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Colorations a distance deux dans les graphes

Résumé : Dans cette thése, on s’intéresse en particulier a la coloration
du carré des graphes planaires (deux sommets a distance au plus deux ont
des couleurs distinctes) et a la coloration cyclique des graphes planaires
(deux sommets incidents a la méme face ont des couleurs distinctes).
On montre un résultat général qui implique que deux conjectures im-
portantes sur ces colorations (Wegner 1977 et Borodin 1984) sont vraies
asymptotiquement.

On s’intéresse également a d’autres colorations a distance deux, qui
ont des liens (plus ou moins vagues) avec 'allocation de fréquences dans
les réseaux radios, la théorie des jeux, la sociologie, et 1’écologie.
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Distance-two colorings of graphs

Abstract: In this thesis, we study the coloring of the square of planar
graphs (two vertices at distance at most two receive distinct colors) and
the cyclic coloring of plane graphs (two vertices incident to the same
face receive distinct colors). We show a general result implying that
two important conjectures on these colorings (Wegner 1977 and Borodin
1984) hold asymptotically.

We also study other types of distance-two colorings, (more or less) re-
lated to frequency assignment in radio networks, game theory, sociology,
and ecology.
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Introduction

Un des points de départ de cette these est le probleme d’allocation de
fréquences dans les réseaux. Dans un réseau radio, on cherche & assigner
des fréquences aux antennes de maniére a éviter les interférences. Pour
cela deux antennes trés proches I'une de 'autre doivent émettre sur des
fréquences trés éloignées, tandis que deux antennes relativement proches
doivent simplement émettre sur des fréquences suffisamment éloignées.

Ce probléme peut étre modélisé par le L(p, ¢)-étiquetage des graphes,
introduit par Griggs et Yeh [GY92|. Un L(p, q)-étiquetage d'un graphe
GG est une assignation d’entiers aux sommets de G telle que deux som-
mets adjacents recoivent des entiers distants d’au moins p, tandis que
deux sommets a distance deux dans G recoivent des entiers distants d’au
moins ¢q. On suppose en général que p > ¢, étant donné que deux an-
tennes trés proches sont plus sujettes aux interférences que deux antennes
relativement proches.

Le nombre \,, de G, noté X, ,(G), est le plus petit entier ¢ tel qu’il
existe un L(p, q)-étiquetage de G utilisant des étiquettes de {1,2,...,t}.
On remarque qu'un L(0, 1)-étiquetage d’un graphe G est équivalent a
une coloration propre de G, on a donc A\ o(G) = x(G). Si l'on définit le
carré G* d’un graphe G = (V, F) comme le graphe ayant pour ensemble
de sommets V' et dans lequel deux sommets sont adjacents s’ils sont a
distance au plus deux dans G, on observe qu'un L(1,1)-étiquetage de G
est exactement une coloration propre de G?; on a donc A ;(G) = x(G?).

En général, il est NP-difficile de déterminer le nombre A, , d’un graphe
[GMWO94]. Toutefois, il est possible d’obtenir des bornes intéressantes en
se restreignant a des classes de graphes spécifiques. Dans le Chapitre
2 on donnera des détails sur le L(p, ¢)-étiquetages des graphes planaires,
dans le Chapitre 3, on utilisera des résultats existants sur le L(p, q)-
étiquetage des graphes planaires de maille bornée, et enfin dans le
Chapitre 5, on étudiera le L(p, q)-étiquetage des graphes d’incidence.
Pour plus de détails sur le L(p, q)-étiquetage, le lecteur est invité a con-
sulter |Cal06].

Dans le cas des graphes de degré maximum A, il est facile de voir qu’en
appliquant un algorithme glouton on peut obtenir la borne Xy;(G) <
A% 4+ 2A + 1. Griggs et Yeh ont proposé la conjecture suivante:

Conjecture 1 [GY92] Pour tout graphe G de degré mazimum A > 2,
on a X1(G) <A+ 1.
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Cette borne est optimale étant donné que pour A = 2,3, 7 il existe
des graphes de diamétre deux et de degré maximum A ayant A?+1 som-
mets. Cette conjecture a été récemment prouvée pour A assez grand par
Havet et al. [HRS08| en utilisant des techniques de preuves probabilistes.

Etant donné que les antennes dans les réseaux radios sont générale-
ment réparties sur la surface de la terre, un intérét particulier a été ac-
cordé cette derniére décennie au L(p, ¢)-étiquetage des graphes planaires.
Dans le cas o p = g = 1, il est connu depuis une trentaine d’années
qu’il existe des graphes planaires Go de degré maximum A tels que
M1(Ga) = x(GR) = [2A] + 1. Wegner [Weg77] a conjecturé que cette
valeur est optimale.

Conjecture 2 [Weg77| Pour tout graphe planaire G de degré mazimum
A>8onax(G*)<|[3A]+1.

La premiére borne supérieure sur le nombre chromatique du carré des
graphes planaires en terme de A, x(G?) < 8 A — 22, était implicite dans
un manuscrit de Jonas [Jon93|. Cette borne a été ensuite améliorée par
Wong [Won96|, qui a montré x(G?) < 3A + 5 puis par Van den Heuvel
et McGuinness [HMO03], qui ont prouvé x(G?) < 2 A +25. De meilleures
bornes ont ensuite été obtenues pour des valeurs suffisamment grandes
de A. Agnarsson et Halldorsson [AHO0| ont montré x(G?) < [2A] +1
lorsque A > 750, et la méme borne lorsque A > 47 a ensuite été montrée
par Borodin et al. [BBGT01|. Molloy et Salavatipour [MS05| ont prouvé
que x(G?) < [3 A] + 78, et ont montré que la constante 78 pouvait étre
réduite lorsque A était suffisamment grand.

Récemment, Havet et al. ont montré le théoréme suivant :

Théoréme 3 [HHM™' 07| Pour tout p fixé et pour tout graphe planaire
G de degré mazimum A, on a X,1(G) < (24 0(1))A.

En prenant p = 1, cela implique que le carré de tout graphe planaire de
degré maximum A admet une coloration propre avec au plus (g +o(1))A
couleurs, ce qui ameéliore le résultat de Molloy et Salavatipour [MS05].
Notre but dans le Chapitre 2 est d’étendre leur approche a une famille
plus large de colorations a distance deux.

Une coloration cyclique d’un graphe planaire G' (dont le dessin dans
le plan est fixé) est une coloration des sommets de G telle que toute paire
de sommets incidents & la méme face recoive des couleurs différentes. Le
nombre minimum de couleurs dans une coloration cyclique de G est ap-
pelé le nombre chromatique cyclique de G, noté x*(G). Si on note A*(G)
la taille (nombre de sommets) de la plus grande face de G, il est clair que
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X*(G) > A*(G) pour tout graphe planaire G. Ore and Plummer [OP69],
qui ont introduit la notion de coloration cyclique, ont également montré
que pour tout graphe planaire G, on a x*(G) < 2 A*(G). Borodin [Bor84|
(voir également Jensen et Toft [JT95, page 37]) a proposé la conjecture
suivante :

Conjecture 4 [Bor84| Pour tout graphe planaire G, on a
X'(G) < [3A%(G)].

Il a donné des exemples montrant que cette borne était atteinte et
a prouvé la conjecture pour A* = 4. Pour des valeurs générales de A*,
la borne originale x*(G) < 2A*(G) d’Ore et Plummer [OP69] a été
améliorée par Borodin et al. [BSZ99], qui ont montré x*(G) < |2 A*(G)].
La meilleure borne connue dans le cas général est due a Sanders et
Zhao [SZ01]: x*(G) < [2 A%(G)].

En étudiant ces colorations, il apparait non seulement que les conjec-
tures de Wegner et de Borodin ont une ressemblance frappante, mais aussi
que les techniques utilisées pour obtenir des bornes sur la coloration du
carré et sur la coloration cyclique sont similaires. Pourtant, aucun lien
direct permettant de relier les deux colorations n’a été trouvé jusqu’a
présent.

Dans le Chapitre 2, on introduit une notion qui unifie la coloration
du carré et la coloration cyclique des graphes planaires, et on utilise des
idées de [HHM 07| pour prouver un résultat général [AEH08| impliquant
que :

e tout graphe planaire G admet une coloration cyclique avec au plus
(2 +0(1)) A*(G) couleurs ;

e tout graphe planaire G admet une coloration de son carré avec au
plus (2 4 0(1)) A(G) couleurs.

Notre preuve est légérement plus directe que la preuve de [HHMT07],
et améliore le résultat de Sanders et Zhao [SZ01]. De plus, notre résultat
améliore également la meilleure borne connue sur la taille d'une clique
maximale dans le carré d’un graphe planaire. Comme dans [HHM*07],
on réduit le probléme & un probléme de coloration par listes des arétes
d’un multigraphe, et on utilise ensuite le fait que l'indice chromatique
par listes est proche de 'indice chromatique fractionnaire.

On a vu dans ce qui précéde que le L(p, q)-étiquetage peut étre con-
sidéré comme une généralisation de la coloration du carré. Il existe une
autre généralisation qui permet d’établir des liens entre la coloration du
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carré et la coloration cyclique des graphes planaires. Une coloration p-
frugale d’un graphe G est une coloration propre des sommets de G telle
qu’aucune couleur n’apparait plus de p fois dans le voisinage d’un som-
met. Le nombre chromatique p-frugal de G, noté x,(G), est le nombre
minimum de couleurs dans une coloration p-frugale de G.

Cette coloration a été introduite par Hind, Molloy et Reed [HMRI7|
dans le but de montrer des résultats sur la coloration totale des graphes.
Une coloration totale d’'un graphe G est une coloration des sommets et
des arétes de G telle que (i) toute paire de sommets adjacents regoive des
couleurs distinctes, (ii) toute paire d’arétes incidentes regoive des couleurs
distinctes, et (iii) la couleur d’une aréte est distincte des couleurs de ses
extrémités. Le nombre minimum de couleurs dans une coloration totale
de G est appelé le nombre chromatique total de G, noté xT(G). A la fin
des années 60, Behzad [Beh65] et Vizing [Viz68| ont proposé de maniére
indépendante la conjecture suivante :

Conjecture 5 (Conjecture de la Coloration Totale)
Pour tout graphe G de degré mazimum A, xT(G) < A + 2.

Hind, Molloy et Reed [HMR97| ont prouvé que tout graphe de degré
maximum A suffisamment grand admet une coloration (log®A)-frugale
avec au plus A + 1 couleurs, et ont utilisé ce résultat pour en déduire
que tout graphe de degré maximum A suffisamment grand admet une
coloration totale avec A + log'A couleurs [HMR99.

Une coloration p-frugale peut aussi étre vue comme une coloration
propre dans laquelle toute paire de classes de couleurs induit une graphe
(biparti) de degré maximum au plus p. Le cas p = 1 étant équivalent
a la coloration du carré, il est intéressant de voir de quelle maniére la
conjecture de Wegner se généralise a la coloration p-frugale des graphes
planaires. Dans le Chapitre 3 on propose la conjecture suivante :

Conjecture 6 [AEHO7| Pour tout entier p > 1 et tout graphe planaire
G de degré mazimum A > max{2p, 8} on a

@) < { L%J + 2,  sip est pair ;
Xp =

b=

J + 2, st p est impair.

On prouve également des résultats sur les graphes planaires, les graphes
planaires de maille bornée, et les graphes planaire-extérieurs [AEHO7].
Pour cela, on montre qu’il existe des connections reliant la coloration
frugale, le L(p, q)-étiquetage, et la coloration cyclique des graphes.

Une aréte coloration p-frugale d’'un multigraphe G est une coloration
(potentiellement impropre) des arétes de G telle qu'aucune couleur
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n’apparait plus de p fois parmi les arétes incidentes & un sommet. Le
nombre minimum de couleurs dans une aréte coloration p-frugale de G est
appelé 'indice chromatique p-frugal de G, noté x,,(G). On peut observer
qu’une aréte coloration 1-frugale correspond exactement a une coloration
propre des arétes, on a donc x'(G) = x| (G) pour tout graphe G.

Hilton et al. [HSSO1] ont prouvé que lorsque p est pair, tout graphe
vérifie x(G) = [% A(Gﬂ. Dans le Chapitre 3 on montre que quand p

est impair, tout multigraphe G vérifie x,(G) < {%&GN.

Lorsque p = 2, une coloration p-frugale des sommets d’un graphe
G est une coloration propre telle que 1'union de toute paire de classes
de couleurs est un graphe de degré maximum au plus deux (une union
disjointe de chaines et de cycles). De maniére surprenante, il y a peu de
différences si 'on autorise seulement I'union de toute paire de classes de
couleurs a étre une forét de chaines. Une coloration linéaire d’'un graphe
G est définie comme une coloration propre des sommets de G telle que
I'union de toute paire de classes de couleurs est une forét de chaines (une
forét de degré maximum au plus deux).

Cette coloration, équivalente & une coloration acyclique et 2-frugale,
a été introduite par Yuster [Yus98|, qui a prouvé que tout graphe de de-
gré maximum A admet une coloration linéaire avec O(A2) couleurs (la
méme borne avait été montrée dans le cas de la coloration 2-frugale par
Hind et al. [HMRO7]). Dans le Chapitre 4, on étudie plusieurs classes
de graphes, comme les graphes de degré borné, les graphes planaires,
les graphes planaires de degré moyen maximum borné, et les graphes
planaire-extérieurs [EMROS|, et on obtient (la plupart du temps) des ré-
sultats assez proches des résultats obtenus pour la coloration 2-frugale
dans le Chapitre 3. On étudie également la complexité de la coloration
linéaire : on montre que déterminer si un graphe planaire biparti de degré
maximum trois admet une coloration linéaire avec au plus trois couleurs
est un probléme NP-complet.

Pour tout graphe G, soit G* le graphe d’incidence de G, c’est-a-dire le
graphe obtenu a partir de GG en remplacant chaque aréte par une chaine de
longueur (nombre d’arétes) deux. On peut remarquer que les colorations
a distance deux dans les graphes d’incidence ont une signification partic-
uliére : pour tout graphe G, la coloration du carré de G* est par exemple
équivalente a une coloration totale de G.

Un L(p, 1)-étiquetage de G* correspond & une assignation d’entiers
aux sommets de G telle que (i) toute paire de sommets adjacents recoive
des entiers distincts, (ii) toute paire d’arétes incidentes regoive des entiers
distincts, et (iii) les entiers assignés a une aréte et a ses extrémités sont
distants d’au moins p. Cet étiquetage est appelé un (p, 1)-étiquetage total
de G, et le plus petit entier ¢ tel qu'il existe un (p, 1)-étiquetage total
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de G utilisant des étiquettes de {1,...,t} est appelé le nombre (p,1)-
total AJ(G) de G. Cette notion a été introduite par Havet et Yu [HY08],
et correspond exactement a la coloration totale quand p = 1. Havet et Yu
ont proposé une conjecture qui généralise la Conjecture de la Coloration
Totale :

Conjecture 7 [HYO08] Si G est un graphe de degré mazimum A, on a
A(G) < A+ 2p.

Dans le Chapitre 5 on étudie le nombre (p,1)-total des graphes
clairsemés et on montre que pour tout 0 < € < %, et, pour tout entier
p, il existe une constante C, . telle que tout graphe eA-clairsemé G de
degré maximum A vérifie \[(G) < A + Cp,. [EMRO6]. Cela implique
notamment que les graphes aléatoires du modéle Erdos-Rényi satisfont
cette propriété avec une probabilité tendant vers 1 lorsque A tend vers

l'infini.

Nous avons également étudié les colorations a distance deux sous
I’angle d’un jeu a deux joueurs. Alice et Bob colorient chacun leur tour
et de maniére propre le carré d’un graphe (a chaque étape, toute paire
de sommets a distance au plus deux doit avoir des couleurs distinctes).
Si le jeu s’arréte avant que tous les sommets ne soient coloriés, Bob est
le vainqueur et sinon c’est Alice qui gagne. Dans le Chapitre 6, on
étudie des stratégies gagnantes pour Alice dans les arbres, les graphes
planaires-extérieurs, les 2-arbres partiels, et les graphes planaires [EZ08].

On peut remarquer qu’une stratégie gagnante dans un graphe G ne
I’est pas nécessairement dans un sous-graphe H de G. De plus, avoir
une stratégie gagnante avec k couleurs ne garantit pas qu’il existe une
stratégie gagnante avec k+ 1 couleurs. Pour ces raisons, I’étude de ce jeu
a deux joueurs nécessite d’utiliser des techniques de preuve profondément
différentes des techniques utilisées dans les chapitres précédents.

Dans le chapitre final, on montre comment utiliser des techniques de
coloration a distance deux pour obtenir des informations sur la structure
des graphes. La bozicité d’'un graphe G = (V| F) est le plus petit entier
k pour lequel il existe k graphes d’intervalle G; = (V, E;), 1 <i < k, tels
que F = E; N ...N Ey. Les graphes de boxicité au plus d sont exacte-
ment les graphes d’intersection de boites en dimension d. La boxicité des
graphes a été introduite par Roberts [Rob69| et a de nombreuses appli-
cations dans les réseaux sociaux et dans les réseaux écologiques. Le cas
d = 2 correspond également a un probléme de gestion de parc automobile.

Dans le Chapitre 7, on utilise une coloration a distance deux spéci-
fique pour montrer que les graphes de degré maximum A ont une boxicité
au plus A? 4 2 [Esp08|.

okoskokok
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En annexe, nous ajoutons a ce mémoire des articles sur la coloration
orientée des graphes planaire-2-extérieurs [EO07a|, la densité des graphes
de cordes de maille au moins cinq [EO07b], les graphes universel-induits
[ELOO07|, la coloration acyclique impropre des graphes de degré maxi-

mum borné [AEK'07], et la coloration adaptable des graphes planaires
[EMZ08].
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Introduction

One of the main motivations of the work presented in this manuscript
is the channel assignment problem: in a radio or mobile phone network,
we need to assign radio frequency bands to transmitters (every station is
assigned an integer, which corresponds to a specific channel). In order to
minimize interference, the separation between the channels assigned to
two stations that are very close must be sufficiently large. Additionally,
two stations that are close (but not very close) must also receive channels
that are sufficiently far apart.

This problem may be modelled by L(p, q)-labellings of graphs, first
introduced by Griggs and Yeh [GY92|. An L(p, q)-labelling of a graph
G is an assignment of integers to the vertices of (G in such way that any
two adjacent vertices receive integers that differ by at least p, and any
two vertices at distance two receive integers that differ by at least g. We
often assume that p > ¢, since very close stations are more subject to
interference than close stations.

The A, ,-number of G, denoted by \,,(G), is the smallest ¢ such
that there exists an L(p, g)-labelling of G using labels from {1,2,... t}.
Observe that an L(0, 1)-labelling of a graph G is equivalent to a proper
coloring of G, so A1 o(G) = x(G). Define the square G* of a graph
G = (V,E) as the graph with vertex set V in which two vertices are
adjacent if they are at distance at most two in G, then an L(1, 1)-labelling
of a graph G is exactly a proper coloring of G2, thus A\ ;(G) = x(G?).

In general, it is NP-hard to determine the A, ,-number of a graph
|[GMW94]. However, general bounds can be given for specific classes of
graphs. In Chapter 2 we will give details about L(p, q)-labellings of
planar graphs, in Chapter 3, we will use existing results on L(p, q)-
labellings of planar graphs with bounded girth, and in Chapter 5, we
will study L(p, q)-labellings of incidence graphs. For a survey on L(p, q)-
labellings of graphs, the reader is referred to [Cal06].

For a graph G with maximum degree A, it is easy to see that a
greedy algorithm gives the bound A\o1(G) < A% + 2A + 1. Griggs and
Yeh conjectured the following:

Conjecture 1 [GY92] For every graph G with mazimum degree A > 2,
we have Ay 1(G) < A + 1.

This bound would be tight since for A = 2,3, 7 there exist graphs
with diameter two, maximum degree A, and order A? + 1. This con-
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jecture was recently proved for large enough A by Havet et al. [HRSO0S|
using probabilistic techniques.

Since transmitters are in general spread over the surface of the earth,
a particular interest has been shown over the last decade for L(p,q)-
labellings of planar graphs. For the case p = ¢ = 1, its is known for
more that thirty years that there exist planar graphs G with maximum
degree A such that x(G4) = [2A]+1. Wegner [Weg77| conjectured that
this is optimal:

Conjecture 2 [Weg77| For any planar graph G of mazimum degree
A > 8 we have x(G*) < [2A] + 1.

The first upper bound on x(G?) for planar graphs in terms of A,
X(G?) < 8 A —22, was implicit in the work of Jonas [Jon93|. This bound
was later improved by Wong [Won96| to x(G?*) < 3A + 5 and then by
Van den Heuvel and McGuinness [HMO03| to x(G?) < 2A + 25. Bet-
ter bounds were then obtained for large values of A. It was shown that
x(G?) < [2A] +1 for A > 750 by Agnarsson and Halldorsson [AHO0],
and the same bound for A > 47 by Borodin et al. [BBGT01]. Molloy and
Salavatipour [MS05] proved that x(G?) < [2 A] + 78, and showed that
the constant 78 could be reduced for sufficiently large A. For example,
it was improved to 24 when A > 241.

Recently, Havet et al. proved the following:

Theorem 3 [HHMT07]| For any fized p, and any planar graph G of
mazimum degree A, we have \,1(G) < (2 4+ 0o(1))A.

If we take p = 1, this theorem implies that the square of any planar
graph with maximum degree A can be colored with (2 + o(1))A colors,
which improves the result of Molloy and Salavatipour [MS05]. Our aim in
Chapter 2 is to extend their approach to a wider family of distance-two
colorings.

A cyclic coloring of a plane graph G (a planar graph with a pre-
scribed embedding) is a vertex coloring of G such that any two vertices
incident to the same face have distinct colors. The minimum number of
colors required in a cyclic coloring of a plane graph G is called the cyclic
chromatic number x*(G). Denote by A*(G) the size (number of vertices
in its boundary) of a largest face of G. It is clear that x*(G) > A*(G)
for any plane graph G. Ore and Plummer [OP69|, who introduced the
concept of cyclic coloring, also proved that for any plane graph G, we
have x*(G) < 2 A*(G). Borodin [Bor84| (see also Jensen and Toft [JT95,
page 37]) conjectured the following:



18

Conjecture 4 [Bor84| For a plane graph G of mazimum face degree A*
we have x*(G) < |2 A*].

He gave examples showing that this would be best possible and also
proved Conjecture 4 for A* = 4. For general values of A*  the origi-
nal bound x*(G) < 2A* of Ore and Plummer [OP69] was improved by
Borodin et al. [BSZ99] to x*(G) < |2 A*|. The best known upper bound
in the general case is due to Sanders and Zhao [SZ01]: x*(G) < [2 A*].

The main point is that not only Wegner’s and Borodin’s conjectures
look the same, but the proof techniques used in order to obtain bounds
on the chromatic number of the square and the cyclic chromatic number
are very similar. However, it seems that no one ever found a direct con-
nection between these two colorings.

In Chapter 2, we introduce a notion that unifies colorings of the
square and cyclic colorings of plane graphs, and then use ideas from
[HHM*07] to prove a general result [AEH08| implying that

e every planar graph G admits a cyclic coloring with at most (% + o 1))
A*(G) colors;

e every planar graph GG admits a coloring of its square with at most
(2 +0(1)) A(G) colors.

Our proof is slightly more direct than the proof of [HHM™07]|, and
improves the result of Sanders and Zhao [SZ01|. Besides, our result also
improves the best known bound on the size of a largest clique in the
square of a planar graph. As in [HHM*07], we reduce the problem to a
list edge coloring problem, and then use the fact that the list chromatic
index is close from the fractional chromatic index.

Another way to relate cyclic coloring and coloring of the square of
plane graphs is through frugal coloring. A p-frugal coloring of a graph G
is a proper coloring of the vertices of GG such that no color appears more
than p times in the neighborhood of a vertex. The p-frugal chromatic
number of G, denoted x,(G), is the smallest number of colors in a p-
frugal coloring of G.

This coloring was introduced by Hind, Molloy and Reed [HMR97| in
order to obtain bounds on the total coloring of graphs. A total coloring
of a graph G is a coloring of the vertices and edges of G so that (i) any
two adjacent vertices have distinct colors, (ii) any two incident edges
have distinct colors, and (iii) the color of any edge is distinct from the
colors of its ends. The minimum number of colors in a total coloring of
G is called the total chromatic number of G, denoted x* (G). In the late
sixties, Behzad [Beh65] and Vizing [Viz68| independently proposed the
following conjecture:
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Conjecture 5 (The Total Coloring Conjecture) For any graph G
with mazimum degree A, xT(G) < A + 2.

Hind, Molloy and Reed [HMR97| proved that any graph with large
enough maximum degree A has a (log®A)-frugal coloring using at most
A + 1 colors, and used this result to prove that any graph with large
enough maximum degree A has a total coloring with A + log'’A col-
ors [HMR99).

A p-frugal coloring can also be seen as a proper coloring such that
any two color classes induce a (bipartite) graph with maximum degree
p. The case p = 1 is equivalent to a coloring of the square of G, so it is
interesting to see how Wegner’s conjecture can be generalized to frugal
coloring of planar graphs. In Chapter 3 we propose the following con-
jecture:

Conjecture 6 [AEHOT7| For any integer p > 1 and planar graph G with
mazimum degree A > max{2p, 8} we have

{ L%J +2, if pis even;

Xp(G) < L
: L%ﬁ:ﬂ + 2, if pis odd.

We also prove results on planar graphs, planar graphs with given
girth, and outerplanar graphs [AEH07]. To show these results, we relate
frugal coloring with L(p, ¢)-labelling of graphs and cyclic coloring of plane
graphs.

A p-frugal edge coloring of a multigraph G is a (possibly improper)
coloring of the edges of G such that no color appears more than p times
on the edges incident with a vertex. The least number of colors in a
p-frugal edge coloring of GG, the p-frugal chromatic index of GG, is denoted
by x,(G). Remark that for p = 1 we have x| (G) = x/(G), the usual
chromatic index of G.

Hilton et al. [HSSO1] proved that for even p, any multigraph G sat-
isfies x,(G) = [% A(G)]. In Chapter 3 we prove that for odd p, any

multigraph G satisfies x;,(G) < [33?,(_6;)

L which is optimal.

When p = 2, a p-frugal coloring of the vertices of a graph G is such
that the union of any two color classes is a graph with maximum degree
two (a union of paths and cycles). Surprisingly, there are only few differ-
ences if we only allow the union of any two color classes to be a union of
paths: define a linear coloring of a graph G as a proper coloring of the
vertices of GG such that the subgraph induced by any two color classes is
a forest of paths (a forest with maximum degree at most two), then a
linear coloring is exactly an acyclic and 2-frugal coloring.
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This coloring was introduced by Yuster [Yus98|, who proved that any
graph with maximum degree A has a linear coloring with O(A%) col-
ors (the same bound was proven by Hind et al. for 2-frugal coloring
in [HMR97]). In Chapter 4, we study several classes of graphs, such
as planar graphs, planar graphs with bounded maximum average degree,
outerplanar graphs [EMRO8|, and we obtain bounds which are (most of
the time) close from the bounds obtained for the 2-frugal chromatic num-
ber in [AEHO7]|. We also study complexity aspects of linear coloring: we
show that deciding whether a bipartite planar graph with maximum de-
gree three admits a linear coloring with three colors is an NP-complete
problem.

For a graph G, let G* be the incidence graph of GG, that is the graph
obtained from G by inserting one vertex along each edge. Observe that
an L(p, 1)-labelling of G* corresponds to an assignment of integers to
the vertices and edges of G such that two adjacent vertices have distinct
integers, any two incident edges have distinct integers, and the difference
between the integer assigned to an edge and the integers assigned to its
ends is at least p. This coloring is called a (p, 1)-total labelling of G, and
the smallest ¢ such that there exists a (p, 1)-total labelling of G using
labels from {1,2,...,t} is the (p, 1)-total number A (G) of the graph G.
This coloring was introduced by Havet and Yu [HYO08|, and corresponds
exactly to the notion of total coloring when p = 1. Havet and Yu proposed
the following conjecture, which generalizes the total coloring conjecture:

Conjecture 7 [HYO08] Let G be a graph with mazimum degree A, then
MA(G) < A+ 2p.

In Chapter 5 we study the (p, 1)-total number of sparse graphs and
prove that for any 0 < € < %, and for any integer p, there exists a con-
stant C), . such that every ¢A-sparse graph G with maximum degree A
satisfies \J(G) < A+ Cp . [EMRO6]. This implies that Erdés-Rényi ran-

dom graphs satisfy this property asymptotically almost surely.

Consider a two player game in which Alice and Bob alternatively color
the square of a graph G properly (that is, at any step, any two vertices
at distance at most two in G have distinct colors). If the game stops
before all the vertices are colored, Bob wins and otherwise Alice wins. In
Chapter 6, we study winning strategies for Alice in trees, outerplanar
graphs, partial 2-trees, and planar graphs [EZ08].

Observe that if we have a winning strategy for a graph G, we cannot
necessarily use it to obtain a winning strategy in a subgraph H of G.
Furthermore, having a winning strategy with k colors for a graph G does
not mean that we have a strategy with k£ + 1 colors for G. As a conse-
quence, we have to use completely different techniques than the one used
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in the previous chapters.

In the final chapter, we show how to use distance-two colorings to
obtain specific information on the structure of graphs. The bozicity of a
graph G = (V, E) is the smallest integer k for which there exist k interval
graphs G; = (V, E;), 1 <1i < k, such that E = E;N...NEy. Graphs with
boxicity at most d are exactly the intersection graphs of (axis-parallel)
d-dimensional boxes. Boxicity of graphs has been introduced by Roberts
[Rob69] and has several applications in social networks and ecology. The
case d = 2 also corresponds to a fleet maintenance problem.

In Chapter 7, we use a specific distance-two coloring to prove that
graphs with maximum degree A have boxicity at most A? + 2 [Esp08].

KRRk oK

In appendix, we add articles about oriented coloring of 2-outerplanar
graphs [EOO0T7a|, the density of circle graphs with girth at least five
[EOO07b], induced-universal graphs [ELOO7|, acyclic improper colorings
[AEKT07], and adapted coloring of planar graphs [EMZ08|.
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1.1 Graph theory

Most of the terminology and notation we use in this thesis is standard
and can be found in any text book on graph theory (such as [BM76] or
[Die05]). For the French terminology, please refer to [Ber69).

1.1.1 Basic definitions

A graph is a pair G = (V(G), E(G)) of sets, such that F(G) C {{z,y},x,y € G =
V(G)}. The elements of V(G) are called the vertices of G, whereas the (V(G), E(@))
elements of F(G) are called the edges of G. We usually write zy or yz

instead of {x,y} when considering an edge. If e = zy is an edge of a

29
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graph G, the vertices x and y are said to be incident with or to the edge
e. The two vertices incident to an edge e are called the end points, or end
vertices of e. Two vertices x and y are adjacent or neighbors in a graph
G if zy is an edge of G. Two edges e # f are said to be incident if they
have a common end vertex.

The number of vertices of a graph G is called the order of G. Most of
the graphs we consider in this thesis are finite (they have finite order),
and simple : for any edge zy, x # y (we say that there are no loops) and
for any two vertices x and y, there is at most one edge xy (we say that
there are no multiple edges). Such requirements correspond exactly to
the definition of graphs given above. In Chapters 2 and 3, however, we
will study multigraphs (graphs with multiple edges). The only difference
is that in this case, F(G) is a multiset (instead of a set).

A subset U of vertices of a graph G is called a stable or independent
set if any two vertices of U are non adjacent in G. If any two vertices of
U are adjacent in G, the set U is called a clique of G.

1.1.2 Relations between graphs

We say that ¢ : V(G) — V(H) is a homomorphism between G and H,
if for every edge zy of G, p(z)p(y) is an edge of H. The existence of a
homomorphism between G and H is denoted by G — H.

Two graphs G and H are said to be isomorphic if there exists a bi-
jective homomorphism between GG and H. Usually, we do not make any
distinction between isomorphic graphs. In other words, when considering
a graph G, we implicitly consider the equivalence class for the relation
being isomorphic to containing the graph G.

Let G = (V,E) and G’ = (V', E’) be two graphs. If V' C V' and
E C FE’ we say that G is a subgraph of G’, denoted by G C G'. It G C G’
and G contains all the edges zy € E’' with x,y € V, we say that G is
the subgraph of G’ induced by V', or more simply that G is an induced
subgraph of G, and we denote thisby G = G'[V]. [ G C G"and V =V,
we say that G is a spanning subgraph of G'.

We now define basic operations on graphs. Let G be a graph and U
be a subset of vertices of G. We denote by G — U the graph obtained
from G by removing all the vertices from U as well as the edges incident
to any vertex of U. Observe that G — U is the subgraph of G induced by
V(G)\U. If U is a single vertex u, we write G —u instead of G —{u}. Let
F be a subset of edges of G, we denote by G — F' (or G — f if F' = {f})
the graph obtained from G by removing all the edges from F. We call
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these two operations the deletion of vertices and edges from G.

Let e = zy be an edge of a graph G. We denote by G/e the graph
obtained from G by deleting the vertices x and y and adding a vertex z
adjacent to all the neighbors of x or y in G. This operation is called the
contraction of the edge e.

If a graph G can be obtained from a subgraph of H by a sequence of
edge contractions, we call G a minor of H, denoted by G < H.

1.1.3 Degree and neighborhood

Let G' be a non-empty graph and x be a vertex of G. The set of vertices
adjacent to x in G is called the neighborhood of x, denoted Ng(z) or N(x)
when the graph G is clear from the context. The number of neighbors of
the vertex x in G is called the degree of z in G, denoted dg(z) or d(x)
when G is clear from the context.

We call k-verter (resp. Sk-verter, Zk-verter) a vertex of degree k
(resp. at most k, at least k). If for some k, all the vertices of G are
k-vertices, then G is said to be k-regular, or regular. A 3-regular graph
is also called a cubic graph.

The value §(G) = min{d(z),z € V(G)} is called the minimum degree
of G and the value A(G) = max{d(z),z € V(G)} is called the mazimum
degree of GG. Let n and m be the order and the number of edges of G.
The value ad(G) = >, cy(g) d(v)/n = 2m/n is called the average degree
of G. The mazimum average degree of G, denoted by mad(G), is the
maximum of ad(H) over all subgraphs H of G.

If for some integer k, any subgraph H of G is such that §(H) < k, then
G is said to be k-degenerate. Observe that every graph G is [mad(G)]|-
degenerate, and every k-degenerate graph has maximum average degree
at most 2k.

1.1.4 Distance

A path P is a graph with vertex set V = {xg,x1,..., 2z} and edge set
E = {xgx1, 2129, ..., 5171}, where all the x; are distinct vertices and
k > 0 is an integer. We often write P = xgx;...x; to denote such a
path, and say that P is path between zq and zy (resp. between xj and
xg), or from xq to xy (resp. from xyp to xy). The number of edges in a
path is called the length of the path. A path of length £ is denoted by F.

The graph obtained from a path P = xqgx; ... x;_; by adding an edge
between x(y and x;_ is called a cycle of length k, denoted by Cj. We also

Gle
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call k-cycle (resp. =k-cycle, Zk-cycle) a cycle of length k (resp. at most
k, at least k). The girth g(G) of a graph G is the length of a shortest
cycle contained by G. If G does not contain any cycle, we set g(G) to be
infinite. An edge joining two non-consecutive vertices of a cycle is called
a chord. An induced cycle in a graph G is a chordless cycle of G (that is,
a cycle which is an induced subgraph of G).

The distance dg(x,y) or d(x,y) of two vertices x and y in G is the
length of a shortest path between z and y in G (if such a path does not
exist, we set d(x,y) to be infinite). Given a graph G, the square of G,
denoted G2, is the graph having the same vertex set as G, with an edge
between any two different vertices that have distance at most two in GG
(see Figure 1.1).

G G?

Figure 1.1: The square of G.

1.1.5 Connectivity

Let G be a non-empty graph. If for any two vertices x and y of GG, there is
a path in GG between x and y, then G is said to be connected. A maximal
connected subgraph of G is called a component of G. If a vertex x of G
is such that G — z has more components than G, then z is said to be a
cut-verter of G. If an edge e of GG is such that G —e has more components
than GG, then e is said to be a bridge of G.

A graph G is said to be k-connected if for some integer k > 1, G has
at least k + 1 vertices and the graph G — X is connected for any set X
of at most k£ — 1 vertices of G.

1.1.6 Trees and bipartite graphs

A graph without cycles is called a forest, and a connected forest is called
a tree. A vertex of degree 1 in a tree is called a leaf. Observe that a path
P = xqxy ... 21 is a tree with exactly two leaves: xy and x;. Sometimes
we distinguish one vertex of a tree, and call it the root. In this case, we
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say that we consider a rooted tree.

A graph G is bipartite if its set of vertices can be partitioned into two
sets V and V', such that every edge of GG has one end point in V' and the
other one in V’. Observe that forests are bipartite. A bipartite graph
is said to be a complete bipartite graph if it contains all possible edges
between the two sets V" and V"’ of the bipartition. The complete bipartite
graph with m vertices in the first set and n vertices in the second set is
denoted by K, .

1.1.7 Some classes of graphs

In this subsection, we define some classes of graphs that will be studied
throughout this thesis.

The graph with n vertices and all possible edges is called the complete
graph of order n, denoted by K,.

A plane graph is a graph drawn in the plane in such a way that there
is no crossing of edges. A planar graph is a graph that admits a drawing
in the plane with this property. An outerplanar graph is a planar graph
that can be drawn in the plane without crossing of edges, in such a way
that every vertex lies on the outer face.

A graph is chordal if it contains no cycle of length at least four as
an induced subgraph. A clique of G is a set a pairwise adjacent vertices
of G. For any integer k > 1, a k-tree is a chordal graph in which every
(inclusion-) maximal clique as order exactly k + 1. A partial k-tree is a
subgraph of a k-tree. For example, the class of partial 2-trees is exactly
the class of graphs which do not contain the complete graph K, as a
minor.

The treewidth of a graph G, denoted by tw((G), is the smallest integer
k such that G is a partial k-tree.

1.2 Graph coloring

For some integer k > 1, a (proper) k-coloring of the vertices of G is a map
c: V(G) — {1,...,k} such that for every edge xy of G, c(z) # c(y).
The elements from {1, ..., k} are called colors, and the set of all vertices
colored with a specific color is called a color class. Observe that a proper
coloring of a graph is a partition of its set of vertices into color classes,
each of which is an independent set. If a graph admits a k-coloring, it is
said to be k-colorable. The smallest k£ such that a graph G is k-colorable
is called the chromatic number of G, denoted by x(G).

tw(Q)
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A list assignment L : V(G) — 2N on the vertices of a graph is a
map which assigns to each vertex v of the graph a list L(v) of prescribed
integers. If for some integer ¢, every list has size at least ¢, then L is
called a t-list assignment.

Let L be a list assignment on the vertices of a graph G. A color-
ing ¢ of the vertices of G' such that for any vertex v, c¢(v) € L(v) is
called an L-coloring of GG. If such a coloring exists, then G is said to be
L-colorable. The list chromatic number or choice number ch(G) is the
minimum value ¢, so that for every ¢-list assignment L on the vertices of
G, the graph G is L-colorable.

The concept of choosability was introduced by Vizing [Viz76|, and
Erdos, Rubin, and Taylor [ERT79|. This generalization of the notion
of coloring has been applied to various problems, especially to the field
of coloring under constraints ((a, b)-choosability [Tuz97|, k-improper -
choosability [EH99, Skr99], acyclic choosability [BFK*02]).

G L(G)

Figure 1.2: The line graph of G.

For any graph G = (V, E), we define the line graph L(G) of G to be
the graph with vertex set E, where two vertices u,v € E are adjacent in
L(G) if and only if the corresponding edges are incident in G (see Figure
1.2 for an example).

The smallest integer k, such that the edges of a graph G can be
colored with k& colors in such a way that any two incident edges have
distinct colors, is called the chromatic index of G, denoted by X'(G).
Such a coloring is called a (proper) edge coloring of G. Note that y'(G) =
X(L(G)). We also define the list chromatic index ch'(G) of G as the choice
number of the line graph of G.

1.3 Probabilistic tools

In this section, we recall some notions of discrete probabilities, as well as
some useful probabilistic tools, as they appear in [MR02].
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We only consider experiments which have a finite number of possible
outcomes. For example when tossing a coin, there are only two pos-
sible outcomes: head and tail. The set of all possible outcomes of an
experiment is called the sample space, denoted by Q. A finite probabil-
ity space (£, Pr) consists of a sample space 2 and a probability function
Pr : Q — [0,1] (where [0, 1] denotes the closed real interval between 0
and 1) such that:

Z Pr(z) = 1.

e
When considering a probability function verifying Pr(z) = 1/|Q| for
every = € (), we say that the distribution is uniform.
We extend Pr to 29 (the set of events) by setting for every A C Q :

Pr(A) =Y Pr(z)

€A

If we denote by A the event that A does not occur, then we have :

1. Pr(A) =1-Pr(A),

2. Pr(AuB) =Pr(A) + Pr(B) — Pr(AN B),

3. Pr (UzlzlAl) S Z?:l PI'(AZ)

The conditional probability of A given B, denoted by Pr(A|B), is
defined as the ratio between Pr(A N B) and Pr(B). Two events A and
B are said to be independent if Pr(A|B) = Pr(A), or equivalently if

Pr(An B) = Pr(A)Pr(B). A set of events & is mutually independent if
for any subset {Ag, ..., A,} of £, we have

Pr (A()‘ ﬂ?:l Az) = PI‘(A())

Note that a set of events which is pairwise independent (every two events
are independent) is not necessarily mutually independent. We also say
that an event A is mutually independent from a set of events £ if for any
subset {By, ..., B,} of £, we have

Pr (Al N, B;) = Pr(A).

