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Abstract
Purpose: To improve motion robustness of functional fetal MRI scans by
developing an intrinsic real-time motion correction method. MRI provides
an ideal tool to characterize fetal brain development and growth. It is, how-
ever, a relatively slow imaging technique and therefore extremely susceptible
to subject motion, particularly in functional MRI experiments acquiring mul-
tiple Echo-Planar-Imaging-based repetitions, for example, diffusion MRI or
blood-oxygen-level-dependency MRI.
Methods: A 3D UNet was trained on 125 fetal datasets to track the fetal brain
position in each repetition of the scan in real time. This tracking, inserted into
a Gadgetron pipeline on a clinical scanner, allows updating the position of the
field of view in a modified echo-planar imaging sequence. The method was eval-
uated in real-time in controlled-motion phantom experiments and ten fetal MR
studies (17 + 4-34 + 3 gestational weeks) at 3T. The localization network was
additionally tested retrospectively on 29 low-field (0.55T) datasets.
Results: Our method achieved real-time fetal head tracking and prospective
correction of the acquisition geometry. Localization performance achieved Dice
scores of 84.4% and 82.3%, respectively for both the unseen 1.5T/3T and 0.55T
fetal data, with values higher for cephalic fetuses and increasing with gestational
age.
Conclusions: Our technique was able to follow the fetal brain even for fetuses
under 18 weeks GA in real-time at 3T and was successfully applied “offline” to
new cohorts on 0.55T. Next, it will be deployed to other modalities such as fetal
diffusion MRI and to cohorts of pregnant participants diagnosed with pregnancy
complications, for example, pre-eclampsia and congenital heart disease.
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1 INTRODUCTION

1.1 Motivation

The fetal period is characterized by a range of rapid and
intricate developmental processes. Deviations in this
orchestrated cascade of events are linked to pathology and
pregnancy complications such as congenital heart dis-
ease,1 pre-eclampsia,2 and fetal growth restriction3 among
others. While ultrasound imaging remains the first-line
screening modality, fetal MRI plays an increasing role in
both research and clinical settings. In addition to the high
spatial resolution provided, the soft tissue contrast, the
reduced operator dependence, the ability to image until
late gestation, and the availability of a range of functional
contrasts are significant benefits. Particularly important
among these functional techniques is T2* relaxometry,
which relies on the Blood-Oxygen-Level-Dependency
(BOLD) effect to provide a proxy measure of oxygenation
in the fetal brain4 and placenta.5 T2* has been shown to
be decreased in the placenta of pre-eclamptic pregnan-
cies,2 pregnancies affected by congenital heart disease6

and those with fetal growth restriction7 among others.
Furthermore, diffusion MRI (dMRI), can sensitise the
imaging to tissue microstructure.8

Fetal motion is uncontrollable, often large, and unpre-
dictable and poses one of the main challenges for these
techniques, especially in early and mid-gestation when
fetuses have enough space for significant motion, and
it affects all parts of the imaging and analysis process.
With more precise and sophisticated functional tech-
niques available to reveal ever finer details, precise correc-
tion of motion artifacts is growing in importance. Exam-
ples of this are BOLD imaging, T2* relaxometry and dif-
fusion MRI, with increasing resolution, higher b-values,
and dynamic information. Such techniques rely on the
acquisition of the same slice stack location multiple times
to then be combined for quantification and are particu-
larly susceptible to motion which hampers robust analysis.
Additionally, signal saturation (T1 recovery) issues cannot
be corrected with postprocessing techniques.

Prospective acquisition correction techniques already
exist for the enhancement of BOLD imaging with real-time
automatic head motion correction during the acquisition.
Fetal motion detection and correction are, however, signif-
icantly more challenging than ex-utero as a result of (1)
larger displacements and rotations due to the inability to
restrain and reduce motion, (2) the unpredictability of the
motion, and (3) the surrounding uterine environment and
maternal tissue. Typically, rapid single-shot acquisitions
are chosen to freeze the motion during the acquisition of
each slice. The inter-volume motion is then often corrected
with postprocessing solutions such as registration-based9

or signal-model approaches.10 However, prospective tech-
niques allow reacting in real-time and thus enhance
data quality immediately. The reduction or elimination of
changes of pose in the imaging coordinates, applied dur-
ing the scan, would lead to higher quality data—and hence
a better starting point for post-processing. Additionally, it
could allow for the diffusion gradients to be adapted in
real-time and constitute a crucial step to address signal
variation induced by motion and improve spatiotemporal
analysis.

