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Pour vous seuls, fils de la doctrine et de la sapience, nous avons écrit cette oevre.

Scrutez le livre, recuiellez-vous dans cette intention que nous y avons dispersée et

placée en plusieurs endroits; ce que nous avons occulté dans un endroit, nous l’avons

manifesté dans un autre, afin que votre sagesse puisse le comprendre.

Heinrich Cornelius Agrippa von Nettesheim, De occulta philosophia, 3.65.
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Chapter 1

Introduction

Any attractive interaction between fermions at low temperatures generally leads to

a fermion pairing analogous to the Cooper pairing of electrons in superconducting

metals. Thus it is not surprising that pairing lies at the heart of nuclear physics. It

is present in finite nuclei, in the nuclear matter of neutron stars (nucleonic pairing)

and it is believed to exist in quark-gluon plasma (color superconductivity).

While the concept of the nuclear pairing was introduced at a very early stage

of the nuclear structure studies [1, 2], there are still questions regarding this funda-

mental many-body mode, e.g. what is the microscopic origin of many-body pairing

in finite nuclei, what part of the effective interaction comes directly from the bare

force and what part is induced [3].

Pairing can determine the stability of nuclei. A classic example is the chain of

helium isotopes among which only the N -even ones are bound. Such an odd-even

effect in nuclear binding energies is well known and particulary important near the

drip lines, where the mean-field approximation is no longer a viable approach.

Since the number of nucleons can be precisely controlled, atomic nuclei are won-

derful laboratories of pairing in finite many-body systems. Extremely proton or neu-

tron rich nuclei are supposed to form various superconducting phases with Cooper

pairs carrying different spin, isospin and angular momenta. In proton-rich nuclei the

coupled proton and neutron fields may lead to a rise of deuteron-like (S=1) pairs.

The concept of such pairing, i.e. the proton-neutron (pn) pairing, was envisaged

over fourty years ago [4]. Theoretical models with the inclusion of proton-neutron

pairs like BCS approaches [5, 6, 7, 8, 9, 10, 11], quasi-spin formalism [12, 13], Inde-

pendent Boson Models [14, 15] etc. have arised and have been constantly developed

giving some idea of the importance of such correlations in the theoretical treat-

ment and yielding sometimes a picture more consistent with experimental data as

compared to the models excluding the possibility of pn pairs.

Recently a revival of the interest on the subject of the pn pairing is taking

place due to the new experimental possibilities. In last years international research

has focused on exotic nuclei. The first synthesized elements revealed unexpected

deformations and new radioactivities [16, 17, 18, 19, 20]. New facilities using Rare

13



14 CHAPTER 1. INTRODUCTION

Isotopes Beams are still to come (e.g., SPIRAL 2 (Système de Production d’Ions

Radioactifs en Ligne) [21], EURISOL (European Isotope Separation On-Line) [22]).

They would allow to perform experiments on a wide range of neutron and proton-

rich nuclei far from the stability line using different production mechanisms and

techniques to create unprecedented high intensity beams. Gamma ray detectors of

new generation which can be exploited with radioactive and stable beams and with

much improved capabilities and much higher sensitivity than existing instruments

are as well under construction (AGATA (Advanced Gamma Tracking Array) [23],

GRETA (Gamma Ray Tracking Array) [24]).

However, it is fair to say that so far there is no direct experimental evidence

for pn pairing. The distinctive existence of the deuteron is a proof that the T = 0

channel is an important part of the nuclear interaction but not that a deuteron-like

condensate can be created in heavier, open-shell systems. It was argued based on a

phenomenological analysis of nuclear binding energies of N = Z systems that there

is a strong evidence for the isovector pn pairing while there is little room, if at all,

for the existence of T = 0 pair correlations [25, 26].

It goes without saying, that in view of new experiments with exotic nuclei

planned, a fair theoretical description of them is required. On the proton-rich side,

where the proton-neutron pairing may play a role, a reliable approach can not ex-

clude such correlations. On the other hand, future experiments may lead to a clear

answer on what is the role of the pn pairing in the description of ground and excited

states of exotic nuclei and in decay processes, and what is the interplay between

T = 0 and T = 1 forces in the particle-particle channel.

It is our belief that a fully microscopic theory of nuclei should include explicitely

the proton-neutron coupling already in the particle-hole channel and then be taken

into account in the residual interaction. A step towards has been already done in

Ref. [27] where the general Hartree-Fock-Bogoliubov (HFB) formalism which fully

incorporates the proton-neutron mixing on the mean-field level was derived. In the

present work, since we use different forces in the particle-hole and particle-particle

channels, the terms arising in the effective interaction when densities mix protons

and neutrons were not introduced. We focus here on the proton-neutron correlations

beyond the mean-field, namely on the role of the pn pairing in the description of

medium mass proton-rich nuclei (A ∼ 64). First, we revisit and develop BCS and

Lipkin-Nogami (LN) approaches to be able to describe isovector and isoscalar pair-

ing correlations with the use of state-dependent forces. Most calculations of that

type carried out so far based on schematic interactions, i.e. monopole pairing forces

(see e.g. [11, 28, 29]). A density-dependent δ force has been already applied in the

cranked HFB calculations with the proton-neutron pairing in high spin states (e.g.

[30]), however no particle-number projection was done in such a case. Then, we

discuss the method known as the Higher Tamm-Dancoff Approximation (HTDA),

developed recently [31], which gives a possibility to study ground state correlations

and excited states in a shell model-like framework. It is free of deficiencies of pairing
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approaches of the Bogoliubov type (particle number non-conservation). A general-

ization of the HTDA method to deal with isovector and isoscalar pairs on the same

footing is performed.

We start our considerations with reminding shortly the foundations of the mean-

field theory (Chapter 2), i.e. the outline of the Hartree-Fock method is presented.

We also discuss briefly phenomenological effective interactions and commonly used

parametrizations. In Chapter 3 a short overwiev of experimental evidence and pos-

sible signatures of the proton-neutron pairing is presented. The phenomenological

quantities for nuclei under consideration are derived from experimental data. In

Chapter 4 the correlations of the pairing type are studied in the independent quasi-

particle theory (BCS) with the use of an approximate particle projection (Lipkin-

Nogami) and a realistic two-body contact force to describe the residual interaction

and the possible extensions of the pairing interactions are studied. The generaliza-

tion of models and numerical tools to account for the pn pairing is carried out. The

problem of the Wigner term and its connections with the proton-neutron pairing

is also addressed. In Chapter 5 we perform the study of the correlations beyond

the mean-field in the HTDA approach. This method is used to describe ground

state properties of considered nuclei and then extended to take into account as well

proton-neutron pairs. The role of different types of particle-hole excitations in the

ground states of considered nuclei is discussed. The connections of the HTDA results

with the Hartree-Fock plus BCS calculations are indicated.

The main conclusions and perspectives for further research are presented in

Chapter 6.
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Chapter 2

Hartree-Fock method

The Hartree-Fock (HF) method, like many other ideas in nuclear physics, was

genuinely introduced in another division of many-body theory, namely in atomic

physics. Although the nucleus has much in common with an atom, nucleons are

bound solely by their mutual interaction and, unlike the electrons, they do not feel

any central field. Straightforward applications of many-body theories created for

atomic or solid-state physics to nuclei usually pose difficulties as the nucleus has

its own distinctive features, let us point out the short-range repulsive character of

the nuclear force or the finite number of nucleons. Nevertheless, the Hartree-Fock

method applied the first time to nuclear physics by Kelson in 1963 [32], remains a

great advantage and many of other, more refined models, are only extensions of the

basic HF ideas.

The Hartree-Fock self-consistent field method is an approximation for reducing

the problem of many interacting nucleons to the description of non-interacting par-

ticles in a field. It is a great simplification but as well a harsh approximation which

neglects a large part of the nucleon-nucleon force. Including the residual interaction

ignored in the mean-field approximation is a major dillema of nuclear structure. The

methods of treating the correlations beyond the mean-field are the main subject of

this work, nonetheless let us first have a closer look to the self-consistent field theory

in the present chapter.

2.1 Mean-field approximation

The assumption of the mean-field approach is that nucleons move independently in

an average potential produced by all of nucleons. Such a potential can be determined

empirically, which is the principle behind the shell model. Historically, the shell

model potential was constructed to reproduce the magic numbers. A central field

with a crucial spin-orbit interaction suggested the first time by Jensen and Goeppert-

Mayer in 1949 [33], succeded with the requirements of reproducing shell closures.

The most widely used empirical potentials are

17



18 CHAPTER 2. HARTREE-FOCK METHOD

• The Nilsson potential [34, 35], historically the first single-particle (sp) model

taking into account nuclear deformations. It consists of the axially-deformed

harmonic oscillator potential, a term related to the spin-orbit interaction and

of a correction proportional to ~l2 that allows to lower the states with high

angular momenta

VNilsson =
m

2

[
ω⊥(x2 + y2) + ωzz

2
]
− 2κh̄ω00

(
~l · ~s + µ(~l2− < ~l2 >)

)
, (2.1)

where κ, µ are the potential parameters adjusted separately for protons and

neutrons, ω00 is the spherical harmonic oscillator constant h̄ω00=41 A1/3 MeV

that reproduces the nuclear radius.

• The Woods-Saxon potential [36], which represents a more realistic potential

well that is consistent with our knowledge of nuclear density distributions:

VWS(r) = − V0

1 + e(r−R)/a
, (2.2)

where the constant V0 is the depth of the potential well. For a fixed angular

direction, this potential depends on two additional parameters: the radius R

and the surface diffusion a. Together with the spin-orbit term

Vso ∼ 1

r

dVWS(r)

dr
~l · ~s . (2.3)

it meets the requirements of reproducing the shell structure of nuclei.

The above potentials can be used to construct single-particle wave functions

and energies. Yet, the single-particle potential can be as well derived from two-

body interactions by a variational principle which is accomplished in the Hartree-

Fock method. The phenomenological potentials are often used to initiate the self-

consistent process of extracting the average field.

2.2 Variational principle. Hartree-Fock equations

The fundamental assumption of the HF theory is that the nuclear wave function

ΨA is an antisymmetrized product of A independent particle wave functions Φ. The

antisymmetrization operation leads to the normalized Slater determinant form of

this function

ΨA =
1√
A!

∣∣∣∣∣∣∣∣∣∣∣

Φ1(1) Φ2(1) · · · ΦA(1)

Φ1(2) Φ2(2) · · · ΦA(2)
...

Φ1(A) Φ2(A) · · · ΦA(A)

∣∣∣∣∣∣∣∣∣∣∣

. (2.4)

The best possible wave function of this type is found by application of the variational

principle1.

1An alternative understanding of the HF theory is not directly based on the variational method
applied to the Slater determinant but rather on the assumption that the ground-state energy can
be approximated by a functional of the one-body density matrix [37].
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2.2.1 Variational principle

Consider the A-body system described by a Hamiltonian Ĥ and its eigenfunction

|ΨA〉 which obeys the standard Schrödinger equation

Ĥ|ΨA〉 = E|ΨA〉 . (2.5)

The variational principle of Ritz states that the Eq. (2.5) is equivalent to the

variational equation

δE[ΨA] = 0 , (2.6)

with

E =
〈ΨA|Ĥ|ΨA〉
〈ΨA|ΨA〉 . (2.7)

The variational method is especially well suited for the determination of the ground

state of the system. One can show for any trial function |Ψi〉 that

E[Ψi] ≥ E0 , (2.8)

E0 is always lower than the variational solution.

The variational approximation is based on the fact that |Ψi〉 can be usually

restricted to a set of mathematically simple trial wave functions. If the true solution

is not included in this set, the minimal solution is not the eigenfunction but only an

approximation. Thus the quality of the variational approach depends on the choice

of the set of trial wave functions. In order to decide which set is better to describe

the ground state we have two criteria:

(i) if one set of the wave functions is a subset of the other, it is usually better to

chose the larger one as it contains the first’s set minimum;

(ii) out of the two trial wave functions the one for which the corresponding energy

is lower should be better, since the exact E0 is a lower bound.

2.2.2 Hartree-Fock equations

Deriving the Hartree-Fock equations one assumes that there exist an average po-

tential (Hartree-Fock potential) whose eigenfunction corresponding to the lowest

energy is an approximation of the exact ground state. This eigenfunction is a Slater

determinant (2.4) that can be as well expressed as

|ΨA〉 = ΠA
i=1a

†
i |0〉 , (2.9)

where operators a†i correspond to single-particle wave functions Φi of an A-particle

system and |0〉 is the particle vacuum. A Slater determinant is uniquely character-

ized by its hermitian, projective density matrix

ρij = 〈ΨA|a†jai|ΨA〉 . (2.10)
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In the trial class of Slater determinants {Ψi} consisting of A arbitrary but orthogonal

single-particle wave functions, we want to minimize the expectation value of the

many-body Hamiltonian

Ĥ = K̂ + V̂ (2.11)

where K̂ is the kinetic energy operator and V̂ an effective two-body interaction. In

the second quantization formalism it reads

Ĥ =
∑

ij

kija
†
jai +

1

4

∑

ijkl

Ṽijkla
†
ia
†
jalak , (2.12)

where Ṽijkl is the antisymmetrized matrix element of V̂ . The HF energy

EHF = 〈ΨA|Ĥ|ΨA〉 (2.13)

with the use of Wick’s thorem (Appendix C) can be given as a functional of the

single-particle density

EHF[ρ] =
∑

ij

kijρji +
1

2

∑

ijkl

ρkjṼijklρli

= Tr(K̂ρ) +
1

2
TrTr(ρṼ ρ) . (2.14)

The variation of the energy (2.14) leads to the expression (for details see e.g. [38, 39])

δEHF = EHF[ρ + δρ]− EHF[ρ] =
∑

ij

hijδρij , (2.15)

with the hermitian matrix

hij =
∂EHF[ρ]

∂ρij

, (2.16)

connected with the single-particle (Hartree-Fock) Hamiltonian

ĥHF = k̂ + V̂HF . (2.17)

It is seen from Eq. (2.14) that V̂HF = Tr(ρṼ ) is a self-consistent field obtained by

folding the two-body potential with a density distribution. In the canonical basis,

i.e. in the basis where ρ is diagonal, the matrix elements of V̂HF for any single-

particle states i, j are given as

〈i|V̂HF|j〉 =
∑

k

〈ik|V̂ |jk〉 , (2.18)

where the summation runs e.g. over all the occupied states k.

The condition δEHF = 0 is equivalent to

[ĥHF, ρ] = 0 . (2.19)

This is a nonlinear equation since ĤHF depends on the density ρ. It also tells us that

ĥHF and ρ have common eigenstates and can be diagonalized simultaneously. The
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eigenstates of ρ are either the occupied states (eigenvalue 1) or unoccupied states

(eigenvalue 0). We may use the freedom of choice of the canonical basis to define

the HF basis and to diagonalize the Hartree-Fock Hamiltonian. This converts (2.19)

into an eigenvalue problem

ĥHF|Φi〉 = ei|Φi〉 , (2.20)

where ei are called self-consistent single-particle energies.

The way to find the solution of the coupled, nonlinear equations (2.19) is to find

iteratively the self-consistent mean-field. We start by choosing the single-particle

Hamiltonian with a reasonable nuclear potential (e.g. the potential of the shell

model, within this work we use the Woods-Saxon potential to initiate the calcu-

lations). Then, we diagonalize the Hamiltonian to find its eigenvectors. These

eigenvectors allow to determine the density matrix and construct the self-consistent

HF potential corresponding to the effective interaction. Within this new mean-field

a new HF Hamiltonian is obtained and the iterative procedure can be restarted.

The convergence is achieved when the potentials stay constant in two consecutive

steps.

2.3 Numerical aspects

The Hartree-Fock method gives the answer to the question how the single-particle

potential can be extracted out of the sum of two-body interactions. Nonetheless,

another difficulty arises here: the bare nucleon-nucleon interaction is very ill be-

haved from the numerical point of view. A necessary condition for the success of the

HF method is that the two-nucleon interaction has no infinities. Unfortunately, the

interaction between two free nucleons is strongly repulsive at a distance ∼ 0.4 fm.

Thence the calculations of matrix elements of such an interaction are vastly problem-

atic. However, a nucleon within the nucleus does not feel the bare nucleon-nucleon

force but interact with another nucleon in the presence of many other particles. It

then justifies replacing the realistic interaction with the hard core by a well behaved

effective nucleon-nucleon interaction.

An effective interaction can be obtained microscopically by solving the Bethe-

Goldstone equation [40]. Yet, solving it in finite nuclei presents many technical

and formal problems. The way out is introducing the so-called reaction matrix

G (Brueckner G-matrix) [41] which in diagrammatic language represents the sum

over all ladder type of diagrams. This sum is meant to renormalize the repulsive

short-range part of the interaction. With a given effective interaction one may work

out the Hartree-Fock equations and then use the HF orbitals to obtain the effective

interaction by resolving the Bethe-Goldstone equation. Such a doubly self-consistent

procedure is called Brueckner-Hartree-Fock method. An approximative scheme that

has become successful in connection with Brueckner-Hartree-Fock theory is the local

density approximation [42, 43, 44] which relies on the assumption that the G-matrix
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at any place in a nucleus is the same as for the nuclear matter of the same density,

so locally one can determine the G-matrix as in nuclear matter calculations.

Determining microscopically effective interactions is non-trivial as well as getting

with them the agreement with experiment. From the opposite point of view it may

be asked if we can figure out the nuclear interaction from empirical binding energies

and spectra. Consequently, phenomenological effective interactions with a number

of parameters adjusted to reproduce experimental data are widely used. There

exists an enormous quantity of different phenomenological interactions that have

been applied to various aspects in nuclear physics. They are employed in specific

problems on which their range of validity depend very much. A bunch of such

interactions is suitable for the case of Hartree-Fock type of calculations, i.e. Gogny

forces [45] and Skyrme forces described in the next section.

2.3.1 Skyrme interaction

In 1956 Skyrme [46, 47] proposed an effective interaction with a three-body term

V =
∑

i<j

V (i, j) +
∑

i<j<k

V (i, j, k) , (2.21)

V (1, 2, 3) = t3δ(~r1 − ~r2)δ(~r2 − ~r3) . (2.22)

The three-body term, purely local and repulsive, favours parallel spin alignement

which contradicts the observed spin saturation and pairing properties of nuclei.

Therefore, to avoid this difficulty the three-body term was replaced by Vautherin

and Brink [48, 49] with a density-dependent two-body interaction

V (1, 2, 3) −→ V (1, 2) =
1

6
t3(1 + x3P

σ)ργ
00(

~r1 + ~r2

2
)δ(~r1 − ~r2) . (2.23)

Nowadays, the most commonly used form of the Skyrme interaction is the following

VSky(1, 2) = t0(1 + x0P
σ)δ(~r1 − ~r2)

+
1

2
t1(1 + x1P

σ)
[
δ(~r1 − ~r2)k

2 + k′2δ(~r1 − ~r2)
]
+ t2(1 + x2P

σ)k′δ(~r12)k

+ iW0(~σ1 + ~σ2) · k′ × δ(~r1 − ~r2)k

+
1

6
t3(1 + x3P

σ)ργ
00(

~r1 + ~r2

2
)δ(~r1 − ~r2) , (2.24)

where k is the operator of the relative momentum

k =
1

2i
(
→
∇1 −

→
∇2) , (2.25)

k′ acts on the left and P̂ σ = 1
2
(1 + ~σ1 · ~σ2) is the standard spin exchange operator.

The first parameter in (2.24), t0, describes a pure δ-force with a spin exchange, the

next two terms simulate the effective range and non-locality, the fourth term is the

spin-orbit interaction in the form suggested by Skyrme. The parameters t0, t1, t2, t3,
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x0, x1, x2, x3 W0, γ are adjusted to experimental data, usually binding energies and

radii of spherical nuclei and to reproduce properties of symmetric nuclear matter.

There are several sets of parameters called Skyrme I, II, etc. The first two,

dubbed SI and SII, were introduced by Vautherin and Brink [48]. Within SII

parametrization they were able to reproduce the binding energies over the whole

periodic table and at the same time, the nuclear radii. This had not been pos-

sible with the usual density independent forces. Next parametrizations, SIII-SVI

were found by Beiner et al. [50] by fitting the masses and charge radii of spherical

nuclei. All these forces yielded similar results, however the one called SIII real-

ized a reasonable compromise between the deeply-bound levels and those around

the Fermi surface. The capability of reproducing overall level spectra in a satisfac-

tory agreement with experiment and at the same time total binding energies and

charge radii with a good accuracy, makes this force the most popular among SI-SVI

parametrizations.

In addition to the ’classical’ parametrizations SI-SVI, there exist a variety of

others: the SkM of Krivine [51] fitted to reproduce well the mulitipole moments and

charge radii, which gives however too low fission barriers, the improved version of

SkM, called SkM* [52], modified to give a correct fission barrier of 240Pu, the T6 of

Tondeur et al. [53] which takes into account the width of the neutron skin in 208Pb

and assumes that the effective nucleon mass is equal to the mass of a free particle.

A very special case was the SkP force [54] which was the first attempt to reproduce

as well the data in the particle-particle channel. It is worth noting here the group

of parametrizations introduced by Chabanat et al [55], with the most widely used

SLy4 force, which is said to be suitable to reproduce well spectroscopic properties

of nuclei far from the β-stability line.

In Table 2.1 we list the widely used parametrizations of the Skyrme force, be-

ginning with the SIII one applied in this work.

Due to its zero-range force form that simplifies significantly all the calculations

and its capacity to reproduce the masses and radii over the entire periodic table

within a reasonable set of parameters, the Skyrme-force remains extensively used in

Hartree-Fock calculations. However, despite the success of different Skyrme forces,

it has been argued that the zero-range force might not be able to simulate the long

range or even the intermediate range parts of the realistic effective interaction and,

regardless of several encouraging attempts, fails to reproduce properly the pairing

correlations in nuclei.

2.3.2 Skyrme energy functional

The total energy of a nucleus is given as a sum of kinetic energy, potential energy

and Coulomb energy. Because of the zero-range of the Skyrme force (2.24) it is

possible to express the energy by an integral over the energy density [48]

E = 〈Ψi|Ĥ|Ψi〉 =
∫

drHtot(r) , (2.26)
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Table 2.1: Common parametrizations of the phenomenological Skyrme effective

force.

t0 t1 t2 t3 W0

(MeVfm3) (MeVfm5) (MeVfm5) (MeVfm3+3γ) (MeVfm5)

SIII -1128.75 395.00 -95.00 14000.0 120.0

SkM* -2645.00 410.00 -135.00 15595.0 130.0

SLy4 -2488.91 486.82 -546.39 13777.0 123.0

x0 x1 x2 x3 γ

SIII 0.450 0.0 0.0 1.0 1

SkM* 0.090 0.0 0.0 0.0 1
6

SLy4 0.834 -0.344 -1.0 1.354 1
6

where the total energy functional Htot(r) is the sum of Skyrme functional, kinetic

and Coulomb energies:

Htot(r) = HSky(r) +Hkin(r) +HCoul(r) . (2.27)

For the Slater determinant even due to the time-reversal symmetry (which is the

case of the calculations performed in this work) HSky(r) can be decomposed as

HSky(r) = Hvol(r) +Hsurf(r) +Hso(r) . (2.28)

The Htot(r) is an algebraic function of three quantities:

(i) the nucleon density

ρ(r) =
∑

i,σ

|Φi(r, σ)|2 (2.29)

(ii) the kinetic energy density

k(r) =
∑

i,σ

|~∇Φi(r, σ)|2 (2.30)

(iii) the so-called spin-orbit currents

~J(r) = (−i)
∑

i,σσ′
|Φ?

i (r, σ)|
[
~∇Φi(r, σ′)× 〈σ|~σ|σ′〉

]
. (2.31)

The summations are taken over all occupied single-particle states.

Within these definitions the terms appearing in Eq. (2.27) can be expressed in

forms

Hkin(r) =
h̄2

2m
k2 , (2.32)
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Hvol(r) =
1

2
t0(1 +

1

2
x0)ρ

2 − 1

2
t0(

1

2
+ x0)

∑
τ

ρ2
τ

+
1

12
t3(1 +

1

2
x3)ρ

γ+2 − 1

12
t3(

1

2
+ x3)ρ

γ
∑
τ

ρ2
τ

+
1

4

[
t1(1 +

1

2
x1) + t2(1 +

1

2
x2)

]
ρk

− 1

4

[
t1(

1

2
+ x1)− t2(

1

2
+ x2)

] ∑
τ

ρτkτ , (2.33)

Hsurf(r) = − 1

16

[
3t1(1 +

1

2
x1)− t2(1 +

1

2
x2)

]
ρ~∇2ρ

+
1

16

[
3t1(

1

2
+ x1) + t2(

1

2
+ x2)

] ∑
τ

ρτ
~∇2ρτ , (2.34)

Hso(r) = −1

2
W0

(
ρ~∇ ~J +

∑
τ

ρτ
~∇ ~J

)
. (2.35)

The total densities are defined as ρ = ρn+ρp, k = kn+kp (kinetic energy density)

and ~J = ~Jn + ~Jp (spin densities), where n, p corresponds to neutrons and protons,

respectively.

The Coulomb energy functional consists of two terms, the direct term generated

by the proton density ρp and the exchange term treated in the Slater approximation

[56, 57]:

HCoul(r) =
1

2
ρτVCoul − 3e2

4

(
3

π

)1/3

ρ4/3
p , (2.36)

where e is the electron charge and the Coulomb potential is given by

VCoul(r) = e2
∫

dr
ρp(r

′)
|r − r′| . (2.37)

The long-range character of the Coulomb interaction makes the exchange contri-

bution to be only a small fraction of the total Coulomb energy therefore the local

approximation for the exchange term, which assures the simplicity of the Skyrme -

HF equations, is well satisfied. A comparison with exact calculations shows that the

Slater approximation underestimates the Coulomb exchange part by less than 10%

[58].

The Hartree-Fock equations for the Skyrme force are obtained by variation of

the energy (2.26).

2.3.3 Constrained Hartree-Fock calculations

Unrestricted HF calculations give only one point on the energy surface, namely

the local minima. Nevertheless, usually one searches for an energy surface as a

function of one or more collective parameters q, i.e. quadrupole and hexadecapole
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deformations. In these cases we are interested in a wave function |Ψi(q)〉 which

minimizes the energy under the constraint that a certain operator has a fixed average

value

q = 〈Ψi|Q̂|Ψi〉 = 〈Q̂〉. (2.38)

The method for solving this problem is adding an extra term to the Hamiltonian

〈Ψi|Ĥ ′|Ψi〉 = 〈Ψi|Ĥ|Ψi〉+ f(µ, 〈Q̂〉) , (2.39)

where f is a function of µ and 〈Q̂〉, and minimizing 〈Ψi|Ĥ ′|Ψi〉 instead of 〈Ψi|Ĥ|Ψi〉.
In addition to the unconstrained calculations (f = 0) one usually considers linear

f(µ, 〈Q̂〉) = −µ〈Q̂〉 (2.40)

and quadratic

f(µ, 〈Q̂〉) = −C

2
(〈Q̂〉 − µ)2 (2.41)

forms of constraints.

In the calculations presented in this work the mean value of the mass quadrupole

moment

〈Ψi|Q̂20|Ψi〉 = 〈Ψi|2r2P2(cosθ)|Ψi〉 (2.42)

is considered under constraint. To obtain the required value of the quadrupole

moment the quadratic type of constraint (2.41) is applied.
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Experimental signatures of

proton-neutron pairing

The strongest evidence of proton-neutron pairing comes so far from measured bind-

ing energies– the proton-rich N ∼ Z nuclei are much more bound than their neigh-

bours. In phenomenological models of macroscopic-microscopic type [59, 60, 61,

62, 63] as well as in microscopic approaches [64, 65] this additional binding energy

needs to be taken into account in the form of the so-called Wigner (or congruence)

energy added to the mass formula. Both empirical facts and shell model calculations

suggest that the Wigner term can be traced back to the isoscalar part of the nuclear

interaction, however it is unclear to what extent it is due to the pairing interaction.

The shell model calculations of Ref. [66] have shown that the Wigner term can not

be solely explained in terms of correlations between deuteron-like pairs, although

their contribution is dominant, and that the mechanism responsible for the extra

binding of self-conjugate nuclei is more complex. Interestingly, other shell model cal-

culations done in the same mass region A ∼ 50 [67] led the authors to the conclusion

that the Wigner term can not be at all explained as a pairing effect. Nevertheless,

due to the division into particle-hole and particle-particle channel inherent only to

mean-field models, some of the shell model definitions of pairing may be not appro-

priate from the point of view of mean-field calculations [29]. Indeed, the calculations

within HFB and BCS frameworks with pn pairs done in Refs. [29, 68] succeded in

reproducing the spike in the isobaric mass parabola for Z = 24, 38 isotopic chains.

In the forthcoming sections we will discuss shortly the methods of extracting the

informations on the Wigner energy from experimental data [66, 69, 70].

