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Abstract

Background: Patients treated for Substance Use Disorders exhibit highly fluctuating patterns 

of craving that could reveal novel prognostic markers of use. Accordingly, we 1) measured 

fluctuations within intensively repeated measures of craving and 2) linked fluctuations of craving 

to connectivity indices within resting-state (rs) brain regions to assess their relation to use among 

patients undergoing treatment for Alcohol, Tobacco and Cannabis Use Disorders
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Method: Participants —64 individuals with SUD for tobacco, alcohol, or cannabis and 35 healthy 

controls—completed a week of Ecological Momentary Assessment (EMA) during which they 

reported craving intensity and substance use five times daily. Before EMA, a subsample of 50 

patients, and 34 healthy controls also completed resting-state (rs)-MRI acquisitions. Craving 

temporal dynamics within each day were characterized using Standard Deviation (SD), Auto-

Correlation Factor (ACF), and Mean Successive Square Difference (MSSD). Absolute Difference 

(AD) in craving between assessments was a prospective prediction measure.

Results: Within-day, higher MSSD predicted greater substance use while controlling for mean 

craving. Prospectively higher AD predicted later increased substance use independently of 

previous use or craving level. Moreover, MSSD was linked to strength in five functional neural 

connections, most involving frontotemporal systems. Cerebello-thalamic and thalamo-frontal 

connectivity were also linked to substance use and distinguished the SUD from the controls.

Conclusion: To the best of our knowledge, this is the first study to indicate that instability 

in craving may be a trigger for use in several SUD types, beyond the known effect of craving 

intensity.
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Introduction

Substance Use Disorders (SUD) are consistently ranked among the greatest contributors to 

Global Burden of Disease estimates [1–3] and represent the most frequent forms of mental 

illness in the general population [4,5]. Over recent decades, treatments for these conditions 

have increasingly focused on craving management due to its nearly ubiquitous presence 

across the wide diversity of SUD as well as for its major role in relapse [6,7]. A recent 

meta-analysis suggested that despite strong evidence for the causal involvement of craving 

in risk of use, the variability that craving displayed, both between [6] and within individuals 

[8], could explain the heterogeneity of response to SUD treatments for all drug types [6]. 

We hypothesized that the characterization of craving’s fluctuations over time along with its 

underlying cerebral bases could reveal new potential markers of use vulnerability among 

patients undergoing treatments for Alcohol, Tobacco, and Cannabis Use Disorders.

Craving assessment has most often adopted a dimensional approach through tools that 

provide continuous measures of craving intensity [6]. Apart from SUD, recent literature on 

other psychiatric disorders has demonstrated the importance of considering the dynamic 

variability of symptoms and risk factors rather than focusing solely on averages or 

momentary intensity level [9–14]. The traditional approach includes the characterization of a 

single feature of the dynamic, such as variability indexed by Standard Deviation or temporal 

instability, or inertia indexed by an autocorrelation factor (ACF) [15]. Other measures take 

into account variability and temporal dependency simultaneously to characterize instability. 

The Mean Square Successive Differences (MSSD) index describes time-to-time fluctuations, 

that is, the trends in the measurements, and is considered a better proxy of the regulation of a 
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process than its global variability or temporal stability [15] and could be suited to define the 

complexity of craving’s fluctuations.

Although methodologically challenging, the characterization of such dynamics in daily life 

is possible through Ecological Momentary Assessment (EMA) by implementing repeated 

assessments of craving and substance use on a smartphone [16]. In SUD populations, 

a systematic review including 53 EMA studies examining the link between craving and 

subsequent substance use, 92 % showed that temporary craving increased the risk of 

substance use both concurrently and at the next sampling time [6,17]. Some studies using 

indexes of variability that did not take into account temporal stability such as SD or Mean 

Absolute Deviation were successful in demonstrating an impact of craving variability on 

substance use [18,19]. More recently, two studies investigated the dynamic of craving using 

MSSD, taking into account both variability and temporal stability: one comparing persons 

with or without psychotic disorders [20], and the other showing an impact on use beyond 

the mean level of craving in opioid use disorder [21]. While promising, these studies did 

not examine two high priority factors needed to advance a mechanistic understanding of 

SUD: identification of shared prognostic features across different types of SUD, and cerebral 

markers of prognostic factors [22].