A random variable defined on a probability space (£2, Pr) is a function
X :Q — R. The expected value, or expectation of a random variable X

E(X) =) Pr(z)X(z).

e

A major property of expectation is its linearity : E (31, X;) = > | E(X;).

The conditional expectation of X given B, denoted by E(X|B) is equal

Pr(A|B)

E(X[B)
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t0 D ,cqy Pr(X = 2|B), where Qx denotes the range of X. Note that
linearity of expectation extends to conditional expectation :

if X = ZXZ, then E(X|B) = ZE X;|B).

=1

The next results characterize the concentration of random variables
with specific properties, in other words they give bounds on the probabil-
ity that the value taken by a random variable is close from its expectation.

Lemma 1.1 (Simple Concentration Bound) Let X be a random vari-
able determined by n independent trials T1, ..., T, and satisfying:

1. Changing the outcome of any one trial can affect X by at most c.

Then,

2

Pr(|X — E(X)| > ) < 2¢ 22

Lemma 1.2 (Talagrand’s Inequality) Let X be a non-negative ran-
dom wvariable, not identically 0, which is determined by n independent
trials Ty, ..., T,, and satisfying the following for some c¢,r > 0 :

1. Changing the outcome of any one trial can affect X by at most c.

2. For any s, if X > s then there is a set of at most rs trials whose
outcomes certify that X > s.

Then for any 0 <t < E(X),

Pr <\X —E(X)| > t+60c rE(X)) < Lo~ TEEE)

Lemma 1.3 (McDiarmid’s Inequality) Let X be a non-negative ran-
dom variable, not identically 0, which is determined by n independent tri-
als 11, ..., T, and m independent permutations Iy, ..., 1L, and satisfying
the following for some ¢, >0 :

1. Changing the outcome of any trial can affect X by at most c.

2. Interchanging two elements in any one permutation can affect X
by at most c.

3. For any s, if X > s then there is a set of at most rs choices whose
outcomes certify that X > s.

Then for any 0 <t < E(X),

+2

Pr <‘X —E(X)| > t+60c rE(X)) < 4e 8ErEX)
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We denote by BIN(n,p) the variable which is the sum of n variables
each of which is 1 with probability p and 0 with probability 1 — p. The
expectation of BIN(n,p) is known to be np, so the next result gives a
bound on the concentration of BIN(n, p).

Lemma 1.4 (Chernoff Bound) For any 0 <t < np:
Pr (|BIN(n, p) — np| > t) < 2e~7/3.

It is easy to see that if {A;,... A,} is a mutually independent set of
events with Pr(A4;) < 1 for every i, then with positive probability, none
of the events occur. The last result shows that under certain assumption,
the same is true even if the events are not mutually independent.

Lemma 1.5 (Lovasz Local Lemma) Consider a set £ of (typically
bad) events such that for each A € €

1. Pr(A) <p<1, and

2. A is mutually independent of a set of all but at most d of the other
events.

If 4pd < 1 then with positive probability, none of the events in £ occur.
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Chapter 2

Coloring of the square and
cyclic coloring
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In this chapter, we prove a general result on the structure of planar
graphs, which implies that

e the vertices of any planar graph with maximum degree A can be
colored with (% + 0(1)) A colors, in such a way that any two vertices
at distance at most two apart have distinct colors;

e the faces of any plane graph with maximum degree A can be colored
with (% + 0(1)) A colors, in such a way that any two faces sharing
a vertex have distinct colors.
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40 Introduction

2.1 Introduction

The Four Color Theorem can be stated as follows: the faces of any plane
graph can be colored with four colors, such that any two faces sharing
an edge have distinct colors. In [OP69], Ore and Plummer considered
the same problem, but requiring that any two faces sharing a vertex have
distinct colors.

To study this problem, it is convenient to consider the corresponding
vertex coloring problem: a cyclic coloring of a plane graph G is a vertex
coloring of GG such that any two vertices incident to the same face have
distinct colors. The minimum number of colors in a cyclic coloring of G
is called the cyclic chromatic number x*(G).

A list version of this coloring can also be considered: the least integer
t such that for any ¢-list assignment L, there exists a cyclic coloring ¢ of
G satisfying c(v) € L(v) for every vertex v of G is called the cyclic choice
number of G, denoted by ch*(G).

Let us denote by G* the dual graph of GG, that is the plane graph in
which the vertices are the faces of G, and such that two vertices are adja-
cent in G* if and only if the corresponding faces share an edge. Clearly, a
cyclic coloring of G* is a coloring of the faces of GG in which any two faces
sharing a vertex have distinct colors. If we denote the size of the largest
face of any plane graph H by A*(H), we clearly have A*(G*) = A(G).
Ore and Plummer [OP69| proved that any plane graph G has a cyclic
coloring with at most 2A*(G) colors, which implies that the faces of
any plane graph with maximum degree A can be colored with 2A col-
ors in such a way that any two faces sharing a vertex have distinct colors.

From now on, we forget about the original face coloring problem, and
concentrate on cyclic coloring of plane graphs. Borodin [Bor84| ( see also
Jensen and Toft [JT95, page 37|) conjectured the following:

Conjecture 2.1 [Bor84] Any plane graph G has a cyclic coloring with
|3 A%(G)]| colors.

Additionally, he proved this conjecture for A* = 4. The best known
upper bound in the general case is due to Sanders and Zhao [SZ01|, who
proved that any plane graph G has a cyclic coloring with [g A*(Gﬂ col-
ors. Observe that Borodin’s conjecture is optimal: in the graph depicted
in Figure 2.1(a), every pair of vertices is incident to the same face, and
must receive distinct colors in any cyclic coloring. There are 3k + 1 ver-
tices, and every face has size 2k + 1, hence at least L% A*J colors are
necessary.
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In this chapter, we relate cyclic coloring with another vertex coloring
of graphs. Recall that the square G? of a graph G is the graph with
vertex set V(G), with an edge between any two different vertices that
have distance at most two in G. The chromatic number of G2, denoted
X(G?), is the least number of colors needed in a proper coloring of G*:
that is, such that any two adjacent vertices of G* have distinct colors (or
equivalently, such that any two vertices at distance at most two in G have
distinct colors). A conjecture by Wegner [Weg77| about the chromatic
number of planar graphs has been the starting point of several articles,

the most recent of which proves an asymptotic version of the conjecture
[HHM*07].

Conjecture 2.2 [Weg77| For a planar graph G of mazimum degree
A > 8 we have x(G*) < |3 A] + 1.

Observe that Wegner’s conjecture is also optimal. In the graph de-
picted in Figure 2.1(b), all the vertices except z are pairwise at distance
at most two. Hence the graph needs at least 3k + 1 = L% AJ -+ 1 colors,
since A = 2k.

. k—1
vertices
(a)

Figure 2.1: (a) A graph showing that Borodin’s conjecture is optimal (b) A graph
showing that Wegners’s conjecture is optimal.

k vertices

An L(p, q)-labelling of a graph G is an assignment of integers to the
vertices of G in such way that any two adjacent vertices receive integers
that differ by at least p, and any two vertices at distance two receive
integers that differ by at least g. The A, ,-number of G, denoted by
Ap.q(G), is the smallest integer ¢ such that there exists an L(p, ¢)-labelling
of G using labels from {1,2,... t}.

Of course we can also consider the list version of L(p, ¢)-labellings.
Given a graph G, the list A, ,-number, denoted )\é,q(G), is the smallest
integer ¢ such that, for every t-list assignment L on the vertices of G,
there exists an L(p, q)-labelling f such that f(v) € L(v) for every ver-
tex v.
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Havet et al. recently proved the following result, which implies that
Wegner’s conjecture holds asymptotically:

Theorem 2.3 [HHM™07] For any fized p, and any planar graph G with
magimum degree A, we have X, |(G) < (3 + o(1)) A.

Although Wegner’s and Borodin’s conjectures seem to be tightly re-
lated, nobody has ever been able to bring to light a direct connection
between them. Most of the results approaching these conjectures use the
same ideas, but at this point (as far as we know), no one proved a general
theorem implying a result on the coloring of the square and a result an
the cyclic coloring of plane graphs.

This is exactly our approach in this chapter: we define a coloring that
generalizes both the coloring of the square and the cyclic coloring of plane
graphs, and we prove a result on this coloring which implies asymptotic
versions of both conjectures.

Let A and B be two subsets of the vertex set V. (Note that we
do not require A and B to be disjoint.) An (A, B)-coloring of G is an
assignment of colors to the vertices in B so that:

e  vertices of B that are adjacent must receive different colors, and
e  vertices of B that have a common neighbor from A must receive
different colors.

When each vertex v € B has its own list L(v) of colors from which
its color must be chosen, we talk about a list (A, B)-coloring.

We denote by x(G; A, B) the minimum number of colors required for
an (A, B)-coloring to exist. Its list variant is denoted by ch(G; A, B), and
is defined as the minimum integer ¢ so that for every t-list assignment L(v)
to the vertices v € B, there exists a proper (A, B)-coloring of G in which
the vertices in B are assigned colors from their own lists. Notice that we
trivially have x(G) = x(G; @, V) and x(G?) = x(G;V,V); and the same
relations hold for the list variant.

For a vertex v € V, let Ng(v) = N(v) N B, and dg(v) = |Ng(v)| (so
dg(v) = dy(v)). If we set A(G;A,B) = max{dp(v) | v € A}, then
it is clear that we always need at least A(G; A, B) colors in a proper
(A, B)-coloring.

Our main result in this chapter is the following:

Theorem 2.4 [AEHO8| Let G be a planar graph and A, B C V. Then
ch(G;A,B) < (1+0(1)) % A(G; A, B).

In other words, for all € > 0, there exists D, so that for all D > D,
we have : If G is a planar graph, with A, B CV so that A(G; A, B) < D,
and L is a list assignment so that each vertex v in B gets a list L(v) of at
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least (% +€) D colors, then there exists an (A, B)-coloring of G in which
the vertices in B are assigned colors from their own lists.

A trivial lower bound for the (list) chromatic number of a graph G is
the clique number w(G), the maximal size of a clique in G. For (A, B)-
colorings, where A, B C V', we can define the following related concept.
An (A, B)-clique is a subset C' C B so that every two different ver-
tices in C' are adjacent or have a common neighbor in A. Denote by
w(G; A, B) the maximal size of an (A, B)-clique in G. Then we trivially
have ch(G; A, B) > w(G; A, B), and so Theorem 2.4 means that for a
planar graph G we have w(G; A, B) < (1+0(1)) 2 A(G; A, B).

But in fact, the structural result we use to prove Theorem 2.4 fairly
easily gives a better estimate.

Theorem 2.5 [AEHO8| Let G be a planar graph and A, B C V. Then
w(G; A, B) < 3A(G; A, B)+ O(1).

We now discuss two special consequences of these results. These spe-
cial versions of Theorems 2.4 and 2.5 also show that the term % [ in these
results is best possible.

Since ch(G?) = ch(G;V, V), as immediate corollaries of Theorems 2.4
and 2.5 we obtain.

Corollary 2.6 The square of every planar graph G of maximum de-

gree A has list chromatic number at most (1 + o(1)) 2 A.

Corollary 2.7 The square of every planar graph G of maximum de-
gree A has clique number at most %A +O(1).

In order to show that our Theorem 2.4 provides an asymptotically best
possible upper bound for the cyclic chromatic number of plane graphs G,
we need some extra notation. For each face f of G, add a vertex xy
and call Xz the set of vertices that were added to (G. For any face f
of G, and any vertex v incident with f, add an edge between v and z;.
We denote by G* the graph obtained from G by this construction, so
V(GY) = V(G)U Xpg. Observe that a (list) (Xg, V(G))-coloring of G*" is
exactly a cyclic (list) coloring of G' and that A(GF; X5, V(G)) = A*(G).
We get the following corollary of Theorem 2.4.

Corollary 2.8 FEvery plane graph G of maximum face degree A* has
cyclic list chromatic number at most (14 o(1)) 3 A*.

For a plane graph G, the cyclic cligue number w*(G) is the maximal size
of a set C' C V so that every two vertices in C' have some face they are
both incident with. Note that the plane graph depicted in Figure 2.1(a)
satisfies w*(G) = 3k = L% A*J. This shows that the following corollary
of Theorem 2.5 is best possible, up to the constant term.
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Corollary 2.9 FEvery plane graph G of maximum face degree A* has
cyclic clique number at most %A* +O(1).

To prove Theorems 2.4 and 2.5 we can as well assume that A contains
all vertices of degree at most A(G; A, B). To simplify things, define
B = {v eV | dg(v) < B}. So to prove Theorems 2.4 and 2.5 it is
enough to prove the following theorems.

Theorem 2.10 For all real € > 0, there exists a (3. so that the following
holds for all 3 > (.. Let G be a planar graph, with B C V a set of
vertices, and suppose every vertexr v € B has a list L(v) of at least (% +
6) B colors. Then a list (BP, B)-coloring of G with those colors erist.

Theorem 2.11 There exist constants vy, 31 so that the following holds
for all B > B1. Let G be a planar graph, with B C V a set of vertices.
Then every (B, B)-clique in G has size at most %ﬂ + 1.

The main steps in the proof of Theorem 2.10 can be found in Section 2.2.
The proof relies on two technical lemmas; the proofs of those can be
found in Section 2.3. After that we use one of those lemmas to provide
the relatively short proof of Theorem 2.11 in Section 2.4. In Section 2.5
we discuss some of the aspects of our work, give details about the main
differences with the proof of [HHM™07], and discuss open problems re-
lated to (list) (A, B)-coloring of graphs.

2.2 Proof of Theorem 2.10

We use the terminology and notation from the previous section. Through-
out this section we assume that G = (V, E) is a plane graph with B C V|
and [3 is a positive integer. Recall the notation U° = {v € V | dy(v) <
3} for a subset U C V. Note that this means that V7 is the set of all
vertices of degree at most (3

Our goal is to show that for all ¢ > 0, if we take 3 large enough,
then for every assignment L(v) of at least (% + 5) 3 colors to the vertices
v € B, there is a list (B?, B)-coloring of G where each vertex in B receives
a color from its own list. In other words, we want an assignment c¢(v) for
each v € B so that:
e for all v € B we have ¢(v) € L(v);
e forall u,v € B with uv € E we have c¢(u) # ¢(v); and
e forallu,v € B with a common neighbor in B” (i.e., with a common

neighbor of degree at most (3) we have c(u) # ¢(v).
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2.2.1 The First Steps

A [B-neighbor of v is a vertex u # v, so that v and v are adjacent, or u
and v have a common neighbor in B®. Denote the set of S-neighbors of v
by N?(v), and its number by d”(v). Note that we have

d’(v) < d()+ Y (d(u)-1).

u€EN (v)NBP

For P, C V, the set of edges between P and @) is denoted by E(P,Q),
and the number of edges between P and @ by e(P, Q) (edges with both
ends in P N (Q are counted twice ).

An important tool in our proof of Theorem 2.10 is the following struc-
tural result.

Lemma 2.12 There exist constants v,v', so that for all 5 > ~ and
plane graphs G = (V, E) we have that G contains one of the following :

(S1) a vertex with degree zero or one;

(S2) a face f and two vertices u,v on the boundary of f with d(u) +
3 7.
d(v) < B and d°(u) < 5 B;
(83) two disjoint nonempty sets X,Y C VP with the following proper-
ties:
(i) Every vertex y € Y has degree at most four. Moreover, y is
adjacent to exactly two vertices of X and the other neighbors
of y have degree at most four as well.

Fory e Y, let XY be the set of its two neighbors in X. And for
W C X, let YW be the set of verticesy € Y with XY C W (that is,
the set of vertices of Y having their two neighbors from X in W ).

(ii) For all pairs of vertices y,z € Y, if y and z are adjacent or
have a common neighbor w ¢ X, then XY = X*.

(iii) For all nonempty subsets W C X, we have the following
inequality :

(W, VA\W) < e(W,Y) +e(W, Y\ YY) +5[W].

The proof of Lemma 2.12 can be found in Subsection 2.3.1. In the proof
we obtain v = 132 and 7' = 1060, values that are probably far from best
possible. The important point, to our mind, is that these are constant.
We continue with a description how to apply the lemma to prove
Theorem 2.10, assuming that > 4/. We use induction on the number
of vertices of G. By Lemma 2.12, G contains one of (S1), (S2) or (S3).

(S1) If G contains a vertex v of degree at most one, we consider the
graph G obtained from G by removing v. If v ¢ B, then a
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list (B”, B)-coloring of G is also a list (B, B)-coloring of G.
Otherwise set B; = B\ {v}. Now find a list (B/, B;)-coloring
of Gy, and give an appropriate color to v at the end. This is
always possible since v is in conflict with at most [ other vertices,
and we have (% + 5) B > [+ 1 colors available for v.

(S2) Let f be a face with two vertices u,v on its boundary such that
d(u) + d(v) < f and d°(u) < 3 6. In this case we construct a
new planar graph Gy by identifying v and v into a new vertex w.
Set Vo = (V' \ {u,v}) U{w}, and notice that G has strictly fewer
vertices than G, and w has degree at most dg(u)+dg(v) < (in Gs.
In other words, w € Vf. If v ¢ B, then set By = B. Otherwise,
set By = (B \ {u,v})U{w} and give w a list of colors L(w) with
L(w) = L(v).

By induction there exists a list (BS, By)-coloring of Gy. We
define a coloring of G as follows: every vertex different from u
and v keeps its color from the coloring of G5. If v € B, then we
color v with the color given to w in Gy. And if v € B, then we
use the assumption, dg(u) < %ﬂ, and hence there exists a color
for u different from the color of all the vertices in conflict with w.
We color u with one of these colors. It is easy to verify that this
defines a list (B, B)-coloring of G.

(S3)  This is the only non-trivial case. In the remaining of this sub-
section we describe how to reduce this case to a list edge-coloring
problem. In the next subsection, we then describe how Kahn’s
approach to prove that the list edge-chromatic number is asymp-
totically equal to the fractional edge-chromatic number can be
used to conclude the proof of Theorem 2.10.

Let X and Y be the two disjoint sets as in (S3). This means that every
vertex in X has degree at most 5. Also recall that by (S3)(i), every
vertex y € Y has degree at most four. Moreover, y is adjacent to exactly
two vertices of X and the other neighbors of y have degree at most four
as well. As in (S3), let X¥ be the set of the two neighbors of y in X.

Suppose there is a vertex y € Y with y ¢ B. If N(y) = XY, then
contract y to one of its two neighbors in X¥. If y has a neighbor u
outside XV, then contract the edge uy. Call the resulting graph Gjs. It is
easy to check that a list (B”, B)-coloring of (i3, which exists by induction,
also is a proper list (B”, B)-coloring of G.

So from now on we assume that all vertices in Y are contained in B.

Let Yy be the set of vertices from Y with no neighbor outside X UY".
Consider the graph G[V \ Yp] induced on the set of vertices outside Yj.
For every vertex y € Y\ Yy with a unique neighbor u outside X UY', or
with exactly two neighbors v and v outside X UY, contract the edge yu
into a new vertex u*. The graph obtained is denoted by Gy. And let B,
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be the union of B\ Y, and all new vertices u* that originated from an
edge yu with v € B.
By the construction of Gy, it is easy to verify the following statement.

Claim 2.13 For all u € V(Gy) we have (No(u) \'Y) C Ngo(u).

For each vertex u* of By corresponding to the contraction of an edge uy
(y € Y\Yy) in G, set Lo(u*) = L(u) and for all other vertices v of By
set Lo(v) = L(v). By the induction hypothesis, the graph Gy admits a
list (Bg , Bp)-coloring ¢q with respect to the list assignment L.

We now transform this coloring into a list (B, B)-coloring of G with
respect to the original list assignment L. For each vertex u € B\Y, if an
edge incident to u has been contracted in the construction of Gy to form
a new vertex u*, set c(u) = co(u*). Otherwise set c(u) = ¢o(u). Using
Claim 2.13, this is a good partial (B”, B)-coloring of all the vertices of
B\ Y. The difficult part of the proof is to show that ¢ can be extended
to Y.

By assumption, at the beginning every vertex in Y has a list of at
least (% + 5) [ available colors. For each vertex y in Y, let us remove
from L(y) the colors which are forbidden for y according to the partial
(B?, B)-coloring ¢ of G. In the worst case, these forbidden colors are
exactly the colors of the vertices of V'\ Y at distance at most two from y.

Let us define the multigraph H as follows: H has vertex set X. And
for each vertex y € Y we add an edge e, between the two neighbors of y
in X (in other words, between the two vertices from X¥). We associate
a list L(e,) to e, in H by taking the list of y obtained after removing the
set of forbidden colors for y from the original list L(y). Finally, for every
edge e in G[X], we add the same edge e to H and associate a list L(e) of
at least (% + 8) B colors to such an edge. (The colors within these lists
are irrelevant for what follows, we just have to make sure that the lists
of these specific edges of H are large enough. )

We now prove the following lemma.

Lemma 2.14 A list edge-coloring for H, with the list assignment L de-
fined as above, provides an extension of ¢ to a list (B, B)-coloring of G
by giving to each vertex y € Y the color of the edge e, in H.

Proof. This follows from property (S3)(ii) in Lemma 2.12: for every
two vertices y,z € Y, if y and 2 are adjacent or have a common neighbor
w ¢ X, then X¥ = X*. This proves that the two vertices adjacent in Y
or with a common neighbor not in X define parallel edges in H and so
will have different colors. If two vertices y; and yo of Y have a common
neighbor in X, e,, and e,, will be adjacent in A and so will get different
colors. Since we have already removed from the list of vertices in Y the
set of forbidden colors (defined by the colors of the vertices in V'\ V'),
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there will be no conflict between the colors of a vertex from Y and a
vertex from V'\ Y. We conclude that the edge coloring of H will provide
an extension of ¢ to a list (B”, B)-coloring of G. [

The following lemma provides a lower bound on the size of L(e) for the
edges e in H.

Lemma 2.15 Let e = uv be an edge in H. Then we have
L) = (3 +¢) B — (da(u) — dr(u)) — (da(v) — du(v)) — 10.

Proof. If e originated because there was already an edge in G[X], then by
construction we have |L(e)| > (%—1—6) (3. On the other hand, suppose that
e = e,, i.e., e originated because of a vertex y € Y in G with X¥ = {u, v}.
Let Z be the set of vertices adjacent in G to y in V' \ X. Then by (S3),
|Z] < 2 and |Ng(Z)\ Y| < 6. The colors that are forbidden for y are
the colors of {u, v}, plus the colors of vertices in (Ng(u) U Ng(v)) \ 'Y,
plus the colors of vertices in (Z U Ng(Z)) \ Y. The number of vertices in
these three sets add up to (dg(u) — dy(u)) + (dg(v) — dg(v)) + 10. The
lemma follows. |

In the remainder of this subsection, we apply Lemma 2.12 to obtain
information on the density of subgraphs in H, which we will need in the
next subsection. As in Lemma 2.12, for all non-empty subsets W C X,
we define YW as the set of vertices y € Y with X¥ C W (that is, the set
of vertices of Y having their two neighbors from X in ). By (S3)(iii)
we have:

cc(W.VAW) < eg(W,Y) +ea(W, Y\ YY)+~ [W].
This inequality has the following interpretation in H.

Lemma 2.16 For all non-empty subsets W C X( =V (H)) we have

> (da(w) —du(w)) < en(W, X\ W) +7y[W|.

Proof. We partition Eq(W,V \ W) into three parts Fi, Fy and FEj as
follows: For E; we take the set of edges from W to V' \ (X UY), i.e.,

|Ey| = ec(W,V\(XUY)) = > (dg(w)—dg(w)). The set E5 contains the
weW
edges from W to Y, |Ey| = eq(W,Y), and Ej is the set of edges from W

to X \ W in G. By (S3)(iii) (see also the inequality for eq(W,V \ W)
above ), we have

|Er| + | Bo| + B3| < ec(W,Y) +ec(W, Y \Y™) + 4| W].
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Note that eq(W, Y \YW) = eg(W, X \ W) — eq(W, X \ W) and |Es| =
eq(W,Y'). This results in the following stronger inequality, which in turn
implies the lemma:

By + |Es] < eg(W, X\ W) — |Es| +~|W],
and so

> (da(w) = du(w)) < eq(W, X\ W) —2|Ey| +~|W|.
weW l

At this point, our aim will be to apply Kahn’s approach to the multi-
graph H with the list assignment L, to prove the existence of a proper
list edge-coloring for H. This is described in the next subsection.

We summarize the properties we assume are satisfied by the multi-
graph H and the list assignment L of the edges of H. For these conditions
we just consider dg(v) as an integer with certain properties, assigned to
each vertex of H.

(H1) For all vertices v in H we have dy(v) < dg(v) < .

(H2) For all edges e =uv in H: |L(e)| > (2 +¢) —_(dg(u) —dy(u))—
(dg(v) - dH(U)) — 10.
(H3) For all non-empty subsets W C V(H): > (dg(w) — dy(w)) <

weW
e (W, X \ W)+~ |W]|, for some constant ~.

2.2.2 The Matching Polytope and Edge-Colorings

We briefly describe the matching polytope of a multigraph. More about
this subject can be found in [Sch03, Chapter 25].

Let H be a multigraph with m edges. Let M(H) be the set of all
matchings of H, including the empty matching. For each M € M(H), let
us define the m-dimensional characteristic vector 1,; as follows: 1, =
(®e)ecr(m), where z, = 1 for an edge e € M, and z. = 0 otherwise. The
matching polytope of H, denoted by MP(H ), is the polytope defined by
taking the convex hull of all the vectors 1,, for M € M(H).

Edmonds [Edm65] gave the following characterisation of the matching
polytope:

Theorem 2.17 [EAm65] A vector ¥ = (z.) is in MP(H) if and only if
e > 0 for all x. and the following two types of inequalities are satisfied :
e  For all verticesv € V(H) : > T < 1;

e: v incident to e
o for all subsets W C V(H) with |W| >3 and |W| odd: > x. <
ecE(W)
3 (W=1).
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The significance of the matching polytope and its relation with list edge-
coloring is indicated by the following important result. Recall the nota-
tion \MP(H)={ Az |2z € MP(H)}, for a real number \.

Theorem 2.18 [KahO00] For all real numbers 6,11, 0 < 6 < 1 and u > 0,
there exists a As,, so that for all A > As,, the following holds. If H is a
multigraph and L is a list assignment of colors to the edges of H so that

e  H has maximum degree at most A;
o forall edgese c E(H): |L(e)| > nA;

e the vector ¥ = (x.) with x, = for alle € E(H) is an element

of (1—6) MP(H).
Then there exists a proper edge-coloring of H where each edge gets a color
from its own list.

b
| L(e)|

The theorem above is actually not explicitly stated this way in [Kah00],
but can be obtained from the appropriate parts of that paper. For fur-
ther details, the reader is referred to [AEHOS].

The next lemma shows how to use Theorem 2.18 to complete the
induction.

Lemma 2.19 Let vy be a real number. Then there exists K, > 0, so that
for all K > K., the following holds. Let H be a multigraph, so that for
each verter v an integer D(v) is assigned and for each edge e a positive
real number b, is given. Suppose that the following three conditions are
satisfied :

(H1’) For all vertices v in H : d(v) < D(v) <

(H2’) For all edges e = wv in H: b, > (2
(D(v) = d(v)).

(H3’) For all non-empty subsets W C V(H): Y (D(w) — d(w)) <

et (W.V(H)\ W) + 1V -

B.
+ K) = (D(u) = d(u)) -

Then for all edges e € E(H) we have b, > %ﬂ. And the vector
1
7 = (x.) defined by x, = ™ foree€ E(H) is an element of MP(H).

The proof of Lemma 2.19 will be given in Subsection 2.3.2. This
lemma guarantees that for all € > 0, there exists a 3., so that for all
B > . Theorem 2.18 can be applied to a multigraph H with an edge list
assignment L satisfying properties (H1) - (H3) stated at the end of the
previous subsection.
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To see this, take 0 < 0. = 3757 < 1. In order to be able to apply

Theorem 2.18, we want to prove the existence of .. such that for any
B > B the vector ¥ = (x.), x. = W16)|7 is in (1 — 6.)MP(H). Let K,
be the number given by Lemma 2.19. By condition (H2) we have

(1= )L = (1 8)((3 + ) B~ (D(w) — d(w) — (D(v) — d(v)) — 10)
(1-6)(3 +¢) 8~ (D(u) — d(u)) — (D(v) — d(v)) ~ 10
= (26+358) — (D(w) - d(u)) — (D(v) — d(v)) - 10.

2
2

Let 3., = M For 8 > (.., we have
(1= 0)[L(e)l = (38 + K;) — (D(u) — d(u)) — (D(v) = d(v)).

So by Lemma 2.19, for b, = (1 — 6.)|L(e)|, the vector & = (2), z, =

F—;ag)xe is in MP(H). We infer that ¥ € (1—6.)MP(H) and the lemma
ollows.

Now assume (3 > max{ "', ., As.1/2 } (where v, are determined
by Lemma 2.12, 3., and ¢, are related to K, from Lemma 2.19 as ex-
plained above, and Aj_/, is according to Theorem 2.18). Then using
Lemma 2.19, we can now apply Theorem 2.18 which implies that the
multigraph H defined in Subsection 2.2.1 has a list edge-coloring cor-
responding to the list assignment L. Lemma 2.14 then implies that
the coloring ¢ can be extended to a list (B?, B)-coloring of the origi-
nal graph G. This concludes the induction and also completes the proof
of Theorem 2.10. [

2.3 Proofs of the Main Lemmas

We use the terminology and notation from the previous sections.

2.3.1 Proof of Lemma 2.12

In what follows, we take v = 132 and 7' = 1060. So take $ > 1060 and
let G be a plane graph. We need some further notation and terminology.

The set of faces of GG is denoted by F. For a face f, a boundary walk
of f is a walk consisting of vertices and edges as they are encountered
when walking along the whole boundary of f, starting at some vertex.
The degree of a face f, denoted d(f), is the number of edges on the
boundary walk of f. Note that this means that if f is incident with a
bridge (cut edge) of G, that bridge will be counted twice in d(f). The
size of a face f is the number of vertices on its boundary. We always
have that the size of f is at most d(f), with strict inequality if and only
if the face has a cut vertex on its boundary.
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We start by proving that we can assume that G is a 2-connected
triangulation of the plane. First suppose that GG is not connected. Then
we can take two vertices u, v from different components so that adding
the edge uv to G gives a simple plane graph G'.

Next, consider the case that GG is connected but contains a face f
of degree more than three. If this face contains a vertex v that is a
cut vertex, then the vertices v and w that come before and after v on
a boundary walk of f are different and not adjacent. Form the simple
plane graph G’ by adding the edge uw to G. If f contains no cut vertex,
then it has four vertices uy, us, u3, u4 that are consecutive on a boundary
walk. And since GG is planar, at least one of the pairs uy, us and g, uy
are not adjacent. Form the simple plane graph G’ by adding an edge
between one of these non-adjacent pairs.

Suppose G’ contains one of the structures (S1)—-(S3) in the lemma.
We claim that then also G contains one of these structures. This is
obvious if G’ contains (S1) or (S2). So suppose G’ has sets X, Y according
to (S3), and let uv be the edge that was added to G to give G'.

It is easy to check that exactly the same pair X,Y works for G as
well in the following cases: if {u,v} N (X UY) =g, orifu,v € X, or if
u,veY,orifueYandve V\(XUY) Ifue Xandv e V\ (XUY),
then going from G’ to G for W C X with x € W, we loose one on the
left hand side of the inequality in (iii). Hence the pair X, Y also works
for G. If u € X and v € Y, then in G either v has degree at most one,
and then G contains structure (S1), or v is adjacent to one vertex x € X
and at most two more vertices of degree at most four. But then v has a
neighbor w with d(v) + d(w) < 7 < 3. Moreover, since € X C V7, we
have d’(v) <8+ 3 < 2 3. Hence in this case G contains structure (S2).
Finally, the possibilities v € Y and v € V \ (X UY), or v € X and
ueV\(XUY), orve X and u € Y, can be done by symmetry with
the cases above.

So, by adding edges we can transform G to a connected graph G*
in which each face has degree three (which implies that G* is indeed 2-
connected ) and so that if G* satisfies the lemma, then so does G. Hence
we might as well assume the following:

(a) The graph G is 2-connected and all its faces have degree three.

Now suppose that G does not contain any of the structures (S1) or (S2).
In order to prove Lemma 2.12, we only need to prove that G contains
structure (S3). We can observe that :

(b)  All vertices have degree at least three. (Since G does not con-
tain (S1), degrees must be at least two. And we cannot have a
vertex of degree two, since otherwise, for each face to have degree
three, we have a multiple edge as well. )

(c)  For all pairs of adjacent vertices u,v we have d(u) + d(v) > 3 or
d’(u) > 3 3 (otherwise we have structure (S2)).
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Let B C V, the big vertices, be the vertices of degree at least 133; the
other vertices are called small. Define B = BNV? ( the big vertices with
degree at most 3) and B> = B\ B°.

(d) If a vertex u of degree three has a small neighbor, then its other
two neighbors are in BP.

This follows since if u has a small neighbor v, then d(u) + d(v) < 3. But
then, by observation (c), we must have d°(u) > % (3, which is only possible
if both its other neighbors are in B” (note that a neighbor from B>? adds
at most one to d’(u)).

In the same way we can prove:

(e) If a vertex of degree four has a small neighbor, then it also has at
least two neighbors from BP.

(f) A vertex u of degree five has at least two big neighbors (otherwise
we have d°(u) < 5+4-(132—1)+(8—1) < 23, since § > 1060).

We continue our analysis using the classical technique of discharging.

Give each vertex v € V an initial charge u(v) = 2d(v) — 4. Using the
fact that every face has degree three, Euler’s Formula |V| —|E|+ |F| = 2

can be rewritten as > u(x) = —8.
eV
We next redistribute initial charges according to the following rules:
(R1) Each vertex of degree three that is adjacent to three big vertices

receives a charge 2/3 from each of its neighbors.

(R2) Each vertex of degree three that is adjacent to two big vertices
receives a charge 1 from each of its big neighbors.

(R3) Each vertex of degree four that is adjacent to four big vertices
receives a charge 1/3 from each of its big neighbors.

(R4) Each vertex of degree four that is adjacent to three big vertices
receives a charge 4/9 from each of its big neighbors.

(R5) Each vertex of degree four that is adjacent to two big vertices
receives a charge 2/3 from each of its big neighbors.

(R6) Each vertex of degree five receives a charge 1/3 from each of its
big neighbors.

Denote the resulting charge of an element v € V after applying rules
(R1)—(R6) by 1/(v). Since the global charge has been preserved, we have

> w'(v) = —8. We will show that for most v € V', p/(v) is non-negative.
veV
Combining observations (d) — (f) with rules (R1) — (R6) and our knowl-

edge that p(v) = 2d(v) — 4, we find that 4/(v) = 0 if d(v) = 3,4, while
p'(v) >0 if d(v) = 5.

For a small vertex v with d(v) > 6, we have p/(v) = p(v) =
4> 0.

So we are left to consider vertices v € B. The plane embedding of G
imposes a clockwise order on the neighbors of v. If u is a neighbor of v,
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then by v~ (resp. u*) we indicate the neighbor of v that comes before
(resp. after) w in that order. Similarly, we denote by =~ (resp. u™™)
the neighbor of v that comes before u~ (resp. after u*) in the same
order.

Let us take a vertex v € B>#. We distinguish 5 different types of
neighbors of v:

N3(v) = {u e N(v) | d(u) =3 and all neighbors of u are big };

Nyo(v) = {u € N(v) | d(u) =4 and all neighbors of u are big };

Ny(v) = {u e N(v) | d(u) =4 and u has exactly one small neighbor };
N;(v) = {ue Nw) |du)=>5};

Ng(v) = {ue N(v)|d(u) >6}.

Notice that each neighbor of v is in one of these sets. (For a neighbor of
degree three, this follows from observation (d). And for a neighbor u of
degree four, it follows from observation (e) that, since v € B>?, if u has
a small neighbor, then the remaining two neighbors are in B”.)

Moreover, by observation (d) we must have that if v € N3(v), then
u”,ut € Ng(v). Similarly, if u € Ny,(v), then we also have v, u" €
Ng(v). While if uw € Nyg(v), then at least one of v, ut is in Ng(v).
Set n3g = |N3(v)|, naa = |Naa(v)], sy = |Nup(v)|, ns = |N5(v)|, and
neg = |Ng(v)|. From the previous observation, we deduce

Ne = N3+ Nag + 5 Mab-
We also have, using y(v) = 2 d(v) — 4 and applying rules (R1), (R3),

(R4) and (R6), that

w(v) = %d(v) —4- %713— %714(1 - %mb— %715-
Combining this with d(v) = ng 4+ n4, + n4p + 15 + ng and %nﬁ > %ng +

1 1
3 Nda + 5 Nap, We find

w(v) = §n6+%n4a+§n4b+%n5—4
> 106+ 3 N3+ 3 Mg + 15 Nay + 515 — 4
Z %(n6+n3+n4a+n4b+n5)—4
> +d(v)—4 > 0.

So we found that for all v & B” we have p/(v) > 0, and hence we must

have
Z Wv) < —8<0.

veEBP

To derive the relevant consequence of that formula, we must make a de-
tailed analysis of the neighbors of a vertex v € B”. We again distinguish



Proof of Lemma 2.12 55

different types of neighbors of v:

Mi(v) = {ue N@w) | {u,u ", ut,u™}NB° £a};

My, (v) = {ue N(w)\ Mi(v) | d(u) =4 and v~ or v have degree at least five };
My (v) = {u€ N(w)\ Mi(v) [ d(u) = d(u”) = d(u”) = 4};

Ms(v) = {ue N()\ My(v) | d(u) =5}

Mg(v) = {ue N(v)\ M(v) | d(u) >6}.

First observe that if « € N(v)\ M;(v) is a small vertex, then u~
and u™ both have degree at least four: Assume that u~ has degree three,
then by observation (d) the neighbor w of u~ distinct from v and u is
in B%. By observation (a), w = u~~, which contradicts the fact that
u ¢ Mi(v). If u™ has degree three, we find that u™+ € B%, which again
contradicts u ¢ M;(v).

As a consequence, every neighbor of v is in exactly one set. Our aim
in the following, in order to prove Lemma 2.12, is to show that most
neighbors of v are in My(v).

We now evaluate the charge that a vertex v € B” has given to its
neighbors. If u € M;(v), then v gave at most 1+14+1 =3 to {u",u,u"};
if u € My,(v), then v gave at most 1/34+2/34+2/3 =5/3 to {u™,u,u"};
if u € My(v), then v gave at most 2/3+2/3 +2/3 =2 to {u",u,u"};
if u € M5(v), then v gave at most 1/3+2/3+2/3 =5/3 to {u",u,u"};
and, finally, if v € Mg(v), then v gave at most 2/3 + 0+ 2/3 = 4/3
to {u",u,ut}. Setting my = |My(v)|, Mua = |Msa(v)], M = | Ma(v)],
ms = |M5(v)|, and mg = |Mg(v)|, we can conclude that v gave at most
L (3my+ 2mug 4+ 2mu + 2ms 4+ §mg) < my+ 2 map + 2 (Mag + ms + me)

gd(v)+gm1+$m4b

to its neighborhood. This means that the remaining charge p/(v) of a
vertex v € B% must satisfy

() > (2d(v)—4) = (3d(v)+3mi+5may) = & (d(v) —my)—3m —4.

By definition, M;(v) is at most four times the number of neighbors of v
in B”. Since the subgraph of G induced by B? is planar, it has at most
3|B°| — 6 edges, and so

> IMi(v)| < 24187,
veBs
Combining the last two inequalities gives

0> Y 4 > (Z%<d<v>—|M4b<v>\>) 3 ou B - 4|87,

veEBB veBP
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which can be written as

> (d(v) = [Mu(v)]) < 132]B7).

veBP

We can assume B” # &, otherwise G contains structure (S1) or (S2).
Define Xo = B” and Yy = U, zs Ma(v). Note that the previous inequal-
ity can be written e(Xo, V' \ Yy) < 132|X,|. Also observe that the pair
(Xo, Yy) satisfies the conditions (i) and (ii) for X and Y in part (S3) of
Lemma 2.12:

(i) For all vertices u € My (v), v~ and u™ have degree four in G, and
the fourth neighbor of u is in B? = X by observation (e).

(i) By observation (a), all pairs of adjacent vertices u, v € Yy, satisfy
X§ = X{§. fu,v € Y, share a neighbor w ¢ X, then w has degree
at most four and its possible neighbors distinct from w and v are
in X{. Again by observation (a), we must have X§ = X{.

So we are done if the pair (X, Yp) also satisfies condition (iii) (with
X = Xy and Y =Y} ). Suppose this is not the case. So there must exist
a set Z; € X, with

e(Z1,V\ Z1) > e(Zy,Yo) + e(Z1, Yo \ Y{) + 132 Z4].

Define X; = Xy \ Z; and Y; = YOX1. Again, by construction, (Xi,Y})
satisfies conditions (i) and (ii) of (S3). If it does not satisfy condition (iii)
we iterate the process (see Figure 2.2) and eventually obtain a pair
(X, Yy) satisfying conditions (i), (ii) and (iii) of (S3). We only need to
check that Xy # @ and Yy # @.

Figure 2.2: X; = X; 1\ Z; and Y; = V; 1.