Other facts suggesting the presence of the proton-neutron pairing and the meth-

ods proposed to detect the pn pairing experimentally are the following. First, con-

sider the ground states of N = Z odd-odd nuclei. For A < 40 these isotopes have

a T = 0 ground state that may suggest that the last proton and neutron couple to

T = 0 rather than to T = 1, indicating the nuclear interaction is stronger in the

T = 0 channel1. Most notably, the deuteron is bound with T = 0 while dineutron

1Hereafter we use italic face T to indicate the isospin channels of the two-body interactions. The

27
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(diproton) is not bound. For A = 42 − 54 the odd-odd N = Z nuclei have T = 1

(except 58Cu). However, it was also argued [25, 26] that the intriguing switch from

T = 0 to T = 1 ground states in odd-odd N = Z nuclei arises from a competition

between symmetry energy and full isovector pairing correlations, without any need

for the isoscalar pairing. There is unfortunately little experimental data concerning

heavier nuclei (A = 58− 98) to be compared with theoretical predictions [71].

It seems that proton-neutron pair transfer reactions could be a proof of the exis-

tence of pn pairing correlations: the value of the pair transfer amplitude 〈A + 2|a†τa†τ ′|A〉
depends upon whether the two nucleons form a Cooper pair or not; therefore a

proton-neutron transfer amplitude 〈A + 2|a†pa†n|A〉 should measure wether or not

proton and neutron form a correlated pair and prove pn pairing. At present such

data are unavailable.

Let us further consider the Coriolis anti-pairing effect. It is well known that

in rotating nuclei pp̄ and nn̄ pairs are destroyed since the Coriolis force has an

opposite effect of each nucleon in the pair. However, for a pn pair the spins of both

nucleons may be parallel and rotation alignes both spins along the rotation axis

without breaking such a pair and loosing pairing energy. This permits a situation

in which the ground state band with T = 1 pairing is crossed by a T = 0 band

at some crossing frequency. Such a scenario was proposed for the 74Rb nucleus

and it seems to explain well the experimental evidence [72]. The significance of

the so-called delayed alignements in N = Z nuclei are at present investigated both

experimentally [73, 74] and theoretically [75, 76, 77].

Another signature of the pn pairing was addressed in Ref. [78], namely the

anomalous behaviour of the second moment of inertia in the superdeformed band

of 60Zn as compared to its neighbours. This behaviour cannot be explained in a

consistent way within standard approaches with T = 1 pairing only. The authors of

[78] have shown that a correct qualitative reproduction of experimental data can be

reached when a T = 0 neutron-proton configurations mixing of signature-separated

bands is considered.

The proton-neutron pairing is also believed to affect the structure of low-lying

collective states [79, 80], e.g. the low energy of the second 0+ state of 98Mo and its

prolate shape are difficult to reproduce by means of existing collective models. An

explanation was proposed in Ref. [79] assuming that some features of the collective

excitations may be due to the proton-neutron interaction responsible for creation of

deuteron-like clusters. The inclusion of the pn pairing within the Interacting Boson

Model (IBM-4) improves considerably the agreement of observed and calculated

energies and suggest that the competition between isoscalar and isovector modes of

pairing vibrations could play a non negligible role in the description of the collective

excitations in different regions of nuclei.

Furthermore, the pn pairing is expected to play a significant role in β [81] and

double β decay [82, 83, 84, 85], α decay and α correlations and in properties of

roman face symbol T would refer to the total nuclear isospin.
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low-density nuclear matter.

3.1 Wigner energy

As already said, a sharp increase in the binding energy of N = Z nuclei is observed.

In the semi-empirical mass formulae this additional term related to the pn pairing

is usually parametrized as

Bpn = epn(A)πpn − EW , (3.1)

where

πpn =
1

4
(1− (−1)N)(1− (−1)Z). (3.2)

It is seen that the first contribution to the pn-pairing energy (3.1) is equal to zero for

even N, Z, therefore it represents an additional binding due to the residual interac-

tion between the two odd nucleons in an odd-odd nucleus. The second contribution

to (3.1) dubbed Wigner energy consists in two parts:

EW = W (A)|N − Z|+ d(A)πpnδNZ , (3.3)

where the d-term is a correction for odd-odd nuclei. The |N − Z| dependence in

Eq. (3.3) was first introduced by Wigner [86] in his analysis of SU(4) spin-isospin

symmetry of nuclear forces and then commonly used in literature as it accounts

properly for the behaviour of nuclear masses when an isobaric chain crosses the

N = Z line.

In Ref. [66] the Wigner energy coefficient W was defined in terms of binding

energies (B) of various combinations of nuclei in the quantity δV (N, Z), where

δV (N,Z) =
1

4
[B(N, Z)−B(N − 2, Z)

− B(N,Z − 2) + B(N − 2, Z − 2)] ∼ ∂2B

∂N∂Z
. (3.4)

For an even-even nucleus (N = Z = A/2) the Wigner energy strength is given by

W (A) = δV (
A

2
,
A

2
)

− 1

2

[
δV (

A

2
,
A

2
− 2) + δV (

A

2
+ 2,

A

2
)
]

(3.5)

while for odd-odd nuclei (N = Z = A/2) one has

W (A) = δV (
A

2
− 1,

A

2
− 1)

+
1

2

[
δV (

A

2
+ 1,

A

2
+ 1) + δV (

A

2
+ 1,

A

2
− 1)

]
. (3.6)
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Figure 3.1: Experimental values of W (A) (filled circles) and d(A) (crosses) of N = Z

nuclei extracted from nuclear binding energies according to Eqs. (3.5-3.7). The

experimental masses were taken from Ref. [88].

It is seen W (A) for odd-odd nuclei involves only the binding energies B of even-even

systems. The term d(A) for odd-odd nuclei is given as

d(A) = δV (
A

2
,
A

2
− 2)

+
1

2

[
δV (

A

2
+ 2,

A

2
)− 4δV (

A

2
+ 1,

A

2
− 1)

]
. (3.7)

The experimental values of W (A) and d(A) are shown in Fig.3.1. The values of W (A)

decrease smoothly with increasing mass number following roughly the dependence

47/A, showing oscillations around the closed shells. The values of d(A) are more

irregular. The estimates of Ref. [87] suggest a constant value of the ratio d/W equal

to one.

3.2 Empirical pairing gaps

In order to extract empirical information on the magnitude of pairing correlations

one usually implies mass indicators assuming the nuclear mass (binding energy) may

be decomposed into a part M(Z,N) which varies smoothly as a function of N and

Z and a fluctuating term. To determine the experimental values of pairing gaps

we use the discrete Taylor expansion of the mass in the vicinity of the mass of our

interest.

Let us define a smooth variation of the mass surface M(Z, N) formed by a set of

even-even nuclei. In the case of even-even nuclei this value is equal to the measured
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mass M(Z, N). The mass of a nucleus with an odd number of nucleons is obtained

by adding a pairing gap D(Z,N). We have [89]

M(Z,N)even−even = M(Z, N) ,

M(Z, N)odd−proton = M(Z, N) + ∆p ,

M(Z, N)odd−neutron = M(Z, N) + ∆n ,

M(Z, N)odd−odd = M(Z, N) + ∆p + ∆n −∆pn , (3.8)

where ∆p is the proton gap, ∆n the neutron gap and ∆pn is the attractive residual

proton-neutron interaction energy. We represent the mass surface in the vicinity

of the mass of interest by the Taylor expansion of M(Z,N) as a function of the

nucleon number. Performing the Taylor expansion as a function of two variables N

and Z we obtain

M(Z,N) = M(Z0, N0) +

[
(Z − Z0)

∂M
∂Z

(Z0, N0) + (N −N0)
∂M
∂N

(Z0, N0)

]

+
1

2!

[
(Z − Z0)

2∂2M
∂Z2

(Z0, N0) + 2(Z − Z0)(N −N0)
∂2M
∂Z∂N

(Z0, N0)

+ (N −N0)
2∂2M
∂N2

(Z0, N0)

]

+
1

3!

[
(Z − Z0)

3∂3M
∂Z3

(Z0, N0) + (N −N0)
3∂3M
∂N3

(Z0, N0)

+ 3(Z − Z0)
2(N −N0)

∂3M
∂2Z∂N

(Z0, N0)

+ 3(Z − Z0)(N −N0)
2 ∂3M
∂Z∂2N

(Z0, N0)

]

+ · · · + D(Z, N) . (3.9)

Taking into account the terms up to the second derivative we obtain the 3-point

formula for the pairing gap. For an even-even nucleus one has:

for neutrons

∆(3)
n =

1

2
[M(Z, N + 1)− 2M(Z, N) + M(Z,N − 1)] (3.10)

and for protons

∆(3)
p =

1

2
[M(Z + 1, N)− 2M(Z,N) + M(Z − 1, N)] . (3.11)

The same way we may calculate the proton-neutron pairing gap

∆(3)
pn =

1

4
[M(N + 1, Z + 1)−M(N − 1, Z + 1)

− M(N + 1, Z − 1) + M(N − 1, Z − 1)] . (3.12)
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Table 3.1: 3 and 5-point pairing indicators (Eqs. 3.10–3.15) determined from exper-

imental masses for N ∼ Z Ge (Z = 32) isotopes.

Mass number ∆(3)
n ∆(3)

p ∆(3)
pn ∆(5)

n ∆(5)
p ∆(5)

pn

62 1.33 1.12 0.63 2.82 1.64 0.49

64 1.48 1.14 1.39 2.14 1.80 1.50

66 1.60 1.21 0.48 1.86 1.58 0.81

68 1.65 1.24 0.52 1.88 1.61 0.63

The 5-point formula for the pairing gap takes into account also the terms of the third

order. The expressions for neutron, proton and proton-neutron pairing indicators

this time are the following

∆(5)
n =

1

8
[M(Z,N + 2)− 4M(Z, N + 1) + 6M(Z,N)

− 4M(Z, N − 1) + M(Z,N − 2)] , (3.13)

∆(5)
p =

1

8
[M(Z + 2, N)− 4M(Z + 1, N) + 6M(Z,N)

− 4M(Z − 1, N) + M(Z − 2, N)] , (3.14)

∆(5)
pn =

1

4
{2[M(Z,N + 1) + M(Z,N − 1) + M(Z − 1, N)

+ M(Z + 1, N)− 4M(Z, N)]− [M(Z + 1, N + 1)

+ M(Z − 1, N + 1) + M(Z + 1, N − 1) + M(Z − 1, N − 1)]} . (3.15)

The values of pairing gaps extracted from masses for Ge isotopes of interest in

this work are listed in Tab. 3.1. The experimental mass values were taken from

Atomic Mass Evaluation (AME2003) of Audi and Wapstra [88].

We have followed the argumentation of Refs. [90, 91] to determine the 3-point

gap of an even-even nucleus: the proper measure of pairing correlations of an even

system with n nucleons is the average value of the pairing indicators evaluated for

its odd neighbours:

∆(3)
τ (n = even) =

1

2
(∆(3)

τ (n + 1) + ∆(3)
τ (n− 1)) . (3.16)

In cases where the experimental data was not sufficient to calculate the average value

of two pairing gaps, we have adopted the gap of one odd neighbour to be the 3-point

gap of the even nucleus. In addition to empirical values extracted from masses, in

Table 3.2 we give the values of two average models for pairing gaps: the traditional
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Table 3.2: Average pairing gaps (see Eq.(3.17)) for N ∼ Z Ge (Z = 32) isotopes.

Traditional model Vogel et al.

Mass number ∆̄n,p ∆̄pn ∆̄n,p ∆̄pn

62 1.52 0.32 1.80 0.50

64 1.50 0.31 1.80 0.48

66 1.47 0.30 1.77 0.47

68 1.45 0.29 1.72 0.45

model [92] and the model developed by Vogel et al. [93]. The parametrizations of

pairing gaps in these two models are specified as:

∆̄τ = 12MeV/
√

A , ∆̄pn = 20MeV/A (traditional model)

∆̄τ =
(
7.2− 44(

N − Z

A
)2

)
MeV/A1/3 , ∆̄pn = 31MeV/A (Vogel et al.)

(3.17)

It is seen that the traditional model values are closer to those of 3-point gaps

while the model of Vogel reproduces better 5-point gaps. It should be noticed that

in any of the models the values of proton-neutron gaps are not negligible thus the

proton-neutron interaction is expected to play a significant role in the construction of

the quasiparticle field in these nuclei. On the other hand, one should bear in mind

that since pair-correlation indicators are given by finite differences, the physical

interpretation of exctracted quantities is disturbed near the N = Z line. Another

remark, concerning as well the values derived in Sec. 3.1, is that with the present

set of experimental mass data near the N = Z line the uncertainties for extracted

quantities may be consequential.
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Chapter 4

Proton-neutron pairing in

BCS-type approaches

The initial theory of nucleon pair correlations included Cooper pairs which contain

two protons or two neutrons [1, 2]. In this theory, known as the BCS approximation,

quasiparticle operators are defined by a 2 × 2 unitary transformation of particle

operators. In N ∼ Z nuclei, valence neutrons and protons fill similar shell model

orbitals and interact through the stronger T = 0 force as well as the T = 1 force.

One may therefore expect the appearance of a static pn pair condensate, especially

in heavier N ∼ Z nuclei where the large valence space allows for creation of many pn

pairs. In the early 1960’s it was recognized that the pairing theory was incomplete

and that for N ∼ Z nuclei it should be generalized to include as well proton-neutron

Cooper pairs [4]. In the forthcoming years (1964-1972) this generalization was done

in several steps. First, Goswami and others [5, 6, 8] have generalized a special

quasiparticle transformation to include pp̄, nn̄ and pn̄ pairs, where the bar indicates

that the second particle occupies a time-reversed orbital. In these pioneering articles

the two particles were coupled to T = 1 isospin. Then a BCS theory for pn̄ pairs

coupled to T = 0 was presented in Ref. [7]. A synthesized formalism to deal with

T = 1 and T = 0 Cooper pairs of the pp̄, nn̄ and pn̄ type was developed in Refs.

[9, 10]. In such a theory quasiparticles are defined by a 4×4 unitary transformation

of particle operators.

Since neutrons and protons are not hindered by the Pauli exclusion principle to

occupy the same spatial orbitals, they can form correlated pairs of the pn type. A

completely isospin generalized BCS theory which includes pn (and p̄n̄) pairs, as well

as pp̄, nn̄ and pn̄ Cooper pairs was derived by Goodman in Ref. [11]. This time the

quasiparticles are given by 8× 8 unitary transformation of particle operators.

The starting point of our considerations are the eigenstates of an axially-deformed

Hamiltonian (see Appendix A). The basis consists in two groups of states with re-

spect to the time-reversal symmetry. Since the pn̄ mode tends to restore axial

symmetry while the pn mode introduces nonaxial deformations [94], we restrict our-

35
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selves here to include the nucleonic pairs in time-reversed orbits which we will refer

to as pp, nn and pn pairing.

4.1 Pairing Hamiltonian

In the following we propose a generalized pairing Hamiltonian which contains all

possible kinds of pairs of nucleons moving in time-reversed orbitals interacting via

a two-body force represented by its antisymmetrized matrix elements gT
kl,ττ ′ :

Ĥpair = − ∑
k,l

gT=1
kl,ppPT=1†

kpp PT=1
lpp

− ∑

k,l

gT=1
kl,nnPT=1†

knn PT=1
lnn

− ∑

k,l

gT=1
kl,pnPT=1†

kpn PT=1
lpn

− ∑

k,l

gT=0
kl,pnPT=0†

kpn PT=0
lpn , (4.1)

where the operators PT=1† and PT=0† accounting for different isospin pairs of par-

ticles read

PT=1†
kpp = a†kpa

†
k̄p

, (4.2)

PT=1†
knn = a†kna

†
k̄n

, (4.3)

PT=1†
kpn =

1√
2

(
a†kpa

†
k̄n

+ a†kna
†
k̄p

)
, (4.4)

PT=0†
kpn =

1√
2

(
a†kpa

†
k̄n
− a†kna†

k̄p

)
, (4.5)

and where a†kτ is either a particle creation operator of a neutron (τ = 1 or n) or of

a proton (τ = −1 or p).

The antisymmetrized matrix elements gkl,ττ ′ are given by

gT
kl,ττ ′ = 〈kτ, k̄τ ′|v̂T

pair| ˜lτ, l̄τ ′〉 . (4.6)

Here k̄ is the time-reversal partner of the state k. The choice of the pairing force is

rather arbitrary but may influence further results. The simplest way to treat pairing

correlations is to assume a constant value of matrix elements (4.6)

G = 〈īi|v̂T
pair|jj̄〉 = const , (4.7)

where G is the overall strength of the interaction. This approach is known as

monopole pairing or seniority pairing and has been applied in different calculations
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for many years. It should be pointed out that the majority of calculations with the

pn pairing in HFB-type approaches were done using these schematic pairing forces

with constant matrix elements (see e.g. [11, 28, 29]).

More realistic pairing interactions are those with state-dependent matrix ele-

ments: Gogny and δ forces. The Gogny force was originally introduced within the

conventional Hartree-Fock-Bogoliubov method as it is suitable to reproduce data in

both, particle-particle and particle-hole channels [95]. This is so because the Gogny

force has been chosen of finite range in the singlet even channel which describes

like-particle pairings [96].

The δ force has been used to simulate pairing interaction in different nuclear

calculations for over fourty years. Green and Moszkowski [97] have used a δ force to

describe the pairing correlations understood as a surface phenomenon in the surface

delta interaction (SDI). A modification of this interaction that contained a density

dependence was first proposed by Chasman in Ref. [98]. However, the most popular

is a simple, density independent δ interaction. One of the first calculations with

such a volume δ force was done in Refs. [99, 100, 101, 102].

Contrary to the finite range of the Gogny force the δ is the zero-range force.

The zero-range nature of pairing interaction tends to overestimate the coupling to

continuum states. This defect does not occur in the case of finite range forces but

can be easily cured by introducing an energy cut-off which plays the role of an addi-

tional parameter (similarly, a cut-off is necessary when using the monopole pairing

interaction). Any change of the dimension of the single-particle space requires a

readjustment of the pairing strength, thus the definition of the pairing interaction

is complete for the cut-off and pairing strength given together.

These seemingly different types of pairing interactions should in fact produce

similar results– the coherence length (the size of a Cooper pair) is of the order of

the size of a nucleus, thence its structure should not be sensitive to the details of the

interaction in the particle-particle channel [103]. In Ref. [104] we have shown that at

least in proton-proton and neutron-neutron channels both Gogny and δ forces after

a proper renormalization lead to the pairing matrix elements of similar magnitudes.

Since the Gogny force is more difficult to handle numerically we choose the

volume δ force to evaluate the matrix elements of the pairing interaction in pp, nn

and pn channels. Nevertheless, due to the fact that such an interaction is active

only in L = 0 channel, the space-spin-isospin possibilities are limited: since the two-

particle function needs to be antisymmetric we have only L = 0, S = 0 in the T = 1

channel and L = 0, S = 1 for the T = 0 channel. The latter component becomes

strongly quenched due to the destructive influence of the spin-orbit interaction when

entering pf nuclei [67]. A relatively simple way to enrich the δ interaction to have

all spin-isospin channels like in the case of the Gogny force, is to add a Skyrme,

t2-like component (cf. Eq. (2.24)) to the δ force. The extended, Skyrme-like form

of the pairing interaction is given as

V̂pair = V̂δ + V̂k′δk
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=
∑

T

V T
0τ [δ(~r12) + xk′δ(~r12)k]ΠSΠT , (4.8)

where

k′δ(~r12)k =
−1

2i
(
←
∇1 −

←
∇2)δ(~r1 − ~r2)

1

2i
(
→
∇1 −

→
∇2), (4.9)

V T
0τ , x determine the strength of the interaction and ΠS, ΠT are the operators pro-

jecting onto spin-isospin subspaces:

Π̂S =
1

2
(1− (−1)SP σ) , (4.10)

Π̂T =
1

2
(1− (−1)T P τ ) , (4.11)

where P σ = 1/2(1 + ~σ1 · ~σ2), P τ = 1/2(1 + ~τ1 · ~τ2) are the standard spin and isospin

exchange operators. The second term of (4.8) is antisymmetric in its spatial part

(L = 1), therefore active in S = 1, T = 1 and S = 0, T = 0 channels. However,

it is not clear what the ratio of L = 0/L = 1 components in the particle-particle

channel should be thus the x parameter needs to be fitted by comparison to available

data. The integral formulae for pairing matrix elements of the interaction (4.8)

derived in the axially symmetric harmonic oscillator basis are given in Appendix

B.3. It should be added that the matrix elements can be as well evaluated using the

properties of the asymptotic basis, as was proposed in Ref. [105]. Such a calculation

is highly time-consuming as compared to the integral method but may serve as a

test, therefore in Appendix B.2 we remind the formulae necessary to calculate the

two-body matrix elements of the interaction (4.8) in the asymptotic basis.

Examples of the matrix elements of the interaction (4.8) and a discussion of the

results obtained with such an extended interaction are given in Sec. 4.4.2.

4.2 Generalized BCS theory

4.2.1 Quasiparticle transformation

The conventional BCS theory which omits the proton-neutron interaction defines

the quasiparticle operators α† by a two-dimensional transformation of the particle

operators a†

(
α†k
αk̄

)
=

(
uk −vk

vk uk

) (
a†k
ak̄

)
, (4.12)

where k is a single-particle (HF) orbital. The isospin generalized BCS theory replaces

Eq. (4.12) with the eight-dimensional transformation

(
α†(k)

α(k)

)
=

(
U(k) −V (k)

−V ?(k) U?(k)

) (
a†(k)

a(k)

)
, (4.13)
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where α†(k) and a†(k) are the four-component vectors

α†(k) =




α†k1

α†k2

α†
k̄1

α†
k̄2




, a†(k) =




a†kp

a†kn

a†
k̄p

a†
k̄n




, (4.14)

U(k) and V (k) are four-dimensional complex matrices. Since we consider here only

the kk̄ pairing, the transformation (4.13) splits into two 4× 4 transformations, the

following one [28]



α†k1

α†k2

αk̄1

αk̄2




=




uk1p u?
k1n vk1p v?

k1n

u?
k2p uk2n v?

k2p vk2n

−vk1p −v?
k1n uk1p u?

k1n

−v?
k2p −vk2n u?

k2p uk2n







a†kp

a†kn

ak̄p

ak̄n




(4.15)

and its Hermite conjugate. The matrices V (k), U(k) of Eq.(4.13) have now the form

V (k) =




0 0 −vk1p −v?
k1n

0 0 −v?
k2p −vk2n

vk1p vk1n 0 0

vk2p vk2n 0 0




, (4.16)

U(k) =




uk1p u?
k1n 0 0

u?
k2p uk2n 0 0

0 0 uk1p uk1n

0 0 uk2p uk2n




. (4.17)

The occupation amplitudes uk1p, uk2n, vk1p and vk2n are real numbers while uk1n,

uk2p, vk1n and vk2p are complex.

The Bogoliubov transformation needs to be unitary and preserve the Fermi an-

ticommutation relations

{αkq, α
†
lq′} = δklδqq′ , {αkq, αlq′} = {α†kq, α

†
lq′} = 0, q, q′ = 1, 2 (4.18)

what requires the standard normalization conditions for u and v amplitudes
∑

τ=p,n

(
|ukqτ |2 + |vkqτ |2

)
= 1 . (4.19)

In the limit where there is no proton-neutron pairing uk1n = uk2p = vk1n = vk2p = 0

and the isospin generalized transformation (4.15) reduces to two conventional 2× 2

BCS transformations (4.12), first for protons (uk1p ≡ ukp, vk1p ≡ vkp) and the second

one for neutrons (uk2n ≡ ukn, vk2n ≡ vkn).

To obtain the BCS equations it is also indispensable to know the inverse trans-

formation of (4.15) which reads



a†kp

a†kn

ak̄p

ak̄n




=




uk1p uk2p −vk1p −vk2p

uk1n uk2n −vk1n −vk2n

vk1p vk2p uk1p uk2p

vk1n vk2n uk1n uk2n







α†k1

α†k2

αk̄1

αk̄2




. (4.20)



40 CHAPTER 4. PN PAIRING IN BCS-TYPE APPROACHES

Let us define the density matrix and the pairing tensor given by their matrix

elements as

ρkl = 〈a†l ak〉 , (4.21)

κkl = 〈alak〉 . (4.22)

In matrix notation one has

ρ = V †V , (4.23)

κ = V †U . (4.24)

The structures of (4.23) and (4.24) are found by substituting Eqs. (4.16) and (4.17)

into Eqs. (4.21) and (4.22):

ρ =




ρpp
kk ρpn

kk 0 0

ρpn?
kk ρnn

kk 0 0

0 0 ρpp
kk ρpn?

kk

0 0 ρpn
kk ρnn

kk




, (4.25)

κ =




0 0 κpp
kk̄

κpn
kk̄

0 0 κnp
kk̄

κnn
kk̄

−κpp?
kk̄

−κpn?
kk̄

0 0

−κnp?
kk̄

−κnn?
kk̄ 0 0




, (4.26)

with the components listed below

ρpp
kk = v2

k1p + |vk2p|2 , (4.27)

ρnn
kk = |vk1n|2 + v2

k2n , (4.28)

ρpn
kk = vk1pvk1n + vk2pv

?
k2n , (4.29)

κnn
kk̄ = v?

k1nuk1n + vk2nuk2n , (4.30)

κpp
kk̄

= vk1puk1p + v?
k2puk2p , (4.31)

κpn
kk̄

= vk1puk1n + v?
k2puk2n , (4.32)

κnp
kk̄

= v?
k1nuk1p + vk2nuk2p . (4.33)

Due to the conservation of the time-reversal symmetry (see Sec. 4.2.4) the ρ density

does not connect the states k with k̄ while the pairing tensor has non-zero elements

only between k and k̄ states.

The ρnn
kk , ρpp

kk, κnn
kk̄ and κpp

kk̄
tensors are real while in the complex proton-neutron

part the consequent relations are fulfilled

ρpn
kk = ρnp?

kk , (4.34)

κpn
kk̄

= κnp?
kk̄

. (4.35)
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4.2.2 Quasiparticle vacuum

Consider any Bogoliubov transformation of the form (cf. Appendix C.2)

α†i =
∑

k

(
Akia

†
k + Bkiak

)
,

αi =
∑

k

(
A?

kiak + B?
kia

†
k

)
. (4.36)

The Thouless theorem [39] states that any product wave function which is not

orthogonal to the vacuum |0〉 may be expressed in the form

|Φ〉 = N exp

(
−1

2

∑
µν

Z†
µνa

†
µa
†
ν

)
|0〉 , (4.37)

where the normalization factor N = det1/2A† and Z = BA−1. With the use of the

Thouless theorem we may now construct the quasiparticle vacuum for the transfor-

mation (4.13). We have

Z = BA−1 = −Ṽ (Ũ)−1 , (4.38)

where tilde means a transposed matrix. Using the antisymmetry properties of the

Z matrix after strigthforward calculation we obtain from Eq. (4.37)

|vacuum〉 =
∏

k

[uk1puk2n − uk2puk1n

+ (vk1puk2n − v?
k2puk1n)a†kpa

†
k̄p

+ (vk2nuk1p − v?
k1nuk2p)a

†
kna

†
k̄n

+ (v?
k2puk1p − vk1puk2p)a

†
kpa

†
k̄n

+ (v?
k1nuk2n − vk2nuk1n)a†

k̄p
a†kn

+ (vk1pvk2n − v?
k1nv?

k2p)a
†
kpa

†
kna

†
k̄p

a†
k̄n

]|0〉 . (4.39)

In the case of the usual BCS theory which omits the proton-neutron coupling we

have uk1n = uk2p = vk1n = vk2p = 0 and the vacuum state (4.39) reduces to the well

known form of the BCS wave function

|vacuum〉 =
∏

k

[ukp + vkpa
†
kpa

†
k̄p

]× [ukn + vkna
†
kna

†
k̄n

]|0〉 . (4.40)

4.2.3 Isospin generalized gap equations

Having defined the quasiparticle transformation Eq. (4.15) one can decompose the

Hamiltonian of the system

Ĥ = Ĥn
sp + Ĥp

sp + Ĥpair (4.41)

with Ĥpair given by Eq. (4.1) in terms of quasiparticle operators

Ĥ = Ĥ00 + Ĥ11 + Ĥ20 + Ĥ02 + Ĥ22 + Ĥ31 + Ĥ13 + Ĥ40 + Ĥ04 , (4.42)
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where the indices denote the numbers of creation and annihilation quasiparticle

operators, e.g.,

Ĥ22 =
∑

ab;cd

Hab;cdα
†
aα

†
bαcαd , (4.43)

and Hab;cd are expansion coefficients. The terms Ĥ22, Ĥ31,Ĥ13,Ĥ40 and Ĥ04 which

describe the residual interaction between quasiparticles are neglected in this formal-

ism. The standard BCS condition

Ĥ20 + Ĥ02 = 0 (4.44)

leads to the generalized set of equations which allow to treat protons and neutrons

as non-separable systems




ε̃kp 0 ∆pp
k ∆pn

k

0 ε̃kn ∆pn?
k ∆nn

k

∆pp
k ∆pn

k −ε̃kp 0

∆pn?
k ∆nn

k 0 −ε̃kn







ukqp

ukqn

vkqp

vkqn




= Ekq




ukqp

ukqn

vkqp

vkqn




, (4.45)

where ε̃kτ = ekτ−λτ . The diagonalization of the matrix (4.45) for each state k yields

quasiparticle energies Ekq and occupation amplitudes u, v. The state-dependent pair-

ing gaps appearing in Eq. (4.45) are given by

∆ττ
m =

∑

k,q

gT=1
mk,ττvkqτu

?
kqτ ,

∆pn
m = ∆1pn

m + i∆0pn
m ,

∆1pn
m =

∑

k,q

gT=1
mk,pn<e

(
vkqpu

?
kqn

)
,

∆0pn
m =

∑

k,q

gT=0
mk,pn=m

(
vkqpu

?
kqn

)
. (4.46)

It is seen that the proton-neutron pairing gap in this formalism is a complex quantity

with the real part associated to the T = 1 pairing mode and the imaginary part

containing T = 0 pairs.