Both needs can be simultaneously fulfilled by coupling EMA characterization of 

craving dynamics in Alcohol, Tobacco and Cannabis Disorders with neuroimaging. The 

complementarity of both methods has been highly promoted [23], and multiples studies 

emphasized its feasibility and pertinence (for a review of MRI and EMA papers until 

2020 please see [23]) especially for resting state (rs) fMRI that allows accounting for the 

wide range of brain regions implicated in this pathology [24]. While rs-fMRI analysis has 

previously assessed brain networks contributing to craving [24,25], coupling neuroimaging 

with EMA to investigate brain regional connectivity linked to craving dynamics has not yet 

been studied.

Previous investigations restricted to the mean index of craving intensity have highlighted 

positive associations between craving intensity and the strength of connectivity between the 

striatum and insula and between executive control networks and the amygdala in alcohol-

dependent relapsers [26]. Temporal variation in craving has been investigated to explicate 

the increase of functional connectivity observed during abstinence [24,25]. For instance, 

significant positive correlations between levels of craving and connectivity at rest in the 

limbic network were found among abstinent smokers [27]. Further, relative to a satiated 

state, abstinent smokers showed both enhanced subjective craving and increased functional 

connectivity between frontal regions and other brain areas, including the hippocampus, 

visual and sensorimotor regions, the striatum and the cerebellum [28]. As highlighted in 

these studies, craving could indeed arise from a balanced communication between executive, 

limbic and interoceptive networks that could also be linked to its temporal fluctuations [29]. 

However, it has been suggested that intra-individual variability of cognitive processes, such 

as their temporal dynamic, could reveal new cerebral biomarkers that are not salient in its 

mean [30]. Hence, it has been proposed that extracting dynamic features from intensive 

longitudinal data to identify underlying cerebral substrates could result in high ecological 

validity and improve predictive capacity [31].
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Herein, we aimed to exploit the complementarity of EMA and rs-fMRI to investigate 

the potential of craving dynamics as prognostic factors of use in individuals treated for 

Alcohol, Tobacco, and Cannabis Use Disorders on both behavioral and cerebral levels of 

processing. At the behavioral level, we hypothesized that indexes of craving dynamics 

could predict substance use within days beyond mean craving levels. To control for the 

directionality of this effect, i.e., whether the craving dynamic predicts use and not the 

inverse relation, this analysis will be replicated at the momentary level. To do so we will 

analyze if craving absolute difference between successive time point influence later use 

while controlling for previous use earlier that day. On the cerebral level, we hypothesized 

that the craving dynamic would be significantly linked to intrinsic brain connectivity, itself 

representing a new marker of use risks. Hence, we conducted whole-brain exploratory 

analyses between rs functional connectivity and the mean craving dynamic in order to assess 

whether the strength of resulting connections could predict later substance use. As this is 

the first study linking resting state connectivity to index craving dynamics measured via 

EMA, this analysis will be conducted using a whole brain region-to-region (ROI-to-ROI) 

approach, which is widely used and produces unbiased, interpretable results [32]. To refine 

the spatial limitation of ROI-to-ROI results [33], we replicated our results using a seed-to-

voxel approach. Finally, to examine the integrity of the rs functional networks that were 

characterized among the patients with SUD, we included a group of healthy subjects.

Methods

Participants

The present study was conducted in agreement with ethical standards depicted in the 

Helsinki Declaration and approved by the local ethical committee “Comité de Protection 

des Personnes de Sud-Ouest et Outre-Mer III» (N° 2014-A01668–39). Participants were 

volunteers and provided their written informed consent.