Let 1 <i < k. Since X; = X;_1 \ Z;, we have

e(X;, V\Y) = e(X; 1,V \Y) —e(Z,V\Y))
= e(X;o, V\Yin) +e(Xis, Vi \ YY)
- G(Zi, Vv \ Y;fl) - 6(Zi> Yioi \ Yz‘)
= e(Xio, V\Yin1) —e(Z;, V\Yiy) +e(Xi, Vi \ Vo).
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Since Y; = Y;)fl, every neighbor u € Y;_; \ Y; of a vertex from X; has
exactly one neighbor in Z; (see Figure 2.2). Hence, e(X;,Y;-1\ Y;) =
e(Z:, Y1 \ Y%, So we have

e(Xi—la V \ Yz‘—l) = €(Xz‘, V \ Yz‘) + €(Zz‘, V \ Yz‘—l) - G(Zz', Yioa \ Yfl)
= e(XZ-, Vv \ Y;) + e(Zi V) - 6(Zi> Y;fl) - 6(Zi> Yiy \ Yzﬁ)

By the definition of Z;, we have e(Z;,V) > e(Z;, V' \ Z;) > e(Z;,Y; 1) +
e(Z;,Yi_1 \ Y,7) 4 132 |Z;]. Hence we obtain

e(Xim, V\ Y1) > e(X;, V\Y)) = e(Z,Yi1) — e(Z;, Yied \ Y,7)) + e(Z3, Yina)
+e(Z;, Y, \ Y7 + 1327,
> e(X;, V\Y) +132]Zi].
Setting Z* = |J Z;, we have (X, V \ Vi) < e(Xo, V \ Yo) — 132|Z7|.
1<i<k
As a consequence,
e(Xo, V\Yy) —e(Xg, V' \ Yy) - e(Xo, V\ Yp) _ 132 | X

2| <
132 132 132

= | Xol.

Since Xy = Xy \ Z%, this implies | X| > 0, which leads to X}, # @.
Finally, let v € Xj. Taking W = {v} in the inequality (iii) of (S3)
( which by construction is satisfied by (X, Yy) ), we obtain d(v) < 2dy, (v)+
132, where dy, (v) denotes the number of neighbors of v in Y. Since v is
a big vertex, d(v) > 133 and so dy, (v) > 3 (133 — 132) > 0. This means
that we must have Y, # &, which concludes the proof of Lemma 2.12.
|

2.3.2 Proof of Lemma 2.19

We recall the hypotheses of the lemma: We have a real number ~; H is
a multigraph; each vertex v of H has an associated integer D(v); and for
each edge e a positive number b, is given. The following three conditions
are satisfied :

(H1") For all vertices v in H: d(v) < D(v) < 3.

(H2’) For all edges e = wv in H: b, > (33 + K) — (D(u) — d(u)) —

(D(v) = d(v)).
(H3’) For all non-empty subsets W C V(H): > (D(w) — d(w)) <

e (W.V(H)\ W) + 7] o

In the proof that follows, at certain moments we will give lower bounds
for K so that any K satisfying all these lower bounds will satisfy the
lemma, i.e., such that the vector ¥ = (z.), x. = bi will be in MP(H).
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For an edge e = uv in H, define

a. = (28+K)~(D(w)~d(w) ~(D@)~d(v)  and  y = . (2.1)

Qe

We will in fact prove that the vector ¥ = (y.) is in the matching poly-

1 1
tope MP(H). Since b, > a., we have x, = b < — = 9. So, by

Edmonds’ characterisation of the matching polytope 1f y € MP(H),
this guarantees that 7 € MP(H), as required.

Applying condition (H3’) to the set W = {v} gives D(v) — d(v) <
d(v) + 7, which implies:
(a)  For all vertices v € V(H) we have d(v) > 5 (D(v) — 7).
Let e = uv be an edge of H. If we use the estimate above for both u
and v in the definition of a. in (2.1), and recalling that D(u), D(v) < j3,
we obtain

>38—2Du)—iDW)+ K-~ > 13+ K—~.
On the other hand, if we use observation (a) to u only we get
@ > d(v)+30 -3 D(w) = D) + K — 47 > d(o) + K — 5.

So if we make sure that K > 2, then the following two conclusions hold.
(b)  For all edges e = wv in E(H) we have a. > d(v) + K.
(c)  For all edges e € E(H) we have a. > 33+ 1 K.

Note that observation (c) also gives b. > a. > 1 § for all e € E(H),
as required.

Next notice that for any x > 0, the function = +— 7 is increas-
ing in x. Together with the fact that d(v) < g for all v € V(H) and
observation (b), we find

1 1
Z — < d(v) - ——5— < 1, which shows that
e d(?)) -+ ) K

esv

Claim 2.20 For all vertices v € V(H) we have Zye <1

esv

Using Theorem 2.17, all that remains is to prove that for all W C V(H)
with [WW] > 3 and [W] odd we have Y y. < 5 (|[W|—1). We actually

ecE(W)
will prove this for all [W| > 3. Note that we certainly can assume

EW) # @.

Using observation (b), we infer that:

%m 1 d(u) — d(u) — dupw(u)
2 a_e__; §1§V<d(u)+%l(_ d(u) + 1 K )

ecE(W)




Proof of Lemma 2.19 59

dw P

Since and _ ,
du)+1K =~ g+1iK du)++K = B+3K
this implies
1 1 1 e(W, We
Z - S _‘W‘ ﬁl __6( 71 )
e b+3K 2 [+3K

ecE(W)

Here we used that > (d(u)—duw(v)) = e(W, W¢), where W¢ =V (H)\

ueW
W.
If e(W, W¢) > [3, we obtain

Z%s—mwm

ecE(W

(IW]=1),

N
DO =

l\?l}—A

provided that K > 0.
So we can assume in the following that e(W, W¢) < (3, in which case
Condition (H3’) of Lemma 2.19 implies

> (D(u) —d(u)) < e(W,W)+5|W| < 5+~ [W]|.

ueW

For a vertex u set c¢(u) = D(u) — d(u), and for a set of vertices U we
define ¢(U) = > c(u). So we can write the above as ¢(W) < g+ v |[W|.

uel
In the following we use the fact that all a, are large enough to find

a bound for the sum > a_!. To this aim, recall from definition (2.1)
ecE(W)
that a, = (3 6+ K) — c¢(u) — c(v) for all edges e = uv in H. This gives

D ae = 38+ K)[EW) = c(u) dupw(w).

ecE(W) uew

Since dgwy(u) < d(u) = D(u) — c(u) < f — c(u), we have

Zae_ S8+ K)|[EW)|[=Be(W)+ > c(u

ecE(W ueW

Set p = min {( B+ K)—c(u) —c(v)} and ¢ = 3 3+ K. This

weE(W
means that ¢—p = rr?()‘sv){c(u) +¢(v)}. Let e = uwv be an edge in E(W)
uve

so that ¢(u) + ¢(v) = ¢ — p. Then ¢(u)? 4 ¢(v)? > % (¢ — p)?, and hence

we can be sure that

Y ae = q[EW)| = Be(W) + 5 (¢ —p)*

ecE(W)

We now use this inequality and the following claim to bound > a_!
ecE(W)
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Claim 2.21 Letrq,...,r, bem real numbers sothat1l <p <ry,...,r, <
qand >, r; > gm — (¢ —p)S, for some S > 0. Then we have
1<i<m
ot meS
1<i<m p q

Proof The result is trivial if p = ¢, so suppose p < ¢q. For any 1 <
ek .
igm,setci:q . Now we have 0 < ¢; < 1foralll <1 < m,
q—7p

. . L.
and > ¢ <. Since the function z — — is convex, we have that for
1<i<m x
1< <m,

1 1 1 1 1 1 1

— = = <Ci—+(1—ci)—=ci <———)—|—
i g—c(g—p) capt+(l—c)g D q

As a consequence,

}:;23(1—1)}:cﬁfzs(g—l)s+ﬂf§g+7”_g

1<i<m p q 1<i<m q

We set R = Bc¢(W) — 5 (¢ —p)? and S = i Using Claim 2.21, at
q—p
this point we have

S LS B8 _ Sy [EW) _ R 210V
ccoo @ P q pq q pq 3B +2K
Notice that by condition (H3’) of Lemma 2.19, 2 |E(W)| < > D(u) —
2c(W) +~|W| < BIW|—=2c¢(W)+~|W|. Hence we find <
L oW, R 2w oW

a. — 3B8+2K  pq 38+2K 3B+2K°

(2.2)
ecE(W)
R 2c(W) v |[W]

Claim 2.22 For K large enough we have p_q — 38+2K | 334 2K <
2K

sear

2R
Proof Since g = %ﬁ + K, we only have to prove that — — 2¢(WW) +

p
YW < K |W.
Let us write ¢ — p = a3, and so p = %(3—2@)5+KandR:
Be(W) — 4 a? 3% Using that ¢(W) < 8+ ~|W|, we have

2 12
2R ) s = 20 5wy )
p p p
2_2 2 12
= (W) ﬂp p_2 T w

B

< Z@o-2p-a*p) 4w 2L
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As 2p = (3—2a)B + 2K, we have 23 —2p — a?f3 = (=1 + 2 —
a?)3 —2K = —(a—1)?3 — 2K < 0. Note that by observation (a)
and condition (H1") we have ¢ — p < 3 + ~, hence if we choose K > ~,

then we have ¢ — p < [+ K, and hence p > %B. We can conclude
2R
— —2c¢(W)+~|W| < 37|W|. As soon as K > §~, we have 3y |W| <
b

%K |W|, which completes the proof of the claim. O

Combining (2.2) and Claim 2.22, we obtain that for any K > 2v:

1 w 2K |\W
2 oY= ), o< 3§L2‘K+3(35‘+2‘K)
e€E(W) eccEW) ¢

+ 2K
SNCAS LI N
(38 +2K)
Since |W| > 3, 3 |[W| < 1 (JW] — 1), which completes the proof of the
lemma. [

2.4 Proof of Theorem 2.11

Let v and ' be as given in Lemma 2.12, and take v; = maX{ H (3v+
37)},11} and #; = 7. Next take § > +/. Suppose the theorem is
false, and let the planar graph GG be a counterexample with the minimum
number of vertices, for some B C V.

Suppose GG contains vertices u,v that are incident with a common
face, and so that d(u) + d(v) < . Construct a new planar graph G, by
identifying u and v into a new vertex w. Set V; = (V' \ {u,v}) U {w},
and notice that GGy has strictly fewer vertices than G, and w has degree
at most dg(u) 4+ dg(v) < B in Gy. In other words, w € V{. If v ¢ B,
then set By = B; otherwise, set By = (B \ {u,v}) U {w}.

Every (B, B)-clique in G not containing u corresponds to a (BY, By )-
clique in G of the same size. Since GG was chosen as the smallest coun-
terexample to Theorem 2.11, this means that every (B”, B)-clique in G
of size larger than %ﬂ + 71 must contain u. On the other hand, any
(B?, B)-clique in G containing u has size at most 1+ d”(u).

We can conclude that for all pairs of vertices u, v in G incident with
a common face and with d(u) 4+ d(v) < (3, we have that u and v are in
every (B, B)-clique of size larger than 2 3+, and these vertices satisfy
d?(u),d’(v) > 23+ 7.

Since 3 > 7/, we can apply Lemma 2.12. We use the notation from the
lemma. Because of the observation above, conclusions (S1) and (S2) of
that lemma are not possible. Hence we know that G contains X,Y C V7
satisfying (S3) from the lemma. We recall the crucial properties:
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(i) FEvery vertex y € Y has degree at most four. Moreover, y is adja-
cent to exactly two vertices of X and the other neighbors of y have
degree at most four as well.

For y € Y, let XV be the set of its two neighbors in X. And for W C X,

let YW be the set of vertices y € Y with X¥ C W (that is, the set of

vertices of Y having their two neighbors from X in W').

(ii) For all pairs of vertices y,z € Y, if y and z are adjacent or have
a common neighbor w ¢ X, then XV = X?*.

(iii)  For all nonempty subsets W C X, we have the following inequal-
iy :

(W, VAW) < e(W,Y) +e(W, Y\ YY) +~[W].

By (i), it follows that all vertices in Y are in every (B®, B)-clique of
size larger than %ﬂ + 71. Hence in particular:

(a)  Foreveryy €Y we have d°(y) > 2 3 + .

Also by the properties of the vertices in Y according to (i) and (ii) we
have for all y € Y and XV = {z, 22} :

d’(y) < 4+2-(4—1) + (d(@)) = 1) + (d(x2) — 1) = [YI220\ {y}]

= 9+ d(z) + d(z) — |V )

(the term |Y{#1:22h\ {5/}] is subtracted, since these vertices are counted
twice in (d(z1) — 1) + (d(z2) — 1) ). Since d(z1),d(x2) < (3, from (a) we
can conclude that

(b)  for every pair 1,15 € X we have |Y {7122} < TB8—m—+9.

We also must have that all pairs of vertices from Y are adjacent or
have a common neighbor from B?. By (ii), this proves that for every
two vertices y1,y2 € Y we have X¥' N X¥2 £ &. As a consequence, if X’
denotes the set of vertices of X with at least one neighbor in Y, and H
denotes the graph with vertex set X’ in which two vertices are adjacent
if they have a common neighbor in Y, then H is either a triangle or a
star.

Case 1. H is a triangle or H is a star with at most two leaves.

First suppose H is a triangle. Let y € Y with (X')Y = {21, 22}, where
X" = {x1, 79, x3}. Then Y = Y{zvz2h yylevest g y{e22s} hence by (b),
Y] <23 —3~ 4 27. Since all vertices in Y are in every (B, B)-clique
of size larger than 2 3 + 1, we can estimate, using (i)

d’(y) < 2-(4=1)+ X[+ |[V]+e({zr, 25}, V \ (X' UY))
< %ﬂ—371+36+e({x1,x2},V\(X'UY)).

By (iii) we have, using that YX" =Y by definition of X,
e({x1, z2}, V\(X'UY)) < e(X', V\(X'UY)) = e(X", V\X")—e(X"Y) < 37.
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These two estimates give d’(y) < 2 8+ 3~ + 36 — 31, which contra-
dicts (a), since 4y, > 3+ 37.

If H is a star with at most two leaves, then similar arguments will
give a contradiction.

Case 2. H is a star with at least three leaves.

For any y € Y, the B-neighbors of y in G are the neighbors of y, the
neighbors of y’s neighbors of degree four, the neighbors of the centre of
the star (there are at most 3 of these), or the vertices adjacent to all
the leaves of the star. Since H has at least three leaves and G is planar,
there is at most one vertex of the last type. Subtracting one when y itself
appears as one of the types above, we can estimate

Ply) < 4+2-A—1)+(B-1)+1 < g+ 10.

Again we find a contradiction with (a), which completes the proof of the
theorem. [

Lemma 2.12 was proved with v = 132 and 7' = 1060. Following the proof
above means we can obtain 7; = 109 and (#; = 1060 in Theorem 2.11.
But it is clear that these values are far from best possible. Using more
elaborate discharging arguments and more careful reasoning in the final
parts of the proof of Lemma 2.12 can give significantly smaller values.
Since our first goal is to show that we can obtain constant values for
these results, we do not pursue this further.

2.5 Conclusion

2.5.1 About the Proof

The proof of our main theorem in general follows the same lines as the
proof of Theorem 2.3 in [HHM™07]. In particular, the proof of that the-
orem also starts with a structural lemma comparable to Lemma 2.12,
uses the structure of the graph to reduce the problem to edge-coloring
a specific multigraph, and then apply (and extend ) Kahn’s approach to
that multigraph. Of course, a difference is that Theorem 2.3 only deals
with list coloring the square of a graph, but it is probably quite straight-
forward to generalize the whole proof to the case of list (B®, B)-coloring.
Nevertheless, there are some important differences in the proofs we feel
deserve highlighting.

Lemma 2.12 is stronger than the comparable lemma in [HHM™07].
The properties of the set Y in Lemma 2.12 mean that in our proof we
can construct a multigraph H so that a standard list edge-coloring of H
provides the information to color the vertices in Y (see Lemma 2.14).
In the lemma in [HHM™07], the translation to a list-edge coloring of a
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multigraph is not so clean; apart from the normal condition in the list
edge-coloring of H (that adjacent edges need different colors ), for each
edge there may be up to O(A1/2) non-adjacent edges that also need to
get a different color. In particular this means that in [HHM™07], Kahn’s
result in Theorem 2.18 cannot be used directly. Instead, a new, stronger,
version has to be proved that can deal with a certain number of non-
adjacent edges that need to be colored differently. Lemma 2.12 allows us
to use Kahn’s Theorem directly.

A second aspect in which our Lemma 2.12 is stronger is that in
the final condition (S3)(iii), we have an “error term” that is a constant
times |[W/|. In [HHM™07| the comparable term is A% |IW|, where A is
the maximum degree of the graph. This in itself already means that the
approach in [HHM07] at best can give a bound of the type (2+o0(1)) A.
The fact that we cannot do better with the stronger structural result is
because of the limitations of Kahn’s Theorem, Theorem 2.18. If it would
be possible to replace the condition in that theorem by a condition of

the form “the vector ¥ = (x.) with z, = for all e € E(H) is

L(e)| — K
an element of MP(H)”, where K is some‘ p(()sz’live constant, the work in
this paper would give an improvement for the bound in Theorem 2.10 to
38+ O(1) (because our version of Lemma 2.19 is strong enough to also
support that case).

Lemma 2.12 also allows us to prove a bound 2 3+O(1) for the (B”, B)-
clique number in Theorem 2.11. The important corollary that the square
of a planar graph has clique number at most % A+ O(1) would have been
impossible without the improved bound in the lemma.

Also Lemma 2.19 is stronger than its compatriot in [HHM"07]. The
lemma in [HHM107] only deals with the case D(v) = (8 for all vertices v
in H. Because of this, it can only be applied to the case that all vertices
in H have maximum degree A. Some non-trivial trickery then has to
be used to deal with the case that there are vertices in H of degree
less than A. Apart from that difference, the proof of Lemma 2.19 is
completely different from the proof in [HHM™07]. We feel that our new
proof is more natural and intuitive, giving a clear relation between the
lower bounds on the sizes of the lists and the upper bound of the sum
of their inverses. The proof in [HHM™*07] is more ad-hoc, using some
non-obvious distinction in a number of different cases, depending on the
size of W and the degrees of some vertices in W.

2.5.2 Further Work

A natural way to extend Wegner’s and Borodin’s conjectures to (A, B)-
colorings is the following:
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Conjecture 2.23 There exist constants ci, ¢a, c3 such that for all planar
graphs G and A, B CV we have

X(G; A B) < |3A(G; A B)| + ¢
ch(G; A, B) < |3A(G; A, B)| + ¢
ch(G;A,B) < |3A(G;A,B)| +1, if A(G; A, B) > cs.

If A =@ (hence A(G;A,B) = 0) and B = V, then the Four Color
Theorem means that the smallest possible value for ¢; is four; while the
fact that planar graphs are always 5-list colorable but not always 4-list
colorable, shows the smallest possible value for ¢, is five.

We feel that our work is just the beginning of the study of general
(A, B)-coloring. It should be possible to obtain deeper results taking into
account the structure of the two sets A and B, and not just the degrees
of the vertices. The following easy result is an example of this.

Theorem 2.24 Let G = (V, E) be a planar graph and A, B C V. Sup-
pose that for every two distinct vertices in A we have that their distance

in G is at least three. Then ch(G; A, B) < A(G; A, B) + 5.

Proof. Since G is planar, there exists an ordering vy, ..., v, of the ver-
tices so that each v; has at most five neighbors in {vq,..., v, 1}. We
greedily color the vertices vy, ..., v, that are in B in that order. Note

that each vertex has at most one neighbor from A.

When coloring the vertex v;, we need to take into account its neighbors
in {vy,...,v;_1}, plus the neighbors in {vy,...,v;_1} of a vertex a € A ad-
jacent to v; (where that vertex a can be in {vi,1,...,v,}). By construc-
tion of the ordering, there are at most five neighbors of v; in {vy, ..., v;_1}.
And a neighbor a € A has at most dg(a) — 1 < A(G; A, B) — 1 neigh-
bors in {vy,...,v;_1} different from v;. So the total number of forbidden
colors when coloring v; is at most A(G; A, B) + 4. Since each vertex has
A(G; A, B) 4+ 5 colors available, the greedy algorithm will always find a
free color. [

Note that saying that the vertices in A have distance at least three is
the same as saying that two different vertices in A have no common
neighbor. We think that it is possible to generalize our main theorem
and the theorem above in the following way. For A, B C V, let k(G; A, B)
be the maximum of |Ng(a;) N Np(az)| over all ay,as € A, a; # as.

Conjecture 2.25 There exists a constant ¢ so that for all planar graphs G
and A, B CV we have

ch(G; A, B) < A(G: A, B)+k(G; A, B) +c.
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This conjecture would fit with our current proof of Theorem 2.10, the
main part of which is a reduction of the original problem to a list edge-
coloring problem. For this approach, Shannon’s Theorem [Sha49| that a
multigraph with maximum degree A has an edge-coloring using at most
[% A(G)J colors, forms a natural base for the bounds conjectured in Con-
jecture 2.23. If the relation between coloring the square of planar graphs
and edge-coloring multigraphs holds in a stronger sense, then Conjec-
ture 2.25 forms a logical extension of Vizing’s Theorem |Viz64| that a
multigraph with maximum degree A and maximum edge-multiplicity u
has an edge-coloring with at most A + u colors.

In Borodin et al. [BBG107], a weaker version of Conjecture 2.25 for
cyclic coloring was proved. Recall that if GG is a plane graph, then A* is
the maximum number of vertices in a face. Let £* denote the maximum

number of vertices that two faces of G have in common.

Theorem 2.26 [BBG07] For a plane graph G with A* > 4 and k* > 4
we have x*(G) < A* 4+ 3k* + 2.
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In the previous chapter, we studied the coloring of the square of graphs
(every pair of vertices at distance at most two must be assigned distinct
colors). Another way to look at this coloring is to say that it is proper (no
two adjacent vertices have the same color), and no color appears more
than once in every neighborhood.

A natural way to generalize this is to consider a proper coloring such
that no color appears more than p times in every neighborhood, for some
given p. This coloring was introduced under the name of p-frugal coloring
by Hind, Molloy and Reed |[HMR97|.

In this chapter, we study the frugal coloring of planar graphs, planar
graphs with large girth, and outerplanar graphs, and relate this color-
ing with L(p, ¢)-labelling and cyclic coloring, both seen in the previous
chapter. We also study frugal edge-colorings of multigraphs.

3.1 Introduction

For an integer p > 1, a p-frugal coloring of a graph G is a proper ver-
tex coloring of G such that no color appears more than p times in the

67
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neighborhood of any vertex. Alternatively, a p-frugal coloring can be
defined as a proper coloring in which every pair of color classes induces
a subgraph with maximum degree at most k. The least number of colors
in a p-frugal coloring of G is called the p-frugal chromatic number of G,
denoted x,(G). Clearly, x1(G) is the chromatic number of G?; and for p
at least the maximum degree of G, x,(G) is the usual chromatic number
of G. An easy consequence of the definition is that for any graph G with
maximum degree A, we have x,(G) > (%} + 1.

Let L be a list assignment for the vertices of a graph G. A p-frugal
coloring ¢ of GG is called a p-frugal L-coloring if for any vertex v of G,
c(v) € L(v). The smallest integer ¢, such that for any ¢-list assignment
L, the graph G has a p-frugal L-coloring, is called the p-frugal choice
number of G, denoted by ch,(G).

Recall that a multigraph is a graph which can have multiple edges
(loops are not allowed). A p-frugal edge coloring of a multigraph G is a
( possibly improper ) coloring of the edges of G such that no color appears
more than p times on the edges incident with a vertex. The least number
of colors in a p-frugal edge coloring of GG, the p-frugal chromatic index of
G, is denoted by x;,(G). Observe that for p =1 we have x| (G) = x'(G),
the usual chromatic index of G. We can also define the p-frugal edge
choice number in the same way (see Section 3.6). Again, a straightfor-
ward consequence of the definition is that for any graph G with maximum

degree A, we have x,(G) > [%1.

Frugal vertex colorings were introduced by Hind et al. [HMRO7|, as
a tool towards improving results about the total chromatic number of a
graph. One of their results is that a graph with large enough maximum
degree A has a (log®A)-frugal coloring using at most A + 1 colors. They

also show that there exist graphs for which a (log)igAA)—frugal coloring

cannot be achieved using only O(A) colors.

Our aim in this chapter is to study some aspects of frugal colorings
and frugal list colorings in their own right. In the first part we consider
frugal vertex colorings of planar graphs. We show that frugal coloring
is related with L(p, ¢)-labellings in general, and with cyclic coloring in
the case of planar graphs (these two notions have been introduced in the
previous chapter).

In the final section we derive some results on frugal edge colorings of
multigraphs in general.
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3.2 Frugal coloring of planar graphs

In the next four sections we consider p-frugal (list) colorings of planar
graphs. For a large part, our work in that area is inspired by Wegner’s
conjecture mentionned in the previous chapter.

Conjecture 3.1 [Weg77| For any planar graph G of mazimum degree
A(G) > 8 we have x(G?) < [2A(G)] + 1.
Wegner also conjectured maximum values for the chromatic number of
the square of planar graph with maximum degree less than eight and
gave examples showing that his bounds would be tight. For even A > 8,
these examples are sketched in Figure 3.1.

k vertices

E—1

vertices

k vertices

Figure 3.1: The planar graphs G.
Inspired by Wegner’s Conjecture, we conjecture the following bounds
for the p-frugal chromatic number of planar graphs.

Conjecture 3.2 [AEHO7| For any integer p > 1 and any planar graph
G with mazimum degree A(G) > max{2p, 8 } we have

[A(Gp)flj + 2, if pis even;

Xp(G) <
' [3A3;Ci)f2j +2, if pis odd.

Note that the graphs Gy in Figure 3.1 also show that the bounds in this
conjecture cannot be decreased. The graph G has maximum degree 2 k.
First consider a p-frugal coloring with p = 2/ even. We can use the same
color at most %p times on the vertices of G, and every color that appears
exactly % p = 2/ times must appear exactly ¢ times on each of the three
sets of common neighbors of z and y, of z and z, and of y and 2. So
we can take at most 7 (k — 1) = %(A(Gk) — 1) colors that are used 2 p
times. In this case, x and y must then be colored with two new colors,
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since otherwise the neighborhood of x or y contains more than p times
the same color.

If p=2¢+1is odd, then each color can appear at most 3¢+ 1 =
L (3p — 1) times, and the only way to use a color so many times is by

2
using it on the vertices in V(Gy)\ {z,y, z}. Doing this at most =>2=L- =

(3p-1)/2
3%(G7)72 times, we are left with a graph that requires at least two new
p—1

colors.

We next derive some upper bounds on the p-frugal chromatic number
of planar graphs. The first one is a simple extension of the approach
from [HMO03|. In that paper, Van den Heuvel and McGuinness prove the
following structural lemma:

Lemma 3.3 [HMO3] Let G be a planar simple graph. Then there exists
a vertex v with m neighbors vy, ..., v with d(vy) < --- < d(vy) such that
one of the following holds :

(i) k<2

(ii) k=3 with d(v,) < 11;

(ii1) k =4 with d(vy) <7 and d(vy) < 11;

(iv) k=5 with d(vy) <6, d(ve) <7, and d(vs) < 11.

In [HMO3], this structural lemma is used to prove that the chromatic
number of the square of a planar graph is at most 2A + 25. Making
slight changes in their proof, it is not difficult to obtain a first bound
on ch, (and hence on Y, ) for planar graphs.

Theorem 3.4 [AEHO7| For any planar graph G with A(G) > 12 and
integer p > 1 we have ch,(G) < [WJ +6.

Proof. We will prove that if a planar graph satisfies A(G) < C for some
C > 12, then ch,(G) < [20}%1% + 6. We use induction on the number of
vertices, noting that the result is obvious for small graphs. So let G be
a graph with |V(G)| > 1, choose C' > 12 so that A(G) < C, and assume
each vertex v has a list L(v) of LQC—HQJ + 6 colors. Take v,vq,...,v; as
in Lemma 3.3. Contracting the edge vv; to a new vertex v" will result in
a planar graph G’ in which all vertices except v' have degree at most as
much as they had in G, while v" has degree at most A(G) (for case (i))
or at most 12. (for the cases (ii)—(iv)). In particular we have that
A(G") < C. If we give v’ the same list of colors as v; had (all vertices in
V(G) \ {v,v1} keep their list ), then, using induction, G’ has a p-frugal
coloring. Using the same coloring for G, where v; gets the color v" had
in ', we obtain a p-frugal coloring of G’ with the one deficit that v has no
color yet. But the colors forbidden for v are the colors on its neighbors,
and for each neighbor v;, the colors that already appear p times around v;.
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So the number of forbidden colors is at most & + Z [d(vl J Using the

knowledge from the cases (i) - (iv), we get that \L( )| = L2C+19J +6 is at
least one more than this number of forbidden colors, hence we can always
find an allowed color for v. [

In the next section we will obtain (asymptotically ) better results
based on more recent work on special labellings of planar graphs.

3.3 Frugal coloring and L(p, ¢)-labelling

In this section, we relate frugal colorings with L(p, ¢)-labelling, a gen-
eralization of the coloring of the square of graphs seen in the previous
chapter. Our main tool is the following proposition:

Proposition 3.5 For any graph G and integer p > 1 we have x,(G) <
[% Mpa(G)] and chy(G) < [% AL(@)].

Proof. We only prove the second part, the first one can be done in a
similar way. Set ¢ = [% /\é,l(Gﬂ, and let L be an /-list assignment on
the vertices of GG. Using that all elements in the lists are integers, we
can define a new list assignment L* by setting L*(v) = ez {p@, pz+
1, ...,px+p—1}. Then L* is a (p¥)-list assignment. Slnce pl >
AL 1 (@), there exists an L(p, 1)-labelling f* of G with f*(v) € L*(v) for
all vertices v. Define a new labelling f of G by taking f(v) = [% f*(v)J.
We immediately get that f(v) € L(v) for all v. Since adjacent vertices
received an f*-label at least p apart, their f-labels are different. Also,
all vertices in a neighborhood of a vertex v received a different f*-label.
Since the map = — Ll xJ maps at most p different integers x to the same
image, each f-label can appear at most p times in each neighborhood.
So f is a p-frugal coloring using labels from each vertex’ list. This proves
that ch,(G) < ¢, as required. [ |

We will combine this proposition with the following recent result from
Havet et al., already mentionned in the previous chapter.

Theorem 3.6 [HHMT'07] For any fized p, and any planar graph G with
magimum degree A, we have X, |(G) < (3 + o(1)) A.

Combining this with Proposition 3.5 gives the asymptotically best upper
bound for , and ch, for planar graphs we currently have.

Corollary 3.7 Fiz ¢ > 0 and an integer p > 1. Then there exists an
integer A., so that if G is a planar graph with mazimum degree A(G) >

A, p, then ch,(G) < w_
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In [MS05|, Molloy and Salavatipour proved that for any planar graph G
and any integer p > 1, we have \,1(G) < [2 A(G)]| 4+ 18 p+60. Together
with Proposition 3.5, this refines the result of Theorem 3.4 and gives a
better bound than Corollary 3.7 for small values of A. Note that this
corollary only concerns frugal coloring, and not frugal list coloring.

Corollary 3.8 For any planar graph G and integer p > 1, we have

Xp(G) < [ZREHET 418,

Proposition 3.5 has another corollary for planar graphs of large girth
that we describe below. Recall that the girth of a graph is the length of
a shortest cycle in the graph.
In [LWO03], Lih and Wang proved that for planar graphs of large girth
the following holds:
e )\, ,(G)<(2¢9—1)A(G)+6p+12¢— 8 for planar graphs of girth
at least six, and
e )\, ,(G)<(2¢9—1)A(G)+6p+24q— 14 for planar graphs of girth
at least five.
Furthermore, Dvotak et al. [DKNT08] proved the following tight bound
for L(p, 1)-labellings of planar graphs of girth at least seven, and of large
degree.

Theorem 3.9 [DKNT08] Let G be a planar graph of girth at least
seven, and mazimum degree A(G) > 190 4 2p, for some integer p > 1.
Then we have A\p1(G) < A(G) +2p — 1.

Moreover, this bound is tight, i.e., there exist planar graphs which
achieve the upper bound.

A direct corollary of these results are the following bounds for planar
graphs with large girth.

Corollary 3.10 Let G be a planar graph with girth g and mazimum
degree A(G). For any integer p > 1, we have
[0 12, if g > 7 and A(G) > 190 + 2p;

p

W(G) < ¢ [R9H] 16, ifg > 6;

(2] 16, ifg > 5.

3.4 Frugal coloring of outerplanar graphs

We now prove a variant of Conjecture 3.2 for outerplanar graphs (graphs
that can be drawn in the plane so that all vertices are lying on the
outside face). For p = 1, i.e., if we are coloring the square of the graph,
Hetherington and Woodall [HWO06] proved the best possible bound for
outerplanar graphs G: chi(G) < A(G) + 2 if A(G) > 3, and chi(G) =
A(G) 4+ 11if A(G) > 6.
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Theorem 3.11 [AEHO7] For any integer p > 2 and any outerplanar
graph G with mazimum degree A(G) > 3, we have x,(G) < ch,(G) <

A(G)—1
=] +3.

Proof. In [EO07a| (see Appendix A for further details), we proved a
result implying that any outerplanar graph contains a vertex w such that
one of the following holds: (i) u has degree at most one; (ii) v has degree
two and is adjacent to another vertex of degree two; or (iii) u has degree
two and its neighbors v and w are adjacent, and either v has degree three
or v has degree four and its two other neighbors (i.e., distinct from u
and w) are adjacent (see Figure 3.2).

a b)

Figure 3.2: Unavoidable configurations in an outerplanar graph without 1-vertices
and without two adjacent 2-vertices.

We prove the theorem by induction on the number of vertices, ob-
serving that it is trivial for graphs with at most two vertices. If G has at
least three vertices, let u be a vertex of G having one of the properties
described above. By the induction hypothesis, there exists a p-frugal list
coloring ¢ of G — w if the lists L(v) contain at least L%J + 3 colors.
If u has property (i) or (ii), let ¢ be the neighbor of u whose degree is not
necessarily bounded by two. It is easy to see that at most 2 + L%J
colors are forbidden for u : the colors of the neighbors of u and the colors
appearing p times in the neighborhood of ¢. If w has property (iii), at
most 2 + [%J colors are forbidden for u: the colors of the neighbors
of w and the colors appearing p times in the neighborhood of w. Note
that if v has degree four, its two other neighbors are adjacent and the
p-frugality of v is respected since p > 2. In all cases we found that at
most L%J + 2 colors are forbidden for u. If v has a list with one more
color, we can extend c to a p-frugal list coloring of GG, which completes
the induction. [ |

3.5 Frugal coloring and cyclic coloring

In this section, we discuss the link between frugal coloring and cyclic
coloring of plane graphs. Recall that a plane graph is a planar graph with
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a prescribed planar embedding, and that the size (number of vertices in
its boundary) of a largest face of a plane graph G is denoted by A*(G).

The previous chapter was devoted to the study of cyclic coloring of
plane graphs: a vertex coloring such that any two vertices incident to
the same face have distinct colors. Recall that Borodin [Bor84| (see also
Jensen and Toft [JT95, page 37|) conjectured that any plane graph G
has a cyclic coloring with [% A*(G)J colors, and proved this conjecture
for A*(G) = 4.

In this section we show that if there is an even p > 4 such that
Borodin’s conjecture holds for all plane graphs with A* < p, and if our
Conjecture 3.2 is true for the same value p, then Wegner’s conjecture is
true up to an additive constant factor.

Theorem 3.12 [AEHO7]| Let p > 4 be an even integer such that every
plane graph H with A*(H) < p has a cyclic coloring using at most %p
colors. Then, if G is a planar graph satisfying x,(G) < LMJ +2, we

also have x(G?) = x1(G) < |3 A(G)] + 3p. ’

=12
Proof. Let GG be a planar graph with a given embedding and let p > 4 be
an even integer such that t = y,(G) < L%J +2. Consider an optimal
p-frugal coloring ¢ of GG, with color classes C,...,C;. Forv=1,... ¢,
construct the graph G; as follows: Firstly, G; has vertex set C;, which
we assume to be embedded in the plane in the same way they were for G.
For each vertex v € V(G) \ C; with exactly two neighbors in C;, we add
an edge in G; between these two neighbors. For a vertex v € V(G) \ C;
with ¢ > 3 neighbors in Cj, let x1,..., 2, be those neighbors in C; in a
cyclic order around v ( determined by the plane embedding of G'). Now
add edges x1x9, xox3, ..., x4 120 and xyx; to G;. These edges will form a
face of size £ in the graph we have constructed so far. Call such a face a
special face. Note that since C; is a color class in a p-frugal coloring, this
face has size at most p.

Do the above for all vertices v € V(G) \ C; that have at least two
neighbors in C;. The resulting graph is a plane graph with some faces
labelled special. Add edges to triangulate all faces that are not special.
The resulting graph is a plane graph with vertex set GG; and every face
size at most p. From the first hypothesis it follows that there is a cyclic
coloring of each G; with % p new colors. Since every two vertices in C;
that have a common neighbor in GG are adjacent in GG; or are incident to
the same (special) face, vertices in C; that are adjacent in the square
of G receive different colors. Hence, combining these ¢ colorings, using
different colors for each GG;, we obtain a coloring of the square of G, using

at most 3 p - ([%J +2) < [2A] + 3p colors. [

Since Borodin [Bor84| proved his cyclic coloring conjecture in the case
A* = 4, we have the following corollary.
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Corollary 3.13 If G is a planar graph so that x4(G)
then x(G?) < |2 A(G)] + 12.

3.6 Frugal edge coloring

An important element in the proof of Theorem 2.10 in the previous chap-
ter is the derivation of a relation between (list) coloring square of planar
graphs and (list) edge colorings of multigraphs. Because of this, it seems
to be opportune to have a short look at a frugal variant of edge colorings
of multigraphs in general.

Edge colorings of multigraphs have the same definitions as for simple
graphs: given a multigraph GG, the minimum number of colors required is
the chromatic index, denoted \'(G). The list chromatic index ch'(G) is
defined analogously as the minimum length of lists that needs to be given
to each edge so that we can use colors from each edge’s list to obtain a
proper coloring.

A p-frugal edge coloring of a multigraph G is a (possibly improper )
coloring of the edges of G such that no color appears more than p times
on the edges incident with a vertex. The least number of colors in a p-
frugal edge coloring of G, the p-frugal edge chromatic number (or p-frugal
chromatic index ), is denoted by x,,(G).

Note that a p-frugal edge coloring of GG is not the same as a p-frugal
coloring of the vertices of the line graph L(G) of G. Since the neighbor-
hood of any vertex in the line graph L(G) can be partitioned into at most
two cliques, every proper coloring of L(G) is also a p-frugal coloring for
p > 2. A 1-frugal coloring of L(G) (i.e., a vertex coloring of the square
of L(G) ) would correspond to a proper edge coloring of G in which each
color class induces a matching. Such colorings are known as strong edge
colorings, see, e.g., |[FF83].

The list version of p-frugal edge coloring can also be defined in the
same way : given lists of size ¢ for each edge of GG, one should be able
to find a p-frugal edge coloring such that the color of each edge belongs
to its list. The smallest ¢ with this property is called the p-frugal edge
choice number, denoted ch (G).

Frugal edge colorings and their list version were studied under the
name improper edge-colorings and improper L-edge-colorings by Hilton
et al. [HSSO1].

It is obvious that the chromatic index and the edge choice numbers
are always at least the maximum degree A. The best possible upper
bounds in terms of the maximum degree only are given by the following
results.

Theorem 3.14
(a) [Viz64] For any simple graph G we have x'(G) < A(G) + 1.

X'(G)
ch'(G)

ch!

(@)
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2
(¢) |Gal95] For any bipartite multigraph G we have ch'(G) = A(G).

(d) [BKWO97] For any multigraph G we have ch'(G) < |3 A(G)].

(b) [Shad9] For any multigraph G we have x'(G) < |2 A(G)].
) pu—

We will use Theorem 3.14 (c¢) and (d) to prove two results on the p-frugal
chromatic index and the p-frugal edge choice number. The first result
shows that for even p, the maximum degree completely determines the
values of these two numbers. This result was earlier proved by Hilton et
al [HSSO1] in a slightly more general setting, involving a more compli-
cated proof. We now give a short proof of this theorem:

Theorem 3.15 [HSSO01| Let G be a multigraph, and let p be an even
integer. Then we have x,(G) = ch,(G) = [+ A(G)].

p

Proof. It is obvious that ch;(G) > X;(G) > HD Aw , so it suffices to prove
ch,(G) < Ho Al

Let p = 2/. Without loss of generality, we can assume that A is a
multiple of p and G is a A-regular multigraph. (Otherwise, we can add
some new edges and, if necessary, some new vertices. If this larger multi-
graph is p-frugal edge choosable with lists of size HD AW, then so is G.)
As p, and hence A, is even, we can find an Euler tour in each component
of G. By giving these tours a direction, we obtain an orientation D of the
edges of GG such that the in-degree and the out-degree of every vertex is
2 A. Let us define the bipartite multigraph H = (V; U V3, E) as follows:
V1, Vi are both copies of V(G). For every arc (a,b) in D, we add an edge
between a € V; and b € V5.

Since D is a directed multigraph with in- and out-degree equal to
%A, H is a (% A)-regular bipartite multigraph. This means that we can
decompose the edges of H into % A perfect matchings My, My, ..., M.
Define disjoint subgraphs Hy, Hs, ..., Hy as follows: fori =0,1,...,/—1
set Hi 11 = M%AH UM%A+2 X -UM%A. Notice that each H; is a <% A)—
regular bipartite multigraph.

