′1 c′2 c′2c′1

c2c1

Figure 6: From C1 to C2Let N , M , and F denote respe
tively the number of verti
es, edges, and fa
es of R(C).Sin
e a 
rossing in C 
orresponds to both an edge in G and a vertex in R(C), we have:
N = m (2)We 
an write Euler's formula for the planar embedding of R(C) as follows:

M + 2 = F + N (3)Let Nd denote the number of d-verti
es in R(C). Sin
e G1 does not 
ontain any ≤1-vertex,and no new ≤1-vertex is 
reated during the transformation, the graph G does not 
ontain any
≤1-vertex either. This implies in parti
ular that R(C) does not 
ontain ≤1-verti
es. Thus, thedegree of a vertex in R(C) is at least 2 and at most 4 and we have:

N = N2 + N3 + N4 (4)The sum of vertex degrees is equal to twi
e the number of edges in R(C):
2N2 + 3N3 + 4N4 = 2M (5)Any 
hord in a representation of G 
orresponding to some vertex v ∈ G 
ontains (deg(v)−

1) edges of R(C). Sin
e ∑v∈G(deg(v) − 1) = 2m − n, we have:
2m − n = M (6)Note that the outerfa
e of R(C) 
ontains every 2-vertex, every 3-vertex, and no 4-vertexof R(C). Moreover, R(C) 
annot 
ontain a fa
e of degree stri
tly less than g, sin
e otherwise

G would 
ontain a 
y
le of length stri
tly less than g. We thus obtain a lower bound on thesum of degrees of the fa
es of R(C), whi
h is equal to twi
e the number of edges in R(C):
g(F − 1) + N2 + N3 ≤ 2M (7)Let us de
ompose the 
hords of C into blue and red 
hords as done in the proof of Theo-rem 1. Using previous notation, CB is the sub-representation of C indu
ed by the blue 
hordsand GB is the 
orresponding 
ir
le graph. Note that GB is a proper indu
ed subgraph of G1and G. We thus have:ad (GB

)

=
2(m − N2 − N3)

n − N2
< 2

√

g − 2

g − 4
<

2m

n
= ad (G)8
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This implies that 2(N2+N3)

N2
> 2m

n > 2
√

g−2
g−4 , whi
h gives:

(
√

g − 2

g − 4
− 1

)

N2 < N3 (8)The 
ombination (g−4)×(1)+(g−4)
(

2
√

g−2
g−4 − 1

)

×(2)+g×(3)+2(g−2)
(

1 −
√

g−4
g−2

)

×(4)+ 1
2(g− 2)

(

1 −
√

g−4
g−2

)

× (5)+
√

(g − 2)(g − 4)× (6)+ (7)+ 1
2 (g− 4)

(√

g−2
g−4 − 1

)

× (8)gives g < 0, a 
ontradi
tion.4 Perspe
tivesIn the present paper, we study the stru
ture of sparse 
ir
le graphs. The opposite problemof studying the stru
ture of dense 
ir
le graphs seems to be mu
h harder. For example, therelation between the 
lique number of 
ir
le graphs and their 
hromati
 number is not pre
iselyestablished. Kosto
hka and Krato
hvíl [4℄ proved that every 
ir
le graph with 
lique number
ω has 
hromati
 number at most 2ω+6, but this is still far from the lower bound of Ω(ω logω).Note that the upper bound of 2ω+6 even holds for polygon-
ir
le graphs, a super
lass of
ir
le graphs, de�ned as the interse
tion 
lass of 
hords and 
onvex polygons of the 
ir
le. Thesize of this 
lass is known to be mu
h larger, but we suspe
t that polygon-
ir
le graphs withgirth at least �ve behave like 
ir
le graphs with girth at least �ve. It would be interesting tosee if the results of the present paper extend to the 
lass of polygon-
ir
le graphs.A
knowledgementThe authors would like to thank Daniel Gonçalves and Arnaud Labourel for fruitful dis
ussion.Referen
es[1℄ A.A. Ageev. Every 
ir
le graph with girth at least 5 is 3-
olourable, Dis
rete Math., 195(1999) 229�233.[2℄ A. Gallu

io, L.A. Goddyn, and P. Hell. High-Girth Graphs Avoiding a Minor are NearlyBipartite J. Combin. Theory. Ser. B 83(1) (2001), 1�14.RR-5957[3℄ F. Havet, R.J. Kang, T. Müller, and J.-S. Sereni. Cir
ular 
hoosability, INRIA Sophia-Antipolis Te
hni
al Report RR-5957 (2006).[4℄ A. Kosto
hka, J. Krato
hvíl. Covering and 
oloring polygon-
ir
le graphs, Dis
reteMath., 163 (1997) 299�305.
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Appendix C[ELO07℄
On indu
ed-universal graphs for the 
lassof bounded-degree graphsAbstra
tFor a family F of graphs, a graph U is said to be F -indu
ed-universalif every graph of F is an indu
ed subgraph of U . We give a 
onstru
tionfor an indu
ed-universal graph for the family of graphs on n verti
eswith degree at most k. For k even, our indu
ed-universal graph has
O(nk/2) verti
es and for k odd it has O(n⌈k/2⌉−1/k log2+2/k n) verti
es.This 
onstru
tion improves the main result of [But06℄ by a multipli
ative
onstant fa
tor for even 
ase and by almost a multipli
ative n1/k fa
torfor odd 
ase. We also 
onstru
t indu
ed-universal graphs for the 
lassof oriented graphs with bounded in
oming and outgoing degree, slightlyimproving another result of [But06℄.
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On indu
ed-universal graphs for the 
lass of bounded-degreegraphsLouis Esperet∗ Arnaud Labourel† Pas
al O
hem‡February 6, 2008Abstra
tFor a family F of graphs, a graph U is said to be F-indu
ed-universal if every graphof F is an indu
ed subgraph of U . We give a 
onstru
tion for an indu
ed-universal graphfor the family of graphs on n verti
es with degree at most k. For k even, our indu
ed-universal graph has O(nk/2) verti
es and for k odd it has O(n⌈k/2⌉−1/k log2+2/k n) verti
es.This 
onstru
tion improves a result of Butler by a multipli
ative 
onstant fa
tor for even
ase and by almost a multipli
ative n1/k fa
tor for odd 
ase. We also 
onstru
t indu
ed-universal graphs for the 
lass of oriented graphs with bounded in
oming and outgoingdegree, slightly improving another result of Butler.1 Introdu
tionAll graphs are assumed to be without loops or multiples edges. For a graph G we denote by

V (G) its vertex set and by E(G) its edge or ar
 set. Our terminology is standard and anyunde�ned term 
an be found in standard theory books [11℄.For a �nite family F of graphs, a graph U is said to be F-universal if every graph in Fis a subgraph of U . For instan
e, if we denote by Fn the family of all graphs with at most nverti
es, then the 
omplete graph Kn is Fn-universal. The universal graph problem 
onsistsin �nding a n-vertex universal graph with minimal number of edges for spe
i�
 subfamilies of
Fn. This problem was originally motivated by 
ir
uit design for 
omputer 
hips [4℄. Severalfamilies of graphs have been studied for this problem, in
luding forests [10℄, bounded-degreeforests [2, 3℄, and bounded-degree graphs [1℄.The notion of indu
ed-universal graph 
an be similarly de�ned. For a family F of graphs,a graph U is F-indu
ed-universal if every graph in F is an indu
ed subgraph of U . Theindu
ed-universal graph problem 
onsists in �nding an indu
ed-universal graph of minimalnumber of verti
es for spe
i�
 subfamilies of Fn. The family Fn itself was 
onsidered byMoon [13℄, while Chung 
onsidered trees, planar graphs, and graphs with bounded arbori
ityon n verti
es [9℄.The indu
ed-universal problem is strongly related to a notion of distributed data stru
tureknown as adja
en
y labeling s
heme or impli
it representation. An impli
it representation for

∗esperet�labri.fr
†labourel�labri.fr
‡pas
al.o
hem�lri.fr 1



161a family F of graphs 
onsists in two fun
tions: a labeling fun
tion that assigns labels to theverti
es of any graph of F and an adja
en
y fun
tion that determines the adja
en
y betweentwo verti
es only by looking at their labels. The problem of �nding an impli
it representationwith small labels for spe
i�
 families of graphs was �rst introdu
ed by Breuer [6, 7℄.Kannan, Naor and Rudi
h [12℄ established the strong relation between the two problemsby proving that the existen
e of an impli
it representation using k(n) bits per vertex fora family Fn is equivalent to the existen
e of an Fn-indu
ed-universal graph with 2k(n) verti
es.In this paper, we fo
us on indu
ed-universal graphs for bounded-degree graphs. We 
on-stru
t an indu
ed-universal graph for the family Fk,n of n-vertex graphs of degree at most
k. For k even, our indu
ed-universal graph has O(nk/2) verti
es and for k odd our indu
ed-universal graph has O(n⌈k/2⌉−1/k log2+2/k n) verti
es. Our result for graphs with maximumdegree k ≡ 0 (mod 2) is dedu
ed from a 
onstru
tion similar to that of [8℄ but with animprovement of the base graph of the 
onstru
tion (Se
tion 3). A
tually, our F2,n-indu
ed-universal graph forming the basis of the 
onstru
tion has 5n/2 + O(1) verti
es while the bestlower bound known for the order of su
h graphs is 11n/6 + Ω(1). Our result for graphs withmaximum degree k ≡ 1 (mod 2) is dedu
ed from a re
ent result of Alon and Capalbo [1℄ onuniversal graphs for bounded-degree graphs, 
ombined with a 
onstru
tion of [9℄ that givesan interesting 
onne
tion between indu
ed-universal graphs and universal graphs (Se
tion 4).Given that the best known lower bound for the number of verti
es of an Fk,n-indu
ed-universalgraph is Ω(nk/2) [8℄, our result for k even is tight up to a multipli
ative 
onstant and our resultfor k odd is equal to O(n1/2−1/k log2+2/k n) times the lower bound. We also give a general-ization of our result for oriented graphs of bounded degree (Se
tion 5). In Se
tion 6, we showhow to 
onstru
t of an indu
ed-universal graph for all orientations of the graphs of a family
F , only using a spe
i�
 F-indu
ed-universal graph. We 
on
lude the paper with some openproblems (Se
tion 7).2 A small indu
ed-universal graph for graphs with degree atmost twoOur main 
on
ern here is to �nd an Fk,n-indu
ed-universal graphs for every k. We �rstinvestigate the 
ase k = 2.