Patients were recruited between 2015 and 2018 in the context of their regular outpatient 

treatment for addiction at a university hospital and met DSM-5 criteria for a current alcohol, 

tobacco, or cannabis use disorder [34]. Patients received care, including pharmacotherapy 

and/or individual behavioral treatments (relapse prevention and psychosocial support). For 

the present study, patients with a history of bipolar disorder or schizophrenia (assessed 

via the Mini International Neuropsychiatric Interview 5.0.0 (MINI, [36]) were excluded, 

but patients with comorbid depression and / or anxiety were included. Addiction severity 

score for each patient was assessed with the Addiction Severity Index (ASI) [35] in their 

treated substance category. The experimental procedure started when patients were in the 

first month of treatment initiation.

Non-SUD participants were recruited through community announcements. They had no past 

or current psychiatric disorders, including substance abuse, as assessed by the MINI [36]. 

All participants had to be free from conditions incompatible with the use of a smartphone 

and were free of contraindications for MRI.
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EMA procedure

The procedure is presented in Fig. 1. All participants were trained to operate a study-

dedicated smartphone (Samsung Galaxy S with a 10.6 cm screen, 12-point font size). 

Subsequently, they were instructed to carry the smartphone with them for 7 consecutive 

days and to respond to five electronic surveys per day pseudo-randomly occurring including 

craving rating and substance use assessments. Pseudo-randomization was configured so 

that signals would occur between the participant’s chosen “wake” and “sleep” hours. 

The resulting “day-time” intervals were then divided into 5 equal periods of time from 

which the first and last 23 min were deleted to ensure a minimum of 46 min in between 

assessments. Randomization was applied within each resulting time interval. Regarding 

craving evaluation, all participants had to rate the extent to which they currently felt “the 

urge or desire to use a substance” on a scale ranging from 1 (no desire) to 7 (extremely 

strong desire). To take into account multiple type of use, each use report was summarized 

by use of the primary substance during treatment (use of treated substance) and use of any 

substance.

The repeated craving assessments were summarized to index within-day variability 

(standard deviation), stability (auto correlation factor), and dynamic (Mean Successive 

Square Difference) and between assessments variability (absolute value of craving difference 

between each consecutive time point) as described in the statistical analysis section.

A subsample of patients and controls underwent one MRI session, including anatomical and 

resting-state imaging, within 48 h before initiating the EMA phase. Financial compensation 

was provided with 80€ in-store purchase vouchers for the completion of both the EMA 

and MRI phases of the study. Moreover, to maximize compliance rate, an additional store 

voucher of 20€ was offered to participants who completed at least 75 % of the assessments.

MRI acquisition

Brain imaging data were collected using a 3.0 Tesla GE 32-Channel Head Coil MRI system. 

Anatomical volumes were acquired using a sagittal 3D T1-weighted (Repetition Time = 

8.5 ms, Echo Time = 3.2 ms, flip angle = 11°, FOV = 256 mm × 256 mm, voxel size = 

1 mm3, 176 slices). The resting-state functional images were collected using a single-shot 

echo-planar sequence (RT = 2.2 s, ET = 27 ms, flip angle = 80°, FOV = 192 mm × 192 

mm, voxel size = 3 mm × 3 mm × 3.5 mm, 42 axial slices, total duration 10.07 mn), during 

which participants were instructed to keep their eyes closed, not to fall asleep, and not to 

think about anything in particular.