1.2 Related work

Fetal brain segmentation is the fundamental initial
step in fetal motion correction. It is particularly chal-
lenging and crucial due to (1) the arbitrary position
of the fetus within the uterus and (2) fetal motion.
Machine-learning-based techniques have been success-
fully applied in various postprocessing settings to identify
and segment the fetal brain. However, the vast majority
are applied to high-resolution anatomical scans based on
fast spin-echo and not echo-planar imaging (EPI)-based
sequences, which typically display reduced resolution,
quality (e.g., B0 inhomogeneities, geometrical distortions
such as “ghosting”) and altered intensities/contrast.

Keraudren used bundled scale-invariant feature
transform features to automatically extract a bounding
box around the fetal brain11 and segmented the brain
using an approach based on random forests and con-
ditional random field.12 Both methods were applied to
two-dimensional (2D) slices of high-resolution acqui-
sitions, with an average computation time for brain
localization of <1 min and an additional 2 min for brain
extraction in,12 thus not suitable for real-time applications.
Taimouri13 proposed an atlas-matching technique align-
ing the brain rigidly. Tourbier14 presented an atlas-based
approach to extract the brain using a predefined bounding
box. This method uses deformable registration to multiple
atlases and is therefore also computationally very expen-
sive. Fast fully automated segmentation of the intracranial
volume was achieved in Reference 15, with the pro-
posal of a voxelwise CNN adopted from Reference 16.
Dice metrics slightly above 90% were reported for all
the above-mentioned techniques. Real-time fetal brain
extraction was first achieved17 with the use of a 2D UNet
and a voxelwise fully convolutional network for segment-
ing the fetal brain in each 2D fetal MRI slice in about 1
second. Although this fetal brain extraction technique
is significantly faster than the methods above, it cannot
be applied to the task in this study as it relies on brain
localization in each individual 2D slice. Instead of the
entire three-dimensional (3D) slice stack. Uus proposed
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an automatic simultaneous localization of both fetal
brain and trunk18 to be applied to quality assessment of
the images in real-time by combining a 3D UNet and a
discriminator module.19

The technique by McDaniels,20 using frame-to-frame
registration in volumetric navigators, was extended by
Gagoski by integrating EPI-based volumetric navigators
in the HASTE acquisition scheme.21 Gholipour proposed
symmetric diffeomorphic deformable registration for the
construction of a four-dimensional atlas of the developing
fetal brain,22 however, this method is computationally very
expensive for a real-time application.

There is, indeed, a gap between retrospective
implementations and clinical applications. These imple-
mentations are often unsuitable for deployment in
clinical/research clinical environments. The development
of the above-mentioned fetal brain motion tracking algo-
rithms is typically done for "offline" applications, thus
integration of such algorithms in MRI scanners to be
applied "online" is challenging. To improve the capture
range of subject-to-atlas registration, Salehi proposed the
use of deep regression CNNs trained to estimate the 3D
pose of the fetal brain based on image slices and vol-
umes with the potential for real-time applications.23 In
Reference 24, a fetal pose estimation method was pre-
sented using deep learning algorithms to detect key fetal
landmarks, achieving an average error of 4.47 mm and
96.4% accuracy. A state-of-the-art novel deep predictive
motion tracking framework was proposed in25 to address
dynamic, real-time 3D fetal brain motion using estima-
tion and prediction of the motion trajectory based on MRI
slice time series. Gagoski21 developed a state-of-the-art
acquisition/reconstruction pipeline that prospectively
detects poor-quality fetal brain HASTE images using
a semi-supervised image quality assessment CNN and
automatically reacquires the stacks. Although the aim
of both presented methods is aligned with the aim of
our work, instead of high-resolution HASTE images we
apply our method to intrinsically lower-resolution EPI
images that will simultaneously be used for estimat-
ing head motion and analysing the brain in BOLD MRI
and dMRI.

Benner26 proposed a motion correction and
re-acquisition method for adult brain diffusion-weighted
imaging, involving (1) calculation of rigid transforma-
tion with real-time to adjust the next acquisition and (2)
immediate re-acquisition of the images with the high-
est real-time calculated artefact level score. A correction
strategy applied to diffusion-weighted images by Dubois
in Reference 27 relies on (1) automated detection and
2D resampling of the outlier individual slices and (2) 3D
registration and realignment of misregistered volumes.
To improve renal BOLD imaging, Morrell28 proposed

continuous respiratory navigation and real-time feedback
for renal free-breathing BOLD MRI.

