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Abstract
Optimal sampling period selection for high-frequency data is at the core of financial instru-
ments based on algorithmic trading. The unique features of such data, absent in datameasured
at lower frequencies, raise significant challenges to their statistical analysis and econometric
modelling, especially in the case of heavy-tailed data exhibiting outliers and rare events much
more frequently. To address this problem, this paper proposes a newmethodology for optimal
sampling period selection, which better adapts to heavy-tailed statistics of high-frequency
financial data. In particular, the novel concept of the degree of impulsiveness (DoI) is intro-
duced first based on alpha-stable distributions, as an alternative source of information for
characterising a broad range of impulsive behaviours. Then, a DoI-based generalised volatil-
ity signature plot is defined, which is further employed for determining the optimal sampling
period. The performance of our method is evaluated in the case of risk quantification for
high-frequency indexes, demonstrating a significantly improved accuracy when compared
against the well-established volatility-based approach.
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1 Introduction

High-frequency financial data analysis has experienced an enormous and fast development
over the recent years. At the core of modern financial instruments is the instantaneous collec-
tion of massive tick-by-tick data from financial markets. The availability of high-frequency
data on transactions, quotes and order flow in electronic order-driven markets has revo-
lutionised data processing and statistical modelling techniques for the design of advanced
algorithmic trading systems, bringing up new theoretical and computational challenges.Most
importantly, high-frequency financial data possesses a complicated structure due to irregu-
larities and roughness caused by a large number of instantaneous changes of the markets and
trading noises.

A fundamental question in algorithmic trading is how often one should sample, in order
to account for the micro-structure effects. Ané and Geman (2000) employ stochastic time
changes for generating virtually perfect normality in high-frequency asset returns, whilst
allowing both the time-change and price processes to take the form of jump diffusions. In
response to the increase in market fragmentation, due to the considerable changes of market
micro-structure in recent years, Delaney (2018) proposed an optimal timing strategy to invest
in high-frequency trading technologies. In the seminal work of Aït-Sahalia et al. (2005) it was
shown that if micro-structure noise is present but unaccounted for, then the optimal sampling
period is finite and can be derived in closed form. On the other hand, if the presence of noise
is accounted for, modelling the noise term explicitly restores the first-order statistical effect
that sampling as often as possible is optimal. A main limitation of their method is that it
relies on a fully parametric framework, by assuming that the noise follows a Gaussian dis-
tribution. Sample moments of high-frequency returns data recorded at different frequencies
were employed in Bandi and Russell (2006) to calculate the optimal sampling period, by
minimising a mean-squared error criterion on the realised variance estimator as a function of
the sampling period. However, this method cannot be applied to financial time series mod-
elled by a finite mixture model, whilst it does not fully consider the number of parameters
involved in a model. To address this issue, Choi and Kang (2014) proposed a finite mixture
modelling scheme to calculate the optimal sampling period through a modified likelihood
ratio test. However, a finite mixture model with only two components is considered, which
may yield inaccurate fitting in the case of highly heavy-tailed returns data. Furthermore,
estimation of model parameters is required, by minimising Akaike’s information criterion,
which may be computationally intractable as the order of the finite mixture model increases.
Optimal sampling period for volatility models was estimated by Bhattacharyya et al. (2009)
via GARCH-based statistical modelling of high-frequency data. However, the method pro-
posed therein is based on a normality assumption for the distribution of returns, without
accounting for the potential occurrence of gross values in the returns data.

From the above, it becomes apparent that the optimal sampling period should be selected
on the basis of satisfying a trade-off between accuracy and potential biases due to market
micro-structure frictions. To this end, an alternative tool was introduced by Fang (1996) and
Andersen et al. (2000) to assess this trade-off, namely, the volatility signature plot. This
plot provides a simple graphical diagnostic for calculating the realised volatility of high-
frequency financial returns, by characterising different market micro-structures in terms of
their volatility signatures. In particular, the patterns of bias injected in realised volatility
are identified by sampling progressively more frequently the underlying returns. Despite its
computational efficiency, this tool is defined in terms of second-ordermoments, by employing
the so-called price variogram (Haslett, 1997), as well as by assuming a Gaussian distribution
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for the noise term. Nevertheless, both assumptions are violated in the case of heavy-tailed
data.

The majority of existing methods for high-frequency financial data analysis rely primarily
on the controversial use of second-order moments, or equivalently on light-tailed, finite-
variance assumptions for the statistics of the data-generating processes, in order to estimate
volatility. However, despite the analytic tractability and practical appeal, these assumptions
maybeproblematicwhenweanalyse impulsive data,whichgive rise to heavy-tailed processes
with possibly infinite variance. On the other hand, the presence of large-amplitude samples,
which can be of infinite or very large variance, can mask the information content of the time
series, especially in neighbouring time instants. This may degrade dramatically the accuracy
of subsequent decisionmaking, thus necessitating the design of novel data analysis techniques
that are able to adapt to heavy-tailed financial data exhibiting outliers or rare events much
more frequently than what a light-tailed distribution dictates.

