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Abstract

Introduction Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabo-

lomic profiling.

Objectives An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination 

method (integration vs. deconvolution) and operator on quantification trueness and precision.

Methods A synthetic urine containing 32 compounds was prepared. One site prepared the urine and calibration samples, 

and performed NMR acquisition. NMR spectra were acquired with two pulse sequences including water suppression used 

in routine analyses. The pre-processed spectra were sent to the other sites where each operator quantified the metabolites 

using internal referencing or external calibration, and his/her favourite in-house, open-access or commercial NMR tool.

Results For 1D NMR measurements with solvent presaturation during the recovery delay (zgpr), 20 metabolites were suc-

cessfully quantified by all processing strategies. Some metabolites could not be quantified by some methods. For internal 

referencing with TSP, only one half of the metabolites were quantified with a trueness below 5%. With peak integration and 

external calibration, about 90% of the metabolites were quantified with a trueness below 5%. The NMRProcFlow integration 

module allowed the quantification of several additional metabolites. The number of quantified metabolites and quantification 

trueness improved for some metabolites with deconvolution tools. Trueness and precision were not significantly different 

between zgpr- and NOESYpr-based spectra for about 70% of the variables.

Conclusion External calibration performed better than TSP internal referencing. Inter-laboratory tests are useful when 

choosing to better rationalize the choice of quantification tools for NMR-based metabolomic profiling and confirm the value 

of spectra deconvolution tools.

Keywords Metabolomic profiling · Peak integration · Deconvolution · Quantitative NMR · Synthetic urine

1 Introduction

The use of nuclear magnetic resonance spectroscopy (NMR) 

in metabolomics is increasing for large-scale biochemical 

phenotyping (Beckonert et al., 2007; Dona et al., 2014; 

Vignoli et al., 2019), especially for clinical and personal-

ized medicine purposes (Letertre et al., 2021). NMR-based 

metabolomics provides reproducible robust fingerprinting 

with relative quantification of biological samples. However, 

the absolute quantification of individual metabolites in 

complex biological samples such as extracts and biofluids 

remains crucial in quantitative metabolomics with targeted 

metabolic profiling, especially for biomedical applications 

(Crook & Powers, 2020; Wishart, 2008; Wishart et  al., 

2022). Several strategies exist for quantitative metabolomics 

based on 1D or 2D NMR, in terms of sample preparation, 

data acquisition and data processing methods. For bio-

fluid spectra acquisition, the NOESY (Nuclear Overhauser 

Effect SpectroscopY) pulse sequence with presaturation of 

the water signal (NOESYpr) is generally advised (Emwas 

et al., 2016). However, the simple presaturation-90° pulse-

acquisition sequence (“zgpr” for Bruker and “proton with 

presaturation” for JEOL) is also largely used for relative [e.g. 
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Snytnikova et al., 2019; Standage et al., 2021)] and abso-

lute quantification [e.g. Camacho-Barcia et al., 2021; Melis 

et al., 2019; Monakhova et al., 2011)] owing to its accu-

racy, robustness and simplicity. The zgpr pulse sequence 

also allows an easier optimization of the power used to pre-

saturate the water signal. Both zgpr and NOESYpr pulse 

sequences belong to the same class of solvent presatura-

tion methods. They are the most widely used in quantita-

tive NMR metabolomics and are among the most robust 

and accurate methods. Popular selective refocusing meth-

ods such as excitation-sculpting are not recommended in 

metabolomic studies, since they are less robust and induce 

a distortion of peak areas based on J-modulation (Giraudeau 

et al., 2015).

Spectra pre-processing steps that lead to Fourier-trans-

formed, phased and baseline-corrected spectra usable for 

quantitative analysis can be performed with equipment-

related software, commercial processing software or with 

open tools. For spectra processing steps that aim at extract-

ing peak areas and calculating absolute concentrations, vari-

ous approaches have been described. Although peak integra-

tion after peak picking is largely used, tools performing peak 

fitting with reference compound spectra acquired with the 

same standard operating procedure or spectral decomposi-

tion (often named ‘deconvolution’) are also available to deal 

with possible resonance overlapping. For instance, Chenomx 

NMR Analysis software (Chenomx, Edmonton, Canada) 

performs peak fitting, while Mnova (Mestrelab Research, 

Santiago de Compostela, Spain) and the MetaboDecon1D 

open package (Häckl et al., 2021) perform deconvolution. 

To determine absolute concentrations in the NMR tube, 

two strategies prevail: referencing with an internal stand-

ard (dissolved in the sample or more rarely as an external 

reference using a reference material contained in a separate 

solution) or calibration with dedicated solutions of com-

mercial compounds (Cullen et al., 2013). For internal refer-

encing, a reliable internal standard is required. Trimethyl-

silylpropionic-2,2,3,3-d4 acid sodium salt (TSP or TMSP) 

or 3-(trimethylsilyl)-1-propanesulfonic 2,2,3,3,4,4-d6 acid 

sodium salt (DSS), also used for chemical shift referencing 

in aqueous solutions (Wishart et al., 1995), may be used 

when macromolecules are not present in the sample. Oth-

erwise macromolecules would interact with TSP (Shimizu 

et al., 1994). For external calibration, acquisitions must be 

performed in the exact same conditions as for the analysed 

mixture, including pH (Giraudeau et al., 2014). Interest-

ingly, electronic reference methods exist (Akoka et al., 1999; 

Jung et al., 2016) but are not employed routinely in biofluid 

metabolomics. While there are many integration tools, refer-

ence methods and corresponding protocols available, there is 

no real consensus on the processing workflow to determine 

absolute metabolite concentrations.