1.3 Contributions

This study presents an intrinsically motion-robust
deep-learning-based fetal MRI method to achieve
real-time (intra-scan) fetal head position and motion esti-
mation and update the acquisition geometry prospectively
to address the challenge of fetal brain motion in functional
fetal MRI. Our method uses Gadgetron29 for real-time
reconstruction of the scans and a deep learning network
adopted from18 for extremely fast fetal head localization.
Intrinsic navigator images (EPI) are acquired—the target
scan is simultaneously used for detecting the changes in
head position and monitoring the fetal brain in BOLD
MRI. Unlike the state-of-the-art work presented in Refer-
ence 25, with real-time estimation of the fetal head motion
parameters, our method not only extracts the translational
displacements as it also corrects them in real-time in the
following repetitions of the scan. Furthermore, contrary
to the method presented in Reference 21, the field of view
(FOV) adjustments that correct for the fetal brain motion
are applied prospectively while the sequence runs, thus
it does not require re-acquisition and avoids extending
the duration of the scan. The results presented are on
single-echo gradient-echo EPI acquisitions, the founda-
tion for most functional techniques used in fetal imaging.
Thus, this work paves the way for future developments in
diffusion and functional MRI.

2 METHODS

BOLD images are acquired and used as navigators, allow-
ing for both spatiotemporal analysis of the BOLD signal
and extracting the fetal brain motion parameters. Once
acquired, the data is exported during the scan to Gad-
getron, reconstructed, and brain localization is performed.
Motion is estimated and sent from the Gadgetron server
to the scanner, with the reconstructed slice stack, to adapt
the FOV parameters of the following acquisition.

2.1 Feedback setup

The motion tracking and correction process was imple-
mented on a clinical 3T scanner (MAGNETOM Vida,
Siemens Healthcare). An intrinsic navigator approach
was chosen where the target EPI scans are simultaneously
used to detect the changes in head position and to obtain
the functional contrast of interest. The complete setup
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NEVES SILVA et al. 2309

F I G U R E 1 Schematic overview of the complete pipeline
illustrating data acquisition, image reconstruction, fetal brain
localization, and the real-time change in the field of view (FOV).

is schematically illustrated in Figure 1, highlighting the
changes performed both on the acquisition and recon-
struction side. A gradient-echo single-shot multi-dynamic
EPI sequence was modified to receive updates for the FOV
and to apply these translational changes in phase- and
frequency-encoding directions and slice selection to subse-
quent repetitions. On the reconstruction side, a Gadgetron
pipeline29 was deployed on an external GPU-equipped
(NVIDIA GEFORCE RTX 2080 Ti, NVIDIA Corporate,
Santa Clara, CA) computer which was connected to the
internal network of the MRI scanner. This involves con-
version of the raw data to ISMRMRD format immediately
during the scan and reconstruction with off-the-shelf Gad-
gets that provide generic building blocks for configuring
the streaming reconstruction in the Gadgetron. Then, a
Python Gadget was written to estimate the position of the

target object in the image. Two options were implemented:
an intensity-based segmentation method for phantom
experiments as well as a pretrained 3D UNet18 to extract
the fetal brain location and the center-of-mass (CoM) at
each time point. There is currently some latency in the
method that causes the FOV adjustment to be applied two
repetitions after motion occurs, therefore the translational
displacement of the CoM between time points n and n − 2
was stored in the dynamic image header, sent back to the
scanner with the respective image n, and accessed by ded-
icated feedback functors that send the motion parameters
to the sequence to adapt the centre of FOV in the next
repetition.

2.2 Localization network

2.2.1 Network architecture

The baseline architecture of the above-mentioned network
is a 3D UNet as in Reference 18 (Figure 2). It comprises
five encoding-decoding branches with 32, 64, 128, 256, and
512 channels, respectively. Each encoder block consists of
2 repeated blocks of 3 × 3 × 3 convolutions (with a stride
of 1), instance normalization,30 and LeakyReLU activa-
tions. The first two down-sampling blocks contain 2 × 2
× 2 average pooling layers, while the others use 2 × 2 × 2
max pooling layers. The decoder blocks have a similar
architecture as the encoder blocks, followed by upsam-
pling layers. The model outputs an N-channel 3D image,
corresponding to our N = 2 classes: background and fetal
brain.

F I G U R E 2 Pipeline for localization of
fetal brain in MRI images.
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2310 NEVES SILVA et al.

The network is trained by minimising the generalized
Dice loss (GDL)31 (Equation 1) using the Adam optimizer
with the default parameters (𝛽1 = 0. 9 and 𝛽2 = 0.999).

LGDL = 1 − 2
∑M

k=1wk
∑

n pkntkn
∑M

k=1wk
∑

n pkn + tkn
, (1)

where wk = 1∕
(∑

n tnk
)2 is the weight of the kth tissue

type, pkn is the predicted probabilistic map of the kth
tissue type at voxel n, tkn is the target label map of the
kth tissue type at voxel n, and M is the number of tissue
classes. The network was implemented in PyTorch and the
TorchIO32 library was used for data augmentation.