Now, suppose that each edge comes with a list of colors of size }DA.
Each subgraph H; has maximum degree %A, so by Theorem 3.14(c) we
can find a proper edge coloring of each H; such that the color of each
edge is inside its list. We claim that the same coloring of edges in G is
p-frugal. For this we need the following observation :

Observation Let M be a matching in H. Then the set of corresponding
edges in G form a subgraph of maximum degree at most two.

To see this, remark that each vertex has two copies in H : one in V; and
one in V5. The contribution of the edges of M to a vertex v in the original
multigraph is then at most two, at most one from each copy of v.
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To conclude, we observe that each color class in H is the union of
at most ¢ matchings, one in each H;. So at each vertex, each color class
appears at most two times the number of H;’s, i.e., at most 2/ = p times.
This is exactly the p-frugality condition we set out to satisty. [

For odd values of p we give a tight upper bound of the p-frugal edge
chromatic number.

Theorem 3.16 [AEHO7] Let p be an odd integer. Then we have [ATG)W <
X,(G) < ehi(G) < [359].

3p—1

Proof. Again, all we have to prove is ch,(G) < (33“?]

Let p =2¢+ 1. Since 3p — 1 is even and not d1v1s1ble by three, we
can again assume, without loss of generality, that A is even and divisible
by 3p — 1, and that G is A-regular. Set A=m (3p—1) =6{m+ 2m.
Using the same idea as in the previous proof, we can decompose G into
two subgraphs Gy, G, where G is (6 £ m)-regular and G is (2 m)-regular.
(Alternatively, we can use Petersen’s Theorem [Pet91] that every even
regular multigraph has a 2-factor, to decompose the edge set in 2-factors,
and combine these 2-factors appropriately. ) Since 2% 6/0m = % A,
by Theorem 3.15 we know that (G; has a 2 (-frugal edge coloring using
the colors from each edge’s lists. Similarly we have % 2m = T?:l A, and
hence Theorem 3.14 (d) guarantees that we can properly color the edges
of G5 using colors from those edges’ lists. The combination of these two
colorings is a (2 /¢ 4 1)-frugal list edge coloring, as required. [

Note that Theorem 3.16 is best possible: For k > 1, let 7™ be the
multigraph with three vertices and k parallel edges between each pair. If
p = 2{+ 1 is odd, then the maximum number of edges with the same
color a p-frugal edge coloring of 7™ can have is 3¢ + 1. Hence the
minimum number of colors needed for a p-frugal edge coloring of T*)

stts] = [ 20)]

3.7 Conclusion

We sum up the upper bounds obtained for the frugal choice number of
graphs with maximum degree A in Table 3.1, where A is supposed to be
large enough.

Many possible directions for future research are still open. An in-
triguing question is inspired by the results on frugal edge coloring in
the previous section. These results demonstrate an essential difference
between even and odd p as far as p-frugal edge coloring is concerned.
Based on what we think are the extremal examples of planar graphs for
p-frugal vertez coloring, also our Conjecture 3.2 gives different values for
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G ch,(G) conjecture (p even | odd)
planar % L%J 2| Bﬁ__fj )
planar with g(G) > 5 (%W +6
planar with g(G) > 6 (%W +6
planar with g(G) > 7 [%w +2 [%W +1
outerplanar L%J +3

Table 3.1: ch,(G) for G with large enough maximum degree A.

even and odd p. But for frugal vertex colorings of planar graphs in gen-
eral we have not been able to obtain results that are different for even
and odd p. Most of our results for vertex coloring of planar graphs are
consequences of Proposition 3.5 and known results on L(p, 1)-labelling
of planar graphs, for which no fundamental difference between odd and
even p has ever been demonstrated. Hence, a major step would be to
prove that Proposition 3.5 is far from tight when p is even.

A second line of future research could be to investigate which classes
of graphs have p-frugal chromatic number equal to the minimum possible
value [%w + 1. Corollary 3.10 and Theorem 3.11 give bounds for planar
graphs with large girth and outerplanar graphs that are very close to the
best possible bound. We conjecture that, in fact, planar graphs with large
enough girth and outerplanar graphs of large enough maximum degree
do satisty x,(G) = [%W +1 for all p > 1. A step toward this conjecture
would be to minimize the value g* (resp. to maximize the value d*) such
that for some constant C, every planar graph G with g(G) > ¢* (resp.
every graph G with mad(G) < d*) satisfies x,(G) < (%G)W + C for all
p=>1

In [KWO01], Kostochka and Woodall conjectured that for any graph G,
the chromatic number and the list chromatic number of G? are the

same. We conjecture the following, which corresponds to the conjecture
of [KWO01| when p = 1.

Conjecture 3.17 For any multigraph G and any integer p > 1, we have
Xp(G) = chp(G).

The famous List Coloring Conjecture ( see, e.g., the book of Jensen and
Toft [JT95]) states that for any multigraph G the chromatic index and
the list chromatic index of G are the same. Again, this can be seen as a
special case of the following conjecture :
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Conjecture 3.18 For any multigraph G and any integer p > 1, we have
X, (G) = ch;(G).

When p is even, this has already been proved in [HSS01|, as explained
in Section 3.6. On the other hand, Galvin [Gal95| proved the List Col-
oring Conjecture for bipartite multigraphs. It could be interesting to see
whether Conjecture 3.18 (when p > 3 is odd) is easier to solve when G
is a bipartite multigraph.
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In the previous chapter, we studied p-frugal colorings, that is proper
colorings such that no color appears more than p times in the neighbor-
hood of a vertex. This is equivalent to a proper coloring such that the
union of any two color classes induces a subgraph of maximum degree
at most p. We saw that a 1-frugal coloring of a graph G was a proper
coloring of G?. A 2-frugal coloring is by definition a proper coloring such
that the union of any two color classes induces a disjoint union of cycles
and paths. If instead of this, we require that the union of any two color
classes induces a forest of paths, we obtain a linear coloring, introduced
by Yuster [Yus98|.

Out aim in this chapter is to investigate linear colorings and show
that most of the results we can obtain for certain families of graphs
(outerplanar and planar graphs, graphs with small maximum degree,
and graphs with bounded maximum average degree) are close from the
results we obtained for 2-frugal colorings in the previous chapter.
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4.1 Introduction

The notion of acyclic colorings was introduced by Griinbaum [Gru73]:
a vertex coloring is said to be acyclic if it is proper (no two adjacent
vertices have the same color), and if there is no bicolored cycle (the
subgraph induced by the union of any two color classes is a forest).

Yuster [Yus98| mixed this notion and the concept of frugal colorings
seen in the previous chapter, while introducing the concept of linear col-
oring. A [linear coloring of a graph is an acyclic and 2-frugal coloring.
It can also be seen as a coloring such that the subgraph induced by the
union of any two color classes is a forest of paths (an acyclic graph with
maximum degree at most two). The linear chromatic number of a graph
G, denoted by A(G), is the minimum number of colors in a linear coloring
of G.

A graph G is linearly L-colorable if for a given list assignment L =
{L(v) : v € V(G)}, there exists a linear coloring ¢ of G such that
c(v) € L(v) for each vertex v. Such a coloring is called a linear L-
coloring of G. If G is linearly L-colorable for any k-list assignment L,
then G is said to be linearly k-choosable. The smallest integer & such
that the graph G is linearly k-choosable is called the linear choice num-
ber, denoted by AY(G).

Using Lovasz Local Lemma (see Lemma 1.5 in Chapter 1), Yuster
proved that A(G) = O(A(G)%?) in the general case, and he constructed
graphs for which A(G) = Q(A(G)?).

We begin with some basic results (Section 4.2). In Section 4.3, we
show that every outerplanar graph G with maximum degree A verifies
A(G) < [A/2] + 2. In Section 4.4, we prove that every planar graph
of maximum degree A > 12 has linear choice number at most A + 26.
Section 4.5 is dedicated to the study of graphs with small maximum de-
gree: we prove that A'(G) < 5 when A(G) < 3, and AY(G) < 9 when
A(G) < 4. In Section 4.6, we give bounds for graphs with bounded max-
imum average degree. Finally, in Section 4.7, we prove that determining
whether a bipartite subcubic planar graph is linearly 3-colorable is an
NP-complete problem.

In the following, we will use a slight abuse of terminology, by saying
that the 2-frugality of a vertex v is respected or preserved, when no color
appears more than twice in N(v).
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4.2 First results

A linear coloring is a 2-frugal coloring, so there are at least [d/2] distinct
colors in the neighborhood of each d-vertex. Hence, for any graph G with
maximum degree A, we have A'(G) > A(G) > [A/2] + 1. The following
proposition shows that this bound is tight for some families of graphs,
such as trees.

Proposition 4.1 If G is a tree with mazimum degree A, then AY(G) =
[A/2] + 1.

Proof. Let L be a ([A/2] + 1)-list assignment to the vertices of G.
We proceed by induction on the order of the graph. Let v be a leaf
of G, and let u be its unique neighbor. By the induction assumption,
there exists a linear L-coloring ¢ of G — v. We now extend ¢ to v by
finding a color ¢(v) € L(v) such that the coloring obtained is linear. We
only forbid to v the color ¢(u) and the colors appearing at least twice
in u’s neighborhood. This is sufficient to obtain a proper and 2-frugal
coloring, and thus a linear coloring of the tree G. There are at most
1+ |81 = [A/2] forbidden colors. Since |L(v)| > [A/2] + 1, it is

|

2
possible to color v with a color from its list.

Let K,,, be the complete bipartite graph with stable sets V' and V’
of size m and n respectively. We show the following result:

Proposition 4.2 If m > n, A(K,,,) = [m/2] + n.

Proof. To prove that A(K,,,) > [m/2] +n, observe that if two vertices
of a same set V or V'’ have the same color, then all the vertices of the
other set must have distinct colors (otherwise there would be a bicolored
cycle of length four). Moreover a given color cannot appear more than
twice in V U V' since otherwise the 2-frugality would not be respected.
Hence, the best solution is to assign each color to a pair of vertices in
the largest set, and to color all the remaining vertices with distinct colors
(see Figure 4.1).

Figure 4.1: A linear coloring of K3 3.
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Observe that the linear chromatic number of K, ,, is asymptotically
equivalent to %.

Recall that a 2-degenerate graph is a graph every subgraph of which
contains a vertex of degree at most two. We prove the following propo-
sition:

Proposition 4.3 If G is a 2-degenerate graph of mazimum degree A,
then AY(G) < A + 2.

Proof. We prove the theorem by induction on the order of G. Let L be
a (A + 2)-list assignment for the vertices of G. Since G is 2-degenerate,
it contains a vertex v with degree at most two. Consider the graph
H = G —wv. H is a proper subgraph of G, thus it is a 2-degenerate graph
with order strictly less than that of G. By the induction hypothesis, there
exist a linear L-coloring ¢ of H.

Assume that the vertex v has degree one. To extend the coloring ¢ to
the whole graph G, we shall choose for v a color distinct from the color of
its neighbor w and from the colors appearing twice in w’s neighborhood.
At most [251] +1 = [A/2] colors are forbidden to v, so it is possible to
color it with a color from its list L(v), since |L(v)| > A + 2.

If the vertex v has degree two, let u and w be its neighbors. We forbid
to v the colors belonging to the set C defined as follows. A color a is in
C if one of the following conditions is verified:

e one neighbor of v and one neighbor of w are both colored with a
(a bicolored cycle could be created if v was also colored with a);

e two neighbors of u are colored with a (the 2-frugality of v would
not be preserved if v was also colored with a);

e two neighbors of w are colored with a (2-frugality of w).

Observe that |C| < A — 1, since any color of C appears at least twice
in (N(u) U N(w)) \ {v}. Since v must receive a color distinct from the
colors of u and w, there are at most A —1+4+2 = A+1 forbidden colors for
v. Since |L(v)| > A+ 2, there remains at least one color in L(v) that can
be assigned to v. We obtain a linear L-coloring of GG, which completes
the induction. [

4.3 Outerplanar graphs

Since outerplanar graphs are 2-degenerate, it follows from Proposition
4.3 that outerplanar graphs with maximum degree A have linear choice
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number at most A+ 2. In this section, we improve this bound by proving
the following theorem:

Theorem 4.4 [EMROS8| If G is an outerplanar graph with mazimum
degree A, then AY(G) < [A/2] + 2.

Proof. We prove the theorem by induction on the order of G. Let L be
a ([A/2] + 2)-list assignment for the vertices of G. As in the previous
chapter, we use a result from [EO07a] (see Appendix A for further de-
tails), which states that any outerplanar graph contains a vertex u such
that one of the following holds: (i) u has degree at most one; (ii) u has
degree two and is adjacent to another vertex of degree two; or (iii) u has
degree two and its neighbors v and w are adjacent, and either v has de-
gree three or v has degree four and its two other neighbors (i.e., distinct
from u and w) are adjacent (see Figure 3.2).

Let u be as described above. If (i) u has degree at most one, let v be
the neighbor of u, if it exists, and let ¢ be a linear L-coloring of G — u.
Color u with a color distinct from c(v) and the colors appearing twice in
N(v). At most |22 +1 = [A/2] are forbidden for u, and the coloring
obtained is linear.

If (ii) v has degree two and is adjacent with a 2-vertex, say v, let ¢ be
a linear L-coloring of G —{u,v}. Let u’ be the neighbor of u distinct from
v and let v’ be the neighbor of v distinct from u. Choose for v a color ¢(v)
distinct from c(u'), ¢(v'), and the colors appearing twice in N (v'). Then
color u with a color distinct from ¢(u'), ¢(v), and the colors appearing
twice in N(u'). At most 251 +2 < [A/2] + 1 are forbidden for u and
v, and the coloring obtained is linear (having c(v) # c(u') ensures that
the coloring ¢ is acyclic).

If (iii) w has degree two and its neighbors v and w are adjacent, and
either v has degree three or v has degree four and its two other neighbors
(i.e., distinct from u and w) are adjacent, let ¢ be a linear L-coloring of
G —u. Take c¢(u) distinct from ¢(v) and ¢(w), and from the colors appear-
ing twice in N(w)\{v}. At most |2:2| +2 < [A/2] + 1 are forbidden
for u, and the coloring obtained is linear: since v and w are adjacent, the
coloring is acyclic, and (iii) ensures that the only color that may appears
twice in N (v) is ¢(v) (wich is forbidden for u).

In any case, it is possible to color the uncolored vertices given lists of
size at least [A/2] 42, in order to obtain a linear L-coloring of GG, which
completes the induction. [ |
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4.4 Planar graphs

Asin Chapter 3, we use Lemma 3.3 from Van den Heuvel and McGuinness
[HMO3] to prove the following result.

Theorem 4.5 [EMROS8] If G is a planar graph with mazimum degree
A > 12, then AY(G) < A + 26.

Proof. We prove the theorem by induction on the order of G. Let L be
a (A + 26)-list assignment to the vertices of G.

Let k,v,vy,...,v; be as in Lemma 3.3, and let H be the graph ob-
tained from G by contracting the edge vwv; into the vertex v;. This
graph has maximum degree 12 (case (ii)) or A, so by induction, there
exists a linear coloring ¢ of H such that any vertex u € V(H) is col-
ored with a color ¢(u) € L(u). In order to extend ¢ to G, we only need
to color v with a color from its list L(v). Choose the color of v differ-
ent from the colors of vy,..., v, as well as the colors of the neighbors of
V1, ..., U0x_o if K > 3. Choose it also different from the colors appearing
twice among the vertices adjacent to v;y_; or vg. In total we forbid at most
54+5+64+10+ (2A —2)/2 = A+ 25 colors to v. Since |L(v)| > A+ 26,
it is possible to find an appropriate color for this vertex.

We now prove that the coloring obtained is linear. Since the coloring
c of H is linear, no color appears more than twice in the neighborhood of
vin G. If £ > 3, the colors of the neighbors of vy, ..., vp_o are forbidden
to v, so the 2-frugality of vy, ..., v,_o is preserved and any bicolored cycle
passing through v contains v;_; and v;. The colors appearing twice in
N(vg_1) or twice in N(vy) are forbidden, so the 2-frugality of vy_; and
vy is preserved. The colors appearing in N(vg_1) and N(vg) are also
forbidden, so v cannot belong to any bicolored cycle. We thus obtain a
linear L-coloring of G, which completes the induction. [

4.5 Graphs with small maximum degree

4.5.1 Subcubic graphs

As seen in Section 4.2, the graph K33 is not linearly 4-colorable. Let
G be a graph with maximum degree three, containing at least one <2-
vertex. Then G is 2-degenerate and we have A'(G) < 5 by Proposition
4.3. So the hardest part is to prove that 3-regular graphs have linear
choice number at most five. To show this, we prove a slightly stronger
statement:

Theorem 4.6 [EMROS| Let G be a graph with mazimum degree A < 3,
and L be a 5-list-assignment to the vertices of G. Then there exists a
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linear L-coloring of G such that the two neighbors of any 2-vertex have
distinct colors.

Proof. We prove the theorem by induction on the order of G. let L be
a H-list-assignment to the vertices of G. We can assume that G is con-
nected, otherwise we can color each connected component by induction
and obtain a linear list L-coloring of G with the desired property.

If G contains a 1-vertex v adjacent to a vertex u, then by induction,
the graph G' — v has a linear L-coloring ¢ such that the neighbors of
any 2-vertex have distinct colors. By coloring v with a color distinct
from ¢(u) and from the colors of the neighbors of u, we obtain a linear L-
coloring of GG such that the neighbors of any 2-vertex have distinct colors.

If G contains a 2-vertex v with neighbors u and w, let H be the graph
obtained from G by removing the vertex v and adding an edge ww if
it does not already exist. H has maximum degree at most three and
is smaller than G, so there exists a linear L-coloring ¢ of H, such that
the neighbors of any 2-vertex have distinct colors. We choose for v a
color distinct from c(u), ¢(w), and from the colors appearing twice in the
neighborhood of u, or twice in the neighborhood of w. Since ¢(u) # c(w),
we do not create any bicolored cycle. We forbid at most four colors to v,
so we can choose a color for v and obtain a linear L-coloring of G such
that the neighbors of any 2-vertex have distinct colors.

Figure 4.2: A shortest cycle in a minimum counterexample.

Otherwise the graph G is 3-regular. Let wuq,...,ug, with & > 3 be
a shortest cycle (see Figure 4.2). For all 1 < i < k, we denote by v;
the neighbor of u; outside the cycle (that is, distinct from u; ; and w1,
where all values are taken modulo k). Observe that two vertices v; and v;
could be the same vertex, but that each v; is distinct from all the vertices
uj, since otherwise there would be a cycle with less than k vertices. Let
H be the graph obtained from G by removing the vertices uy, ..., u;. By
induction there exists a linear L-coloring ¢ of H, such that the neighbors
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of any 2-vertex have distinct colors. In particular, each vertex v; has
degree at most two in H, so its neighbors have distinct colors and the
2-frugality of v; will be preserved regardless of the color we assign to u;.

We now color the vertices uy, ..., u; in this order. We choose for wuy
a color distinct from c(v;) and ¢(vy). For any 2 < i < k — 1, we choose
for u; a color distinct from c(u;_1), ¢(v;), and ¢(v;y1). For ug, we choose
a color distinct from c(uy), c(ug_1), c(vg), and ¢(vy). By doing so, we
prevent any bicolored cycle containing a vertex v;, and the 2-frugality of
every vertex u; is respected. But at this point, the cycle uy, ..., u; could
still be a bicolored cycle. Hence, if & > 4, we also forbid the color of u; to
ug while we are coloring this vertex (if & = 3 the cycle is a triangle and it
cannot be properly bicolored). At most four colors are forbidden to each
vertex u;, so we can choose a color c¢(u;) € L(u;) for any of them, and
the coloring obtained is a linear L-coloring of G. Since G is 3-regular,
the additional property that the neighbors of any 2-vertex have distinct
colors is trivially verified. [

Since K33 seems to be the only subcubic graph which linear choice
number is equal to 5, we propose the following conjecture :

Conjecture 4.7 If G has mazximum degree 3, and is different from Ks s,
then AY(G) < 4.

4.5.2 Graphs with maximum degree 4

According to Proposition 4.2, we have A'(K,4) > 6. Applying the same
method of reducible configurations to graphs with maximum degree 4,
we obtain the following theorem, which we suspect not to be tight.

Theorem 4.8 [EMROS8] If G is a graph with mazimum degree A < 4,
then AY(G) < 9.

Proof. Let G be a counterexample of minimum order: there exists a 9-
list-assignment L such that G is not linearly L-colorable. Using the same
arguments as in the previous proof, we show that G does not contain any
=3-vertex. Hence, the graph is 4-regular. We now show that G' does not
contain any 4-vertices.

Let u be a 4-vertex and let v, w, x, and y be its neighbors. Let G’
be the graph obtained from G — v by adding the edges vw and zxy if
they are not already there (see Figure 4.3). Let ¢ be a linear L-coloring
of G'. We now extend ¢ to the initial graph G: we only have to color
the vertex u with a color from its list L(u). We have to choose a color
distinct from the colors of v, w, x, and y. The condition of 2-frugality
for these four vertices forbids at most four additional colors. If v, w, =z,
and y have distinct colors, it is impossible to create a bicolored cycle,
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so we can color u with the ninth color of L(u), and thus obtain a linear
L-coloring of G.

Otherwise, we have for example ¢(v) = ¢(y) and c(w) # ¢(x). The
neighbors of u forbid only three colors, and their 2-frugality forbids at
most 4 colors. But it is possible to create a bicolored cycle passing
through v and y. To avoid this, we forbid to w the colors of v’s neigh-
bors. This makes only two additional colors, as the third one was already
counted to ensure v’s 2-frugality. There are still at most eight forbidden
colors for the choice of ¢(u).

In the last case, we have without loss of generality c(v) = ¢(x) and
c¢(w) = ¢(y). The neighbors of u forbid two colors to this vertex. To en-
sure the 2-frugality of v, w, x, and y we forbid at most four other colors
to u. To prevent any bicolored cycle it suffices to forbid to u the colors
of v’s and w’s neighbors (six colors, among which two have already been
counted). This makes at most eight forbidden colors for the choice of w.
So it is possible to color this vertex with a color of its list, and to obtain
a linear L-coloring of G. This completes the proof.

Figure 4.3: Elimination of a 4-vertex.

As noticed by Frédéric Havet, there exists a simpler way to prove
Theorem 4.8 when we restrict ourselves to linear coloring (instead of
linear list coloring): since G is 4-regular, it is the union of two cycle-
factors F} and F;. Each F; admits a linear coloring ¢; with three colors,
and the product of ¢; and ¢ gives a linear coloring of G with 9 colors.

4.6 Graphs with bounded maximum average
degree

Recall that the maximum average degree of a graph (G, denoted by
mad(G) is defined by:
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mad(G) = max{2|E(H)|/|V(H)|, H € G}.
Theorem 4.9 [EMRO8| Let G be a graph with mazimum degree A:
1. If A>3 and mad(G) < 2, then A'(G) = [£] + 1.

2. If mad(G) < 3, then AY(G) < |

o[>

] +2.

3. If mad(G) < 3, then A'(G) < |

o[>

]+3.

Since every planar or projective-planar graph G with girth ¢g(G) verifies

mad(G) < 92(%(@2, we obtain the following corollary:

Corollary 4.10 Let G be a planar or projective-planar graph with mazx-
imum degree A:

1. If A >3 and g(G) > 16, then A(G) = [2] + 1.

2. If g(G) > 10, then A(G) < [£] +2.

Observe that cycles are linearly 3-choosable; hence, we cannot remove
the condition on A in Theorem 4.9.1 and Corollary 4.10.1.

Proof of Theorem 4.9.1 Let G be a counterexample of minimum
order, with A > 3 and mad(G) < 1—76. There exists an assignment of lists
of size at least [$] + 1 such that G is not linearly L-colorable. Using
the method of reducible configurations, we first prove that GG satisfies the
following claim:

Claim 4.11 G does not contain any of the following configurations:

(C4.11.1) a 1-vertex,
(C4.11.2) a 2-vertex adjacent to two 2-vertices,

(C4.11.3) a S-vertex adjacent to three 2-vertices, each of them adjacent
to a 2-vertex.

Proof.



(C4.11.1)
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If G contains a 1-vertex v, let ¢ be a linear L-coloring of G —v
(which exists as G — v is a subgraph of G' and thus verifies
mad(G —v) < %2). We now extend ¢ to v: the neighbor u of
v forbids one color; we also have to preserve u’s 2-frugality:
among its d already colored neighbors (d < A — 1), there are
at worst [2] — 1 pairs of vertices having the same color. This
forbids at most [£] colors to v. Thus v can be colored with a
remaining color in its list L(v), and the coloring obtained is a
linear L-coloring of G, which is a contradiction.

If G contains a 2-vertex v adjacent to two 2-vertices u and w,
we color the graph G — v linearly with colors belonging to the
lists of L (it is possible by the minimality of G). If v and w
have distinct colors, we choose for v a color distinct from the
colors of its neighbors, and it is impossible to create a bicol-
ored cycle. If v and w have the same color, we forbid it to v,
as well as the color of the second neighbor of u. This prevents
the creation of any bicolored cycle. There are at most two
forbidden colors, what enables us to color v since [£]+1 > 3
when A > 3.

V2
X2

X3

H

Figure 4.4: Elimination of Configuration (C4.11.3).

If G contains a 3-vertex adjacent to three 2-vertices, each of
them being adjacent to another 2-vertex, then we color the
reduced graph H obtained from G by removing the vertices
u, v1, wy, and 1 (see Figure 4.4). This reduced graph H is
a subgraph of G, and so mad(H) < 16/7. We now have to
color the vertices u, vy, wy, and x;. For vy, we choose a color
different from the color of vs. For w; we take a color different
from those of wy and v;. We color u with a color different from
those of v; and w;. For the last vertex, we have to handle two
different cases: if © and x5 have different colors it is impossi-
ble to create a bicolored cycle, so we can take for x; a color
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different from those of v and x,. If v and 2o have the same
color, we choose for x; a color different from those of x5 and
x3 (what prevents bicolored cycles coming from x3). As in the
previous situation, there are at most two forbidden colors for
each vertex, what enables us to color each of them with a color
of its own list. We then obtain a linear L-coloring of G, which
is a contradiction.

We complete the proof of Theorem 4.9.1 with a discharging procedure.
First, we assign to each vertex v a charge w(v) equal to its degree. We
then apply the following discharging rules:

Rule 1. Each Z4-vertex gives % to each adjacent 2-vertex.

Rule 2. Each 3-vertex gives % to each adjacent 2-vertex neighbor of another
2-vertex, and % to each adjacent 2-vertex which is not neighbor of
a 2-vertex.

Let w*(v) be the charge of v after the procedure. Let v be a k-vertex
(k> 2, as G does not contain Configuration (C4.11.1)).

o If k =2, v receives % if it is adjacent to a Z4-vertex or to a 3-vertex
and a 2-vertex. Otherwise v must be adjacent to two 3-vertices
(Configuration (C4 11.2) does not appear in the graph), and will

2 _ 16
receive two times 50w (v) > 2+ 2 =2

o If £ = 3, v gives at most % + % + % (the graph does not contain
i x _ 5 _ 16
Configuration (C4.11.3)), thus w*(v) >3 — 2 = =
e If k>4, then by Rule 1 w*(v) > k —k X %Z7O

In any case, w*(v) > 42, so Soeviay W) > 161 Gince 3
2 vev(c) W) =D cvie Av) = 2[E(G)], we have

veV (G w*(v) =

- 2E(G)] _ 2wevipw (V) _ 16/7|V(G)| _ 16
W2 = ver - = wel T

We obtain a contradiction, since mad(G) < 22 according to the the
definition of G.
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Proof of Theorem 4.9.2 Let G be a counterexample of minimum
order, with mad(G) < 2. There exists an assignment L of lists of size
[£14 2 such that G is not linearly L-colorable. Using the method of re-

ducible configurations, we first prove that G satisfies the following claim:
Claim 4.12 G does not contain any of the following configurations:

(C4.12.1) a 1-verte,
(C4.12.2) two adjacent 2-vertices,

(C4.12.83) a 3-vertex adjacent to three 2-vertices.

Proof.

(C4.12.1) The case of the 1-vertex has already been handled in the pre-
vious proof (see Configuration (C4.11.1)).

(C4.12.2) If G contains two adjacent 2-vertices v and w, let ¢ be a linear
L-coloring of G — {v,w}. We extend ¢ to the whole graph by
finding colors ¢(v) € L(v) and ¢(w) € L(w) for v and w such
that the new coloring c is a linear coloring of G. Let u be the
neighbor of v in GG distinct from w and let « be the neighbor of
w in G distinct from v. For v, we choose a color distinct from
those of u and . We also need to preserve u’s 2-frugality; to
do this we forbid at most [£] — 1 other colors to v. We take
for w a color different from those of v and z; z’s 2-frugality
also forbids at most [£]—1 other colors to w. At most [§]+1
colors are forbidden to v and w, so it is possible to color them
with colors from their own lists. We obtain a linear L-coloring
of GG, which is a contradiction.

(C4.12.3) If G contains a 3-vertex adjacent to three 2-vertices, let ¢ be a
linear L-coloring of the reduced graph H obtained from G by
removing the vertices u, x1, and w; (see Figure 4.5). In order
to extend c to the whole graph G, we have to find colors for the
remaining vertices: wi, x1, and u. We choose for w; a color
distinct from the colors of w, and vy, and from the at most
[£1—1 colors appearing twice in w,’s neighborhood. We take
for u a color different from those of vy, wy, and z5. Finally we
forbid to z; the colors of z and u, as well as most [§] — 1
colors appearing twice in xo’s neighborhood. Such a coloring
preserves the property of 2-frugality of all the vertices, and
since c(wy) # c(v1) and ¢(u) # ¢(x2) no bicolored cycle can
be created. So we can color each of these vertices with a color
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from its own list in order to obtain a linear L-coloring of G,
which is a contradiction.

Vo \fVZ
V1 Vi
X1 Wy
x2 X2 w2

Wa 7 §
G H

Figure 4.5: Elimination of Configuration (C4.12.3).

We complete the proof of Theorem 4.9.2 with a discharging procedure.
First, we assign to each vertex v a charge w(v) equal to its degree. We
then apply the following discharging rule:

Rule. Each =3-vertex gives i to each adjacent 2-vertex.

Let w*(v) be the charge of v after the procedure. Let v be a k-vertex
of G (k > 2, as G does not contain Configuration (C4.12.1)).

o If k = 2, vis adjacent to two =3-vertices (the graph does not contain
Configuration (C4.12.2)), thus w*(v) > 2+ 2 x = 3.
e If k = 3, v is adjacent to at most two 2-vertices (the graph does
not contain Configuration (C4.12.3)), thus w*(v) >3 -2 x 1 = 2.

e If £ > 4, v can be adjacent to k 2-vertices, so w*(v) > k—k X i > 3.

In any case, w*(v) > 2, s0 S oevicy W (v) = 5. Since Soevie @ (v) =
ZUEV(G) w(v) = ZUGV(G) d(v) = 2|E(G)], we have:

. 20E(G)|  2vevip@ (V) _5/2[V(G)] 5
(@) = Vel T VG S V@) 2

We obtain a contradiction, since mad(G) < 2 according to the the

2
definition of G.
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Proof of Theorem 4.9.3 Let G be a counterexample of minimum
order, with mad(G) < §. There exists an assignment L of lists of size
[£14 3 such that G is not linearly L-colorable. Using the method of re-

ducible configurations, we first show that G satisfied the following claim:
Claim 4.13 G does not contain any of the following configurations:

(C4.13.1) a 1-vertex,
(C4.13.2) two adjacent 2-vertices,

(C4.13.3) a 3-vertex adjacent to two 2-vertices.

Proof.
(C4.13.1) see Configuration (C4.11.1).
(C4.13.2) see Configuration (C4.12.2).

(C4.13.3) If G contains a 3-vertex adjacent to two 2-vertices, let ¢ be
a linear L-coloring of the reduced graph H obtained from G
by removing the vertices u, x1, and w; (see Figure 4.6. This
coloring exists, as H is a subgraph of G, and thus mad(H) <
mad(G) < §. We extend ¢ to the whole graph G, by coloring
wy, 1, and w with colors of L(wy), L(z1), and L(u) respec-
tively. We take for w; a color different from the colors of v and

A

ws, and from the [5 ] —1 colors appearing twice in wy’s neigh-

borhood. We then color v with a color different from those of
w1, v, T, and from the (%} — 1 colors appearing twice in v’s
neighbors (2-frugality of v). Finally, we color z; with a color
different from those of u, x5, and from at most [$] — 1 colors
among the colors of x5’s neighbors. So we can color each ver-
tex with a color from its list, and we obtain a linear L-coloring

of GG, which is a contradiction.

X1 W
X2 Wo X2 W2

G H

Figure 4.6: Elimination of Configuration (C4.13.3).
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We complete the proof of Theorem 4.9.3 with a discharging procedure.
First, we assign to each vertex v a charge w(v) equal to its degree. We
then apply the following discharging rule:

Rule. Each = 3-vertex gives % to each adjacent 2-vertex.

Let w*(v) be the charge of v after the procedure. Let v be a k-vertex
of G (k > 2, as G does not contain Configuration (C4.13.1)).

o If k = 2, v is adjacent to two =3-vertices (G does not contain
Configuration (C4.13.2)), thus w*(v) > 2+ 2 x 5 = .

e If k = 3, v is adjacent to at most one 2-vertex (G does not contain
Configuration (C4.13.3)), thus w*(v) >3 — 3 = &.

e If £ > 4, v can be adjacent to k 2-vertices, thus w*(v) > k—kx s >

wloo
W=

In any case, w*(v) > &, s0 S oeviey W (v) > 8. Since Sevie @ (v) =
Y vev(e) W) =2 v Av) = 2| E(G)], we have:

- 20E(GQ)|  2Lvevieyw (v) _ 8/3|V(GQ) _8
d(G) = V(&) V()] = V@) 3

We obtain a contradiction, since mad(G) < & according to the the

3
definition of G.

4.7 NP-completeness

Theorem 4.14 [EMROS8] Deciding whether a bipartite subcubic planar
graph is linearly 3-colorable is an NP-complete problem.

Proof. The proof of the NP-completeness proceeds by a reduction to the
problem of 3-coloring of planar graphs, which is an NP-complete prob-
lem [GJS76]. Given an instance of this problem —a planar graph H, we
need to create a bipartite subcubic planar graph G of a size polynomial
in |V (H)| such that G is linearly 3-colorable if and only if H is 3-colorable.

Let M be the 7 x 2 grid (see Figure 4.7). Observe that in any linear
3-coloring ¢ of M, we have c¢(z1) = c¢(x2) and c(y1) = c(y2).

Let N(z1,22) be the graph depicted in Figure 4.8. This graph is
bipartite, subcubic, planar, and linearly 3-colorable. Moreover, by the
property of M we have ¢(z1) = ¢(z2) in any linear 3-coloring ¢ of N.
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X1 X2

Figure 4.8: The graph N (z1,22). The two stable sets are represented with white
and black dots respectively.

To make the reduction, we first replace each d-vertex u € V(H) by
a tree T, with maximum degree at most 3, having d leaves (each leaf w,
corresponds to a link to a neighbor v of w in H). We then replace each
edge xy of these trees by the graph N (x,y). We then link each vertex wu,
to the vertex v, by an edge (see Figure 4.9). Each tree is bipartite, but
our construction may not be bipartite at this point: if we color each tree
T, properly with the colors black and white, two leaves v,, and w, may
be colored with the same color. If this is the case, we subdivide the edge
VW, thus creating a new vertex m,,, adjacent to v, and w,. We then
replace the edge v,m,,, by the graph N (v, My, ). We repeat this process
until the graph obtained is properly 2-colorable, and thus bipartite.

Ce-e  —pp

Ty

Figure 4.9: Transformation of the planar graph into a subcubic bipartite planar
graph.
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The graph G obtained is planar, bipartite, and subcubic. Each ver-
tex of the tree T, receives the color of u in the 3-coloring of H. This
3-coloring of the graph G is linear : there is no problem of 2-frugality in
the trees, and there are no bicolored cycles (there are no bicolored paths
of size at least four in the widgets).

Conversely, in a linear 3-coloring of GG, the vertices of a given tree T,
have the same color, which can be used to color v in H. So we easily
obtain a 3-coloring of H. [

We could have used a 4 x 2 grid instead of a 7 x 2 grid to build the
widget. All the properties would have been conserved, but the widget
would not have been bipartite (it would have contained some Cj). The
theorem of NP-completeness would have been a little weaker.

4.8 Conclusion

Table 4.1 sums up the upper bounds obtained for the linear choice
number of graphs with maximum degree A.

G AL(G)

A<3 5

A<A4 9
A>3and mad(G) <2 | [§] +1
mad(G) < 3 [2]+2
mad(G) < § [2]+3
outerplanar [%W + 2
planar with A > 12 A+ 26

Table 4.1: AYG) for G with maximum degree A.

Since this work has been written, the bound of Theorem 4.5 has been
reduced from A 4 26 down to A +5 (when A > 85) by Raspaud and
Wang |[RWO06]. It is believed that the right bound should be A/2 + C,
where C' is an absolute constant, but this seems to be a difficult prob-
lem. It is also an open problem to know whether A'(G) = A(G) for every
graph G.
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A generalization of linear coloring can be made, by replacing the con-
dition of 2-frugality by a condition of k-frugality. More precisely, we
define the k-forested coloring of a graph G as a proper coloring of the
vertices of GG such that the union of any two color classes is a forest of
maximum degree at most k. The k-forested number of a graph G, de-
noted by Ax(G), is the smallest number of colors appearing in a k-forested
coloring of G.

The lower bound A(G) > [#1 + 1 can be easily generalized to
A(G) > [2] +1 for all graph G of maximum degree A. The exam-
ple described by Yuster in [Yus98| can also be generalized in k& dimen-
sions in order to prove that A(G) = Q(A%) However, as soon as

k > 4, this construction is less interesting than the probabilistic bound

of Q (ﬁ) given by Alon, McDiarmid and Reed [AMRI1] for the

acyclic chromatic number.

Recently, Kang and Miiller [KMO7]| investigated this coloring and
found some connections with t-improper colorings (colorings such that
every color class induces a graph with maximum degree ).



100 Conclusion



Chapter 5

(p, 1)-total labelling

Contents
5.1 Introduction . .................. 101
5.2 Proof of Theorem 5.6 ... ... ........ 105
5.2.1 Sketch of Proof . . . . . ... ... ... ... 106
5.2.2 The Naive Coloring Procedure . . .. .. .. 106
5.3 Analysis of the procedure ... ........ 107
5.3.1 The first iteration . . . . .. ... ... ... 107
5.3.2 The next iterations . . . . . . .. .. ... .. 110
5.3.3 The final phase . . . . . ... ... ... ... 113
54 Conclusion. . . ... ... ... ... ... 115

In the previous chapters, we investigated distance-two colorings of spe-
cific families of graphs: graphs with bounded maximum degree, with
bounded maximum average degree, forests, outerplanar graphs, planar
graphs, and planar graphs with large girth. In this chapter, we study
incidence graphs, for which distance-two colorings are of particular inter-
est.

5.1 Introduction

For a graph G, let us define the incidence graph G* of G as the graph
obtained from G by replacing every edge by a path of length two (see
Figure 5.1 for an example). Observe that for a graph G, coloring the
square of G* is equivalent to coloring the vertices and edges of G' such
that:

(1) the edge-coloring is proper, i.e. no two incident edges receive the
same color;

101

G*
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(7i) the vertex-coloring is proper, i.e. no two adjacent vertices receive
the same color;

(7ii) every edge has a color distinct from the colors of its end vertices.

Such a coloring is called a total coloring of G, and the smallest number of
colors in a total coloring of GG is the total chromatic number of GG, denoted
by x*(G). By the observation above, x7(G) is equal to the chromatic
number of the square of G*. In the late sixties, Behzad [Beh65] and
Vizing [Viz68| independently proposed the following conjecture, which is
still an open problem:

Conjecture 5.1 (The Total Coloring Conjecture) For any graph G
with mazimum degree A, xT(G) < A+ 2.

G G

Figure 5.1: An example of incidence graph.

Kostochka [Kos77| proved that for a graph G with maximum degree
A, we have x'(G) < [3A]. The first bound in A + o(A) was given
by Hind [Hin90], who proved that x(G) < A + 2v/A. This was later
improved to A 4 18AY31og(3A) by Higgkvist and Chetwynd [HC92|. A
significant step was then made by Hind, Molloy and Reed [HMR99|, who
proved a bound of A+ poly(log A) using frugal colorings (see Chapter 3).
The best bound so far is due to Molloy and Reed [MR98|, who proved
that the total chromatic number of any graph with maximum degree A

is at most A plus an absolute constant.

Recall that for integers p,q > 0, an L(p, q)-labelling of G is an assign-
ment f of integers to the vertices of G such that:

o [f(u) = f(v)| > p,if dg(u,v) =1,

o [f(u) = f(v)] =g if de(u,v) = 2.
In 1995, Georges, Mauro, and Whittlesey [GMW95| studied the L(2,1)-
labelling of incidence graphs. An L(2,1)-labelling of the incidence graph

of G is equivalent to an assignment of integers to each element of V(G)U
E(G) such that :
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(1) the edge-coloring is proper,

(7i) the vertex-coloring is proper,

(7ii) the difference between the integer assigned to a vertex and those
assigned to its incident edges is at least 2.