The objectives of the present study were to compare com-

monly used NMR software or tools using NMR peak inte-

gration or deconvolution, and to evaluate the operator or 

software effect on the trueness of quantitative results. For 

this study, we used 1D 1H-NMR spectra of a synthetic urine 

sample based on the experimental design described in Fig. 1. 

The use of a biofluid model sample is relevant since biologi-

cal fluids such as urine are widely studied in metabolomics, 

Fig. 1  Experimental design of 

inter-laboratory test for metabo-

lite quantification of synthetic 

urine
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and standard protocols have been proposed for the robust 

accurate quantification of potential urinary biomarkers by 

NMR (Emwas et al., 2016).

2  Materials and methods

2.1  Sample preparation

NMR tools were assessed using a homemade solution 

that imitates real urine (CDC-Center for Disease Control 

& Prevention, 2010), thereafter named ‘synthetic urine’ 

containing known amounts of 32 commercial metabolites. 

The metabolites and their concentrations were chosen from 

published data (Bouatra et al., 2013), and by selecting con-

centrations compatible with the sensitivity of proton NMR 

and metabolite signals spread over the full spectral width. 

Synthetic urine was prepared and pH-adjusted as detailed in 

Online Resource 1. Metabolite concentrations in the NMR 

tube ranged from 64 to 7959 µM (Online Resource 1). Five 

calibration range solutions containing the 32 compounds 

(0.1–12 mM concentrations) were also prepared (Online 

Resource 1). The synthetic urine and calibration solutions 

were supplemented with TSP for chemical shift calibration 

and 700 µl were transferred into a 5-mm NMR tube for a 

SampleJet autosampler (Bruker, Wissembourg, France).

2.2  NMR acquisition and spectra pre‑processing

An Avance-III HD Ultrashield 600-MHz spectrometer was 

used (Bruker BioSpin, Wissembourg, France), equipped 

with an ATMA CPQCI cryo-probe flushed with  N2 with 

Z-gradient coils for 5-mm NMR tubes. The 1H-NMR spec-

tra were acquired with a 1D pulse sequence with presatura-

tion (Bruker “zgpr”), a 90° pulse angle, a 12-ppm spectral 

width, a 5-s acquisition time, a 35-s recovery delay, two 

dummy scans and 32 scans. The presaturation power level 

was adjusted to obtain an intensity of the residual water peak 

as intense as the most intense metabolite peak. NOESYpr 

spectra were acquired with a “noesypr1d” pulse sequence 

with a 12-ppm width, a 5-s acquisition time, a 35-s recov-

ery delay, a 0.1-s mixing time, two dummy scans and 32 

scans. The choice of a long recovery delay (35 s) for zgpr 

and NOESYpr spectra was based on T1 relaxation times of 

metabolites. For each pulse sequence, the 40-s total inter-

scan resulting delay ensured full longitudinal relaxation for 

all 1H signals of interest. The receiver gain determined on 

the synthetic urine sample was used for all samples. The 

spectrum of the synthetic urine sample was acquired three 

times (without removing the NMR tube from the magnet) 

and that of each calibration range solution once. The spectra 

were pre-processed as follows: Fourier transformation, man-

ual phase correction and automatic baseline correction with 

a polynomial of degree three, with TopSpin v4.0.7 (Bruker 

BioSpin, Karlsruhe, Germany) at one site by one operator 

and sent to the other sites. The spectra were deposited in the 

recherche.data.gouv.fr open repository (https:// doi. org/ 10. 

57745/ J0Y81K).

2.3  Metabolite quantification

For the pre-processed zgpr spectra, each operator quantified 

the urinary metabolites with the TopSpin integration module 

(Bruker BioSpin, Karlsruhe, Germany), using either internal 

referencing with TSP or external calibration with the cali-

bration-range solutions, as well as his/her favourite in-house 

tool or open-access or commercial NMR software (Online 

Resource 2). The integration regions for each metabolite 

were chosen by each operator independently focussing on 

non-overlapping peaks whenever possible and are indicated 

in Online Resources 3–4 and at https:// doi. org/ 10. 57745/ 

J0Y81K.

2.3.1  Quantification using TopSpin integration module 

and internal referencing with TSP

Each operator chose one signal per metabolite and integrated 

it using the TopSpin integration module (Bruker BioSpin, 

Karlsruhe, Germany). The metabolite concentration was 

then calculated according to expression (1).

Cx is the metabolite concentration, Ix the integral of the 

metabolite peak, Nx the number of protons contributing to 

the signal, Cs the standard concentration, Is the integral of 

the standard proton signal, and Ns the number of protons 

contributing to the standard proton signal.

2.3.2  Quantification using the TopSpin integration module 

with calibration curves

For each metabolite, a calibration curve (Ix = a × Cx + b) was 

plotted using the integrated areas of a selected metabolite 

peak in each calibration-range solution spectrum as a func-

tion of the corresponding metabolite concentrations. The 

curve was fitted with a linear regression model. Metabolite 

concentrations in the synthetic urine were then determined 

by incorporating peak integral values into the corresponding 

regression model. Each operator chose independently one 

signal per metabolite and used the same integration regions 

for the urine solution and the calibration-range solutions as 

for the TSP referencing method.

(1)Cx =
Ix × Cs × Ns

Is × Nx
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2.3.3  Quantification using the NMRProcFlow integration 

module with calibration curves

One operator used the NMRProFlow online tool [https:// 

nmrpr ocflow. org/, (Jacob et al., 2017)] for local peak rea-

lignment of the received 1D spectra, for the determination 

of the peak integration regions and for concentration calcula-

tions based on the five calibration-range solutions.