2.2.2 Datasets, acquisition,
and preprocessing

The dataset for training, validation, and initial testing con-
sists of 157 scans acquired at 1.5 and 3 T, and it was split
into 125 (training), 16 (validation), and 16 (test) scans. The
trained model was, in addition, applied to two different
datasets: (1) 29 subjects scanned at 0.55T to retrospectively
evaluate the generalization ability of the model; (2) 10 fetal
subjects scanned at 3T where the model was applied to
the images prospectively and brain masks were generated
upon each repetition of the scan.

The data used for the training and network perfor-
mance evaluation includes gradient-echo multi-echo
single-shot EPI scans of 157 fetal subjects deliberately vary-
ing in field strength (1.5T/3T), echo time (TE; 7.9–240.2
ms), resolution (2/2.5/3 mm3 isotropic), acceleration
factor (none, 2, 3), gestational age (15–40 weeks), fetal
health (control cases, fetal growth restriction, prolonged
preterm rupture of the membranes, etc.), and fetal position
(cephalic, breech, transverse) to increase the robustness
of the network. An additional test set including scans of
29 fetal subjects (17.6–36.3 gestational weeks) acquired at
0.55T was used to assess the performance of the trained
model in low-field MR images. The following protocols
were used: 1) 3T Philips Achieva, 32-channel cardiac
coil and 16-channel spine coil, matrix size= 144 × 144 −
192 × 192, resolution= 2 × 2 × 2∕3 × 3 × 3 mm3, TEs=
3.8∕70.4∕127∕183.6 ms /10.1/54.3/98.4/142.5/186.8 ms,
slices = 45–75; 2) 1.5T Philips Achieva, 28-channel torso
coil, matrix size = 144 × 144 − 288 × 288, resolution= 1 ×
1 × 1∕2.5 × 2.5 × 2.5 mm3, TEs = 14.6/77.4/140.1/202.8/
265.5 ms, slices = 30–96; (3) 0.55T Siemens MAGNETOM
Free.Max, blanket-like BioMatrix Contour-L 6-element
coil and fixed 9-element spine coil, matrix size= 100 ×
100 − 128 × 128, resolution= 3.13–4.03, TEs= 46/120/194/

268/342 ms, slices = 50–59. Gold standard 3D brain masks
were manually drawn for each of these datasets. Slice
stacks and corresponding brain masks were resampled
using padding and cropping to fit a 128 × 128 × 128 voxel
grid matrix.

The prospective work here presented includes
gradient-echo single-echo single-shot EPI scans of 10 fetal
subjects acquired on a clinical 3T Siemens MAGNETOM
Vida scanner using an 18-channel UltraFlex Large body
coil and a 32-channel spine coil. The imaging parameters
applied were TR = 11 500 ms, matrix size = 148 × 148, res-
olution = 3.0 mm3, 15–34 repetitions, slices = 56–68, TE
= 90 ms. Gestational age ranged from 17.2 to 34.7 weeks
(mean 28.05 ± 5.86 weeks).

These scans were acquired as part of several eth-
ically approved studies (16/LO/1573, 07/H0707/105,
17/LO/0282, 08/LO/1958, and REC19/LO/0852). The
demographics and various acquisition parameters used
are given in Figure S1.

2.2.3 Training and network performance
evaluation

The model was trained on images from 125 fetal subjects,
validated on 16, and performance was evaluated on a test
set of 16 subjects. This distribution approximates a ratio of
80%:10%:10% and ensures the range of acquisition settings,
gestational ages and fetal positions present during train-
ing and testing are similar for an unbiased performance
evaluation. Out of the 157 datasets, 45 were added to
increase the representation of the two under-represented
classes, A) breech position and B) fetuses of gestational
age<23 weeks. Class A) adds up to 37% of all fetal subjects
and B) to 22%, and the representation of these two classes
in training/validation/testing datasets was kept at similar
percentages.

The localization performance was analyzed with
the Dice similarity coefficient (DSC) and Intersection-
over-Union (IoU) evaluation metric calculated between
the gold standard manual segmentations performed by
fetal MRI experts (LS, JH, SNS, and JAV with respectively
12, 9, 2, and 1 year[s] of experience) and the segmentations
obtained from the network.

To assess the effect of the computed DSC on the esti-
mation of fetal head motion, images from one fetal subject
of the test set (3 TEs, 30 repetitions) were used. Manual
segmentations were drawn and the localization network
was used to generate predicted masks across 3 TEs for
the first 10 repetitions of the scan. Mean squared errors
(MSE) were computed between the CoM coordinates of the
ground-truth and predicted brain masks.