⌊

n
2

⌋

+5 tiles joined in seriesFigure 1: The F2,n-indu
ed-universal graph Un.Lemma 1 The graph Un depi
ted in Figure 1 is an F2,n-indu
ed-universal graph.Proof. It is su�
ient to prove that any graph G ∈ F2,n is an indu
ed subgraph of the graph
Un depi
ted in Figure 1. For 1 ≤ i ≤ n, let ni be the number of 
onne
ted 
omponents of G2



162 APPENDIX C. [ELO07℄with i verti
es. The degree of G is bounded by 2 so G 
ontains n1 isolated verti
es, n2 disjoint
K2's, and for i ≥ 3, ni 
y
les or paths of i verti
es. We embed the 
onne
ted 
omponents of
G into Un from left to right after having sort them by in
reasing size. The graph Un is madeof 
y
les of size 5 
alled tiles that are joined in series by 4 edges. Let us prove that we 
anembed all the 
onne
ted 
omponents of G in an indu
ed way using at most ⌊n

2

⌋

+ 5 tiles.
• The embedding of the stable set of size n1, using ⌈n1

2

⌉

+ 1 tiles.
⌈

n1
2

⌉

+1 tiles

• The embedding of n2 K2's, using n2 + 1 tiles.
n2 +1 tiles

• The embedding of n3 
onne
ted 
omponents of size 3, using n3 + 1 tiles.
n3 +1 tiles

• The embedding of n4 
onne
ted 
omponents of size 4, using 2n4 + 1 tiles.
2n4 +1 tiles

• The embedding of n5 
onne
ted 
omponents of size 5, using 2n5 tiles.
2n5 tiles

• For k ≥ 3, the embedding of n2k 
onne
ted 
omponents of size 2k, using kn2k tiles.
k−1 tiles k−1 tiles3
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• For k ≥ 3, the embedding of n2k+1 
onne
ted 
omponents of size 2k + 1, using kn2k+1tiles.

k−1 tiles k−1 tilesObserve that for ea
h i the embedding of 
onne
ted 
omponents of size i is indu
ed.Moreover, at the end of the embedding of all 
onne
ted 
omponents of size i, there is a tile inwhi
h no vertex of G is embedded. So, there are no edges of Un between the embeddings oftwo 
onne
ted 
omponents of di�erent sizes. Hen
e, the embedding of G into Un is indu
ed.It remains to upper bound the number l of tiles used by su
h an embedding.
l =

n1

2
+ 2 + n2 + 1 + n3 + 1 + 2n4 + 1 + 2n5 +

⌊n/2⌋
∑

k=3

2kn2k +

⌊n/2⌋
∑

k=3

2kn2k+1

≤ 5 +

n
∑

i=1

i
ni

2

≤ 5 +
⌊n

2

⌋ , sin
e n
∑

i=1

ini = n and the number of tiles is an integer.
2A natural question is to investigate whether this 
onstru
tion is optimal. We now provethat it is optimal up to a 
onstant multipli
ative fa
tor of approximately 3

2 .Claim 1 Every F2,n-indu
ed-universal graph has at least 11
⌊

n
6

⌋ verti
es.Proof. Let n ∈ N be a multiple of 6. Let Hn be the family 
ontaining the following threegraphs:
• the stable set of n verti
es,
• the disjoint union of n/2 K2,
• the disjoint union of n/3 K3.

· · · · · ·· · ·

n/6 K2n/3 K3 n/2 K1Figure 2: An indu
ed subgraph of Un.Note that these three graphs have n verti
es and degree at most two. Let Un be an
Hn-indu
ed-universal graph. Then Un must 
ontain n/3 triangles as indu
ed subgraphs.4
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e ea
h of the triangles interse
ts at most one indu
ed K2, the graph Un must 
ontain anindu
ed mat
hing of size at least n/2 − n/3 = n/6 disjoint from the triangles. Sin
e ea
h
K2 and ea
h triangle 
ontains at most one isolated vertex as an indu
ed subgraph, Un must
ontain a stable set of size n − n/3 − n/6 = n/2 disjoint from the triangles and the indu
edmat
hing (see Figure 2). Eventually, Un has at least 3n/3 + 2n/6 + n/2 = 11n/6 verti
es andso any F2,n-indu
ed-universal graph needs 11 ⌊n/6⌋ verti
es be
ause H6⌊n/6⌋ ⊆ F2,n. 2We believe that the results in this se
tion are not sharp. Indeed, we 
onje
ture that thereexists an F2,n-indu
ed-universal graph with 2n + o(n) verti
es, and that this is optimal.3 Indu
ed-universal graphs for graphs with even maximum de-greeWe now use our 
onstru
tion of an F2,n-indu
ed-universal graph to 
onstru
t an Fk,n-indu
ed-universal graph for k even (the same method was already used in [8℄).Theorem 1 Let k ≥ 2 be an even integer. There is an Fk,n-indu
ed-universal graph Uk,nsu
h that

|V (Uk,n)| = (1 + o(1))

(

5n

2

)k/2 and |E(Uk,n)| =

(

9k

10
+ o(1)

)(

5n

2

)k−1

.Proof. To prove this theorem, we �rst redu
e the problem to the 
onstru
tion of an F2,n-indu
ed-universal. Petersen [14℄ proved that any k-regular graph with k even 
an be de
om-posed into k/2 edge-disjoint graphs of degree at most 2. In [9℄, Chung proved that for twofamilies of graphs F and H su
h that any graph of F 
an be de
omposed into k graphs of H,if we have an H-indu
ed-universal graph W , we 
an 
onstru
t an F-indu
ed-universal graph
U su
h that:

|V (U)| = |V (w)|k and |E(U)| = k|V (W )|2k−2|E(W )|.Using Lemma 1, we 
onstru
t an F2,n-indu
ed-universal graph Un with |V (Un)| = 5
2n +

O(1) and |E(Un)| = 9
2n + O(1). Eventually, using the fa
t that any graph of Fk,n 
an bede
omposed into k/2 graphs of F2,n, we obtain an Fk,n-indu
ed-universal graph Uk,n su
hthat:

|V (Uk,n)| = |V (U)|k/2 =

(

5

2

)k/2

nk/2 + o(nk/2)

|E(Uk,n)| =
k

2
|V (U)|k−2|E(U)| =

k

2
· 9

2

(

5

2

)k−2

nk−1 + o(nk−1).

2

5



1654 Indu
ed-universal graphs for graphs with odd maximum de-greeTo the best of your knowledge, there is no good result on edge de
omposition for graphsbelonging to Fk,n with k odd. Nevertheless, we 
an use Uk+1,n as an Fk,n-indu
ed-universalgraph sin
e Fk,n ⊂ Fk+1,n. The graph obtained is from a multipli
ative fa
tor of O(n1/2)of the best known lower bound for the number of verti
es of Fk,n-indu
ed-universal graphs.We now show how to redu
e the gap between lower and upper bounds with a 
onstru
tiondedu
ed from universal graphs.Theorem 2 Let k ≥ 3 be an odd integer. There is an Fk,n-indu
ed-universal graph Uk,n su
hthat
|V (Uk,n)| = c1(k)n⌈k/2⌉−1/k log2+2/k n and |E(Uk,n)| = c2(k)nk−2/k log4+4/k nProof. The indu
ed-universal graph is dedu
ed from the Fk,n-universal graph obtained byAlon and Capalbo [1℄, using a result of Chung [9℄ that gives a general 
onstru
tion of anindu
ed-universal graph from an universal graph.The 
onstru
tion of Chung [9℄ depends on the degree of the indu
ed-universal graph andthe arbori
ity of graphs of the family. Indeed, if we 
onsider a family Ar of graphs witharbori
ity at most r and an Ar-universal graph G, then the 
onstru
tion produ
es an Ar-indu
ed-universal graph H su
h that :
|V (H)| =

∑

v∈V (G)

(dG(v) + 1)r and |E(H)| =
∑

uv∈E(G)

(dG(u) + 1)rdG(v)r−1.The arbori
ity of graphs of the family Fk,n is at most ⌈k/2⌉. Moreover, the Fk,n-universalgraph des
ribed in [1℄ has degree at most c(k)n2−2/k log4/k n. Hen
e, there is an indu
ed-universal graph Uk,n for the family Fk,n = A⌈k/2⌉ su
h that:
|V (Uk,n)| =

∑

v∈V (Hk,n)

(dHk,n
(v) + 1)⌈k/2⌉

≤ |V (Hk,n)|(2dHk,n
)⌈k/2⌉

≤ n(2c(k)n1−2/k log4/k n)⌈k/2⌉

≤ c1(k)n⌈k/2⌉−1/k log2+2/k n , where c1(k) = (2c(k))⌈k/2⌉

|E(Uk,n)| =
∑

uv∈E(Hk,n)

(dHk,n
(u) + 1)⌈k/2⌉dHk,n

(v)⌈k/2⌉−1

≤ |E(Hk,n)|(2dHk,n
)⌈k/2⌉(dHk,n

)⌈k/2⌉−1

≤ c(k)n2−2/k log4/k n(2c(k)n1−2/k log4/k n)⌈k/2⌉(c(k)n1−2/k log4/k n)⌈k/2⌉−1

≤ c2(k)nk−2/k log4+4/k , where c2(k) = (2c(k))k+1.