2.3.4  Quantification using Mnova deconvolution tool

One operator used MestReNova software (Mnova, Mestrelab 

Research, Santiago de Compostela, Spain) with the Sim-

ple Mixture Analysis plugin for semi-automatic metabolite 

quantification, using the received 1D spectra. This software 

was used to define the integration regions as peaks or multi-

plets, using a signal deconvolution tool (GSD) to extract the 

integrals and thus quantify the concentrations of the identi-

fied metabolites. The synthetic urine concentration measure-

ments were based on a library of spectra of the calibration-

range solutions and their concentrations.

2.3.5  Quantification using MetaboHUB in‑house 

deconvolution tool “NMRDeconvR”

One operator used an in-house application based on a dedi-

cated R package (https:// github. com/ INRA/ Rnmr1D), here-

after named “NMRDeconvR”. Its main functions are noise 

reduction, baseline correction, automatic ppm calibration 

based on TSP or DSS and deconvolution. The latter is based 

on the search for peaks from the second derivative of the 

signal, then on the construction of a spectrum modelled as 

a sum of Voigt pseudo-function shapes, followed by an opti-

misation step based on the Levenberg–Marquardt algorithm 

(Levenberg 1944). In the present experiment, only local 

baseline correction and deconvolution were used. Quanti-

fication was performed using Jupyter Notebooks (Kluyver 

et al., 2016), a useful tool for collaborative open data (Men-

dez et al., 2019). A first notebook was used to test the decon-

volution of each of the zones corresponding to the targeted 

metabolites to optimise the parameters. This set of param-

eters was then compiled in a parameter file. A second note-

book focused on the deconvolution and quantification of the 

zones corresponding to the targeted metabolites in all spec-

tra, the calibration-range spectra being used for calibration.

For the pre-processed NOESYpr spectra, the best quanti-

fication method with TopSpin integration was used by five 

operators and the best deconvolution method was used by 

one operator.

2.4  Statistical analyses

A principal component analysis (PCA) of the synthetic 

urine data was performed on mean-centred and unit-var-

iance scaled data using R scripts [biostatflow.org, v2.9, 

(Jacob et al., 2020)]. The theoretical synthetic urine sam-

ple—obtained based on gravimetric concentrations—was 

added on the scores plot. Precision (coefficient of variation 

expressed as a percentage, n = 3 spectra) and relative true-

ness (ratio of the mean measured value based on the three 

urine spectra minus the theoretical value over the theoreti-

cal value, expressed as a percentage) values were calculated 

for each metabolite quantified by each operator based on 

his/her data obtained using the three zgpr or NOESYpr 

pre-processed spectra. Mean and standard deviations were 

calculated for the spectra processing strategies performed 

by several operators. A Kruskal–Wallis analysis (P < 0.05) 

was performed using jamovi [v2.2, (Jamovi Team, 2021)] to 

study the operator effect for the external calibration strategy 

performed on the zgpr spectra. NOESYpr- and zgpr-based 

precisions and trueness of metabolite quantifications were 

compared using Wilcoxon tests performed with biostatflow.

org (P < 0.05).

3  Results

This study involving several sites and operators evaluated 

the impact of processing and quantification software and 

methods. Several operators performed the same two pro-

tocols for peak integration with TopSpin followed by TSP 

referencing (zgpr spectra) or external calibration (zgpr and 

NOESYpr spectra). For these protocols, the peak integration 

boundaries were purposely operator-dependent. NMRProc-

Flow and the two deconvolution tools were used by a sin-

gle operator each. Quantification results were first analysed 

separately for each type of spectra and then compared.

3.1  Spectra observation and annotation

The synthetic urine spectra contained about 410–420 detect-

able (peak picking with TopSpin software) and 350–360 

quantifiable (i.e. with a signal-to-noise ratio over 10) peaks 

for the zgpr and NOESYpr spectra. The quality of the base-

line correction was similar in both spectra. The quantifi-

able peaks in the zgpr urine spectra were 1.1 to 1.3 times 

more intense than those in the NOESYpr spectra (Online 

Resource 5). The synthetic urine zgpr and NOESYpr spectra 

were annotated by each operator based on a comparison with 

the proton NMR spectra of pure compounds recorded using 

the same experimental parameters (Fig. 2, Online Resource 

6). An interactive annotated zgpr-spectrum is available at 

http:// pmb- borde aux. fr/ nmrAn not/ urine. html. The four most 
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intense signals corresponded to creatinine, trimethylamine-

N-oxide, creatine and citric acid.

Creatine and creatinine could not be quantified individu-

ally in the zgpr or NOESYpr spectra owing to the insta-

bility of creatine and a complex equilibrium between these 

two compounds (Fig. 3 for zgpr). The areas of creatine or 

creatinine peaks in the 3.03–3.06 spectra region were not 

proportional to their initial theoretical individual concen-

trations in the calibration-range solutions. However, their 

sum was proportional to the initial ‘creatinine + creatine’ 

concentration, which allowed the quantification of the total 

‘creatinine + creatine’ concentration with all spectra pro-

cessing strategies. Since lactic acid and threonine could not 

be quantified individually in the zgpr or NOESYpr spectra 

using peak integration owing to peak overlapping, their sum 

was quantified. Their individual quantification was tested 

using deconvolution. Cysteine in solution is known to be 

unstable over time (Krattenmacher et al., 2019; Zecchini 

et al., 2019) and especially at pH 7.4 as mentioned previ-

ously (Krattenmacher et al., 2019; Zecchini et al., 2019): it 

was dimerized to cystine that was used to estimate it.