 15222594, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29803 by U

niversite D
e B

ordeaux, W
iley O

nline L
ibrary on [16/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NEVES SILVA et al. 2311

2.3 Experiments

2.3.1 Phantom experiments

The method was evaluated first in real-time on a 3T
Siemens MAGNETOM Vida scanner using a spheri-
cal glass phantom filled with manganese-chloride-doped
agarose to achieve relaxation properties similar to the fetal
brain. The imaging parameters applied were TR= 6740 ms,
voxel size = 3.0 mm3, 50 repetitions, 40 slices, TE = 90 ms.
Motion was mimicked with controlled rectangular trans-
lational displacements throughout the acquisition in x, y,
and z directions (from right to left, bottom to top, and front
to back of the inside of the bore). The accuracy of the FOV
changes was evaluated by comparing the CoM coordinates
at the beginning of the scan (first repetition) and the CoM
in repetitions where motion correction was applied.

2.3.2 Fetal experiments

Fetal data were acquired from 10 pregnant volunteers
in St Thomas’ Hospital recruited between October 2022
and February 2023 after informed consent was obtained
as part of an ethically approved study (MEERKAT,
REC19/LO/0852, Dulwich Ethics Committee, December
8, 2021). Women were scanned on the above-described
clinical 3T Siemens Vida scanner in supine position. Fetal

head motion was measured and corrected prospectively
with real-time adjustments of the acquisition geometry.

3 RESULTS

3.1 Localization task

The process of brain localization took between 11.43–20.85
ms per volume in testing mode “offline.” Figure 3 shows
examples of predicted brain masks generated by the
3D-UNet (red), the corresponding ground-truth segmenta-
tions (yellow), and the overlap between the two (orange).

A histogram (Figure 4A) and a density plot (Figure 4B)
show the distribution of the DSC results computed for
the 16 fetal subjects comprised in the test set for each TE.
In the first TE, DSC results ranged between 22.8% and
93.1%, with values above 80% for 14 subjects. DSC val-
ues increased in the second and third TEs, with results
ranging between 77.0%–93.0% and 75.2%–92.2%, respec-
tively. DSCs exceeded 80% in 15/14 fetal subjects in
TE2/TE3, respectively. Of the 16 fetuses, nine fetuses were
scanned using five TEs, in which DSC results decreased
to 63.3%–88.5% in TE4 and 56.9%–87.9% in TE5. Overall,
the best performance was observed in TE2 and the lowest
in TE5.

The DSC values individually calculated for each TE
image of each subject are plotted in Figure 4C. Fetal subject

F I G U R E 3 Images of five fetal subjects (25/18.6/15.7/26/21 gestational weeks) obtained at five echo-times (10/52/98/142.5/240 ms)
with brain masks predicted by the network (red) and corresponding manually drawn masks (yellow).
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F I G U R E 4 (A) Histogram of
Dice similarity coefficient results
obtained from brain masks
automatically extracted from images
of 16 fetal subjects at five echo times.
(B) Density plot representing the
distribution of Dice coefficient scores
across five echo times. (C) Dice
coefficient values were calculated
and plotted individually for each
fetus at each echo time.

5 showed the highest variance in DSC across the five TEs,
with values of 75.2% and above in TE1/TE2/TE3, followed
by a significant drop to 63.3% and 56.9% in TE4 and TE5,
respectively. High variance was also observed in subject 9,
with a significant increase from TE1 (74.0%) to TE2 (92.0%)
and TE3 (88.9%). Fetus 15 initially scored a DSC of 22.8% in
TE1 and increased significantly to above 84.1%. DSC values
for all other fetal subjects and all TEs remained above the
75% threshold (see Figure 4C). Figure 5 demonstrates the
signal loss and image artefacts associated with the decreas-
ing performance of the model with an increase in TE on
the ground-truth (yellow) and predicted (red) brain masks.

All results are summarised in Table 1. The trained
model achieved overall DSC and IoU performances of
84.4 ± 9.8% and 73.5 ± 10.3%, respectively, across all TEs,
fetal positions, and gestational ages. Regarding TE, the
model performance initially increased with an increase
in TE, associated with the improved contrast provided by
such images. Comparable performance was achieved in
TE2 and TE3. DSC and IoU decreased in TE4, with TE5
showing the lowest performance. To assess the model
performance on different fetal positions, the test set was
divided into two classes- breech (seven subjects) and
cephalic (nine subjects). Slightly higher performance was
observed in the cephalic position (higher by DSC = 3.3%,
IoU = 4.1%). Lastly, the test set was divided into two

classes according to gestational age—below and above
23 gestational weeks with 5 and 11 subjects, respectively.
Slightly lower performance was observed in the <23 GA
class (lower by DSC = 3.8%, IoU = 4.4%).