Preprocessing

Preprocessing steps included use of FMRIPREP [37]. T1- weighted (T1w) images were 

corrected for non-uniformity using ANTs N4Bias-FieldCorrection v2.1.0 [38] and skull-

stripped using ANTs ants-BrainExtraction v2.1.0 (using the OASIS template). These T1w 

images were then normalized to the ICBM 152 Nonlinear Asymmetrical template version 

2009c [39] via nonlinear registration with the antsRegistration tool (ANTs v2.1.0 [40], using 

brain-extracted versions of both T1w volumes and the template, which produced images 

that were segmented using fast50 FSL v5.0 [41]. Functional images underwent slice timing 
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correction using 3dTshift from AFNI v16.2.07 [42], motion-correction via mcflirt (FSL 

v5.0.9, [43] and distortion correction through an implementation of the TOPUP technique 

[44] using 3dQwarp (AFNI v16.2.07 [42]. Images were then co-registered to the T1w 

using boundary-based registration [45] with nine degrees of freedom in FSL flirt. Motion 

correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation, 

and T1w-to-template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0). After correction for six motion parameters, white 

matter and CSF mean signals were removed with regression analysis using a general linear 

model (GLM), and ICA-based Automatic Removal Of Motion Artifacts (AROMA) was 

used to generate aggressive noise regressors to further reduce motion-artefact [46]. Finally, 

denoised data were bandpass filtered (0.008–0.1 Hz). The BOLD data were not subjected to 

spatial smoothing [47].

All MRIs were inspected by a radiologist. Participants with evidence of potential brain 

structural abnormalities were excluded (four control subjects and two patients). Further, two 

patients with movements >3 mm during the rs fMRI acquisition were excluded from the 

fMRI analyses solely.

Functional connectivity analyses were conducted using the CONN.16 toolbox [48] 

implemented in SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) on 

MATLAB, version 12.0 (http://www.mathworks.fr/products/matlab). Correction for multiple 

comparisons used FDR, and effects were considered significant at p <0.05.

Whole brain ROI to ROI functional connectivity

For each subject in the MRI subsample, the AAL atlas 3 [49] was used to build the ROI 

functional connectivity maps. The choice of this atlas was driven by the wide use of this 

atlas in neuroimaging research, including in activation and resting state studies, to allow the 

comparison of our results to a large pool of studies. To limit partial volume effects, each ROI 

was restricted to voxels belonging to an estimated gray-matter mask derived from the T1w 

image segmentation.

Mean fMRI time-series were extracted within each ROI. Functional connectivity was 

estimated using Pearson’s correlation coefficients between the BOLD time courses of all 

ROI pairs. These correlation coefficients were Fisher Z-transformed to produce a 166 × 166 

matrix representing the intensities of brain functional connections among the 166 ROIs.

Seed to voxel functional connectivity

For each of the significant connections between two ROIs, a seed-to-voxel analysis was 

conducted to identify the spatial localization of significant voxels. Connectivity was 

computed using Fisher Z-transformed correlation coefficients between the ROI BOLD time 

courses and each whole-brain individual voxel BOLD time-series.

Statistical analyses

For maximal statistical power, behavioral analyses were conducted including all participants 

that completed the EMA phase. Compliance rates with the EMA were defined as the percent 
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of completed surveys during the whole week and were calculated for description purposes. 

For each group, we calculated the mean level, standard deviation (SD), within-person 

autocorrelation (ACF) and Mean Square Successive Difference (MSSD) of craving per day 

resulting in 7 repeated measures per individual. Equations for each variability index are 

presented in the Supplementary Table 2. To evaluate substance use, we summed the number 

of times per day each individual used any substance or the treated substance.

To control for confounding effects of previous levels of craving and substance use on the 

links between craving dynamic and substance use, we also characterized craving fluctuations 

between time assessments and conducted prospective analyses. For this analysis, we 

calculated the absolute value of craving difference between each consecutive time point 

within days to predict the probability of later use.

Group comparisons

Due to the non-normality of the data distribution, group comparisons for mean craving, 

SD craving, MSSD craving, ACF craving, and substance use were performed using 

nonparametric tests: Mann-Whitney tests for the group effect (patients versus controls); one-

way Kruskal-Wallis (nonparametric) ANOVA, and post-hoc Dwass-Steel-Critchlow-Fligner 

(DSCF) pairwise comparisons for the effect of SUD subgroups (alcohol, tobacco, cannabis).