3.2  Quantifications based on zgpr spectra

The spectral regions selected for peak integration (PI1 and 

PI2) or deconvolution (DC2) are listed in Online Resource 

3 and available at https:// doi. org/ 10. 57745/ J0Y81K, respec-

tively. For most metabolites, the operators chose the same 

spectral regions. Some metabolites were not quantifiable 

by all methods, commercial or in-house NMR software 

or tools (Online Resource 7). Twenty metabolites and the 

sums of creatine and creatinine or lactic acid and threonine 

were successfully quantified using all quantification strate-

gies (Table 1). To obtain an overview of these quantifica-

tion data, a PCA was performed on these 22 concentrations 

(Online Resource 8). The ‘theoretical’ sample, based on 

gravimetric metabolite concentrations, was plotted in the 

PC1 × PC2 plane using the loadings values of the PCA 

performed without it. The first principal component (PC1, 

46% of total variability) separated the processing strategy 

based on internal referencing with TSP from all the strate-

gies using external calibration. The quantifications based 

on external calibration were much closer to the theoretical 

sample. Comparison of the scores and loadings plots (Online 

Resource 8) showed that internal referencing tended to over-

estimate several metabolites, including 2-hydroxybutyric, 

acetic, formic and isocitric acids, alanine, histidine, phe-

nylacetylglutamine and trigonelline. A PCA was then per-

formed on the 20 common metabolites or metabolite sums 

quantified using external calibration only (Fig. 4), which 

revealed three sample groups in the PC1 × PC2 plane. PC1 

(28% of total variability) separated the Mnova-based quan-

tifications using deconvolution from the TopSpin-based 

and NMRProcFlow-based quantifications. NMRDeconvR 

tool quantifications were intermediary. PC2 separated the 

NMRDeconvR-based quantifications from all other quanti-

fication data. Comparison of the scores plot (Fig. 4A) and 

the loadings plot (Fig. 4B) showed that the quantification of 

Fig. 2  Representative 1D 1H-

NMR spectrum of synthetic 

urine with metabolite annota-

tion: zgpr spectrum. Numbers 

indicate the following metabo-

lites: 1: 1-methylhistidine; 

2: 2-hydroxybutyric acid; 3: 

3-methylhistidine; 4: acetic 

acid; 5: alanine; 6: allantoin; 

7: citric acid; 8: creatine; 9: 

creatinine; 10: dimethylamine; 

11: ethanolamine; 12: formic 

acid; 13: fructose; 14: glucose; 

15: glutamine; 16: glycerol; 

17: glycine; 18: guanidoacetic 

acid; 19: hippuric acid; 20: 

histidine; 21: indoxylsulfate; 22: 

isocitric acid; 23: lactic acid; 

24: lysine; 25: myo-inositol; 

26: phenylacetylglutamine; 27: 

pyroglutamic acid; 28: serine; 

29: threonine; 30: trigonelline; 

31: trimethylamine-N-oxide
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formic acid, guanidoacetic acid and the sum of creatine and 

creatinine tended to be higher with Mnova, and the quan-

tification of citric acid and 1-methylhistidine tended to be 

higher with the NMRDeconvR than with TopSpin. The plot-

ted theoretical sample was intermediary between the three 

sample groups. These tendencies were verified and detailed 

using precision and trueness calculations.

The corresponding precisions (Table 1) and relative true-

ness (Table 2) were calculated for all processing methods. 

For internal calibration with TSP, only about one half of 

the metabolites were quantified with an absolute value of 

trueness lower, i.e. better, than 5%. Among the metabolites 

with an absolute trueness above 5%, glucose and pyrogluta-

mate were the most underestimated, and 2-hydroxybutyric 

acid and formic acid were the most overestimated (Table 2). 

Glucose was clearly impacted by residual water presatura-

tion. Several resonances were impacted by peak overlap, e.g. 

the singlet at 1.92 ppm for acetic acid with resonances of 

the lysine multiplet at 1.97–1.87 ppm, resulting in impaired 

quantification of lysine for several operators and a slight 

overestimation of acetic acid quantification for all operators. 

However, with TopSpin integration module and external cal-

ibration, about 90% of the metabolites and metabolite sums 

were quantified with an absolute trueness better than 5%. 

The quantification trueness improved for several metabolites 

with deconvolution, either with Mnova or NMRDeconvR 

and external calibration (all 20 individual metabolites com-

mon to all strategies quantified with an absolute value of 

trueness better than 5%).

The most accurate quantification strategy performed by 

several operators was peak integration with TopSpin fol-

lowed by external calibration. For this strategy, we compared 

the variability between the operators for all 22 concentra-

tions. Based on a Kruskal–Wallis test (P < 0.05, Online 

Resource 9), the operator effect was significant for six out of 

the 22 variables: 3-methylhistidine, glycine, guanidoacetic 

acid, hippuric acid, pyroglutamic acid, and lactic acid plus 

threonine. For hippuric acid and pyroglutamic acid, this 

effect is due to the fact that the resonances selected for inte-

gration differed between operators. For glycine, this effect 

may be due to partial peak overlapping with glycerol.