The CoM calculated from ground-truth and predicted
brain masks from TE1/TE2/TE3 images were plotted for
one fetal subject for the first 10 repetitions of the mul-
tidynamic scan, as illustrated in Figure S3. The average
DSC of the predicted brain masks for TE1 was 74.1%,
90.1% for TE2, and 86.7% for TE3, across 10 repetitions.
MSE were computed between the CoM coordinates of
the ground-truth and predicted masks. In TE1, MSE was
[5.64, 545.0, 0.13] ± [9.22, 458.29, 0.097] mm in x, y, z,
respectively. For TE2, MSE was [0.85, 0.72, 0.47] ± [0.76,
1.24, 0.46] mm. MSE in TE3 was [3.2, 61.14, 0.69] ± [8.08,
182.29, 0.42] mm. Motion estimation thus failed in TE1
due to segmentations in the stomach region in addition
to the brain for all repetitions except 5 and 7. Similarly,
the stomach was also segmented in repetition 6 for TE3.
Lower DSC in TE1 did not affect the motion estimation
in x and z significantly, however, motion estimation in y
failed. Although the overall DSC in TE3 was lower than
in TE2 by 3.4%, the motion was successfully estimated for
all repetitions but 6. As expected, TE2 provided the lowest
mean MSE and the fetal head displacement estimation was
therefore the closest to the ground-truth motion detection.
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NEVES SILVA et al. 2313

F I G U R E 5 Images of Fetus 5 at TE1/TE2/TE3/TE4/TE5 = 13.8/70.4/127/183.6/240.2 ms with respective ground-truth (yellow) and
predicted (red) brain masks.

3.1.1 Fetal brain localization in low-field
MRI scans

When tested on low-field (0.55T) MR images, the model
trained on 1.5T/3T datasets achieved an overall DSC of
82.3 ± 17.5% and IoU of 72.6 ± 18.8% across all TEs,
fetal positions, and gestational ages. Figure 6 shows exam-
ples of predicted brain masks generated by the 3D-UNet
(red) and the corresponding ground-truth segmentations
(yellow).

Table 1 summarizes all results. Regarding TE, the
best performance was achieved in TE2, followed by TE1
and TE3 where comparable performance was observed.
DSC and IoU values decreased in TE4. TE5 presented the
lowest score according to the DSC, whereas TE4 showed
the lowest performance using the IoU evaluation metric.
The model performance was also assessed according to
fetal position- breech (six subjects) and cephalic (23 sub-
jects), and gestational age- ≤ 23 gestational weeks (four
subjects) and above 23 weeks (25 subjects). Comparable
performance was observed for the two fetal positions, with
the cephalic position outperforming breech (DSC = 1.5%,
IoU= 0.5%). The class of fetal subjects with GA>23 weeks
outperformed the class GA ≤23 weeks (DSC= 12.5%,
IoU= 15.0%).

3.1.2 Real-time fetal brain localization

Figure 7 illustrates the achieved prospective localization in
real-time for all 10 fetuses. A volume approximate to the
fetal brain volume was extracted for all but one fetal subject
(Fetus 4).

3.2 Real-time fetal brain tracking

3.2.1 Phantom experiments

The CoM coordinates extracted from the predicted seg-
mentations during the phantom experiment in Figure 8
show a translational displacement in the x-coordinate of
the segmentation between repetition 6 and 7 (marked with
a yellow arrow), followed by an image FOV shift in rep-
etition 9 (purple arrow) that recenters the scan to the
moved position of the phantom. FOV adjustments were
also observed in repetitions 20, 31, 38, and 48 following the
applied motion two repetitions prior. FOV adaptions in the
y and z coordinates are further demonstrated. In each case,
there is a phantom shift in the FOV and two repetitions
later the FOV shifts to match the displacement applied.
Figure S2 depicts the corresponding image views for the
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2314 NEVES SILVA et al.

T A B L E 1 Mean Dice coefficient values calculated between ground-truth and network-predicted fetal brain masks for two test sets, one
consisting of (A) 16 fetal subjects scanned at 1.5/3T between 15 and 40 gestational weeks, and (B) 29 fetal subjects scanned at 0.55T between
17.6 and 38.1 weeks gestational age, evaluated for echo-time (TE), fetal position, and gestational age.

Echo-time

TE1 TE2 TE3 TE4 TE5

1.5/3T

DSC (%) 81.8 ± 15.9 87.5 ± 4.3 86.4 ± 4.6 82.8 ± 7.3 81.5 ± 9.1

IoU (%) 71.6 ± 17.2 78.0 ± 6.5 76.4 ± 6.9 71.3 ± 9.5 69.6 ± 11.3

0.55T

DSC (%) 83.1 ± 19.0 84.8 ± 16.7 83.2 ± 16.0 79.1 ± 17.2 79.8 ± 18.0

IoU (%) 74.2 ± 19.2 76.2 ± 17.7 73.6 ± 17.1 68.1 ± 19.0 69.5 ± 20.8

Fetal position

Breech Cephalic
1.5T/3T

DSC (%) 82.5 ± 12.3 85.8 ± 7.0

IoU (%) 71.6 ± 13.2 75.7 ± 9.4

0.55T

DSC (%) 83.3 ± 9.3 82.0 ± 19.0

IoU (%) 72.3 ± 11.5 72.7 ± 20.2

Gestational age

≤23 >23

1.5/3T

DSC (%) 82.0 ± 13.2 85.6 ± 7.1

IoU (%) 71.1 ± 13.7 75.4 ± 9.6

0.55T

DSC (%) 71.5 ± 22.2 84.0 ± 16.0

IoU (%) 59.7 ± 23.3 74.7 ± 17.1

Abbreviations: DSC, dice similarity coefficient; IoU, intersection-over-union.