26
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ed-universal graphs for bounded-degree oriented graphsAn orientation −→
G of a graph G 
onsists in assigning to every edge of G one of its two possibleorientations. −→G is 
alled an oriented graph and by de�nition, it 
annot have loops nor oppositear
s. The 
onstru
tion of Se
tion 3 
an be easily generalized to the family Ok,n of all theorientations of the graphs from F2k,n having in
oming and outgoing degree at most k. Indeed,any graph of Ok,n 
an be de
omposed into k graphs of O1,n [14℄ and the 
onstru
tion ofindu
ed universal graph using de
omposition works in the oriented 
ase.Theorem 3 There is an Ok,n-indu
ed-universal oriented graph −−→

Ok,n su
h that
|V (

−−→
Ok,n)| = (1 + o(1)) (3n)k and |E(

−−→
Ok,n)| = (2 + o(1)) (3n)2k−1 .Proof. The 
onstru
tion of an indu
ed-universal graph for Ok,n is almost the same as the
onstru
tion for F2k,n presented in Se
tion 3. Any graphs with outgoing and in
oming degreeat most k 
an be de
omposed into k edge-disjoint graphs having outgoing and in
oming degreeat most 1 [14℄. Let −→

On be the graph depi
ted in Figure 3. If −→On is O1,n-indu
ed-universalthen, using the 
onstru
tion of Chung [9℄, we 
an 
onstru
t an Ok,n-indu
ed-universal graph−−→
Ok,n having |V (

−−→
Ok,n)| = (1 + o(1)) (3n)k verti
es and |E(

−−→
Ok,n)| = (2 + o(1)) (3n)2k−1 edges.So, the only thing we need to prove is that −→On is O1,n-indu
ed-universal.

⌊

n
2

⌋

+5 tiles joined in seriesFigure 3: The O1,n-indu
ed-universal graph −→
On.Let −→

G be any graph of O1,n. The 
onne
ted 
omponents of −→G are either dire
ted paths(oriented paths with exa
tly one sink and one sour
e) or dire
ted 
y
les (oriented 
y
les withno sour
e). We embed −→
G in −→

On almost the same way we embedded graphs of F2,n in Un inSe
tion 2. The only di�eren
es are for the embeddings of 
onne
ted 
omponents of size 3 ormore that slightly di�er from the non-oriented 
ase.
• The embedding of n3 
onne
ted 
omponents of size 3, using n3 + 1 tiles.

n3 +1 tiles

• The embedding of n4 
onne
ted 
omponents of size 4, using 2n4 + 1 tiles.
2n4 +1 tiles7
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• The embedding of n5 
onne
ted 
omponents of size 5, using 2n5 + 1 tiles.

2n5 +1 tiles

• For k ≥ 3, the embedding of n2k 
onne
ted 
omponents of size 2k, using kn2k tiles.
k−1 tiles k−1 tiles

• For k ≥ 3, the embedding of n2k+1 
onne
ted 
omponents of size 2k + 1, using kn2k+1tiles.
k−1 tiles k−1 tilesWe use for embeddings exa
tly the same number of tiles as for the non-oriented 
ase, sothe graph −→

On has also ⌊n
2

⌋

+ 5 tiles. 26 From indu
ed-universal graphs to oriented indu
ed-universalgraphsIn Se
tion 5, we 
onstru
ted an indu
ed-universal graph for a family of orientations of graphsin F2,n by orienting the edges and adding some verti
es to the non-oriented indu
ed-universalgraph. Let F be a family of graph and −→F be a family of orientations of graphs from F .One may ask if, taking an F-indu
ed-universal graph U , it is always possible to 
onstru
t an−→F -indu
ed-universal graph −→
U .Given two graphs G and H, a homomorphism from G to H is a mapping f : V (G) → V (H)satisfying [x, y] ∈ E(G) ⇒ [f(x), f(y)] ∈ E(H). In fa
t, the 
onstru
tion is possible ifthere is a graph −→

H into whi
h ea
h graph of −→F has a homomorphism. In this 
ase, thegraph −→
H is said to be an −→F -universal graph for homomorphism. For instan
e, the dire
ted
y
le of length three is a universal graph for homomorphism for the family of orientationof trees. The graph −→

U 
an be obtained by making a spe
ial produ
t of the two graphs −→
Hand U . The oriented tensor produ
t G × −→

H of a non-oriented graph G and an orientedgraph −→
H is de�ned to have vertex set V (G × −→

H ) = V (G) × V (
−→
H ) and ar
 set E(G × −→

H ) =
{

[(x, u), (y, v)] | xy ∈ E(G) and uv ∈ E(
−→
H )
}.Theorem 4 Let U and −→

H be two graphs. If U is F-indu
ed-universal and −→
H is −→F -universalfor homomorphism then U ×−→

H is −→F -indu
ed-universal.8
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es to show that we 
an embed an arbitrary graph −→
G ∈ −→F as an indu
edsubgraph of U ×−→

H . Let v ∈ −→
G . There is a homomorphism of −→G to −→

H sin
e −→H is −→F -universalfor homomorphism. We denote by h(v) ∈ V (
−→
H ) the vertex into whi
h v is mapped. If weforget about the orientation, we 
an embed −→

G into U sin
e U is F-indu
ed-universal. Letdenote by u(v) ∈ V (U) the vertex into whi
h v is embedded. The embedding of −→
G into

U × −→
H 
onsists in embedding ea
h vertex v of G into the vertex (u(v), h(v)) of U ×−→

H . Theembedding is 
orre
t in the sense that if there is an ar
 [x, y] in −→
G then there is an ar


[(u(x), h(x)), (u(y), h(y))] in U × −→
H . Indeed, there is an edge [u(x), u(y)] in U due to thenon-oriented embedding of −→G into U and an ar
 [h(x), h(y)] in −→

H due to the mapping of −→Ginto −→
H . Moreover, the embedding is indu
ed. Indeed, if two verti
es x and y of G are notadja
ent then u(x) and u(y) are not adja
ent in U be
ause the non-oriented embedding of−→

G into U is indu
ed. So, by 
onstru
tion, (u(x), h(x)) and (u(y), h(y)) are not adja
ent in
U ×−→

H . 2Families su
h as trees, planar graphs, partial 2-trees, outerplanar graphs, and sub
ubi
graphs are known to have universal graphs for homomorphism with 
onstant number of verti
es[5, 15℄. So for these families, indu
ed-universal graphs and indu
ed-universal oriented graphshave asymptoti
ally the same order.7 Con
luding remarks and open problemsIn Se
tion 2, we proved that a minimal F2,n-indu
ed-universal has at least 5n/2 + O(1), andand at most 11n/6 + O(1) verti
es. The natural question that arises is whether it is possibleto redu
e the gap between 5/2 and 11/6 for the multipli
ative 
onstant. This question seemsto be quite di�
ult, even though graphs of F2,n have a very simple stru
ture. For k odd, ifwe drop the polylogarithmi
 fa
tor, there remains a multipli
ative fa
tor of n1/2−1/k betweenthe lower and the upper bound for the number of verti
es in a minimal Fk,n-indu
ed-universalgraph. An interesting problem would be to lower this fa
tor, espe
ially for large values of
k. In our 
onstru
tion, for k even, our Fk,n-indu
ed-universal graph have maximum degree
4k/2 depending only on k whereas for k odd, it has maximum degree c2(k)nk−1−2/k log4+4/k n.Considering that for k even our 
onstru
tion is almost tight whereas for k odd it is not, we
onje
ture that Fk,n-indu
ed-universal graphs with minimal number of verti
es and edges havedegree only depending on k. In other words, we 
onje
ture that there is a fun
tion f(k) su
hthat the existen
e of a Fk,n-indu
ed-universal graph Uk,n implies that there exists another onewith at most the same number of verti
es, but with degree at most f(k).A more general problem 
on
erning indu
ed-universal graphs should be to solve theindu
ed-universal version of the impli
it graph 
onje
ture of Kannan, Naor and Rudi
h [12℄:Conje
ture 1 (Impli
it Graph Conje
ture (indu
ed-universal version)) Everyhereditary 
lass of graphs whi
h 
ontains 2O(n log n) graphs on n verti
es admits an indu
ed-universal graph with nO(1) verti
es.Solving this 
onje
ture seems rather di�
ult even if it is known that families of graphs
losed by taking minor ful�ll the 
onje
ture sin
e they admit indu
ed-universal graph of nO(1)verti
es. 9
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1 Introduction

Given a graph G = (V,E), a proper colouring V = (V1, . . . , Vk) of V is acyclic
if for all 1 ≤ i < j ≤ k, the subgraph of G induced by Vi ∪ Vj, which we
denote G[Vi ∪Vj ], contains no cycles (i.e., is a forest). The acyclic chromatic
number χa(G) is the smallest value k for which there exists a proper acyclic
k-colouring of G. It is easily seen that χa(G) ≤ ∆(G)(∆(G)− 1) + 1, as any
proper colouring of the square G2 of G is de facto a proper acyclic colouring
of G, and G2 has maximum degree at most ∆(G)(∆(G)− 1). In 1976, Erdős
(see (cf. [1])) conjectured that χa(G) = o(∆(G)2); this conjecture was proved
by Alon et. al. [2], who showed the existence of a fixed constant c < 50 such
that for all G, χa(G) ≤ c∆(G)4/3. Alon et. al. also showed that their bound
was close to optimal by proving via probabilistic arguments that

max{χa(G) : ∆(G) ≤ ∆} = Ω

(

∆4/3

(log ∆)1/3

)

.