In addition to these 22 concentrations, threonine was 

quantified individually using deconvolution with Mnova 

(Online Resource 7). All these metabolites, as well as 

cysteine, ethanolamine, glutamine, glycerol, lactic acid, 

lysine and myo-inositol were quantified using NMRProc-

Flow and external calibration (Online Resource 7). However, 

only ethanolamine, glutamine and glycerol had an absolute 

value of trueness better than 5%. With NMRDeconvR, cys-

tine and lysine also had an absolute trueness better than 5% 

(Table 2). NRMDeconvR allowed the quantification of ser-

ine (3.4% precision and 5.1% trueness) and the estimation of 

fructose using the difference between fructose plus glucose 

and glucose (7.2% precision and 20.5% trueness).

3.3  Quantifications based on NOESYpr spectra

For NOESYpr, the best two quantification methods deter-

mined from zgpr data were evaluated, i.e. TopSpin integra-

tion and NMRDeconvR, both used with external calibration. 

Twenty-one metabolites and the sums of creatine and creati-

nine or lactic acid and threonine were successfully quantified 

from NOESYpr spectra using these quantification strategies. 

The precision (Online Resource 10) and trueness (Online 

Resource 11) values were calculated for the quantification 

data obtained from peak integration by several operators 

(23 concentrations) or from deconvolution by one operator 

(30 concentrations). For peak integration, 21 concentrations 

were quantified with a precision better than 5%, and among 

the latter, 17 metabolites were quantified with an absolute 

Fig. 3  Creatine and creatinine resonances in zgpr spectra and peak 

areas for five calibration range solutions. A Zoom-in on creatinine 

and creatine spectra region. B Plot of corresponding peak areas as 

a function of concentrations in synthetic urine solution. Ordinates: 

peak areas of creatine (open diamonds) and creatinine (open circles) 

resonances determined by one operator using peak integration with 

TopSpin (PI1), and of their sum (full squares). Abscissa: theoretical 

concentrations in synthetic urine at time of its preparation, i.e. “initial 

concentration”. a.u. arbitrary units
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value of trueness better than 5%. For peak deconvolution, 

ethanolamine, glutamine, glycerol and lysine, which could 

not be quantified with peak integration, were quantified with 

a precision and an absolute value of trueness better than 5%.

For peak integration which was performed by several 

operators, the precision and trueness values were com-

pared to the corresponding values obtained by the same 

operators using the zgpr spectra (Table  3, Wilcoxon 

test, P < 0.05). Precision was not significantly different 

between zgpr- and NOESYpr-based spectra for 15 out of 

the 22 variables. It was significantly lower, i.e. better for 

2-hydroxybutyric acid, alanine, phenylacetylglutamine 

and creatine plus creatinine in NOESYpr-based data, and 

for formic acid, isocitric acid and trimethylamine-N-oxide 

in zgpr-based data. Trueness was not significantly differ-

ent between zgpr- and NOESYpr-based spectra for 16 out 

of the 22 variables. It was significantly better for acetic 

acid, allantoin, isocitric acid and phenylacetylglutamine 

Table 1  Precision for 20 metabolites and two sums of metabolites quantified from synthetic urine zgpr spectra using all strategies for resonance 

integration and calibration, and for metabolites quantified using certain strategies only

Codes of quantification strategies are given in Online Resource 2

op. operator, SD standard deviation, ND not determined due to lack of quantifiable resonance
a Estimated from cystine

Quantification strategy Precision (CV%)

PI1-TSPref PI1-ExtCal PI2-ExtCal DC1-ExtCal DC2-ExtCal

Metabolite Mean value 

(n = 6 op.)

SD Mean value 

(n = 6 op.)

SD Value (n = 1 op.) Value (n = 1 op.) Value (n = 1 op.)

1-methylhistidine 2.37 0.67 2.96 0.80 1.07 3.78 4.75

2-hydroxybutyric acid 0.28 0.07 0.69 0.16 0.59 0.58 1.12

3-methylhistidine 1.49 0.28 1.65 0.30 1.14 3.13 2.73

Acetic acid 0.15 0.08 0.26 0.02 0.78 1.08 1.53

Alanine 0.41 0.09 0.57 0.13 0.27 2.12 1.37

Allantoin 13.72 3.17 34.47 7.37 4.72 2.80 4.19

Citric acid 0.31 0.07 0.10 0.00 0.03 0.10 1.00

Cysteinea ND ND 5.11 ND 3.64

Dimethylamine 0.45 0.14 0.22 0.07 0.20 1.40 1.33

Ethanolamine ND ND 0.63 ND 2.23

Formic acid 0.54 0.34 0.33 0.17 0.74 0.88 1.68

Fructose ND ND 7.20

Glucose 18.30 8.58 32.76 14.51 3.05 7.34 0.98

Glutamine ND ND 2.43 ND 3.73

Glycerol ND ND 0.20 ND 2.61

Glycine 0.49 0.13 0.26 0.07 0.34 0.59 2.44

Guanidoacetic acid 0.54 0.07 0.33 0.04 0.13 1.44 3.95

Hippuric acid 0.17 0.08 0.19 0.02 1.13 1.40 0.82

Histidine 0.29 0.03 0.62 0.09 0.26 1.35 2.34

Indoxylsulfate 2.90 0.71 3.29 0.45 0.31 1.89 3.77

Isocitric acid 1.22 0.28 1.11 0.18 0.56 0.81 4.99

Lactic acid ND ND 9.09 ND 8.08

Lysine ND ND 4.59 ND 7.34

Myo-inositol ND ND 1.54 ND 12.37

Phenylacetylglutamine 0.62 0.17 0.72 0.07 0.58 3.64 0.97

Pyroglutamic acid 1.68 0.60 2.48 1.03 3.47 1.83 3.10

Serine ND ND ND ND 3.36

Threonine ND ND 1.81 9.84 5.93

Trigonelline 0.83 0.09 0.67 0.19 1.02 0.55 1.66

Trimethylamine N-oxide 0.21 0.07 0.19 0.01 0.28 0.15 1.42

Creatine + creatinine 3.02 0.14 3.08 0.01 0.10 1.18 2.63

Lactic acid + threonine 5.69 8.85 1.11 1.52 0.16 0.69 0.89
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in NOESYpr-based data, and for formic acid and trimeth-

ylamine-N-oxide in zgpr-based data.