phantom, with the pink cross marking the calculated CoM
of the phantom in repetitions where controlled motion was
mimicked and the blue lines marking the FOV center. The
shift in the pink cross is detected by the system and two
repetitions later a corresponding FOV shift is introduced,
with the centre of the phantom overlapping with the centre
of the image FOV. Figure 9 shows the translational motion
for all 10 fetal subjects.

3.2.2 Fetal experiments

Consecutive repetitions from one plane are illustrated for
four fetal subjects in Figure 9 with the corresponding
translational motion in x, y, or z directions, depending

on the direction where motion predominantly occurred.
In A), head translational motion in repetition 3 (yellow
arrow) is followed by the corresponding FOV adjustment
two repetitions later (pink arrow) that re-aligns the fetal
eye (blue line) to the first three repetitions of the scan.
In B), head translation led to a displacement of the cen-
tre of the ventricles in repetition 25 (blue line). Addi-
tionally, although the same slice location is displayed for
all repetitions, the X shape of the ventricles can only
be observed in repetitions 25 and 26 (green box, yellow
arrow), whereas in repetitions 23 and 24 (yellow box, pink
arrow) these are only partially visible. FOV re-adjustment
was applied in repetition 27 (yellow box, pink arrow),
with re-alignment of the center of the ventricles and view
identical to repetitions 23 and 24. (C) shows images of a
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NEVES SILVA et al. 2315

F I G U R E 6 Images of five fetal subjects (26.5/20.7/21/27/36 gestational weeks) obtained at 0.55T and at 5 echo-times
(46/120/194/268/342 ms) with brain masks predicted by the network (red) and corresponding manually drawn masks (yellow).

F I G U R E 7 Coronal, sagittal and axial views with regard to the brain from all ten prospectively acquired fetal datasets illustrating the
automatically achieved segmentation in red.

fetus with ventriculomegaly (enlarged ventricles). Motion
occurred between repetitions 9 and 11, causing changes
in the view of the fluid-filled midline cavum (green box)
and the amount of visible cerebrospinal fluid when com-
pared with repetitions 7 and 8 (yellow box). When the FOV
was re-adjusted, the view of the cavum and cerebrospinal
fluid are identical to the first two images. In (D), with fetal
head displacements between repetitions 14 and 16 cere-
brospinal fluid becomes visible (green box, yellow arrow).

With re-adjustment in repetition 17, fluid is no longer
visible (yellow box, pink arrow).

4 DISCUSSION

The here presented prospective motion correction
approach, forfeiting the need for additional navigator-type
scans by using the EPI read-outs as intrinsic navigators,
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2316 NEVES SILVA et al.

F I G U R E 8 The calculated center-of-mass coordinates in all three axes are depicted for the phantom experiment. Yellow arrows
indicate the detected motion, and purple arrows the corresponding resulting automatic Field-of-View correction as applied two repetitions
after the movement.

allows to follow the fetal motion without any additional
time penalty.

While the achieved localization of the fetal brain, eval-
uated using DSC and IoU, is inferior to published studies
focusing on anatomical high-resolution images,11-15,17 this
represents one of the first studies enabling this step with
intrinsically lower resolution functional data.

The experiment involving the retrospective evalua-
tion of the localization network performance on different
data categories—imaging parameters (TE), fetal position,
gestational age, and field strength—allowed to draw the
following conclusions: (1) although TE2 offered the best
performance, the model demonstrated enough robust-
ness to successfully extract the fetal brain even in images
of very low contrast and signal; (2) slightly higher per-
formance was observed in the cephalic position, which
may be justified by the proximity to the coils and subse-
quently increased signal and the head restraining in the
narrower section of the uterus, however, the model was
able to successfully localise the fetal brain independent
of its location within the uterus; (3) although slightly
lower performance was observed <23 weeks, robustness
was again demonstrated by the model across the dif-
ferent GAs and associated different brain volumes and
cortical folding patterns; (4) the model, trained on 1.5/3T
data, showed great generalization ability when tested on
low-field data.