Hierarchical modeling of craving dynamics

In the SUD group of the EMA sample, we used hierarchical linear and nonlinear modeling 

(HLM version 8.0; [50] to account for the specific variance of repeated within-person 

first-level (at the day level) variables (craving MSSD or SD craving or ACF craving, mean 

craving, and substance use per day) nested into between-person second level variables 

(clinical and demographical). In each model, control and independent variables were entered 

as fixed effects; random effects on the first level intercepts equations were added. First-

level continuous predictors were centered around the participant’s own level; second-level 

continuous predictors were centered around the group mean. Dichotomous predictors for 

each level were entered uncentered.

For day-level analysis, the number of substance use occasions was entered in the model as 

outcomes, with craving dynamics indexes and mean craving of the same day as predictors, 

with age, sex, and addiction severity as control variables. The γ-coefficients generated 

represent the average within-person association between a predictor (e.g., MSSD) and the 

outcome (e.g., daily substance use).

For the prospective analyses (at the assessment moment level) in the SUD group, we entered 

absolute difference in craving between t and t + 1 as predictors of subsequent substance use 

(measured at time t + 2) while controlling for previous substance use (measured at t + 1), 

with age, sex, and addiction severity as second-level control variables.

Missing data at each level were excluded from the analysis: if missing data were located at 

the first level, the data from that day would be discarded from the analysis. No missing data 

were found in the second-level variables.
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Whole brain ROI-to-ROI functional connectivity

To assess resting-state connections related to craving instability in the SUD group of the 

MRI subsample, we employed user-defined contrasts in the Conn Toolbox, with MSSD 

craving as the between-subject variable and connectivity strength as the outcome variable. 

Results were corrected for multiple comparisons using FDR with an alpha level of 0.05. The 

strength of connections in the identified connections was then extracted in the two groups 

(SUD and controls) for comparison.

The connectivity data were normally distributed, allowing for use of parametric analyses. 

Within the SUD group, we also compared sex, comorbidity, and type of substances using 

independent sample t-tests and ANOVAs.

Finally, due to the non-normality of the distribution within the psychological data, Spearman 

correlations were used to assess relationships between identified connectivity strength 

and the sum of substance use occasions during the week for any substance and for the 

treated substances. Analyses were performed using JAMOVI software version 1.2 (https://

www.jamovi.org), two-sided, and considered significant when p ≤ 0.05.

Seed-to-voxel analyses were conducted using each significant ROI as a seed and MSSD 

craving as between-subject variables. Once again, results were corrected for multiple 

comparisons using FDR with an alpha level of 0.05.

Results

Descriptive analyses

The behavioral analyses were based on the EMA sample, composed of 99 participants. The 

SUD group comprised 64 patients (33 men; mean age 41.66 ± 11.81; mean compliance 86 

%, mean addiction severity 6.45), including 32 treated for alcohol, 20 for tobacco, and 12 

for cannabis. The control group included 35 participants (18 men; mean age 34 ± 8.22; mean 

compliance 94.29 %). See Table 1 for descriptive and comparison statistics.

In the MRI subsample, 74 participants were included, with 40 SUD patients (20 men; mean 

age 42.42 ± 11.34; mean compliance 86.29 %, mean addiction severity 6.52), including 

20 treated for alcohol, 13 for tobacco, and 7 for cannabis misuse. The control group 

included 34 participants (18 men; mean age 34.26 ± 8.19; mean compliance 94.29 %). See 

Supplementary Table 1 for descriptive and comparison statistics.