This labelling is called a (2, 1)-total labelling of G. Havet and Yu [HYO0S|

generalized it to the (p, 1)-total labelling of a graph: a (p, 1)-total labelling

of a graph G = (V,E) isamap ¢: VU FE — N verifying:

(1) Y(u,v) €V?:uwv € E = c(u) # c(v),

(it) Y(u,v,w) € V?:uv € E,uw € E = c(uwv) # c(uw),

(i) Y(u,v) € V*:uv € E = |c(u) — c(uv)| > p.

The (p,1)-total number of a graph G, denoted by )\Z(G), is the mini-

mum integer k such that G has a (p, 1)-total labelling! with labels from

{1,...,k}. Figure 5.2 gives an example of a (2, 1)-total labelling with 6

colors.

Figure 5.2: A (2,1)-total labelling of Petersen’s graph.

Observe that (1, 1)-total labelling is the usual total coloring (which,
again, is basically the same as coloring the square of the incidence graph):
for any graph G, A\(G) = xT(G) = x(G*?).

We recall some bounds and a conjecture for the (p, 1)-total number:
Theorem 5.2 [HYO08| Let G be a graph with mazimum degree A, then:
() N(G) = At .
(1) If G is A-regular, X (G) > A+p+ 1.

'As in Chapter 3, our definition of )\E(G) may differ by one from some of the
definitions found in the literature, since we consider labels from {1,...k} instead of
{0,...k}. We choose this convention in order to be coherent with the definition of
L(p, q)-labelling given in Chapter 3 and to have AT (G) equal to the total chromatic
number of G.
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(#ii) Ifp > A, N(G) > A+p+1.

Observe that if we color the vertices properly with colors belonging to
an interval Iy, containing x(G) colors and the edges with colors belonging
to an interval I containing x'(G) colors, Iy and Ig being separated by
an interval of size p — 1, we obtain a (p, 1)-total labelling of the graph G.
Theorem 5.3 is deduced from this observation :

Theorem 5.3 [HYO08| Let G be a graph, then
(i) A (G) <x(G) +X'(G)+p—1
(11) A(G) <28 +p

Observe that the following conjecture is a generalization of the Total
Coloring Conjecture:

Conjecture 5.4 [HYO08] Let G be a graph with mazimum degree A,
then )\Z(G) < A+ 2p.

Montassier and Raspaud [MRO03| proved this conjecture for graphs
with large maximum degree and small maximum average degree.

Theorem 5.5 [MRO3| Let G be a connected graph with maximum de-
gree A, and let p > 2 be an integer, then N[ (G) < A+ 2p — 1 in the
following cases :

(i) A>2p+1 and mad(G) < 2;
(i1) A >2p+2 and mad(G) < 3;

(iti) A >2p+3 and mad(G) < 3.

As mentionned above, Molloy and Reed [MR98| proved that the total
chromatic number of any graph with maximum degree A is at most A
plus an absolute constant. Moreover, in [MRO02|, they gave a slightly
simpler proof of this result for sparse graphs. In this chapter, our aim
is to generalize their approach to the (p, 1)-total number. Our proof fol-
lows the lines of the proof in [MRO2|, but the analysis is significantly
more complex. Besides, we fill in some blanks of [MR02|, which is more
a sketch than a complete proof.

A vertex v € V(G) is said to be a-sparse if the subgraph of G induced
by N(v) contains at most (?) — aA edges. An a-sparse graph is a graph
in which all the vertices are a-sparse. In this chapter, we will consider
eA-sparse graph for fixed 0 < & < %, in other words, graphs such that the
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(subgraph induced by the) neighborhood of any vertex contains at most
c(g) edges, for some absolute constant ¢ < 1. Note that every G,,, with
p < 1 is asymptotically almost surely (that is, with probability tending
to 1 when n tends to infinity) eA-sparse for some 0 < € < %

Our main result is the following :

Theorem 5.6 [EMRO6] For any 0 < ¢ < %, and any positive integer
p, there exists a constant C, . such that for any eA-sparse graph G with

mazimum degree A, we have N['(G) < A+ C,p.

The proof of Theorem 5.6 is based on a probabilistic approach. It
uses intensively concentration inequalities and Lovasz Local Lemma. We
also conjecture the following, which is a weakening of Conjecture 5.4:

Conjecture 5.7 For any positive integer p, there exists a constant C),
such that for any graph G with maximum degree A, we have )\Z(G) <
A+ C,.

In Section 5.2, we present the procedure used to prove Theorem 5.6
and in Section 5.3, we analyze this procedure. The probabilistic tools
used in the proof are described in Chapter 1 (for further details, see
[MRO02]).

5.2 Proof of Theorem 5.6

Since A](G) < 2A+p, if we prove that for some Ay (p, €) and some D, .,
any eA-sparse graph G of maximum degree A > A, verifies )\;;F(G) <
A+ D, ., then Theorem 5.6 will be proved.

The second observation is that it suffices to prove the theorem for A-
regular graphs (graphs in which all the vertices have degree A). If G is
not A-regular, take two copies of G and join the two copies of any vertex
with degree less than A (see Figure 5.3 for an example). Since the min-
imum degree increases by one, by repeating this process we eventually
obtain a A-regular graph containing G. Moreover it is easy to see that if
G is e A-sparse, then the graph obtained from the construction is also e A-
sparse. Hence, we can assume from now on that the graph G is A-regular.

Let ¢ be a full or partial coloring of G. Any edge e = wv such that
|p(u) — @(e)] < p or/and |p(v) — ¢(e)| < p is called a reject edge. The
graph R induced by the reject edges is called the reject graph. It will be
convenient for us to consider the reject degree of a vertex v, which is the
number of edges e = uv such that |¢p(u) — ¢(e)| < p. Observe that dg(v)
is at most the reject degree of v plus 2p — 1.



106 Proof of Theorem 5.6

H

Figure 5.3: G C H, A(G) = A(H), and §(H) = §(G) + 1.

5.2.1 Sketch of Proof
Set C = A + 1. To prove Theorem 5.6, we apply the following steps :

Step 1. First, we will color the edges by Vizing’s Theorem using colors from

1,....c.

Step 2. Then we will use the Naive Coloring Procedure to color the vertices
with colors {1,...,C}. This procedure creates reject edges. How-
ever, we can prove that after the procedure, the maximum degree
of the reject graph R is a constant D, . which does not depend on

A.

Step 3. Finally, we remove the color of the vertices of R and recolor these
vertices greedily with the colors from {A+p+1, ..., A+p+2+D, . }.
Taking C,. = D, + p — 2, this proves that A\[(G) < A+ C,..

We now present the Naive Coloring Procedure.

5.2.2 The Naive Coloring Procedure

For each vertex v, we maintain two lists of colors: L, and F,. L, is
the set of colors which do not appear in the neighborhood of v. Initially,
L, = {1,...,C}. After iteration I (specified later), F, will be a set of
forbidden colors. Until iteration I, F, = &.

During the Naive Coloring Procedure, we will perform i* (specified
later) iterations of the following procedure :

Step 1. Assign to each uncolored vertex v a color chosen uniformly at ran-
dom in L,.

Step 2. Uncolor any vertex which receives the same color as a neighbor in
this iteration.
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Step 3. Iteration ¢ < I. Let v be a vertex having more than 7" (specified
later) neighbors u which are assigned a color ¢(u) such that
|c(uv) — ¢(u)| < p in this iteration. For any v, we uncolor all
such neighbors.

Iteration 7 > /.

(a) Uncolor any vertex v which receives a color from F, in
this iteration.

(b) Let v be a vertex having more than one neighbor u which
is assigned a color such that |c(uv) — c¢(u)| < p in this
iteration. For any v, we uncolor all such neighbor.

(c) Let v be a vertex having at least one neighbor u such that
cluv) — c(u)| < p in this iteration. For any v, we place
|c(uv) — c(u)] < p y v, we p
{c(vw) = p+1,...,¢clvw),...,c(ow) + p — 1} in F, for
every w € N(v).

Step 4. For any vertex v which retained its color (i.e. which was not un-
colored during a previous step), we remove ¢(v) from L, for any

u € N(v).

After ¢* iterations of this procedure, we have a partial coloring of G.
We complete this coloring in order to obtain a reject graph R with a
bounded maximum degree which does not depend on A.

5.3 Analysis of the procedure

5.3.1 The first iteration

Let ¢ = 555. In this subsection, we prove that:

Claim 5.8 The first iteration produces a partial coloring with bounded
reject degree for which every vertex has at least %A repeated colors in its
neighborhood.

We recall that C = A + 1 is the initial size of each color list L,.
Let A, be the number of colors ¢ such that at least two neighbors of v
receive the color ¢ and all such vertices retain their color during Step 2.
Let B, be the number of neighbors of v which are uncolored at Step 3.
Notice that vertices are uncolored at Step 3 regardless of what happened
at Step 2. Let X, be the event that “A, < (A”. Let Y, be the event
that “B, > %A”. If no type X event occurs, every vertex has at least (A
repeated colors in its neighborhood at the end of Step 2. If no type Y
event occurs, less than %A vertices are uncolored in each neighborhood.
As a consequence, if we show that with positive probability, no type X
or Y event occurs, Claim 5.8 will be proved.
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Claim 5.9 Pr(X,) < e~o8” A for g particular constant o > 0.

Proof. We first bound the expected value of A,. Let A/ be the num-
ber of colors ¢ such that exactly two neighbors of v receive the color ¢
and are not uncolored during Step 2. Notice that A, > A/, and thus
E(A,) > E(A]). Let u and w be two non adjacent neighbors of v. The
probability that u and w are colored with ¢, while no other neighbor
of v is colored with ¢, and while no neighbor of v or w is colored with
c is exactly (%)2 (1- é)m_?’ > (%)2 (1- %):m. Since G is eA-sparse,
|[E(Nv))| < (%) — eA?%. We assumed without loss of generality that G
was A-regular, so there are at least eA? pairs of non adjacent vertices
among the neighbors of v. There are C choices for the color ¢, thus

, (1 2 1 3A_£ 1 34
E(A) > CeA (C 1 C = 1 C

For A > 2, we have In(1—3) > —2—5;, and thus (1- é)SA > eS¢,

For A large enough, A/C > /3/2 and e~¢ > v/3/2, so:

, 3eA 3
E(A) > 15 QCA

Since E(A,) > E(A]), we also have E(4,) > 2CA. Let AT, be the
number of colors assigned to at least two neighbors of v, and let Del,
be the number of colors assigned to at least two neighbors of v and not
retained by at least one of them. Note that A, = AT, — Del,, and
by linearity of expectation, E(A,) = E(AT,) — E(Del,). The random
variable AT, only depends on the A colors assigned to the neighbors of
v. Moreover, changing one of these colors can only affect AT, by at most
1. Using the Simple Concentration bound, we obtain:

Pr (|AT, — E(AT,)| > t) < 2¢" 5. (5.1)

The random variable Del, only depends on the nearly A? colors as-
signed to the vertices at distance at most 2 from v. As previously, chang-
ing one of these colors can only affect Del, by at most 1. Furthermore,
if Del, > s, we can find at most 3s vertices, whose colors certify that
Del, > s (for each color o counted by Del, > s, we take two neighbors
x and y of v colored with v and a neighbor z of x or y also colored with
«). Applying Talagrand’s Inequality with ¢ = 1 and r = 3, we obtain for

all t > /Alog A

2
t—60 3E(Delv)>

Pr(|Del, — E(Del,)| > t) < d¢™~ ZEMmem) < 4¢ 75, (5.2)
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since E(Del,) < A. Recall that E(A,) = E(AT,) — E(Del,). Let
t = 31o0g AVE(A,). If |4, — E(4,)| > logAy/E(A,) we have either
|AT, — E(AT,)| > t or |Del, — E(Del,)| > t. Using (5.1) and (5.2), the
probability that this happens is at most

t2 2 3 2 3 2 ¢ 2
2728 + de" 258 < 2016610878 | fem 2006108 A o100 1087 A

So, for A large enough, Pr <|AU —E(A,)] > log A /E(Ay)> < oty log? A

Pr <\Av _E(A)] > log A\/E(AU)) > Pr <AU < E(A,) — log A\/E(AU))
Pr (Av < ggA — log A\/K)
> Pr(A, <CA)

Y

Since Pr(X,) = Pr(A, < (A), we proved that Pr(X,) < e 100 10g” &
[

Claim 5.10 Pr(Y,) < e P2, for a particular constant 3 > 0.

Proof. Let u be a neighbor of v. The vertex u will be uncolored in
Step 3 if for some neighbor w of u, u and T other neighbors x,..., 1
of w are each assigned a color ¢(z;) such that |c(u) — c(wu)| < p and
le(x;) — c(wz;)| < pforall 1 <i < T. The probability that this happens

is at most
AfA-1 (221 T+1<(2p—1)T+1
T C T!

For T large enough, (2p — 1)T+1/T! < ¢/4, and thus E(B,) < ‘2. The
random variable B, only depends on the nearly A? colors assigned to the
vertices at distance at most 3 from v. Changing one of these colors can
affect B, by at most 7'+ 1. Moreover, if B, > s there is a set of at most
(T + 1)s vertices whose colors certify that B, > s (for each uncolored
neighbor u of v, take u and T other neighbors x4, . .., 7 of some neighbor
w of w, such that |c(u) — c(wu)| < p and |c(z;) — c(wz;)| < p for all
1 <i <T). Applying Talagrand’s Inequality to B, with ¢ =T + 1 and
r =T + 1, we obtain for all ¢ > \/Alog A

(t—60(T+1)1/(T+1)E(Bv))2 2
Pr(|B, — E(B,)| >t) <4e S(T+1)3B(By) < de 9T+D3A
A A 7(27A
Taking t = %, we obtain Pr (\BU —E(B,)| > %) < de 6T+ <

__da
e 57T+ Now, since
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Pr (\By - E(B,)| > %) > Pr (BU > E(B,) + %)
> Pr (BU > —CA)
> Pr (BU > %)
we have Pr(Y,) <e G |

We now use Lovész Local Lemma to prove Claim 5.8. Each event X,
only depends on the colors assigned to the vertices at distance at most 2
from v, and each event Y, depends on the colors assigned to the vertices at
distance at most 3 from v. Hence, each event is mutually independent of
all but at most 2A% other events. For A sufficiently large, Pr(X,) < g5
and Pr(Y,) < #. Using Lovéasz Local Lemma, this proves that with
positive probability no type X or Y event happens. Thus with positive
probability, the first iteration produces a partial coloring with bounded
reject degree, such that each vertex has at least % repeated colors in its

neighborhood.

5.3.2 The next iterations

Let d; = <1 — i67%> Aand f; = 4(272_1) ;;1”1 d;. Let i* be the smallest

integer ¢ such that d; < vA. Observe that for any ¢ < ¢*, we have
2
d; > (1—1e O)VA.

Claim 5.11 At the end of each iteration 1 < 1 < i*, with positive prob-
ability every verter has at most d; uncolored neighbors, and each list F,
has size at most f;.

Proof. We prove Claim 5.11 by induction on ¢. At the end of the first it-
eration, every vertex has at least % repeated colors in its neighborhood.
So the number of uncolored vertices in the neighborhood of any vertex

is at most (1 — ¢)A, which is less than d; = <1 - ie*%> A. Morever, for
any vertex v, the list F), is still empty at the end of the first iteration,
thus ‘LU| =0= fl-

Suppose ¢ > 1. By induction, there are at most d;_; uncolored vertices
in each neighborhood at the beginning of iteration ¢, and each F, has
size at most f;_;. We define the random variable D! as the number of
uncolored neighbors of v after iteration i, and the random variable F' as
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the size of the list F), after iteration i. To complete the induction, we
show that with positive probability, D! < d; and F! < f; for any vertex v.
Since every vertex v has at least % repeated colors in its neighborhood,

every list L, has size at least %. Thus, the probability that a newly
A
colored vertex is not uncolored during Step 2 is at least <1 — C%) . So

the probability that a newly colored vertex is uncolored during Step 2 is

at most: A
2 3 _2
1—11—-— <1l—-e¢
< <A) R

For ¢+ < I, the probability that the newly colored vertex v is uncolored
during Step 3 is at most:

dio\ (20—1\""" _/22p-D\""1 1
A<T><<A/2) S( A ) mEIes

Observe that for [ sufficiently large in terms of ¢ and p, we have

42p — 1A <= 1 2\’ 42— DA 2 1o\
fz:fz 1—164 S fxllei 1—164
j=I1+1
< %e_%.

Thus, for ¢ > I, the probability that the vertex v is uncolored during
Step 3(a) is at most:

VAN
>
|
A\
|
('0‘
Ao

And the probability that v is uncolored during Step 3(b) is at most:

s (B s o) (20

Combining these results, the probability that a newly colored vertex

A
A

is uncolored during Step 2 or Step 3 is at most 1—%6_% —l—%e_% = 1—%6_%.
As a consequence,
) di—1

Let X! be the event that D! > <1 — ie*%) d;—1. We define the ran-

dom variable N F? as the number of colors added to F, during iteration i.
Let Y be the event that NF' > 4(21’7{1)0[14,1. Using Lovasz Local Lemma,
we prove that with positive probability none of the type X or Y events
occurs.

Ao

4 1
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Claim 5.12 Pr(X’) < e~0lg’ die1 - for ¢ particular constant § > 0.

Proof. Let v be a vertex of G. Let A be the number of neighbors of v
that are uncolored during Step 2. For i < I we define B as the number
of neighbors of v that are uncolored during Step 3. For ¢ > I we define
C' (resp. D) as the number of neighbors of v that are uncolored during
Step 3.(a) (resp. 3.(b)). Using the Simple Concentration Bound on A,
Talagrand’s Inequality on B and D, and Chernoff Bound on C', combined

with E(D?) < (1 — %ef%)di,l, we prove the following inequalities:

r (yA —E(A)] logdl WE(A+ B) ) < 2e*ﬁ1°g di-1(5.3)
1 P N
' ('B ~E(B)| > ;logd;1/B(A + B)) < 4o 8 EL (5 4)

1 2
r (yA —E(4)| > 5 log di1VE(A+C + D)) < ¢St log” dina (5.5)

1 | log?
r (yc ~E(C)| > 5 log di 1V/E(A+C + D)) < 2¢ T log di1 (5 6)

1 2
r (\D ~E(D)| > 5 log di1/E(A+C + D)) < 2¢ sz g7 di-1 (5.7)

The proof of these results is very close from the proofs of Claims 5.9
and 5.10. Combining (5.3), (5.4), (5.5), (5.6) and (5.7), we obtain for T
and A large enough :

2

PI‘(Xi) <e 65(T+1)3 log? d;—1

Claim 5.13 Pr(Y}) < e %=1 for a particular constant vy > 0.

Proof. The probability that a neighbor u of v is assigned a color c¢(u)

such that [c(u)—c(uv)| < pis 2= < 222 Thus B(NF,) < 22U, .

Applying Talagrand’s Inequality to the random variable N F, with ¢ =
(2p —1)? and r = 1, we obtain :

¢t?

Pr(|NF, — B(NF,)| > t) < de 1Cr-0%i

for any t > logd; _1+/d;_1. Taking t = %di,l, we obtain :

Pr (NF > 4y, ) < Pr <|NFU—E(NFU)| > 2p—gldi_1>
di1
< 4e @13,
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The variable X! only depends on the colors assigned to the vertices at
distance at most 3 from v during iteration 4, while the variable Y,! depends
on the colors assigned to the vertices at distance at most 2 from v during
iteration 7. Thus, each type X or Y event is mutually independent from
all but at most 2d?_; other events. Using Claims 5.12 and 5.13, we have

Pr(X]) < gz— and Pr(Y)) < cx— for A large enough (recall that

according to our choice of i* we always have d; > (1 — ie_%)\/x). Lovész
Local Lemma completes the induction. [

5.3.3 The final phase

At this point, we have a partial coloring such that:
e cach vertex v has at most v/A uncolored neighbors;
e the reject degree of each vertex is at most 17"+ 1;
e cach uncolored vertex has a list of at least % available colors.

It will be more convenient to use lists of equal sizes. So we arbitrar-
ily remove colors from each list, so that for every uncolored vertex v, we
have |L,| = [%w . For each uncolored vertex, we choose a subset of colors
from L, which will be candidates for v and we prove that with positive
probability, there exists a candidate for each uncolored vertex, such that
we can complete our partial coloring of G.

A candidate a for v is said to be good if:
Condition 1 for every neighbor u of v, a is not candidate for u;

Condition 2 for every neighbor u of v, and every neighbor w of
u, there is no candidate b of w such that |c(uv) — a|] < p and
le(uw) — b < p.

If we find a good candidate for every uncolored vertex, Condition
1 ensures that the vertex coloring obtained is proper, and Condition 2
ensures that no reject degree increases by more than one.

Claim 5.14 There exists a set of candidates S, for each uncolored vertex
v, such that each set contains at least one good candidate.

Proof. For each uncolored vertex v, we choose a random permutation of
L,, and take the first twenty colors of the list as set of candidates for v.
Let C', be the event that none of the candidates for v is a good candidate.
Each event C, depends on at most A* other events. We now show that
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Pr(C,) < ﬁ. Lovész Local Lemma will complete the proof.

Let v be an uncolored vertex of G. We define:
Bad, = {c € L, : c is candidate for some neighbor of v}
Bady = {c € L, : choosing ¢ for v violates Condition 2}
Bad = Bad; U Bads

Note that a candidate for v is good if and only if it does not belong
to Bad. Let D be the event that |Bad| < 60(2p—1)>v/A. Observe that :

Pr(C,|D) < (’B&d‘)m < <60(2p — 1)2\/Z>20 - 1202 (2p — )40

Z. B (HAT

So for A sufficiently large, Pr(C,|D) < gz

Each vertex has at most v/A uncolored neighbors, thus |Bad;| <
20v/A < 20(2p — 1)>v/A. We now show that with high probability, the
size of Bads is at most 40(2p — 1)>v/A. A color ¢ belongs to Bad, if for
some neighbor u of v such that |c(uv) — ¢| < p, there is a neighbor w of
u and a candidate a for w such that |c(uw) — a| < p. Thus we obtain:
2p—1

A
(]
CA

E(|Bads]|) < [7-‘ x Pr(c € Bad,) < 20(2p — 1)2VA

Pr(c € Bady) < (2p — 1) x 20V/A x

The random variable | Bads| only depends on at most A? permutations
of color lists of uncolored vertices at distance at most 2 from v. Moreover,
exchanging two members of one of the permutations can affect |Bads| by
at most 2p — 1. If |Bady| > s, we can certify this by giving, for each
color av € Bads, a neighbor u of v such that |c(uv) — a| < p, as well as a
neighbor w of u having a candidate a such that |c(uw) — a| < p. Recall
that a is a candidate for w if it belongs to the first twenty positions of the
permutation of L,. So we only need to give s choices of candidates to
certify that |Bads| > s. We apply McDiarmid’s Inequality to X = |Bads|
withn=0,m=A% c=2p—1,r=1,and t = 10(2p — 1)>VA :

_100(2p—1)%A
Pr <\X —E(X)| > 10(2p — 1)*VA +60(2p — 1) E(X)) < de” 5 17EC
Since E(X) < 20(2p — 1)2V/A, this implies for A sufficiently large:

Pr (]Badgj > 40(2p — 1)2\/5) < e 3VA
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So for A large enough, Pr (5) < &%' We can express the probability of

C, as Pr(C,) = Pr(C,|D)Pr(D) + Pr(C,|D)Pr(D). Hence,

— 1
< _
Pr(C,) <Pr(C,|D)+Pr(D) < 1A

We obtain a coloring of G with maximum reject degree at most I7+2.
So the reject graph R obtained has maximum degree at most [T+ 2p—+1.
We uncolor the vertices of R and recolor them greedily with colors from
{A+p+1,..., A+IT+3p+3} using Brooks theorem. This final coloring
is a (p, 1)-total labelling of G. Since I and T" are independent of A, we
proved that \'(G) < A+ Cp.

5.4 Conclusion

Using general ideas from [MR02|, Theorem 5.6 can be seen as a first
step to prove Conjecture 5.7, which would be the closest result from
Conjecture 5.4 so far.

Indeed, we only use the sparseness of GG to prove that after the first
iteration, we obtain a partial coloring with many repeated colors in each
neighborhood. So the proof of Theorem 5.6 also implies the following
lemma:

Lemma 5.15 For every ¢,( > 0 and every integer p, there exists two
constants C(C, p,e) and A((, p,€) such that the following holds : consider
any graph G with mazimum degree A > A((,p,e), any edge coloring of
G, and any partial vertex coloring of G such that every uncolored vertex
has CA colors appearing at least twice in its neighborhood. The partial
vertex coloring can be completed in order to obtain a (p,1)-total labelling
of G such that the maximum reject degree does not increase by more than

C(¢.p,e).

It seems that Lemma 5.15 could be used to prove Conjecture 5.7,
by only modifying the first iteration of the procedure (for example, by
coloring first the dense components, and then apply the lemma to the re-
maining vertices). However, this would require much deeper probabilistic
techniques and tools.
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In this chapter, we look at distance-two coloring through a different
angle. We study a two-player game in which the first player (Alice) tries
to color the square of a graph with a given set of colors, whereas the
second player (Bob) tries to prevent her from succeeding. The aim is to
understand why acyclic game coloring is so different from the usual game
coloring. To obtain bounds on the size of the color sets for which Alice
has a winning strategy, we refine the usual activation strategy and adapt
it to the case of distance-two colorings.

6.1 Introduction

The game coloring number of a simple graph G is defined through a two-
player game. Alice and Bob take turns marking unmarked vertices of
G, with Alice having the first move. Each move marks one unmarked
vertex. The game coloring number col,(G) of G is the smallest integer
k such that Alice has a strategy to ensure that at any step of the game,
every unmarked vertex is adjacent to at most £ — 1 marked vertices.

The game coloring number was first explicitly introduced by Zhu
[Zhu99| as a tool in the study of the game chromatic number of graphs,
which is also defined through a two-player game: let G be a graph and C'
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be a set of colors. Alice and Bob take turns coloring unmarked vertices
of G, with Alice having the first move. Each move colors one unmarked
vertex, subject to the condition that two adjacent vertices cannot be
marked with the same color. Alice wins the game if eventually every ver-
tex is marked. Bob wins the game if some unmarked vertex x cannot be
marked anymore (each color in C' has been assigned to some neighbor of
x). The game chromatic number x,(G) of G is the minimum k for which
Alice has a winning strategy with colors from {1,... k} in this game.

The game chromatic number was introduced by Bodlaender [Bod91],
and has been widely studied over the last ten years. The question of
determining the game chromatic number of planar graphs has raised par-
ticular interest [Bod91, DZ99, Kie00, KT94, Zhu99|. Recently, Wu and
Zhu [WZ08] proved that there exist planar graphs with game coloring
number at least 11, and Zhu [Zhu08] proved that every planar graph has
game chromatic number at most 17.

Ug Vi

o
<&

Uk Vk

Figure 6.1: A partial 2-tree G with x4 4(G) > A(G)/2.

In his Ph.D Thesis, Chang [Cha07| recently investigated acyclic game
colorings. The only difference with the definition above is that, at any
step, the partial coloring has to be acyclic (that is, a proper coloring with-
out bicolored cycles). The acyclic game chromatic number of a graph G
is denoted by x,4(G). Surprisingly, while the acyclic chromatic num-
ber of planar graphs is at most 5 [Bor79|, their acyclic game chromatic
number is not bounded. Chang [Cha(07]| gave an example of a partial
2-tree (with acyclic chromatic number at most three) with acyclic game
chromatic number at least A/2 (see Figure 6.1). It is easy to check that
during his first two moves, Bob can color x and y with the same color,
or y and z with the same color (depending on Alice’s first moves). Then,
either uq,...uy, or vy,...v, must have distinct colors, and the acyclic
game chromatic number is at least A/2.
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It is easy to prove that x(G) < x,(G) < col,(G) < A + 1 for any
graph GG with maximum degree A. Unfortunately, obtaining good upper
bounds for the acyclic game chromatic number seems difficult in general.
However, we can use the following observation, which is one of the main
reasons why we studied distance-two game colorings.

Observation 6.1 For every graph G, X.4(G) < coly,(G?).

If Alice has a strategy to win the marking game in G? with k colors,
then by using the same strategy she can win the acyclic game with &
colors. When playing, Alice picks a vertex v such that at any step of the
game, any unmarked vertex has at most k—1 marked vertices at distance
one or two. She then colors v with a color distinct from all the colors at
distance at most two from v. She eventually obtains a proper coloring of
G?, which is also an acyclic coloring of G.

It is very important to observe that x,,(G) < x,(G?*) may not be true
in general, since Bob has more freedom in the ayclic game than in the
game coloring of the square (which prevents Alice from using the exactly
the same strategy).

Also note that if we have a winning strategy for a graph G, we can-
not necessarily use it to obtain a winning strategy in a subgraph H of
G. Furthermore, having a winning strategy with £ colors for a graph G
does not mean that we have a strategy with k£ + 1 colors for G. As a con-
sequence, it seems difficult to use proofs by induction or with minimum
counterexamples as in Chapters 2, 3, and 4.

The following is an easy observation about the game chromatic num-
ber of the square of graphs with bounded maximum degree (and as a
consequence, about their acyclic game chromatic number).

Observation 6.2 If G has game colouring number k and maximum de-
gree A, then x4(G?) < coly(G?) < (k—1)2A -k + 1)+ 1.

Assume that Alice has a strategy for the marking game on G to ensure
that at any moment of the game, any unmarked vertex has at most k — 1
marked neighbours in G. We shall show that by using the same strategy,
Alice can ensure that at any moment of the game, any unmarked vertex
has at most (k—1)(2A—k+1) marked vertices at distance at most 2 in G.
Indeed, if v is an unmarked vertex, then let Ny, (v) be the set of marked
neighbours of v in G, and Ny (v) be the set of unmarked neighbours of v in
G. Each vertex of Ny (v) has at most A —1 marked neighbours, and each
vertex of Niy(v) has at most £ — 1 marked neighbours. It is obvious that
k<A+1. If k = A+1, then G* has maximum degree at most (k—1)A,
and the conclusion holds trivially. If & < A, then since [Ny (v)| < k—1,
the number of marked vertices at distance at most two from v in G is at
most | Ny (0)|(A—=1)+|Nas(v)|[+(E—1) (A= | Ny (v)]) < (B—1)(2A—k+1).
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6.2 Game coloring of the square of forests

For special classes of graphs, the upper bound for x,(G?) in Observation
6.2 can usually be improved. This section proves a better upper bound
for x,(G*) when G is a forest.

Theorem 6.3 If G is a forest with mazimum degree A > 9, then A+1 <
Xq(G?) < coly(G*) < A+ 3.

For any forest G, w(G?) = A + 1. Therefore x,(G?) > A + 1. Assume
G = (V,E) is a forest with A > 9. To prove that col,(G?) < A + 3, we
shall give a strategy for Alice for the marking game on G?, so that at any
moment of the game, each unmarked vertex has at most A + 2 marked
neighbors in G2.

If G is not a tree, then we may add some edges to GG to obtain a tree.
Thus we may assume that GG is a tree. Alice’s strategy is a variation of
the activation strategy, which is widely used in the study of coloring game
and marking game. She keeps track of a set V, C V of active vertices,
which always induces a subtree of G. When a vertex v is added to V,
we say that v is activated. Vertices in V, are called active vertices, and
other vertices are called inactive.

Choose a vertex r of G as the root, and view G as a rooted tree. For
a vertex x, f1(x) (abbreviated as f(x)) is the father of x and for ¢ > 2,
let f'(x) = f(f**(z)). For convenience, we let f(r) =r. The vertices in
{f%(z) : i > 1} are called the ancestors of z. Let S(z) be the set of sons
of x, and let S*(x) = Uyes()S(y) be the set of grandsons of x.

Alice’s strategy:

e Initially she sets V, = {r}, and marks 7.

e Assume Bob has just marked a vertex x and there are still unmarked
vertices. Let P, be the unique path from x to the nearest vertex y
of V,. In particular, if z € V,, then x = y and P, consists of the
single vertex x. Alice adds all the vertices of P, to V,, and marks
the first unmarked vertex from the sequence: f*(y), f(y),y, 2% v,
where v is an unmarked vertex with no unmarked ancestors, and
z* is defined as follows: Let Z = {z € S(y) : [(S(z) U S?(2)) N V,]
is maximum among all unmarked sons of y}. Let M be the set
of marked vertices. Then z* is a vertex in Z for which |(S(z*) U
S%(2*)) N M| is maximum. In case Z = &, then ignore the vertex
z* in the sequence.

This completes the description of Alice’s strategy. In the following, we
shall show that by using this strategy, each unmarked vertex has at most



121

A + 2 marked neighbors in G* (or equivalently, each unmarked vertex
has at most A + 2 marked vertices at distance one or two in G).

For each vertex x marked by Bob, there is a path P, defined as above.
If (w, f(w)) is an edge in P, for some P,, then we say that w made a
contribution to f(w) and f(w) received a contribution from w. Let 2’ be
the last vertex of P,. We also say that w made a contribution to f(w) if
one of the following holds:

1. If w =2 and Alice marked f(z').

2. If w =2’ or w= f(a') and Alice marked f*(z’).

Lemma 6.4 Assume Alice has just finished a move and y has two active
sons. Then f*(y) is marked.

Proof. When the first son of y is activated, then y and all its ancestors
are activated. When the second son of y is activated, then the corre-
sponding path P, ends at y, and by the strategy, Alice marks f?(y),
provided that f*(y) was not marked earlier.

Lemma 6.5 Assume Alice has just finished a move, and one of y, f(y)
s an unmarked vertex. Then the following holds:

(1) y has at most 3 active sons.

(2) S(y)US%(y) contains at most 6 active vertices. Moreover, if S(y)U
S%(y) does contain 6 active vertices, then y has 8 active sons, each
of which has one active son.

Proof. Assume y or f(y) is unmarked. According to the strategy, if in a
move of Alice, a vertex in S(y)US?(y) is activated, then the corresponding
path P, either goes through y, or ends at y or ends at a vertex z &
S(y). As y, f(y) are not both marked, whenever a vertex in S(y) U
S?(y) is activated, y receives a contribution. When y receives the first
contribution, y, f(y), f(y) are all activated. When y receives the second
contribution, if f(y) was not marked earlier, one of f(y), f?(y) is marked.
When y receives the third contribution, one of y, f(y) is marked. When
it receives the fourth contribution, y must be marked. Since y or f(y)
is unmarked, y received at most three contributions. During each of the
three corresponding moves of Alice, at most one vertex of S(y) and at
most one vertex of S?(y) are activated. So S(y) contains at most three
active vertices and S?(y) contains at most three active vertices. In case
S(y) U S?(y) does contain 6 active vertices, then y has three active sons,
each of which has one active son. [
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Lemma 6.6 Assume Alice has just finished a move, and one of y, f(y)
15 an unmarked verter. Then y has at most one unmarked son x such
that S(x) U S?(x) contains more than 2 active vertices.

Proof. Assume to the contrary that y and f(y) are not both marked
and y has two unmarked sons x1, xs such that for each j = 1,2, S(x;) U
S?%(x;) contains more than 2 active vertices. For j = 1,2, if a vertex in
S(z;) U S?(z;) is activated, the corresponding path P, ends at z; or a
vertex z € S(x;). Hence x; receives a contribution. Since z; is unmarked,
x; passes the contribution to y. As S(z;) U S?(z;) contains more than
2 active vertices, there are at least two steps in which some vertex in
S(z;)US?(x;) is activated. Hence y received at least 4 contributions. As
remarked in the proof of Lemma 6.5, if y received 4 contributions, then
both y, f(y) are marked. [

Lemma 6.7 Assume Alice has just finished a move. Then the following
holds:

e y has at most two unmarked sons x for which S(x)US*(x) contains
more than 2 active vertices.

e If y has 3 active sons, then y has at most one unmarked son x
for which S(x) U S?*(x) contains more than 2 active vertices. If
y has 4 or more active sons, then for each unmarked x € S(y),
S(x) U S%*(z) contains at most two active vertices and contains at
most one marked vertex.

Proof. By Lemma 6.6, before y and f(y) are both marked, y has at most
one unmarked son x such that S(x)U S?(x) contains more than 2 active
vertices. Therefore at the moment the last of the two vertices y and f(y)
is marked, y has at most two unmarked sons x for which S(z) U S?*(x)
has more than 2 active vertices. Moreover, if y does have two unmarked
sons x for which S(x) U S?(x) contains more than 2 active vertices, then
y has only two active unmarked sons.

Assume that at the moment that the last of the two vertices y and
f(y) is marked, y has two unmarked sons, say x; and xs, such that
S(x;)US?(x;) contains more than 2 active vertices (i = 1,2). By Lemma
6.4, f?(y) is marked.

Suppose the third son x3 of y is activated. Since f2(y), f(y),y are all
marked, by the strategy, one of x; and x5, say x1, will be marked. At the
time w3 is activated, S(x3) U S?(x3) contains at most two active vertices
and at most one marked vertex. If one more vertex of S(x3) U S?(z3) is
activated or marked, then Alice should have marked x3. When the fourth
son x4 of y is activated, Alice should have marked xz,. Once both z; and
x5 are marked, then for any son z of y, if S(x) U S?(x) contains more
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Figure 6.2: A tree T with col,(T?%) = A + 3.

than 2 active vertices or contains more than one marked vertex, Alice
should have marked x. [

Lemma 6.8 Assume A(G) > 9. If Alice has just finished a move and x
is an unmarked vertex, then there are at most A + 1 marked vertices at
distance at most 2 (in G) from .

Proof. By Lemma 6.5, S(z) U S?(z) contains at most 6 active vertices,
and so at most 6 marked vertices since after any of Alice’s moves all
the marked vertices are active. The other marked vertices at distance
at most 2 from x are f(z) and the neighbors of f(x). By Lemma 6.7,
if S(x) U S?(x) contains at least 2 two marked vertices then f(x) has at
most 3 active sons (including x), hence the set N[f(z)] — {x} contains at
most 4 marked vertices : f(z), f%(z), and two sons of f(x). So in this
case there are at most 4 + 6 = 10 < A + 1 marked vertices at distance
at most 2 from z. If S(z) U S?(x) contains at most one marked vertex,
then again there are at most A + 1 marked vertices at distance at most
2 from . [

After Bob’s move, an unmarked vertex x has at most A + 2 active
vertices that are of distance at most 2 from x. This proves that the game
coloring number of the square of a forest F'is at most A + 3.

The bound col,(G) < A+3 is tight for trees. To see this, consider the
graph depicted in Figure 6.2. By symmetry, we can assume that Alice
does not mark x or z; during her first move. Let X = {x;,1 < i < t},
Y; = {yi,yi}, and Y = {,.,, Yi. We say that Y; has been marked if
any of y; and y] has been marked. Bob’s strategy is the following : if
there is an unmarked vertex z;, such that Y; is not marked, Bob marks
yi- Otherwise he just marks any u;, vj, or vj.

We now prove that if Bob follows this strategy, some unmarked vertex
will be adjacent to at least A + 2 marked vertices in T at some point of
the game.
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After Bob’s first move, the number of marked Y;’s is one more than
the number of marked z;’s. If Alice marks an z; whenever Bob marks
Y;, then eventually = will have too many marked neighbors in T2. So
before all the x;’s are marked, Alice needs to mark = at a certain move.
Then before all the x;’s are marked, if Bob has just finished a move, the
number of marked Y;’s is at least two more than the number of marked
T;’s.

Let z; and x; be the last vertices of X to be marked. Before z;, x; are
marked, Bob has already marked y; and y;. Without loss of generality,
assume that Alice chooses to mark z; first, then Bob marks 3} and after
his move, z; is unmarked and has at least A + 2 neighbors in T%.

6.3 Outerplanar graphs

A graph G is an outerplanar graph if G' can be embedded in the plane
in such a way that all the vertices of GG lie on the boundary of the infi-
nite face. This section gives an upper bound for x,(G?) for outerplanar
graphs.

Theorem 6.9 Let G be an outerplanar graph with maximum degree A,
then x4(G?) < coly(G?) < 2A + 16.

Let G = (V, E) be an outerplanar graph with maximum degree A,
and let H = (V, E’) be a maximal outerplanar graph containing G. Since
H is a 2-tree, there exists an orientation H of H such that:

e every vertex of H has out-degree at most two;
e the two out-neighbors of any vertex, if they exist, are adjacent.

If a vertex = of H has two out-neighbors v, z, and yZ is an arc of H,
then we say that z is the major parent of x, x is a major son of z, y
is the minor parent of x, and x is a minor son of z. If x has only one
out-neighbor z, then z is the major parent of x and x is a major son of
z. For a vertex x, we denote by f(z) (resp. {(z)) its major (resp. minor)
parent, if it exists. We also define S(x) as the set of in-neighbors of
and S%(z) as the set of in-neighbors of the vertices of S(z).

Observation 6.10 For every vertex x € H, at most two in-neighbors of
x are minor sons of x. The minor sons of x, if any, are major sons of

f(z) orl(x).

This observation is an easy consequence of the definition of H (see
Figure 6.3, where only z; and z; may be minor sons of x).



125

Figure 6.3: The neighborhood of a vertex z in H. The dashed arcs may not be here
in the graph.

— . —_— —
Let T be the directed tree defined by the arcs {zf(x),x € H}. As
in the previous section, Alice’s strategy is a variation of the activation
strategy and she will keep track of a set V,, of active vertices.