The Fermi levels λτ for protons and neutrons are adjusted as usually so that the

particle number conservation relations for neutrons and protons

N = 2
∑

kq

vkqnv
?
kqn , Z = 2

∑

kq

vkqpv
?
kqp (4.47)

are satisfied. The pairing energy, calculated as the mean value of the Hamiltonian

(4.1) in the BCS state, has the form

Epair = − ∑

kl,ττ ′,T
gT

kl,ττ ′κ
ττ ′
kk̄ κττ ′?

ll̄ . (4.48)

In practice the equations (4.45-4.47) are solved iteratively until the acquired

accuracy for pairing gaps (or pairing energy, equivalently) and the particle number

is achieved.
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4.2.4 Time-reversal invariance and isospin symmetry

breaking

It was shown by Goodman [11] that the time-reversal invariance and other sym-

metries limit considerably possible solutions of the generalized BCS theory. In this

section we study the consequences of imposing time-reversal invariance and axiality

in isospace on the possible BCS solutions in the case of Bogoliubov transformation

(4.15) adopted in our calculations.

First, the time-reversal invariance condition:
(

α†
k̄1

α†
k̄2

)
= T̂

(
α†k1

α†k2

)
T̂−1 , (4.49)

where T̂ is the time-reversal operator, implies the following relations:

• for hermitian density matrix:

ρττ
kk = ρττ?

k̄k̄ , (4.50)

ρττ ′
kk = ρττ ′?

k̄k̄ , (4.51)

ρττ
kk̄ = 0 , (4.52)

ρττ ′
kk̄ = 0 , (4.53)

• and for antisymmetric pairing tensor:

κττ
kk̄ = κττ?

k̄k , (4.54)

κττ ′
kk = 0 , (4.55)

κττ
kk = 0 , (4.56)

κττ ′
kk̄ = −κττ ′?

k̄k , (4.57)

where τ is p or n. The components ρττ
kk and κττ

kk̄ are real.

Next, consider the generalized density matrix R:

R =

(
ρ κ

κ† 1− ρ̃

)
, (4.58)

where ρ̃ is the transposed ρ matrix. From the idempotency condition R2 = R (which

implies ρ2 − ρ = κ†κ, ρκ = κρ̃), one obtains

κpn
kk̄

(ρpp
kk − ρnn

kk ) = ρpn
kk(κ

pp
kk̄
− κnn

kk̄ ) ,

κpp2
kk̄

+ |κpn
kk̄
|2 = ρpp2

kk − ρpp
kk + |ρpn

kk|2 ,

κnn2
kk̄ + |κpn

kk̄
|2 = ρnn2

kk − ρnn
kk + |ρpn

kk|2 ,

κpn
kk̄

(κpp
kk̄

+ κnn
kk̄ ) = ρpn

kk(ρ
pp
kk + ρnn

kk − 1) . (4.59)

The condition of the isospin conservation vector is given by

〈T̂〉 = 0 , (4.60)
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and is analogous to the more familiar constraint 〈Ĵ〉 = 0. Deformed HF intrinsic

states do not have angular momentum as a good quantum number, nevertheless one

may insist that the average of Ĵ vanishes in the ground state. Similarily, the HFB

(BCS) states can be deformed in the isospin space, so that T is not a good quantum

number. Still one can require that the average of T̂ vanish in the ground state. For

a N = Z nucleus it means sphericity in isospace 〈T̂x〉 = 〈T̂y〉 = 〈T̂z〉 = 0. In a

N 6= Z nucleus Tz = (N − Z)/2 is not equal to zero so the imposed symmetry is

this time the axiality in isospace. The condition (4.60) requires that (see Appendix

E)

〈T̂x〉 = <e
∑

k

ρpn
kk = 0 (4.61)

and

〈T̂y〉 = =m
∑

k

ρpn
kk = 0 . (4.62)

The last two relations are fulfilled if ρpn
kk is equal to zero. It is seen from conditions

(4.59) that then the non-trivial pn solutions are possible if ρnn
kk = ρpp

kk and κpp
kk̄

= −κnn
kk̄

which is fulfilled for N = Z only. This is the solution found by Goodman [11]. In

N 6= Z nuclei neither ρnn
kk = ρpp

kk nor κpp
kk̄

= −κnn
kk̄ so the generalized BCS theory

does not allow for a coherent pn paired solution. In conclusion, the pn pairing is

ruled out due to the imposed symmetries: time-reversal invariance and axiality in

isospace.

For Bogoliubov transformations which yield purely imaginary off-diagonal el-

ements of the density matrix (as the transformation (4.15) does) the condition

〈T̂x〉 = 0 is automatically fulfilled. For N = Z nuclei we obtain in our model a

class of solutions in which the condition (4.60) is satisfied.1 For N 6= Z the pre-

sented solutions are triaxial in isospace, i.e., 〈T̂z〉 6= 0 and 〈T̂y〉 6= 0. Hence, the

appearance of the pn paired field can be viewed as the spontaneous isospin symmetry

breaking.

The non-conservation of the isospin is a drawback of the BCS theory and a

deficiency of our model. The methods proposed to restore isospin symmetry include

e.g., Random Phase Approximation [106, 107], exact projection [108], cranking in

isospace [75, 109, 110]. It is beyond the scope of the present study to apply the

isospin symmetry conservation techniques in the case of the BCS approach. In the

next section we focus on another problem related to the BCS approach, that is on

the non-conservation of the particle number.

4.3 Generalized Lipkin-Nogami approach

A strightforward application of the BCS theory to finite systems has two main draw-

backs. First, the BCS function is not an eigenstate of the particle number operator,

1In actual calculations the isospin symmetry is already broken on the mean-field level. Thus
even for the N = Z nucleus the symmetry conditions are not fulfilled.
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so the number fluctuation is an issue for small systems like nuclei. Second, there is

some critical value of the pairing strength below which no non-trivial solution can

be found. Several methods were proposed to cure this problem: Random Phase Ap-

proximation (RPA) calculations in addition to BCS [111], particle number projection

after variation (PAV) [112] which is valid only for pairing strengths above the critical

value, similarly as the appraoch based on the Generator Coordinate Method (GCM)

within the Gaussian Overlap Approximation [113, 114, 115]. Projecting the wave

functions before variation (VAP) in principle works well for all pairing strengths

[116]. It should be, however, mentioned that solving the VAP equations is not easy

and numerical calculations of that type are highly time consuming. Additionally, the

full projection of the BCS functions in the case of the pn pairing taken into account

becomes quite complicated already on the formal level. A simplified prescription for

the last technique is an approach proposed by Lipkin [117] and applied by Nogami

[118] which has been quite successful in overcoming some of the problems related to

applications of the BCS to nuclei (for early applications see e.g. [119, 120]).

In the forthcoming we describe the generalized Lipkin-Nogami method suitable

to treat as well pn pairing correlations. We follow here the considerations of Refs.

[121, 122] done in the case of rotating nuclei with nn and pp monopole pairing. It

should be added that the Lipkin-Nogami formalism extended to the case of T = 1

and T = 0 monopole pairing was already presented and applied in Refs. [29, 109].

4.3.1 Outline of the method

Let |ψNZ〉 be a quasiparticle vacuum state of the system consisting of neutrons and

protons

αK |ψNZ〉 = 0 , (4.63)

where the subscripts NZ denote the average numbers of particles, both neutrons N

and protons Z. The usual conditions of particle number conservation are

〈ψNZ |N̂τ |ψNZ〉 =

{
N, τ = n,

Z, τ = p
(4.64)

and N̂τ =
∑

k a†kτakτ is the corresponding particle number operator.

The particle number operators N̂τ commute with the Hamiltonian (4.41): [H, N̂τ ] =

0 and the set of operators {N̂ , Ẑ, Ĥ} has common eigenfunctions which we denote

by |φN0Z0〉:

N̂τ |φN0Z0〉 = N0τ |φN0Z0〉 , (4.65)

Ĥ|φN0Z0〉 = EN0Z0|φN0Z0〉 . (4.66)

This allows to write the quasiparticle vacuum state (4.63) in terms of the eigenstates

of N̂τ and Ĥ:

|ψNZ〉 =
∑

N0Z0

cNZ ,N0Z0|φN0Z0〉 . (4.67)
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From Eq. (4.65) it follows

〈ψNZ |N̂KẐL|ψNZ〉 =
∑

N0Z0

|cNN0,ZZ0|2NK
0 ZL

0 , (4.68)

for K, L = 0, 1, . . ..

Suppose that the eigenvalue ENZ can be expanded in particle-projected state

(limiting this expansion to terms of the second order in N and Z) as

ENZ = 〈φNZ |Ĥ|φNZ〉 = λ0 +
∑
τ

λτNτ +
∑

ττ ′
λττ ′NτNτ ′ . (4.69)

The expectation value of the operator

H = Ĥ −∑
τ

λτ N̂τ −
∑

ττ ′
λττ ′N̂τ N̂τ ′ (4.70)

in the |ΨNZ〉 state equals

〈ΨNZ |H|ΨNZ〉 =
∑

N0Z0

|cNN0,ZZ0|2〈φN0Z0|H|φN0Z0〉 = λ0 . (4.71)

Consequently, substituting (4.71) into (4.69) one obtains

〈φN0Z0|Ĥ|φN0Z0〉 = 〈ψNZ |Ĥ|ψNZ〉
− ∑

τ

λτ 〈ψNZ |N̂τ −Nτ |ψNZ〉

− ∑

ττ ′
λττ ′〈ψNZ |(N̂τ N̂τ ′ −NτNτ ′)|ψNZ〉 . (4.72)

The last equation shows that the minimization of the energy EN0Z0 = 〈φN0Z0|Ĥ|φN0Z0〉
in the projected state |φN0Z0〉 is equivalent to the minimization of the right hand

side of this equation which depends on the displayed expectation values calculated

in the quasiparticle vacuum state |ψNZ〉.
The set of constants {λ} entering the equation (4.72) has to be determined. To

do this let us calculate the average value of the operator

H(λ)N̂KẐL , (4.73)

where H(λ) is given by Eq. (4.70) and K, L = 0, 1, . . ., in the quasiparticle vacuum

state |ψnz〉. After using the expansions (4.67) and (4.69) as well as the formula

(4.68) one obtains

〈ψNZ |H(λ)N̂KẐL|ψNZ〉 = 〈ψNZ |H(λ)|ψNZ〉〈ψNZ |N̂KẐL(λ)|ψNZ〉 . (4.74)

In the given second order approximation in λ’s the equations (4.74) for λτ and λττ ′

are specified by taking K,L = 0, 1, 2:

〈ψNZ |H(λ)N̂τ |ψNZ〉 = 〈ψNZ |H(λ)|ψNZ〉〈ψNZ |N̂τ |ψNZ〉 (4.75)

〈ψNZ |H(λ)N̂τ N̂τ ′|ψNZ〉 = 〈ψNZ |H(λ)|ψNZ〉〈ψNZ |N̂τ N̂τ ′|ψNZ〉 . (4.76)



4.3. GENERALIZED LIPKIN-NOGAMI APPROACH 47

The variation of 〈ψNZ |H(λ)|ψNZ〉 at constant λτ and under the constraints (4.64)

leads to the expression for λτ satisfying automatically equations (4.75). The last

four equations (4.76) have to be solved separately.

In the model of non-interacting quasiparticles one assumes the terms of Ĥ31+Ĥ13

and of higher order in the Hamiltonian of Eq. (4.42) vanish. The variation of the

energy is equivalent to the BCS condition (4.44). Therefore, in this approximation

the equations (4.76) take the form

∑

{4̃}
〈0̃|H(λ)04|4̃〉〈4̃|(N̂τ N̂τ ′)40|0̃〉 = 0 , (4.77)

where |4̃〉〈4̃| projects onto the subspace of all 4-quasiparticle states. From the above

conditions one determines the values of λττ ′ .

The term (H(λ))04 in Eq. (4.77) consists of the two following terms (up to second

order in λ)

H(λ)04 = −∑

ρρ′
(Gρρ′)04 −

∑

ρρ′
λρρ′(NρNρ′)04 , (4.78)

where the operator Gρρ′ is the two-body part of the Hamiltonian (4.41) and ρ, ρ′ =
p, n. The other parts of the full Hamiltonian of the system do not contribute to the

(04) part of this decomposition. We can rewrite Eqs. (4.77) in the form

Gττ ′ +
∑

ρρ′
λρρ′N ττ ′

ρρ′ = 0 , (4.79)

where

Gττ ′ =
∑

ρρ′,{4̃}
〈0̃|(Gρρ′)40|4̃〉〈4̃|(N̂τ N̂τ ′)04|0̃〉 , (4.80)

and

N ττ ′
ρρ′ =

∑

{4̃}
〈0̃|(N̂ρN̂ρ′)40|4̃〉〈4̃|(N̂τ N̂τ ′)04|0̃〉 . (4.81)

The Eq. (4.79) is in fact the set of three linear equations, as λpn = λnp. The

exact expressions for Gττ ′ and N ττ ′
ρρ′ as well as special cases of solutions are given in

Appendix D.

4.3.2 Isospin generalized Lipkin-Nogami equations

As already said, the Lipkin-Nogami method aims at minimizing the expectation

value of the operator (4.70). The coefficients λττ ′ contrary to λτ are not Lagrange

multipliers. Their values are obtained from subsidiary conditions (4.76) which lead

to the set of linear equations (4.79). Having calculated the values of λττ ′ one can

obtain the Lipkin-Nogami equations which take the form of BCS equations with

single-particle energies and pairing gaps renormalized as follows

ε̃
(LN)
kτ = ε̃kτ + 2λττρ

ττ
kk ,

∆
ττ ′(LN)
k = ∆ττ ′

k − 2λττκ
ττ ′
kk̄ , (4.82)
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with particle desities ρ and pairing tensor κ defined as before (Eqs. (4.21,4.22)).

The pairing energy in the Lipkin-Nogami approximation is given by

ELN = Epair − 2
∑

k,ττ ′
λττ ′κ

ττ ′
kk̄ κττ ′?

kk̄ . (4.83)

Solving the LN problem is therefore equivalent to the diagonalization of the matrix




ε̃
(LN)
kp 0 ∆

pp(LN)
k ∆

pn(LN)
k

0 ε̃
(LN)
kn ∆

pn(LN)?
k ∆

nn(LN)
k

∆
pp(LN)
k ∆

pn(LN)
k −ε̃

(LN)
kp 0

∆
pn(LN)?
k ∆

nn(LN)
k 0 −ε̃

(LN)
kn







ukqp

ukqn

vkqp

vkqn




= E
(LN)
kq




ukqp

ukqn

vkqp

vkqn




(4.84)

for each single-particle state which provides new amplitudes u and v necessary to

calculate λττ ′ coefficients, pairing gaps and particle numbers. Proceeding like in the

BCS case we obtain the Lipkin-Nogami equations solutions in an iterative procedure

when the required accuracy is reached.

4.4 Results

4.4.1 Potential energy curves of N∼Z Ge nuclei

In the present section we describe the results of our investigation of potential energy

curves of the 64Ge (N = Z) nucleus and the neighbouring isotopes (N = 28 − 36)

obtained in the Skyrme-HF model with two variants of the residual interaction

employed in pp and nn channels. The self-consistent fields obtained here in the

minima of deformation will serve as a departure point for further calculations in the

BCS(LN) approaches and in the HTDA method (Chap. 5).

The 64Ge nucleus has already been a subject of many theoretical investigations.

The ground state shape of this nucleus is very sensitive to the model used in cal-

culations. The HF and HFB approaches with central Yukawa potential [123, 124]

predicted 64Ge to be deformed with an oblate shape. In Strutinsky-like calculations

with folded Yukawa single-particle potential [125] the ground-state minimum was

found to be prolate with ε2=0.2 deformation. The calculations based on a non-axial

WS potential predicted a triaxial ground state minimum with β2=0.2 [126]. The

Skyrme-HF model, with SIII force and constant pairing gap approximation suggest

a prolate minimum, however with a small prolate-oblate difference [127].

The Ge isotopes 66Ge and 68Ge have been also a subject of a great interest in both

experimental [128, 129, 130, 131, 132] and theoretical studies [133, 134, 135, 136]

for many years. Due to large gaps between single-particle spectra at prolate and

oblate minima of N, Z = 34− 36 nuclei, shape coexistence is a typical phenomenon

in this region. The prolate-oblate shape transition and possible γ-softness in these

germanium isotopes were suggested by many authors, however different models do

not necessarily provide the same picture of ground state deformations.
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To find the dependence of the total energy of a nucleus on the quadrupole de-

formation we have performed constrained HF+BCS calculations assuming the axial

symmetry of the nucleus. The calculations were done with the SIII parametriza-

tion of the Skyrme force which was shown to be a very good interaction as far as

spectroscopic (single-particle or collective) properties of nuclei are concerned. All

the results were obtained with an axially deformed harmonic oscillator basis with

N0=16 shells. The parameters q = ω⊥/ωz and b =
√

mω0/h̄ (with ω0 = (ω2
⊥ωz)

1/3),

characterizing the oscillator basis, were optimized all along the energy curve, as

described e.g. in Ref. [137]. To obtain the needed deformation we use a quadratic

constraint on the quadrupole mass moment with an approach which adjusts iter-

atively the Lagrange multipliers to provide the requested expectation value of the

constraint operator [138].

Pairing correlations were treated in two approaches: the usual BCS formalism

with a seniority force (G force) and the state-dependent one based on the surface-

independent (volume) δ interaction. In both cases the BCS equations were solved in

a truncated space of single-particle levels, taking into account states with energies

less or equal to eF+8 MeV, eF being the Fermi level energy. The constant matrix

elements of the G force are given by

Gτ =
gτ

11 + Nτ

, (4.85)

where Nτ is the number of particles with isospin τ (neutrons or protons) and

gn = 17.1 MeV, gp = 15.6 MeV. (4.86)

This parametrization was found for four germanium nuclei (A = 62−68) by compar-

ing the calculated minimal quasiparticle energies with those obtained from nuclear

binding energies by 3-point formula. The fit was done in the minima of the poten-

tial energy. In Fig. 4.1 theoretical and experimental pairing gaps for protons and

neutrons are shown for considered nuclei. The zero-range δ interaction acting in

the isovector (|Tz| = 1) channel is of the form2

V̂δ(~r12) = V0τ
1− ~σ1 · ~σ2

4
δ(~r1 − ~r2) , (4.87)

where V0τ is the coupling constant for particles of a given τ . Since the level densities

of neutrons and protons are a priori different, the numbers of neutron and proton

levels contained in the window of the same size eF +X MeV may differ considerably,

and thus similarly the adjusted V0n, V0p values. Nevertheless, this is no longer the

case of N ∼ Z nuclei where assuming that V0n = V0p is well justified.

To make a reasonable comparison of the results obtained with G and δ- forces,

the intensities of the latter have to be adjusted properly. We determine V0τ from

the condition that the traces of the pairing tensors are the same as in the G force

2Indices T, τ in V T
0τ will be dropped in cases where it will not lead to a misunderstanding.
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Figure 4.1: Neutron (circles) and proton (squares) pairing gaps calculated with G

force in comparison to ∆(3) pairing indicators.

 0

 1

 2

 3

 4

 5

 60  62  64  66  68  70

Σ i
 u

i v
i

A

Ge

V0n=V0p=310 MeV fm3

gn=17.1, gp=15.6

p, BCS(G)
p, BCS(δ)

n, BCS(G)
n, BCS(δ)

Figure 4.2: Traces of the pairing tensor
∑

i>0 uivi calculated with seniority and δ

forces for neutrons (circles) and protons (squares).



4.4. RESULTS 51

-515

-514

-513

-512

-511

-510

-4 -3 -2 -1  0  1  2  3  4

E
 (

M
eV

)

q2 (b)

62Ge
BCS(δ)

BCS(G)

-541

-540

-539

-538

-537

-536

-4 -3 -2 -1  0  1  2  3  4

E
 (

M
eV

)

q2 (b)

64Ge
BCS(G)
BCS(δ)

-565

-564

-563

-562

-561

-560

-4 -3 -2 -1  0  1  2  3  4

E
 (

M
eV

)

q2 (b)

66Ge
BCS(G)
BCS(δ)

-587

-586

-585

-584

-583

-582

-4 -3 -2 -1  0  1  2  3  4

E
 (

M
eV

)
q2 (b)

68Ge
BCS(G)
BCS(δ)

Figure 4.3: The potential energy E (MeV) as a function of the mass quadrupole

moment q2 = 〈Q̂20〉 (in barns) for germanium (Z = 32) nuclei with mass numbers

A = 62 − 68. The results of two calculations are presented: BCS calculations with

constant matrix elements (solid line) and with the δ force (dashed line).

case. This way we obtain the δ force strengths for both charge states and for all

considered nuclei equal to

V0n = V0p = 310 MeV fm3 . (4.88)

The traces
∑

i>0 uivi of pairing tensors κ evaluated with both pairing forces with

parametrizations described above are shown in Fig. 4.2.

The potential energy as a function of the mean value of the mass quadrupole

moment (Eq. (2.42))

q2 = 〈Q̂20〉 (4.89)

for studied Ge isotopes is depicted in Fig. 4.3. The results of two calculations

are reported: with seniority and δ forces. Although the energy curves depend on

the pairing type, the general conclusions concerning the shape of the nuclei under

consideration remain the same. Namely, 62Ge is predicted to be prolate however

the energy difference between both deformed minima is only about 700 keV. 64Ge,

as said previously, is predicted to be prolate in its ground state, with the oblate

minimum being higher on about 0.5 MeV. 66Ge appears to be a transitional system

with two almost degenerate minima, the prolate one laying about 20 keV lower in
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Table 4.1: Oblate 〈Q̂20〉o and prolate 〈Q̂20〉p deformations (in barn) and correspond-

ing energy values E (in MeV) for studied nuclei. The results concerns the calcula-

tions with the G force.

nucleus 〈Q̂20〉o (b) E (MeV) 〈Q̂20〉p (b) E (MeV)

62Ge -2.1 -514.0 2.4 -514.7
64Ge -2.4 -540.0 2.6 -540.5
66Ge -2.6 -563.9 2.8 -564.1
68Ge -3.0 -586.2 2.9 -585.8

Table 4.2: Same as in Table 4.2 but for the δ force.

nucleus 〈Q̂20〉o (b) E (MeV) 〈Q̂20〉p (b) E (MeV)

62Ge -2.1 -514.1 2.3 -514.7
64Ge -2.4 -540.2 2.6 -540.6
66Ge -2.7 -564.1 2.9 -564.1
68Ge -3.0 -586.3 2.9 -585.9

the case of the G force. A similar case is 68Ge nucleus, this time the oblate minimum

being energetically favoured. The detailed values of equilibrium deformations and

corresponding total energies resulting our calculations are listed in Tables 4.1 (the

seniority force case) and 4.2 (for the δ force).

The effects of including proton-neutron pairing and applying different methods to

solve the pairing problem presented in the forthcoming sections are studied with the

spectra generated as described here in the ground states of considered germanium

isotopes.

4.4.2 Skyrme force-like extension of nuclear pairing inter-

action

In Sec. 4.1 we have introduced the pairing interaction Eq. (4.8) in the form which

allows to study all possible space-spin-isospin components and is relatively simple

for numerical calculations. First, consider the matrix elements of such an interac-
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Figure 4.4: Neutron-neutron pairing matrix elements vs single-particle energies nor-

malized to the energy of Fermi level for 64Ge nucleus. The upper panels show

diagonal matrix elements in the equilibrium deformation (a) and in the spherical

point (b). Panels (c) and (d) shows off-diagonal matrix elements for levels k with

the kλ corresponding to the Fermi energy. Squares corresponds to the δ force anti-

symmetrized matrix elements, filled circles to the k′δk case. Vertical lines represent

single-particle spectrum.

tion in the like-particle case. In Figs. 4.4, 4.5 we show an excerpt of bare (i.e.,

V T
0τ = 1, x = 1) antisymmetrized pairing matrix elements of V̂δ (squares) and V̂k′δk

(filled circles) interactions (see Eq. (4.8)) calculated for the 64Ge nucleus in its equi-

librium deformation and in the spherical point as functions of the single-particle

levels relative to the Fermi energy. It is seen that the bare pairing matrix elements

of the δ force are larger than those of k′δk and that they are not correlated. The

non-diagonal matrix elements of the k′δk force are nearly equal to zero or negative

suggesting a locally repulsive character of the interaction in T = 1, L = 1, S = 1

channel. The behaviour shown in Figs. 4.4 and 4.5 is common for all studied nuclei.

Similarily, in Figs. 4.6, 4.7 we show an excerpt of antisymmetrized proton-

neutron matrix elements of δ (squares) and k′δk (filled circles) forces calculated for
64Ge in its equilibrium deformation and in the spherical point as functions of single-

particle levels normalized to the Fermi level energy. We chose the proton spectrum

as the reference one. It is seen that the pn pairing matrix elements in the T = 1

channel (Fig. 4.6) have a similar behaviour as those of pp and nn pairing interactions

shown in the preceding, however they are on about two times smaller. The diagonal

pn pairing matrix elements in T = 1 and T = 0 channels are pretty equal for both

kinds of interactions, while the off-diagonal ones have somewhat different behaviour.

As in the case of the like-particle pairing, the k′δk elements are much smaller than



54 CHAPTER 4. PN PAIRING IN BCS-TYPE APPROACHES

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

-40 -30 -20 -10  0  10

g k
k,

pp

ek-λ (MeV)

(a) q2=2.6 b δ
k’δk

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

-40 -30 -20 -10  0  10

g k
k,

pp

ek-λ (MeV)

(b) q2=0 b δ
k’δk

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

-40 -30 -20 -10  0  10

g k
k λ

,p
p

ek-λ (MeV)

(c) q2=2.6 b δ
k’δk

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

-40 -30 -20 -10  0  10

g k
k λ

,p
p

ek-λ (MeV)

(d) q2=0 b δ
k’δk

Figure 4.5: Same as in Fig. 4.4 but for proton-proton pairing interaction.

those of the δ force in all cases.

In Fig. 4.8 the pairing gap deviation as a function of the strengths of the pairing

interaction in L = 0 and L = 1 channels is displayed. The gap deviation is defined

as

σ∆ =

√√√√1

2

∑
τ=p,n

(∆th
τ −∆exp

τ )2 , (4.90)

where the lowest quasiparticle energy is adopted as a theoretical pairing gap and the

experimental one is the 3-point pairing indicator. As seen, for all considered cases

there exists a valley of equivalent minima, no x value being conspicuously favoured.

In Ref. [139] we have shown that an analogous situation is found when the proton-

neutron pairing is taken into account and that the inclusion of the V̂k′δk term does

not influence much the obtained results as far as the behaviour of the BCS solutions

and the Wigner energy are concerned. Hence, in the forthcoming sections we will

use only the δ force to perform the BCS(LN) calulations with the pn pairing.
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Figure 4.6: Proton-neutron pairing interaction matrix elements in the T = 1 chan-

nel vs proton single-particle energies normalized to the Fermi level energy for 64Ge

nucleus. The upper panels shows diagonal matrix elements in the equilibrium de-

formation (a) and in the spherical point (b). Panels (c) and (d) shows off-diagonal

matrix elements for the level λ corresponding to the Fermi energy. Squares corre-

spond to the δ force antisymmetrized matrix elements, filled circles to the k′δk case.

Vertical lines represent single-particle spectrum.
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Figure 4.7: Same as in Fig. 4.4 but for proton-neutron T = 0 pairing interaction.
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Figure 4.8: Pairing gap deviation (σ∆) as a function of the δ interaction strength V0

and of the ratio x of the strengths of k′δk and δ forces.
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4.4.3 Generalized BCS results

The results discussed in here are obtained in the minima of the energy of Ge isotopes

calculated as decribed in Sec 4.4.1. We will use the variant with the δ force since this

is the main interaction we will consider in generalized BCS(LN) calculations. We

adopt the same value of the interaction strength V T=1
0 = 310MeV fm3 for pp, nn and

pn pairing in the T = 1 channel basing ourselves on isospin invariance arguments.

It has been proposed that the pn collectivity can be also accounted for in an isospin

broken model with V T=1
0pn > V T=1

0n,p , see e.g. [140, 141, 142]. Nonetheless, we do not

see any argument supporting such an approach.

While fitting the strengths in like-particle channels basing on experimental data

is well established, for the T = 0 channel very little is known on the subject. Since

T = 0 pairing correlations are believed to be responsible for the occurence of the

Wigner term the pairing strength might be then adjusted to reproduce this quantity.

On the other hand, one may try to fit the pn pairing gap extracted from masses

but, as already mentionned, the meaning of this gap for N ∼ Z nuclei is not clear.