In this paper, we propose a generalised framework for jointly quantifying the inherent
impulsiveness and estimating the optimal sampling period for mitigating the micro-structure
effects in high-frequency financial data. To this end, first we introduce the novel concept
of the degree of impulsiveness (DoI), as an alternative key indicator of the variability of
high-frequency data, which complements the well-established concept of volatility. Then, a
DoI-based generalised price variogram is defined, which adapts to a broad range of impulsive
behaviours (i.e., from light-tailed to highly impulsive data), along with the associated gener-
alised volatility signature plot that is further used to estimate the optimal sampling period of
high-frequency financial data. For this, we rely on the efficiency of alpha-stable distributions
and fractional lower-order moments (FLOMs) (Nolan, 2020; Samorodnitsky & Taqqu, 1994;
Nikias & Shao, 1995), to accurately model the heavy-tailed, possibly infinite-variance, time
series data.

Notice that, from a practitioner’s viewpoint, processes with infinite variance may sound
counter-intuitive, since they give raise to infinite power that does not really exist in real world
data. Nevertheless, from a probabilistic perspective, variance is just a measure of how spread
out a distribution is. Distributions with infinite variance present fat upper tails that decrease at
an extremely slow rate. Intuitively, this means that the distribution will vanish for very large
absolute values of the corresponding random variable. Actually, in theory, it never vanishes,
and this is precisely the reason we say that the upper tail is “unbounded”. The slow decay of
probability in this area increases the odds of extreme values (outliers), and other surprising
last-minute events at some point in the future. Although the model has infinite variance, this
does not imply that the real-world phenomenon being modeled also extends to infinity. It just
means that the model is a “good enough” fit to describe the behaviour of the phenomenon
under study.

Sincemost trading and riskmanagement strategies rely on the returns of an asset, hereafter,
we employ continuously compounded returns, rt , over an horizon of τ time units, defined
by

rt = log

(
vt

vt−τ

)
= log(vt ) − log(vt−τ ) t = τ + 1, . . . , N (1)

where vt denotes an asset’s price at time t and log(·) is the natural logarithm. For instance,
when we operate with minute data, τ = 1 corresponds to minute returns, whereas τ = 60
corresponds to hourly returns computed from minute data. In any case, the time unit will be
explicitly defined whenever needed, thus the interpretation of τ will be clear.

The rest of the paper is organised as follows: Sect. 2 briefly overviews the main concepts
of alpha-stable models. Section3 describes the data utilised in this study, along with an
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assessment of its statistical behaviour. Section4 introduces the degree of impulsiveness as
an additional source of information to the well-established volatility. Section5 analyses our
proposed method for optimal sampling period estimation tailored to high-frequency financial
data. Section6 evaluates the performance of our method on the problem of risk quantification
with distinct high-frequency indexes. Finally, Sect. 7 summarises the main outcomes and
gives directions for further extensions.

2 Alpha-stable models

In this section, we briefly overview the main concepts and definitions of alpha-stable models,
which are at the core of our methodology. The most concrete way to describe an alpha-stable
(α-stable) distribution is through its characteristic function, given by Nolan (1997),

ϕ(t) =
{
exp

(
iδt − γ α|t |α [

1 − iβ tan
(

πα
2

)
sign(t)

])
, α �= 1

exp
(
iδt − γ |t | [1 + iβ 2

π
sign(t) log(|t |)]) , α = 1 .

(2)

From (2), we see that an α-stable distribution requires four parameters to be fully described,
namely, (i) the characteristic exponent α ∈ (0, 2] (the smaller the α, the heavier the tails of
an α-stable density function), (ii) the skewness β ∈ [−1, 1], (iii) the dispersion γ > 0, and
(iv) the location δ ∈ R. We will denote α-stable distributions by Sα(γ, β, δ), and write X ∼
Sα(γ, β, δ) to indicate that X follows an α-stable distribution with parameters (α, β, γ, δ).

Without loss of generality, hereafter we assume that δ = 0 for a given time series. This
stems from the property that, if X ∼ Sα(γ, β, δ), then X + c ∼ Sα(γ, β, δ + c). In our
implementation, the model parameters (α, β, γ, δ) are estimated from the given data using
the empirical characteristic function (ECF) based method described in Kogon and Williams
(1998). We note that all the subsequent numerical calculations involving α-stable densities
are performed using the STABLE toolbox.1

Due to their algebraic tails (i.e., tails decaying slower than exponential), α-stable distri-
butions lack finite second-order moments. Instead, all moments of order p less than α do
exist and are called the fractional lower-order moments (FLOMs). In particular, the FLOMs
of an α-stable random variable X ∼ Sα(γ, β, 0) with the parameterisation given by (2)
are obtained in a similar way with the FLOMs of skewed stable distributions calculated in
Kuruoglu (2001), as follows,

E
{|X |p} = Cp,α,β · γ p p ∈ (−1, α) (3)

where

Cp,α,β = 	
(
1 − p

α

)
	(1 − p) cos

(
π
2 p

) ·
cos

(
pθ
α

)
|cos(θ)|p/α (4)

and θ = arctan
(
β tan

(
απ
2

))
.