Alice’s strategy
e At her first move, Alice will mark the root r of T', and set V, = {r}.

e Assume Bob just marked a vertex x. Let P, be the path constructed
as follows: At the beginning P, = {x}. Let z be the last vertex
of P,. If z is inactive, then add f(z) to P,. Otherwise if [(z) is
inactive, add [(2) to P,. Eventually the procedure will stop and the
last vertex y of P,, as well as its parents, are all active (note that
if z is active then f(z) must be active). Alice adds all the vertices
of P, to V, and marks the first unmarked vertex from the sequence
f(),U(y),y,v, where v is an unmarked vertex with no unmarked
ancestors.

Lemma 6.11 Let x be an unmarked vertex after a move of Alice, then
x has at most 2\ + 14 active vertices at distance one or two in G.

Proof. Assume z is an unmarked vertex. We denote by zi,...,x; the
sons of z (see Figure 6.3). Notice that by Observation 6.10 only z; and
x; may be minor sons of . Let v; be the minor son of z; that is possibly
a major son of f(x), and v, be the minor son of x; that is possibly a
major son of [(z).

Assume that f(x) and I(z) both exist. Once they are both marked
and x is activated, only two vertices of S(x) (the two minor sons z; and
z; of z) and four vertices of S(z) U S?*(z) — {vy,v;} can be activated. If
some major son of x was activated, then Alice should have marked zx.
If a son of z; distinct from v; was activated, then x; would have been
activated (x2 could not be activated, since otherwise x would have been
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marked). If a second son of z; distinct from v, was activated, then z
would have been marked by Alice’s strategy. The same holds for x;.

The first time a vertex y; of S(z)US%(z) — {vy,v;} is activated, Alice
activates « and f(z). The second time, [(x) is activated. The third and
fourth times, f(z) and [(z) are marked. If x; or z; are activated during
these moves, the only change is the order of activation and marking of
z, f(z), and [(x). In any case, at the time the last vertex of f(x),{(z)
is marked and x is activated (whichever is later), there are at most four
moves in which some vertices in S(z) U S?(x) — {vy,v;} are activated.
During these four moves, at most eight vertices of S(z) U S?(x) are acti-
vated.

Combining the two previous remarks, S(z)US?(z) contains at most 14
active vertices: 8 vertices in S(z) U S?(z) activated before the moment
that f(x),l(z) are marked and z is activated, four vertices in S(z) U
S%(z) — {v1,v;} activated after (including z; and z;), and finally v; and
v;. If I(z) does not exist, the same computation shows that S(x) U S?(x)
contains at most 8 active vertices. If they are neighbors of z in G, the
parents of x have at most 2A — 2 neighbors in G distinct from z. Hence,
x has at most 2A + 14 active vertices at distance one or two in G. |

After Bob’s move, an unmarked vertex has at most 2A + 15 active
vertices at distance one or two in (G. This proves that the game coloring
number of the square of an outerplanar graph with maximum degree A
is at most 2A + 16.

Observe that in the description and analyse of the strategy, we always
use the graph H, which is a triangulated outerplanar graph obtained from
G by adding some edges. But the degree of a vertex x refers to its degree
in G, and A is the maximum degree of G.

6.4 Partial 2-trees and planar graphs

The two following lemmas are particular cases of an implicit lemma in
the proof of Theorem 4 in [Zhu00)] :

Lemma 6.12 [Zhu00] In any partial 2-tree, Alice has a strategy such
that at the end of each of her moves, any unmarked vertex has at most 6
marked neighbors.

Lemma 6.13 [ZhuO00] In any planar graph, Alice has a strategy such
that at the end of each of her mowves, any unmarked vertex has at most
17 marked neighbors.

We use these two results, combined with the same idea as in Obser-
vation 6.2 to obtain the following corollary.
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Corollary 6.14 Let G be a partial 2-tree with mazimum degree A > 6,
then col,(G?) < 12A — 34.

Corollary 6.15 Let G be a planar graph with mazimum degree A > 17,
then col,(G?) < 34A — 287.

Proof. Let v be an unmarked vertex just after Alice’s move, and let
Ny(v) (resp. Ny(v)) be the set of marked (resp. unmarked) neighbors
of v. If every unmarked vertex is adjacent to at most [ < A marked
vertices at this moment, then using a similar counting as in Observation
6.2, v has at most [Ny (v)|A+ [Ny ()|l < [Ny (0)[(A=1)+IA < 2IA—1?
marked vertices at distance one or two. Hence, after any of Bob’s moves,
no unmarked vertex has more than 2/A—[?+1 marked vertices at distance

one or two. These two facts prove that in this case, the game coloring
number is bounded by 2IA — % + 2. [ |

6.5 Conclusion

Using Observation 6.1, Theorem 6.9, as well as Corollaries 6.14 and 6.15
have immediate consequences on the acyclic game chromatic number of
outerplanar graphs, partial 2-trees, and planar graphs.

However, we conjecture that in the case of acyclic games, less colors
are necessary:

Conjecture 6.16 For some constant Cy, any planar graph G with mazx-
imum degree A satisfies Xq4(G) < % + Ch.

Based on what is known on the chromatic number of the square of
partial 2-trees and planar graphs (see Chapters 2 and 3), we also conjec-
ture the following:

Conjecture 6.17 For some constant Csy, any outerplanar graph G with
mazimum degree A satisfies col,(G*) < A+ Ch.

Conjecture 6.18 For some constant C3, any planar graph G with mazx-
imum degree A satisfies coly(G*) < 3A + Cs.
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In this final chapter, we define a specific coloring at distance two and
use it to bound the boxicity of graphs with maximum degree A.

The boxicity of a graph G = (V,E) is the smallest k& for which
there exist k interval graphs G; = (V) E;), 1 < i < k, such that F =
Ein...N Eg. Graphs with boxicity at most d are exactly the intersec-
tion graphs of (axis-parallel) boxes in RY. We prove that graphs with
maximum degree A have boxicity at most A? + 2, which improves the
previous bound of 2A? obtained by Chandran et al. (J. Combin. Theory
Ser. B 98 (2008) 443-445).

7.1 Introduction

For a family F = {Si,...,S,} of subsets of a set €, the intersection
graph of F is defined as the graph with vertex set F, in which two sets
are adjacent if and only if their intersection is non-empty. A d-boz is
the Cartesian product [x1,71] X ... X [x4,y4] of d closed intervals of the
real line. For any graph G, the bozicity of G, denoted by box(G), is the
smallest d such that G is the intersection graph of a family of d-boxes.
For a family of graphs {G; = (V, E;), 1 <i < k} defined on the same
vertex set, we set G; N ... N Gy to be the graph with vertex set V', and
edge set E1N...NE}), and we naturally say that the graph G1N...NGy, is
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box(G)
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the intersection of the graphs G, ..., Gg. The boxicity of a graph G can
be equivalently defined as the smallest k such that G is the intersection of
k interval graphs. Graphs with boxicity one are exactly interval graphs,
which can be recognized in linear time. On the other hand, Kratochvil
[Kra94] proved that determining whether box(G) < 2 is NP-complete.

The concept of boxicity was introduced in 1969 by Roberts [Rob69).
It is used as a measure of the complexity of ecological [Rob76] and so-
cial [Fre83] networks, and has applications in fleet maintenance [OR81].
Boxicity has been investigated for various classes of graphs [CR83, Sch&4,
Tho86|, and has been related with other parameters, such as treewidth
|CS07]. Recently, Chandran et al. [CFS08| proved that every graph with
maximum degree at most A has boxicity at most 2A%. To prove this
bound, Chandran et al. use the fact that if a graph G is the intersection
of k graphs G1,. .., Gy, we have box(G) < >, _,., box(G;).

In the remaining of the chapter, we use the same idea to prove the
following theorem:

Theorem 7.1 [EspO08| Every graph with mazimum degree A has boxic-
ity at most 2 |A?/2] + 2.

7.2 Proof of Theorem 7.1

Let G = (V,E) be a graph with maximum degree A, and let ¢ be a
(not necessarily proper) coloring of the vertices of G with colors from
{1,...,2k} such that:

(i) there is no path uvw with ¢(u) = c(w);
(ii) for any 1 < j < k, there is no edge between a vertex colored with
27 — 1 and a vertex colored with 2.

Observe that condition (i) implies that the graph induced by each
color class is a graph with maximum degree at most one (the disjoint
union of a stable set and a matching). The first step of the proof is to
find the smallest k such that a 2k-coloring as defined above exists. Define
the function f such that for every j > 1, f(25) = 2j—1and f(2j—1) = 2j.
We color the vertices of G one by one with the following procedure: while
coloring a vertex u € V, we choose for u a color from {1,...,2k}\(N; U
N,), where Ny = {f(c(v)) | v is a colored neighbor of u} and N, =
{c¢(v) | u and v have a common (not necessarily colored) neighbor}.

If we follow this procedure, the partial coloring obtained at the end
of each step has the desired properties : since c(u) € Ny, condition (ii)
is still verified, and since c(u) ¢ N,, condition (i) is also still verified.
At each step, N; has size at most A and N, has size at most A(A —1).

Hence if & = {%W = {%J + 1, a 2k-coloring of G as defined above
exists.
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From now on, we assume that & = [A?/2] + 1. Hence, a 2k-coloring
c of G with the properties defined above exists. For any 1 <1 < k, let G;
be the graph obtained from G by adding an edge between any two non-
adjacent vertices u, v such that c(u), c(v) € {2¢ —1,2i}. Using conditions
(i) and (ii), G; can be decomposed into a clique K; (induced by the
vertices colored neither with 2i — 1, nor with 2¢), and two sets Sg; 1 and
So; corresponding to the vertices colored with 2¢ — 1 and 2¢ respectively
(see Figure 7.2(a)). By condition (ii), there is no edge between Sy 4
and Sy;, and by condition (i), every vertex of K; is adjacent to at most
one vertex of Sp;_; and one vertex of Sy;. Moreover, Sy;_; and Ss; both
induce a graph with maximum degree one by condition (i).

Now observe that G' = Ni<;<iG;. If two vertices are adjacent in G
they are also adjacent in any G;, since G C G;. On the other hand, if
two vertices v and v are not adjacent in GG, then they are not adjacent in
G're(uy/2], and so they are not adjacent in the intersection of the G;’s.

As a consequence, box(G) < >, box(G;). We now show that
every graph G; has boxity at most two, which implies that box(G) <
2(|A%/2] 4+ 1) and concludes the proof.

Uy U Us Ug Us
Si 1 e e o e .. e e © o .. e
S 9 o9 .. 0 —90 0 o ... o

Vi Vo V3 Vg Vi

Figure 7.1: The ordering of the vertices of So;_1 and Ss;.

For any 1 < ¢ < k, we represent (G; as the intersection graph of
2-dimensional boxes. We order the vertices wuq,...,us of Sy;_; and the
vertices vy, ...,v; of Sy as depicted in Figure 7.1 (recall that Sy;_; and
Sa; both induce a graph with maximum degree at most one). Let r be the
maximum of s and ¢. For every j such that us;_; and ug; are adjacent in
Soi—1, Ugj_1 is represented by the box {—r+2j — 1} x [-2j +2, —2j + 1]
and uy; is represented by the box [—r+2j— 1, —r+2j] x {—=2j+1}. If a
vertex u; is isolated in Sp;_1, it is represented by the point (—r+j, —j+1).

Similarly, for every j such that ve;_; and vy; are adjacent in Sy;, vaj_1
is represented by the box [2j—2,2j—1] x{r—2j+1} and vs; is represented
by the box {2j — 1} x [r — 2j,7 — 2j + 1]. If a vertex v; is isolated in
Sai, it is represented by the point (7 — 1,7 — j) (see Figure 7.2(b) for an
example).

Observe that :

(1) the boxes of two adjacent vertices ug;_1 and ug; intersect in (—r +
2j —1,-2j + 1);

(2) the boxes of two adjacent vertices voj_; and vy; intersect in (25 —
1,r—254+1);
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N

V2

&0 T,

U2

us

Si1 ™
(b)

Figure 7.2: (a) A graph G; and (b) a representation of G; as the intersection graph
of 2-dimensional boxes.

(3) the boxes of all the other pairs of vertices colored with 2i — 1 or 2i
are not intersecting.

(4) the top-right corner of the box of u; is the point (—r + j,—j + 1)
and the bottom-left corner of the box of v; is the point (j —1,r — j)

We now have to represent the vertices from K;. We represent the
vertices having no neighbor outside K; by the point (0,0). If a vertex u
from K, has only one neighbor outside K;, say u; € S_1, we represent
u by the box [—r + 7,0] x [=j + 1,0]. If a vertex v from K; has only
one neighbor outside K;, say v; € Sy;, we represent v by the box [0,7 —
1] x [0, — j]. If a vertex w of K; has one neighbor u; € Sy and one
neighbor v, € Sy;, we represent w by the box [—r+j,{—1] x [—j+1,r—/]
(see Figure 7.2(b) for an example).

The boxes representing the vertices from K; are pairwise intersecting,
since they all contain the point (0,0). Moreover, using Observation (4)
above, the box of every vertex v from K; only intersects the boxes of the
neighbors of v. Hence, GG; is the intersection graph corresponding to this
representation, and so G; has boxicity two, which concludes the proof.

7.3 Conclusion

The best known lower bound for the boxicity of graphs with maximum
degree A was given by Roberts |[Rob69]. Consider the graph Hy, obtained
by removing a perfect matching from a clique of 2n vertices. If this
graph has boxicity k <n—1, let Gy, ..., Gy be interval graphs such that
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Hy, = GiN...NGy. Since k < n —1 and H,, have n non-edges, two
non-edges of H,, have to lie in the same interval graph, say G;. This
is impossible since otherwise G; contains an induced cycle of length four
and is not an interval graph. Hence, box(Hs,) > n > [3 A(Ha,)].

Cozzens and Roberts [CR83| gave another construction of a graph
with maximum degree A and boxicity at least [A/2] based on a com-
plete bipartite graph, but the proof is slightly more difficult.

Chandran et al. [CFS08| conjectured that for any graph G, box(G) <
O(A). It is interesting to remark that this conjecture is true when the
graphs G, ..., Gy with G = Ni<;<;G; are only required to be chordal.
McKee and Scheinerman [MS93| defined the chordality of a graph G,
denoted by chord(G), as the smallest k such that G is the intersection
of k chordal graphs. Since a graph is an interval graph if and only if it
is chordal and its complement is a comparability graph, we clearly have
chord(G) < box(G) for any graph G. McKee and Scheinerman proved
that the chordality of a graph is bounded by its chromatic number. As a
corollary, it is easy to show that for any graph G with maximum degree
A, chord(G) < A.

We conclude with general remarks. We denote by a(G) the arboricity
of G, that is the minimum number of induced forests into which the edges
of G can be partitioned. For outerplanar graphs, planar graphs, graphs
with bounded treewidth, and graphs with bounded degree, the boxicity
seems to be bounded by the arboricity. Unfortunately it seems to be
false in general: there exists trees with boxicity at least two, and graphs
with arboricity two and boxicity at least three. This leads to two natural
questions:

1. Is there a constant x > 1, such that any graph G satisfies box(G) <
a(G) + K?

2. Is there a constant A > 1, such that any graph G satisfies box(G) <
Aa(G)?

A positive answer to the second question (and thus to the first), would
imply that for any graph G with maximum degree A, box(G) < A [%L
proving the conjecture of Chandran et al. [CFS08].

chord(G)

a(G)
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Conclusion

In Chapter 2, we proved that the vertices of any planar graph can
be colored with (% + 0(1))3 colors, in such way that any two vertices
that are adjacent or have a common neighbor of degree at most (3, have
distinct colors. It might be interesting to investigate a similar problem
on surfaces of bounded genus:

Question 1 Is there a function f such that the vertices of any graph
embeddable on a surface of genus g can be colored with f(g)B colors,
in such way that any two vertices that are adjacent or have a common
neighbor of degree at most 3 have distinct colors?

A consequence of the main result of Chapter 2 is that Wegner’s con-
jecture |Weg77| that the square of any planar graph of maximum degree
A > 8 can be properly colored with [%A(G)J +1 colors is asymptotically
true. In Chapter 3, we investigated a generalization of this problem: re-
call that a p-frugal coloring of a graph G is a proper coloring of the vertices
of GG such that every color appears at most p times in the neighborhood
of every vertex. We generalized Wegner’s conjecture in the following way:

Conjecture 2 [AEHO7| For any integer p > 1 and planar graph G with
mazimum degree A > max{2p, 8 } we have

©) < { L%J + 2, if pis even;
Xp =

[282| + 2 if p is odd.

Using connections between frugal coloring and L(p, ¢)-labelling, we
then proved that for fixed p, any planar graph G with maximum degree
A satisfies x,(G) < % +o(A).

In [KWO01], Kostochka and Woodall conjectured that for any graph G,
the chromatic number and the list chromatic number of G* are the same.
We generalize this conjecture in the following way:

Conjecture 3 [AEHO7| For any multigraph G and any integer p > 1,
we have x,(G) = ch,(G).

The List Coloring Conjecture states that for any multigraph G the chro-
matic index and the list chromatic index of G are the same. Again, this
can be seen as a special case of the following conjecture :

Conjecture 4 [AEHO7| For any multigraph G and any integer p > 1,
we have X, (G) = ch,(G).
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When p = 2, a p-frugal coloring of the vertices of a graph G corre-
sponds to a coloring in which the (bipartite graph) induced by every two
color classes has maximum degree two. In Chapter 4, we remarked that
in this case, it does not cost too much to also require that the coloring
be acyclic. Define a linear coloring as an acyclic 2-frugal coloring, then
the union of any two color classes is a forest of paths.

In Chapter 4, we gave bounds on the linear chromatic number of var-
ious classes of graphs, such as graphs with small maximum degree, graph
with small maximum average degree, outerplanar graphs, and planar
graphs. We give here two nice conjectures about graphs with maximum
degree at most three and planar graphs:

Conjecture 5 [EMRO8| If G has mazimum degree three, and is differ-
ent from K3, then A/(G) < 4.

Conjecture 6 [RWO06] For some constant C, every planar graph G with
mazimum degree A satisfies N'(G) < £+ C.

In Chapter 5, we studied the (p, 1)-total number of graphs with bounded
maximum degree. Our aim was to prove a weaker version of the following
conjecture of Havet and Yu [HYO08].

Conjecture 7 [HYO08] Let G be a graph with mazimum degree A, then
MA(G) < A+ 2p.

Observe that any (2, 1)-total labelling of K requires 7 colors. How-
ever, Havet and Yu conjectured the following:

Conjecture 8 [HYO08] Let G be a graph with mazimum degree at most
three, with G # Ky, then \Y(G) < 6.

In Chapter 6, we considered a two-player game in which Alice and Bob
are properly coloring the square of a graph. If the coloring is completed,
Alice wins, and otherwise Bob wins. We investigated winning strategies
for Alice in forests, outerplanar graphs, partial 2-trees and planar graphs,
and our results had direct consequences on the acyclic game chromatic
number of these graphs. However most of our bounds are conjectured to
be far from tight:

Conjecture 9 There exist a constant Cy, such that if G is a planar graph
with mazimum degree A, then X, 4(G) < % + Y.

Conjecture 10 [EZ08| For some constant Cs, any outerplanar graph
G with mazimum degree A satisfies col,(G*) < A+ Cs.

Conjecture 11 [EZO08| For some constant Cs, any planar graph G with
mazimum degree A satisfies coly(G*) < 3A + C.
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In Chapter 7, we investigated the boxicity of graphs with bounded
maximum degree. We proved that any graph with maximum degree A
could be seen as the intersection of A2 4 2 interval graphs. The concept
of boxicity seems to be related with the arboricity of graphs, so we asked
the following:

Question 12

1. Is there a constant k > 1, such that any graph G satisfies box(G) <
a(G) + kK7

2. Is there a constant X\ > 1, such that any graph G satisfies box(G) <
Aa(G)?

okoskokok

We conclude with a couple of questions and conjectures about distance-
two colorings in general.

L(p, q)-labellings of oriented graphs have been investigated for graphs
with maximum degree, trees, and Halin graphs [CL03, CW06, GRS06],
but interesting questions remain. Define the 2-dipath chromatic num-
ber )&(Cj) of an oriented graph G as the minimum number of colors
in a coloring of the vertices of é, such that any two vertices joined by a
directed path of length (number of arcs) at most two have distinct colors.

We saw in Chapter 2 that a coloring of the square of a non-oriented
planar graph of maximum degree A might require at least %A colors.
Surprisingly, a coloring of the square of an oriented planar graph only
requires a constant number of colors. To see this, observe that for any
oriented graph G, Ya(G) is at most the oriented chromatic number of
G (see Appendix A for more details about oriented coloring). Since the
oriented chromatic number of planar graphs is at most 80, we obtain that
for any oriented planar graph G, )Z'Q(Cj) < 80. On the other hand, there
exists an oriented planar graph with 15 vertices, in which any two vertices
are joined by a a directed path of length one or two. Hence, there exists
an oriented planar graph G, with y2(G) = 15. Note that Klostermeyer
and MacGillivray [KMO04]| proved that the order of an oriented planar
graph in which all the vertices are joined by a a directed path of length
one or two is at most 36.

The problem of improving the bound of 80 for oriented coloring of
planar graphs is supposed to be quite difficult, but improving this bound
for the 2-dipath chromatic number might be slightly easier. We propose
the following optimistic conjecture:

Conjecture 13 For any oriented planar graph é, we have )Zg(é) < 15.
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In this thesis, we mainly studied distance-two colorings of the vertices
of graphs. The problem of coloring the edges of graphs with a condition at
distance two is also very interesting. Erdos and Negetiil (see [FGST89])
defined a strong edge-coloring of a graph G as a (proper) coloring of
the edges of G in which every color class is an induced matching. This
coloring can be seen as a proper vertex-coloring of the square of the line
graph of G. If G has maximum degree A then L(G)? has maximum degree
at most 2A? — 2A, so it is easy to prove that any graph with maximum
degree A has a strong edge-coloring using at most 2A% — 2A + 1 colors.
Erdés and Nesetril conjectured the following:

Conjecture 14 FEvery graph with mazimum degree A has a strong edge-
coloring with [2A?] colors.

They also provided examples showing that this bound would be best
possible. The closest result so far was given by Molloy and Reed [MR97],
who proved that for some constant € > 0, every graph with maximum
degree A has a strong edge-coloring using at most | (2 —&)A?| colors.

An incidence in a graph G is a pair (v,e) € V(G) x E(G) such that v
and e are incident (it corresponds intuitively to a half-edge of G). Two
incidences (u, e) and (v, f) are adjacent if one of the following holds: (i)
u=w, (ii) e = wwv or (iii) f = uv.

An incidence coloring of a graph G, defined by Brualdi and Massey
[BM93], is a coloring of the incidences of G such that any two adjacent
incidences have distinct colors. Let G* denote the graph obtained from
G by subdividing every edge exactly once (see Figure 5.1 in Chapter 5 for
an example). Then it is clear that an incidence coloring of G is exactly
a strong edge-coloring of G*.

Guiduli [Gui97] proved that every graph with maximum degree A has
an incidence coloring with A + O(logA) colors, which is best possible.
Hosseini et al. [HSZ04| proved that any planar graph with maximum
degree A has an incidence coloring with A+7 colors. We ask the following
question:

Question 15 Is it true that any planar graph with mazimum degree A
has an incidence coloring with A + 2 colors?
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Appendix A
|[EO07a]

Oriented colorings of 2-outerplanar graphs

Abstract

A graph G is 2-outerplanar if it has a planar embedding such that the
subgraph obtained by removing the vertices of the outer face is outerpla-
nar. The oriented chromatic number of an oriented graph H is defined
as the minimum order of an oriented graph H' such that H has a homo-
morphism to H’. In this paper, we prove that 2-outerplanar graphs are
4-degenerate. We also show that oriented 2-outerplanar graphs have a
homomorphism to the Paley tournament () Rg7, which implies that their
(strong) oriented chromatic number is at most 67.

This article appeared in Information Processing Letters.
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Oriented colorings of 2-outerplanar graphs

Louis Esperet? and Pascal Ochem?
LaBRI UMR CNRS 5800, Université Bordeauzx I,
33405 Talence Cedex
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March 21, 2008

Abstract

A graph G is 2-outerplanar if it has a planar embedding such that the subgraph ob-
tained by removing the vertices of the outer face is outerplanar. The oriented chromatic
number of an oriented graph H is defined as the minimum order of an oriented graph
H’ such that H has a homomorphism to H’. In this paper, we prove that 2-outerplanar
graphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a ho-
momorphism to the Paley tournament QRg7, which implies that their (strong) oriented
chromatic number is at most 67.

Keywords: combinatorial problems, oriented coloring, 2-outerplanar graphs.

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. In other words an
oriented graph is an orientation of an undirected simple graph, obtained by assigning to every
edge one of the two possible orientations. If G is a graph, V(G) denotes its vertex set, E(G)
denotes its set of edges. A homomorphism from an oriented graph G to an oriented graph
H is a mapping ¢ from V(G) to V(H) which preserves the arcs, that is (z,y) € E(G) =
(p(x),p(y)) € E(H). We say that H is a target graph of G if there exists a homomorphism
from G to H. The oriented chromatic number x,(G) of an oriented graph G is defined as
the minimum order of a target graph of G. The oriented chromatic number x,(G) of an
undirected graph G is then defined as the maximum oriented chromatic number taken over
all orientations of G. Neget¥il and Raspaud introduced in [5] the strong oriented chromatic
number of an oriented graph G (denoted by xs(G)), which definition differs from that of x,(G)
by requiring that the target graph is an oriented Cayley graph. They show in particular that
the strong oriented chromatic number of a planar graph G corresponds to the antisymmetric
flow of the dual of G. Upper bounds on the (strong) oriented chromatic number have been
found for various subclasses of planar graphs. In particular:

1. if G is a planar graph, then x,(G) < 80 [8].

2. if G is an outerplanar graph, then xs(G) < 7 [9].

*esperet@labri.fr
Yochem@labri.fr
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A graph G is 2-outerplanar if it has a planar embedding such that the subgraph obtained
by removing the vertices of the outer face is outerplanar. The second author proved that
2-outerplanar graphs have an acyclic partition into three independent sets and an outerplanar
graph [7]. By Theorem 1 in [1], the oriented chromatic number of a 2-outerplanar graph is
thus at most 24~ x (1+1+1+7) = 80. The same result follows from the bound of Raspaud
and Sopena [8] holding for planar graphs.

In Section 2, we prove among other results that 2-outerplanar graphs G are 4-degenerate,
that is, every subgraph H of G has minimum degree at most 4. In Section 3, we use these
results to show that 2-outerplanar graphs have a homomorphism to Q Rg7, which improves the
previous bounds of 80.

In the following, we call a k-vertex (resp. ~k-vertex, Sk-vertex) a vertex of degree k (resp.
at least k, at most k). Figures are drawn with the following convention : the star symbol
indicates the outer face, white vertices correspond to vertices which neighbors are all depicted
in the figure, whereas black vertices may have other neighbors in the graph.

2 Structural properties of 2-outerplanar graphs

Definition 1 A 2-outerplanar graph embedded in the plane is said to be a block if its outer
face is an induced cycle.

Theorem 2 If G is a 2-outerplanar graph, then it contains a <4-vertex.

Proof. Let G be a 2-outerplanar graph embedded in the plane. We consider the subgraph
H induced by the outer face of G. H is an outerplanar graph, so it contains an internal face
F incident to at most one other internal face of H (see Proof of Lemma 2 in [4]). Let B be
the subgraph of GG induced by the vertices of F' and the vertices inside F'. By construction,
the graph B obtained is a block. Moreover, B contains only two vertices x and x’ such that
the degree of x and 2’ in G may be higher than their degree in B. By construction, = and z’
are two adjacent vertices belonging to the outer face of B (see Figure 1).

Figure 1: The decomposition of a 2-outerplanar graph into blocks.

Let B, be the graph induced by the outer face of B, and B, be the graph obtained from
B by removing the vertices of B.. By definition of 2-outerplanar graphs, B, is outerplanar.
So it contains two non-adjacent 2-vertices u and v (see Figure 2).

As mentioned above, vertices of B, have the same degree in B and in G, so dp(u) = dg(u)
and dg(v) = dg(v). Let us find a <4-vertex in B. If B, contains a S4-vertex, it is done.
Otherwise, it means that B, contains only Z5-vertices; in particular u (resp. v) is adjacent to
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Figure 2: The decomposition of B into B, and B,.

three vertices uy,ug, us (resp. vy, va,v3), where ujusus (resp. v1v9vs) is an induced path of
B, (see Figure 3).

u V1
U2 V2
U3 V3

Figure 3: w and v have three neighbors in B..

We now use the fact that B contains only two vertices x and 2’ having a degree in G
possibly higher than their degree in B. As x2’ is an edge of B, this means that us or vy have
the same degree in B and in G, i.e. dg(uz) = dp(uz) = 3 or dg(v2) = dp(v2) = 3. Hence B
always contains a vertex with degree at most 4 in G. O

We now prove that outerplanar graphs have properties stronger than 2-degeneration, in
order to find more precise configurations in 2-outerplanar graphs.

Lemma 3 Let G be an outerplanar graph. G contains either a 1-vertex, two adjacent 2-
vertices, a 2-vertex adjacent to a 3-verter as depicted in Figure 4.a, or two 2-vertices adjacent
to a 4-vertex as depicted in Figure 4.0.

a) b)

Figure 4: Unavoidable configurations in an outerplanar graph without two adjacent 2-vertices.

Proof. We prove this lemma by induction. Let G be an outerplanar graph, and let v be a
2-vertex of G (v exists, see [4] for details). The graph H = G \ v is outerplanar, and smaller
than G. By induction, H contains either two adjacent 2-vertices, or the configurations of
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Figure 4. If v is not adjacent to such a configuration of H, then it is a configuration of G, and
the induction is finished. Otherwise v is adjacent to a configuration, and we have to make the
distinction between various cases. Notice that the neighbors of v must be adjacent in H in
order to obtain an outerplanar graph.

\'
/O\

Va N

* * *
Vool ; m ov
* * ,,ov
\
// \
V O,

Figure 5: Induction step in the proof of Lemma 3.

e If H contains two adjacent 2-vertices, we obtain the configuration of Figure 4.a.

e If H contains a configuration of Figure 4, we obtain either the configuration of Figure
4.a, or the configuration of Figure 4.b (see Figure 5).

In any case, G contains one of the three configurations described earlier. O

We now use Lemma 3 to prove a key structural theorem on 2-outerplanar graphs admitting
a block embedding in the plane. The following result can be extended to the whole class of
2-outerplanar graphs by using the same kind of proof as in Theorem 2.

Theorem 4 Let G be a 2-outerplanar graph admitting o block embedding in the plane. G
contains either a <3-verter, two adjacent J-vertices, or the configuration depicted in Figure 6.

Figure 6: Unavoidable configuration in a 2-outerplanar block containing neither a <3-vertex
nor two adjacent 4-vertices.

Proof. We consider a block embedding of G in the plane. Then the subgraph induced by
the outer face is a cycle. Let G, be this cycle and let G, be the graph obtained from G by
removing the vertices of G.. By definition of G and G, the graph G, is outerplanar. We then
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know by Lemma 3 that G, contains either two adjacent 2-vertices, a 2-vertex adjacent to a
3-vertex as depicted in Figure 4.a, or two 2-vertices having a common neighbor of degree 4 as
depicted in Figure 4.b.

o If G, contains a 1-vertex or two adjacent 2-vertices, we easily find a <3-vertex or two
adjacent 4-vertices in G.

e If GG, contains a 2-vertex v adjacent to a 3-vertex u, we can prove that either dg(v) = 4
or there is a vertex of degree 3 in G (which is a neighbor of v belonging to the outer
face). This is done by applying the same method as in the previous proof. Thus G must
contain the configuration depicted in Figure 7. Notice that v and w are adjacent, since
otherwise one of them would be a =3-vertex. For reasons of planarity, if v is adjacent to
another vertex of G, w cannot be adjacent to another vertex of G,. Conversely, if w is
adjacent to another vertex of G,, u cannot be adjacent to a vertex of G.. This proves
that either u or w has degree 4 in G, say u. If there is no 3-vertex in G, we found two
adjacent 4-vertices: u and v.

Ge Go

Figure 7: G, contains a 2-vertex v adjacent to a 3-vertex u.

e If G, contains two 2-vertices v and v’ both adjacent to a 4-vertex u as depicted in Figure
4.b, we first prove that either v and v' have degree 4 in G or G contains a 3-vertex (in
which case the proof is finished). Let v1 and ve (resp. v} and vj) be the neighbors of
v (resp. v') belonging to the outer face. As depicted in Figure 8, we have to make a
distinction between two cases : {v1,v2} and {v},v}} are disjoint (case 1), or they have
a vertex in common, say ve = v} (case 2).

V2

V1

Ge Go

a) b)

Figure 8: G, contains two 2-vertices v and v’ adjacent to a common 4-vertex u.
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case 1 (see Figure 8.a) If vy and v} have degree at least 4 in G, they both have to be
adjacent to u, in which case dg(v2) = dg(v)) = 4, and we found two adjacent
4-vertices in G.

case 2 (see Figure 8.b) If u is adjacent to vy = v}, we obtain exactly the configuration
depicted in Figure 6. Otherwise, we simply have two adjacent 4-vertices (v and vy).

O

3 Strong oriented coloring of 2-outerplanar graphs
Theorem 5 If G is a 2-outerplanar graph, then xs(G) < 67.

Let g be prime power and let I, denote the unique finite field with ¢ elements. For a
prime power ¢ = 3 (mod 4), the vertices of the Paley tournament QR, are the elements of
[, and (4, ) is an arc in QR if and only if j — ¢ is a non-zero quadratic residue of Fy. Since
q = 3 (mod 4), we have that for 4,5 € F,, ¢ # j, j — i is a quadratic residue if and only if
¢ — j is not a quadratic residue. This means that QR, is an oriented Cayley graph whose
set of generators are the non-zero quadratic residue of F,. It can be proven [3] that Payley
tournaments are arc-transitive, that is, for every arcs uv and tw, there is an automorphism ¢
of QR, such that tw = p(uv)). As a consequence, each QR, is also a circular tournament,
that is, a tournament admitting an automorphism which is a circular permutation.

An orientation vector of size k is a sequence a = {aq, az,...,a} in {0,1}*. Let G be an
oriented graph and X = (x1,x9,...,x) be a sequence of distinct vertices of G. A vertex y of
G is said to be an a-successor of X if for every i, 1 <i < k, we have a; = 1 = (z;,y) € E(G)
and o; = 0 = (y,2;) € E(G). The graph G satisfies property Sy, if for every sequence
X = (s1,82,...,8k) of k distinct vertices of G, and for every orientation vector « of size k,
there exist at least n vertices in V(G) which are a-successors of X.

Notice that property Sk, implies Sy, for every k' < k and n’ < n.

A computer check (similar to the one described in [6]) proves the following lemma:
Lemma 6 The tournament QRg7 satisfies properties Sz and Sy 1.

We use the method of reducible configurations to show that every 2-outerplanar graph is
QRg7-colorable. Let w(G) = |V(G)| + |E(G)|. We consider a 2-outerplanar graph G having
no homomorphism to QRgr such that w(G) is minimum.

Lemma 7 G is 2-connected and does not contain a cut consisting in two adjacent vertices.

Proof. If G is not 2-connected, then we can obtain a Q) Rg7-coloring of G from the coloring of
its 2-connected components, since Q) Rg7 is a circular tournament. Moreover G cannot contain
a cut set consisting of two adjacent vertices, since Q) Rg7 is arc-transitive. O

Notice that Lemma 7 implies that every 2-outerplanar embedding of G is a block.

Lemma 8
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1. The graph G does not contain any <3-verter.
2. The graph G does not contain two adjacent 4-vertices.

3. The graph G does not contain the configuration depicted in Figure 6.

Up X Uz X

U1I IV;]_
—— —eo TR UI IV oV

us

0] (i) (iii)

V3
Figure 9: Forbidden configurations for Lemma 8.
*
up up Uy u2
aNVZAN M
Vi V2 Vi V2
y y

Figure 10: Construction of G’ in the proof of Lemma 8.3.

Proof.

1. Notice that G does not contain =1-vertices by Lemma 7. Suppose that G contains a

2-vertex z adjacent to vertices u; and ug (see configuration (i) in Figure 9). Let G’ be
the graph obtained from G \ {z} by adding the arc uius if u; and ug are not already
adjacent in G. Notice that G’ is 2-outerplanar and w(G') < w(G). Any QRgr-coloring
[ of G’ induces a coloring of G \ {z} such that f(u1) # f(u2), which can be extended
to G by property Sa .

Suppose that G contains a 3-vertex = adjacent to vertices uy, ug, and ug (see configura-
tion (ii) in Figure 9). Since QRg7 is self-reverse, we assume w.l.o.g. that d”(z) < d*(z)
by considering either G or G. We have d~(z) # 0, since otherwise we could extend any
QRg7-coloring of G \ {z} to G. Suppose now d~(x) = 1, which is the only remaining
case. Let us set N~ (x) = {u1}, N*(2) = {uz,u3}. Let G’ be the graph obtained from
G\ {z} by adding the arc ujus (resp. uru3) if u; and us (resp. u; and ug) are not already
adjacent in G. Notice that G’ is 2-outerplanar and w(G') < w(G). Any QRgr-coloring
[ of G’ induces a coloring of G'\ {z} such that f(u;) # f(u2) and f(uy) # f(us), which
can be extended to G by property S3 ;.

. Suppose that G contains configuration (iii) in Figure 9. Let G’ be the graph obtained
from G by removing the arc connecting u and v. Notice that G’ is 2-outerplanar and
w(G") < w(G). Let f be any QRg7-coloring of G'. By property S36, we can choose f
such that f(u) & {f(v1), f(v2), f(v3)}. Now by property Sy 1, we can choose f such that
f) € {f(u), f(u1), f(u2), f(us)} and extend this coloring to G.
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Suppose that G contains the configuration depicted in Figure 6. Let G’ be the graph
obtained from G\ {wy,ws, 7} by adding the arcs u1y and yus, and the arc ujvi (resp.
W) if u; and vy (resp. w2 and v9) are not adjacent in G. This construction is depicted
in Figure 10. Notice that G’ is 2-outerplanar and w(G’) < w(G). Any QRgr-coloring f of
G’ induces a coloring of G\ {wy,wsy, x} such that f(u1), f(v1), f(y) (resp. f(uz), f(vs2),
f(y); resp. f(u1), f(ug), f(y)) are pairwise distinct. By Property S3¢, we can assign
x a color f(x) & {f(v1), f(v2)}. By Property Sy 1, we can assign w; a color f(w;) &
{f(u1)7 f(vl)v ), f('r)} and assign ws a color f(wQ) ¢ {f(uz)v f(UQ)v ), f(.CC)} We

thus obtain a @ Rgr-coloring of GG, which is a contradiction.

O

By Lemma 7, GG is a block. Using Theorem 4, G must contain one of the configurations
that are forbidden by Lemma 8. This contradiction completes the proof of Theorem 5.
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On circle graphs with girth at least five

Abstract

Circle graphs with girth at least five are known to be 2-degenerate
(Ageev, 1999). In this paper, we prove that circle graphs with girth at
least g > 5 contain a vertex of degree at most one or a chain of g — 4
vertices of degree two, which implies Ageev’s result in the case g = 5. We
then use this structural property to give an upper bound on the circular
chromatic number of circle graphs with girth at least g > 5 as well as a
precise estimate of their maximum average degree.
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Abstract

Circle graphs with girth at least five are known to be 2-degenerate (Ageev, 1999). In
this paper, we prove that circle graphs with girth at least g > 5 contain a vertex of degree
at most one or a chain of g — 4 vertices of degree two, which implies Ageev’s result in the
case g = 5. We then use this structural property to give an upper bound on the circular
chromatic number of circle graphs with girth at least ¢ > 5 as well as a precise estimate
of their maximum average degree.

1 Introduction

Let C' denote the unit circle, and let us take the clockwise orientation as the positive orien-
tation of C. Let {zg,...,zx_1} C C, we say that (xq,...,xx_1) are in cyclic order if the
minimum between the sum of the length of the arcs z;7;11, 0 < i < k — 1, and the sum of the
length of the arcs z;; 123, 0 < i < k — 1, is equal to one, where i is taken modulo k. A pair
{z,y} of elements of C is called a chord of C' with endpoints x and y. Two chords {x1,y1}
and {xa,ya} intersect if (x129y1y2) are in cyclic order, otherwise they are said to be parallel.

All graphs considered in this paper are simple: they do not have any loop nor parallel
edges. The girth of a graph G is the size of a shortest cycle in G. We call a k-vertex (resp.
Sk-vertex, Zk-vertex) a vertex of degree k (resp. at most k, at least k).

By definition, every circle graph G with set of vertices V(G) = {v1,...,v,} admits a rep-
resentation C = {{z1,y1},...,{®n,yn}} such that for all 7,5, v; and v; are adjacent in G if
and only if the chords {z;,y;} and {z;,y;} intersect in C. We only consider representations
in which endpoints and intersection points of chords are all distinct. Observe that in general,
circle graphs do not have a unique representation. A representation C’ obtained from C only
by removing chords is called a sub-representation of C. Observe that if C is a representation
of G, a sub-representation of C corresponds to an induced subgraph of G.

Observation 1 Let G be a circle graph with representation C, and let vy,...,v; be an inde-
pendent set in G. The chords of C corresponding to vy, ..., v are pairwise parallel.

In order to prove that circle graphs with girth at least five are 2-degenerate, Ageev [1]
does not consider their circle representation, but an equivalent representation on the real axis,
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B 2=

@ (b)

Figure 1: (a) The unique circle representation of Cy. (b) The two non-equivalent representa-
tions of C4 on the real axis.