When studying the asymptotics of χa(G) in terms of ∆(G), the restriction
that the colouring be proper is not of great importance. Indeed, suppose we
define the laid-back acyclic chromatic number χℓ(G) to be the smallest value
k for which there exists a colouring V = (V1, . . . , Vk) of G such that, for all
1 ≤ i < j ≤ k, G[Vi ∪ Vj ] is a forest (placing no further restriction on edges
within a given block G[Vi]). Clearly, χℓ(G) ≤ χa(G). On the other hand,
given such a colouring, it follows in particular that for all 1 ≤ i ≤ k, G[Vi] is

a forest, so χ(G[Vi]) ≤ 2. By splitting Vi into stable sets V
(1)
i and V

(2)
i (for

each 1 ≤ i ≤ k), we may then obtain an acyclic proper colouring of G with
at most 2k colours. It follows that χa(G) and χℓ(G) are within a factor of
two of each other.

In this paper we investigate another relaxation of the acyclic chromatic
number; in order to define it we first note that we may reformulate the
definition of χa(G) by observing that if Vi and Vj are distinct stable sets in
G, then G[Vi∪Vj] is exactly the bipartite graph G[Vi, Vj] containing all edges
with one endpoint in Vi and one endpoint in Vj. We may then equivalently
define χa(G) as the smallest value k for which there exists a proper colouring
V = (V1, . . . , Vk) of V such that for all 1 ≤ i < j ≤ k, G[Vi, Vj] is a forest
(i.e. such that with this colouring, G contains no alternating cycle).

Starting from this definition, we may now relax the requirement that V be

2
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a proper colouring while continuing to impose that G contain no alternating
cycle. To wit: given an integer t ≥ 0, we say that a colouring V = (V1, . . . , Vk)
is t-improper if for all 1 ≤ i ≤ k, G[Vi] has maximum degree at most t (in
this case we say that Vi is t-dependent, for each 1 ≤ i ≤ t). The t-improper
acyclic chromatic number χt

a(G) is the smallest k for which there exists a t-
improper colouring V = (V1, . . . , Vk) such that with this colouring, G contains
no alternating cycle.

For an integer d ≥ 0, we let

χt
a(d) = max{χt

a(G) : ∆(G) ≤ d}.

The object of this paper is to study how χt
a(d) varies as a function of t and

of d. Clearly, for any d, χ0
a(d) ≥ χ1

a(d) ≥ . . . ≥ χd
a(d) = 1.

It is easily seen that χt
a(d) = Ω

(

(d/t)4/3/(ln d)1/3
)

; given an acyclic t-
improper colouring, by applying the first of the results from [2] mentioned
above, we can acyclically colour each colour class with at most ct4/3 new
colours (where c is some fixed constant which is less than 50) to obtain an
acyclic colouring of the entire graph. Our first result is to show that this
straightforward lower bound on χt

a(d) can be much improved upon asymp-
totically, as long as t ≤ d− 10

√
d ln d. More fully,

Theorem 1. If t ≤ d− 10
√
d ln d, then χt

a(d) = Ω
(

(d− t)4/3/(ln d)1/3
)

.

In particular, if t = (1 − ε)d for any fixed constant ε, 0 < ε ≤ 1, then we
obtain the same asymptotic lower bound as Alon et al. Comparing this lower
bound with the upper bound χt

a(d) = O(d4/3), we see the surprising fact that
even allowing t = Ω(d) does not greatly reduce the number of colours needed
for improper acyclic colourings of graphs with large maximum degree.

At some point, χt
a(d) must drop significantly as t increases, because

χd
a(d) = 1. Although we are unable to pin down the behaviour of χt

a(d)
viewed as a function of t, we can improve upon the upper bound of Alon et
al. when t is very close to d (more precisely, when d− t = o(d1/3)). We prove:

Theorem 2. χt
a(d) = O(d lnd+ (d− t)d).

As for lower bounds on χt
a(d) when d − t = o(d), we first note that

[3] showed χd−2
a (d) ≥ 3; we can straightforwardly generalise this result by

3
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showing that χt

a(d) ≥ d − t + 1. This is done as follows: if Kd+1 is the
complete graph on d + 1 vertices, then χt

a(Kd+1) ≥ d − t + 1, since, in
any acyclic t-improper colouring of Kd+1, at most one colour class has more
than one vertex and no colour class has more than t + 1 vertices. We can,
however, improve upon this further and, in the final section, we exhibit a set
of examples showing the following lower bound.

Theorem 3. χd−1
a (d) = Ω(d2/3).

We would like to reduce the gaps between the lower and upper bounds
on χt

a(d). For t = d − 1, the problem is particularly tantalising, and, in
this case, the lower bound of Theorem 3 and the upper bound of Theorem 2
differ by a factor of d1/3 ln d. For this choice of t, the problem also includes
the conjecture from [3] that every subcubic graph is acyclically 2-improperly
2-colourable.

In the rest of the paper, we use the following notation. The degree of
a given vertex v is denoted by d(v). We denote by N(v) the set of the
neighbours of v. A k-cycle (resp. a ≥k-cycle) is a cycle containing k vertices
(resp. at least k vertices). For a graph G and a vertex v ∈ V (G), we denote
by G \ {v} the graph obtained from G by removing v and its incident edges;
for an edge uv of E(G), G \ {uv} denotes the graph obtained from G by
removing the edge uv. These notions are extended to sets of vertices and
edges in an obvious way. Let G be a graph and f be a colouring of G.
For a given vertex v of G, we denote by imf (v), or simply im(v) when the
colouring is clear from the context, the number of neighbours of v having the
same colour as v and call this quantity the impropriety of the vertex v. For
notation not defined here, we refer the reader to [9].

2 A probabilistic lower bound for χta(d)

In this section, we prove Proposition 6 below, a more explicit version of
Theorem 1. Our argument mirrors that of Alon et al. but uses upper bounds
on the t-dependence number αt, the size of a largest t-dependent set, in the
random graph Gn,p. For more precise upper bounds on αt(Gn,p), consult [7].

Lemma 4. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n−128 lnn/p4⌋. Then asymptotically almost surely and uniformly over

4
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p in the above range, any colouring of Gn,p with k ≤ (n−m)/4 colours and in
which each colour class contains at most m vertices contains an alternating
4-cycle.

Proof. As there are at most kn ≤ nn possible k-colourings of Gn,p, to prove
the lemma it suffices to show that for any fixed k-colouring of the vertices of
Gn,p (which we denote {v1, . . . , vn}) with colour classes C1, . . . , Ck in which
|Ci| ≤ m for all 1 ≤ i ≤ k, the probability that Gn,p does not contain an
alternating 4-cycle is o(n−n).

Fix a colouring as above, and let q be minimal such that |C1∪ . . .∪Cq| ≥
(n−m)/2. Let A = C1 ∪ . . .∪Cq and let B = Cq+1 ∪ . . .∪Ck. As no colour
class has size greater than m, |A| ≤ (n +m)/2 and so |B| ≥ (n−m)/2. By
symmetry, we may also assume that |A| ≥ n/2.

Next, let P = {{x1, x
′
1}, . . . , {xr, x

′
r}} be a maximal collection of pairs of

elements of A such that for 1 ≤ i ≤ r, xi and x′i have the same colour, and
for 1 ≤ i < j ≤ r, {xi, x

′
i} and {xj , x

′
j} are disjoint. As we may place all but

perhaps one vertex from each colour class Ci in some such pair (with one
vertex left over precisely if |Ci| is odd), it follows that

r ≥ 1

2
(|A| − q) ≥ 1

2

(n

2
− k
)

≥ n

8
.

Similarly, let Q = {{y1, y
′
1}, . . . , {ys, y

′
s}} be a maximal collection of pairs

of elements of B satisfying identical conditions; by an identical argument to
that above, it follows that s ≥ (n−m)/8.

Let E be the event that for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, {xi, yj, x
′
i, y

′
j}

is not an alternating 4-cycle, and let E ′ be the event that Gn,p contains no
alternating 4-cycle; clearly E ′ ⊆ E. For fixed 1 ≤ i ≤ r and 1 ≤ j ≤ s, the
probability that {xi, yj, x

′
i, y

′
j} is not an alternating 4-cycle is (1−p4) and this

event is independent from all other such events. As (n−m) ≥ 128 lnn/p4 it
follows that

Pr (E ′) ≤ Pr (E) ≤ (1 − p4)rs ≤ e−p4rs

≤ exp

{

−p
4n(n−m)

64

}

≤ e−2n ln n = o(n−n),

as required. 2
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Using this lemma, we next bound the acyclic t-improper chromatic num-

ber of Gn,p for p in the range allowed in Lemma 4.

Lemma 5. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n−128 lnn/p4⌋ and let t(n, p) = p(m−1)−2

√
np. Then asymptotically

almost surely, for all integers t ≤ t(n, p), χt
a(Gn,p) ≥ 32 lnn/p4, uniformly

over p and t in the above ranges.

Proof. Fix n and p as above, and choose t ≤ t(n, p). We will show that
asymptotically almost surely Gn,p contains no t-dependent set of size greater
than m, from which the claim follows immediately by applying Lemma 4 as
(n−m)/4 ≥ 32 lnn/p4. Let G[m] represent the subgraph of Gn,p induced by
{v1, . . . , vm}. By a union bound and symmetry, we have

Pr
(

αt(Gn,p) ≥ m
)

≤
(

n

m

)

Pr (∆(G[m]) ≤ t) ≤ 2nPr (∆(G[m]) ≤ t) .

Since, if ∆(G[m]) ≤ t then G[m] has at most tm/2 edges, it follows that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2nPr

(

E(G[m]) ≤ tm

2

)

≤ 2nPr

(

E(G[m]) − p

(

m

2

)

≤ tm

2
− p

(

m

2

))

Finally, by a Chernoff bound and by the definition of t(n, p), we conclude
that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2n exp

{

−
(

tm

2
− p

(

m

2

))2

·
(

2p

(

m

2

))−1
}

≤ 2n exp

{

−(t− p(m− 1))2

4p

}

≤ (2/e)n = o(1),

as claimed. 2

Using Lemma 5, it is a straightforward calculation to bound χt
a(d) for d

sufficiently large and t sufficiently far from d.