Notice the dependenceof the above expressions on the parameter p, the order of theFLOM.
It holds that all the FLOMs of a stable random variable are equivalent, in the sense that any
two of the fractional lower order moments differ by a fixed constant which is independent of
the random variable itself (Nikias & Shao, 1995). Although p is a free parameter, motivated
by the equivalence property of FLOMs and in order to avoid a trial-and-error preprocessing
step for setting p, in the following we select p as a function of α, which is estimated directly

1 Robust Analysis Inc., STABLE toolbox version 5.3 (http://www.robustanalysis.com).
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Table 1 FLOM-based optimal p as a function of the characteristic exponent α

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

popt 0.52 0.56 0.58 0.61 0.64 0.69 0.72 0.76 0.81 0.88 0.98

from the observed data, based on a specific optimisation criterion. In particular, Tzagkarakis
et al. (2006) proposed an approach for selecting the optimal p as the one that minimises the
standard deviation of a FLOM-based covariation estimator between two α-stable random
variables X ∼ Sα(γX , βX , 0) and Y ∼ Sα(γY , βY , 0), defined as follows,

cXY =
∑N

i=1 xi |yi |p−1sign(yi )∑N
i=1|yi |p

γ α
Y (5)

where

sign(yi ) =

⎧⎪⎨
⎪⎩

−1 for yi < 0

0 for yi = 0

1 for yi > 0 .

The covariation, cXY , plays an analogous role for α-stable variables to the one played by
covariance for light-tailed distributions. Notice that covariance is not defined for α-stable
models with α < 2.

This approach yields an almost linear relation between α and the optimal value of p, and
specifically p � α/2. In addition, if p < α/2 the FLOM estimator has a finite variance,
which is desirable (Nikias & Shao, 1995). This constraint for the value of p also agrees with
the remarks inKuruoglu (2001), which suggests to set p at the order ofα/10. In the following,
we set the value of p in two steps: (i) linearly interpolating the entries of the lookup Table 1,
generated by Tzagkarakis et al. (2006), (ii) multiplying with a correction factor of 0.2 to
align with Kuruoglu (2001).

Remark 1 Without loss of generality, in the subsequent analysis we restrict the index of sta-
bility to the range 1 < α ≤ 2, which is most frequently encountered in practical applications.
The condition of α > 1 also yields that, whenever required in the subsequent derivations,
the mean of the associated random variable is defined.

3 Data and assessment of heavy-tailed behaviour

In the subsequent analysis, we employ minute closing prices of four major stock indexes
worldwide and one cryptocurrency, namely, S&P 500 (in USD) [SPXUSD], NIKKEI 225 (in
JPY) [JPXJPY], DAX 30 (in EUR) [GRXEUR], EUROSTOXX 50 (in EUR) [ETXEUR],
and Bitcoin (in USD) [BTCUSD], spanning the period from January 2nd, 2016 to December
31st, 2018. The four stock indexes have been downloaded from Google Finance, and the
Bitcoin’s prices from Bitstamp.

As a first qualitative assessment of the behaviour of our data, a selection of summary
statistics, such as the mean, standard deviation, skewness and (excess) kurtosis, are typically
presented. Table 2 shows these statistics for the compounded returns of the above five indexes.
As it can be seen, their minute means are quite small, whilst minute volatility is similar for the
four stock indexes, and an order of magnitude larger for the cryptocurrency. Concerning the
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Table 2 Returns summary statistics for the selected five (minute) indexes in the period 02/01/2016–31/12/2018

SPXUSD JPXJPY GRXEUR ETXEUR BTCUSD

Mean (%) 2.537e−05 6.619e−06 1.216e−06 −9.602e−06 3.414e−04

Std (%) 0.027 0.040 0.039 0.050 0.832

Min (%) −1.180 −3.606 −10.703 −13.250 −597.220

Max (%) 1.402 2.297 2.153 2.742 596.405

Skewness 0.080 −0.769 −34.381 −43.542 −1.344

Kurtosis 71.099 137.630 9100 11186 4.980e+05

lowest returns, SPXUSD reaches a minimum on 2016/01/20, whilst JPXJPY and GRXEUR
got the lowest return by mid February of 2016, for the period considered. Finally, both
ETXEUR and BTCUSD reach a minimum by mid June of 2016. Furthermore, the returns
of SPXUSD, JPXJPY and BTCUSD present a relatively small skewness, whilst the returns
of GRXEUR and ETXEUR present a highly negative skewness. Most importantly, all five
indexes possess a significantly high (excess) kurtosis, thus providing a strong, though not
perfect, indication of fat tails in the returns distribution.

Two different approaches are commonly used in order to check whether our data is in the
stable domain of attraction: (i) Q-Q plots, which are utilised as a statistical diagnostic that
visualises the relationship between the empirical quantiles of a data set and the corresponding
theoretical quantiles obtained under a specific distribution; (ii) thickness of the tails of the
density function, as expressed by estimated characteristic exponent, α.

Figure 1 shows the Q-Q plots for theminute returns of SPXUSD,GRXEUR andBTCUSD
indexes, which present highly distinct degrees of kurtosis (ref. Table 2). Three distribution
assumptions are tested, namely, (i) normal, (ii) generalised extreme value, and (iii) α-stable.
Clearly, the returns deviate significantly from a normal distribution, as expected, whilst the α-
stable model yields an excellent approximation to the empirical quantiles, thus underpinning
our choice for this family of heavy-tailed distributions. Similar behaviour is observed for the
JPXJPY and ETXEUR indexes.

To further examine the thickness of the tails of the density function for the index returns
considered herein, Fig. 2 shows the corresponding estimated characteristic exponent, α, as
a function of the horizon τ (in minutes). Although the returns exhibit distinct statistical
behaviours for different returns horizons τ , all indexes are characterised by a significantly
high impulsiveness, as expressed by the corresponding characteristic exponent values, which
are much smaller than 2.