4  Discussion

4.1  Although the synthetic urine contained 
no macromolecules, TSP referencing 
was not satisfactory for metabolite 
quantification

In the present experiment, we used a buffer solution and 

adjusted the pH of all samples, and had similar ionic strengths 

in the synthetic urine and the calibration-range solutions, to 

limit uncontrolled chemical shift variations. As no protein or 

lipid that may interact with TSP was present in the synthetic 

urine, no global overestimation of metabolite concentrations 

was expected. Glucose concentration was largely underesti-

mated when using TSP referencing, which is in line with an 

impact of residual water presaturation on regions close to the 

water signal (Giraudeau et al., 2015). Pyroglutamate under-

estimation was probably due to peak overlapping. The eight 

metabolites overestimated by TSP referencing corresponded to 

low- or medium-intensity resonances below 2.3 ppm or above 

7.3 ppm.

To avoid possible biases with TSP added in the samples 

for NMR-based urine analyses, alternatives have been sug-

gested in the literature, such as the use of alternative internal 

references [sodium acetate or sodium formate, (Emwas et al., 

2018)] or the use of external standards (Crook & Powers, 

2020). While there is no consensus on the choice of a chemi-

cal reference, our results point to the need to carefully analyse 

quantification results obtained with such methods.

4.2  During our experiment, all metabolites were 
stable except cysteine, creatinine and creatine

In the synthetic urine and in the calibration solutions, cysteine 

was dimerized into cystine that was used to estimate it. There-

fore, in a real urine sample, the sum of cysteine and cystine 

could be estimated. Since the total creatinine output in urine is 

considered constant and creatinine seems quite stable during 

sample storage, many investigators normalize their results to 

the creatinine content (Spierto et al., 1997). However, in the 

present experiment, creatine appeared especially unstable in 

the calibration solutions. Stability issues concerning storage 

have previously been reported for urine samples for several 

metabolites including creatinine (Saude & Sykes, 2007). As 

observed in the present experiment, the increased concentra-

tion of creatine and the instability of creatinine are in line 

with previous findings on urine using NMR analyses to study 

storage techniques (Saude & Sykes, 2007). This instability 

was suggested to be of bacterial origin, but temperature- and 

pH-dependent non-enzymatic reactions were also mentioned 

in vitro (Wyss & Kaddurah-Daouk, 2000). For fingerprinting, 

normalization of urine contents to creatinine level must thus 

be used with caution. An alternative physiological normaliza-

tion to the sum of creatinine and creatine seems a possibility 

when no significant dysregulation of metabolism is expected. 

Normalization using osmolality or specific gravity is also an 

option (Emwas et al., 2018).

4.3  Operator effect on quantification was limited 
but could be controlled better

For the processing protocol followed by the largest num-

ber of operators on zgpr spectra, i.e. peak integration 

Fig. 4  PCA of quantification data of 20 metabolites and two sums 

of two metabolites of synthetic urine quantified in zgpr spectra with 

external calibration. A Scores plot. Open circle, peak integration with 

TopSpin (PI1-ExtCal); closed circle, peak integration with NMR-

ProcFlow (PI2-ExtCal); diamond, deconvolution with Mnova (DC1-

ExtCal); square, deconvolution with NMRDeconvR (DC2-ExtCal); 

triangle, plot of theoretical sample. For peak integration with Top-

Spin performed by six operators, operator is annotated. B Loadings 

plot with metabolite annotation
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with TopSpin followed by external calibration, an opera-

tor effect was observed for five metabolites and one sum 

of metabolites only. This effect can be accounted for by a 

different choice of integrated resonance, as it is more dif-

ficult to define integration boundaries for some peaks than 

for others owing to peak overlapping. This is particularly 

true for lactic acid and threonine and for low-intensity and 

complex patterns such as pyroglutamic acid. This operator 

effect could also be explained by the lower peak intensities 

for some signals. Indeed, in a previous experiment using 

synthetic urines with variable-size bucketing, CV and SNR 

were shown to have a weak but clear inverse relationship 

(Wang et al., 2013). Training of newcomers by expert users 

and a clear definition of criteria for selecting resonances and 

peak boundaries could limit this effect when using TopSpin. 

Semi-automatic definition modes of peak boundaries based 

on adaptative binning (Anderson et al., 2011; De Meyer 

et al., 2008) or on recent methods of deconvolution (Li et al., 

Table 2  Relative trueness for 20 metabolites and two sums of metabolites quantified from synthetic urine zgpr spectra using all strategies for 

resonance integration and calibration, and for metabolites quantified using certain strategies only

Codes of quantification strategies are given in Online Resource 2

op. operator, SD standard deviation, ND not determined due to lack of quantifiable resonance
a Estimated from cystine

Quantification strategy Relative trueness (%)

PI1-TSPref PI1-ExtCal PI2-ExtCal DC1-ExtCal DC2-ExtCal

Metabolite Mean value 

(n = 6 op.)

SD Mean value 

(n = 6 op.)

SD Value (n = 1 op.) Value (n = 1 op.) Value (n = 1 op.)