Craving dynamics in the EMA sample with SUD

Hierarchical linear and nonlinear modeling in the SUD group—These analyses did 

not reveal any significant effect of within-day variability of craving (SD) or craving inertia 

(ACF) on substance use for any substance or for the treated substances while controlling for 

mean craving, age, sex, and addiction severity. However, we found an impact of the third 

craving dynamic index. While controlling for mean craving, age, sex, and addiction severity, 

within-day instability of craving (MSSD) significantly predicted daily use of the treated 

substance. This effect was not found using the use of any substance during the same day 

as an outcome. These analyses also revealed significant interindividual differences, whereby 
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craving instability was linked to greater substance use in men than women. These results are 

highlighted in Table 2.a.

As noted in Table 2.b. the prospective analyses indicated that the absolute difference of 

craving between t and t + 1 significantly predicted the use of any substance at t + 2 

while controlling for previous craving level (at t + 1), previous use of any substance, age, 

sex, and addiction severity, such that greater momentary variability was linked to greater 

probability of subsequent use. Sex differences indicated greater variability in men than 

women. However, the momentary absolute difference in craving was not associated with the 

subsequent use of the treated substances (at t + 2) while controlling for craving level, use of 

the treated substances at t + 1, age, sex, and addiction severity.

Neuroimaging results

ROI-to-ROI connectivity—As displayed in Fig. 2, in the SUD group, craving instability 

(MSSD) was associated with connectivity strength in five pairs of areas. A positive 

association (that is, greater instability correlated with stronger connectivity) involved the 

functional connection between the left anterior cingulate cortex and the right thalamus. 

Negative associations were found for functional connections between the right thalamus and 

the cerebellum (vermis 10), right thalamus and left rolandic cortex, right thalamus and left 

heschl gyrus, and between left heschl gyrus and left inferior orbital frontal cortex.

Seed-to-voxel connectivity—In the SUD group, voxels that were significantly 

connected to the different seeds and for which connectivity strength was correlated to 

craving instability are presented in Table 3. The main highlights from this analysis identified 

additional clusters located in the insula and in the precuneus.

Associations of connectivity strength with clinical variables—The strength of 

functional connectivity differed between controls and SUD patients within one connection 

only. The connectivity between the cerebellar vermis 10 and the right thalamus PuL was 

significantly weaker in the SUD group than in the controls (T = 5.206, p <0.001, Cohen’s d 
= 1.21). Weaker vermis-thalamus connectivity correlated with greater amount of use of any 

substance in the week in the overall sample (rho= −0.546, p<0.001).

In the SUD group, in contrast with the cerebellar-based relations, connectivity strength 

between the left anterior cingulate cortex and the right thalamus was positively correlated 

with the amount of use of the treated substances (rho= 0.443, p = 0.004). In this group, there 

was no effect of sex or SUD subgroup on connectivity strength.

Discussion

The present study is the first to have investigated the dynamics of substance craving in real 

life and real time in association with neural correlates at rest that served as prognostic 

factors of future substance use in patients in treatment. This effort characterized the 

fluctuations of craving by assessing their impact on the use of different substances both 

within each day and within prospective occasions using several temporal indexes, thereby 

extending the current literature [20,21].
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Within days, EMA data permitted the computation of craving variability (SD), inertia 

(ACF), instability (MSSD), mean craving, and substance use (any substance or treated 

substances). Mean craving level was higher in the cannabis group than in the alcohol group. 

This result is not new, as differences between SUD groups have been found previously for 

cue-induced [51], self-reported [52], or even EMA-assessed [17] craving, with generally 

the lowest level of craving associated with alcohol. Yet, the SUD group did not exhibit 

significant effects in overall craving dynamics moderated by the type of treated substance. 

Whereas craving intensity depended on the type of substance used, its dynamic pattern 

may have arisen from a general process of addiction. The clinical significance of these 

findings could be of primary importance, suggesting that a potential prognostic factor, 

craving instability, could be similarly targeted regardless of the subtype of substance use 

disorder. This study being the first to characterize and compare the dynamic of craving 

in different types of SUD in the context of identified functional brain systems requires 

replication.