4 Degree of impulsiveness as an additional source of information

Volatility, that is, the standard deviation of asset returns, is a key input for several financial
applications like option pricing (Date & Islyaev, 2015) and risk management (McGee &
McGroarty, 2017). Nevertheless, volatility is, by definition, a measure of how spread the
returns of a given security or market index are about the mean. As such, it does not provide
any information regarding the rate of decay of a distribution,which is related to the probability
of extreme values for the associated random variable. This is especially important in various
financial applications, such as risk quantification and portfolio optimisation. Specifically,
heavy-tailed distributions possess heavier tails than an exponential distribution, tending to
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Fig. 1 Q-Q plots of empirical quantiles against theoretical quantiles of (i) normal, (ii) generalised extreme
value, and (iii) α-stable distributions, for a SPXUSD, b GRXEUR, and c BTCUSD minute returns

present outliers with very high values. The heavier the tail, the larger the probability that the
associated random variable will get one or more disproportionate values in a sample.

To illustrate this, we employ a toy example, as shown in Fig. 3a. In particular, a random
series (“Original”) of length N = 1024 is generated first by drawing samples from aGaussian
distribution, which is then corrupted by random spikes at 5% of the samples (“Impulsive”
series). Although the two series have an almost equal volatility (about 3), their empirical
probability density function differs significantly, as shown in Fig. 3b. Clearly, the “Impulsive”
series is characterised byheavy tails, decreasing at amuch slower rate,when compared against
the “Original” version. The slow decay of probability in this area increases the odds of very
extreme values (outliers), abrupt changes in the distribution, and other unexpected events at
some point in the future. This justifies the quantification of impulsiveness, as an important
additional source of information, that can complement the well-established volatility.

From physics, it is well known that the amount of energy carried by a wave is related to
the amplitude of the wave, which is defined as the maximum amount of displacement from
a rest position. In specific, the energy, E , transported by a wave is directly proportional to
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Fig. 2 Estimated characteristic exponent, α, of the returns series for the five indexes, as a function of the
horizon τ = 1, . . . , 60 minutes

Fig. 3 Difference between volatility and impulsiveness. a Original data corrupted by randomly adding spikes;
b corresponding empirical probability density functions
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the square of the amplitude, A of the wave, that is, E ∝ A2. As a result, a high-energy
wave is characterised by a high amplitude, whilst a low-energy wave is characterised by a
low amplitude. Observing Fig. 3a, one can assert that the amplitude of a wave, i.e., a time
series in our case, is related to the presence of large samples. Indeed, the amplitude of the
“Impulsive” series is much higher than the amplitude of its “Original” counterpart. Thus
there is a direct relation between the impulsiveness and the energy of a given time series.

In statistical signal processing terms, the probabilistic average energy of a random variable
X is given by

Eavg(X) = E{X2} . (6)

For a discrete time series of N samples, x ∈ R
N , the above equation can be expressed in

asymptotic form as follows,

Ẽavg(x) = lim
N→∞

1

N

N∑
i=1

x2i (7)

or, in other words, the larger the number of samples N , the closer the average energy will be
to the probabilistic average energy.

Nevertheless, (6) (and consequently (7)), which is expressed as a second-order moment,
is not valid for heavy-tailed data modelled by α-stable distributions with α < 2. A natural
extension of the probabilistic average energy definition for α-stable random variables X ∼
Sα(γ, β, 0) is as follows,

Eavg,p(X) = E
{|X |p} (8)

which is precisely the definition of FLOMs. Similarly to (7), for a discrete time realisation
x ∈ R

N of X ∼ Sα(γ, β, 0), its asymptotic approximation of the average energy is given by

Ẽavg,p(x) = lim
N→∞

1

N

N∑
i=1

|xi |p . (9)

In order to account for the differences in scale between two distinct time series, a nor-
malisation can be applied with respect to a “rest position”. We define this position to be the
average absolute signal, defined by,

Ravg(X) = E {|X |} (10)

or, in discrete time form,

R̃avg(x) = lim
N→∞

1

N

N∑
i=1

|xi | . (11)

From the above, our proposed degree of impulsiveness (DoI) of a random variable X ∼
Sα(γ, β, 0), is defined as the deviation of the probabilistic average energy from the rest
position, as follows,

DoI(X) = Ravg(X)(
Eavg,p(X)

)1/p (3),(8)= Ravg(X)(
Cp,α,βγ p

)1/p (12)

where the exponent 1/p at the denominator of (12) is used to maintain the same unit of
measurement as the variable X . The corresponding asymptotic approximation of the DoI is
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given by substituting (9) and (11) to (12),

D̃oI(x) = lim
N→∞

1
N

∑N
i=1|xi |(

1
N

∑N
i=1|xi |p

)1/p . (13)

In practice, when the length, N , of the given time series is “small” or when a relatively
large number of zeros exist in the samples, then (13) should be preferred (ignoring the
limit operator) from a computational perspective. In any other case, (12) is employed for
the calculation of the DoI, where the parameters α, β, γ , and Cp,α,β are estimated directly
from the available data x, as described in Sect. 2. The value of p is selected as a function
of α, following the process described in that same Section. Finally, adopting a convention
that is commonly used in signal processing, hereafter the DoI(X) and the D̃oI(x) will be
expressed in decibels (dB), as follows, DoIdB(X) = 20 log10 (DoI(X)) and D̃oIdB(x) =
20 log10

(
D̃oI(x)