However, it is not our aim here to reproduce the experimental data but to study the

basic features of the pn pairing in our model. Hence, in the following we discuss most

of the results of BCS and LN calculations as functions of the ratio of the pairing

strengths in T = 0 and T = 1 channels

x = V T=0
0 /V T=1

0 . (4.91)

The pn pairing is supposed to play a significant role mostly in self-conjugate

nuclei. Increasing the number of neutron pairs increases the collectivity of the

neutron condensate, making fewer neutrons available to pair with protons and the

binding of pn condensate dropping dramatically. The situation can be viewed as a

blocking phenomenon where the role of an odd particle is played by the additional

neutrons (or protons) outside the N = Z core [29].

A general feature of most calculations with the pn pairing [29, 66, 143, 144] is

quenching of the pn pairing in the ground state of |N −Z| = 4 nuclei. Surprisingly,

the authors of Ref. [28] have obtained the pn superfluid solutions even for the

N − Z = 8 nucleus (78Ge) in a BCS approach with the Bogoliubov transformation

(4.15) in the calculations with monopole pairing forces and the single-particle levels

of an axially deformed Woods-Saxon potential. Our previous calculations of this

type [139, 145] are in agreement with those of Ref. [29], i.e. no collective pn pairing

was observed for Tz > 2. In the present study, in both BCS and LN schemes, in

Tz = −1 and Tz = 2 Ge nuclei only trivial pn solutions are found in the studied

range of parameters thus the majority of the results is discussed only for the cases

of 64Ge and 66Ge.

Pairing gaps

Since we deal here with the state-dependent pairing, i.e. for each single-particle

level there exist a BCS pairing gap parameter, it is convenient to present the results
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for the so-called spectral pairing gap which we consider to be a reasonable measure

of pairing correlations. This quantity in the case of the usual BCS treatment is

defined as

∆ =

∑
i>0 ∆iuivi∑

i>0 uivi

. (4.92)

In our particular case with the Bogoliubov transformation (4.15) this definition leads

to the subsequent expressions for nn, pp and pn spectral gaps

∆nn =

∑
i>0 ∆nn

i (vi1nu?
i1n + ui2nvi2n)∑

i>0(vi1nu?
i1n + ui2nvi2n)

, ∆pp =

∑
i>0 ∆pp

i (vi2pu
?
i2p + ui1pvi1p)∑

i>0(vi2pu?
i2p + ui1pvi1p)

,

∆pn =

∑
i>0(∆

pn,T=1
i <e(vi1pu

?
i1n + vi2pui2n) + ∆pn,T=0

i =m(vi1pu
?
i1n + vi2pui2n))∑

i(vi1pu?
i1n + vi2pui2n)

.

In Fig. 4.9 the dependence of the pp, nn and pn spectral pairing gaps as functions

of the x parameter is shown for 64Ge and 66Ge nuclei for BCS and Lipkin-Nogami

calculations. The pn pairing gap is a priori a sum of the solutions in T = 0 and

T = 1 channels (see Eq. (4.46)). However, in fact, the T = 1 pn pairing gap is

constantly equal to zero (cf. Fig. 4.10). It is found that in the BCS scheme in

the N = Z nucleus above some critical value of the x parameter (xcrit ∼ 2.03) the

pn solution arises, at the same time the like-particle gaps being decreased. There

is a narrow region of x in which all the three gaps do coexist. In the calculations

with schematic pairing forces there was rather a sharp transition from T = 1 to

T = 0 pairing at the critical point (see e.g. [28, 29]). Let us mention that in the

calculations with the seniority pairing a simple relation is fulfilled: a non-trivial

T = 0 solution emerges for GT=0
np > GT=1

np , so that the critical value is close to 1.

The fact that the critical value found here is two times larger should be attributed

to the magnitudes of the matrix elements of the δ force dependent on the channel.

A situation different from that observed in the N = Z case is realised in 66Ge

nucleus, where the mixing of the T = 1 and T = 0 phases is allowed for all

x > xcrit ∼ 2.

In the approximately particle conserving LN scheme the scenario changes in the

N = Z nucleus: the pn mode shows up at a larger value of x parameters (xcrit ∼ 2.06)

but coexists with like-particle coherent field, similarily like in the N 6= Z nucleus.

The situation in 66Ge is qualitatively the same in LN and BCS cases, the only

differences being the magnitudes of pairing gaps at a given x value and the increase

of xcrit in LN approach.

It is worth noting that in the Lipkin-Nogami case the gaps are considerably

enhanced in the absence of the proton-neutron pairing in both 64Ge (on average 0.5

MeV) and 66Ge (0.25 MeV) nuclei as compared to the corresponding BCS solutions.

For comparison, in the neighbouring 62Ge and 68Ge nuclei the change of the pairing

gap in the particle-conserving approach is less than 0.15 MeV.

In Fig. 4.10 we show the pairing gap parameters ∆ττ ′
i plotted on the sp spectra

(as previously, proton spectra is chosen) normalized to the Fermi level energy in the
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Figure 4.9: Spectral pairing gaps as functions of the T = 0 and T = 1 pairing

strengths ratio x in 64Ge and 66Ge nuclei. The left part of the figure corresponds to

BCS calculations, the right part to the Lipkin-Nogami (LN) solutions.
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(upper panel) and LN solutions (lower panel) in the point of the coexistence of nn,

pp and pn solutions.

point of the coexistence of the three solutions (x ∼ 2.05). Two results are reported,

of the BCS and Lipkin-Nogami calculations. The magnitudes of pairing solutions

for a given x depend on the method, but the results remain qualitatively the same.

It is seen that the real, T = 1 part of the pn pairing gap is equal to zero for all

states. It seems that T = 0 and T = 1 pn pairing modes are exclusive in our model.

It is also observed that the like-particle gaps have a smooth dependence on the

energy, slightly decreasing with the growing single-particle energy. The structure of

pn pairing parameters is more irregular with magnitudes changing even on 1 MeV

for neighbouring levels and reflects the pattern of diagonal matrix elements shown

in Fig. 4.7.

Occupation probability

In Fig. 4.11 it is exhibited how the presence of the pn pairing influences the occu-

pation probability

v2
iτ =

∑

q=1,2

viqτv
?
iqτ , (4.93)
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Figure 4.11: Occupation probability v2
iτ as a function of sp energy normalized to

the Fermi energy for neutrons (left panel) and protons (right panel) in the 64Ge.

The BCS solutions with (open circles) and without (filled circles) T = 0 pairing are

shown.

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 1.9  2  2.1  2.2

λ τ
τ’

x

64Ge
nn
pp
pn

Figure 4.12: Lipkin-Nogami λττ ′ parameters as functions of the x ratio in 64Ge

nucleus.

in the vicinity of the Fermi level for neutrons and protons in the 64Ge nucleus. We

show the dependence of v2
i on the sp energy in the case where no pn pairing is

present V T=0
0 = 0 (filled circles) and in the case where there is a pn collectivity

(open circles). The solutions are chosen in such a way that the pairing energy in

both cases (with and without pn pairing) is approximately the same. In the BCS

case it corresponds to the situation where only T = 0 pairing is present (x = 2.19).

It is seen that the smooth diffusivity around the Fermi level is significantly disturbed

when the pn pairing is taken into account.

Lipkin-Nogami λττ ′ parameters

It is worthwhile to notice that the Lipkin-Nogami parameter λpn appears negative in

numerical calculations thus the correction to the pairing energy associated with the

pn mode is positive. Nevertheless, the corrections associated with the like-particle
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Figure 4.13: Normalized pairing energy as a function of x ratio in LN and BCS

methods for 64Ge (Tz = 0) and 66Ge (Tz = 1) nuclei.

pairing are such that the total Lipkin-Nogami correction is negative and its absolute

value increases slightly with the increase of V T=0
0 strength.

The λττ values increase when the pn pairing is activated. The λpn values as

functions of x fulfil roughly the relation

λpn ≈ −1

3
λττ , (4.94)

therefore the Lipkin-Nogami correction is not symmetric in different pairing channels-

the pn pairing is weakened while the pp and nn gaps are enhanced which results

in the above mentionned shift of the critical value xcrit with respect to the corre-

sponding BCS value. The behaviour of Lipkin-Nogami parameters as functions of x

is demonstrated in Fig. 4.12 in the case of the N = Z nucleus.

Pairing energy

In Fig. 4.13 the dependence of the pairing energy normalized to the BCS solution

without the pn pairing is plotted as a function of the x ratio for the two studied

cases. In the N = Z nucleus the absolute value of the pairing energy decreases when

all the three modes are present. Hence, such a system prefers to form only one type

of pairs. The LN corrected solution lies on about 4.2 MeV lower than the BCS one.

The pairing energy is a decreasing function of x but the gain in energy due to the

appearance of the pn mode is very modest. In the Tz = 1 case the pairing energy

diminishes with growing x value in both models. The LN solution is on about 2.5
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MeV lower than the BCS one.

Let us point out the main features of BCS and LN solutions.

1. In the BCS method, the like-particle and the pn pairing can coexist in a narrow

region of x parameters in the case of the N = Z nucleus. With the increase

of the pairing strength in the T = 0 channel the system undergoes a phase

transition and prefers to form T = 0 pairs only. In the Tz = 1 nucleus the pn

pairing mode does appear only in coexsistence with like-particle modes.

2. In the approximately particle-conserving scheme (LN) T = 0 and T = 1

superfluid phases can coexist in both nuclei for all values of x above xcrit.

3. Particle number conservation in the Lipkin-Nogami method acts destructively

on the T = 0 pairing and enhances like-particle modes. Thence the T = 0

phase occurs for a larger x value as compared to the BCS results.

4. No coexistence of the pn pairing in T = 1 and T = 0 channels is found.

5. No pn collective solutions are observed for Tz=-1 and Tz=2 nuclei.

4.4.4 Wigner energy

In what follows we apply the method proposed by Chasman [69] which allows to

estimate the pairing strength in the T = 0 channel basing ourselves on the knowledge

of spectroscopic properties of nuclei.

In Sec. 3.1 we have shown how the Wigner energy is defined in terms of different

combinations of binding energies of nuclei. To understand better the Wigner term

we decompose the binding energies (B) into two parts: the Slater energy and the

correlation energy. The Slater energy is the binding energy of the configuration

obtained by filling the lowest single-particle levels. The correlation energy, which

increase the binding, is the difference between the total binding energy and the

Slater energy. This decomposition is useful because the correlation energy is almost

constant from one even-even nucleus to the next and we may assume there is no

change in the quantity

δV (N,Z) =
1

4
[B(N,Z)−B(N − 2, Z)

− B(N,Z − 2) + B(N − 2, Z − 2)] (4.95)

due to the correlations. Hence, we only need to derive the Slater energy for each

of the configurations appearing in δV (N,Z). The energy of the single Slater de-

terminant wave function is just a sum of the diagonal energies evaluated for the

Hamiltonian (4.41). We obtain for even-even N = Z nuclei

δV (N, Z) =
1

2
(GT=1

ii + GT=0
ii ) , (4.96)
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Figure 4.14: Experimental and calculated strength of the Wigner energy of even-

even N = Z nuclei. The results of two theoretical calculations are given, see text

for details.

where

GT
ii = V T

0 gT
ii (4.97)

and gT
ii is a bare diagonal pairing matrix element of the proton-neutron interaction.

If N 6= Z one has

δV (N,Z) = 0 . (4.98)

Plugging in the energies of the relevant configurations we get the Slater approxima-

tion to the Wigner energy of even-even N = Z nuclei:

W (A) =
1

2
(GT=1

ii + GT=0
ii ) , (4.99)

Thence, we may adjust the pairing strength to the Wigner energy having calcu-

lated the matrix elements of the pairing interaction. In Ref. [139] we have shown

that this method provides similar values for the coupling strengths as fitting them

to the pn pairing indicators (Eq. (3.15)).

In Fig. 4.14 we show the experimental and calculated (Eq. 4.99) values of W (A)

Wigner strength for even-even N = Z nuclei in the vicinity of 64Ge. The general

trend 47/A is indicated with a dashed line. Theoretical points are shown for the best

results of two fits: one with the fixed value V T=1
0 =310 MeV fm3 which was adopted

in preceding calculations (th1) and of the second, done on a two dimensional mesh

of V T=1
0 and V T=0

0 values (th2). This way we have obtained the subsequent sets of
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Figure 4.15: Normalized ground state energy (∆E = E(V T=0
0 6= 0)−E(V T=0

0 = 0))

as a function of the reduced isospin Tz = (N −Z)/2 for various values of the T = 0

and T = 1 pairing strengths ratio x obtained in the Lipkin-Nogami approach.

parameters:

V T=1
0 =310 MeV fm3, V T=0

0 =670 MeV fm3

and

V T=1
0 =360 MeV fm3, V T=0

0 =620 MeV fm3.

It is seen that the theoretical results obtained for the two parametrizations given

above are close to each other so they give similar deviations for the Wigner energy

strength W (A). It is worth pointing out that the calculated values follow nicely the

trend of the experimental data.

Although the two sets of values adjusted to the W (A) strength provide similar

resuls for this quantity, the second fit (th2) gives the pairing strengths the ratio of

which x = 1.72 lies below the critical value xcrit ∼ 2 obtained in our calculations.

Thus, no pn collective solution will occur for this parametrization and for that reason

it is not appropriate to reproduce the Wigner cusp.

The first set of fitted parameters gives x ∼ 2.15, a value for which the pn pairing

is activated in both BCS and LN approaches. Nevertheless for the BCS method

it lies in the region of the T = 1 to T = 0 pairing phase transition with almost

no additional binding due to the pn pairing. In Fig. 4.15 the normalized ground

state energy ∆E = E(V T=0
0 6= 0) − E(V T=0

0 = 0) is presented as a function of Tz

for various values of the T = 0 and T = 1 pairing strengths ratio x obtained in

the Lipkin-Nogami approach. It is seen that for x > 2.1 some additional binding is
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gained due to the pn pairing and that its value is the largest for the N = Z nucleus.

For the value adjusted in this section there is the additional binding attributed to

the T = 0 pairing, however very modest (of about 0.5 MeV).

Since the mean-field models ignore the explicit proton-neutron coupling they are

a priori unable to reproduce the Wigner term (see however [29, 68]). It is known

that the deviations in calculated and experimental masses in the vicinity of the

N = Z line are of about 2 MeV in an Extended Thomas-Fermi model [146] which

is supposed to take into account properly the effects attributed to the particle-hole

channel. Thus, the 2 MeV energy offset can be associated with the lack of pn

correlations. It is seen from our calculations that in principle the BCS(LN) model

taking into account the isoscalar pairing might produce a sharp slope discontinuity

in the mass parabola that might contribute to the Wigner term. However, the gain

in energy is too modest for the residual T = 0 interaction to be the solely explanation

of the Wigner term. On the other hand, the fit to W (A) value may be questionable

due to the uncertainties of the empirical Wigner strengths values.

4.4.5 Summary

Let us summarize the results obtained in this part of the work. In the ground states

of several Ge isotopes obtained in the Skyrme-HF model we have performed BCS and

Lipkin-Nogami calculations for the pairing Hamiltonian which includes all possible

nucleonic pairs in time-reversed orbits. The two-body interaction between nucleons

was accounted for with a state dependent interaction. Studying the pairing matrix

elements of the δ and k′δk forces and basing ourselves on our previous calculations

with the proton-neutron pairing we have shown that a reasonable description of the

pn pairing is yielded by the δ force, that is to say in terms of T = 1, J = 0 and

T = 0, J = 1 coupling. The results of the generalized BCS and LN calculations with

the state-dependent force are qualitatively comparable to the results of other authors

obtained in BCS(LN) and HFB approaches with schematic pairing interactions. The

generic feature of the BCS method is the T = 1 to T = 0 pairing transition in the

N = Z nucleus which is smeared out in the formalism conserving the particle number

symmetry. No coexistence of the pn pairing in T = 0 and T = 1 channels is found

while the like-particle and T = 0 modes do coexist.



Chapter 5

Particle number conserving

treatment of correlations

It is well known that the non-conservation of particle number in the BCS method is

especially harmful in the case of phase (normal/superfluid) transitions as a function

of some continous parameter (deformation, temperature, rotational frequency, and

as we have previously seen, pairing strengths ratio in T = 0 and T = 1 channels).

There exists a number of methods to deal with this problem, the first consisting in

projecting BCS wave functions onto a good particle number. It is however quite ob-

vious that such an approach will not be of any help in the situations when the level

density around the Fermi surface is too low to provide any solution except the trivial

HF one. It should be as well stated clearly that these projections are rather com-

plicated and time-consuming in numerical treatment even for like-particle pairing

and that completely microscopic calculations of this type are not available on ex-

tensive scale (however, see e.g. [147, 148]). In practical cases a simpler variant, that

is to say projection after variation is performed, often with further approximative

schemes [149]. Other approaches used to remove the effects of spurious dispersion

of the particle number are Generator Coordinate Method within Gaussian Over-

lap Approximation (GCM+GOA) [113, 114, 115] and the Lipkin-Nogami [117, 118]

method already discussed in this work. However simple in practical treatment, they

both allow to treat pairing correlations only in an approximately particle number

conserving scheme.

In this part of the work we will describe ground states of N ∼ Z nuclei in an

approach explicitely conserving particle number, both reliable and tractable. This

method, known as the Higher Tamm-Dancoff Approximation (HTDA) [150] has

been recently applied successfully to describe GS properties and isomeric states of
178Hf nucleus [31, 151] and then developed for odd-nuclei [152]. Some work has been

done as well to treat pairing correlations in high spin states in a Routhian-HTDA

(RHTDA) method [153].

The main purpose of this part of the work is to extend the HTDA method to be

able to treat proton-neutron pairing correlations on the same footing as like-particle

67
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correlations. We restrict ourselves to the study of the ground states of even-even

nuclei, however the formalism presented in this work and the numerical code are

developed to treat as well excited states.

The numerical calculations are performed in the GS of Ge isotopes obtained in

the HF+BCS(G) approach described in Sec. 4.4.1.

5.1 HTDA method

The purpose of the method is to describe the pair diffusion phenomenon around the

Fermi surface as a particular, yet very important, part of some many quasiparticle

excitations of the particle-hole type over a Slater determinant vacuum |Ψ0〉. Thus

one can consider dealing with a kind of higher Tamm-Dancoff approximation or

equivalently with a highly truncated shell model calculation. The latter point of

view makes it clear that the success (i.e., the fast convergence in terms of the

number of considered quasiparticles) of such a truncation scheme will depend on the

realistic character of the vacuum in use. Such a favorable situation may be expected

when the vacuum is defined from the mean-field carrying most of the single-particle

properties (even those yielded by the correlations) associated with a given effective

Hamiltonian. Let us assume that we are describing the nuclear system with an

effective interaction V̂ . It is therefore advisable to choose for the wave function |Ψ0〉
the Hartree-Fock solution obtained from the HF potential V̂HF corresponding to the

desired number of particles and possibly taking into account various constraints (e.g.

deformation) and symmetries (e.g. time-reversal symmetry). In some cases when

the level density around the Fermi level is not high enough to provide a converged

HF solution (oscillations during the iterative process between two almost degenerate

minima) some arbitrary amount of pairing correlations may be added e.g. in the

BCS approximation to get a converged mean-field solution. The detailed outline of

the HTDA method is given in the next subsection.

One must remind that performing exact pairing calculation on the top of a

Hartree-Fock calculation (or some approximations thereof) has already been achieved

[154, 155, 156, 157]. While the authors of [154]-[156] have used a schematic seniority

force, in [157] a more realistic interaction has been used. However, both approaches

included a simple pairing Hamiltonian involving only matrix elements between pairs

of Kramers degenerate orbitals. It should be pointed out that the HTDA is far be-

yond a method of treating only pairing correlations. Since it admits correlations in

the ground state it is as well an approach far more complete than the usual Tamm-

Dancoff approximation or even than the RPA method, as it takes into account a

larger variety of possible excitations.
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5.1.1 Outline of the method

As mentioned above, we use an effective interaction V̂ to describe the nuclear system.

The nuclear Hamiltonian consists then in two parts, V̂ and the kinetic energy K̂:

Ĥ = K̂ + V̂ . (5.1)

A HF solution resulting from a mean-field calculation is chosen as the vacuum for

particle-hole excitations

ĤHF|Ψ0〉 = E0|Ψ0〉 , (5.2)

where

ĤHF = K̂ + V̂HF , (5.3)

V̂HF being the one-body reduction of V̂ for |Ψ0〉.
The |Ψ0〉 vacuum may now serve to construct an orthonormal N-body basis in

which we will diagonalize Hamiltonian (5.1). In principle to build this basis we

should consider the Slater determinant corresponding to the 0p0h state and all the

particle-hole excitations: 1p1h, 2p2h, 3p3h and so on. It is, however, obvious that in

practice we need to truncate the space of particle-hole excitations. More attention

to the subject will be paid in the discussion of numerical aspects and results of this

work in Sec 5.2.

The ground state wave function can be decomposed in the following way

|Ψ〉 = χ0|Ψ0〉+
∑

{1p1h}
χ1|Ψ1〉+

∑

{2p2h}
χ2|Ψ2〉+ · · · . (5.4)

The ensemble of |Ψi〉 Slater determinants represents a complete orthogonal basis

with real coefficients χi fulfilling the relation

∑

i

χ2
i = 1 (5.5)

which assure the normalization of the function (5.4). It is clear [151] that this

function has a good particle number 〈Ψ|N̂ |Ψ〉 = N .

The solution of the problem is equivalent to the diagonalization of the subsequent

matrix 


| |
H00 | H01 | H02 . . .

| |
H10 | H11 | H12 . . .

| |
| |
| |

H20 | H21 | H22 . . .

| |
... | ... | ...

. . .




(5.6)
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where Hij stands for the set of the N-body matrix elements of the Hamiltonian (5.1).

Let us rewrite the Hamiltonian (5.1) in the following form

Ĥ = K̂ + V̂HF − 〈Ψ0|V̂ |Ψ0〉+ V̂ − V̂HF + 〈Ψ0|V̂ |Ψ0〉
= 〈Ψ0|Ĥ|Ψ0〉+ ĤIQP + V̂res , (5.7)

where the independent quasiparticle Hamiltonian ĤIQP reads

ĤIQP =
∑

i

ξiη
†
i ηi , (5.8)

where η†i equals to the particle creation operator a†i for i being a particle (unoccu-

pied) state and to the annihilation operator ai in the case of hole (occupied) states.

For ξi we have: ξi = ei
p or ξi = ei

h, with ei indicating the single-particle energy

corresponding to the particle or hole level, respectively. As seen from Eq. (5.7), the

residual interaction reads

V̂res = V̂ − V̂HF + 〈Ψ0|V̂ |Ψ0〉 . (5.9)

The matrix element Hij of the Hamiltonian above given in the multi-particle

multi-hole basis takes the form

Hij = 〈Ψi|Ĥ|Ψj〉 =
(
〈Ψ0|Ĥ|Ψ0〉+ Ei

p−h

)
δij + 〈Ψi|V̂res|Ψj〉 (5.10)

with

Ei
p−h =

∑
p

ei
p −

∑

h

ei
h (5.11)

being the particle-hole excitation energy of the N-body state |Ψi〉 calculated with

respect to the Slater determinant of the lowest energy |Ψ0〉. The residual inter-

action (5.9) is defined as a difference of two-body and one-body operators. The

matrix elements appearing in (5.10) can be calculated using expressions given in

Appendix C.

From now on, the following convention is chosen for indicating the single-particle

states: greek letters are used to specify particle states, the latin a, b, c, d letters stand

for hole states, the i, j, k, l ones are applied to define one and two-body operators,

i.e. they may be both, particle or hole states.

Diagonal matrix elements

Let us first consider in detail a diagonal matrix element of (5.7). From Eq. (5.10)

one has

Hii = 〈Ψ0|Ĥ|Ψ0〉+ Ei
p−h + 〈Ψi|V̂res|Ψi〉 (5.12)

The last term of (5.12) can be evaluated using formulae (C-17) and (C-22) :

〈Ψi|V̂res|Ψi〉 =
1

2




h(Ψi)∑

k

h(Ψi)∑

l

+
p(Ψi)∑

k

p(Ψi)∑

l

−2
h(Ψi)∑

k

p(Ψi)∑

l


 〈kl|V̂ |k̃l〉 , (5.13)
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where the notation is the same as in the Appendix C, that is to say the summations∑h(Ψi)
k and

∑p(Ψi)
k runs respectively over all the hole states in |Ψi〉 with respect to

|Ψ0〉 and all the particle states in |Ψi〉 with respect to |Ψ0〉.
In the case where |Ψi〉 ≡ |Ψ0〉, the expression (5.13) for the diagonal matrix ele-

ment of V̂res is equal to zero and the first diagonal matrix element of the Hamiltonian

(5.1) is a constant

H00 = 〈Ψ0|Ĥ|Ψ0〉 . (5.14)

Using relations (5.12), (5.13) and (5.14) we obtain a general expression for any

diagonal matrix element of (5.1)

Hii = H00 + Ei
p−h

+
1

2




h(Ψi)∑

k

h(Ψi)∑

l

+
p(Ψi)∑

k

p(Ψi)∑

l

−2
h(Ψi)∑

k

p(Ψi)∑

l


 〈kl|V̂ |k̃l〉 . (5.15)

Non-diagonal matrix elements

Since Ĥ is a sum of one- and two-body operators it is clear that the non-diagonal

matrix elements Hij calculated between |Ψi〉 and |Ψj〉 states are equal to zero if |Ψj〉
differs from |Ψi〉 by more than two nucleons. Consequently, we need to consider only

the two following cases:

1. |Ψj〉 differs from |Ψi〉 by one nucleon, namely up to a phase factor (due to a

possible reordering of the hole states in |Ψi〉 and |Ψj〉)

|Ψj〉 = a†αaa|Ψi〉 . (5.16)

The matrix element of V̂HF is equal to (Eq. (C-20))

〈Ψi|V̂HF|Ψj〉 = 〈a|V̂HF|α〉 =
h∑

k

〈ka|V̂ |k̃α〉 , (5.17)

while for the two-body operator using Eq. (C-24) we obtain

〈Ψi|V̂ |Ψj〉 =




h∑

k

+
p(Ψi)∑

k

−
h(Ψi)∑

k


 〈ka|V̂ |k̃α〉 . (5.18)

Combining Eqs. (5.17) and (5.18) we find the final expression for the non-diagonal

matrix elements in this case

Hij = 〈Ψi|V̂res|Ψj〉 =




p(Ψi)∑

k

−
h(Ψi)∑

k


 〈ka|V̂ |k̃α〉 . (5.19)

2. |Ψj〉 differs from |Ψi〉 by two nucleons, namely up to a phase factor

|Ψj〉 = a†αa†βaaab|Ψi〉 . (5.20)
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In this case we have

〈Ψi|V̂HF|Ψj〉 = 0 (5.21)

and

〈Ψi|V̂ |Ψj〉 = 〈ba|V̂ |α̃β〉 . (5.22)

Using the method developed in [152] (presented in the Appendix C) for the

calculation of N-body matrix elements, we have shown that simple and double sum-

mations over the hole states in |Ψ〉 disappear in the calculation of matrix elements

of V̂res. As we have seen from Eqs. (5.17-5.19) these terms appear in both V̂ and

V̂HF components and are automatically cancelled making it so that all Hartree-Fock

contributions are removed expliciting therefore the genuinely residual character of

the interaction (5.9).

Self-consistent HTDA

It is possible to insert our approach in a self-consistent framework. Assuming that

we have at our disposal a correlated wave function |Ψ〉 (which is e.g. after one

diagonalization of the matrix) we may compute the matrix element of the one-body

reduced density

〈i|ρ|j〉 = 〈Ψ|a†jai|Ψ〉 . (5.23)

Folding this density with the two-body effective potential, in our case a Skyrme

interaction with the SIII parametrization, one gets a new mean-field and then di-

agonalize the associated one-body Hamiltonian ĤHF yielding a new Slater deter-

minant |Ψ0〉. From particle-hole configuration mixing defined in terms of the HF

single-particle states associated with ĤHF one gets a new correlated wave function

|Ψ〉 from which a new density matrix ρ is evaluated from Eq. (5.23) and so on, until

the self-consistency is reached. In this way we incorporate in the mean-field all the

sp properties resulting from the many-particle correlations.

Time-reversal symmetry

We have used an ensemble of Slater determinants to build the orthonormal basis

in which we diagonalize the Hamiltonian (5.1). However, the function (5.4) is not

even with respect to time-reversal symmetry in its 1p1h and 2p2h parts (except for

the pair excitation for the latter). This may be especially harmful in the case of pn

correlations where the excitations (1p1h)p ⊗ (1p1h)n are of particular interest.

To restore the time-reversal symmetry, we use the following combination instead

of (5.4)

|Ψi(±)〉 ⇒ 1√
2
(|Ψi〉 ± |Ψ̄i〉) (5.24)

and replace the matrix elements

〈Ψi|V̂res|Ψj〉 (5.25)
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by
1

2
〈Ψi ± Ψ̄i|V̂res|Ψj ± Ψ̄j〉 . (5.26)

Considering the time-reversal operator for a system of Nτ particles with a spin 1/2

like the nucleons in an atomic nucleus we may write

T̂ 2 = (ΠNτ
i=1(−iσy)K)2 = (−1)Nτ . (5.27)

Since we consider even-even nuclei for which T̂ 2 = 1 we restrict ourselves to the basis

containing only many-body states even under the time-reversal symmetry which

limits additionally the size of this basis.