1-methylhistidine −0.96 0.94 −2.50 6.01 −0.34 −2.72 3.40

2-hydroxybutyric acid 18.44 2.11 3.60 0.07 5.29 3.58 4.16

3-methylhistidine −4.92 0.56 4.46 4.27 0.46 −3.00 −2.91

Acetic acid 16.14 2.40 2.68 0.04 16.45 0.10 2.71

Alanine 13.28 3.95 1.06 0.31 0.56 −0.01 0.02

Allantoin 12.41 10.26 13.77 1.16 11.34 4.95 2.02

Citric acid −6.43 2.50 1.37 0.02 1.46 −1.02 3.80

Cysteinea ND ND 6.77 ND 1.02

Dimethylamine −3.88 2.76 0.84 1.27 0.27 4.59 0.07

Ethanolamine ND ND −4.48 ND 1.70

Formic acid 21.33 1.27 −2.19 0.20 −2.51 2.61 −1.88

Fructose ND ND ND ND 20.53

Glucose −36.83 46.44 −0.47 5.05 0.14 −0.06 −2.49

Glutamine ND ND 3.25 ND 0.29

Glycerol ND ND −3.39 ND −4.08

Glycine 1.79 2.82 −1.46 1.04 −1.16 2.56 2.70

Guanidoacetic acid −2.50 5.86 −1.49 0.45 −0.72 3.66 −1.36

Hippuric acid −1.30 39.40 0.57 0.48 1.39 2.60 −1.09

Histidine 9.00 0.97 3.19 0.85 2.43 0.68 1.23

Indoxylsulfate 5.21 2.00 2.02 1.24 0.78 −2.25 −3.32

Isocitric acid 13.32 1.74 5.38 0.46 0.14 −2.45 1.65

Lactic acid ND ND 5.46 ND 10.40

Lysine ND ND −14.31 ND 2.67

Myo-inositol ND ND −6.96 ND −9.74

Phenylacetylglutamine 7.21 1.72 1.50 0.04 1.58 −4.16 1.79

Pyroglutamic acid −49.62 117.24 −0.12 5.97 −2.00 −3.52 −2.70

Serine ND ND ND ND 5.07

Threonine ND ND −2.64 0.97 −3.54

Trigonelline 6.26 2.13 −0.28 0.17 −1.40 −0.03 1.18

Trimethylamine N-oxide −1.94 2.53 1.47 0.23 1.56 2.41 2.92

Creatine + creatinine −6.26 2.62 −2.28 0.25 −0.51 1.96 −3.19

Lactic + threonine 6.82 9.29 6.31 9.22 1.67 1.06 3.51
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2023; Schmid et al., 2023) could also reduce or avoid such 

operator-dependent effects.

4.4  Tailored processing tools improved 
quantification with external calibration

With external calibration, ethanolamine, glutamine, glyc-

erol and threonine were accurately quantified using NMR-

ProcFlow, unlike with TopSpin. With NMRProcFlow, it is 

possible to interactively perform small local realignments 

of resonances and select a resonance from a complex 

group before integration, e.g. realignment and selection 

of one resonance for a triplet as done for ethanolamine. 

Likewise, the NMRDeconvR tool made it possible to 

quantify the metabolites listed above as well as cysteine, 

and to estimate fructose which could not be quantified with 

any other strategy. Fructose and cysteine were at low con-

centrations in the initial mixture, with most NMR signals 

appearing as multiplets and with chemical shifts in spec-

tral regions with ubiquitous peak overlapping. Therefore, 

deconvolution with manual adjustment of the peak ranges 

is key to extracting corresponding peak areas. This was not 

achieved with the Mnova tool here since the peak range 

was not manually readjusted by the operator.

Overall, for quantification with external calibration, 

trueness was improved for nearly all variables and for 

all strategies when using NMRProcFlow or NMRDe-

convR, and for most of them when using Mnova. This 

result was expected for deconvolution, as peak overlap-

ping concerned most of the metabolites present in the 

synthetic urine solution. This is in line with previous 

comparisons of 1D-spectra deconvolution with other auto-

mated approaches for identification and quantification of 

metabolites using spiked urine or plasma samples (Zheng 

et al., 2011). Precision was improved for at least half or 

about half of the variables with NMRProcFlow or Mnova, 

respectively. However, our deconvolution approaches 

using external calibration may somehow be penalized by 

the distortion of certain peaks of the calibration spectra, 

unlike NMRProcFlow for which the approach by integra-

tion of identical zones for both synthetic urine and calibra-

tion spectra tolerates peak deformation very well.

Table 3  Comparison of precisions and relative trueness on concentra-

tion of 20 metabolites and two sums of metabolites quantified from 

zgpr and NOESYpr spectra recorded on synthetic urine and processed 

using TopSpin integration and external calibration (PI1-ExtCal) by 

five operators

Ratios between NOESYpr- and zgpr-based precision or trueness and p-value of corresponding Wilcoxon tests