)
. Without loss of generality, in the following we employ the DoI definition

in (12).
As an illustration of the validity of our proposed DoI indicator, we calculate its value for a

set of synthetic signalswith varying tail thickness (i.e., characteristic exponents). Specifically,
a baseline signal of length N = 2048 is generated by drawing samples from a standard
Gaussian distribution. Then, a set of outliers drawn froma Sα(γ, 0, 0) distribution corrupts the
10%of randomly chosen samples in the baseline signal. The dispersion is fixed at γ = 1.5 and
the characteristic exponent varies in α ∈ {1, 1.2, 1.4, 1.6, 1.8}. The simulation is repeated
for 500 Monte Carlo runs, by keeping the same baseline signal and generating different
corrupting outliers in each run. Finally, the average DoI is calculated for each α over all
Monte Carlo runs. Figure4a shows three instances of signals with varying tail thicknesses.
As expected, the smaller the α, the more impulsive the signal is (i.e., more abrupt spikes
occur), and the larger the DoI value should be. Indeed, as shown in Fig. 4b, the degree of
impulsiveness decreases as the tail thickness reduces, which is also consistent with the visual
inspection of the three signals on top.

Thus far, we have illustrated the validity of α-stable distributions in accurately modelling
the impulsive nature of high-frequency financial returns, and we defined the degree of impul-
siveness as a key source of information that complements the well-established volatility.
In the following section, we propose a generalised volatility signature plot2 based on the
degree of impulsiveness for selecting the optimal sampling period of high-frequency impul-
sive data. Before proceeding, for convenience, Fig. 5 summarises the flow diagram of our
proposed methodology for DoI-based optimal sampling period selection.

Remark 2 In order to avoid any misunderstanding in the subsequent analysis, we emphasise
the difference between the original sampling period that generated the data and the optimal
sampling period obtained by our proposed methodology. In particular, the original sampling
period refers to the time interval between consecutive asset prices, as reported by a stock
exchange. For instance, in the case of minute indexes, the original sampling period is equal to
oneminute. On the other hand, the optimal sampling period calculated by ourmethod dictates
an additional sampling that is applied to the original prices so as to improve the performance
of a subsequent task (e.g. risk quantification). For instance, if the original sampling period
is equal to one minute and the optimal sampling period is calculated to be equal to 5, this
means that the original price series is subsampled bymaintaining 1 out of every 5 consecutive
samples. This subsampled series is then employed to carry out the subsequent task.

2 Although volatility is undefined for α-stable models with α < 2, we use the term “generalised volatility”
exceptionally, in order to be aligned with the conventional volatility signature plot definition.
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Fig. 4 a Instances of signals with varying tail thickness; b Average DoI (in dB) over 500 Monte Carlo runs,
as a function of α

Fig. 5 Flow diagram of proposed methodology for DoI-based optimal sampling period selection

5 Impulsiveness-adaptive optimal sampling period estimation

Under the assumption that price changes have zero mean, then, the conventional price
variogram is defined as a function of the returns horizon τ , as follows,

V (τ ) = E{(vt − vt−τ )
2} . (14)

To account for the generic case of mean and variance non-stationarity for the underlying
generating processes of financial time series, Haslett (1997) introduced the following price
variogram estimator, whose bias is small and independent of the magnitude of a potential
drift in the data,

Ṽ (τ ) = 1

2

1

(N − τ − 1)

N−τ∑
t=1

(dt,τ − d̄τ )
2 (15)

123



Annals of Operations Research

where dt,τ = vt − vt−τ , and d̄τ is the sample mean of dt,τ for t = 1, . . . , N − τ . Note that
Ṽ (τ ) is simply the sample variance of τ -horizon price differences. An important implication
is that the volatility observed by sampling price series at a given horizon τ is itself dependent
on that horizon, as follows (Hommes & LeBaron, 2018),

σ̃ 2(τ ) = Ṽ (τ )

v20 · τ
(16)

where v0 is either the current price or some medium-term average. A plot of σ̃ (τ ) versus τ

is called a volatility signature plot (VSP). Fang (1996) and Andersen et al. (1999) further
exploited the VSP to select the optimal sampling period for high-frequency returns. Specif-
ically, the optimal period is calculated heuristically by identifying the value of τ where the
σ̃ (τ ) curve begins to flatten out.

Nevertheless, both (14) and (16) are defined in terms of second-order moments of the price
series, which may be infinite (undefined) in the case of α-stable distributed data. In order to
address this drawback, we generalise the concepts of price variogram and volatility signature
plot, so as to perfectly adapt to the underlying heavy-tailed data generating processes.

5.1 Generalised volatility signature plot

In order to adapt to the varying impulsiveness of distinct high-frequency returns series, a
generalised price variogram, Vg(τ ), is naturally defined by

Vg(τ ) = E{|vt − vt−τ |p} . (17)

By combining (12) with (17), a DoI-based expression is obtained for the generalised price
variogram,

Vg(τ ) =
(
Ravg(dt,τ )

DoI(dt,τ )

)p

(18)

where dt,τ = vt − vt−τ is the random variable of τ -horizon price differences. Note that all
the parameters involved in the calculation of (18) (i.e., p, α, β, and γ ) are estimated from
dt,τ (ref. Section2).