Proposition 6. For all sufficiently large integers d and all non-negative
integers t ≤ d− 10

√
d ln d,

χt
a(d) ≥

(d− t)4/3

214(ln d)1/3
.

6
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Proof. Choose n so that

213n3 lnn ≤ d3(d− t) ≤ 214n3 lnn; (1)

such a choice of n clearly exists as long as d is large enough. Let p =
(d − 4

√
d ln d)/n; we first check that p and t satisfy the requirements of

Lemma 5. Presuming d is large enough that np ≥ d/2, by the lower bound
in (1) and the fact that d(d− t) ≤ d2 we have

p ≥ d

2n
≥ (d3(d− t))1/4

2n
≥ 8n3/4(lnn)1/4

2n
= 4

(

lnn

n

)1/4

. (2)

Furthermore, letting m = ⌊n− 128 lnn/p4⌋, we have

p(m− 1) − 2
√
np ≥ np− 128 lnn

p3
− 2

√
np− 2 = d− 4

√
d ln d− 2

√
np− 2 − 128 lnn

p3

≥ d− 8
√
d ln d− 128 lnn

p3
. (3)

Since p ≥ d/2n and by the lower bound in (1),

128 lnn

p3
≤ 210n3 lnn

d3
≤ d− t

8
,

which combined with (3) yields

p(m− 1) − 2
√
np > d− 8

√
d ln d− (d− t)

8

= t+
7(d− t)

8
− 8

√
d ln d > t, (4)

the last inequality holding since t ≤ d − 10
√
d ln d. As (2) and (4) hold we

may apply Lemma 5 to bound χt
a(Gn,p) with this choice of t and p; as n > d,

it follows that as long as d is sufficiently large,

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4

)

≥ 3

4
, (5)

say. Furthermore, by a union bound and a Chernoff bound,

Pr (∆(Gn,p) > d) ≤ nPr

(

BIN

(

n,
d− 4

√
d ln d

n

)

> d

)

≤ ne−16 ln d/3 ≤ 1

n
, (6)

7



179
the last inequality holding as ln d ≥ lnn/2 (which is an easy consequence of
(1)). Combining (5) and (6), we obtain that

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4
,∆(Gn,p) ≤ d

)

≥ 3

4
− 1

n
≥ 1

2

as long as n ≥ 4, so there is some graph G with maximum degree at most
d and with χt

a(G) ≥ 32 lnn/p4. Since χt
a is monotonically increasing in d, it

follows that

χt
a(d) ≥

32 lnn

p4
>

32n4 lnn

d4
. (7)

An easy calculation using the upper bound in (1) and the fact that lnn <
2 ln d gives the bound

d4 <
219n4(ln d)4/3

(d− t)4/3
,

so 32n4 lnn/d4 > (d− t)4/3/214(ln d)1/3. By (7), it follows that

χt
a(d) ≥

(d− t)4/3

214(ln d)1/3
,

as claimed. 2

3 A probabilistic upper bound for χta(d)

In this section, we study the situation when d − t = o(d1/2). Theorem 2,
which improves the upper bound of [2] when d− t = o(d1/3, is a corollary of
our main result here.

We analyse a different parameter from, but one that is closely related
to, the acyclic t-improper chromatic number. A star colouring of G is a
colouring such that no path of length three (i.e. with four vertices) is al-
ternating; in other words, each bipartite subgraph consisting of the edges
between two colour classes is a disjoint union of stars. The star chromatic
number χs(G) is the least number of colours needed in a proper star colour-
ing of G. We analogously define the parameters χt

s(G) and χt
s(d) in the

natural way. The star chromatic number was one of the main motivations
for the original study of acyclic colourings [6]. Clearly, any star colouring

8
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is acyclic; thus, χt

a(d) ≤ χt
s(d). Fertin, Raspaud and Reed [5] showed that

χs(d) = O(d3/2) and that χs(d) = Ω
(

d3/2/(ln d)1/2
)

. We note that a natural
adaptation to star colouring of the argument given in the last section gives
the following:

Theorem 7. There exists a fixed constant C > 0 such that, if t ≤ d −
C
√
d ln d, then χt

s(d) = Ω
(

(d− t)3/2/(ln d)1/2
)

.

Given a graph G of maximum degree d, the idea behind our method
for improved upper bounds is to find a dominating set D and a function
g = g(d) = o(d3/2) such that |(N(v) ∪N2(v)) ∩ D| ≤ g for all v ∈ V (G).
Given such a set D in G, we assign colours to the vertices in D by greedily
colouring D in the square of G (i.e. vertices in D at distance at most two
in G receive different colours) with at most g + 1 colours; then we give the
vertices of G \ D the colour g + 2. It can be verified that this colouring
prevents any alternating paths of length three (and so prevents alternating
cycles) and ensures that every vertex has at least one neighbour of a different
colour. Furthermore, we can generalise this idea by prescribing that our set
D is k-dominating — each vertex outside of D has at least k neighbours in
D — to give a bound on χd−k

s (d).

Theorem 8. χt
s(d) = O(d ln d+ (d− t)d).

This result provides an asymptotically better upper bound than χt
s(d) =

O(d3/2) when d− t = o(d1/2). It also provides a better bound than χt
a(d) =

O(d4/3) when d − t = o(d1/3). Theorem 8 is an easy consequence of the
following lemma:

Lemma 9. Given a d-regular graph G and an integer k ≥ 1, let ψ(G, k)
be the least integer k′ ≥ k such that there exists a k-dominating set D for
which, for all v ∈ V (G), |N(v) ∩ D| ≤ k′. Let ψ(d, k) be the maximum
over all d-regular graphs G of ψ(G, k). Then, for all d sufficiently large,
ψ(d, k) ≤ max{3k, 31 lnd}.

We postpone the proof of this lemma, first using it to prove Theorem 8:

Proof of Theorem 8. We first remark that the function χt
s is monotonic

with respect to graph inclusion in the following sense: if G and G′ are graphs
with V (G) ⊆ V (G′), and E(G) ⊂ E(G′), then χt

s(G) ≤ χt
s(G

′). As any

9
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graph G of maximum degree d is a subgraph of a d-regular graph (possibly
with a greater number of vertices), to prove that χt

s(d) = O(d lnd+(d− t)d)
it therefore suffices to show that χt

s(G) = O(d lnd + (d − t)d) for d-regular
graphs G. We hereafter assume G is d-regular and d is large enough to apply
Lemma 9. Let k = d − t. We will show that χt

s(G) ≤ dψ(d, k) + 2, which
proves the theorem.

By Lemma 9, there is a k-dominating set D such that |N(v)∩D| ≤ ψ(d, k)
for all v ∈ V (G). Fix such a dominating set D and form the auxiliary graph
H as follows: let H have vertex set D and let uv be an edge of H precisely
if u and v have graph distance at most two in G. As |N(v) ∩ D| ≤ ψ(d, k)
for all v ∈ V (G), H has maximum degree at most dψ(d, k).

To colour G, we first greedily colour H using at most dψ(d, k)+1 colours,
and assign each vertex v of D the colour it received in H . We next choose
a new colour not used on the vertices of D, and assign this colour to all
vertices of V (G) \ D. We remind the reader that im(v) denotes the number
of neighbours of v of the same colour as v. If v ∈ D then im(v) = 0, and if
v ∈ V \D then im(v) ≤ d−|N(v)∩D| ≤ d−k = t, so the resulting colouring
is t-improper.

Furthermore, given any path P = v1v2v3v4 of length three in G, either
two consecutive vertices vi, vi+1 of P are not in D (in which case c(vi) =
c(vi+1) and P is not alternating), or two vertices vi, vi+2 are in D (in which
case c(vi) 6= c(vi+2) and P is not alternating). Thus, the above colouring
is a star colouring G of impropriety at most t and using at most d(3k +
31 ln d) + 2 colours; as G was an arbitrary d-regular graph, it follows that
χt

s(d) ≤ dψ(d, k) + 2, as claimed. 2

We next prove Lemma 9 with the aid of the following symmetric version
of the Lovász Local Lemma:

Lemma 10 ([4], cf. [8], page 40). Let A be a set of bad events such that for
each A ∈ A

1. Pr (A) ≤ p < 1, and

2. A is mutually independent of a set of all but at most δ of the other
events.

If 4pδ ≤ 1, then with positive probability, none of the events in A occur.

10
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Proof of Lemma 9. We may clearly assume that k is at least (31/3) ln d,

since, if the claim of the lemma holds for such k, then it also holds for smaller
k. Let p = 2k/d and let D be a random set obtained by independently
choosing each vertex v with probability p. We claim that, with positive
probability, D is a k-dominating set such that |N(v) ∩ D| ≤ 3k for all v ∈
V (G); we will prove our claim using the local lemma.

For v ∈ V (G), let Av be the event that either |N(v) ∩ D| < k or
|N(v) ∩ D| > 3k. By the mutual independence principle, cf. [8], page 41,
Av is mutually independent of all but at most d2 events Aw (with w 6= v).
Furthermore, since |N(v) ∩ D| has a binomial distribution with parameters
d and p, we have by a Chernoff bound that

Pr (Av) = Pr (||N(v) ∩ D| − E(|N(v) ∩ D|)| > k) ≤ 2e−k/5 = o(d−2)

so 4Pr (Av) d
2 < 1 for d large enough. By applying Lemma 10 with A =

{Av | v ∈ V }, it follows that with positive probability none of the events Av

occur, i.e. D has the desired properties. 2

4 A deterministic lower bound for χd−1
a (d)

In this section, we concentrate on the case t = d− 1 and exhibit an example
Gn which gives the asymptotic lower bound of Theorem 3. Given a positive
integer n, we construct the graph Gn as follows: Gn has vertex set {vij :
i, j ∈ {1, . . . n}} ∪ {wij : i, j ∈ {1, . . . , n}}. For i, j ∈ {1, . . . , n} we let
Vij = {vij, wij}. We can think of the set of vertices as an n-by-n matrix,
each entry of which has been “doubled”. Within each column Ci =

⋃n
j=1 Vij

and within each row Rj =
⋃n

i=1 Vij we add all possible edges. The graph Gn

has 2n2 vertices and is regular with degree d = 4n − 3. We will prove the
following proposition, which directly implies Theorem 3:

Proposition 11. χd−1
a (Gn) ≥ n

n1/3+1
+ 1.