5.1.2 Technicalities

The δ force

In Sec. 5.1.1 we have presented the HTDA method introducing the residual inter-

action

V̂res = V̂ − V̂HF + 〈Ψ0|V̂ |Ψ0〉 . (5.28)

However, most of the effective forces of the Skyrme type, including the SIII force

applied in the HF part of this work, are not able to reproduce well the data in

the particle-particle channel. Therefore, in practical calculations we replace the

effective interaction defining the residual interaction by a δ force. The advantages

of the zero-range interaction of this type have already been discussed in Sec. 4.1.

With the use of a δ force, the exact Hamiltonian

Ĥ = K̂ + V̂ = 〈Ψ0|Ĥ|Ψ0〉+ ĤIQP + V̂res (5.29)

is substituted with

Ĥ ′ = 〈Ψ0|Ĥ|Ψ0〉+ ĤIQP + V̂δ − V̂ HF
δ + 〈Ψ0|V̂δ|Ψ0〉 , (5.30)

where V̂ HF
δ is the one-body reduction of the V̂δ interaction. The latter in the isovector

(|Tz| = 1) channel was defined by Eq. (4.87).

In other words, the real residual interaction is approximated by V̂δ − V̂ HF
δ +

〈Ψ0|V̂δ|Ψ0〉 so in practice one needs to replace the two-body interaction V̂ by the δ

interaction when calculating many-body matrix elements in Eqs. (5.13, 5.15, 5.19,

5.22). The exact expressions for two-body matrix elements of V̂δ for like-particle

interaction are given in Appendix B.

Construction of 0+ states

In the limit of vanishing proton-neutron coupling the nuclear wave function is a

product of two correlated wave functions, one for each charge state. The problem is

then decoupled into two separate problems of finding correlated functions for protons

and neutrons.
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(0p0h)

(2p2h)

(1p1h)

(2p2h)

1 pair excitation

(4p4h)

2 pairs excitation

(6p6h)

3 pairs excitation

Figure 5.1: Examples of particle-hole excitations considered in this work. Red lines

indicate Fermi levels.

It is clear that in practice we need to truncate the space of particle-hole excita-

tions which relevance needs to be checked a posteriori. The global size of the sub-

space of retained single-particle configurations being defined, the particular choice

of i-particle i-holes states to be included in the calculations is then constrained by

the symmetries of the many-body state to be described. In what follows we conserve

axial symmetry and parity and specify the states by quantum numbers Ωπ
i .

To produce a nuclear state of a given Ωπ number one has to couple proton and

neutron configurations Ωπ
n(mp−mh)⊗Ωπ

p (m′p−m′h) of some m(m′)-particle m(m′)-
hole states in such a way that

Ω = Ωn(mp−mh) + Ωp(m
′p−m′h),

π = πn(mp−mh)πp(m
′p−m′h) . (5.31)

where

Ωτ (mp−mh) =
∑
p

Ωτp −
∑

h

Ωτh (5.32)

and

πτ (mp−mh) =
∏
p

πτp ×
∏

h

πτh . (5.33)

In the above mentionned decoupling scheme and in view of the scalar and parity-

conserving character of the residual interaction (δ force) it is obvious that the states

corresponding to various coupling schemes will not mix. In practice, when search-

ing for a GS configuration the discrimination between possible candidates may be
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approached on the basis of unperturbed energies. In view of the latter, it is very

likely that the ground state of an even-even nucleus, which is of course a 0+ state,

will result from two 0+ configurations, one for protons and one for neutrons. In that

case the correlated wave function will include the following configurations:

• 0p0h (Slater determinant) state;

• 1p1h states such that both the particle and hole states should have the same

quantum numbers which limits considerably their number;

• 2p2h states corresponding to a pair excitation, i.e. two particles placed in

Kramers doubly degenerate hole orbital are promoted to Kramers doubly de-

generate particle state;

• 2p2h states where only hole or conversely only particle states are Kramers

degenerate;

• 2p2h states where none of the hole or and particle states form a pair;

• multi-pair excitations;

Schematic examples of the particle-hole excitations are shown in Fig. 5.1.

If the physical assumptions behind the usual BCS pairing treatment are to hold,

one expects that most of the correlations beyond |Ψ0〉 should come from pair exci-

tations, as was found formerly in the HTDA framework studies. Nevertheless, for

the completeness of this study we will discuss the role of other excitations for the

considered mass region.

Matrix diagonalization

The HTDA method can be viewed as a kind of the shell model calculation thus it is in

practice limited by the dimensionality of the configuration space that can be handled

by a computer. In practice, to diagonalize matrices (5.6, 5.44) we use the common

shell model tool, which is the Lanczös algorithm [158] within the code developed

by Parlett and Scott [159] . Such a method allows to search for the lowest energy

configurations in a reasonable time. The advantage of the HTDA method is the

realistic character of the vacuum in use, that is of the HF solution corresponding to

the desired number of particles, deformation etc., which allows for a fast convergence

in terms of the number of included quasiparticles. Classifying states according to

the invariance groups of the Hamiltonian (e.g. the rotation over the z axis) and

conserving time-reversal symmetry limits considerably the matrix dimension. As it

appears, the matrix diagonalization problem is then far from attaining the difficulty

level of the so-called shell model calculations. In the mass region of interest and

within the truncation scheme adequate for this type of study, typically we need to

handle matrices ∼ 104 × 104.
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Table 5.1: Numbers of many-body configurations of different types depending on the

number of sp (hole/particle) levels contained in the sp configuration space window

for the cut-off value Esp
cut. These numbers correspond to the neutron spectrum of

64Ge.

Esp
cut(MeV) Number of h/p levels 1p1h 1 pair 2p2h 2pairs 3 pairs

6 4/8 6 32 162 168 224

12 8/12 12 96 1744 1848 12157

15 9/20 48 180 6596 6758 58404

18 11/27 76 297 13706 14230 >100000

5.2 Results: limiting case of nn & pp interactions

Before extending the HTDA framework to accommodate the pn pairing correlations,

we apply the formalism for the calculations with nn and pp interactions only and

discuss the validity of the HTDA approach with all its advantages and caveats. First,

the problems of the basis truncation and a possible way to fix the δ force strength

are presented. Some words are devoted to the self-consistency of our approach and

its impact on physical quantities. A special attention is paid to the power of the

method in its description of pairing correlations.

The departure point of our calculations are deformed mean-fields obtained in

HF+BCS(G) calculations in the ground states of several Ge isotopes (see Sec. 4.4.1).

These fields are used to initiate the self-consistent HF process thus to obtain the

vacuum Slater determinant from which the HTDA particle-hole space is constructed.

5.2.1 Basis truncation and fitting procedure

Having chosen a configuration space size in terms of the complexity of the many-

particle many-hole states, one has to further truncate on single-particle levels from

which these configurations will be built. In that we are facing a situation met in

usual BCS calculations. Typically we will limit our sp subspace to the so-called

single-particle configuration space window of the form

eF ± Esp
cut , (5.34)

eF being the Fermi energy defined as the average between the single-particle ener-

gies of the last occupied and the first empty levels and Esp
cut the cut-off parameter.

Its actual value should be such that the inclusion of further single-particle levels

does not introduce any significant physical consequences but only a possible slight

renormalization of the relevant quantities.
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Let us exemplify the dimension of the matrix to be handled depending on the

sp basis size. In Table 5.1 the number of possible configurations of various types

depending on the number of hole and particle levels contained in the window of the

size eF ± Esp
cut is listed (the numbers concern the neutron spectra of 64Ge).

The δ force for matrix elements calculations being used, it goes without say-

ing a cut-off and a coupling constant have to be given together to define fully the

interaction. In the HF+BCS calculations the pairing strengths were adjusted to

reproduce the 3-point experimental pairing gaps. Here we may act in the same way

to determine the strength of the δ force, however an analog of the BCS pairing gap

(quasiparticle energy) in the HTDA case is required. Assuming that the appearance

of the pairing gap is related to a breaking of the Cooper pair of the lowest energy we

perform for each charge state a calculation with the level closest to the Fermi energy

blocked and consider the difference of the expectation value of the residual interac-

tion of blocked and unblocked cases as a proper measure of pairing correlations that

can be compared to the empirical gap. Namely, we define

∆ = [E(n)− EIQP(n)]− [E(n− 1)− EIQP(n− 1)] (5.35)

where EIQP = 〈Ψ|ĤIQP|Ψ〉, E = 〈Ψ|Ĥ|Ψ〉 and n indicates here the number of sp

levels contained in the window.

Since we deal with N ∼ Z nuclei, similarly like in the BCS(δ) case, coupling

constants and cut-off energy values are assumed to be equal for neutrons and protons.

The strength of the δ interaction for the HTDA approach in the ground states

of considered nuclei is adjusted in non self-consistent calculations, that is to say

performing a single diagonalization of the Hamiltonian (5.7) matrix.

For a given sp configuration space with Esp
cut = 12MeV, we investigate the role

of different particle-hole excitations. The discussion is limited to the case of the
64Ge nucleus. The quantity we will refer to in the following is the correlation energy

defined in the HTDA approach as the difference of the mean values of the Hamilton

operator of the system in the correlated and non-correlated states

Ecorr = 〈Ψ|Ĥ|Ψ〉 − 〈Ψ0|Ĥ|Ψ0〉 . (5.36)

Let us first report the outcome of the calculations performed with 1p1h and 2p2h

excitations. In Table 5.2 the percentage of different components is listed in such a

case. It is seen that 1p1h component is fully negligible while 2p2h excitations of

other types do not contribute to more than 1% of the total amount. As expected,

the non-pair components can be neglected in the description of the ground states

which introduces a great simplification from the numerical point of view, since the

number of pair-excitation type components is highly limited as compared to all

possible particle-hole excitations (cf. Table 5.1).

In Table 5.3 a similar presentation is made for calculations with 1 pair, 1 and 2

pairs, and finally, with 1, 2 and 3 pairs embedded in the calculations. The absolute

differences in the correlation energy resulting from the addition of the next pair
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Table 5.2: Percentage of different components of the ground state correlated wave

function of 64Ge. These results concern the case where all types of particle-hole

excitations up to the 2nd order are taken into account.

0p0h 1p1h 1 pair 2p2h (all included)

neutrons 69.6 0.003 29.6 30.4

protons 70.6 0.005 28.3 29.3

mode are given in the last column. As can be seen, the 1 pair element is dominant

in each case. The probability for 3 pairs excitations is negligible and their presence

does not influence neither the values of the energies nor the percentage of other

components. Similarily, the probability for 2 pairs is very small (∼ 2%), yet their

presence boosts the population of 1 pair excitations and yields appreciable changes

in the correlation energy. This indicates that for such a correlation regime 1 and 2

pairs added to the vacuum are sufficient for further calculations in this nucleus and

that, a priori, they need to be taken into account when extending the method for

the proton-neutron pairing case.

Some words of caution are necessary when dealing with the interaction strength.

Upon using a zero-range force, any change of the configuration space requires a

readjustment of the interaction parametrization. Obviously, the results in Tables

5.2, 5.3 were obtained with different interaction strength. Those in Table 5.3 were

given for a value adjusted in the calculation accounting for 1 and 2 pairs excitations

only (V0τ = 300MeV fm3 for both charge states), for the sake of simplicity. However,

it is reasonable to presume that the adjustment done with 3 pairs would not change

this value or eventually would provide a slight decrease of the coupling constant

which would even reduce their anyhow insignificant influence on the results. In Fig.

5.2 it is shown how the correlation energy evolves with the increasing interaction

strength V0τ for neutrons and protons when subsequent types of pair excitations are

added. The difference between various calculations increasing toward larger values

of V0τ , it is still sizable only for the two first cases, precisely for the calculations with

1 pairs only and those including as well 2 pairs excitations.

Figure 5.2 shows also that for weak pairing interactions one pair excitations space

is sufficient to account for the full amount of the correlations in the system.

The last, obvious remark suitable here, is that the method of exact diagonal-

ization of the Hamiltonian matrix in the space of pair excitations does not collapse

for any weak interactions, contrary to the BCS treatment and some approximate

projections, i.e. Lipkin-Nogami, GCM+GOA or Projection After Variation method.
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Figure 5.2: Correlation energy vs interaction strength for neutrons and protons in
64Ge. The data concerns calculations with 1 pair excitations (1 pair), 1 and 2 pairs (2

pairs) and finally, 1,2 and 3 pairs (3 pairs) excitations embedded in the calculations.
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Table 5.3: Percentage of various components of the correlated wave function and

the correlation energy values for neutrons and protons in 64Ge. Results of three

calculations are reported: with 1 pair excitations added to the vacuum, with 1 and

2 pairs and with 1, 2 and 3 pairs included. The last column contains the difference

in the correlation energy between consecutive calculations.

0p0h 1 pair 2 pairs 3 pairs ∆Ecorr (MeV)

neutrons 65.4 34.6 – – 0

49.55 48.5 1.95 – 0.27

49.0 48.9 2.1 0.02 0.02

protons 65.3 34.7 – – 0

47.7 50.2 2.1 – 0.30

46.9 50.7 2.3 0.04 0.02

5.2.2 Self-consistency

In Sec. 5.1.1 it was described how to insert the HTDA into a self-consistent frame-

work. The self-consistent versions of the HTDA calculations presented in the forth-

coming were performed until the accuracy 10−6 MeV for the energy and about

10−4 b (b2) for the mass quadrupole and hexadecapole moments, respectively, was

achieved. In the case studied here (that is for 64Ge) and in calculations starting

with the HF+BCS mean-field the convergence was achieved after ∼ 40 iterations.

In view of the rigorous convergence conditions assumed here one may consider the

HTDA self-consistent process to converge rapidly. It seems to be a consequence of

the realistic vacuum and of the size of the valence space in use. However, there is

no guarantee that a fully self-consistent calculation with varying deformation would

not become problematic and numerically unstable and that a small configuration

space chosen here would be adequate to investigate the energy dependence on the

deformation.

Let us have a look what are the modifications brougth to the mean-field by the

self-consistent HTDA process. For the case of the 64Ge nucleus the neutron and

proton spectra in the vicinity of the Fermi surface are plotted in Fig. 5.3 and Fig.

5.4 before (HF+BCS) and after the HTDA self-consistent process (scHTDA). The

Fermi levels are indicated with dashed lines. Conspiciously, the qualitative and

quantitative differences are minor, the energy shifts in single-particle levels being

much smaller than 100 keV.

It is clear that self-consistent calculations of that type are a bit time consuming
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Figure 5.3: Neutron single-particle spectra in the vicinity of the Fermi level resulting

HF+BCS and self-consistent HTDA (scHTDA) calculations for 64Ge. Fermi levels

are indicated with dashed lines.
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Figure 5.5: Theoretical (HTDA, Eq. (5.35)) and experimental 3-point pairing gaps

for neutrons and protons for considered Ge isotopes.

due to the computation of a large number of matrix elements at each iteration.

Hence, we limit the further discussion to consider only the results of a single HTDA

matrix diagonalization.

5.2.3 Ground states properties of Ge isotopes

Within fixed single-particle (Esp
cut = 12MeV) and particle-hole excitation spaces

(4p4h) the non self-consistent HTDA calculations are now performed. The δ force

strength (V0n=V0p=300 MeV fm3) is adjusted to reproduce the 3-point pairing gaps

of considered nuclei. Experimental and theoretical gaps for both kinds of particles

are plotted in Fig. 5.5. As can be seen, there is an undesirable (and explained below)

zigzag in the calculated neutron gaps pattern. The trend in theoretical proton gaps is

satisfactory though the gaps are systematically overestimated. Of course it could be

cured by reducing the coupling constant for protons, however it is not our aim here

to reproduce exactly the phenomenological quantities (for which the uncertainties

are quite large anyway) but to discuss the main features of the method within a

reasonable and possibly simple parametrization of the interaction.

Equilibrium deformation and radii

In the following the results obtained for quadrupole and hexadecapole mass mo-

ments and radii are demonstrated and compared to the HF+BCS ones. Since these

properties in the HF+BCS do not differ significantly upon the pairing force in use

(see Sec. 4.4.1), the results concern the simple G force pairing.

Let us recall the definitions of quadrupole and hexadecapole moments operators

Q̂20 =
A∑

i=1

(2z2
i − x2

i − y2
i ) , (5.37)

Q̂40 =
A∑

i=1

r4
i Y40(θi) . (5.38)



84 CHAPTER 5. PARTICLE NUMBER CONSERVING APPROACH

Table 5.4: Quadrupole (q2) and hexadecapole (q4) mass moments and mass radii

(rm) obtained in HF+BCS and HTDA calculations.

nucleus q2 (b) q4 (b2) rm (fm)

HF+BCS HTDA HF+BCS HTDA HF+BCS HTDA

62Ge 2.43 2.46 0.0312 0.0301 3.8743 3.8735
64Ge 2.65 2.67 0.0085 0.0051 3.9148 3.9133
66Ge 2.83 2.84 −0.0106 −0.0186 3.9548 3.9518
68Ge −2.98 -3.00 0.0422 0.0410 3.9970 3.9946

The mean values of the quadrupole and hexadecapole moments calculated in the

correlated HTDA state |Ψ〉
q2 = 〈Ψ|Q̂20|Ψ〉, q4 = 〈Ψ|Q̂40|Ψ〉 (5.39)

are expressed as matrix elements of these operators between many-body states |Ψi〉.
Using formulae of Appendix C these matrix elements can be written as sums of

matrix elements calculated between single-particle states.

The root mean square radius rm is calculated as

rm =

√
〈r̂2〉
A

(5.40)

where the expectation value of the squared position operator r̂2 is obtained by

integrating the isoscalar nuclear density ρ(r) (neutron+proton) times r2 over the

whole space

〈r̂2〉 =
∫

d3rρ(r)r2 . (5.41)

Again, this definition can be translated into the HTDA language if we take

proper mean values in the correlated state |Ψ〉. With the use of Eq. (C-17) we

obtain the mean value of the operator in the correlated state as a sum of matrix

elements calculated between single-particle states.

In Table 5.4 we list the equilibrium deformations q2 (in barns), q4 (in squared

barns) as found in HF+BCS and HTDA approaches. As seen the deformation hardly

varies in the HTDA calculation and the mass radii remain almost unchanged. This

is not surprising in view of the non self-consistent HTDA calculation done in the

HF+BCS minimum.

Occupation probability

The occupation probability in the HTDA method is contained in the single-particle

density ρ. Let us point out that this density is not diagonal in the HF basis, so one
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Figure 5.6: Occupation probabilities v2
i for neutrons (left panel) and protons (right

panel) plotted as functions of normalized sp energies for studied nuclei. The re-

sults concern: BCS with seniority pairing (BCS(G)), BCS with the δ-pairing force

(BCS(δ)) and HTDA calculations.
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Figure 5.7: Occupation probabilities v2
i for neutrons (left panel) and protons (right

panel) plotted as functions of normalized sp energies. The results correspond to

BCS, Lipkin-Nogami (LN), Projection After Variation (PAV) and Variation After

Projection (VAP) calculations performed in the ground state of 64Ge nucleus.

should first find a canonical basis which (by definition) diagonalizes ρ. The diagonal

matrix element ρii is the occupation probability v2
i .

In Fig. 5.6 the occupation probabilities for neutrons and protons as functions of

the single-particle energy normalized to the Fermi energy are plotted for all studied

cases. In addition to the BCS calculations (with seniority pairing and δ forces) the

HTDA ones are presented. It can be seen that both BCS approaches give similar

values of v2
i which, in the majority of cases, are more diffused than those produced

in the HTDA method.

For comparison, the results of similar HF+BCS(δ) calculations [160] for this

nucleus obtained in other particle-conserving approaches, precisely: Lipkin-Nogami

(LN), Projection After Variation (PAV) and Variation After Projection (VAP) re-

sults in addition to the corresponding BCS ones are depicted in Fig. 5.7 for neutrons

and protons in the ground state of 64Ge. As can be seen, the diminution of pair

diffuseness around the Fermi surface is a typical behaviour for particle number con-

serving approaches. It is seen in Fig. 5.7 that the same effect is observed in LN,

PAV and VAP methods, however the changes are far more significant in the exact

projection case (VAP) which is equivalent (a priori) with the HTDA case due to the

Ritz theorem.

Degree of correlations

To measure the effect on the energies of pairing correlations one can resort to the

consideration of the correlation energy, defined in the HTDA approach as the dif-

ference of the mean values of the Hamiltonian in correlated and uncorrelated states

(see Eq. 5.36). However, this quantity has no realistic analogue to be compared

with in the HF+BCS method as used in our case. Another variable that might shed
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Figure 5.8: Traces of the pairing tensor calculated in BCS with seniority pairing

(BCS(G)), BCS with the δ-pairing force (BCS(δ)) and HTDA approaches.
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Figure 5.9: Discrepancies in calculated and experimental binding energies (in MeV)

for HF+BCS models with seniority and δ-pairing forces and for HTDA method.

light on the degree of the correlations is the trace
∑

i uivi of the pairing tensor κ.

In the HTDA approach we may define vi and ui amplitudes through the density

matrix in the canonical basis. In Fig. 5.8 the traces of pairing tensors as obtained

in different approaches are shown for both types of particles. They deviate up to 30

percent in the case of neutrons, the results being closer to each other for protons.

Clearly, the diffusivity around the Fermi level reckoned with this quantity turns out

to be smaller in the HTDA approach (cf. Fig 5.6).

Let us now consider the total energy of the system. In Fig. 5.9 the discrepancies

between calculated and experimental binding energies are shown for the HF+BCS

approximation with two pairing models (seniority and δ-pairing) and for the HTDA

method. All three methods fail to the same extent in reproducing the extra binding

of the N = Z isotope– this problem will be rephrased when discussing the proton-

neutron pairing. For other nuclei the binding energy is lower in the HTDA approach
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Table 5.5: Percentage of various components of the correlated wave function result-

ing the HTDA calculation for neutrons and protons in studied nuclei.

neutrons protons

nucleus 0p0h 1 pair 2 pairs 0p0h 1 pair 2 pairs

62Ge 87.4 12.1 0.4 54.6 43.4 2.0
64Ge 49.0 48.6 2.3 47.8 49.9 2.3
66Ge 78.6 20.3 1.1 41.0 56.5 2.5
68Ge 68.1 30.2 1.7 71.5 27.2 1.3

by an amount of 0.3-1.0 MeV. It is then seen that interestingly the particle-number

conserving approach yields a similar (or even lower) total energy like the HF+BCS

approximation with a simultaneous reduction of the diffusivity around the Fermi

surface.

5.2.4 Ground state wave function decomposition

We have already examined the amount of different types of particle-hole excitations

in the ground state of 64Ge while discussing the basis truncation. Here, for the

completness of the study, we give the percentage of each type of p-h excitations in

the correlated wave function for all considered nuclei in Table 5.5.

The numbers in Table 5.5 show that together the vacuum and the 1 pair exci-

tation content are the dominant components in all cases and that the 2 pair exci-

tations are less probable. The amounts of vacuum and pair excitations parts differ

considerably for various isotopes which may be clarified by the consideration of the

single-particle spectra.

In Tables 5.6-5.9 particle-hole energy, probability and type of configuration for

the major components of the correlated solution are listed for neutrons and protons

in all cases. The numbers determining the type of the configuration correspond to

the indices of single-particle levels listed in the table. Only the levels contained in the

sp configuration space window are given. Each single-particle level is characterized

by its energy (eHF), quantum numbers Ωπ, mean square radius (〈r2〉) and the mean

value of the third spin component (〈sz〉) determined for this level. Additionally, the

single particle-spectra normalized to the Fermi level energy are plotted for neutrons

and protons in each case in Figs. 5.10-5.13.

As seen, in all cases the most probable pair excitation is that with the lowest

quasiparticle energy (or the two lowest ones in the case of nearly degenerate single-

particle levels). It may be noted that the large gaps (∼ 2.5MeV) in spectra in the

vicinity of the Fermi level diminish the probability of one pair excitations– this is
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the case of neutrons in N=30, 34 isotopes. The opposite situation found in the

other cases leads to the increase of this probability. This also explains the pattern

of neutron pairing gaps in Fig. 5.5 obtained with the same value of V0n for all nuclei.

A case demanding some special attention is that of protons in N=34 isotope

where the pair excitation with the lowest p-h energy is slightly favoured over the

vacuum (43% and 41% respectively), that is to say the ground state is a mixture

of the dominating 2p2h excitation and the vacuum. This is very easily understood

in view of the nearly degenerate character of the last occupied and first unoccupied

states (1/2− and 3/2−, respectively) as seen on Fig. 5.12.

In the N = Z nucleus, as may be expected, the decomposition of the correlated

wave functions of protons and neutrons is supremely analogous.
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Table 5.6: Particle-hole energy (Ei
p−h) in MeV, probability χ2

i and type of particle-

hole excitations contributing the most to the correlated wave functions of neutrons

and protons in 62Ge. The numbers describing configuration type correspond to the

indices of listed single-particle levels which are contained in the sp configuration

space window. Single-particle energies (eHF), quantum numbers (Ωπ), the third spin

component (〈sz〉) and mean values of the squared radius (〈r2〉) are given for each

level. Bars indicate time-reversed states.

62Ge

neutrons protons
Ei

p−h (MeV) χ2
i type Ei

p−h (MeV) χ2
i type

0.0 0.87 0p0h 0.0 0.54 0p0h
4.6 0.02 1p161h151p161h15 0.8 0.3 1p171h161p171h16

5.5 0.01 1p171h151p171h15 4.1 0.02 1p181h161p181h16

10.1 0.006 1p191h151p191h15 4.5 0.02 1p191h161p191h16

7.5 0.005 1p161h141p161h14 5.4 0.015 1p171h151p171h15

neutrons protons
No eHF Ωπ 〈sz〉 〈r2〉 No eHF Ωπ 〈sz〉 〈r2〉
9 -23.488 3/2+ -0.432 13.607 9 -11.907 3/2+ -0.429 14.012
10 -22.954 1/2+ 0.465 13.651 10 -11.213 1/2+ 0.467 14.138
11 -20.680 1/2− 0.164 18.966 11 -9.322 1/2− 0.166 19.583
12 -19.882 3/2− 0.334 18.588 12 -8.497 3/2− 0.337 19.191
13 -18.551 5/2− 0.438 17.957 13 -7.093 5/2− 0.436 18.512
14 -16.406 7/2− 0.500 17.197 14 -5.222 7/2− 0.500 17.766
15 -14.972 1/2− 0.058 18.754 15 -3.592 1/2− 0.035 19.939

Fermi level 16 -1.273 1/2− 0.206 19.856
16 -12.653 1/2− 0.193 18.322 Fermi level
17 -12.190 3/2− -0.183 18.079 17 -0.883 3/2− -0.167 19.270
18 -10.238 3/2− 0.349 17.908 18 0.797 3/2− 0.329 20.008
19 -9.903 1/2+ 0.107 22.394 19 0.989 1/2+ 0.110 23.673
20 -9.290 3/2+ 0.263 22.146 20 1.612 3/2+ 0.267 23.398
21 -8.813 1/2− -0.415 18.875 21 2.065 1/2− -0.408 21.801
22 -8.757 5/2− -0.438 17.852 22 2.229 5/2− -0.436 19.094
23 -8.164 5/2+ 0.371 21.658 23 2.775 5/2+ 0.374 22.934
24 -6.623 7/2+ 0.447 21.048 24 4.337 7/2+ 0.445 22.353
25 -4.480 9/2+ 0.500 20.490 25 6.147 1/2+ 0.382 36.030
26 -3.895 1/2+ 0.345 26.072 26 6.153 9/2+ 0.500 21.939

27 8.046 3/2+ 0.381 38.526
28 8.065 1/2+ -0.306 38.625
29 9.168 1/2+ 0.365 51.333
30 9.593 5/2+ 0.475 44.485
31 9.772 3/2+ -0.383 44.117
32 9.854 1/2− 0.453 69.347
33 10.728 1/2+ -0.048 40.600
34 10.873 3/2− 0.424 57.250
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Figure 5.10: Single-particle spectra normalized to the Fermi level energy for neutrons

and protons for 62Ge. Fermi levels are indicated with dashed lines.
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Table 5.7: Same as in Table 5.6 but for the N = Z Ge isotope.