We also consider an alternative generalised price variogram estimator, defined as the
sample central FLOM of price differences, dt,τ = vt − vt−τ , as follows,

Ṽg(τ ) = 1

(N − τ)

N−τ∑
t=1

|dt,τ − d̄τ |p (3),(9)−−−−→
N→∞ Cp̂,α̂,β̂

γ̂ p̂ (19)

where d̄τ is the sample mean of dt,τ for t = 1, . . . , N − τ . Note that the sample mean is
defined properly for the α-stable distributed returns due to our constraint of 1 < α ≤ 2 (ref.
Remark 1). Furthermore, the parameters p̂, α̂, β̂ and γ̂ in the asymptotic expression of Ṽg(τ )

are estimated directly from the samples d̂t,τ = dt,τ − d̄τ , for t = 1, . . . , N − τ .

Remark 3 Notice that in the above definitions of the generalised price variogram (ref. (17)–
(19)), the parameter p can either take a fixed predefined value, irrespectively of the returns
horizon τ , or it can adapt to the statistics of the price differences dt,τ . In the latter case, the
α-stable model parameters (p, α, β and γ ) depend on τ . In the subsequent implementation,
we employ the second approach, that is, the model parameters are estimated from the price
differences for each τ , yet, for simplicity, in the corresponding equations we omit their
dependence on τ .
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Without loss of generality, in the following analysis we employ the alternative generalised
price variogram of (19), which is more robust to potential drift in the data. Nevertheless,
similar expressions are obtained by replacing Ṽg(τ )with Vg(τ ) in the subsequent derivations.

Under the assumption that price changes have zero mean, which is a good approximation
on short time scales, then, the generalised price variogram grows at a power law with the
returns horizon τ , such that

Ṽg(τ ) = κ · τm m ∈ R . (20)

In our implementation, m is estimated from the corresponding Ṽg(τ ) vs. τ (similarly for
Vg(τ ) vs. τ ) curve via nonlinear regression model fitting.

In the case of the conventional price variogram,m = 1. Furthermore, given the prevalence
of multiplicative models for price changes on longer time scales, it has become customary to
define the volatility σ in relative terms, even for short timescales, as follows (ref. Hommes
and LeBaron (2018)),

κ = σ 2v20 . (21)

In order to adapt to the heavy-tailed statistics of high-frequency returns, we define the
variability of price changes by

κ = γ̃ αvα
0 (22)

where the dispersion is employed instead of volatility (which, from a statistical perspective,
is undefined for α-stable models with α > 1), and the index of stability, α, is incorporated
to account for the heaviness of the tails.

By combining (20) and (22), and noticing that the dispersion γ̃ depends on the returns
horizon τ , we obtain the following equation,

γ̃ (τ ) =
(

Ṽg(τ )

vα
0 · τm

)1/α

. (23)

Then, our proposed generalised volatility signature plot (gVSP) is defined as the plot of γ̃ (τ )

versus τ .

5.2 Optimal sampling period estimation

Following the methodology of Fang (1996) and Andersen et al. (1999), we calculate the
optimal sampling period heuristically by identifying the horizon τ where the gVSP curve,
γ̃ (τ ) vs. τ , begins to flatten out. In the following, we assume for convenience that v0 = 1
for all indexes. Figure6a shows the gVSP curves for the five indexes as a function of the
horizon τ = 1, . . . , 120 minutes. From a visual inspection, all curves start to flatten beyond
a specific horizon τ .

In order to automate the process of calculating the optimal sampling period as the point τ ∗
where the gVSP curve, γ̃ (τ ) vs. τ , begins to flatten out, we apply a local standard deviation
filtering scheme. Specifically, for τ = 1, . . . , T , let γ̃ (τ ) be a given gVSP curve, and γ̃ f (τ )

be the corresponding filtered gVSP curve obtained by applying local standard deviation
filtering on γ̃ (τ ). The filtering is performed simply by calculating the standard deviation in
neighborhoods of size K , that is, γ̃ f (τ ) = std{γ̃ (τ −
K/2�), γ̃ (τ −
K/2�+1), . . . , γ̃ (τ +

K/2�−1), γ̃ (τ+
K/2�)}, τ = 1, . . . , T . Finally, the optimal sampling period is determined
as the point τ ∗ for which γ̃ f (τ

∗) ≤ σthr, where σthr is a predefined threshold standard
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Fig. 6 a Generalised VSPs for the five indexes; b Optimal sampling period estimation via standard deviation
filtering, for SPXUSD and ETXEUR indexes, as a function of the returns horizon τ = 1, . . . , 120 minutes

deviation. In our implementation, we set K = 5 and σthr = 0.001. Figure6b illustrates the
filtered gVSP curves, along with the threshold level and the corresponding optimal sampling
periods identified for the SPXUSD (= 42minutes) andETXEUR (= 39minutes) indexes.Note
that the optimal period depends on the threshold, nevertheless, our experimental evaluation
showed that a threshold at the order of 10−3 suffices to identify accurately the plateau’s
starting point for the five distinct indexes.

6 Empirical evaluation in risk quantification

Since there is not a ground truth for the optimal sampling period, in this section, the per-
formance of our proposed method is evaluated empirically by solving the problem of risk
quantification for high-frequency financial indexes. In particular, the optimal sampling period
is calculated first by means of (i) the conventional and (ii) our generalised volatility signature
plot. Then, the original price series is subsampled according to the optimal sampling period
and the corresponding risk is quantified by employing two well-established risk measures,
namely, value-at-risk (VaR) and expected shortfall (ES). We emphasize that this work does
not intend to focus on the risk quantification problem, which is rather used as a test case to
evaluate the performance of our methodology.