Proof. Let f : Gn → {1, . . . , k} be an acyclic (d − 1)-improper colouring
of Gn; we will show that necessarily k ≥ n

n1/3+1
. Since n ≥ 1 it follows that

n/2 ≥ n
n1/3+1

and thus we may assume that k < n/2. Clearly, some colour
– say a1 – appears on two vertices x, x′ of C1. We call the colour a1 “black”
and refer to vertices receiving colour a1 as black vertices. If y, y′ ∈ C1 both

11



183
receive colour i 6= a1, then xyx′y′ forms an alternating cycle, so a1 is the only
colour appearing twice in C1. It follows that at most k − 1 vertices in C1 are
not black.

Applying the same logic to any column Ci, we see that all but k − 1
vertices in Ci must receive the same colour, say ai. Since k < n/2, it is easily
seen, then, that there must be a row Rm such that vm1 and wm1 are both
black, and vmi and wmi are both coloured ai. This implies that ai = a1, since
otherwise vm1vmiwm1wmj would be an alternating cycle. It follows that in all
columns, at most k−1 vertices receive a colour other than a1. Symmetrically,
there is a colour b such that in all rows, at most k−1 vertices receive a colour
other than b; clearly, it must the case that b = a1.

If there are i, j ∈ {1, . . . , n} such that both Ri and Cj are entirely coloured
black, then all the neighbours of vij , wij are coloured with a1 and the colouring
is not (d−1)-improper; therefore, it must be the case that either all rows, or
all columns, contain a non-black vertex. Without loss of generality, we may
assume that all rows contain a non-black vertex.

Let x1, . . . , xr be non-black vertices receiving the same colour, say a, and
let xi ∈ Vℓi,mi

, for 1 ≤ i ≤ r. As previously noted, no two of x1, . . . , xr may
lie in the same row or column; i.e., for i 6= j, ℓi 6= ℓj and mi 6= mj .

Claim 1. At least 3
(

r
2

)

vertices of
⋃

1≤i6=j≤r Vℓi,mj
receive a non-black colour

other than a.

Proof. No vertices in
⋃

1≤i6=j≤r Vℓi,mj
receive colour a as each such vertex

is in the same row as one of x1, . . . , xr. On the other hand, for each pair
i, j with 1 ≤ i < j ≤ r, at least three of the vertices in Vℓi,mj

∪ Vℓj ,mi
must

receive a colour other than a1. For if y, y′ ∈ Vℓi,mj
∪Vℓj ,mi

both receive colour
a1, then xiyxjy

′ forms an alternating cycle. The result follows as there are
(

r
2

)

pairs i, j with 1 ≤ i < j ≤ r. 2

Claim 2. At least r distinct non-black colours appear on
⋃

1≤i<j≤r Vℓi,mj
.

Proof. By an argument just as above, each of Vℓ1,m2 , . . . ,Vℓ1,mr must con-
tain a vertex receiving a colour other than a1 or a. These colours must all
be distinct as Vℓ1,m2, . . . ,Vℓ1,mr are all contained within Rℓ1 . 2

Let {a2, a3, . . . , ak} be the set of non-black colours. Let x2
1, . . . , x

2
r2

be
the vertices receiving colour a2, and for i = 3, . . . , k let xi

1, . . . , x
i
ri

be the

12
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vertices receiving colour ai which are in a different row from all vertices in
⋃

j<i

⋃

s≤rj
xj

s. As every row contains a non-black vertex,
∑k

i=2 ri = n; it is
possible that ri = 0 for certain i, if there is a vertex coloured with one of
a2, . . . , ai in every row.

For i ∈ {2, . . . , k} and s ∈ {1, . . . , ri}, say vertex xi
s ∈ Vℓi

s,mi
s
, and let

Ai =
⋃

1≤s<t≤ri

Vℓi
s,mi

t
∪ Vℓi

t,m
i
s
.

By Claim 1, at least 3
(

ri

2

)

vertices of Ai are non-black. Furthermore, if i 6= i′

then for any s ∈ {1, . . . , ri}, s′ ∈ {1, . . . , ri′}, xi
s and xi′

s′ are in different rows

– so Ai and Ai′ are disjoint. It follows that in
⋃k

i=2Ai∪{xi
1, . . . , x

i
ri
}, at least

k
∑

i=2

(

3

(

ri

2

)

+ ri

)

≥
k
∑

i=2

r2
i (8)

vertices are non-black. As
∑k

i=2 ri = n, it is easily seen that

k
∑

i=2

r2
i ≥ (k − 1)

(⌊

n

k − 1

⌋)2

.

As there are only k−1 non-black colours, it follows that some non-black colour
– say a2 – appears at least (⌊n/(k − 1)⌋)2 times. If (⌊n/(k − 1)⌋)2 ≥ n2/3,
then by Claim 2, at least n2/3 + 1 > n

n1/3+1
+ 1 colours appear on Gn, so

we may assume that n2/3 > (⌊n/(k − 1)⌋)2 ≥ (n/(k − 1) − 1)2. But then
k > n

n1/3+1
+ 1, as claimed. 2

It is worth noting that the correct asymptotic order of χd−1
a (Gn) is un-

known; it is even conceivable that χd−1
a (Gn) = Θ(d).

5 Conclusion

In our view, the most surprising result of this paper is that the same asymp-
totic lower bound for ordinary acyclic chromatic number by Alon et al. also
holds for the acyclic t-improper chromatic number for any t = t(d) satisfy-
ing d − t = Θ(d). As χa(G) ≥ χt

a(G) for any t ≥ 0, this means that, for
d− t = Θ(d), Theorem 1 is asymptotically tight up to a factor of (lnd)1/3.
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In the case that t is very close to d, Theorem 8 improves upon upper

bounds for χt
a(d) and χt

s(d) implied by the results of Alon et al. and Fertin et
al., respectively, giving for instance that χt

s(d) = O(d lnd) for d−t = O(ln d).
On the other hand, we showed that χd−1

a (d) = Ω(d2/3) by a deterministic
construction.

χt
a(d) χt

s(d)
d− t lower upper lower upper

Θ(d) Ω
(

d4/3

(ln d)1/3

)

O(d4/3)

Ω
(

d3/2

(ln d)1/2

)

O(d3/2)
ω(

√
d ln d) Ω

(

(d−t)4/3

(ln d)1/3

)

Ω
(

(d−t)3/2

(ln d)1/2

)

Ω
(

d2/3
)

Ω
(

d2/3
)O(d1/2)

O((d− t)d)
O(d1/3) O((d− t)d)
O(ln d) O(d lnd) O(d lnd)

0 1 1 1 1

Table 1: Asymptotic bounds for χt
a(d) and χt

s(d).

There is much remaining work in the case d − t = o(d). Table 1 is a
rough summary of the current bounds on χt

a(d) and χt
s(d) when d is large. A

case of particular interest to the authors is when d− t = 1; in this case, it is
unknown if χd−1

a (d) is Θ(d2/3), Θ(d ln d) or lies somewhere strictly between
these extremes.
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Adapted list colouring of planar graphs

Louis Esperet∗ Mickaël Montassier† Xuding Zhu‡

Abstract

Given a (possibly improper) edge-colouring F of a graph G, a vertex colour-
ing of G is adapted to F if no colour appears at the same time on an edge and
on its two endpoints. If for some integer k, a graph G is such that given any
list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-
colouring F of G, G admits a colouring c adapted to F where c(v) ∈ L(v)
for all v, then G is said to be adaptably k-choosable. In this note, we prove
that K5-minor-free graphs are adaptably 4-choosable, which implies that pla-
nar graphs are adaptably 4-colourable and answers a question of Hell and Zhu.
We also prove that triangle-free planar graphs are adaptably 3-choosable and
give negative results on planar graphs without 4-cycle, planar graphs without
5-cycle, and planar graphs without triangles at distance t, for any t ≥ 0.

Keywords: Adapted colouring, list colouring, planar graphs.

Mathematical Subject Classification: 05C15

1 Introduction

The concept of adapted colouring of a graph was introduced by Hell and Zhu in [9],
and has strong connections with matrix partition of graphs, graph homomorphisms,
and full constraint satisfaction problems [4, 6, 7, 10]. The more general problem of
adapted list colouring of hypergraphs was then considered by Kostochka and Zhu in
[11], where an application to job assignment problems was also given.
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†LaBRI, Université Bordeaux 1, France, E-mail address: montassi@labri.fr
‡Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan and

National Center for Theoretical Sciences. E-mail address: zhu@math.nsysu.edu.tw. Partially sup-
ported by the National Science Council under grant NSC95-2115-M-110-013-MY3.
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In this note, we study adapted list colourings of simple graphs. Let G be a simple

graph (that is, without loops nor multiple edges), and let F : E(G) → N be a (possi-
bly improper) colouring of the edges of G. A k-colouring c : V (G) → {1, . . . , k} of
the vertices of G is adapted to F if for every uv ∈ E(G), c(u) 6= c(v) or c(v) 6= F (uv).
In other words, the same colour never appears on an edge and both its endpoints. If
there is an integer k such that for any edge colouring F of G, there exists a vertex
k-colouring of G adapted to F , we say that G is adaptably k-colourable. The smallest
k such that G is adaptably k-colourable is called the adaptable chromatic number of
G, denoted by χad(G).