Q)

Figure 2: Three non-equivalent circle representations of the union of two paths of length two.

usually called interval-overlap. The major difference is that some graphs, for example cycles,
have a unique circle representation whereas they have several non-equivalent representations
on the real axis (see Figure 1). Hence, even if considering a real axis representation can be
very convenient to define an order on the endpoint of the chords, the case study is then much
harder. Unfortunately, even in the circle representation, some very simple graphs such as the
union of two disjoint paths do not have a unique representation (see Figure 2). Observe that in
Figure 2(a), the representation of the two paths is a sub-representation of the representation
of a cycle. In this case we make a slight abuse of notation and say that the two paths are in
cyclic order.
In Section 2, we prove the following extension of Ageev’s result:

Theorem 1 Every circle graph with girth g > 5 contains a <1-vertex or a chain of (g — 4)
2-vertices.

In 1], Ageev uses his structural result to prove that circle graphs with girth at least five
have chromatic number at most three. We can use Theorem 1 to obtain a refinement of this
result for circle graphs with larger girth. Instead of considering the chromatic number of
these graphs, we consider their circular chromatic number. For two integers 1 < g < p, a
(p, q)-coloring of a graph G is a coloring ¢ of the vertices of G with colors {0,...,p — 1} such
that for any pair of adjacent vertices x and y, we have ¢ < |c¢(z) — ¢(y)| < p — ¢q. The circular
chromatic number of G is

Xc(G) = inf (g | there exists a (p, ¢)-coloring of G> .

It is known that x(G) — 1 < x.(G) < x(G), and so x(G) = [x.(G)]. The chromatic number
can thus be considered as an approximation of the circular chromatic number.



152 APPENDIX B. [EO07B]

Class PLANAR | OUTERPLANAR | PARTIAL 2-TREE SEG 1-STRING

4 2 2 4 4
[Lg 2+9T2 2+9T2 2‘*’@ 2+9T4 2+9T4

Table 1: Values of 4 for some classes of graphs.

Using a well-known observation on circular coloring (see e.g. Corollary 2.2 in [2]), the
existence of a chain of (g — 4) 2-vertices implies the following result:

Corollary 1 Every circle graph G with girth g > 5 has circular chromatic number

1
=)
2
In Section 3, we study an invariant giving a very precise idea of the local structure of
graphs. The maximum average degree of a graph G is defined as
2|FE(H
mad(G) = max {ad(H), H C G}, where ad(H) = M
[V (H)|
For planar graphs, there is a simple relation between girth and maximum average degree: any
planar graph G with girth ¢ is such that mad(G) < 2¢g/(¢g — 2). On the other hand, there
exists a family (G),)n>0 of planar graphs with girth g, such that mad(G,) — 2¢/(g —2) when
n — oo. We would like to obtain the same kind of link between the girth and the maximum
average degree of circle graphs. The following corollary is a straightforward consequence of
Theorem 1:

Xe(G) <2+

Corollary 2 Any circle graph G with girth g > 5 is such that mad(G) < 2+ 2/(g — 4).

note that Corollary 2 has some implications on the circular choosability of circle graphs.
Using Proposition 32(i) in Section 5.4 of [3], we can prove :

Corollary 3 Ewvery circle graph G with girth g > 5 has circular choice number cch(G) <
2+ 4.
g—2

To improve Corollary 2, we consider
pg(F) =sup{mad(G) | G € F and G has girth at least g} .

Let SEG denote the class of graphs defined as intersection of segments in the plane, and 1-
STRING denote the class of graphs defined as intersection of jordan curves in the plane, such
that any two curves intersect at most once. Table 1 gives an idea of the function p, for some
classes of graphs. Note that for SEG and 1-STRING, g has to be at least five, since otherwise
ftg 1s not bounded.

We can remark that for all these classes, ji4 is a rational number. The following theorem
shows that this is not the case for the class of circle graphs. It is proved in Section 3.

Theorem 2 For every g > 5, pg(CIRCLE) = 21/5%421
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2 Proof of Theorem 1

Let G = (V, E) be a circle graph with girth ¢ > 5 and minimum degree two, and let C =
{{z1,2)}, ..., {zn, 2, }} be a circle representation of G. We first decompose the chords of C
into two sets, using the following rules:

(1) for every set of 3 distincts chords {x,z'}, {y,y'}, and {z, 2’}, such that {y,y'} is uncolored
and (zyzz'y'z’) are in cyclic order, colour the chord {y,y'} in blue,

(2) colour all the uncolored chords in red.

By construction, the red chords are exactly the chords {z,y} such that at least one of the
arcs 7y and y does not contain both endpoints of a chord distinct from {x,y}. Let C** (resp.
CPB) be the representation induced by the red (resp. blue) chords and G¥ (resp. G®) be the
corresponding graph. We first prove the following lemma.

Lemma 1 C? is a sub-representation of the representation of a cycle.

Proof. Assume that G contains a Z3-vertex v, adjacent to z, v, and z in Gf. Since
g > 5, the graph G does not contain any triangle, and so {z,y,2} is an independent set.
Using Observation 1, this implies that the three corresponding red chords are parallel in any
representation, which contradicts Rule (1).

Hence, G has maximum degree two. Suppose now that G contains a cycle. Then if
there exists a vertex which is not in the cycle, the corresponding chord, as well the chords
corresponding to two non-adjacent vertices of the cycle, are parallel (recall that the cycle has
length at least five, since g > 5). This contradicts Rule (1). So G is either a cycle or a union
of disjoint paths.

Suppose now that Cf is not a sub-representation of a cycle. Then GF is necessarily a
union of disjoint paths, and two of them are not in cyclic order in C*. This also contradicts
Rule (1), so C* is a sub-representation of the representation of a cycle. O

Observe that each blue chord {z,y} induces two complementary arcs zy and yZ on the
circle. We denote by A; the set of such arcs. Similarly, two intersecting blue chords {u, v} and
{z,y} induce four consecutive arcs whose lengths add up to one, say without loss of generality
uz, T0, vy, and yu. We denote by Ay the set of all such arcs.

For any arc 7y of the circle, we define p(zy) as the number of red chords having both
endpoints in zy. We consider the integer ¢t = min{p(zy), 7y € A; U Ag, p(z7) > 0}.

If there is no blue chord in our decomposition, then G is either a cycle or a union of paths,
and thus contains a S1-vertex or g adjacent 2-vertices. So we can assume from now on that
G?® is non empty. Observe that for any blue chord {z,y}, we have p(z7) > 0 and p(yz) > 0
since otherwise {x,y} would be red. Hence, the integer ¢ exists. We now consider two cases,
depending on whether the minimum is reached by two intersecting chords or by a single chord.

Case 1: The minimum ¢ > 0 is reached by two intersecting blue chords, say {z,z'} and
{y,y'}, and for every blue chord {u,v}, we have p(uv) # t. Let us assume without loss of
generality that t = p(77). According to the clockwise order, we denote by {z1, 2]}, ... {7, z}}
the red chords having both endpoints in zy (see Figure 3(a)). Observe that every blue chord
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Figure 3: A chain of t > g — 4 vertices of degree two in G.

has at most one endpoint in Zy, since otherwise we would have a blue chord {u,v} with
1 < p(ud) < t, which would contradict the hypothesis.

We first prove that the graph induced by the chords {z;, 2} (1 <i <) is a path. If this is
not the case, then for some i the chords {x;, 2}} and {41, 2}, } do not intersect. Then either
one of them corresponds to a S1-vertex, or each of them intersects a blue chord. Such a blue
chord also intersects {x,2'} or {y,y'}, since it has only one endpoint in zy. This contradicts
the minimality of t.

Em——

We now prove that the arc zoz;_; does not contain any endpoint of a blue chord. Observe

that if the arc contains the endpoint u of a blue chord, then there exists 1 < i <t — 2 such
R

that u € a}z;49, since otherwise this would create a triangle. If such an endpoint u exists, the
related blue chord along with {x, 2’} or {y,y'} contradicts the minimality of ¢.

Hence, the vertices corresponding to {x;, z}} (2 < ¢ < t—1) are a chain of (t—2) 2-vertices in
G. Since G does not contain any 1-vertex, the chord {z1, 2/} intersects a chord {u,«’} distinct
from {z9,24}. Such a chord may be blue or red, but by the minimality of ¢ it cannot intersect
{y,y'}. So the chord {u,u'} has to intersect {x,2’'} and since g > 4, exactly one such {u,u'}
exists. Similarly, {2, 2} intersects exactly one chord distinct from {z;_1,2,_,}, say {v,v'},
and {v, v’} also intersects {y, y'}. Thus the vertices corresponding to {z;, 2} (1 < i < t) form a
chain of ¢ 2-vertices in G. Since the chords {z, 2}, {u, v}, {z1, 21}, ..., {z, 21}, {v, 0"}, {y, v}
correspond to a cycle in G, we have t > g — 4.

Case 2: The minimum ¢ > 0 is reached by a blue chord {z,y}. The proof is the same
as the previous one, except that we obtain a chain of (g — 3) 2-vertices instead of (g — 4)
2-vertices (see Figure 3(b)).

3 Proof of Theorem 2

Let us first give a construction to prove the lower bound. For every g > 5, we construct a
family (Qg,¢),~o of circle graphs with girth g such that Qg0 = Cy (the cycle on n vertices)
and @g,+1 is obtained by adding chords to the representation of Q..

These new chords (represented as thin chords in Figure 4) induce a cycle. Every old chord
(i.e. that belongs to Qg ¢, represented as thick chords in Figure 4) intersects one new chord at
each of its endpoints. A k-region is a region inside the circle, which is incident to the circle
and to exactly k chords. Note that in any @ ¢, every k-region is either a 2- or a 3-region. Any
2-region in Qg produces in Q441 a face F of size g, (g — 3) vertices (2(g — 3) half-chords),
(9 —2) edges, (g —3) 2-regions, and (g — 2) 3-regions. Any 3-region in Q4 produces in Qg 41
a face F of size g, (g — 4) vertices, (g — 3) edges, (g — 4) 2-regions, and (g — 3) 3-regions.
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s

| |
2(g—3) haf-chords 2(g—4) half-chords

Figure 4: From Qg to Qg,t4+1

Qs0

Figure 5: Examples

We now consider the vector V,; = ' (n,m, Ra, R3) whose components are respectively the
number of vertices, edges, 2-regions, and 3-regions of Q4. By construction, we have that
‘/g,t_t,_l = Mg‘/g,t; where

M, =

oo o+
oo~ o
|
N W N W
|
L o W

Q@ @ e <«
Q@ @ e <«

The limit of the average degree ad(Qg,) of Q4+ when t — oo can be obtained from the unique
eigenvector

g—3++(@-2)(g—49)
v |9-2+t(-3)vI0g—2)/(g—4)

g—4++(@—-2)(g—49)

9—2++/(9-2)(g—4)

associated to the largest eigenvalue g — 3 + /(g — 2)(g — 4) of M,. We thus obtain:

9-2+(g-3)Vg-2)/lg—-4) _, [9-2

9-3+(g—2)(g—4) g—4

Before proving the upper bound, we make some remarks on structure of the graphs Qg ;.
Observe that the graphs @, with ¢ > 1 are circle graphs with girth g > 5 that contain neither
<1-vertices nor chains of (g — 3) 2-vertices (see Figure 5 for an example with g = 5), which
proves that Theorem 1 is optimal in a certain way. Another interesting property of these
graphs is that for any g > 5, Q4 contains K;13, the complete graph with ¢ 4 3 vertices, as a
minor (that is, Kyy3 can be obtained from Qg by contracting edges and removing edges and
vertices). To see this, contract )y in order to obtain a triangle, and at each step contract

By = tlim ad(Qg,) = 2-
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the set of new vertices into a single vertex, which is universal by construction. The size of the
clique we construct will increase by one at each step, and we will eventually obtain K;;3 as a
minor of )y This implies that for any integer g > 5 and any graph H, there exists a circle
graph G with girth g such that G contains H as a minor.

We now prove the upper bound by contradiction. Since circle graphs of girth at least g
are closed under taking induced subgraphs, it is sufficient to prove that every circle graph G

. . )
with girth at least g > 5 has average degree ad(G) < 2,/ 374'

Let G be a circle graph and C be a circle representation of G. We denote by R(C) the
planar graph constructed as follows:

e the vertex set of R(C) is the set of crossings of chords in C,

e two distinct vertices are adjacent in R(C) if and only if they correspond to consecutive
crossings of a same chord in C.

Observe that the construction above clearly gives a natural planar embedding of R(C). In the
following, we only consider this precise planar embedding. For example, the outerface of R(C)
will be well-defined. Note that R(C) has maximum degree four.

Let us consider a fixed integer g > 5 and a circle graph G with girth at least g, such that

ad(G1) > 2 g%i, and such that G7 is minimal with this property. That is, for any circle

graph H with girth at least ¢ and such that |V (H)| < |[V(G1)|, we have ad(H) < 2,/3%421.

Observe that by minimality, G; does not contain any <1-vertex, since otherwise by removing
it we would obtain a smaller graph with larger average degree.

Let C; be a representation of Gp. If the outerface of the planar embedding of R(C;)
contains a 4-vertex, we apply the following operation on Cy, which gives a new representation
Co and a new circle graph Gy with girth g. Let u denote a 4-vertex on the outerface of R(Cy).
It corresponds to an edge between to vertices v; and ve of G, represented by two crossing
chords ¢; and ¢ in Cy. Since w is a 4-vertex in R(Cy), the chords ¢; and cg respectively cross
two chords ¢} and ¢, as depicted in Figure 6. Let v} and v} be the vertices of G associated
to ¢} and ¢,. Since w is on the outerface of R(C;), v] and v4 are not adjacent in G. Hence,
we can add a path of g — 4 chords between ¢} and ¢, as depicted in Figure 6. Let Co denote
the new representation, and Gy be the associated circle graph. The g — 4 vertices added to G
to obtain Gy form a cycle of length exactly g in G containing vy, va, v}, and v5. Note that
the number of 4-vertices on the outerface of the plane graph associated to the representation
decreases by one after at most two iterations of this process.

Let ny and m; denote respectively the number of vertices and edges of G;. By Corollary 2,
we have that ad(G;) < 2 - z%i. This implies that ad(G2) = 2 - %gg__j’ > 21 = ad(G1).
Thus the average degree increases during this operation.

We repeat this operation until we obtain a circle graph G with girth g having a representa-
tion C such that the outerface of the planar embedding of R(C) does not contain any 4-vertex.

The consequence of the previous observation is that ad(G) > ad(Gy) > 24/ g%i. Let n and m
be the number of vertices and edges of G. This implies in particular that:
—2
I Zpn<m (1)

g—4
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G G

Figure 6: From C; to Cy

Let N, M, and F denote respectively the number of vertices, edges, and faces of R(C).
Since a crossing in C corresponds to both an edge in G and a vertex in R(C), we have:

N=m (2)

We can write Euler’s formula for the planar embedding of R(C) as follows:

M+4+2=F+N (3)
Let Ny denote the number of d-vertices in R(C). Since G does not contain any =1-vertex,
and no new =1-vertex is created during the transformation, the graph G does not contain any

S1-vertex either. This implies in particular that R(C) does not contain <1-vertices. Thus, the
degree of a vertex in R(C) is at least 2 and at most 4 and we have:

N = Ny + N3+ Ny (4)

The sum of vertex degrees is equal to twice the number of edges in R(C):

Any chord in a representation of G corresponding to some vertex v € G contains (deg(v) —
1) edges of R(C). Since ) .n(deg(v) — 1) = 2m — n, we have:

2m —n=M (6)

Note that the outerface of R(C) contains every 2-vertex, every 3-vertex, and no 4-vertex
of R(C). Moreover, R(C) cannot contain a face of degree strictly less than g, since otherwise
G would contain a cycle of length strictly less than g. We thus obtain a lower bound on the
sum of degrees of the faces of R(C), which is equal to twice the number of edges in R(C):

g(F —1)+ Ny + N3 <2M (7)

Let us decompose the chords of C into blue and red chords as done in the proof of Theo-
rem 1. Using previous notation, C? is the sub-representation of C induced by the blue chords
and GP is the corresponding circle graph. Note that GP is a proper induced subgraph of G;
and G. We thus have:

2(m - N2 - Ng)

ad(GB): n — Ny g—4< n
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This implies that M > 2m > 2 , which gives:
g —2
—— — 1] Ny <N;
( g—4 ) 2e )

The combination (g—4)x (1) +(g—4) (2\/:— 1) x(2)+gx (3)+2(g—2) (1 \/37;*> x
@) +39-2) (1-/53) x B)+ V=2l — D x (6) + (N + 39 -4) (/15 - 1) x (8)

gives g < 0, a contradiction.

4 Perspectives

In the present paper, we study the structure of sparse circle graphs. The opposite problem
of studying the structure of dense circle graphs seems to be much harder. For example, the
relation between the clique number of circle graphs and their chromatic number is not precisely
established. Kostochka and Kratochvil [4] proved that every circle graph with clique number
w has chromatic number at most 2976 but this is still far from the lower bound of Q(wlogw).

Note that the upper bound of 2976 even holds for polygon-circle graphs, a superclass of
circle graphs, defined as the intersection class of chords and convex polygons of the circle. The
size of this class is known to be much larger, but we suspect that polygon-circle graphs with
girth at least five behave like circle graphs with girth at least five. It would be interesting to
see if the results of the present paper extend to the class of polygon-circle graphs.
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On induced-universal graphs for the class
of bounded-degree graphs

Abstract

For a family F of graphs, a graph U is said to be F-induced-universal
if every graph of F is an induced subgraph of U. We give a construction
for an induced-universal graph for the family of graphs on n vertices
with degree at most k. For k even, our induced-universal graph has
O(n*/?) vertices and for k odd it has O(n/*/21=1/%10g®"2/% ) vertices.
This construction improves the main result of [But06] by a multiplicative
constant factor for even case and by almost a multiplicative n'/* factor
for odd case. We also construct induced-universal graphs for the class
of oriented graphs with bounded incoming and outgoing degree, slightly
improving another result of [But06].
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On induced-universal graphs for the class of bounded-degree
graphs
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Abstract

For a family F of graphs, a graph U is said to be F-induced-universal if every graph
of F is an induced subgraph of U. We give a construction for an induced-universal graph
for the family of graphs on n vertices with degree at most k. For k even, our induced-
universal graph has O(n*/2) vertices and for k odd it has O(nl*/21-1/k log>t2/k n) vertices.
This construction improves a result of Butler by a multiplicative constant factor for even
case and by almost a multiplicative n'/* factor for odd case. We also construct induced-
universal graphs for the class of oriented graphs with bounded incoming and outgoing
degree, slightly improving another result of Butler.

1 Introduction

All graphs are assumed to be without loops or multiples edges. For a graph G we denote by
V(G) its vertex set and by E(G) its edge or arc set. Our terminology is standard and any
undefined term can be found in standard theory books [11].

For a finite family F of graphs, a graph U is said to be F-universal if every graph in F
is a subgraph of U. For instance, if we denote by F, the family of all graphs with at most n
vertices, then the complete graph K, is F,-universal. The universal graph problem consists
in finding a n-vertex universal graph with minimal number of edges for specific subfamilies of
Fr. This problem was originally motivated by circuit design for computer chips [4]. Several
families of graphs have been studied for this problem, including forests [10], bounded-degree
forests |2, 3|, and bounded-degree graphs [1].

The notion of induced-universal graph can be similarly defined. For a family F of graphs,
a graph U is F-induced-universal if every graph in F is an induced subgraph of U. The
induced-universal graph problem consists in finding an induced-universal graph of minimal
number of vertices for specific subfamilies of F,,. The family F, itself was considered by
Moon [13], while Chung considered trees, planar graphs, and graphs with bounded arboricity
on n vertices [9].

The induced-universal problem is strongly related to a notion of distributed data structure
known as adjacency labeling scheme or implicit representation. An implicit representation for

*esperet@labri. fr
tlabourel@labri. fr
pascal.ochem@lri. fr
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a family F of graphs consists in two functions: a labeling function that assigns labels to the
vertices of any graph of F and an adjacency function that determines the adjacency between
two vertices only by looking at their labels. The problem of finding an implicit representation
with small labels for specific families of graphs was first introduced by Breuer [6, 7.
Kannan, Naor and Rudich [12] established the strong relation between the two problems
by proving that the existence of an implicit representation using k(n) bits per vertex for
a family F,, is equivalent to the existence of an F,,-induced-universal graph with 2¥(") vertices.

In this paper, we focus on induced-universal graphs for bounded-degree graphs. We con-
struct an induced-universal graph for the family Fj , of n-vertex graphs of degree at most
k. For k even, our induced-universal graph has O(n*/?) vertices and for k odd our induced-
universal graph has O(n““/ 21=1/k 10g2+2/ k n) vertices. Our result for graphs with maximum
degree k = 0 (mod 2) is deduced from a construction similar to that of [8] but with an
improvement of the base graph of the construction (Section 3). Actually, our F3 ,-induced-
universal graph forming the basis of the construction has 5n/2 + O(1) vertices while the best
lower bound known for the order of such graphs is 11n/6 + ©(1). Our result for graphs with
maximum degree k = 1 (mod 2) is deduced from a recent result of Alon and Capalbo [1] on
universal graphs for bounded-degree graphs, combined with a construction of [9] that gives
an interesting connection between induced-universal graphs and universal graphs (Section 4).
Given that the best known lower bound for the number of vertices of an F}, ,,-induced-universal
graph is Q(n*/2) |8], our result for k even is tight up to a multiplicative constant and our result
for k odd is equal to O(n!/2=1/k log?+2/k n) times the lower bound. We also give a general-
ization of our result for oriented graphs of bounded degree (Section 5). In Section 6, we show
how to construct of an induced-universal graph for all orientations of the graphs of a family
F, only using a specific F-induced-universal graph. We conclude the paper with some open
problems (Section 7).

2 A small induced-universal graph for graphs with degree at
most two

Our main concern here is to find an Fj ,-induced-universal graphs for every k. We first

investigate the case k = 2.

2] +5tilesjoined in series

Figure 1: The F3 ,-induced-universal graph U,.

Lemma 1 The graph U, depicted in Figure 1 is an Fa p-induced-universal graph.

Proof. It is sufficient to prove that any graph G € F»,, is an induced subgraph of the graph
U,, depicted in Figure 1. For 1 < i < n, let n; be the number of connected components of G
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with 7 vertices. The degree of G is bounded by 2 so G contains ny isolated vertices, ng disjoint
Ky’s, and for ¢ > 3, n; cycles or paths of ¢ vertices. We embed the connected components of
G into U, from left to right after having sort them by increasing size. The graph U, is made
of cycles of size 5 called tiles that are joined in series by 4 edges. Let us prove that we can
embed all the connected components of G in an induced way using at most L%J + 5 tiles.

e The embedding of the stable set of size ni, using {%] + 1 tiles.

ANNN)

(%] +1tiles

The embedding of ny Ks’s, using no + 1 tiles.

(]

n,+ 1tiles

The embedding of n3 connected components of size 3, using ns + 1 tiles.

SRR

n;+1tiles

The embedding of ny connected components of size 4, using 2n4 + 1 tiles.

GO0

2n4+ 1tiles

The embedding of ns connected components of size 5, using 2ns tiles.

QOQOO00

2ns tiles

For k > 3, the embedding of no; connected components of size 2k, using knoy tiles.

SO

k—1tiles k—1tiles
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e For k > 3, the embedding of nop 1 connected components of size 2k + 1, using knogy1

IOy

k—1tiles k—1tiles

Observe that for each i the embedding of connected components of size ¢ is induced.
Moreover, at the end of the embedding of all connected components of size i, there is a tile in
which no vertex of G is embedded. So, there are no edges of U, between the embeddings of
two connected components of different sizes. Hence, the embedding of G into U, is induced.
It remains to upper bound the number [ of tiles used by such an embedding.

[n/2] [n/2]
ni
L= 5 +2+mna+14ng+1+2n0+1+2n5+ > 2o+ Y 2kngp

k=3 k=3

< 5 —

< + Z ) 5

=1
n
< 5+ LgJ , since Z in; = n and the number of tiles is an integer.

i=1
O

A natural question is to investigate whether this construction is optimal. We now prove
that it is optimal up to a constant multiplicative factor of approximately %

Claim 1 Every Fs,-induced-universal graph has at least 11 L%J vertices.

Proof. Let n € N be a multiple of 6. Let H,, be the family containing the following three
graphs:

e the stable set of n vertices,
e the disjoint union of n/2 Ko,

o the disjoint union of n/3 Ks.

n/3 Kz n/6 Ky n/2 Ky

Figure 2: An induced subgraph of U,.

Note that these three graphs have n vertices and degree at most two. Let U, be an
H,-induced-universal graph. Then U, must contain n/3 triangles as induced subgraphs.
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Since each of the triangles intersects at most one induced Ky, the graph U, must contain an
induced matching of size at least n/2 — n/3 = n/6 disjoint from the triangles. Since each
K5 and each triangle contains at most one isolated vertex as an induced subgraph, U, must
contain a stable set of size n —n/3 —n/6 = n/2 disjoint from the triangles and the induced
matching (see Figure 2). Eventually, U,, has at least 3n/3+2n/6 +n/2 = 11n/6 vertices and
so any JF ,-induced-universal graph needs 11 [n/6] vertices because Hg|y, /6] € F2n- O

We believe that the results in this section are not sharp. Indeed, we conjecture that there
exists an Fy p-induced-universal graph with 2n 4 o(n) vertices, and that this is optimal.

3 Induced-universal graphs for graphs with even maximum de-
gree

We now use our construction of an 3 ,,-induced-universal graph to construct an Fy, ,-induced-
universal graph for k even (the same method was already used in [§]).

Theorem 1 Let k > 2 be an even integer. There is an Fy, p-induced-universal graph Uy,

such that
[V (Uil = (14 o(1)) (%”)k/ ond [E@)] = (55 + o) (%”)k

Proof. To prove this theorem, we first reduce the problem to the construction of an Fs -
induced-universal. Petersen [14] proved that any k-regular graph with & even can be decom-
posed into k/2 edge-disjoint graphs of degree at most 2. In |9], Chung proved that for two
families of graphs F and H such that any graph of F can be decomposed into k£ graphs of H,
if we have an H-induced-universal graph W, we can construct an F-induced-universal graph
U such that:

V©) =V (w)|* and |[EU)| = K[V (W) EW)].

Using Lemma 1, we construct an Fo ,-induced-universal graph U, with |V (Uy,)| = 3n +
O(1) and |E(Uy,)| = §n + O(1). Eventually, using the fact that any graph of Fj, can be
decomposed into k/2 graphs of F3,, we obtain an Fj ,-induced-universal graph Uy, such
that:

k/2
VW = WO = (5) 0t ol

L B9\ e ok
B = Sverieo) = 52 (3) o,
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4 Induced-universal graphs for graphs with odd maximum de-
gree

To the best of your knowledge, there is no good result on edge decomposition for graphs
belonging to F , with k odd. Nevertheless, we can use Ujy1,, as an F p-induced-universal
graph since Fi,, C Fr41,,- The graph obtained is from a multiplicative factor of O(nl/ 2)
of the best known lower bound for the number of vertices of Fj, ,-induced-universal graphs.
We now show how to reduce the gap between lower and upper bounds with a construction
deduced from universal graphs.

Theorem 2 Let k > 3 be an odd integer. There is an Fy, p-induced-universal graph Uy , such
that

\V(Ugn)| = cl(k)n”“m_l/k log2+2/kn and |E(Uy )| = cz(k:)nk_Q/k log4+4/kn

Proof. The induced-universal graph is deduced from the Fj, ,-universal graph obtained by
Alon and Capalbo [1], using a result of Chung |9] that gives a general construction of an
induced-universal graph from an universal graph.

The construction of Chung [9] depends on the degree of the induced-universal graph and
the arboricity of graphs of the family. Indeed, if we consider a family A, of graphs with
arboricity at most r and an A,-universal graph G, then the construction produces an A,-
induced-universal graph H such that :

V(H) = Y (o) + )" and [E(H)| = Y (de(u) + 1) da(v) .
veV(G) weE(G)
The arboricity of graphs of the family Fy,,, is at most [k/2]. Moreover, the Fj, ,-universal
graph described in [1] has degree at most c(k)n2=2/%log?/*
universal graph Uy ,, for the family 7, ,, = A[k /2] such that:

n. Hence, there is an induced-

V(Uen) = Y. (da,, () + 1)
’L)GV(Hkyn)

\V (Hpp)|(2d, ) */?]
71(2(:(]{:)711_2/’“C 10g4/k n) [k/2]
01(7‘7)71[16/2%1/1“C 1Og2+2/k n , where ¢ (k) = (QC(k))fk/ﬂ

IN

IA A

BU = > @a, )+ 1) dg, (o) 2
uveE(Hk,n)

| E(Hyen)|(2dn,,,,) ™2 (dgy, )"/
C(k)nQ—Q/k 10g4/k n(QC(k,)nl—Q/k 10g4/k n) [k/2] (C(k)nl—Q/k 1Og4/k n) [k/2]—1
co(k)nF =2/ 1og* T4k where cp(k) = (2¢(k))FT.

IN

VARVA
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5 Induced-universal graphs for bounded-degree oriented graphs

An orientation G of a graph G consists in assigning to every edge of G one of its two possible
orientations. G is called an oriented graph and by definition, it cannot have loops nor opposite
arcs. The construction of Section 3 can be easily generalized to the family Oy, of all the
orientations of the graphs from F5;, ,, having incoming and outgoing degree at most k. Indeed,
any graph of Oy, can be decomposed into k graphs of Oy, [14] and the construction of
induced universal graph using decomposition works in the oriented case.

Theorem 3 There is an Oy, ,-induced-universal oriented graph O—kﬂi such that
V(Orn)| = (1+0(1) (30)" and [E(Oky)| = (24 0(1) (30)*".

Proof. The construction of an induced-universal graph for Oy, is almost the same as the
construction for Fyy, ,, presented in Section 3. Any graphs with outgoing and incoming degree
at most k can be decogposed into k edge-disjoint graphs having Oggoing and incoming degree
at most 1 [14]. Let O, be the graph depicted in Figure 3. If O, is O; ,-induced-universal
then, using the construction of Chung [9], we can construct an Oy, ,,-induced-universal graph
O—> havi SN k . SN 2k—1

kn having [V (O )| = (1 +0(1)) (3n)" vertices and |E(O,)| = (2 + o(1)) (3n) edges.

—

So, the only thing we need to prove is that O, is O; ,-induced-universal.

|3] + 5 tilesjoined in series

Figure 3: The Oy ,-induced-universal graph 5;:

Let G be any graph of Oy ,. The connected components of G are either directed paths
(oriented paths with exactly one sink and one source) or directed cycles (oriented cycles with
no source). We embed 5) in (Tn almost the same way we embedded graphs of F5, in U, in
Section 2. The only differences are for the embeddings of connected components of size 3 or
more that slightly differ from the non-oriented case.

e The embedding of n3 connected components of size 3, using ng + 1 tiles.

ns+ 1tiles

e The embedding of n4 connected components of size 4, using 2n4 + 1 tiles.

2n,+ 1tiles



167

e The embedding of ns connected components of size 5, using 2ns + 1 tiles.

2ns+ 1tiles

e For k > 3, the embedding of no; connected components of size 2k, using knoy, tiles.

T0 0T 30

k—1tiles k—1tiles

e For k > 3, the embedding of noi 1 connected components of size 2k + 1, using knogy1

TN

k—1tiles k—1tiles

We use i)r embeddings exactly the same number of tiles as for the non-oriented case, so
the graph O,, has also L%J + 5 tiles. O

6 From induced-universal graphs to oriented induced-universal
graphs

In Section 5, we constructed an induced-universal graph for a family of orientations of graphs
in F2,, by orienting the edges and adding some vertices to the non-oriented induced-universal
graph. Let F be a family of graph and 7—") be a family of orientations of graphs from F.
gne may agk if, taking an f;’}nduced—universal graph U, it is always possible to construct an
F-induced-universal graph U .

Given two graphs G and H, a homomorphism from G to H is a mapping f : V(G) — V(H)
satisfying [z,y] € E(G) = [f(z), f(y)] € E(H) In fact, the construction is possible if
there 1s a graph H into Wthh each graph of .7-" has a homomorphism. In this case, the
graph H is said to be an .7-" universal graph for homomorphism. For instance, the directed
cycle of length three _1>s a universal graph for homomorphism for the family of orlentatl(ll
of trees. The graph U can be obtained by Lnaking a special product of the two graphs H
and U. The oriented tensor product G x H of a non-oriented graph G and an oriented
graph H is defined to have vertex set V(G x ﬁ) = V(G) x V(ﬁ) and arc set E(G X ﬁ) =

{[(m,u), (y,v)] | zy € E(G) and uv € E(ﬁ)}

Theorem 4 Let U and H be two gmphs If U is F-induced-universal and H is .7-“ universal
for homomorphism then U X H is ]—" induced-universal.



168 APPENDIX C. [ELO07]

Proof. It sufﬁces to show that we can embed an arbitrary éraph G e .7-" as an induced
subgraph of U x H. Let v € G. Thereis a homomorphlsm of G to H since H is .7-' universal
for homomorphism. We denote by h(v) € V( ) the vertex into which v is mapped. If we
forget about the orientation, we can embed G into U since U is f—induced—universa_}l. Let
denote by u(v) € V(U) the vertex into which v is embedded. The embedding of G into
U x H consists in embedding each vertex v of G into the vertex (u(v), h(v)) of U x H. The
embedding is correct in the sense t that if there is an arc [z,y] in G then there is an arc
[(w(x), h(z)), (u(y), h(y))] in U x H. Indeed, there is an edge [ (),u(y)] in U due to the
non-oriented embedding of G into U and an arc [h(z), h(y)] in H due to the mapping of G
into H. Moreover, the embedding is induced. Indeed, if two vertices x and y of G are not
adjacent then u(z) and u(y) are not adjacent in U because the non-oriented embedding of
G ing) U is induced. So, by construction, (u(x),h(x)) and (u(y),h(y)) are not adjacent in
UxH. O

Families such as trees, planar graphs, partial 2-trees, outerplanar graphs, and subcubic
graphs are known to have universal graphs for homomorphism with constant number of vertices
[5, 15]. So for these families, induced-universal graphs and induced-universal oriented graphs
have asymptotically the same order.

7 Concluding remarks and open problems

In Section 2, we proved that a minimal 3 ,-induced-universal has at least 5n/2 + O(1), and
and at most 11n/6 + O(1) vertices. The natural question that arises is whether it is possible
to reduce the gap between 5/2 and 11/6 for the multiplicative constant. This question seems
to be quite difficult, even though graphs of F5, have a very simple structure. For k odd, if
we drop the polylogarithmic factor, there remains a multiplicative factor of nl/2=Yk between
the lower and the upper bound for the number of vertices in a minimal F}, ,,-induced-universal
graph. An interesting problem would be to lower this factor, especially for large values of
k. In our construction, for k even, our Fj, ,-induced-universal graph have maximum degree
4k/2 depending only on k whereas for k odd, it has maximum degree co(k)n*=1-2/k log?+4/k p,
Considering that for k£ even our construction is almost tight whereas for k£ odd it is not, we
conjecture that Fj, ,-induced-universal graphs with minimal number of vertices and edges have
degree only depending on k. In other words, we conjecture that there is a function f(k) such
that the existence of a Fj, ,-induced-universal graph Uy ,, implies that there exists another one
with at most the same number of vertices, but with degree at most f(k).

A more general problem concerning induced-universal graphs should be to solve the
induced-universal version of the implicit graph conjecture of Kannan, Naor and Rudich [12]:

Conjecture 1 (Implicit Graph Conjecture (induced-universal version)) FEvery
hereditary class of graphs which contains 2°
universal graph with n°Y vertices.

(nlogn) graphs on n vertices admits an induced-

Solving this conjecture seems rather difficult even if it is known that families of graphs
closed by taking minor fulfill the conjecture since they admit induced-universal graph of nOM)
vertices.
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Appendix D
[AEK107]

Acyclic improper colourings of graphs
with bounded maximum degree

Abstract

For graphs of bounded maximum degree, we consider acyclic t-improper
colourings, that is, colourings in which each bipartite subgraph consisting
of the edges between two colour classes is acyclic and each colour class
induces a graph with maximum degree at most t.

We consider the supremum, over all graphs of maximum degree at
most d, of the acyclic t-improper chromatic number and provide t-improper
analogues of results by Alon, McDiarmid and Reed (1991, RSA 2(3), 277-
288) and Fertin, Raspaud and Reed (2004, JGT 47(3), 163-182).
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For graphs of bounded maximum degree, we consider acyclic t-
improper colourings, that is, colourings in which each bipartite sub-
graph consisting of the edges between two colour classes is acyclic and
each colour class induces a graph with maximum degree at most ¢.

We consider the supremum, over all graphs of maximum degree
at most d, of the acyclic t-improper chromatic number and provide
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1 Introduction

Given a graph G = (V, E), a proper colouring V = (V, ..., V) of V is acyclic
if for all 1 < ¢ < j < k, the subgraph of G induced by V; U V;, which we
denote G[V; UV}, contains no cycles (i.e., is a forest). The acyclic chromatic
number xo(G) is the smallest value k for which there exists a proper acyclic
k-colouring of G. It is easily seen that x,(G) < A(G)(A(G) —1) + 1, as any
proper colouring of the square G? of G is de facto a proper acyclic colouring
of G, and G? has maximum degree at most A(G)(A(G) —1). In 1976, Erdds
(see (cf. [1])) conjectured that x,(G) = o(A(G)?); this conjecture was proved
by Alon et. al. [2], who showed the existence of a fixed constant ¢ < 50 such
that for all G, x4(G) < cA(G)*3. Alon et. al. also showed that their bound
was close to optimal by proving via probabilistic arguments that

4/3
max{x.(G) : A(G) < A} =Q (@W) :

When studying the asymptotics of x,(G) in terms of A(G), the restriction
that the colouring be proper is not of great importance. Indeed, suppose we
define the laid-back acyclic chromatic number x,(G) to be the smallest value
k for which there exists a colouring V = (V,..., Vi) of G such that, for all
1 <i<j <k, G]V;UV]]is a forest (placing no further restriction on edges
within a given block G[V;]). Clearly, x¢(G) < xo(G). On the other hand,
given such a colouring, it follows in particular that for all 1 <i < k, G[V}] is
a forest, so x(G[Vi]) < 2. By splitting V; into stable sets Vi(l) and V¢(2) (for
each 1 < i < k), we may then obtain an acyclic proper colouring of G with
at most 2k colours. It follows that x,(G) and x¢(G) are within a factor of
two of each other.

In this paper we investigate another relaxation of the acyclic chromatic
number; in order to define it we first note that we may reformulate the
definition of x,(G) by observing that if V; and V; are distinct stable sets in
G, then G[V;UV]] is exactly the bipartite graph G[V;, V| containing all edges
with one endpoint in V; and one endpoint in V;. We may then equivalently
define x,(G) as the smallest value k for which there exists a proper colouring
V= (Vi,..., V) of V such that for all 1 <i < j <k, G[V;,V}] is a forest
(i.e. such that with this colouring, G contains no alternating cycle).

Starting from this definition, we may now relax the requirement that ) be

2
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a proper colouring while continuing to impose that GG contain no alternating
cycle. To wit: given an integer ¢t > 0, we say that a colouring V = (Vi,..., Vi)
is t-improper if for all 1 < ¢ < k, G[V;] has maximum degree at most ¢ (in
this case we say that V; is t-dependent, for each 1 < i < t). The t-improper
acyclic chromatic number x* (G) is the smallest k for which there exists a -
improper colouring V = (V, ..., V}) such that with this colouring, G contains
no alternating cycle.

For an integer d > 0, we let
Xa(d) = max{x,(G) : A(G) < d}.

The object of this paper is to study how Y’ (d) varies as a function of ¢ and
of d. Clearly, for any d, x°(d) > x.(d) > ... > x4(d) = 1.

It is easily seen that x’(d) = Q((d/t)"?/(Ind)"/?); given an acyclic ¢-
improper colouring, by applying the first of the results from [2] mentioned
above, we can acyclically colour each colour class with at most ct*/3 new
colours (where ¢ is some fixed constant which is less than 50) to obtain an
acyclic colouring of the entire graph. Our first result is to show that this

straightforward lower bound on ! (d) can be much improved upon asymp-
totically, as long as t < d — 10V dInd. More fully,

Theorem 1. Ift < d —10vdInd, then x'(d) = Q ((d — t)*/*/(Ind)'/?).

In particular, if ¢ = (1 — €)d for any fixed constant ¢, 0 < & < 1, then we
obtain the same asymptotic lower bound as Alon et al. Comparing this lower
bound with the upper bound x* (d) = O(d*?), we see the surprising fact that
even allowing t = €2(d) does not greatly reduce the number of colours needed
for improper acyclic colourings of graphs with large maximum degree.

At some point, x%(d) must drop significantly as t increases, because
x%(d) = 1. Although we are unable to pin down the behaviour of x!(d)
viewed as a function of ¢, we can improve upon the upper bound of Alon et
al. when t is very close to d (more precisely, when d —t = o(d"/?)). We prove:

Theorem 2. x!(d) = O(dInd + (d — t)d).

As for lower bounds on x!(d) when d —t = o(d), we first note that
[3] showed x?~%(d) > 3; we can straightforwardly generalise this result by



showing that x%(d) > d — ¢ + 1. This is done as follows: if K, is the
complete graph on d + 1 vertices, then x!(K41) > d —t + 1, since, in
any acyclic t-improper colouring of Ky.1, at most one colour class has more
than one vertex and no colour class has more than ¢ + 1 vertices. We can,
however, improve upon this further and, in the final section, we exhibit a set
of examples showing the following lower bound.