Regarding the association between craving dynamics and substance use, the higher the 

craving instability (MSSD), the more the patients tended to use the substance they were 

treated for independently from their mean level of craving. This finding comports with 

the previously highlighted link between craving instability and opioid substance use 

[21]. Nonetheless, we failed to observe any significant effects for the other measures of 

craving dynamics, namely, standard deviation – which indexes craving variability - or 

autocorrelation factor – which indexes craving inertia -, even though craving inertia has 

been linked to substance use in patients with an opioid use disorder [21] and craving 

variability to substance use in both opioid and tobacco use disorders [18, 19]. It may 

be premature to conclude that the other indexes of craving dynamic are irrelevant, but 

the present findings suggest that taking variability and temporal dependency into account 

simultaneously using measures like MSSD allows a fine-grain, sensitive characterization of 

craving dynamic. If within-days analyses do not inform the temporality or causality that can 

exist between craving instability and substance use, one of the strengths of EMA surveys 

is its ability to investigate the temporal lag on the influence of one variable on the other. 

Using this approach, the investigation of prospective links within occasions highlighted that 

momentary absolute changes in craving predicted substance use independently from craving 

intensity and previous substance use, such that the greater the differences between the two 

time-points, the higher the risk of later substance use. To the best of our knowledge, this is 

the first study suggesting that instability in craving may be a trigger for use in several SUD 

types, beyond the known effect of craving intensity.

Another novelty of the present study is the investigation of the functional cerebral correlates 

of craving dynamics. Here, we revealed that the connectivity strength between the left 

anterior cingulate cortex (ACC) and the right thalamus in the SUD group was related to 

greater instability of the craving experience. Conversely, the weaker the level of functional 

connectivity between the left Heschl gyrus and left inferior orbitofrontal cortex, between 

the left Heschl gyrus and the left Rolandic area, and between the right thalamus and the 

cerebellum, the greater the craving instability. The refinement of these results using a 

seed-to-voxel approach allowed further specification of functionally connected areas and 

revealed an additional cluster in the insula, as well as other areas already identified in 
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craving-related studies as reported in a meta-analysis [53]. In addition, the present results 

are consistent with earlier findings in SUD where craving was observed to arise from 

an imbalance between the executive, limbic, and interoceptive cerebral systems that are 

constantly interacting [29]. In the theoretical metacognitive hub model of SUD [8], the 

first component of craving, which is the automatic system relying on the limbic system, 

would trigger substance use through invoking first line, automatic responses based on 

associative learning. The second component, the executive system mostly involving frontal 

regions, would be able to regulate this signal by employing cognitive, deliberate control. The 

third component is the interoceptive component and would involve the insula acting as a 

mediator between the other two dynamic components by integrating an interoceptive signal 

and enhancing the impulsive system, disrupting the controlled response, thus emphasizing 

motivation towards the substance [8]. Thus, consistent with previous findings and emerging 

models of addiction, the brain systems identified in the present study may add evidence 

for SUD-related intrinsic connectivity changes in 1/ executive functioning sustained by the 

orbitofrontal cortex [54], the superior frontal cortex [55], and the central opercular cortex 

[56]; in 2/ automatic processes involving limbic areas such as the anterior cingulate cortex 

[57], the thalamus [58] and 3/ interoception mechanisms mediated by the insula [8,59], and 

the precuneus [60].

MSSD has been extensively used in emotion research as an index of instability (of mood 

or affect, for example) arising from a deficit of regulation, and hence less control over 

large shifts or fluctuations [61]. The sources of such instability could be numerous, from 

psychological [8] to biological process of circadian rhythms [62]. Based on our findings, 

we suggest that dysfunction of selective brain connections could at least partially underlie 

deficits in craving regulation and thus promote use. This effect was found even in patients 

beginning treatment but, as demonstrated in our descriptive analysis and by our prediction 

of use, have failed to abstain. Specifically, two of the five pairs of brain regions linked to 

craving instability could be interpreted to constitute prognostic factors of substance use. 