Note that in [9] and [11], the authors require that the edge colouring F is a
k-colouring. Even though we enable F to take any integer value, it is easy to see
that our definition is equivalent to the original definition (whereas its extension to
adapted list colouring is more natural). Let L : V (G) → 2N be a list assignment to
the vertices of a graph G, and F be a (possibly improper) edge colouring of G. We
say that a colouring c of G adapted to F is an L-colouring adapted to F if for any
vertex v ∈ V (G), we have c(v) ∈ L(v). If for any edge colouring F of G and any
list assignment L with |L(v)| ≥ k for all v ∈ V (G) there exists an L-colouring of G
adapted to F , we say that G is adaptably k-choosable. The smallest k such that G is
adaptably k-choosable is called the adaptable choice number of G, denoted by chad(G).

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring
of G, we clearly have χad(G) ≤ χ(G) and chad(G) ≤ ch(G) for any graph G, where
χ(G) is the usual chromatic number of G, and ch(G) is the usual choice number of G.
Using the Four-Colour Theorem and a theorem of Thomassen [13], this proves that
for any planar graph G, χad(G) ≤ 4 and chad(G) ≤ 5. In [9], Hell and Zhu proved that
there exist planar graphs that are not adaptably 3-colourable, and asked whether it
would be possible to prove that every planar graph is adaptably 4-colourable without
using the Four-Colour Theorem.

A graph H is called a minor of G if a copy of H can be obtained by contracting
edges and/or deleting vertices and edges of G. A graph is said to be H-minor-free
if it does not have H as a minor. Planar graphs are known to be a proper subclass
of K5-minor-free graphs. In this note, we answer to the question of Hell and Zhu by
proving the following stronger statement:

Theorem 1 Every K5-minor-free graph is adaptably 4-choosable.

Observe that this does not hold for the usual list colouring, since Voigt [15] proved
that there exist planar graphs which are not 4-choosable.

2
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Triangle-free planar graphs are known to be 3-colourable [5, 14] and 4-choosable (it

is easy to prove that they are 3-degenerate using Euler Formula). On the other hand
Voigt [16] proved that there exist triangle-free planar graphs that are not 3-choosable.
In Section 3, we prove the following theorem:

Theorem 2 Every triangle-free planar graph is adaptably 3-choosable.

In Section 4, we investigate a problem related to a question of Havel [8]. We prove
that for all t, there exist planar graph without triangles at distance less than t, which
are not adaptably 3-choosable. In Sections 5 and 6, we prove that there exist planar
graphs without 4-cycles, and planar graph without 5-cycles, which are not adaptably
3-colourable. These negative results seem to indicate that it may be hard to have a
weaker hypothesis in Theorem 2.

2 K5-minor-free graphs

Theorem 1 is a consequence of Lemma 2.3 in this section. Note that the adaptable
4-choosability of planar graphs can be deduced directly from Lemma 2.1.

Lemma 2.1 Let G be an edge-coloured plane graph, and let C = (v1, . . . , vk) be its
outer face. Let φ be an adapted colouring of v1 and v2. Suppose finally that any vertex
v ∈ C distinct from v1 and v2 has a colour list L(v) of size at least three and every
vertex v ∈ V (G) \C has a colour list L(v) of size at least four. Then the colouring φ
can be extended to an adapted L-colouring of G.

Proof. We prove this lemma by induction on |V (G)|. If |V (G)| = 3, the assertion is
trivial. Suppose now that |V (G)| ≥ 4 and assume that the assertion is true for any
smaller graphs.

Since the subgraph GC of G induced by C is an outerplanar graph, it contains
two vertices vi and vj of degree at most two which are not adjacent in GC and which
are not cut-vertices of GC . These vertices vi and vj are neither cut-vertices of G nor
incident to a chord of C, and one of them (say vi), is distinct from v1 and v2. Let
α ∈ L(vi) be a colour distinct from the colours of the edges vivi+1, vivi−1. For each
neighbour x of vi not in C, we remove the colour α from the colour list of x. Applying
the induction hypothesis to G \ vi and then colouring vi with α yields an adapted list
colouring of G.

Lemma 2.2 Let G be an edge-coloured plane graph. Suppose that every vertex v of
G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic to K2 or
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K3, and let φ be an adapted L-colouring of H. Then φ can be extended to an adapted
L-colouring of G.

Proof. Let G be a counterexample with minimum order. If H is isomorphic to K2,
then consider a face incident to H as the outer face and apply Lemma 2.1 to this
planar embedding of G.

Assume now that H is isomorphic to K3 and V (H) = {u, v, w}. If H is a separat-
ing 3-cycle, then let G1 (resp. G2) be the graph induced by the vertices of H and the
vertices inside (resp. outside) of H . By the minimality of G, extending φ to G1 and
to G2 yields an adapted L-colouring of G. Suppose now that H is not a separating
3-cycle, and assume that H bounds the outer face of G. Let G′ = G \ w and let L′

be the list assignment defined by L′(x) = L(x) \ {φ(w)} for every vertex x adjacent
to w (and distinct from u, v) and by L′(x) = L(x) for any other vertex distinct from
u and v. Lemma 2.1 applied to G′ allows to extend φ to G.

Lemma 2.3 Let G be an edge maximal K5-minor-free graph. Suppose that every
vertex v of G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic
to K2 or K3, and let φ be an adapted L-colouring of H. Then φ can be extended to
an adapted L-colouring of G.

Proof. Let G be a counterexample with minimum order. Then G is not isomorphic
to the Wagner graph (which is 3-regular, and hence adaptably L-colourable given a
precolouring of H), and by Lemma 2.2, G is not a planar triangulation. It follows
from Wagner’s theorem [17], that G = G1 ∪ G2 where G1, G2 are proper subgraphs
of G such that G1 ∩ G2 is isomorphic to K2 or K3. Clearly, H ⊆ G1 or H ⊆ G2.
Without loss of generality, assume that H ⊆ G1. By minimality of G, we can extend
φ to G1. This gives an adapted colouring to G1 ∩ G2 which can be extended to G2,
by the minimality of G. This yields an extension of φ to an adapted L-colouring of
G.

3 Triangle-free planar graphs

Theorem 2 is a consequence of the following theorem:

Theorem 3 Suppose G is an edge-coloured simple triangle-free plane graph, C =
(v1, v2, · · · , vk) is the outer face. Suppose L is a list assignment that assigns to each
vertex x a set L(x) of 3 permissible colours, except that some vertices on C have only
2 permissible colours. However, each edge of G has at least one end vertex x which
has 3 permissible colours. Then G is adaptably L-colourable.
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Proof. We may assume G is connected and prove the theorem by induction on the
number of vertices. If |V (G)| ≤ 4, then the theorem is obviously true.

Assume |V (G)| ≥ 5. A path P = (vi, x, vj) is called a long chord of C connecting
vi and vj, if vi, vj ∈ C, x 6∈ C and |L(vi)| + |L(vj)| = 5. Let P be the set of chords,
long chords, and cut-vertices of C. Suppose P ∈ P is a chord (vi, vj) or a long chord
(vi, x, vj) connecting vi and vj . We denote by AP and BP the two components of
C − {vi, vj}, and assume that |AP | ≤ |BP |. If P ∈ P is a cut-vertex of C, we denote
by AP the smallest component of C − P . Let P ∗ ∈ P be a chord, long chord, or
cut-vertex, for which |AP ∗| is minimum.

Claim AP ∗ contains a vertex vt which is not a cut-vertex, such that |L(vt)| = 3 and
vt is not contained in any chord or long chord of C.

First observe that AP ∗ does not contain any cut-vertex, since otherwise this would
contradict the minimality of P ∗. Assume that P ∗ is a cut-vertex v. Then AP ∗ contains
at least two adjacent vertices vi and vi+1, and both of them are neither contained in
a chord nor in a long chord of C by the minimality of P ∗. By the hypothesis, there
is a t ∈ {i, i + 1} such that |L(vt)| = 3.

Assume P ∗ = (vi, x, vj) is a long chord, |L(vj)| = 2 and AP ∗ =
(vi+1, vi+2, · · · , vj−1). Then |L(vj−1)| = 3, for otherwise vjvj−1 is an edge of G con-
necting two vertices each with 2 permissible colours, in contrary to our assumption.
Since G is triangle-free, vj−1 is not adjacent to x. If vj−1 is contained in a chord or a
long chord P ′, then we would have AP ′ ⊂ AP ∗ and hence |AP ′| < |AP ∗|, in contrary
to our choice of P ∗.

Assume P ∗ = (vi, vj) is a chord, and AP ∗ = (vi+1, vi+2, · · · , vj−1). Since G is
triangle-free, vi+1 6= vj−1. Since each edge of G has at least one end vertex x which
has 3 permissible colours, there exists t ∈ {i + 1, i + 2} such that |L(vt)| = 3. By the
same argument as above, vt is not contained in any chord or long chord of C. This
completes the proof of the claim.

Let vt ∈ C be a vertex which is not a cut-vertex, such that |L(vt)| = 3 and vt is
not contained in any chord or long chord of C. Let α ∈ L(vt) be a colour distinct
from the colours of the two edges vt−1vt and vtvt+1. Let G′ = G − vt and let L′ be a
list assignment of G′ defined as L′(x) = L(x) − {α} if x is a neighbour of vt distinct
from vt−1, vt+1, and L′(x) = L(x) otherwise. Then L′(x) contains 3 colours for each
interior vertex x of G′ and L′(x) contains at least 2 colours for each vertex x on the
outer face of G′, since vt is not contained in any chord of C. Moreover, since vt is not
contained in any long chord of C, it follows that each edge of G′ has at least one end
vertex x which has 3 permissible colours. By induction hypothesis, G′ is adaptably
L′-colourable. Any L′-colouring of G′ can be extended to an L-colouring of G by
colouring vt with colour α. So G is adaptably L-colourable.
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Figure 1: The construction of Hk.