64Ge

neutrons protons
Ei

p−h (MeV) χ2
i type Ei

p−h (MeV) χ2
i type

0.0 0.49 0p0h 0.0 0.48 0p0h
0.6 0.33 1p171h161p171h16 0.5 0.35 1p171h161p171h16

5.1 0.02 1p181h161p181h16 4.9 0.018 1p191h151p191h15

5.2 0.017 1p191h161p191h16 5.0 0.016 1p181h161p181h16

5.4 0.016 1p171h151p171h15 5.0 0.015 1p191h161p191h16

neutrons protons
No eHF Ωπ 〈sz〉 〈r2〉 No eHF Ωπ 〈sz〉 〈r2〉
9 -23.314 3/2+ -0.437 13.786 9 -13.103 3/2+ -0.438 14.202
10 -22.716 1/2+ 0.466 13.730 10 -12.366 1/2+ 0.470 14.226
11 -20.630 1/2− 0.149 19.210 11 -10.603 1/2− 0.146 19.729
12 -19.919 3/2− 0.335 18.913 12 -9.914 3/2− 0.334 19.432
13 -18.531 5/2− 0.445 18.320 13 -8.547 5/2− 0.445 18.847
14 -16.303 7/2− 0.500 17.357 14 -6.316 7/2− 0.500 17.891
15 -14.977 1/2− 0.045 18.987 15 -5.008 1/2− 0.036 19.869
16 -12.694 1/2− 0.229 18.621 16 -2.785 1/2− 0.245 19.733

Fermi level Fermi level
17 -12.388 3/2− -0.220 18.343 17 -2.519 3/2− -0.234 19.225
18 -10.098 3/2− 0.386 18.074 18 -0.288 1/2+ 0.095 23.548
19 -9.992 1/2+ 0.095 22.600 19 -0.251 3/2− 0.400 19.668
20 -9.476 3/2+ 0.255 22.421 20 0.210 3/2+ 0.255 23.343
21 -8.737 5/2− -0.445 17.982 21 1.017 5/2− -0.446 18.966
22 -8.600 1/2− -0.424 19.080 22 1.100 1/2− -0.428 21.167
23 -8.414 5/2+ 0.373 22.046 23 1.242 5/2+ 0.374 22.980
24 -6.794 7/2+ 0.454 21.458 24 2.830 7/2+ 0.455 22.429
25 -4.472 9/2+ 0.500 20.647 25 5.122 9/2+ 0.500 21.767
26 -3.957 1/2+ 0.359 26.410 26 5.177 1/2+ 0.385 33.323
27 -2.014 1/2+ -0.195 26.586 27 6.989 3/2+ 0.333 33.925
28 -1.968 3/2+ 0.273 26.498 28 6.989 1/2+ -0.257 33.698

29 8.733 1/2+ 0.196 46.591
30 8.831 3/2+ -0.222 35.377
31 9.124 5/2+ 0.424 40.649
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Figure 5.11: Same as in Fig. 5.10 but for 64Ge.
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Table 5.8: Same as in Table 5.6 but for the 66Ge isotope.

66Ge

neutrons protons
Ei

p−h (MeV) χ2
i type Ei

p−h (MeV) χ2
i type

0.0 0.78 0p0h 0.0 0.41 0p0h
5.0 0.018 1p191h171p191h17 0.3 0.43 1p171h161p171h16

5.0 0.016 1p181h171p181h17 4.0 0.02 1p171h151p171h15

5.4 0.014 1p181h161p181h16 5.9 0.01 1p181h161p181h16

5.4 0.012 1p191h161p191h16 6.4 0.01 1p191h161p191h16

neutrons protons
No eHF Ωπ 〈sz〉 〈r2〉 No eHF Ωπ 〈sz〉 〈r2〉
9 -23.169 3/2+ -0.440 13.957 9 -14.306 3/2+ -0.444 14.395
10 -22.543 1/2+ 0.466 13.843 10 -13.524 1/2+ 0.473 14.347
11 -20.541 1/2− 0.135 19.437 11 -11.819 1/2− 0.130 19.888
12 -19.907 3/2− 0.335 19.215 12 -11.243 3/2− 0.330 19.655
13 -18.477 5/2− 0.449 18.670 13 -9.931 5/2− 0.452 19.161
14 -16.235 7/2− 0.500 17.548 14 -7.440 7/2− 0.500 18.057
15 -14.959 1/2− 0.045 19.202 15 -6.339 1/2− 0.041 19.864
16 -12.745 1/2− 0.248 18.910 16 -4.234 1/2− 0.267 19.703
17 -12.528 3/2− -0.235 18.588 Fermi level

Fermi level 17 -4.076 3/2− -0.257 19.302
18 -10.043 3/2− 0.401 18.274 18 -1.512 1/2+ 0.083 23.524
19 -10.033 1/2+ 0.084 22.823 19 -1.337 3/2− 0.427 19.449
20 -9.603 3/2+ 0.247 22.706 20 -1.114 3/2+ 0.245 23.399
21 -8.759 5/2− -0.448 18.144 21 -0.234 5/2− -0.451 18.954
22 -8.601 5/2+ 0.373 22.440 22 -0.195 5/2+ 0.372 23.116
23 -8.504 1/2− -0.428 19.317 23 0.056 1/2− -0.439 20.820
24 -6.928 7/2+ 0.458 21.872 24 1.391 7/2+ 0.460 22.608
25 -4.521 9/2+ 0.500 20.865 25 4.033 9/2+ 0.500 21.783
26 -4.059 1/2+ 0.375 26.854 26 4.146 1/2+ 0.390 32.264
27 -2.242 3/2+ 0.275 26.909 27 5.794 3/2+ 0.297 32.603
28 -2.226 1/2+ -0.200 26.971 28 5.795 1/2+ -0.232 32.240
29 -0.267 3/2+ -0.091 27.250 29 7.585 3/2+ -0.134 33.800
30 0.377 1/2+ -0.121 32.978 30 7.738 1/2+ 0.090 48.578
31 0.575 5/2+ 0.229 30.071
32 0.607 1/2− 0.067 28.482
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Figure 5.12: Same as in Fig. 5.10 but for 66Ge.
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Table 5.9: Same as in Table 5.6 but for the 68Ge isotope.

68Ge

neutrons protons
Ei

p−h (MeV) χ2
i type Ei

p−h (MeV) χ2
i type

0.0 0.68 0p0h 0.0 0.71 0p0h
1.0 0.25 1p191h181p191h18 1.9 0.11 1p171h161p171h16

1.2 0.20 1p201h181p201h18 2.5 0.06 1p171h151p171h15

3.4 0.04 1p211h181p211h18 6.2 0.03 1p181h151p181h15

5.3 0.02 1p221h181p221h18 5.6 0.02 1p181h161p181h16

neutrons protons
No eHF Ωπ 〈sz〉 〈r2〉 No eHF Ωπ 〈sz〉 〈r2〉
10 -20.689 7/2− 0.500 19.760 9 -17.348 1/2+ -0.137 14.900
11 -20.650 1/2+ 0.407 13.733 10 -13.432 7/2− 0.500 20.260
12 -19.119 5/2− 0.131 19.086 11 -12.906 1/2+ 0.415 14.154
13 -18.298 3/2− 0.175 18.745 12 -11.751 5/2− 0.112 19.608
14 -17.803 1/2− -0.018 18.563 13 -10.830 3/2− 0.175 19.198
15 -13.751 5/2− -0.131 18.995 14 -10.320 1/2− -0.023 18.987
16 -13.649 3/2− 0.157 18.815 15 -6.591 5/2− -0.112 19.589
17 -12.642 1/2− -0.192 19.231 16 -6.272 3/2− 0.131 19.296
18 -10.586 9/2+ 0.500 23.259 Fermi level

Fermi level 17 -5.328 1/2− -0.170 19.781
19 -10.046 1/2− -0.127 18.392 18 -3.488 9/2+ 0.500 23.746
20 -9.971 3/2− 0.168 18.651 19 -2.616 3/2− 0.194 19.284
21 -8.892 7/2+ 0.249 22.661 20 -2.566 1/2− -0.175 19.042
22 -7.928 5/2+ 0.210 22.456 21 -1.706 7/2+ 0.240 23.192
23 -7.223 3/2+ 0.082 22.320 22 -0.620 5/2+ 0.201 23.000
24 -6.872 1/2+ 0.056 22.336 23 0.149 3/2+ 0.075 22.892
25 -6.209 1/2− 0.338 19.280 24 0.521 1/2+ 0.056 22.944
26 -3.312 5/2+ 0.344 25.767 25 1.390 1/2− 0.369 20.277
27 -2.139 1/2+ 0.378 29.379 26 3.994 5/2+ 0.334 27.735
28 -1.809 3/2+ -0.378 28.545 27 5.056 1/2+ 0.371 33.607
29 -1.758 7/2+ -0.249 24.715 28 5.062 7/2+ -0.240 25.642
30 -0.334 11/2− 0.500 27.276 29 5.256 3/2+ -0.373 31.308
31 0.102 3/2+ 0.209 28.584
32 0.558 1/2+ -0.242 30.187
33 1.118 5/2+ -0.053 25.944
34 1.389 9/2− 0.309 26.970
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Figure 5.13: Same as in Fig. 5.10 but for 68Ge.
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5.2.5 Summary

Before extending the HTDA framework which we have to account for pn pairing let

us summarize the main features of the approach. We have shown that the method

proposed here, applied for the calculations in the minima of the deformation of

several Ge isotopes, leads to the results being in qualitative agreement with those

of the customary HF+BCS approach yet being free of the particle number non-

conservation. The unquestionable advantage of the method is that it is valid in any

region of the interaction strengths and brings in a reasonable amount of correlations

in both, low pairing and superfluid regimes. Thus it seems a proper approach to

investigate the T = 0 and T = 1 pairing correlations which are known to compete

with each other in the BCS picture producing the isovector to isoscalar superfluidity

transition.

It was shown for the case of 64Ge that the so-called pair excitations are the

most important parts of the particle-hole excitations in the ground state. The space

of 1 and 2 pair excitations is sufficient to account properly for the ground state

superfluidity as the addition of 3 pairs has negligibly influenced the results. The

constitution of the correlated wave function for other even-even Ge isotopes suggests

that limiting the configuration space to 4p4h excitations of the pair excitation type

should be adequate as well in those nuclei.
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5.3 Proton-neutron HTDA

We have discussed in detail the HTDA method for the case where only the proton-

proton and neutron-neutron correlations are present. However, in the ground states

of N ∼ Z nuclei the proton-neutron pairing plays a non negligible role. Therefore,

in what follows we extend the HTDA approach by including explicitely the pn part

of the residual interaction.

As expected, (see the results of Sec. 5.2), the main contribution in the ground

states of considered nuclei beyond |Ψ0〉 comes from the so-called pair excitations,

i.e. when two particles in Kramers degenerate hole orbitals are promoted to two

Kramers degenerate particle states. The 1p1h excitations, as well as other types

of excitations are of minor importance. Accordingly, one can expect that the pn

pair excitation will be also the dominant phenomenon as far as pn correlations are

concerned.

The extended HTDA method is outlined for the general case where all type

of excitations are considered. The expressions for the matrix elements given in

the forthcoming are also suitable for the most general case of many-particle many-

hole excitations. Nevertheless, mostly for practical reasons, the numerical code

with proton-neutron coupling built for the purpose of this work can handle only

pair excitations. In this very first approach to pn correlations within the HTDA

framework the results of numerical calculations with 1 and 2 pairs excitations added

to the vacuum are presented.

5.3.1 The method

In the following we still consider Hamiltonian (5.7) but we do not neglect the proton-

neutron coupling in the residual interaction V̂res, namely we allow for the correlated

wave function the following expansion (indicating by τ and τ ′ two different charge

states):

|Ψ〉 ≡ |Ψτ ⊗Ψτ ′〉 = χ00|Ψτ
0 ⊗Ψτ ′

0 〉+
∑

{1p1h}τ

χ10|Ψτ
1 ⊗Ψτ ′

0 〉+
∑

{1p1h}τ ′

χ01|Ψτ
0 ⊗Ψτ ′

1 〉

+
∑

{1p1h}τ{1p1h}τ ′

χ11|Ψτ
1 ⊗Ψτ ′

1 〉+
∑

{2p2h}τ

χ20|Ψτ
2 ⊗Ψτ ′

0 〉+
∑

{2p2h}τ ′

χ02|Ψτ
0 ⊗Ψτ ′

2 〉

+ · · · (5.42)

with the normalization condition given as previously

∑

I

χ2
I = 1 . (5.43)

The solution of the problem involves, as in the decoupled problems, the diagonal-

ization of the Hamiltonian matrix defined in (5.7) which may be written for the
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many-body states (5.42):




H00,00 H00,01 H00,10 H00,11 H00,20 H00,02 . . .

H01,00 H01,01 H01,10 H01,11 H01,20 H01,02 . . .

H10,00 H10,01 H10,10 H10,11 H10,20 H10,02 . . .

H11,00 H11,01 H11,10 H11,11 H11,20 H11,02 . . .

H20,00 H20,01 H20,10 H20,11 H20,20 H20,02 . . .

H02,00 H02,01 H02,10 H02,11 H02,20 H02,02 . . .
...

...
...

...
...

...
. . .




, (5.44)

where the pairs of indices signify the numbers of particles and holes in neutron

and proton Slater determinants, respectively. The general expression for the matrix

element of (5.7) in many-body state (5.42) writes as follows

HIJ =

(
〈Ψ0|Ĥ|Ψ0〉+

∑
τ=p,n

EIτ
p−h

)
δIJ + 〈ΨI |V̂res|ΨJ〉 , (5.45)

where |ΨI〉 ≡ |Ψτ
k ⊗ Ψτ ′

l 〉, |Ψ0〉 ≡ |Ψτ
0 ⊗ Ψτ ′

0 〉 and
∑

τ=p,n EIτ
p−h is the total particle-

hole excitation energy of |ΨI〉 with respect to the vacuum Slater determinant. In

the forthcoming paragraph we repeat the expressions for diagonal and non-diagonal

matrix elements (Eqs. (5.15)-(5.22)) upon inserting the modifications due to the

presence of the proton-neutron interaction.

Diagonal matrix elements

In what follows the diagonal matrix elements of the Hamiltonian (5.7) are first

considered. From Eq. (5.45) the most general diagonal matrix elements writes

HII = 〈Ψ0|Ĥ|Ψ0〉+
∑

τ=p,n

EIτ
p−h + 〈ΨI |V̂res|ΨI〉 . (5.46)

Following the steps of the paragraph 5.1.1 and using the formula (C-17,C-22)

one obtains

〈ΨI |V̂res|ΨI〉 =
1

2

∑
τ=p,n




h(Ψτ
k)∑

i

h(Ψτ
k)∑

j

+

p(Ψτ
k)∑

i

p(Ψτ
k)∑

j

−2

h(Ψτ
k)∑

i

p(Ψτ
k)∑

j


 〈iτ, jτ |V̂ | ˜iτ, jτ〉

+
1

2

∑

τ 6=τ ′=p,n




h(Ψτ
k)∑

i

h(Ψτ ′
l )∑

j

+

p(Ψτ
k)∑

i

p(Ψτ ′
l )∑

j

−2

h(Ψτ
k)∑

i

p(Ψτ ′
l )∑

j


 〈iτ, jτ ′|V̂ | ˜iτ, jτ ′〉 ,

(5.47)

where the summations
∑h(Ψτ

k)
i (

∑p(Ψτ
k)

i ) are taken over all hole (particle) states of

with respect to the quasi-vacuum.

Since the average of the residual interaction is equal to zero in the non-correlated

state |Ψτ
0⊗Ψτ ′

0 〉, the diagonal matrix element of (5.7) can be written as (taking into
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account Eqs. (5.46, 5.47)):

HII = H00 +
∑

τ=p,n

EIτ
p−h

+
1

2

∑
τ=p,n




h(Ψτ
k)∑

i

h(Ψτ
k)∑

j

+

p(Ψτ
k)∑

i

p(Ψτ
k)∑

j

−2

h(Ψτ
k)∑

i

p(Ψτ
k)∑

j


 〈iτ, jτ |V̂ | ˜iτ, jτ〉

+
1

2

∑

τ 6=τ ′=p,n




h(Ψτ
k)∑

i

h(Ψτ ′
l )∑

j

+

p(Ψτ
k)∑

i

p(Ψτ ′
l )∑

j

−2

h(Ψτ
k)∑

i

p(Ψτ ′
l )∑

j


 〈iτ, jτ ′|V̂ | ˜iτ, jτ ′〉 ,

with the constant term H00 = 〈Ψτ
0 ⊗Ψτ ′

0 |Ĥ|Ψτ
0 ⊗Ψτ ′

0 〉.

Non-diagonal matrix elements

Let us consider a general matrix element HIJ between different many-body states.

It is seen from Eq. (5.45) that only the residual interaction contributes to the matrix

element in such a case. Since V̂res comprises one and two-body operators, we must

consider the following cases: |ΨI〉 deviates from |ΨJ〉 by one nucleon (one proton or

one neutron) or by two nucleons (two protons, two neutrons, one proton and one

neutron). All other non-diagonal matrix elements are vanishing.

Using the formulae (5.13) and (5.19) of Sec. 5.1.1 as well as the equation (C-36)

we find the matrix element in the case when the two many-body configurations differ

by one particle of the type τ (up to a phase factor due to the ordering of sp states

in |ΨI〉 and |ΨJ〉 which is carefully accounted for in the numerical code)

|ΨI〉 = a†ατaaτ |ΨJ〉 , (5.48)

HIJ =
1

2




h(Ψτ ′
l )∑

i

h(Ψτ ′
l )∑

j

+

p(Ψτ ′
l )∑

i

p(Ψτ ′
l )∑

j

−2

h(Ψτ ′
l )∑

i

p(Ψτ ′
l )∑

j


 〈iτ ′, jτ ′|V̂ | ˜iτ ′, jτ ′〉

+




p(Ψτ
k)∑

i

−
h(Ψτ

k)∑

i


 〈iτ, aτ |V̂ |iτ, ατ〉

+
1

2




p(Ψτ ′
l )∑

i

−
h(Ψτ ′

l )∑

i


 〈iτ ′, aτ |V̂ |iτ ′, ατ〉 . (5.49)

Next, in the case when we deal with a two-particle two-hole excitation of two

particles of different types, we get (up to a similar phase factor)

|ΨI〉 = a†βτa
†
ατ ′abτaaτ ′|ΨJ〉 . (5.50)

Using Eqs. (5.19) and (C-38) one obtains

HIJ =




p(Ψτ
k)∑

i

−
h(Ψτ

k)∑

i


 〈iτ, bτ |V̂ | ˜iτ, βτ〉
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+




p(Ψτ ′
l )∑

i

−
h(Ψτ ′

l )∑

i


 〈iτ ′, aτ ′|V̂ | ˜iτ ′, ατ ′〉

− 1

2
〈aτ ′, bτ |V̂ | ˜ατ ′, βτ〉 . (5.51)

The last possibility to be taken into account is a two-particle two-hole excitation

of two particles of type τ (two neutrons or two protons)

|ΨI〉 = a†βτa
†
ατabτaaτ |ΨJ〉 , (5.52)

inserting Eqs. (5.19,5.22) one obtains

HIJ =
1

2




h(Ψτ ′
l )∑

i

h(Ψτ ′
l )∑

j

+

p(Ψτ ′
l )∑

i

p(Ψτ ′
l )∑

j

−2

h(Ψτ ′
l )∑

i

p(Ψτ ′
l )∑

j


 〈iτ ′, jτ ′|V̂ | ˜iτ ′, jτ ′〉

+
1

2
〈aτ, bτ |V̂ | ˜βτ, ατ〉 . (5.53)

5.3.2 Remarks on the numerical treatment

Residual interaction

As already stated, the SIII parametrization of the Skyrme force used here for calcu-

lations is not suited to yield the correct correlation properties in the particle-particle

channel. Hence, when treating the pp and nn correlations in the HTDA method, the

effective interaction was replaced by a volume δ interaction in actual calculations.

In chapter 4 we have shown that some pn superfluidity in BCS(LN) methods can be

obtained in terms of T = 0, J = 1 and T = 1, J = 0 coupling which is the scenario

yielded by the application of the contact force to describe two-body interactions

between particles moving in time-reversed orbitals. Since we focus here on the pair

diffusion phenomenon around the Fermi surface, the BCS results support the choice

of a δ force for further investigations with pn correlations included.

In the calculations a substitution

V̂ ⇒ V̂δ = V T
0 δ(~r12)Π

SΠT (5.54)

is therefore done for the residual interaction. The operators ΠSΠT project onto spin-

isospin subspaces (see Eq. (4.11)), V T
0 is an interaction strength to be adjusted. One

should bear in mind that the inclusion of pn pairing opens the T = 0 channel for

correlations and, therefore, another strength parameter V T=0
0 in addition to V T=1

0

needs to be determined.

The integral formulae for two-body matrix elements of the δ force in all channels

are given in Appendix B.
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The 0+ states

To produce a nuclear state of a given Ωπ one needs to couple proton and neutron

configurations. The ground state of an even-even nucleus can be obtained as formerly

by coupling two unperturbed 0+ configurations, one for protons and one for neutrons.

However, in view of the inclusion of the pn interaction, 0+ can be as well reproduced

by coupling neutron and proton configurations with opposite Ωπ, provided that the

relations (5.31) are fulfilled.

Since we intend to consider only pair excitations in addition to the HF vacuum,

the correlated wave function contains the following components

• 0p0h Slater determinant state;

• 2p2h states corresponding to like-particle pair excitations, i.e. two particles

of the same charge placed in Kramers degenerate hole states are promoted to

two Kramers degenerate particle orbitals (like-particle, isovector pairing);

• 2p2h states corresponding to proton-neutron pair excitations. Since protons

and neutrons may fill the same spatial orbitals, three different kinds of pairs

may be formed:

– pn pairs: one neutron and one proton placed in the same (Ωπ
in = Ωπ

jp)

hole states are promoted to two same particle states- the nucleons in these

pairs have aligned spins, they may interact via the δ force in the T = 0

channel only. Note that such pairs were excluded in the BCS case for the

sake of simplicity;

– p̄n̄ pairs: one neutron and one proton placed in the same Kramers de-

generate (−Ωπ
in = −Ωπ

jp) hole states are promoted to two same Kramers

degenerate particle states (T = 0 channel only);

– pn̄ pairs: one neutron and one proton placed in Kramers degenerate

(Ωπ
in = −Ωπ

jp) hole states are promoted to two Kramers degenerate par-

ticle states (T = 0 and T = 1 channels);

• 4p4h excitations corresponding to 2 pairs transfers in all channels;

The sketch of the particle-hole excitations considered here is shown in Fig. 5.3.2.

It should be added that the time-reversal symmetry in the calculations with

proton-neutron pairs is restored as it was described in Sec. 5.1.1.

5.4 Results: general case of T = 0 & T = 1 inter-

actions

In what follows we investigate (full) isovector and isoscalar pairing correlations in a

space including up to 4p4h excitations of the pair excitation type. Our approach is
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(0p0h)n × (0p0h)p (1p1h)n × (1p1h)p

pn-pair excitation

(2p2h)n × (0p0h)p

nn-pair excitation

(0p0h)n × (2p2h)p

pp-pair excitation

2 pairs excitations

(2p2h)n × (2p2h)p (2p2h)n × (2p2h)p

(4p4h)n × (0p0h)p (0p0h)n × (4p4h)p

Figure 5.14: Examples of particle-hole excitations considered in this part of the

work. The black filled circles represents neutrons, the blue ones protons. Red lines

indicate Fermi levels.
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phenomenological. Therefore, in principle any change of the configuration space (like

embedding proton-neutron pairs) and introducing the full isovector and isoscalar

interaction would require a careful study of the basis truncation and the interaction

parametrization readjustment once the property of interest is determined. Such

applications of our approach in physical problems are reserved for future research.

In this preliminary study we investigate the effects of the addition of the proton-

neutron pairing in a basis fixed a priori and without fitting from scratch pairing

strengths. The behaviour of several quantities as examined in Sec. 5.2 is now

analyzed upon varying isoscalar pairing strength treated as a free parameter. This

is similar to what has been done in the BCS-type calculations of Sec. 4.4.3. The

single-particle configuration space and isovector pairing strength retained here are

the same as used before for the isovector (|Tz| = 1) case. We impose, as it should

be in principle, that all Tz components of the residual interaction in the isovector

channel are the same: V T=1
0n = V T=1

0p = V T=1
0pn = 300MeV fm3.

In parallel with Sec. 4.4.3 the ratio of two coupling constants x = V T=0
0 /V T=1

0 is

introduced as a tale-telling parameter for further presentation of the results. In the

course of the discussion, we will indicate the differences in the Hamiltonian matrix

diagonalization as resulting from the use of various particle-hole spaces. Possible

analogies or contradictions to the BCS(LN) results will be pointed out.

5.4.1 Decomposition of the correlated wave function

In our discussion of the many-body basis truncation in the case of like particle

pairing it was concluded that even though the role of 2 pair excitations is minor

in terms of the probability for a nuclear system to be found in such a state, their

presence enhances the 1 pair content and has a significant impact on the correlation

energy. Table 5.10 displays, for the case of merely one nucleus (64Ge) the percentage

of vacuum and paired components as obtained in the calculations in 1 pair and 1

and 2 pairs excitation spaces for several values of x. The boost of the 1 pair content

is observed independently on the x value, however the effect is less spectacular than

in the previous section. The 2 pair content remains small up to x = 2 value. For

x = 2.25 the probability of 2p2h and 4p4h components becomes equal. It is seen

that the majority of the 2 pair excitation percentage belongs to its Ψn
2⊗Ψp

2 (22) part.

It was argued [161] that for two kinds of particles in the same shell the fundamental

correlations are α-cluster-like which may be manifested here.

In addition to Table 5.10 the correlation energies obtained as a function of x in the

calculations done in the 1 pair excitation space (1 pair) and then in a more complete

(2 pairs) particle-hole excitation space are shown in Fig. 5.15 for the N = Z nucleus.

Two cases are distinguished: calculations limited to the isoscalar part of the residual

interaction (T = 0) and with the full pairing interaction (T = 0&T = 1). As seen,

the two T = 0 curves are indistiguishable till x ∼ 2. In the same range of residual

interaction intensities the shift between the results obtained with the full residual
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Table 5.10: Percentage of various components of the correlated wave function with

varying x value for 64Ge. Results of two calculations are reported: with 1 pair

excitations added to the vacuum and with 1 and 2 pairs included. The numbers in

parenthesis give a detailed percentage for each type of excitations: 20-one neutron

pair, 11-one proton-neutron pair, 02-one proton pair, 40-two neutron pairs, 31-one

neutron plus one proton-neutron pairs, 22-two proton-neutron pairs, 13-one proton-

neutron and one proton pairs, 04-two proton pairs excitations.

x 0p0h 1 pair (20 11 02) 2 pairs (40 31 22 13 04)

0.5 73.0 27.0 (13.0 3.0 11.0) – –

64.0 34.5 (17.0 3.0 14.5) 1.5 (0.7 0.0 0.0 0.0 0.6)

1.0 75.0 25.0 (11.0 3.0 10.0) – –

67.0 32.0 (16.0 3.0 13.0) 1.0 (0.6 0.0 0.0 0.0 0.4)

2.0 75.5 24.5 (8.5 8.0 8.0) – –

67.5 29.5 (11.0 9.0 9.5) 3.0 (0.4 0.1 2.1 0.1 0.3)

2.25 75.3 24.7 (8.2 9.0 7.5) – –

52.0 24.0 (9.0 8.0 7.0) 24.0 (0.4 0.0 23.0 0.0 0.4)

interaction is constant and may come from neglecting 2 pairs excitations of nn and pp

types. The rapid growth of the energy difference beyond a certain T = 0 interaction

strength value (x ∼ 2.25) suggests a T = 0 collectivity emerge there.

In Fig. 5.16 the interplay of different types of particle-hole excitations as func-

tions of x is exhibited for all (four) studied germanium isotopes. On the left side of

the figure the total percentage of the vacuum, 1 pair and 2 pair excitations content

is shown. As can be seen, in N = 30, N = 34 and N = 36 nuclei the percentage of

the vacuum is slightly increasing when the T = 0 interaction becomes stronger, at

the same time the 2p2h element is reduced. The tiny percentage of 4p4h excitations

remains almost unchanged with varying x value. For the N = Z isotope with x

larger than 2, the probability of the vacuum component is diminished and the 2 pair

content starts playing a significant role. On the right side of the Figure (in different

scale) the various components of the 1 pair content are displayed: proton-neutron

(11), neutron (20) and proton (02) pairs excitations are distinguished. As could be

expected, the probability of the pn pair excitation is the least in the N = Z + 4 nu-

cleus and in the other cases becomes nearly equal to that of pp or nn pair excitations

for x ∼ 2 value.

It is worth noting here two analogies with the BCS(LN) results obtained in this

work. First, the x ∼ 2 value beyond which the proton-neutron pair excitation prob-

ability becomes comparable to that of like-pairs excitations fits nicely with the one

where non-trivial proton-neutron pairing solutions were found in the quasiparticle

approach. Second, the probability of proton-neutron pair excitation in the 68Ge
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Figure 5.15: Correlation energy obtained in the calculation with 2p2h (1 pair) and

4p4h (2 pairs) spaces of pairs excitations. The results concern the case limited to

the isoscalar pairing interaction (T = 0) and the case of the full residual interaction

(T = 0&T = 1).

nucleus is found here to be negligible and similarily, it is worth noting that no su-

perfluid solution was found in this nucleus in the BCS(LN) method. This is however

no longer the case of N = 30 where pn-pairing seems to play a role in the HTDA

approach but was no observed in the BCS(LN) calculations.

In spite of the above mentionned nice confirmations of the BCS(LN) results, they

should be taken with a grain of salt. First of all, for general reasons the BCS(LN)

approach is specifically shaky in the region under scrutiny (low correlation regime

for some wave function components). Moreover, the HTDA space of particle-hole

excitations is quite restricted. The sufficiency of the 4p4h space in the case of

two decoupled problems does not imply that it should automatically be valid in a

more general case as here. We have shown in Ref. [162] that even in the space

restricted in all channels to 1 pair excitations a visible gain in energy is obtained

due to the T = 0 pairing and that the HTDA framework is fruitful in investigating

pairing correlations in the regions where phase transitions take place in the BCS

calculations. The numbers of Table 5.10 suggest however that a proper description

of T = 0 collective phenomena may demand multi-pair excitations and that this

issue stands in need of further investigation. Nevertheless, even at this stage of

the work sound conclusions concerning the proton-neutron HTDA approach may be

drawn.