Indeed, not only was cerebello-thalamic connectivity strength greater in the controls than 

the SUD group, but additionally, weaker connectivity was associated with more frequent 

substance use occasions within the week in the overall sample. Moreover, the stronger the 

connectivity between the anterior cingulate cortex and the thalamus, the greater the number 

of treated substance use occasions within SUD patients. If our results regarding intrinsic 

connectivity group differences and their link with craving variability are confirmed, these 

links would argue for targeting such areas in SUD treatments.

Limitations

Our study examined sex differences that seem to moderate the impact of risk factors 

of use, although our goal was not to identify sex-specific predictors of use, challenged 

by small sample sizes. Thus future studies are needed to elucidate sex risk factors in 

SUD populations. Secondly, as we highlighted craving dynamics as a potential clinical 

indicator, no study yet has investigated the impact of pharmacological or psychological 

treatment on such measures. Further investigations are thus needed to test the pertinence of 

targeting dynamics as a clinical outcome. These dynamics were calculated based on random 

assessments of their current level. Whereas assessing current craving level repeatedly 
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and closely over time to use has been recommended [63] future studies should consider 

replicating our findings using different self-report methods. Concerning cerebral substrates 

of craving dynamics, our analysis was conducted using a ROIs approach and could be 

completed by an analysis of larger scale networks subserving its-fluctuations. Finally, it 

should be noted that our population was restricted to patients already undergoing treatment. 

As we did not assess potential treatment effects, further studies are needed to clarify the 

impact of treatment strategy on craving dynamics or potential “rebound” effect of craving 

that could emerge from the abstinence attempts [64].

Conclusion

Replication of the present findings on craving instability and its underlying neural substrates 

as prognostic factors of substance use could lead to new smartphone-based applications 

in the context of personalized medicine. Indeed, daily assessed craving dynamics during 

the therapeutic process could identify temporal patterns of use by high-risk SUD patients 

whether or not in treatment.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overall methodology for the EMA sample and MRI subsample.
Legend: All participants underwent an interview to assess inclusion criteria, including the 

Mini International Neuropsychiatric Interview and the Addiction Severity Index for the 

patients. All participants underwent a week of EMA assessments. Usual “wake” and “sleep” 

times were selected by each participant to ensure that they would be able to answer each test 

signal. Typical day of EMA is represented above and included signals occurring randomly 

within 5-time intervals periods. At each signal, craving was assessed on a scale from 1 to 7, 

and Substance use was coded in a dichotomous manner (“Yes” or “No”) for the substance 

they are treated for and for any substance. These within day assessments were then extracted 

to summarize craving variability (Standard Deviation), inertia (Auto Correlation Factor), 

instability (Mean Successive Square Difference) and number of Substance Use occasions for 

each day. A subsample of these participants also underwent MRI acquisition, including a 

resting state session, prior to the EMA phase.
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Fig. 2. Resting state connections correlating negatively (in blue) and positively (in red) with 
craving instability
L: Left; R: Right; Oper: Opercular; Inf: Inferior; Orb: Orbital; ACC: Anterior Cingulate 

Cortex, Re: Reuniens, PuL: Pulvinar Lateral, Rs: resting state

Legend: Regression analyses were conducted within the CONN toolbox between the 

individual connectomes and mean MSSD craving from each patient with SUD in the MRI 

subsample correcting for false discovery rate (FDR) with alpha level of 0.05. Resulting 

connections are highlighted in the above figure and colored depending on their association 

with MSSD craving, negatively (highlighted in blue) or positively (highlighted in red). The 
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strength of connectivity within these connections was then extracted for both patients with 

SUD and controls to be compared across both groups and conduct correlations analysis with 

the number of substance use occasions during the week.
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