Given a random variable of returns rt , a confidence level c ∈ (0, 1), and a holding period
TH (i.e., the timeperiodoverwhich lossesmayoccur), theϑ-levelVaRandES,withϑ = 1−c,
are defined by

Pr (rt ≤ −VaRt (ϑ)) = ϑ ESt (ϑ) = −E{rt | rt ≤ −VaRt (ϑ)} . (24)

Like VaR, ES is universal and can be applied to almost any instrument and underlying source
of risk. The Basel Committee (BCBS, 2013) recommends to set c = 99% (equivalently,
ϑ = 0.01) for VaR, and is now proposing to move towards ES with c = 97.5% (equivalently,
ϑ = 0.025) since it theoretically captures better the information contained in the leftmost
tail of returns distribution.
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In the following, the exponential weighted moving average (EWMA) method is used as a
benchmark for the calculation of VaR and subsequently of ES. For convenience, an infinitely
large estimation window is typically assumed to approximate the EWMA-based variance via
a simple recurrence formula,

σ̂ 2
t ≈ (1 − λ)(r2t−1 +

∞∑
i=2

λi−1r2t−i ) = (1 − λ)r2t−1 + λσ̂ 2
t−1 . (25)

A value of the decay factor frequently used in practice, and adopted hereafter, is λ = 0.94
(ref. Morgan & Reuters, 1996). Furthermore, both VaR and ES are calculated on a rolling
window fashion. In the following experimentation, the window size is fixed to w = 2880
(i.e., 48h) and the step size is equal to s = 1. To assess the predictive accuracy of the VaR and
ES forecasts based on the optimal sampling periods calculated with the conventional and our
generalised volatility signature plot, we adopt well-established backtesting methods, whose
performance is compared against the naive approach, that is, no subsampling is applied to
the original price series.

Regarding VaR, the number of observed violations (PV ,obs), is a commonly adopted
performance metric. Additionally, we employ the binomial test (Danielsson, 2011), which
assesses whether the number of failures is consistent with the VaR confidence level. The
test statistic (TStatBin) and the corresponding p-value (PValueBin) of the binomial test are
reported. As a third VaR backtestingmethod, the conditional predictive ability test introduced
by Giacomini and White (2006), hereafter denoted as GW test, is employed. The GW test
examines the equal conditional predictive ability of the three distinct sampling strategies
(i.e., (i) no subsampling, (ii) subsampling using the conventional VSP, and (iii) subsampling
using our generalised VSP) for VaR quantification, against the benchmark model. In our
case, we assume that the benchmark model yields the true return values. Concerning the VaR
measures compared herein, the outperforming method (i.e., sampling strategy) is the one
with the highest GW test value and the lower GW p-value, defined below.

TStatGW = √
N

E{E}√
NWHAC(E)

(26)

where N is the number of samples, E = (Er − Eb)
2 with Er and Eb denoting, respectively,

the random variables representing the errors between the reference VaRmeasure and the true
VaR values, and the benchmark VaR measure and the true VaR values. Herein we consider
that Eb = 0. The function NWHAC(E) denotes the Newey West HAC variance estimator.
The associated p-value is defined by

PValueGW = 1 − Fχ2(TStatGW2) (27)

where Fχ2 is the χ2 cumulative distribution with one degree of freedom.
As for the ES, we backtest it by employing two distinct performance indicators: (1) the

observed versus the actual ϑ level, along with the expected versus the actual ES failures;
(2) a nonparametric test (T1

ES) proposed by Acerbi and Szekely (2014), which is free from
assumptions on distribution, with greater ability to detect an effect than the VaR test, while
also eliminating the need for Monte Carlo simulations for most practical cases. Furthermore,
T1
ES scales the losses by the corresponding ES value based on the unconditional relationship
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ESt (ϑ) = −E

{
rt1t
θ

}
, and reports the associated unconditional test statistic,

TStatZ1
ES = 1

Nθ

N∑
t=1

rt1t
ESt (ϑ)

+ 1 (28)

with 1(·) being the indicator function. Under the assumption that the distributional assump-
tions for the returns are correct, it holds that E{TStatZ1

ES} = 0. Negative values of the test
statistic indicate risk underestimation. The unconditional test is a one-sided test that rejects
when there is evidence that the model underestimates risk. Furthermore, the test rejects the
model when the p-value is less than 1 minus the test confidence level. Most importantly,
TStatZ1

ES turns out to be stable across a range of distributional assumptions for rt , from
thin-tailed up to heavy-tailed distributions.

As a first evaluation, we compare the performance of VaR quantification based on the (i)
original minute indexes without subsampling (hereafter denoted by No-S), (ii) subsampled
indexes using the optimal sampling period calculated via the conventional VSP (hereafter
denoted by VSP-S), and (iii) subsampled indexes using the optimal sampling period cal-
culated via our proposed generalised VSP (hereafter denoted by gVSP-S), by varying the
holding period TH ∈ {360, 720} minutes.

Tables 3 and 4 display the results of the VaR backtesting methods described above, for
TH = 360 and TH = 720, respectively. As it can be seen, for the smaller holding period,
TH = 360, our method (gVSP-S) achieves a superior performance for all indexes, with an
observed level almost equal to the true VaR level. On the other hand, the conventional VSP-S
overestimates risk for all indexes, whilst the no-subsampling strategy (No-S) significantly
underestimates risk, as revealed by the extremely larger number of VaR violations for the
majority of the indexes. The improved performance of our gVSP-S method is also verified
through the binomial test, which explicitly accepts the hypothesis that the number of failures
is consistent with the VaR confidence level for SPXUSD, JPXJPY, and GRXEUR indexes.
Regarding ETXEUR and BTCUSD, although the binomial test rejects the null hypothesis
for all the three sampling strategies, we observe that our method underestimates (positive
TStatBin) or overestimates (negative TStatBin) VaR at a significantly lower degree thanNo-S
and VSP-S. Furthermore, our proposed method is consistently closer to the corresponding
benchmark model, as expressed by the smaller GW test value for all the five indexes.