Theorem 3. \%~!(d) = Q(d*?).

We would like to reduce the gaps between the lower and upper bounds
on x‘(d). For t = d — 1, the problem is particularly tantalising, and, in
this case, the lower bound of Theorem 3 and the upper bound of Theorem 2
differ by a factor of d'/*Ind. For this choice of ¢, the problem also includes
the conjecture from [3] that every subcubic graph is acyclically 2-improperly
2-colourable.

In the rest of the paper, we use the following notation. The degree of
a given vertex v is denoted by d(v). We denote by N(v) the set of the
neighbours of v. A k-cycle (resp. a Zk-cycle) is a cycle containing k vertices
(resp. at least k vertices). For a graph G and a vertex v € V(G), we denote
by G \ {v} the graph obtained from G by removing v and its incident edges;
for an edge wv of E(G), G\ {uv} denotes the graph obtained from G by
removing the edge uv. These notions are extended to sets of vertices and
edges in an obvious way. Let G be a graph and f be a colouring of G.
For a given vertex v of G, we denote by im¢(v), or simply im(v) when the
colouring is clear from the context, the number of neighbours of v having the
same colour as v and call this quantity the impropriety of the vertex v. For
notation not defined here, we refer the reader to [9].

2 A probabilistic lower bound for \/(d)

In this section, we prove Proposition 6 below, a more explicit version of
Theorem 1. Our argument mirrors that of Alon et al. but uses upper bounds
on the t-dependence number of, the size of a largest t-dependent set, in the
random graph G, ,. For more precise upper bounds on o!(G,,,), consult [7].

Lemma 4. Fiz an integer n > 1 and p € R with 4(Inn/n)"/* < p < 1. Let
m = [n—128Inn/p*|. Then asymptotically almost surely and uniformly over

4
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p in the above range, any colouring of G, , with k < (n—m)/4 colours and in
which each colour class contains at most m vertices contains an alternating
4-cycle.

Proof. As there are at most k™ < n™ possible k-colourings of G, ,, to prove
the lemma it suffices to show that for any fixed k-colouring of the vertices of
Gpp (which we denote {vy,...,v,}) with colour classes C1,. .., Cy in which
|C;] < m for all 1 < i < k, the probability that G, , does not contain an
alternating 4-cycle is o(n™").

Fix a colouring as above, and let ¢ be minimal such that |C;U...UC,| >
(n—m)/2. Let A=C1U...UC, and let B = Cy 41 U...UCk. As no colour
class has size greater than m, |A| < (n+m)/2 and so |B| > (n —m)/2. By
symmetry, we may also assume that |A| > n/2.

Next, let P = {{z1,21},...,{2z,, 2.} } be a maximal collection of pairs of
elements of A such that for 1 <i < r, x; and z} have the same colour, and
for 1 <i < j <, {x;,2;} and {x;,2}} are disjoint. As we may place all but
perhaps one vertex from each colour class C; in some such pair (with one
vertex left over precisely if |C;| is odd), it follows that

1 1 /n n
> Z ) > (= —Fk)>=.
25 (4] q>_2<2 k>_8

Similarly, let @ = {{y1,v}},...,{vs,y.}} be a maximal collection of pairs
of elements of B satisfying identical conditions; by an identical argument to
that above, it follows that s > (n —m)/8.

Let E be the event that for all 1 < i < r, 1 < j < s, {@;,y;,7,9}}
is not an alternating 4-cycle, and let E’ be the event that G,,, contains no
alternating 4-cycle; clearly E' C E. For firted 1 <i <rand 1 < j < s, the
probability that {z;,y;, z}, y;} is not an alternating 4-cycle is (1—p*) and this
event is independent from all other such events. As (n —m) > 128Inn/p* it
follows that

Pr(E)<Pr(E)<(1—phs <e®r

4

S exp {_W} S e—?nlnn — O(H_n)7

as required. O



177

Using this lemma, we next bound the acyclic t-improper chromatic num-
ber of Gy, , for p in the range allowed in Lemma 4.

Lemma 5. Fiz an integer n > 1 and p € R with 4(Inn/n)"/* < p < 1. Let
m = |n—128Inn/p*] and let t(n,p) = p(m—1)—2,/np. Then asymptotically
almost surely, for all integers t < t(n,p), X' (Gnp) > 32Inn/p*, uniformly
over p and t in the above ranges.

Proof. Fix n and p as above, and choose ¢t < t(n,p). We will show that
asymptotically almost surely G, , contains no ¢-dependent set of size greater
than m, from which the claim follows immediately by applying Lemma 4 as
(n—m)/4 > 32Inn/p*. Let G|m] represent the subgraph of G,,, induced by
{v1,..., vy }. By a union bound and symmetry, we have

n

Pr (a'(G,p) > m) < (m

)Pr (A(G[m]) <t) <2"Pr (A(G[m]) <1t).
Since, if A(G[m]) <t then G[m] has at most tm/2 edges, it follows that

Pr (a/(Gn,) > m) < 2"Pr (E(G[m]) < t7m>

<oer (s - () <5 -o(7))

Finally, by a Chernoff bound and by the definition of ¢(n,p), we conclude
that

Pr (a'(Gpy) > m) < 2" exp {— (%m ‘p@>>2 | (21’(7;))}

< 2 exp {—(’f —plm - 1”2} < (2/e)" = o(1),

4p

as claimed. O

Using Lemma 5, it is a straightforward calculation to bound Y% (d) for d
sufficiently large and ¢ sufficiently far from d.

Proposition 6. For all sufficiently large integers d and all non-negative
integers t < d — 10vdlInd,

d— t>4/3
) > =D
Xo(d) = 214 (In d) /3
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Proof. Choose n so that
28n%Inn < d*(d —t) < 2Yn Inn; (1)

such a choice of n clearly exists as long as d is large enough. Let p =
(d — 4V/d1Ind)/n; we first check that p and ¢ satisfy the requirements of
Lemma 5. Presuming d is large enough that np > d/2, by the lower bound
in (1) and the fact that d(d —t) < d? we have

34 _ +))1/4 3/4 1/4 1/4
d>(d (d—1)) >8n (Inn) 4(1nn> .

> = 2
p_2n_ 2n - 2n n ()

Furthermore, letting m = |n — 128Inn/p*|, we have

1281 1281
p(m—1) —2/np > np — p3nn—2,/np—2:d—4\/dlnd—2,/np—2— pgnn
1281
> d—8/dlnd - 22200 (3)

3
Since p > d/2n and by the lower bound in (1),
128Inn _ 2'%3Inn _d—t
< < :
P
which combined with (3) yields

p(m —1) —2/np > d—8VdInd — (d;t>
P Clnd) —8VdInd > t, (4)

8

the last inequality holding since t < d — 10v/dInd. As (2) and (4) hold we
may apply Lemma 5 to bound x%(G,,,) with this choice of t and p; as n > d,
it follows that as long as d is sufficiently large,

32Inn 3
)2 ?

- 47
say. Furthermore, by a union bound and a Chernoff bound,

d—4\/d1nd> )
] >d

Pr (><3<Gn,p> >

Pr (A(Gp,) > d) < nPr (BIN (n,

S ne—lﬁh’ld/?) S l’ (6)
n
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the last inequality holding as Ind > Inn/2 (which is an easy consequence of
(1)). Combining (5) and (6), we obtain that

3

@7A(Gn,p) < d) >2_

p4

SENS
AV
N | —

Pr (XZ(Gn,p) >

W

as long as n > 4, so there is some graph G with maximum degree at most
d and with x%(G) > 32Inn/p*. Since !, is monotonically increasing in d, it
follows that

32Inn  32nt*lnn
Kz B, B )

An easy calculation using the upper bound in (1) and the fact that Inn <

2Ind gives the bound
21904 (In d)*/3
(d—t)4/3 7

so 32ntInn/d* > (d — )3 /2" (Ind)'/3. By (7), it follows that

d* <

d— t>4/3
Xa( ) = 214(111 d)1/37

as claimed. O

3 A probabilistic upper bound for \/(d)

In this section, we study the situation when d —t = o(d'/?). Theorem 2,
which improves the upper bound of [2] when d — t = o(d/?, is a corollary of
our main result here.

We analyse a different parameter from, but one that is closely related
to, the acyclic t-improper chromatic number. A star colouring of G is a
colouring such that no path of length three (i.e. with four vertices) is al-
ternating; in other words, each bipartite subgraph consisting of the edges
between two colour classes is a disjoint union of stars. The star chromatic
number x,(G) is the least number of colours needed in a proper star colour-
ing of G. We analogously define the parameters x.(G) and x.(d) in the
natural way. The star chromatic number was one of the main motivations
for the original study of acyclic colourings [6]. Clearly, any star colouring

8
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is acyclic; thus, x%(d) < x%(d). Fertin, Raspaud and Reed [5] showed that
X,(d) = O(d*?) and that x,(d) = Q (d*?/(Ind)'/?). We note that a natural
adaptation to star colouring of the argument given in the last section gives
the following:

Theorem 7. There exists a fized constant C' > 0 such that, if t < d —
CVdlnd, then xi(d) = Q ((d —£)%2/(In d)l/Q),

Given a graph G of maximum degree d, the idea behind our method
for improved upper bounds is to find a dominating set D and a function
g = g(d) = o(d*?) such that |(N(v)UN?(v))ND| < g for all v € V(G).
Given such a set D in GG, we assign colours to the vertices in D by greedily
colouring D in the square of G (i.e. vertices in D at distance at most two
in G receive different colours) with at most g 4+ 1 colours; then we give the
vertices of G \ D the colour g 4+ 2. It can be verified that this colouring
prevents any alternating paths of length three (and so prevents alternating
cycles) and ensures that every vertex has at least one neighbour of a different
colour. Furthermore, we can generalise this idea by prescribing that our set
D is k-dominating — each vertex outside of D has at least k neighbours in
D — to give a bound on x?*(d).

Theorem 8. x.(d) = O(dInd + (d — t)d).

This result provides an asymptotically better upper bound than x%(d) =
O(d*?) when d —t = o(d"/?). It also provides a better bound than y/(d) =
O(d*?) when d —t = o(d*/?). Theorem 8 is an easy consequence of the
following lemma:

Lemma 9. Given a d-reqular graph G and an integer k > 1, let (G, k)
be the least integer k' > k such that there exists a k-dominating set D for
which, for all v € V(G), |N(v) N D| < k'. Let ¥(d, k) be the mazximum
over all d-reqular graphs G of (G, k). Then, for all d sufficiently large,
Y(d, k) < max{3k,311Ind}.

We postpone the proof of this lemma, first using it to prove Theorem 8:

Proof of Theorem 8. We first remark that the function x* is monotonic

with respect to graph inclusion in the following sense: if G and G’ are graphs
with V(G) C V(G'), and E(G) C E(G'), then x'{(G) < xL(G). As any

9



181

graph G of maximum degree d is a subgraph of a d-regular graph (possibly
with a greater number of vertices), to prove that x%(d) = O(dInd+ (d —t)d)
it therefore suffices to show that x’(G) = O(dInd + (d — t)d) for d-regular
graphs G. We hereafter assume G is d-regular and d is large enough to apply
Lemma 9. Let k = d —t. We will show that xL(G) < di(d, k) + 2, which
proves the theorem.

By Lemma 9, there is a k-dominating set D such that |N(v)ND| < ¢ (d, k)
for all v € V(G). Fix such a dominating set D and form the auxiliary graph
H as follows: let H have vertex set D and let uv be an edge of H precisely
if w and v have graph distance at most two in G. As |[N(v) N D| < ¢(d, k)
for all v € V(G), H has maximum degree at most di)(d, k).

To colour G, we first greedily colour H using at most di)(d, k)41 colours,
and assign each vertex v of D the colour it received in H. We next choose
a new colour not used on the vertices of D, and assign this colour to all
vertices of V' (G) \ D. We remind the reader that im(v) denotes the number
of neighbours of v of the same colour as v. If v € D then im(v) = 0, and if
v € V\D then im(v) < d—|N(v)ND| < d—k =t, so the resulting colouring
is t-improper.

Furthermore, given any path P = vjvyvsvy of length three in G, either
two consecutive vertices v;, v;11 of P are not in D (in which case c(v;) =
c(viy1) and P is not alternating), or two vertices v, v;4o are in D (in which
case c(v;) # c(viyo) and P is not alternating). Thus, the above colouring
is a star colouring G of impropriety at most ¢ and using at most d(3k +
311lnd) + 2 colours; as G was an arbitrary d-regular graph, it follows that
Xi(d) < dip(d, k) + 2, as claimed. O

We next prove Lemma 9 with the aid of the following symmetric version
of the Lovasz Local Lemma:

Lemma 10 ([4], cf. [8], page 40). Let A be a set of bad events such that for
each A e A

1. Pr(A) <p<1, and

2. A is mutually independent of a set of all but at most § of the other
events.

If 4pd < 1, then with positive probability, none of the events in A occur.

10
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Proof of Lemma 9. We may clearly assume that k is at least (31/3)Ind,
since, if the claim of the lemma holds for such £, then it also holds for smaller
k. Let p = 2k/d and let D be a random set obtained by independently
choosing each vertex v with probability p. We claim that, with positive
probability, D is a k-dominating set such that |N(v) N D] < 3k for all v €
V(G); we will prove our claim using the local lemma.

For v € V(G), let A, be the event that either |N(v) N D| < k or
IN(v) N D| > 3k. By the mutual independence principle, cf. [8], page 41,
A, is mutually independent of all but at most d? events A, (with w # v).
Furthermore, since |N(v) N D| has a binomial distribution with parameters
d and p, we have by a Chernoff bound that

Pr(A,) = Pr(||[N(v)ND| — E(IN(v) N D|)| > k) < 2e7%° = o(d7?)

so 4Pr (A,)d* < 1 for d large enough. By applying Lemma 10 with A =
{4, | v € V}, it follows that with positive probability none of the events A,
occur, i.e. D has the desired properties. O

4 A deterministic lower bound for Yy !(d)

In this section, we concentrate on the case t = d — 1 and exhibit an example
G, which gives the asymptotic lower bound of Theorem 3. Given a positive
integer n, we construct the graph G, as follows: G, has vertex set {v;; :
i,j € {1,...n}yU{wy 4,5 € {1,...,n}}. Fori,j € {1,...,n} we let
Vi; = {vij,w;;}. We can think of the set of vertices as an n-by-n matrix,
each entry of which has been “doubled”. Within each column C; = U?zl Vi
and within each row R; = |J_, V;; we add all possible edges. The graph G,
has 2n? vertices and is regular with degree d = 4n — 3. We will prove the
following proposition, which directly implies Theorem 3:

Proposition 11. x4 1(G,) > g T L

Proof. Let f : G, — {1,...,k} be an acyclic (d — 1)-improper colouring
of G,,; we will show that necessarily k > n1+3+1 Since n > 1 it follows that
n/2 > —7— and thus we may assume that k& < n/2. Clearly, some colour
— say a; — appears on two vertices x, 2’ of C;. We call the colour a; “black”

and refer to vertices receiving colour a; as black vertices. If y,vy" € C; both

11
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receive colour i # ay, then xyz'y’ forms an alternating cycle, so a; is the only
colour appearing twice in C;. It follows that at most £ — 1 vertices in C; are
not black.

Applying the same logic to any column C;, we see that all but k — 1
vertices in C; must receive the same colour, say a;. Since k < n/2, it is easily
seen, then, that there must be a row R,, such that v,,; and w,,; are both
black, and v,,; and w,,; are both coloured a;. This implies that a; = ay, since
otherwise vy,1Vpm;Wp1w,,; would be an alternating cycle. It follows that in all
columns, at most k—1 vertices receive a colour other than a;. Symmetrically,
there is a colour b such that in all rows, at most k£ — 1 vertices receive a colour
other than b; clearly, it must the case that b = a;.

If there are i, j € {1, ..., n} such that both R, and C; are entirely coloured
black, then all the neighbours of v;;, w;; are coloured with a; and the colouring
is not (d — 1)-improper; therefore, it must be the case that either all rows, or
all columns, contain a non-black vertex. Without loss of generality, we may
assume that all rows contain a non-black vertex.

Let z1, ..., x, be non-black vertices receiving the same colour, say a, and
let z; € Vy, m,, for 1 <@ <r. As previously noted, no two of z1,...,z, may
lie in the same row or column; i.e., for ¢ # j, ¢; # {; and m; # m;.

Claim 1. At least 3(7) vertices of Ui<izj<r Vesm; receive a non-black colour
other than a.

Proof. No vertices in |J,,;<, Ve,m, receive colour a as each such vertex
is in the same row as one of x1,...,z,. On the other hand, for each pair
i,j with 1 <¢ < j <, at least three of the vertices in Vy, ;,, U Vy, 1, must
receive a colour other than a;. For if y,y’ € Vi;.m; UVe; m; both receive colour
a1, then z;yz;y" forms an alternating cycle. The result follows as there are
(1) pairs i,j with 1 <i<j<r. O

Claim 2. At least r distinct non-black colours appear on U1§i<j§r Vi m, -
Proof. By an argument just as above, each of Vy, n,, ..., Vi, m, must con-

tain a vertex receiving a colour other than a; or a. These colours must all
be distinct as Vg, my,, - - -, Ve,,m, are all contained within R,,. O

Let {as,as,...,ap} be the set of non-black colours. Let a3,... 22 be
the vertices receiving colour as, and for i = 3,... &k let ¢, ... ,xii be the

12
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vertices receiving colour a; which are in a different row from all vertices in

l l | J - E L= n:
j<i Us<r; Lg- As every row contains a non-black vertex, =2 Ti n; 1t 1s

possible that r; = 0 for certain ¢, if there is a vertex coloured with one of
as, . ..,Qa; N eVery row.

Forie{2,...,k} and s € {1,...,r;}, say vertex & € Vyi i, and let
A= U Vfg,mi U Vfi,mg
1<s<t<r;

By Claim 1, at least 3(2) vertices of A; are non-black. Furthermore, if 7 £ ¢
then for any s € {1,...,7;}, s’ € {1,...,ry}, o' and 2%, are in different rows
~ 50 A; and Ay are disjoint. It follows that in U, A;U{}, ..., 2%}, at least

2(3( )+n> Zr (8)

vertices are non-black. As 2522 r; = n, it is easily seen that

(=1

As there are only k—1 non-black colours, it follows that some non-black colour
— say ay — appears at least (|n/(k — 1)])? times. If (|n/(k —1)])? > n?/3,
then by Claim 2, at least n?/® +1 > n1+3+1 + 1 colours appear on G, so
we may assume that n*3 > (|n/(k —1)])?> > (n/(k — 1) — 1)2. But then
k > + 1, as claimed. O

_n__
nl/3+1

It is worth noting that the correct asymptotic order of x471(G,,) is un-
known; it is even conceivable that y¢~1(G,,) = ©(d).

5 Conclusion

In our view, the most surprising result of this paper is that the same asymp-
totic lower bound for ordinary acyclic chromatic number by Alon et al. also
holds for the acyclic t-improper chromatic number for any ¢ = ¢(d) satisfy-
ing d—t = 0(d). As x.(G) > x'(G) for any ¢t > 0, this means that, for
d —t = O(d), Theorem 1 is asymptotically tight up to a factor of (Ind)"/?.

13
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In the case that t is very close to d, Theorem 8 improves upon upper
bounds for x%(d) and x%(d) implied by the results of Alon et al. and Fertin et
al., respectively, giving for instance that x%(d) = O(dInd) for d—t = O(Ind).
On the other hand, we showed that x¢~'(d) = Q(d*?) by a deterministic
construction.

Xa(d) Xs(d)
d—t lower upper lower upper
d4/3 d3/2
o) | 9 (i) 2 (e O(d*?)
—\4/3 —\3/2
wVdind) | @ (S07) | o) | o ()
O(d'/?) 2/3 2/3
O(Ind) O(dInd) O(dInd)
0 1 1 1 1
Table 1: Asymptotic bounds for % (d) and x%(d).
There is much remaining work in the case d — ¢t = o(d). Table 1 is a

rough summary of the current bounds on % (d) and x‘(d) when d is large. A
case of particular interest to the authors is when d —t = 1; in this case, it is
unknown if x¢71(d) is ©(d??), ©(dInd) or lies somewhere strictly between
these extremes.
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Adapted list colouring of planar graphs

Abstract

Given a (possibly improper) edge-coloring F' of a graph G, a vertex
coloring of G is adapted to F' if no color appears at the same time on an
edge and on its two endpoints. If for some integer k, a graph G is such
that given any list assignment L to the vertices of G, with |L(v)| > k
for all v, and any edge-coloring F' of GG, G admits a coloring ¢ adapted
to F' where ¢(v) € L(v) for all v, then G is said to be adaptably k-
choosable. In this note, we prove that Ks-minor-free graphs are adaptably
4-choosable, which implies that planar graphs are adaptably 4-colorable
and answers a question of Hell and Zhu. We also prove that triangle-free
planar graphs are adaptably 3-choosable and give negative results on
planar graphs without 4-cycle, planar graphs without 5-cycle, and planar
graphs without triangles at distance ¢, for any ¢t > 0.
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Adapted list colouring of planar graphs

Louis Esperet* Mickaél Montassier’ Xuding Zhu?

Abstract

Given a (possibly improper) edge-colouring F' of a graph G, a vertex colour-
ing of GG is adapted to F if no colour appears at the same time on an edge and
on its two endpoints. If for some integer k, a graph G is such that given any
list assignment L to the vertices of G, with |L(v)| > k for all v, and any edge-
colouring F' of G, G admits a colouring ¢ adapted to F' where c(v) € L(v)
for all v, then G is said to be adaptably k-choosable. In this note, we prove
that Ks-minor-free graphs are adaptably 4-choosable, which implies that pla-
nar graphs are adaptably 4-colourable and answers a question of Hell and Zhu.
We also prove that triangle-free planar graphs are adaptably 3-choosable and
give negative results on planar graphs without 4-cycle, planar graphs without
5-cycle, and planar graphs without triangles at distance ¢, for any ¢ > 0.

Keywords: Adapted colouring, list colouring, planar graphs.

Mathematical Subject Classification: 05C15

1 Introduction

The concept of adapted colouring of a graph was introduced by Hell and Zhu in [9],
and has strong connections with matrix partition of graphs, graph homomorphisms,
and full constraint satisfaction problems [4, 6, 7, 10]. The more general problem of
adapted list colouring of hypergraphs was then considered by Kostochka and Zhu in
[11], where an application to job assignment problems was also given.
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In this note, we study adapted list colourings of simple graphs. Let G be a simple
graph (that is, without loops nor multiple edges), and let ' : E(G) — N be a (possi-
bly improper) colouring of the edges of G. A k-colouring ¢ : V(G) — {1,...,k} of
the vertices of G is adapted to F if for every uv € E(G), c(u) # c(v) or ¢(v) # F(uv).
In other words, the same colour never appears on an edge and both its endpoints. If
there is an integer k such that for any edge colouring F' of GG, there exists a vertex
k-colouring of G adapted to F', we say that G is adaptably k-colourable. The smallest
k such that G is adaptably k-colourable is called the adaptable chromatic number of
G, denoted by xa4(G).

Note that in [9] and [11], the authors require that the edge colouring F' is a
k-colouring. Even though we enable F' to take any integer value, it is easy to see
that our definition is equivalent to the original definition (whereas its extension to
adapted list colouring is more natural). Let L : V(G) — 2 be a list assignment to
the vertices of a graph G, and F be a (possibly improper) edge colouring of G. We
say that a colouring ¢ of G adapted to F' is an L-colouring adapted to F' if for any
vertex v € V(G), we have c¢(v) € L(v). If for any edge colouring F' of G and any
list assignment L with |L(v)| > k for all v € V(G) there exists an L-colouring of G
adapted to F', we say that G is adaptably k-choosable. The smallest k£ such that G is
adaptably k-choosable is called the adaptable choice number of G, denoted by ch,q(G).

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring
of G, we clearly have x.4(G) < x(G) and ch,y(G) < ch(G) for any graph G, where
X(G) is the usual chromatic number of G, and ch(G) is the usual choice number of G.
Using the Four-Colour Theorem and a theorem of Thomassen [13], this proves that
for any planar graph G, x4q(G) < 4 and choy(G) < 5. In [9], Hell and Zhu proved that
there exist planar graphs that are not adaptably 3-colourable, and asked whether it
would be possible to prove that every planar graph is adaptably 4-colourable without
using the Four-Colour Theorem.

A graph H is called a minor of G if a copy of H can be obtained by contracting
edges and/or deleting vertices and edges of G. A graph is said to be H-minor-free
if it does not have H as a minor. Planar graphs are known to be a proper subclass
of K5-minor-free graphs. In this note, we answer to the question of Hell and Zhu by
proving the following stronger statement:

Theorem 1 Fvery Ks-minor-free graph is adaptably 4-choosable.

Observe that this does not hold for the usual list colouring, since Voigt [15] proved
that there exist planar graphs which are not 4-choosable.
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Triangle-free planar graphs are known to be 3-colourable [5, 14] and 4-choosable (it
is easy to prove that they are 3-degenerate using Euler Formula). On the other hand
Voigt [16] proved that there exist triangle-free planar graphs that are not 3-choosable.
In Section 3, we prove the following theorem:

Theorem 2 Fuvery triangle-free planar graph is adaptably 3-choosable.

In Section 4, we investigate a problem related to a question of Havel [8]. We prove
that for all ¢, there exist planar graph without triangles at distance less than ¢, which
are not adaptably 3-choosable. In Sections 5 and 6, we prove that there exist planar
graphs without 4-cycles, and planar graph without 5-cycles, which are not adaptably
3-colourable. These negative results seem to indicate that it may be hard to have a
weaker hypothesis in Theorem 2.

2 Ks-minor-free graphs

Theorem 1 is a consequence of Lemma 2.3 in this section. Note that the adaptable
4-choosability of planar graphs can be deduced directly from Lemma 2.1.

Lemma 2.1 Let G be an edge-coloured plane graph, and let C' = (vy,...,vx) be its
outer face. Let ¢ be an adapted colouring of vi and ve. Suppose finally that any vertex
v € C distinct from vy and vy has a colour list L(v) of size at least three and every
vertez v € V(G)\ C has a colour list L(v) of size at least four. Then the colouring ¢
can be extended to an adapted L-colouring of G.

Proof. We prove this lemma by induction on |V (G)|. If |V (G)| = 3, the assertion is
trivial. Suppose now that |V(G)| > 4 and assume that the assertion is true for any
smaller graphs.

Since the subgraph G¢ of G induced by C' is an outerplanar graph, it contains
two vertices v; and v; of degree at most two which are not adjacent in G¢ and which
are not cut-vertices of G¢. These vertices v; and v; are neither cut-vertices of G' nor
incident to a chord of C, and one of them (say v;), is distinct from v; and vs. Let
a € L(v;) be a colour distinct from the colours of the edges v;v;41,v;v;_1. For each
neighbour x of v; not in C', we remove the colour « from the colour list of z. Applying
the induction hypothesis to G'\ v; and then colouring v; with « yields an adapted list
colouring of G. [ |

Lemma 2.2 Let G be an edge-coloured plane graph. Suppose that every vertexr v of
G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic to Ky or

3
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K3, and let ¢ be an adapted L-colouring of H. Then ¢ can be extended to an adapted
L-colouring of G.

Proof. Let G be a counterexample with minimum order. If H is isomorphic to Ko,
then consider a face incident to H as the outer face and apply Lemma 2.1 to this
planar embedding of G.

Assume now that H is isomorphic to K3 and V/(H) = {u,v,w}. If H is a separat-
ing 3-cycle, then let G; (resp. G2) be the graph induced by the vertices of H and the
vertices inside (resp. outside) of H. By the minimality of GG, extending ¢ to G; and
to G4 yields an adapted L-colouring of G. Suppose now that H is not a separating
3-cycle, and assume that H bounds the outer face of G. Let G' = G\ w and let L'
be the list assignment defined by L'(x) = L(z) \ {¢(w)} for every vertex x adjacent
to w (and distinct from u,v) and by L'(x) = L(zx) for any other vertex distinct from
u and v. Lemma 2.1 applied to G’ allows to extend ¢ to G. | |

Lemma 2.3 Let G be an edge maximal Ks-minor-free graph. Suppose that every
vertex v of G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic
to Ky or K3, and let ¢ be an adapted L-colouring of H. Then ¢ can be extended to
an adapted L-colouring of G.

Proof. Let G be a counterexample with minimum order. Then G is not isomorphic
to the Wagner graph (which is 3-regular, and hence adaptably L-colourable given a
precolouring of H), and by Lemma 2.2, GG is not a planar triangulation. It follows
from Wagner’s theorem [17], that G = G; U Gy where G, Gy are proper subgraphs
of G such that Gy N G5 is isomorphic to Ky or K3. Clearly, H C G; or H C Gb.
Without loss of generality, assume that H C ;. By minimality of GG, we can extend
¢ to G1. This gives an adapted colouring to G; N Gy which can be extended to Ga,
by the minimality of G. This yields an extension of ¢ to an adapted L-colouring of

G. i

3 'Triangle-free planar graphs
Theorem 2 is a consequence of the following theorem:

Theorem 3 Suppose G is an edge-coloured simple triangle-free plane graph, C =
(v1,v9, -+, vg) is the outer face. Suppose L is a list assignment that assigns to each
vertex x a set L(x) of 3 permissible colours, except that some vertices on C have only
2 permissible colours. However, each edge of G has at least one end vertex x which
has 3 permissible colours. Then G is adaptably L-colourable.

4
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Proof. We may assume G is connected and prove the theorem by induction on the
number of vertices. If |V(G)| < 4, then the theorem is obviously true.

Assume |V(G)| > 5. A path P = (v;, z,v;) is called a long chord of C' connecting
v; and v;, if v;,v; € C, o & C and |L(v;)| + |L(v;)| = 5. Let P be the set of chords,
long chords, and cut-vertices of C'. Suppose P € P is a chord (v;, v;) or a long chord
(v;, x,v;) connecting v; and v;. We denote by Ap and Bp the two components of
C — {v;,v;}, and assume that |Ap| < |Bp|. If P € P is a cut-vertex of C, we denote
by Ap the smallest component of C — P. Let P* € P be a chord, long chord, or
cut-vertex, for which |Ap«| is minimum.

Claim Ap- contains a vertex v; which is not a cut-vertex, such that |L(v;)| = 3 and
vy is not contained in any chord or long chord of C.

First observe that Ap« does not contain any cut-vertex, since otherwise this would
contradict the minimality of P*. Assume that P* is a cut-vertex v. Then Ap« contains
at least two adjacent vertices v; and v; 1, and both of them are neither contained in
a chord nor in a long chord of C' by the minimality of P*. By the hypothesis, there
isat e {i,i+ 1} such that |L(v;)| = 3.

Assume P* = (v,z,v;) is a long chord, |L(v;)] = 2 and Ap. =
(Vit1,Viga, -+, vj—1). Then |L(v;_1)| = 3, for otherwise v;v;_; is an edge of G con-
necting two vertices each with 2 permissible colours, in contrary to our assumption.
Since G is triangle-free, v;_; is not adjacent to x. If v;_; is contained in a chord or a
long chord P’, then we would have Aps C Ap+ and hence |Ap/| < |Ap+|, in contrary
to our choice of P*.

Assume P* = (v;,v;) is a chord, and Ap« = (Vit1,Vit2, - +,0j-1). Since G is
triangle-free, v;41 # v;_1. Since each edge of G has at least one end vertex x which
has 3 permissible colours, there exists ¢ € {i 4+ 1,7 + 2} such that |L(v;)| = 3. By the
same argument as above, v; is not contained in any chord or long chord of C'. This
completes the proof of the claim.

Let v; € C be a vertex which is not a cut-vertex, such that |L(v;)| = 3 and v, is
not contained in any chord or long chord of C. Let a € L(v;) be a colour distinct
from the colours of the two edges v;_1v; and v;v.41. Let G' = G — vy and let L' be a
list assignment of G’ defined as L'(z) = L(z) — {a} if z is a neighbour of v, distinct
from v;_1,v441, and L'(z) = L(z) otherwise. Then L/'(z) contains 3 colours for each
interior vertex x of G’ and L'(z) contains at least 2 colours for each vertex x on the
outer face of G, since v; is not contained in any chord of C'. Moreover, since v; is not
contained in any long chord of C, it follows that each edge of G’ has at least one end
vertex x which has 3 permissible colours. By induction hypothesis, G’ is adaptably
L'-colourable. Any L’-colouring of G’ can be extended to an L-colouring of G by
colouring v; with colour a.. So G is adaptably L-colourable. | |
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Figure 1: The construction of Hy.

4 Planar graphs without triangles at distance k

The distance between two triangles ryz and uvw is the minimum distance between a
vertex of {z,y, z} and a vertex of {u, v, w}. For any graph G, we denote by d;(G) the
minimum distance between two triangles of GG. If G’ contains at most one triangle,
we take di(G) to be infinite. Havel [8] asked the following question: is it true that
for some k, every planar graph G with d;(G) > k is 3-colourable? Havel showed that
such an integer k is at least 2, disproving a conjecture of Griinbaum. In [1], Aksionov
and L.S Mel'nikok proved that such a k is at least 4, and conjectured that the real
value should be 5.

Since triangle-free planar graphs are adaptably 3-choosable, it is interesting to
see if anything can be said about a relaxation similar to Havel’s problem : is there
an integer k, such that any planar graph G with d;(G) > k is adaptably 3-choosable?
In the following, we prove that such a k£ does not exist: more precisely, for every k
we construct a planar graph where every two triangles are at distance at least 2k
apart, which is not adaptably 3-choosable.

Let us define the distance between two faces F; and JF; of a graph as the minimum
distance between a vertex of F; and a vertex of F5. A face containing exactly k
vertices is called a k-face. In the following, we construct inductively the plane graph
H;, such that the following is verified at each step:

(a) H; is triangle-free.



194 APPENDIX E. [EMZ08]

Figure 2: H(a,b).

(b) H; contains exactly two 5-faces (the outer face and another face, say F;). More-
over, the distance between these two faces is exactly .

(¢) Assume that the outer face is coloured with five distinct colours a, b, ¢, d and
e in clockwise order. Then there exist an edge-colouring F; of H; and a list
assignment L; with |L;(v)| = 3 for every vertex v which is not incident to the
outer face, such that H; has a unique L;-colouring adapted to F;. Moreover, this
colouring is such that F; is coloured with a, b, ¢, d and e in clockwise order.

Let Hy be a 5-cycle. Then the three properties are trivially verified. Assume that
for some i« > 1, H;_; also verifies these properties. Fix five different colours a, b, c,
d, and e (in clockwise order) on the vertices of the outer face of H; ;. By property
(3), there exist an edge-colouring F;_; of H; 1 and a list assignment L; ; with lists
of size three, such that H;_; has a unique L;_i-colouring adapted to F;_;. In this
colouring, the vertices u, v, w, x, and y of the 5-face F;_; are coloured with a, b, c,
d and e respectively. Let H; be the graph obtained from H;_; by adding five new
vertices inside F;_1, as depicted in Figure 1. This figure also shows how to extend
F;_1 and L;_; to an edge-colouring F; and a list-assignment L; of H;.

Since u and w are coloured with a and ¢ respectively, the new vertex v’ adjacent
to u and w must be coloured with b. The new vertex w’ adjacent to v and x must
be coloured with ¢; the new vertex a2’ adjacent to w’ and y must be coloured with d;
the new vertex 3" adjacent to 2’ and y must be coloured with e, and the new vertex
u' adjacent to ¢y’ and v' must be coloured with a. The graph H; is still triangle-free,
and only contains two 5-faces: the outer face and F; = v/'v'w’z’y’. Moreover these
two faces are at distance exactly ¢ — 141 = i. Hence, the graph H; verifies properties
(a), (b), and (c). We denote by G; the graph obtained from H; by adding inside the
face F; a 3-vertex z adjacent to v/, w’, and 2’. We give the edges zu', zw’ and za’
colours a, ¢, and d respectively, and we assign the list {a, ¢, d} to z. Observe that the
graph G; contains only one triangle (which is at distance ¢ from the outer face), and



that the colouring of the outer face cannot be extended to an adapted list-colouring
of Gz

Let H(a,b) be the edge-coloured graph depicted in Figure 2. Assume that z and
y are coloured with a and b respectively. Then v and v must be coloured with 3,
and w must be coloured either 1 or 2. If it is coloured with 1, the 5-face xzwyu
has its vertices coloured with a, 2, 1, b and 3. Otherwise, the 5-face xvywz’ has its
vertices coloured with a, 3, b, 2, 1. Let G(a,b) be the graph obtained from H(a,b)
by plugging the widget Gy in each of the two 5-faces (that is, each of these two faces
becomes the outer face of a graph Gy). Using what has been done before, we know
that with a suitable edge-colouring of the two widgets, there exists a list assignment
with lists of size three, such that the colouring of H(a,b) cannot be extended to a
colouring of G(a,b). Hence, if z and y are coloured with a and b respectively, this
cannot be extended to an adapted list colouring of G(a,b).

Consider 9 copies of G(a,b), with (a,b) € {4,5,6} x {7,8,9}, and identify all the
vertices x (resp. y) of these copies into a single vertex z* (resp y*). Assign the colour
lists {4,5,6} and {7,8,9} to z* and y* respectively. Assume that there exists an
adapted list colouring f of this graph, then there exist no adapted list colouring of
the copy of G(f(z*), f(y*)), which is a contradiction. Hence, this planar graph is not
adaptably 3-choosable, and any two triangles are at distance at least 2k apart.

5 Planar graphs without 4-cycles

In this section, we prove that there exist planar graphs without 4-cycles, which are not
adaptably 3-colourable. Let H(a,b,c) be the edge-coloured graph depicted in Figure
3. Consider that {a,b,c} = {1, 2,3}, and assume that the vertices v and v of H(a, b, c)
are coloured with a and b respectively. Then at least one of the vertices w and w’
is coloured with c¢. By symmetry, we can assume that w is coloured with ¢. Then z
must be coloured with a, ¥y must be coloured with ¢, and z and 2z’ must be coloured
with b. It is easy to check that in this situation, the remaining subgraph induced the
vertices at distance one or two from z and 2’ cannot be adaptably coloured. Hence, if
u and v are coloured with a and b, this colouring cannot be extended to an adapted
3-colouring of H(a,b, c).

For every 1 < a < 3, let b and ¢ be the two colours from {1, 2,3} distinct from
a. We denote by G, the edge-coloured graph obtained from H(a, b, c) and H(a,c,b)
by contracting the two vertices u (resp. v) into a single vertex u* (resp.v*). Observe
that in any adapted 3-colouring of G, if u* is coloured with a then v* is also coloured
with a.
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Figure 3: H(a,b, c).

Figure 4: A planar graph without 4-cycle, which is not adaptably 3-colourable.
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H]_(a) H2(a7 b)

Figure 5: Hi(a) and Hs(a,b).

Consider now an adapted 3-colouring of the construction of Figure 4, which does
not contain any 4-cycle. If the vertex u is coloured with 1 < ¢ < 3, then the two
vertices x; and y; are both coloured with i, which is a contradiction since they are
linked by an edge coloured with 7. Hence, this graph is not adaptably 3-colourable.

6 Planar graphs without 5-cycles

In this section, we prove that there exist planar graphs without 5-cycles, which are
not adaptably 3-colourable. For any {a, b, c} = {1,2,3}, let Hi(a) and Hy(a,b) be the
two Cs-free planar graphs depicted in Figure 5. It is easy to check that in Hi(a), if
the vertices u and v are coloured with a, then this colouring cannot be extended to an
adapted colouring of H;(a). Similarly in Hs(a,b), if u and v are coloured respectively

with @ and b (a # b), then this colouring cannot be extended to an adapted colouring
of Hg(a, b)

Consider the three graphs Hi(a) for 1 < a < 3, and the six graphs Hs(a,b) with
1 < a # b < 3. Contract the nine vertices u (resp. v) of these graphs into a single
vertex u* (resp. v*). Assume that there exists an adapted 3-colouring f of this graph.
If f(u*) = f(v*) then the copy of Hi(f(u*)) is not adaptably 3-colourable, which is
a contradiction. Otherwise f(u*) # f(v*) and the copy of Hs(f(u*), f(v*)) is not
adaptably 3-colourable, which is also a contradiction. Hence, this graph is planar
and without 5-cycles, but is not adaptably 3-colourable.

10
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7 Conclusion

In this note, we proved that triangle-free planar graphs are adaptably 3-choosable,
whereas Cy-free planar graphs and Cs-free planar graphs are not even adaptably 3-
colourable. We also showed that for any & > 0, there exist planar graphs without
triangles at distance k which are not adaptably 3-choosable. However, the question
remains open for adapted colouring:

Question 7.1 Is there an integer k, such that every planar graph G with d,(G) > k
is adaptably 3-colourable?

If the answer to this question is negative, it implies that the answer to the original
problem of Havel is also negative, whereas a positive answer to the original problem
of Havel would imply a positive answer to Question 7.1.

In 1976, Steinberg conjectured that planar graphs without cycles of length 4 and 5
are 3-colourable (see [12] for a survey). We can ask the same for adapted 3-colouring
and adapted 3-choosability :

Question 7.2 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
colourable?

Question 7.3 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
choosable?

A weaker version of the problem of Steinberg was proposed by Erdés in 1991: he
asked what is the smallest 7, such that every planar graph without cycles of length
4 to 1 is 3-colourable? The same can be asked for adapted 3-colouring and adapted
3-choosability:

Question 7.4 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-colourable?

Question 7.5 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-choosable?

Note that by [3], the answer of Question 7.4 is at most 7, and by [2, 18], the
answer of Question 7.5 is at most 9.

11
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