Metabolite NOESYpr CV over 

zgpr CV

Wilcoxon test p-value NOESYpr trueness over 

zgpr trueness

Wilcoxon test p-value

1-methylhistidine 0.816 1.508E−01 −94.773 6.905E−01

2-hydroxybutyric acid 0.311 1.587E−02 0.523 1.000E+00

3-methylhistidine 0.789 9.524E−02 1.780 5.476E−01

Acetic acid 0.959 1.508E−01 0.439 7.937E−03

Alanine 0.450 7.937E−03 0.159 9.524E−02

Allantoin 0.978 8.413E−01 0.403 7.937E−03

Citric acid 1.002 1.508E−01 −3.369 9.524E−02

Dimethylamine 1.258 1.508E−01 4.496 8.413E−01

Formic acid 3.572 7.937E−03 −1.504 7.937E−03

Glucose 1.452 2.222E−01 −2.289 9.524E−02

Glycine 0.833 8.413E−01 1.538 1.000E+00

Guanidoacetic acid 1.376 1.508E−01 3.395 1.000E+00

Hippuric acid 1.138 6.905E−01 1.766 4.206E−01

Histidine 1.242 5.476E−01 0.726 6.905E−01

Indoxylsulfate 0.797 5.556E−02 −0.034 9.524E−02

Isocitric acid 1.386 7.937E−03 −0.801 7.937E−03

Phenylacetylglutamine 0.688 7.937E−03 0.354 7.937E−03

Pyroglutamic acid 1.197 1.508E−01 −0.508 5.556E−02

Trigonelline 1.920 5.556E−02 −0.703 2.222E−01

Trimethylamine-N-oxide 1.255 7.937E−03 3.404 7.937E−03

Creatine + creatinine 0.979 7.937E−03 1.452 3.095E−01

Lactic acid + threonine 0.864 4.206E−01 1.403 6.905E−01
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4.5  Compared to zgpr, NOESYpr had advantages 
and drawbacks

1D NOESYpr pulse sequences have been advised for NMR-

based metabolomics (Mckay, 2011), especially for biofluids 

as they provide an efficient suppression of the faraway water 

magnetization (Giraudeau et al., 2015), although the mixing 

time sometimes needs to be optimised. In the present experi-

ment, trueness and precision were not significantly different 

between zgpr- and NOESYpr-based spectra for about 70% 

of the variables. This is in line with a study on cerebrospinal 

fluid showing that the metabolite concentrations obtained 

using DSS internal referencing and zgpr and noesypr1d, or 

noesygppr1d and zgpr sequences, were similar (Kolokolova 

et al., 2010). In the present experiment, trueness was slightly 

yet significantly better for four variables in the NOESYpr-

based data, and for two variables in the zgpr-based data. 

Precision was slightly yet significantly better for four vari-

ables in the NOESYpr-based data, and for three variables 

in the zgpr-based data. Overall, the choice of the optimal 

pulse sequence is dependent on the study, matrix and opera-

tor. Most importantly, our conclusions on the choice of the 

processing and integration approach remain valid, regardless 

of the pulse sequence used.

4.6  Transferability to real urine samples

In the present study, we used a synthetic urine with known 

metabolite concentrations to be able to calculate trueness 

values for metabolite quantifications. However, most of our 

conclusions based on this synthetic solution mimicking 

urine should apply to real urine samples.

Irrespective of the spectra processing method chosen, the 

adjustment of some acquisition parameters will be needed, 

since presaturation parameters are sample dependent, and 

their optimization is key to avoid or limit effects on sig-

nals close to the residual water peak. When transferring the 

methods to real urine samples, the presaturation power level 

will need to be adjusted so that the intensity of the residual 

water peak does not exceed the intensity of the most intense 

metabolite peaks, while avoiding using unnecessarily high 

power that would be detrimental to the quantification of 

nearby metabolite peaks.

For spectra processing, the fact that real urine samples 

contain peptides and proteins potentially interacting with 

TSP (Shimizu et al., 1994) reinforces the importance of 

external calibration compared to TSP referencing. In addi-

tion, an increased metabolite complexity [over 200 quantifi-

able metabolites in real urine (Bouatra et al., 2013)] and the 

presence of overlapping background signals from urinary 

peptides and small proteins may further bias the concen-

tration values of several metabolites as shown for alanine 

(Gronwald et al., 2008). This increased spectral complexity 

points in favour of deconvolution tools. Moreover, in a set 

of real urine samples, differences of ionic strength among 

samples may result in uncontrolled chemical shift variations. 

To facilitate spectra processing, the ionic strength of the 

calibration solutions should be as close as possible to that of 

real urine, and realignment during the processing of spectra 

of calibration solutions and samples could be even more cru-

cial than for synthetic urine. An experimental way to verify 

whether our results apply to real urine samples would be to 

use a spike-in experiment of a urinary biological sample 

(Klein et al., 2013).

5  Conclusion

The present results highlight the relevance of inter-operator 

or inter-laboratory tests to better rationalize the choice of 

quantification tools in targeted NMR metabolomics and 

confirm the relevance of local 1D spectrum deconvolu-

tion to improve the trueness and precision of quantitative 

data. However, when 5% precision and trueness are suffi-

cient, TopSpin integration with external calibration is of 

interest. Results also show that the use of TSP as an inter-

nal reference for quantitative analysis of urine is probably 

not the optimal choice, in line with recent results obtained 

on plasma that suggested the use of alternative reference 

compounds (Nagana Gowda et al., 2021). More accurate 

results can be obtained with an external calibration strategy, 

although this involves a heavier and more time-consuming 

experimental procedure. Finally, this study highlights the 

importance of inter-laboratory studies in the development of 

reliable processing methods to obtain accurate quantitative 

data in NMR metabolomics. Here, as a first step, we used 

a single data set and different operators to assess multiple 

processing software. Further steps would require comple-

mentary experimental designs. Using several NMR data-

sets analysed by a single operator with all the processing 

methods and associated software used in the present study 

would provide a more robust comparison of these process-

ing methods. Using a set of identical samples distributed to 

several laboratories instructed to use a single acquisition and 

quantification method to quantify metabolites would provide 

a measure of inter-laboratory variability.
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