4 Planar graphs without triangles at distance k

The distance between two triangles xyz and uvw is the minimum distance between a
vertex of {x, y, z} and a vertex of {u, v, w}. For any graph G, we denote by dt(G) the
minimum distance between two triangles of G. If G contains at most one triangle,
we take dt(G) to be infinite. Havel [8] asked the following question: is it true that
for some k, every planar graph G with dt(G) ≥ k is 3-colourable? Havel showed that
such an integer k is at least 2, disproving a conjecture of Grűnbaum. In [1], Aksionov
and L.S Mel’nikok proved that such a k is at least 4, and conjectured that the real
value should be 5.

Since triangle-free planar graphs are adaptably 3-choosable, it is interesting to
see if anything can be said about a relaxation similar to Havel’s problem : is there
an integer k, such that any planar graph G with dt(G) ≥ k is adaptably 3-choosable?
In the following, we prove that such a k does not exist: more precisely, for every k
we construct a planar graph where every two triangles are at distance at least 2k
apart, which is not adaptably 3-choosable.

Let us define the distance between two faces F1 and F2 of a graph as the minimum
distance between a vertex of F1 and a vertex of F2. A face containing exactly k
vertices is called a k-face. In the following, we construct inductively the plane graph
Hi, such that the following is verified at each step:

(a) Hi is triangle-free.

6
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1 2

b b

aaaa

b

a,b,3 a,b,3
b,1,2

a,1,2 a,1,2

x

w

y

z z′

u v

Figure 2: H(a, b).

(b) Hi contains exactly two 5-faces (the outer face and another face, say Fi). More-
over, the distance between these two faces is exactly i.

(c) Assume that the outer face is coloured with five distinct colours a, b, c, d and
e in clockwise order. Then there exist an edge-colouring Fi of Hi and a list
assignment Li with |Li(v)| = 3 for every vertex v which is not incident to the
outer face, such that Hi has a unique Li-colouring adapted to Fi. Moreover, this
colouring is such that Fi is coloured with a, b, c, d and e in clockwise order.

Let H0 be a 5-cycle. Then the three properties are trivially verified. Assume that
for some i ≥ 1, Hi−1 also verifies these properties. Fix five different colours a, b, c,
d, and e (in clockwise order) on the vertices of the outer face of Hi−1. By property
(3), there exist an edge-colouring Fi−1 of Hi−1 and a list assignment Li−1 with lists
of size three, such that Hi−1 has a unique Li−1-colouring adapted to Fi−1. In this
colouring, the vertices u, v, w, x, and y of the 5-face Fi−1 are coloured with a, b, c,
d and e respectively. Let Hi be the graph obtained from Hi−1 by adding five new
vertices inside Fi−1, as depicted in Figure 1. This figure also shows how to extend
Fi−1 and Li−1 to an edge-colouring Fi and a list-assignment Li of Hi.

Since u and w are coloured with a and c respectively, the new vertex v′ adjacent
to u and w must be coloured with b. The new vertex w′ adjacent to v′ and x must
be coloured with c; the new vertex x′ adjacent to w′ and y must be coloured with d;
the new vertex y′ adjacent to x′ and y must be coloured with e, and the new vertex
u′ adjacent to y′ and v′ must be coloured with a. The graph Hi is still triangle-free,
and only contains two 5-faces: the outer face and Fi = u′v′w′x′y′. Moreover these
two faces are at distance exactly i−1+1 = i. Hence, the graph Hi verifies properties
(a), (b), and (c). We denote by Gi the graph obtained from Hi by adding inside the
face Fi a 3-vertex z adjacent to u′, w′, and x′. We give the edges zu′, zw′ and zx′

colours a, c, and d respectively, and we assign the list {a, c, d} to z. Observe that the
graph Gi contains only one triangle (which is at distance i from the outer face), and

7
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that the colouring of the outer face cannot be extended to an adapted list-colouring
of Gi.

Let H(a, b) be the edge-coloured graph depicted in Figure 2. Assume that x and
y are coloured with a and b respectively. Then u and v must be coloured with 3,
and w must be coloured either 1 or 2. If it is coloured with 1, the 5-face xzwyu
has its vertices coloured with a, 2, 1, b and 3. Otherwise, the 5-face xvywz′ has its
vertices coloured with a, 3, b, 2, 1. Let G(a, b) be the graph obtained from H(a, b)
by plugging the widget Gk in each of the two 5-faces (that is, each of these two faces
becomes the outer face of a graph Gk). Using what has been done before, we know
that with a suitable edge-colouring of the two widgets, there exists a list assignment
with lists of size three, such that the colouring of H(a, b) cannot be extended to a
colouring of G(a, b). Hence, if x and y are coloured with a and b respectively, this
cannot be extended to an adapted list colouring of G(a, b).

Consider 9 copies of G(a, b), with (a, b) ∈ {4, 5, 6} × {7, 8, 9}, and identify all the
vertices x (resp. y) of these copies into a single vertex x∗ (resp y∗). Assign the colour
lists {4, 5, 6} and {7, 8, 9} to x∗ and y∗ respectively. Assume that there exists an
adapted list colouring f of this graph, then there exist no adapted list colouring of
the copy of G(f(x∗), f(y∗)), which is a contradiction. Hence, this planar graph is not
adaptably 3-choosable, and any two triangles are at distance at least 2k apart.

5 Planar graphs without 4-cycles

In this section, we prove that there exist planar graphs without 4-cycles, which are not
adaptably 3-colourable. Let H(a, b, c) be the edge-coloured graph depicted in Figure
3. Consider that {a, b, c} = {1, 2, 3}, and assume that the vertices u and v of H(a, b, c)
are coloured with a and b respectively. Then at least one of the vertices w and w′

is coloured with c. By symmetry, we can assume that w is coloured with c. Then x
must be coloured with a, y must be coloured with c, and z and z′ must be coloured
with b. It is easy to check that in this situation, the remaining subgraph induced the
vertices at distance one or two from z and z′ cannot be adaptably coloured. Hence, if
u and v are coloured with a and b, this colouring cannot be extended to an adapted
3-colouring of H(a, b, c).

For every 1 ≤ a ≤ 3, let b and c be the two colours from {1, 2, 3} distinct from
a. We denote by Ga the edge-coloured graph obtained from H(a, b, c) and H(a, c, b)
by contracting the two vertices u (resp. v) into a single vertex u∗ (resp.v∗). Observe
that in any adapted 3-colouring of Ga, if u∗ is coloured with a then v∗ is also coloured
with a.

8
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Figure 3: H(a, b, c).
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Figure 4: A planar graph without 4-cycle, which is not adaptably 3-colourable.
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Figure 5: H1(a) and H2(a, b).

Consider now an adapted 3-colouring of the construction of Figure 4, which does
not contain any 4-cycle. If the vertex u is coloured with 1 ≤ i ≤ 3, then the two
vertices xi and yi are both coloured with i, which is a contradiction since they are
linked by an edge coloured with i. Hence, this graph is not adaptably 3-colourable.

6 Planar graphs without 5-cycles

In this section, we prove that there exist planar graphs without 5-cycles, which are
not adaptably 3-colourable. For any {a, b, c} = {1, 2, 3}, let H1(a) and H2(a, b) be the
two C5-free planar graphs depicted in Figure 5. It is easy to check that in H1(a), if
the vertices u and v are coloured with a, then this colouring cannot be extended to an
adapted colouring of H1(a). Similarly in H2(a, b), if u and v are coloured respectively
with a and b (a 6= b), then this colouring cannot be extended to an adapted colouring
of H2(a, b).

Consider the three graphs H1(a) for 1 ≤ a ≤ 3, and the six graphs H2(a, b) with
1 ≤ a 6= b ≤ 3. Contract the nine vertices u (resp. v) of these graphs into a single
vertex u∗ (resp. v∗). Assume that there exists an adapted 3-colouring f of this graph.
If f(u∗) = f(v∗) then the copy of H1(f(u∗)) is not adaptably 3-colourable, which is
a contradiction. Otherwise f(u∗) 6= f(v∗) and the copy of H2(f(u∗), f(v∗)) is not
adaptably 3-colourable, which is also a contradiction. Hence, this graph is planar
and without 5-cycles, but is not adaptably 3-colourable.

10
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7 Conclusion

In this note, we proved that triangle-free planar graphs are adaptably 3-choosable,
whereas C4-free planar graphs and C5-free planar graphs are not even adaptably 3-
colourable. We also showed that for any k ≥ 0, there exist planar graphs without
triangles at distance k which are not adaptably 3-choosable. However, the question
remains open for adapted colouring:

Question 7.1 Is there an integer k, such that every planar graph G with dt(G) ≥ k
is adaptably 3-colourable?

If the answer to this question is negative, it implies that the answer to the original
problem of Havel is also negative, whereas a positive answer to the original problem
of Havel would imply a positive answer to Question 7.1.

In 1976, Steinberg conjectured that planar graphs without cycles of length 4 and 5
are 3-colourable (see [12] for a survey). We can ask the same for adapted 3-colouring
and adapted 3-choosability :

Question 7.2 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
colourable?

Question 7.3 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
choosable?

A weaker version of the problem of Steinberg was proposed by Erdős in 1991: he
asked what is the smallest i, such that every planar graph without cycles of length
4 to i is 3-colourable? The same can be asked for adapted 3-colouring and adapted
3-choosability:

Question 7.4 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-colourable?

Question 7.5 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-choosable?

Note that by [3], the answer of Question 7.4 is at most 7, and by [2, 18], the
answer of Question 7.5 is at most 9.
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