Concerning the more challenging case of a larger holding period, TH = 720, the per-
formance of the three sampling strategies deteriorates, as expected, since we are estimating
events that occur rarely. Nevertheless, our gVSP-S method demonstrates an improved accu-
racy in quantifying VaR, when compared against No-S and VSP-S, as expressed by the ratio
of the observed (PV,obs) over the expected (PV,expected) VaR violations, which is closer to one
for all except for the ETXEUR index. In this latter case, the No-S strategy is better than the
other two alternatives. Regarding the binomial test, although it rejects the null hypothesis
in the vast majority of indexes, however, gVSP-S outperforms the other two strategies, as
revealed by the significantly smaller TStatBin values, which means that our method neither
overestimates nor underestimates VaR so heavily as No-S and VSP-S. Most importantly,
gVSP-S is capable of better estimating VaR even for extremely skewed and kurtotic indexes,
such as GRXEUR and BTCUSD. Concerning the proximity to the corresponding benchmark
model, gVSP-S is consistently outperforming No-S and VSP-S, as expressed by its smaller
GW test value for all the five indexes.

In the following, we backtest ES for the three sampling strategies, for TH ∈ {360, 720}
minutes. Tables 5 and 6 show the results of the ES backtesting methods described above,
along with the p-value and the critical value of the T1

ES test. Table 5 displays the backtesting
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performance for the smaller holding period of TH = 360 minutes. Clearly, our gVSP-
S method outperforms significantly the other two sampling strategies, in terms of a more
accurate estimation of the realised number of ES failures, for all indexes. Especially for the
highly skewed and kurtotic indexes, namely, GRXEUR, ETXEUR and BTCUSD, the No-S
and VSP-S methods deviate significantly from the expected number of violations by heavily
underestimating and overestimating ES, respectively. On the contrary, our proposed gVSP-S
method achieves a close approximation of the tail risk.

As for the larger holding period of TH = 720 minutes, Table 6 shows that the VSP-S
methodperformsbetter for theSPXUSD index, in terms of the number of identified violations.
Our gVSP-S method is the next best performing, whilst No-S significantly underestimates
risk. For the ETXEUR index, the strategy of no subsampling achieves a ratio of the observed
over the expected number of ES violations that is closer to one, when compared against
gVSP-S and VSP-S, both of which achieve a similar performance. These two methods yield
an equal performance for the JPXJPY index, with the No-S method heavily underestimating
risk, whilst gVSP-S is slightly better in the case of GRXEUR index. Finally, regarding the
highly skewed andkurtoticBTCUSD index, our gVSP-Smethod is better capable of capturing
the tail risk, yielding a significantly more accurate approximation of the true ϑ level.

The above results demonstrate the improved capabilities of our proposed generalised
method for optimal sampling period calculation, in better adapting to a broad range of impul-
sive behaviours that are inherent to distinct market indexes. This yields a more accurate
quantification of risk measures such as VaR and ES, which also achieves a better trade-off
between under-/over-estimation of risk. Regarding the statistics of an index (e.g. skewness,
kurtosis) as a potential factor that could affect the estimation performance of VaR and ES
based on our proposed sampling strategy, the results do not indicate a clear connection
between the two, thus revealing an increased robustness of our methodology.

7 Conclusions and future work

This paper proposes a novel methodology for taming the impulsiveness that is inherent to
high-frequency financial returns, via the calculation of a proper optimal sampling period.
Our method is grounded on the new concept of the degree of impulsiveness (DoI), as an
alternative source of information for characterising the statistical behaviour of such data.
Then, a generalised volatility signature plot is defined based on the DoI, demonstrating
a better adaptability to a broad range of impulsive behaviours in high-frequency returns.
Finally, our generalised volatility signature plot is coupled with a local standard deviation
filtering scheme to calculate the optimal sampling period.

An empirical evaluation of our method is performed in the framework of risk quantifica-
tion. Specifically, a subsampling strategy is applied first to the price series of five distinct
minute indexes, followed by the estimation of two well-established risk measures, namely,
VaR and ES. Our proposed method for optimal sampling period calculation is compared
against the no-subsampling alternative, as well as against the method that calculates the
optimal sampling period based on the conventional volatility signature plot, which relies
on second-order moments. The experimental results revealed the clear superiority of our
proposed method, when compared against the two alternative sampling strategies.

The methodology developed in this paper offers several open research avenues. Linked
with financial signal processing, it should be interesting to investigate the performance of our
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method in carrying out various challenging financial data processing tasks, such as denois-
ing for high-frequency financial data mining or jump and volatility analysis. Furthermore,
an interesting question would be to formulate the problem of finding the optimal FLOM
order, p, jointly with a risk (e.g. VaR or ES) minimisation criterion, instead of the lookup
table approach described in Sect. 2. Finally, our optimal sampling period calculation method
could be meaningfully applied to risk parity portfolio construction and market co-integration
analysis based on high-frequency financial data.
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