The assessment of the effect of the computed DSC on
the estimation of fetal head motion allowed to conclude
the high DSC scores obtained in TE2 allow successful esti-
mation of the fetal head motion, further justifying the use
of TE2 for real-time fetal brain tracking.

The results obtained from the real-time fetal brain
tracking experiments demonstrated the ability of the
method to detect changes in the fetal head position
and adjust the acquisition geometry accordingly, with
an immediate clear enhancement of the data quality
observed.

The chosen approach, built on the open-source Gad-
getron framework allows for easy translation and dissem-
ination, all steps including the pretrained network, local-
ization and tracking Gadgets as well as all anonymized
fetal data are available to any interested researchers
(https://github.com/saranevessilva/fetalbraintracking).

There are, however, some limitations in the currently
presented study. First, the number of prospective sub-
jects is limited and this can hence be mainly seen as
a proof-of-concept study. However, the 10 included sub-
jects, as well as the large training dataset, cover a wide
range of gestational ages, including very young fetuses
with significant motion (17 weeks gestational age), fetuses
in breech presentation as well as examples during uter-
ine contractions. Next, the tracking currently focuses on
translations in all three directions but does not yet allow
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NEVES SILVA et al. 2317

F I G U R E 9 Consecutive repetitions from one plane acquired with real-time fetal brain motion correction are illustrated for four fetal
subjects.

correcting rotations. This constitutes an important next
step which will be addressed by extracting the main direc-
tion of the mask by, for instance, fitting an ellipsoid

model or performing singular value decomposition with
rotational parameters of the region of interest extracted.
Currently, the correction is applied two repetitions after
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2318 NEVES SILVA et al.

the fetal motion occurred, thus changes to the architec-
ture might lead to additional speed gains in the future.
Furthermore, the current protocol implemented in the
scanner for real-time fetal brain tracking is a BOLD
sequence with one echo time, and further efforts will focus
on including multi-echo sequences to allow for quantita-
tive T2* analysis as well as EPI-based diffusion sequences.
As with all prospective methods, quantification of the
improvement is difficult. Further efforts in addition to the
included phantom studies could include mechanical ven-
tilators or similarly predictable motion phantoms. Lastly,
although our aim is to achieve a TR <2 s, the current
timing is 11.5 s. TR is limited by the longer T1, by the
current latency observed and the use of nonaccelerated
EPI. Future low-field real-time tracking, as already pre-
pared here by demonstrating the ability of the network
to localize the fetal head on low-field data, could allevi-
ate this concern. Additionally, the current protocol does
not use acceleration as the reconstruction task cannot yet
be employed in accelerated acquisitions—this is currently
being addressed. Future steps additionally include explor-
ing simultaneous multislice acquisitions, which allow a
significant reduction of TR.

This study shows that intrinsic, prospective, real-time
motion correction is feasible for functional fetal MRI
and presents an open-source framework open for fur-
ther extensions. Clear next applications are the quantifi-
cation of the maternal and fetal BOLD response during
hyperoxygenation33 and the assessment of oxygenation
changes during subclinical uterine contractions in both
brain and placenta.34 Furthermore, as mentioned above,
long connectome-style diffusion sequences could benefit
from the presented improvements.
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Figure S1. (A) The various acquisition parameters regard-
ing field strength, resolution and echo time are stated
for the two datasets: the 157 fetal subjects scanned
at 1.5T/3T and the 29 fetal subjects scanned at 0.55T.
These were deliberately diversified to increase the robust-
ness of the fetal brain localization network. (B) Demo-
graphics on gestational age at scan, maternal BMI
and fetal position are shown and additionally demon-
strate the diversity of the training/validation/testing
datasets.
Figure S2. A sequence of images illustrating motion track-
ing for the phantom experiment with all three planes
depicted. The blue lines mark the center of the image
FOV and the pink crosses mark the center-of-mass of the
phantom in the repetitions where translational displace-
ments were mimicked. The shift in the center-of-mass
of the phantom is detected by the system and two
repetitions later a corresponding FOV shift is intro-
duced, with the phantom returning to the center of the
image FOV.
Figure S3. Center-of-mass coordinates calculated from
images of one fetal subject are plotted for the first ten rep-
etitions of the scan in x, y and z directions. The pink line
depicts the head motion detection calculated from gold
standard brain masks, and the purple, blue and green lines
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depict the center-of-mass of the predicted segmentations
from TE1, TE2 and TE3 images, respectively. The mean
squared errors calculated for TE1, TE2 and TE3 images
were, respectively, [5.64, 545.0, 0.13]± [9.22, 458.29, 0.097]
mm, [0.85, 0.72, 0.47] ± [0.76, 1.24, 0.46] mm and [3.2,
61.14, 0.69] ± [8.08, 182.29, 0.42] mm in x, y and z.

How to cite this article: Neves Silva S, Aviles
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