We will briefly study, below, the respective role of pn and p̄n̄ pairs. In the BCS

theory presented in Chapter 4 and actual calculations of Sec. 4 the proton-neutron

pairs between particles moving in the same spin-space orbitals were excluded. Such a

limitation allowed for a simplification of the quasiparticle transformation and further
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Figure 5.16: Probability of different components in the correlated GS wave function

vs x value for studied nuclei. The left side of the figure shows the probability of

vacuum (0p0h), 1 pair (2p2h) and 2 pair excitations (4p4h) components. On the

right hand side the decomposition of the 2p2h content into proton-neutron (11),

neutron (20) and proton (02) pair excitations cases is exhibited. Note different

scales of right and left graphs.
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Figure 5.17: Differences in the correlation energies obtained in the complete config-

uration space and without pn and p̄n̄ pairs in calculations with isoscalar (squares)

and full pairing interactions (circles).

calculations and was supported by the HFB results of Ref. [11] where such pairs

were argued to play a negligible role in axial, non-rotating nuclei.

The easiness of both the HTDA formalism and numerical realisation of particle-

hole basis construction has opened the possibility of embedding such pairs without

much effort and thus to investigate their role in building correlations. The number

of such pairs is of course much smaller than the number of pairs of particles moving

in time-reversed orbitals and consequently of minor importance as compared to the

total basis size.

In Fig. 5.17 the discrepancies in the correlation energy calculated with all pos-

sible pairs and without pn and p̄n̄ pairs are shown. Circles mark calculations with

the full isovector and isoscalar pairing while the limiting case of the isoscalar pairing

is denoted with squares. In both cases the difference is sizable for larger x values.

Let us also study as an example one particular ground state wave function de-

composition. For the sake of transparency we will limit ourselves merely to the

T = 0 interaction case. It is found that the components with the largest probability

beyond the vacuum include sizable (if not dominant) pn-pair contributions. For

instance, at x = 2, we obtain the following decomposition of the 64Ge ground state:

|Ψ〉 = 0.81 0p0h

+ 0.025(1p1)n(1p1̄)p(1h15)n(1h15)p

+ 0.025(1p1̄)n(1p1)p(1h15)n(1h15)p

+ 0.021(1p5)n(1p3)p(1h15)n(1h15)p

+ 0.021(1p5̄)n(1p3̄)p(1h15)n(1h15)p

+ 0.005(1p5)n(1p3)p(1h13)n(1h13)p

+ 0.005(1p5̄)n(1p3̄)p(1h13)n(1h13)p + · · · ,
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(5.55)

where the numbers determining the configuration type correspond to the indices of

single-particle levels of Table 5.7 and bars indicate time-reversed states.

5.4.2 Correlation energy

Let us now investigate in more detail the behaviour of the correlation energy upon

increasing of the isoscalar pairing interaction strength.

In Fig. 5.18 the dependence of the correlation energy on x is compared for the

T = 0 as well as for the T = 0 and T = 1 cases.1 A constant increase of the two

plotted correlation energies (absolute values) is observed. Furthermore, the slopes

of the energy curves are shown to differ considerably as a function of Tz. The gain

in energy due to the occurence of the proton-nutron coupling concerns the whole

range of the isoscalar pairing strength which is opposite to BCS(LN) results where

no pn pairing gap, and therefore no energy due to the pn pairing, emerged below

some critical value x ∼ 2. Another point of difference is that in the BCS(LN)

approach no collective pn solution was found for N = 30, 36 isotopes. Here, even if

no T = 0 collectivity occurs, the T = 0 part of the residual interaction contributes

in a distinguishable way to the ground state energy of these systems.

Discussing the yield in energy due to the isoscalar pairing one is tempted to

revisit the problem of the Wigner term. In Sec. 4.4.3 we have shown that a kind of

the Wigner cusp emerges in the BCS(LN) calculations due to the isoscalar pairing,

however the gain in energy is rather modest. The situation found here is quite

analogous: the correlation energy increases due to the isoscalar pairing contribution

with magnitudes dependent on the |N − Z| difference. It suggests that a kind

of the Wigner cusp can be obtained in the present calculations with the T = 0

pairing. Indeed, the energy modifications are the largest for the N = Z system

which is shown in Fig. 5.19 where the difference of the ground state HTDA energies

∆E = E(V T=0
0 6= 0) − E(V T=0

0 = 0) are plotted. The scale of the Figure is the

same as that of Fig. 4.15 displaying the results obtained in the BCS(LN) case.

The similarity of the two plots is conspicious. However, the energy shifts between

neighbouring nuclei and ∆E values for a given x in two methods are different. From

the comparison of the two plots it may be concluded that the behaviour of the

BCS(LN) results depend much stronger on the T = 0 strength while the HTDA, as

expected, provides far more stable picture of pairing correlations. The inclusion of

the T = 0 pairing in the HTDA method leads to an extra stability of the N = Z

1Note that the configuration space is limited here to 4p4h excitations which means the 8p8h
component resulting from coupling of neutron and proton Slater determinants Ψn

4 ⊗Ψp
4 has been

neglected. Thus in the limit of no pn coupling (V T=1
0pn = V T=0

0pn = 0) the correlation energy
is not equal to the sum of neutron and proton correlation energies of two separate calculations
Ecorr 6= En

corr + Ep
corr. Therefore, direct comparisons of values from Sec. 5.2 with those obtained

here should not be done.
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Figure 5.18: Correlation energy vs the isoscalar and isovector pairing strengths ratio

x in N ∼ Z Ge isotopes. The cases of barely isoscalar interaction (T = 0) and full

pairing interaction (T = 0&T = 1) are distinguished.
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Figure 5.19: Normalized ground state energy (∆E = E(V T=0
0 6= 0)−E(V T=0

0 = 0))

as a function of the reduced isospin Tz = (N −Z)/2 for various values of the T = 0

and T = 1 pairing strengths ratio x obtained in the HTDA approach.

system but it is likely other types of correlations, not included here, should appear

necessary to obtain the experimentally observed spike in the isobaric mass parabola.

5.4.3 Summary

In the present section we have applied the HTDA formalism to evaluate pairing

correlations upon using isovector and isoscalar residual interactions. Our main em-

phasis was to study the basic features of proton-neutron correlations in this novel

approach and confronting them with the standard treatments based on the BCS

method. It was shown that the qualitative behaviour of the energies obtained in

the two approaches is similar however the T = 0 part of the residual give rise to an

additional binding for all studied nuclei and for all x values in the HTDA method

whereas BCS(LN) calculations do not. The presence of the isoscalar pairing in the

HTDA method leads to a spike in the binding energy in the vicinity of the N = Z

nucleus.

The HTDA results confirm the crucial role of the particle number conservation

in the description of proton-neutron correlations. However, the point of the role of

multi-pair excitations in the description of the T = 0 superfluidity in the HTDA

method needs to be explored in further studies.



Chapter 6

Summary and perspectives for

future research

The central attention of the presented dissertation was focused on the investigation

of the correlations beyond the mean-field, especially the proton-neutron pairing

which is now extensively studied both experimentally and theoretically. In the

present work two different approaches to pairing correlations were exploited. First,

the customary BCS treatment was generalized to take into account proton-neutron

pairs in time-reversed orbitals in the case of a state-dependent pairing interaction.

Of course the generalizations of the independent quasiparticle theory have already

a long history, nevertheless most of the calculations so far were carried out only

with schematic pairing forces. Similarily, based on the existing work concerning

the Lipkin-Nogami method we improved our BCS approach with pn pairing by the

approximate particle number projection of this type. In the second part of the work a

novel approach to correlations, known as the Higher Tamm-Dancoff Approximation,

was studied in both like-particle pairing and proton-neutron pairing contexts. Such

questions like the role of the particle number conservation in the studies of the

proton-neutron pairing, the possibility of the existence of the T = 0 collectivity

and the origin of the Wigner energy were referred to while discussing consecutive

methods applied and developed in this work.

The detailed conclusions that may be derived from investigations of N ∼ Z

Ge isotopes were already written down in the summaries of each chapter. The

main issues may be shortly outlined as follows. First, we have shown that the

extension of the nuclear pairing interaction by adding a space-odd component to

the δ force does not influence considerably the picture obtained with the single δ

force, thus the rest of the calculations were performed in terms of T = 0, J = 1 and

T = 1, J = 0 couplings. The results of the generalized BCS and LN calculations with

the state-dependent force turned out to be qualitatively comparable to the results

of other authors obtained in BCS(LN) and HFB approaches with schematic pairing

interactions. However, the phase transition from T = 1 to T = 0 mode is less sharp

when using a state-dependent force. No coexistence of the pn pairing in T = 0 and

113
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T = 1 channels was found while the like-particle and the T = 0 modes coexistence

was obtained. The calculations with the approximate particle number projection

have shown that the restoration of the particle number symmetry is crucial for the

description of pairing correlations in N = Z nuclei for which in the BCS picture

the competition of different pairing phases leads to the already mentioned normal-

superfluid transitions.

The investigations of the proton-neutron pairing in the HTDA framework were

prefaced with the applications of the formalism in the case of protons and neutrons

treated as separate systems. It was shown that in the simple basis of the particle-

hole excitations of the 2 pair excitation type, with the δ force used for the residual

interaction, the ground state and superfluid properties of the studied nuclei can

be reproduced. The fingerprints of the T = 0 superfluidity in the HTDA method

appeared to be very similar as in the BCS(LN) approaches. It seems that the

T = 0 superfluidity occurs in both methods above some critical value of the isoscalar

interaction strength but the HTDA method is effective as well in the low pairing

regimes which is not the case of BCS or even Lipkin-Nogami approaches. The

inclusion of the T = 0 pairing lead to the appearance of the extra binding in the

vicinity of the N = Z nucleus which may be recognized as a contribution to the

Wigner cusp, however the relative energy gains in the two methods are substantially

different.

The presented study, especially when it deals with the HTDA framework, is far

from being complete. Further investigations and embedding other types of particle-

hole excitations in the numerical code may be in order to describe properly the

proton-neutron collectivity or at least, to judge their role in this aspect. It is of

course unclear what impact on all the results of this work might have broken sym-

metries, i.e. breaking of the angular momentum symmetry and spurious (due to the

BCS approximation) contributions to the breaking of the isospin symmetry. In fact

those are current difficulties encountered in mean-field approaches and most of the

calculations carried out on extensive scale suffer from both or at least one of these

symmetries non-conservation.

Despite its possible drawbacks, the HTDA formalism provides a possibility to be

applied in many interesting aspects of nuclear physics. From the opposite point of

view, they may be a robust test for the presented theory. The HTDA method was

already applied to examine the K-isomerism in the 178Hf nucleus. The discussion

of isomeric and superdeformed states in N ∼ Z even-even nuclei can be relatively

easily entered within the already developed formalism.

Another important issue is the investigation of the high spin states. It is well

known that the usual cranked HFB formalism does not ”see” the proton-neutron

pairing and is not very efficient in the low pairing regime which leads to the discrep-

ancies in the measured and calculated yrast bands. As we mentioned, the treatment

of pairing correlations in high spins in the Routhian-HTDA method was already

undertaken. Since the rotation has a different impact on like-particle and proton-
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neutron pairs, it may be judicious to enrich the RHTDA by including the proton-

neutron coupling.

A great challenge for the HTDA theory would be its application in the β and

ββ-decay problems, since it requires a precise knowledge of the ground and sev-

eral excited states of the parent and granddaughter nuclei, both even-even, plus a

detailed description of the intermediate odd-odd nucleus. While first attempts to

describe odd nuclei in the HTDA method already have been done, they wait for

further development.
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Appendix A

Definitions and notations

A.1 Axially symmetrical harmonic oscillator ba-

sis

The Hamiltonian of an axially deformed harmonic oscillator in the cylindrical coor-

dinates read

Ĥaxial =
h̄2

2m
∆ +

1

2
m

(
ω2

zz
2 + ω2

⊥r2
)

. (A-1)

Let us define auxiliary (stretched) variables η, ξ related to r and z as

ξ = zcz cz =

√
mωz

h̄

η = ρ2c2
⊥ c⊥ =

√
mω⊥

h̄
, (A-2)

where ρ2 = x2 + y2. We have

r2 = x2 + y2 + z2 =
η

c2
⊥

+
ξ2

c2
z

(A-3)

therefore the volume element in the stretched coordinates is given by

2πρdρdz = πd
η

c2
⊥

d
ξ

cz

=
π

c2
⊥cz

dηdξ . (A-4)

Introducing auxiliary variables one can express the eigenfunctions of the Hamiltonian

(A-1) as a product of three functions

ψΛ
nr

(η)ψnz(ξ)ψΛ(ϕ) , (A-5)

where the three quantum numbers: nr (number of nodes into the r direction),

nz (number of nodes into the z direction) and Λ (projection on the z axis of the

orbital angular momentum) are sufficient to characterize an eigenstate of (A-1). The
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components of (A-5) are given by

ψΛ
nr

(η) =
√

2NΛ
nr

c⊥η|Λ|/2e−η/2L|Λ|nr
(η)

ψnz(ξ) = Nnz

√
cze

−ξ2/2Hnz(ξ) (A-6)

ψΛ(ϕ) =
1√
2π

eiΛϕ ,

where Hnz and L|Λ|nr
are the Hermite and Laguerre polynomials respectively and the

normalization constants NΛ
nr

, Nnz are defined as

NΛ
nr

=

[
nr!

(nr + |Λ|)!

]1/2

Nnz =
[√

π2nznz!
]−1/2

. (A-7)

A.2 Hartree-Fock single-particle states

In the case of axially-deformed even-even nuclei considered in this work the third

component Jz of the total angular momentum is a good quantum number for a

single-particle state Φi. In other words if we denote by Ωi the eigenvalue of Jz

associated with the single-particle state |i〉 = |nr, nz, Λ, Σ〉 the wave function has

the form

Φi = Φ+
i |+〉+ Φ−

i |−〉 = f+
i eiΛ−ϕ|+〉+ f−i eiΛ+ϕ|−〉 , (A-8)

where

Λ± = Ωi ± 1

2
(A-9)

and f+, f− spatial functions depend only on the absolute value of Λ. The spinor

components Φ±
i can be written explicitely as

Φ±
i =

[
czc

2
⊥

2π
e−(ξ2+η)

]1/2 ∑
α

Ci
αeiΛ±ϕη|Λ|/2Hnz(ξ)L

|Λ|
nr

(η) . (A-10)

Due to the time-reversal invariance we may consider in the HF calculations only the

states with positive Ωi values. The time-reversed states |̄i〉 (Ωi < 0) belonging to the

same eigenvalues ei, are obtained by acting on |i〉 with the time-reversal operator

T̂ = −iσyK, (A-11)

where K denotes the complex conjugation operator. The time-reversed partner of

(A-8) has then the form

Φ̄i = Φ−?|+〉 − Φ+?|−〉 = f−i e−iΛ+ϕ|+〉 − f+
i e−iΛ−ϕ|−〉 . (A-12)
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A.3 Gradient operator in cylindrical coordinates

The components of the gradient operator
→∇= (∇r,∇z,∇ϕ) in cylindrical coordinates

are given by

∇r =
∂

∂r
, ∇z =

∂

∂z
, ∇ϕ =

1

r

∂

∂ϕ
=

il̂z
r

, (A-13)

where l̂z is the operator of the projection of the angular momentum. Acting with

operators (A-13) on the spinor components (A-10) one obtains

∇rΦ
±
i =

[
czc

4
⊥

2π
e−(ξ2+η)

]1/2 ∑
α

Ci
αeiΛ±ϕη(|Λ|−1)/2Hnz(ξ)L̄

|Λ|
nr

(η)

∇zΦ
±
i =

[
c3
zc

2
⊥

2π
e−(ξ2+η)

]1/2 ∑
α

Ci
αeiΛ±ϕη(|Λ|)/2H̄nz(ξ)L

|Λ|
nr

(η) (A-14)

∇ϕΦ±
i = i

[
czc

4
⊥

2π
e−(ξ2+η)

]1/2 ∑
α

Ci
αeiΛ±φΛη(|Λ|−1)/2Hnz(ξ)L

|Λ|
nr

(η).

Using the expressions for the derivatives of the Hermite and associated Laguerre

polynomials and their recursion formulae one finds that

H̄nz(ξ) = ξHnz(ξ)−Hnz+1(ξ)

L̄|Λ|nr
(η) = 2(nr + 1)L

|Λ|
nr+1(η)− (2nr + Λ + 2− η)L|Λ|nr

(η). (A-15)
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Appendix B

Two-body matrix elements

In the following we consider antisymmetrized matrix elements of the two-body inter-

action between like particles as well as between protons and neutrons. The residual

interaction we take in the form (Eq. (4.8), Sec. 4.1)

V̂12 = V̂δ + V̂k′δk

=
∑

T

V T
0τ [δ(~r12) + xk′δ(~r12)k]ΠSΠT , (B-1)

where

k′δ(~r12)k =
−1

2i
(
←
∇1 −

←
∇2)δ(~r1 − ~r2)

1

2i
(
→
∇1 −

→
∇2), (B-2)

V T
0τ , x determine the strength of the interaction and ΠS, ΠT are the operators pro-

jecting onto spin-isospin subspaces (4.11).

B.1 Integral formulae for two-body matrix ele-

ments

B.1.1 δ(~r12) force

First, consider the δ part of the above interaction

V̂δ =
∑

T

V T
0τδ(~r12)Π

SΠT . (B-3)

Due to the properties of the force, which is effective only when two particles are in

contact (~r1 = ~r2) and the requirement that the wave function of two fermions needs

to be antisymmetric, we need to consider only the cases: S = 0, T = 1 channel, for

both like-particle and proton-neutron interaction and S = 1, T = 0 channel for the

proton-neutron coupling.

T=1, L=0, S=0 channel

The antisymmetrized matrix element of (B-3) between like-particle states read

〈ab|V̂δ|c̃d〉 = 〈ab|V̂δ|cd− dc〉
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=
V T

0τ

2
〈ab|(1− P σ)(1− PMP σP τ )δ(~r12)|cd〉

=
V T

0τ

2
〈ab|δ(~r12)(1− P σ)2|cd〉

= V T
0τ 〈ab|δ(~r12)(1− P σ)|cd〉

= V T
0τ

∫
d3r(Φ+

a Φ−
b − Φ−

a Φ+
b )(Φ+

c Φ−
d − Φ−

c Φ+
d )

= V T
0τ

∫
ei(−Ωa−Ωb+Ωc+Ωd)ϕdϕ

∫
(f+

a f−b − f−a f+
b )(f+

c f−d − f−c f+
d )dρdz

=
V T

0τπ

czc2
⊥

δΩa+Ωb,Ωc+Ωd

∫
(f+

a f−b − f−a f+
b )(f+

c f−d − f−c f+
d )dηdξ , (B-4)

where a, b, c, d are single-particle states and Φa, Φb, Φc, Φd their corresponding wave

functions. The fa, fb, fc, fd are the spatial functions that depend only on absolute

values of Λ.

We have an analogous expression for proton-neutron matrix elements where we

denote e.g. lowercase for proton and uppercase for neutron states:

〈aB|V̂δ|c̃D〉 = =
V T

0τ

4
〈aB|(1− P σ)(1 + P τ )(1− PMP σP τ )δ(~r12)|cD〉

=
V T

0τ

2
〈aB|(1− P σ)δ(~r12)|cD〉

=
V T

0τ

2

∫
d3r(Φ+

a Φ−
B − Φ−

a Φ+
B)(Φ+

c Φ−
D − Φ−

c Φ+
D)

=
V T

0τπ

2czc2
⊥

δΩa+ΩB ,Ωc+ΩD

∫
(f+

a f−B − f−a f+
B )(f+

c f−D − f−c f+
D ) dηdξ .

(B-5)

T=0, L=0, S=1 channel

Similarily we find the expression for proton-neutron two-body matrix elements:

〈aB|V̂δ|c̃D〉 = 〈aB|Vδ|cD −Dc〉
=

V T
0τ

4
〈aB|(1 + P σ)(1− P τ )(1− PMP σP τ )δ(~r12)|cD〉

=
V T

0τ

2
〈aB|δ(~r12)(1 + P σ)|cD〉

=
V T

0τ

2

∫
d3r(Φ+?

a Φ−?
B + Φ−?

a Φ+?
B )(Φ+

c Φ−
D + Φ−

c Φ+
D)

+ Φ+?
a Φ+?

B Φ+
c Φ+

D + Φ−?
a Φ−?

B Φ−
c Φ−

D

=
V T

0τπ

2czc2
⊥

δΩa+ΩB ,Ωc+ΩD

∫
(f+

a f−B + f−a f+
B )(f+

c f−D + f−c f+
D )

+ f+
a f+

B f+
c f+

D + f−a f−B f−c f−D dηdξ . (B-6)
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B.1.2 Matrix elements of the k′δ(~r12)k force

Let us now derive the formulae for two-body matrix elements of the gradient part

of the interaction (4.8), that is to say of the interaction

V̂k′δk =
∑

T

xV T
0τk

′δ(~r12)kΠSΠT . (B-7)

This force has only space-odd components (L = 1), therefore due to the antisym-

metrization of the two-nucleon wave function one has to consider S = 1, T = 1

channel and S = 0, T = 0 channel.

T=1, L=1, S=1 channel

In the T = 1 channel we have three kinds of nucleonic pairs: proton-proton, neutron-

neutron and proton-neutron pairs. First, we consider the like-particle matrix ele-

ments of (B-7)

〈ab|V̂k′δk|c̃d〉 =
xV T

0τ

2
〈ab|k′δ(~r12)k(1− PMP τP σ)(1 + P σ)|cd〉

=
xV T

0τ

8
〈ab|(←∇1 −

←
∇2)δ(~r12)(

→
∇1 −

→
∇2)(1 + P σ)2|cd〉

=
xV T

0τ

4
〈∇1ab− a∇2b|δ(~r12)(1 + P σ)|∇1cd− c∇2d〉

=
xV T

0τ

4

∫
d3r

∑

i=r,z,ϕ

{
(γ+−

(ab)i
)?γ+−

(cd)i
+ (γ−+

(ab)i
)?γ−+

(cd)i
+ (γ+−

(ab)i
)?γ−+

(cd)i

+ (γ−+
(ab)i

)?γ+−
(cd)i

+ 2(γ++
(ab)i

)?γ++
(cd)i

+ 2(γ−−(ab)i
)?γ−−(cd)i

}
, (B-8)

where

γ++
(kl)i

= ∇iΦ
+
k Φ+

l − Φ+
k∇iΦ

+
l

γ−−(kl)i
= ∇iΦ

−
k Φ−

l − Φ−
k∇iΦ

−
l

γ+−
(kl)i

= ∇iΦ
+
k Φ−

l − Φ+
k∇iΦ

−
l

γ−+
(kl)i

= ∇iΦ
−
k Φ+

l − Φ−
k∇iΦ

+
l , (B-9)

where index i denotes r, z or ϕ gradient components. For the proton-neutron part

one has an analogous expression in which, as earlier, we denote the lowercase for

proton and uppercase for neutron states:

〈aB|V̂k′δk|c̃D〉 =
xV T

0τ

8

∫
d3r

∑

i=r,z,ϕ

{
(γ+−

(aB)i
)?γ+−

(cD)i
+ (γ−+

(aB)i
)?γ−+

(cD)i
+ (γ+−

(aB)i
)?γ−+

(cD)i
+

+ (γ−+
(aB)i

)?γ+−
(cD)i

+ 2(γ++
(aB)i

)?γ++
(cD)i

+ 2(γ−−(aB)i
)?γ−−(cD)i

}
. (B-10)
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T=0, L=1, S=0 channel

For proton-neutron pairs coupled to T = 0 one obtains:

〈aB|V̂k′δk|c̃D〉 =
xV T

0τ

4
〈aB|k′δ(~r12)k(1− PMP τP σ)(1− P σ)(1− P τ )|cD〉

=
xV T

0τ

8
〈aB|(←∇1 −

←
∇2)δ(~r12)(

→
∇1 −

→
∇2)(1− P σ)|cD〉

=
xV T

0τ

8

∫
d3r

∑

i=r,z,ϕ

{
(γ+−

(aB)i
)?γ+−

(cD)i
+ (γ−+

(aB)i
)?γ−+

(cD)i
)

− (γ+−
(aB)i

)?γ−+
(cD)i

− (γ−+
(aB)i

)?γ+−
(cD)i

}
(B-11)

with γ(kl)i
defined as in Eq. (B-9).

B.2 Two-body matrix elements in the asymptotic

basis

In the following we remind shortly the formulae necessary to calculate the matrix

elements of interest in the asymptotic basis. A more detailed presentation of the

problem as well as the discussion of the Moshinsky transformation brackets can be

found e.g. in Refs. [105, 163, 164] and references quoted therein.

B.2.1 Asymptotic basis

The kets of this basis are formed by the eigenvectors of the axially symmetrical

oscillator Hamiltonian (A-1) and the third component of the orbital and spin angular

momenta. A ket can be labelled

|nzn⊥ΛΣ〉 , (B-12)

where the number of quanta on x and y axes n⊥ = 2nr + |Λ|. There also exist boson

operators b+
α , b+

β in such a way that

|n⊥Λ〉 = |αβ〉 = (−1)β(b+
α )α(b+

β )β

√
α!√
β!
|00〉 , (B-13)

where

α =
n⊥ + Λ

2
β =

n⊥ − Λ

2
. (B-14)

B.2.2 Matrix elements of the δ force

For the interaction of the form

V̂12 = a0δ(~r) , (B-15)
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where the coefficient a0 may be a spin operator of the type ai = ti(1 + xiP
σ) one

has

〈n|δ(z)|n′〉 =
cz√
2π

A(n)A(n′) , (B-16)

where

A(n) = δn,even
(−1)n/2

√
n!

2n/2(n/2)!

δn,even = 0(n odd) δn,even = 1(n even) . (B-17)

For the rest of the wave function (~x being the projection of ~r on the xOy plane) we

have

〈ab|δ(~x)|a′b′〉 =
c2
⊥

2π
δa,bδa′,b′ . (B-18)

One then deduces (i standing for {ni, αi, βi, Σi})

〈12|a0δ(~r)|34〉 =
a0c

3
0

(2π)3/2

(∑
n

fnA(n)A(n′)

) 
∑

a,b

ga,bδa,bδa′,b′


 (B-19)

with

fn ≡ fn(n1, n2, n3, n4) = 〈n1n2||nN〉〈n3n4||n′N〉 (B-20)

ga,b ≡ ga,b(α1, β1, α2, β2, α3, β3, α4, β4)

= 〈α1α2||aA〉〈β1β2||bB〉〈α3α4||a′A〉〈β3β4||b′B〉 , (B-21)

where c0 = czc
2
⊥ is the spherical harmonic oscillator constant. From a given n (resp.

a, b) one deduces n′, N (resp. a′, A and b′, B) by means of selection rules for the

Moshinsky coefficients. The one dimensional brackets appearing in the formulae

above are calculated as

〈n1n2||nN〉 = δn1+n2,n+N

√
n1!n2!n!N !

2n1+n2

min(n2,n)∑

l=max(0,n2−N)

(−1)l

(n2 − l)!(N − n2 + l)!l!(n− l)!
.

(B-22)

B.2.3 Matrix elements of the
←∇ δ

→∇ force

Let us now deal with the interaction

V̂12 = a1

←
∇ δ(~r)

→
∇ , (B-23)

where a1 as previously may be a spin operator and
←
∇ acts on the left. The matrix

element of (B-23) read

〈12|a1

←
∇ δ(~r)

→
∇ |34〉 =

2c3
0a1

(2π)3/2

×

c2

z

(∑
n

fnA(n− 1)A(n′ − 1)
√

n
√

n′
) 

∑

a,b

ga,bδa,bδa′,b′


 + c2

⊥

(∑
n

fnA(n)A(n)

)

× ∑

a,b

ga,b(
√

a + 1
√

a′ + 1δa+1,bδa′+1,b′ +
√

a
√

a′δa−1,bδa′−1,b′)


 , (B-24)
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with c0, fn, ga,b defined as in Sec. B.2.2.

B.3 Matrix elements of the pairing interaction

In the case of BCS-like calculations (Sec. 4) we considered the antisymmetrized

matrix elements of the interaction (4.8) but acting only between particles in time-

reversed orbitals (pairing interaction). The formulae given here are the special cases

of Eqs. (B-4–B-11) in which we have replaced the b, d states by the time-reversed

partners of the states a, c.

B.3.1 Matrix elements of the δ(~r12) force

T=1, L=0, S=0 channel

The antisymmetrized matrix element of (B-3) force between like-particles in time-

reversed states read

〈aā|V̂δ|b̃b̄〉 = 〈aā|Vδ|bb̄− b̄b〉
=

V T
0τ

2
〈aā|(1− P σ)(1− PMP σP τ )δ(~r12)|bb̄〉

=
V T

0τ

2
〈aā|δ(~r12)(1− P σ)2|bb̄〉

= V T
0τ 〈aā|δ(~r12)(1− P σ)|bb̄〉

= V T
0τ

∫
d3r(Φ−

a Φ−?
a + Φ+

a Φ+?
a )(Φ−

b Φ−?
b + Φ+

b Φ+?
b )

= V T
0τ

∫
d3r(|Φ+

a |2 + |Φ−
a |2)(|Φ−

b |2 + |Φ+
b |2), (B-25)

with the wave function of a time-reversed state |ā〉 given by

Φa = Φ−?
a |+〉 − Φ+?

a |−〉 . (B-26)

Similarily, for the proton-neutron part one obtains

〈aĀ|V̂δ|b̃B̄〉 =
V T

0τ

2

∫
d3r(Φ+

AΦ+?
a + Φ−

AΦ−?
a )(Φ−

b Φ−?
B + Φ+

b Φ+?
B ) (B-27)

where a, b denote e.g. proton and A,B neutron states.

T=0, L=0, S=1 channel

In this case, we deal with proton-neutron Cooper pairs. One has:

〈aĀ|V̂δ|b̃B̄〉 = 〈aĀ|Vδ|bB̄ − B̄b〉
=

V T
0τ

2
〈aĀ|(1 + P σ)(1− P τ )(1− PMP σP τ )δ(~r12)|bB̄〉

=
V T

0τ

2
〈aĀ|δ(~r12)(1 + P σ)|bB̄〉



B.3. MATRIX ELEMENTS OF THE PAIRING INTERACTION 127

=
V T

0τ

2

∫
d3r

(
(Φ+

a Φ+?
A − Φ−

a Φ−?
A )(Φ+

b Φ+?
B − Φ−

b Φ−?
B )

+ 2Φ+?
a Φ−

AΦ+
b Φ−?

B + 2Φ−?
a Φ+

AΦ−
b Φ+?

B

)
,

(B-28)

where a, b are proton states and Ā, B̄ denote the states of their neutron time-reversed

partners.

B.3.2 Matrix elements of the k′δ(~r12)k force

T=1, L=1, S=1 channel

The space-odd antisymmetrized matrix element between like nucleons in time-reversed

states is given by

〈aā|V̂k′δk|b̃b̄〉 =
xV T

0τ

2
〈aā|k′δ(~r12)k(1− PMP τP σ)(1 + P σ)|bb̄〉

=
xV T

0τ

8
〈aā|(←∇1 −

←
∇2)δ(~r12)(

→
∇1 −

→
∇2)(1 + P σ)2|bb̄〉

=
xV T

0τ

4
〈∇1aā− a∇2ā|δ(~r12)(1 + P σ)|∇1bb̄− b∇2b̄〉

=
xV T

0τ

4

∫
d3r

∑

i=r,z,ϕ

{
−γ++

(aa)i
γ++

(bb)i
− γ−−(aa)i

γ−−(bb)i
+ γ++

(aa)i
γ−−(bb)i

+ γ−−(aa)i
γ++

(bb)i

− 2γ+−
(aa)i

γ−+
(bb)i

− 2γ−+
(aa)i

γ+−
(bb)i

}
, (B-29)

where:

γ++
(kl)i

= ∇iΦ
+?
k Φ+

l − Φ+?
k ∇iΦ

+
l

γ−−(kl)i
= ∇iΦ

−?
k Φ−

l − Φ−?
k ∇iΦ

−
l

γ+−
(kl)i

= ∇iΦ
+?
k Φ−

l − Φ+?
k ∇iΦ

−
l

γ−+
(kl)i

= ∇iΦ
−?
k Φ+

l − Φ−?
k ∇iΦ

+
l . (B-30)

For the like-particle pairing only γ(kk)ϕ components are non-zero thus the final ex-

pression for the matrix element has the form

〈aā|V̂k′δk|b̃b̄〉 =
xV T

0τ

4

∫
d3r

{
−γ++

(aa)ϕ
γ++

(bb)ϕ
− γ−−(aa)ϕ

γ−−(bb)ϕ
+ γ++

(aa)ϕ
γ−−(bb)ϕ

+ γ−−(aa)ϕ
γ++

(bb)ϕ

− 2γ+−
(aa)φ

γ−+
(bb)φ

− 2γ−+
(aa)φ

γ+−
(bb)φ

}
. (B-31)

Analogously, for the proton-neutron part one obtains

〈aĀ|V̂k′δk|b̃B̄〉 =
xV T

0τ

4
〈aĀ|k′δ(~r12)k(1− PMP τP σ)(1 + P σ)(1 + P τ )|bB̄〉

=
xV T

0τ

8
〈aĀ|(←∇1 −

←
∇2)δ(~r12)(

→
∇1 −

→
∇2)(1 + P σ)|bB̄〉
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=
xV T

0τ

8
〈∇1aĀ− a∇2Ā|δ(~r12)(1 + P σ)|∇1bB̄ − b∇2B̄〉

=
xV T

0τ

8

∫
d3r

∑

i=r,z,ϕ

{
γ++

(aA)i
(γ++

(bB)i
)? + γ−−(aA)i

(γ−−(bB)i
)?

− γ++
(aA)i

(γ−−(bB)i
)? − γ−−(aA)i

(γ++
(bB)i

)? + 2γ+−
(aA)i

(γ−+
(bB)i

)? + 2γ−+
(aA)i

(γ+−
(bB)i

)?
}

,

(B-32)

wit γ(kl)i
defined in Eq. (B-30).

T=0, L=1, S=0 channel

Component which we need to take into account is the two-body proton-neutron

matrix element for the particles coupled to T = 0. We have

〈aĀ|V̂k′δk|b̃B̄〉 =
xV T

0τ

4
〈aĀ|k′δ(~r12)k(1− PMP τP σ)(1− P σ)(1− P τ )|bB̄〉

=
xV T

0τ

8
〈aĀ|(←∇1 −

←
∇2)δ(~r12)(

→
∇1 −

→
∇2)(1− P σ)|bB̄〉

=
xV T

0τ

8
〈∇1aĀ− a∇2Ā|δ(~r12)(1− P σ)|∇1bB̄ − b∇2B̄〉

=
xV T

0τ

8

∫
d3r

∑

i=r,z,ϕ

{
γ++

(aA)i
(γ++

(bB)i
)? + γ−−(aA)i

(γ−−(bB)i
)?

+ γ++
(aA)i

(γ−−(bB)i
)? + γ−−(aA)i

(γ++
(bB)i

)?
}

(B-33)

with γ(kl)i
defined as formerly.

Since the time-reversed partners here are protons and neutrons, their spatial wave

functions corresponding to e.g. a, Ā states are not identical. Therefore, contrary to

the nn and pp cases, all the three γ(kl)r,z,φ
components have non-zero values.



Appendix C

Many-body matrix elements

In this appendix the calculations of matrix elements of one-body and two-body

operators in many-body basis which are crucial for the HTDA method are described.

We remind some theoretical aspects that are necessary to understand the application

of the Wick theorem to the calculations with quasi-contractions performed in this

work.

C.1 Wick theorem

Consider an even number of operators c1, c2, ..., c2n which can be either particle

creation a†i or annihilation aj operators. The normal ordered product of these 2n

operators, which we denote

: c1c2...c2n : (C-1)

is defined as a product in which all the creation operators are on the right and all

the destruction ones stand on the left side, all multiplied by the phase factor ±1

according as the necessary rearrangement requires an even or an odd number of

permutations, respectively e.g.

: a†1a2 := a†1a2 : a2a
†
1 := −a†1a2 . (C-2)

It is then trivial to notice that the mean value of a normal product in the vacuum

state is always equal to zero.

Using the definition of the normal product the so-called contraction of two op-

erators may be now introduced

c1c2 = c1c2− : c1c2 : . (C-3)

Taking into account the anticommutation rules for fermionic operators one has

a1a2 = a†1a
†
2 = a†1a2 = 0 a1a

†
2 = δ12 , (C-4)

thus the contractions of any two fermionic operators are real numbers and we can

identify them as a mean value of a product of two operators in the particle vacuum

129
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state |0〉:
a1a

†
2 = 〈0|a1a

†
2|0〉 . (C-5)

The Wick theorem states that a set of creation and destruction operators can

be expressed as a sum of these operators arranged in the normal product for all

possible contractions. The weak version of the Wick theorem concerns the same

way the mean value of a product of annihilation and creation operators evaluated

in the particle vacuum.

C.2 Quasiparticle transformation

C.2.1 Bogoliubov transformation

Suppose we perform a linear transformation which connects the (a†i , ai) operators

with an other ensemble of the operators (α†i , αi) so that

α†i =
∑

k

Akia
†
k + Bkiak , (C-6)

where A,B are complex matrices. Demanding that the two sets of operators obey

the same anticommutation rules we define the canonical transformation in which

the matrices A,B fulfil the conditions

AB̃ + ÃB = 0 (C-7)

and

AA† + BB† = 1 , (C-8)

where Ã, A† are transposed and Hermite conjugate matrices, respectively. If there

exists such a normalized state that

αi|0̃〉 = 0, ∀i (C-9)

we may call αi quasiparticle operators, the state |0̃〉 quasiparticle vacuum or quasi-

vacuum and the linear canonical transformation performed here– the Bogoliubov

transformation.

Particle-hole quasiparticle transformation

Given a Slater determinant |Ψ〉 a following linear transformation can be defined

b†i = ai, ∀i ∈ |Ψ〉
bi = a†i , ∀i 6∈ |Ψ〉 , (C-10)

where the single-particle states contained in the Slater determinant i ∈ |Ψ〉 are

dubbed hole levels and the others– particle levels.
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Since a pair of the operators (a†i , ai) is invariant under the transformation (C-10),

the anticommutation relations of (a†i , ai) remain the same for (b†i , bi) therefore the

canonical conditions are satisfied. The Slater determinant |Ψ〉 is then in this case

the quasi-vacuum for b†i , bi which we will refer to as particle and hole quasiparti-

cle operators. It is seen that creating a quasiparticle in the hole state (that is to

say in the occupied single-particle state) means annihilating a particle in the Slater

determinant |Ψ〉 thus the creation of a hole. Analogously, creating a quasiparti-

cle in the particle (unoccupied) state is adding one particle to |Ψ〉, thus creating

a particle. Consequently, this transformation is called particle-hole quasiparticle

transformation.

C.2.2 Quasi-contraction

We have defined a contraction of two operators as a mean value of a pair of operators

in the particle vacuum state |0〉. Similarily, we define a quasi-contraction as a mean

value of a pair of quasiparticle operators in the particle vacuum state |0〉 (or a mean

value of two particle opertors in a quasi-vacuum state |0̃〉). In the Bogoliubov

transformation, noting indifferently ci, cj for any particle operators a, a† and di, dj

for any quasiparticle operators b, b† we have

cicj = 〈0̃|cicj|0̃〉 (C-11)

didj = 〈0|didj|0〉 . (C-12)

One can show that for all Bogoliubov transformations the mean value of a prod-

uct of an even number of quasiparticle operators in the particle vacuum state (or

inversly, the product of an even number of particle operators in the quasi-vacuum

state) is formally given by the weak Wick theorem in which we replace the contrac-

tions of the operators by the corresponding quasi-contractions.

In the case of particle-hole excitations, relying on the anticommutation rules of

particle operators, one finds that

a†ia
†
j = aiaj = 0 (C-13)

a†iaj = δ
(h)
ij (C-14)

aia
†
j = δ

(p)
ij . (C-15)

Kronecker symbols δ
(h)
ij and δ

(p)
ij indicate that i, j should be identical and both hole

or particle states, respectively.

One possible choice for the quasi-vacuum is the particle-hole HF vacuum |HF〉.
However, we may construct other Slater determinants |A〉, |B〉 on the basis of a HF

quasi-vacuum via particle-hole excitations. This choice is arbitrary and in certain

cases we may treat |A〉 and |B〉 states as quasi-vacua as it will be applied in the

calculations of many-body matrix elements in the coming paragraphs.
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C.3 One-body operator

Hereafter, we use greek letters to specify the particle states and latin letters for hole

states. Only the indices i, j, k, l are used to define one and two-body operators.

In the formalism of the second quantization a one-body operator Θ is given by

Θ =
∑

ij

〈i|θ|j〉a†iaj , (C-16)

where the summation runs over all single-particle states. Let us now consider the

diagonal matrix element of the operator (C-16) in the many-body state |A〉. Using

Eq. (C-14) we have

〈A|Θ|A〉 =
∑

ij

〈i|θ|j〉〈A|a†iaj|A〉 =
∑

ij

〈i|θ|j〉δ(hA)
ij , (C-17)

where the index A was added to hA to point out that the final summation runs over

all the states occupied with respect to the quasi-vacuum |A〉. Concerning that the

set of occupied states of |A〉 is obtained on the basis of the Hartree-Fock vacuum

by adding the particle and removing the hole states, the final summation takes the

form
hA∑

i

=
hHF∑

i

−
h(A)∑

i

+
p(A)∑

i

. (C-18)

For a nondiagonal matrix element 〈A|Θ|B〉 where |B〉 differs from |A〉 by one nucleon,

that is to say |B〉 is a one-particle one-hole excitation of the state |A〉

|B〉 = a†αaa|A〉 (C-19)

one obtains (using formulae (C-14) and (C-15))

〈A|Θ|B〉 =
∑

ij

〈i|θ|j〉〈A|a†iaja
†
αaa|A〉

=
∑

ij

〈i|θ|j〉δ(hA)
ia δ

(pA)
jα = 〈a|θ|α〉 . (C-20)

It is easy to notice that other non-diagonal elements, where |B〉 differs from |A〉 by

more than one nucleon, are all equal to zero.

C.4 Two-body operator

In the following we consider matrix elements of the two-body operator Θ represented

in the formalism of the second quantization by its antisymmetrized matrix elements

θ̃ijkl and defined as

Θ =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉a†iτa†jτ ′alτ ′akτ =
1

4

∑

ijkl

θ̃ijkla
†
iτa

†
jτ ′alτ ′akτ (C-21)
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between m-hole m-particle states |A〉, |B〉. The indices {τ, τ ′} = {p, n} are added to

consider the like-particle and proton-neutron interactions.

First we calculate the diagonal matrix element of (C-21) in the N-body state

|A〉 which can be treated as a quasi-vacuum for particle-hole excitations. Using the

Wick theorem we obtain

〈A|Θ|A〉 =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉〈A|a†iτa†jτ ′alτ ′akτ |A〉

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉
(
δ
(hA)τ
ik δ

(hA)τ ′
jl − δ

(hA)
il δττ ′δ

(hA)
jk δτ ′τ

)

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉
(
δ
(hA)τ
ik δ

(hA)τ ′
jl − δ

(hA)
il δ

(hA)
jk δττ ′

)
. (C-22)

In an analogous way one may calculate non-diagonal elements: 〈A|Θ|B〉. If |A〉
differs from |B〉 by one nucleon

|B〉 = a†ατaaτ |A〉 (C-23)

we have

〈A|Θ|B〉 =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉〈A|a†iτa†jτ ′alτ ′akτa
†
ατaaτ |A〉

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉

〈A|δ(hA)τ
ia (a†jτ ′alτ ′akτa

†
ατ )− δ

(hA)
ja δττ ′(a

†
iτalτ ′akτa

†
ατ )|A〉

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉
(
δ
(hA)τ
ia (δ

(hA)τ ′
jl δ

(pA)τ
kα − δ

(hA)
jk δ

(pA)
lα δττ ′)

+ δ
(hA)
ja δττ ′(δ

(hA)
ik δ

(pA)
lα − δ

(hA)
il δ

(pA)
kα )

)
. (C-24)

When |B〉 is a two-particle two-hole excitation of |A〉, i.e.

|B〉 = a†ατa
†
βτ ′aaτabτ ′|A〉 (C-25)

the matrix element read

〈A|Θ|B〉 =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉〈A|a†iτa†jτ ′alτ ′akτa
†
ατa

†
βτ ′aaτabτ ′ |A〉

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉(δ(pA)τ ′
lβ δ

(pA)τ
kα − δ

(pA)
lα δ

(pA)
kβ δττ ′)

(δ
(hA)τ
ib δ

(hA)τ ′
ja − δ

(hA)
jb δ

(hA)
ia δττ ′) .

(C-26)

If |B〉 differ from |A〉 on more than two nucleons then 〈A|Θ|B〉 = 0.

Generally, |A〉 and |B〉 states should be understood here as Kronecker products

of proper many-particle many-hole states for protons and neutrons, e.g.

|A〉 = |(NpNh)n ⊗ (N ′
pN

′
h)p〉 . (C-27)
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In the case of no pn coupling, when the neutrons and protons can be treated sepa-

rately, the quasi-vacua |A〉 and |B〉 can be viewed as single neutron or proton Slater

determinants.

C.4.1 Proton-proton and neutron-neutron interaction

First, consider like-particle interaction. In this case τ=τ ′ in the operator (C-21) and

δττ ′ = 1.

For two identical many-body states

|B〉 ≡ |A〉 (C-28)

we have from Eq. (C-22)

〈A|Θ|A〉 =
1

4

∑

ijkl

〈ij|θ|k̃l〉〈A|a†ia†jalak|A〉

=
1

4

∑

ijkl

〈ij|θ|k̃l〉
(
δ
(hA)
ik δ

(hA)
jl − δ

(hA)
il δ

(hA)
jk

)

=
1

2

∑

kl

〈kl|θ|k̃l〉

=
1

2

h−h(A)+p(A)∑

k

h−h(A)+p(A)∑

l

〈kl|θ|k̃l〉 . (C-29)

In the case when two many-body states differ from each other by one nucleon,

i.e.

|B〉 = a†αaa|A〉 (C-30)

the formula (C-24) takes the form

〈A|Θ|B〉 =
1

4

∑

ijkl

〈ij|θ|k̃l〉〈A|a†ia†jalaka
†
αaa|A〉

=
1

4

∑

ijkl

〈ij|θ|k̃l〉
(
δ
(hA)
ia (δ

(hA)
jl δ

(pA)
kα − δ

(hA)
jk δ

(pA)
lα )

+ δ
(hA)
ja (δ

(hA)
ik δ

(pA)
lα − δ

(hA)
il δ

(pA)
kα )

)

=
∑

k

〈ka|θ|k̃α〉

=
h−h(A)+p(A)∑

k

〈ka|θ|k̃α〉 . (C-31)

For non-diagonal elements between two many-body states which differ by two

nucleons

|B〉 = a†αa†βaaab|A〉 (C-32)
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one obtains from Eq. (C-26)

〈A|Θ|B〉 =
1

4

∑

ijkl

〈ij|θ|k̃l〉〈A|a†ia†jalaka
†
αa†βaaab|A〉

=
1

4

∑

ijkl

〈ij|θ|k̃l〉(δ(pA)
lβ δ

(pA)
kα − δ

(pA)
lα δ

(pA)
kβ )(δ

(hA)
ib δ

(hA)
ja − δ

(hA)
jb δ

(hA)
ia )

= 〈ba|θ|α̃β〉 . (C-33)

C.4.2 Proton-neutron interaction

For the residual proton-neutron interaction τ 6= τ ′ in Eq. (C-21) thus δττ ′ = 0 and

the formulae C-22, C-24, C-26 reduce to shorter forms.

For the elements calculated between the same many-body states |B〉 ≡ |A〉 one

obtains

〈A|Θ|A〉 =
1

4

∑

ijkl

〈ij|θ|k̃l〉〈A|a†iτa†jτ ′alτ ′akτ |A〉

=
1

4

∑

ijkl

〈ij|θ|k̃l〉δ(hA)τ
ik δ

(hA)τ ′
jl

=
1

4

∑

kl

〈kτ, lτ ′|θ| ˜kτ, lτ ′〉

=
1

4

hτ−hτ (A)+pτ (A)∑

k

hτ ′−hτ ′ (A)+pτ ′ (A)∑

l

〈kτ, lτ ′|θ| ˜kτ, lτ ′〉 . (C-34)

If |A〉 and |B〉 differ by one nucleon, neutron or proton:

|B〉 = a†ατaaτ |A〉 (C-35)

Eq. (C-24) reduces to

〈A|Θ|B〉 =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉〈A|a†iτa†jτ ′alτ ′akτa
†
ατaaτ |A〉

=
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉δ(hA)τ
ia δ

(hA)τ ′
jl δ

(pA)τ
kα

=
1

4

hτ ′−hτ ′ (A)+pτ ′ (A)∑

j

〈aτ, jτ ′|θ| ˜ατ, jτ ′〉 . (C-36)

And last, consider the case |B〉 is a 2p2h excitation of the state |A〉
|B〉 = a†ατa

†
βτ ′aaτabτ ′|A〉 . (C-37)

We have from Eq. (C-26)

〈A|Θ|B〉 =
1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉〈A|a†iτa†jτ ′alτ ′akτa
†
ατa

†
βτ ′aaτabτ ′ |A〉

= −1

4

∑

ijkl

〈iτ, jτ ′|θ| ˜kτ, lτ ′〉δ(pA)τ ′
lβ δ

(pA)τ
kα δ

(hA)τ
ia δ

(hA)τ ′
jb

= −1

4
〈aτ, bτ ′|θ| ˜ατ, βτ ′〉 . (C-38)
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Other many-body matrix elements, not given in this appendix, are all equal to

zero.



Appendix D

Exact solutions of Lipkin-Nogami

equations

The Lipkin-Nogami equations of Sec. 4.3 can be expressed as

~G = N ~L , (D-1)

where we have introduced three components vectors ~G = (Gnn,Gpp,Gpn) and ~L =

(λnn
2 , λpp

2 , λpn
2 ). The solution of Eq. (D-1) is therefore given as

~L = −N−1 ~G . (D-2)

We need now to evaluate Gττ ′ and N ττ ′
ρρ′ elements defined as averages of eight quasi-

particle operators in the BCS vacuum, see Eqs. (4.80)-(4.81). After straightforward

but tedious calculations we obtain them in quite compact forms [165]:

Gττ ′ = 2
∑

ij>0

gij,ττ ′ [(κ
?ρ)

(τ

īi (κ(1− ρ?))
τ ′)
jj̄ − χ

(τ
ij χ

τ ′)
īj̄ ] , (D-3)

where

χ ≡ κκ? . (D-4)

We have applied here the notation in which the symmetrization of the product of

two factors with two indices is indicated by two parenthesis, e.g.,

x(r...zs) ≡ xr...zs + xs...zr . (D-5)

In this way the symmetry in τ and τ ′ is explicitly emphasized. The final result for

N ττ ′
ρρ′ is as before symmetric in both (τ, τ ′) and (ρ, ρ′) pairs of indices and reads

N ττ ′
ρρ′ = 8

[
Tr>χτ(ρ′Tr>χτ ′ρ) − Tr>(χτχτ ′)(ρρ′)

]
, (D-6)

where we denoted

Tr>(a) =
∑

i>0

aii . (D-7)

Using both Eq. (D-3) and (D-6) one easily finds the solutions λττ ′
2 of the Lipkin-

Nogami equations in the following special cases.
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• State dependent BCS pairing in the case of one type of nucleons (τ = τ ′).

λ2 =
1

4

∑
ij>0 gij

[
(κ?ρ)īi(κ(1− ρ?))jj̄ − (χjiχj̄ī)

]

Tr>χ2 − (Tr>χ)2

=
1

4

∑
ij>0 gij

[
(uiv

3
i )(u

3
jvj)− (uivi)

4
]

(
∑

i>0(uivi)2)2 −∑
i>0(uivi)4

, (D-8)

where

Tr<(a) ≡ ∑

i>0

aīi . (D-9)

• Seniority pairing: G ≡ gij = const, in the case of one type of nucleons (τ = τ ′)
(see Ref. [121])

λ2 =
G

4

Tr<(κ?ρ)Tr<(κ(1− ρ?))−∑
ji>0(χjiχj̄ī)

Tr>χ2 − (Tr>χ)2

=
G

4

[∑
i>0(uiv

3
i )

∑
j>0(u

3
jvj)−∑

i>0(uivi)
4
]

(
∑

i>0(uivi)2)2 −∑
i>0(uivi)4

. (D-10)



Appendix E

Isospin operator

Consider the operator of the total isospin T̂ of A particles in a nucleus. In the

formalism of the second quantization one has

T̂ =
∑

kl,ττ ′
〈kτ |̂tx + t̂y + t̂z|lτ ′〉a†kτalτ ′ , (E-1)

where τ is the eigenvalue of the t̂z operator. We adopt the convention: τ = −1 for

protons and τ = 1 for neutrons.

We aim at calculating the mean value of the operator (E-1) in the quasiparticle

vacuum (BCS) state. For z component we obtain:

〈T̂z〉 =
∑

kl,ττ ′
〈kτ |̂tz|lτ ′〉〈a†kτalτ ′〉 . (E-2)

The operator t̂z does not have non-zero elements between proton and neutron states

and we have by definition (see Eq. (4.21)) 〈a†kτalτ ′〉 = ρττ ′
lk which implies

〈T̂z〉 =
∑

k

1

2
δτ ′,nρ

τ ′τ ′
kk − 1

2
δτ,pρ

ττ
kk

=
1

2

∑

k

ρnn
kk − ρpp

kk = (N − Z)/2 . (E-3)

To evaluate mean values of x and y components of the total isospin operator we

introduce rising and lowering operators, as it is customary in any angular momentum

algebra

t̂+ ≡ t̂x + îty, t̂− ≡ t̂x − îty , (E-4)

thus

t̂x =
1

2
(t̂+ + t̂−), t̂y =

1

2i
(t̂+ − t̂−) . (E-5)

The operators t̂+, t̂− have non-zero non-diagonal elements: 〈p|̂t+|n〉 = 1 and 〈n|̂t−|p〉 =

1. The mean value of T̂x reads

〈T̂x〉 =
∑

kl,ττ ′
〈kτ |̂tx|lτ ′〉〈a†kτalτ ′〉
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=
1

2

∑

kl,ττ ′
〈kτ |̂t+|lτ ′〉〈a†kτalτ ′〉+

1

2

∑

kl,ττ ′
〈kτ |̂t−|lτ ′〉〈a†kτalτ ′〉

=
1

2

∑

kl

(δτ,pδτ ′,n + δτ ′,pδτ,n)δklρ
ττ ′
kl

=
1

2

∑

k

(ρpn
kk + ρnp

kk) . (E-6)

Since ρnp
kk = ρpn?

kk we obtain

〈T̂x〉 = <e
∑

k

ρpn
kk . (E-7)

Analogously like for T̂x we may evaluate the mean value of T̂y as

〈T̂y〉 =
1

2i

∑

k

(ρpn
kk − ρnp

kk) = =m
∑

k

ρpn
kk . (E-8)
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Résumé

Récemment avec les nouvelles possibilitées d’études expérimentales de noyaux
exotiques riches en proton, un regain d’intérêt s’est porté sur la problématique des
correlations d’appariement proton-neutron. Ce travail a pour but l’étude des corréla-
tions au delà du champ moyen et en particulier du pairing proton-neutron isoscalaire
et isovecteur pour différents isotopes de Germanium N ∼ Z. Nous avons d’abord
traité l’approche BCS classique avec l’approximation Lipkin-Nogami (LN) de pro-
jection sur le bon nombre de particules en utilisant une interaction résiduelle de type
contact. Ensuite dans une approche appelée Higher Tamm-Dancoff Approximation
(HTDA) les corrélations proton-neutron ont été traitées en conservant explicitement
le nombre de particules. Dans les deux cas, nous avons développé les codes numé-
riques correspondants pour traiter les couplages proton-neutron. Les résultats des
applications numériques pour quelques noyaux sont discutés et comparés dans les
deux approches BCS(LN) et HTDA avec pairing isoscalaire et isovecteur. Nous avons
montré que les deux approches donnent une description semblable des correlations
du fondamental mais que la méthode HTDA est plus efficace dans le régime de faible
pairing. Nous avons mis en evidence le rôle crucial de la conservation du nombre
de particules pour la description des corrélations d’appariement proton-neutron. La
prise en compte du pairing T = 0 genère une énergie de liaison supplémentaire pour
les noyaux N = Z conntribuant au terme d’énergie de Wigner.

Mots-clés : calculs microscopiques, champ moyen, approximation de Hartree-
Fock, appariement proton-neutron, approximation de BCS, approximation
Lipkin-Nogami, conservation de nombre de particules, noyaux exotiques

Abstract

Recently a revival of the interest on the subject of the proton-neutron pairing
is taking place due to the experimental possibilities of extensive studying of exotic,
proton-rich nuclei. The present work aims at investigating the correlations beyond
the mean-field, especially isoscalar and isovector pairing in several N ∼ Z Ge nu-
clei. The studies were performed in the well-known BCS approach improved by
the approximate Lipkin-Nogami (LN) projection onto a good particle number with
the contact two-body force to account for the residual interaction. Then the ap-
proach explicitely conserving particle number called Higher Tamm-Dancoff Approx-
imation (HTDA) was extended to take into account proton-neutron correlations. In
both cases the numerical codes were rebuilt to include the possibility of the proton-
neutron coupling. The results of numerical calculations obtained in BCS(LN) and
HTDA approaches with isoscalar and isovector pairing for several nuclei are pre-
sented, discussed and compared. It is shown that both approaches give a similar
picture of ground state correlations but the HTDA method is as well effective in
low pairing regimes. The crucial role of the particle number conservation in the
description of proton-neutron pairing correlations is confirmed. The inclusion of the
T = 0 pairing lead to the appearance of the extra binding in the vicinity of the
N = Z nucleus which may be recognized as a contribution to the Wigner cusp.

Keywords: microscopic calculations, mean field, Hartree-Fock approximation,
proton-neutron pairing, BCS approximation, Lipkin-Nogami method, parti-
cle number conservation, exotic nuclei




