
Neurobiology of Disease 185 (2023) 106231

Available online 17 July 2023
0969-9961/© 2023 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Do astrocytes act as immune cells after pediatric TBI? 

Polina E. Panchenko a, Lea Hippauf a, Jan Pieter Konsman b, Jerome Badaut a,c,* 

a CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France 
b CNRS UMR 5164, ImmunoConcEpT, University of Bordeaux, France 
c Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Astrocyte 
Pediatric traumatic brain injury 
Inflammation 
Blood-brain barrier 
Microglia 
Neuro-vascular unit 
Cytokines 
Preclinical models 

A B S T R A C T   

Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network 
with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes 
as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and 
transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is 
not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to trau-
matic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. 
Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive 
impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is 
still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a 
potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the 
local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of 
local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose 
that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term 
consequences on neurological outcomes, as described in preclinical models and patients.   
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1. Astrocytes: from the morphology to the molecular signatures 

1.1. Astrocyte morphology from GFAP immunolabelling 

Astrocytes belong to the glial cell types in the central nervous system 
(CNS), which also include oligodendrocytes, microglial cells and epen-
dymal cells (Freeman, 2010; Oberheim et al., 2012; Bedner et al., 2020; 
MacDonald et al., 2021). The term “astrocyte” was introduced by von 
Lenhossek in 1893 based on the cell’s morphology, consisting of soma 
and star-like branching processes (Lenhossék, 1893). They are in close 
contact with neurons and their synapses, the vasculature of the brain 
(endothelium) (Sosunov et al., 2014) and other cell types (inflammatory 
cells, microglia and oligodendrocytes). Astrocytes, initially classified as 
“protoplasmic” in the grey matter or “fibrous” in the white matter 
(Oberheim et al., 2012), exhibit a higher degree of heterogeneity be-
tween brain regions with different morphologies, molecular makers and 
varying functions (Schober et al., 2022) and across species (Falcone, 
2022). Glial fibrillary acidic protein (GFAP), a major intermediate fila-
ment composing the cytoskeleton, is the most commonly used astrocytic 
marker in normal and pathological CNS. GFAP-positive astrocytes in 
rodents are fibrous or protoplasmic. Human fibrous astrocytes are 
approx. 2.14-fold larger in diameter than their mouse counterparts 
(Oberheim et al., 2009). Rodent protoplasmic astrocytes have a less 
complex architecture in terms of process length and branching than 
Human protoplasmic astrocytes (Oberheim et al., 2006). It has been 
suggested that morphological complexity of astrocytes could be linked 
to the evolution of human cortex and its cognitive functions. Indeed, the 
glia-to-neuron ratio increases with the stage of evolution of mammalian 
species, from 0.4 in rat to 1.0 in human adult brain and interestingly 1.4 
in the human cortex (Vasile et al., 2017). This difference between ro-
dents and humans in the glia-to-neuron ratio needs to be considered in 
the interpretation of rodent preclinical studies. 

Importantly, GFAP-immunolabelling does not label all astrocytes, 
therefore a combination of different astrocytic markers is more appro-
priate to better depict the heterogeneity of the astrocyte population. In 
addition to GFAP, there are other astrocytic proteins (structural pro-
teins, metabolic markers, membrane proteins and transcription factors) 
which can be used as cell markers (Jurga et al., 2021). Immature as-
trocytes express several structural proteins that play a critical role in 

their differentiation and maturation, including the intermediate fila-
ment proteins such as vimentin, nestin, and synemin (Potokar et al., 
2020; Jurga et al., 2021). Recently, transcriptomic and proteomic 
research in astrocytes has revealed molecular differences between brain 
regions and even within regions, for example cortex, cerebellum, stria-
tum, hippocampus and hypothalamus (Chai et al., 2017; John Lin et al., 
2017; Miller et al., 2019; Morel et al., 2019; Batiuk et al., 2020), sug-
gesting a diversity in astrocyte responses in brain pathophysiology. This 
new knowledge has added a level of complexity to classification debates 
of astrocyte populations and circuits, which are still ongoing and require 
further research (Khakh and Sofroniew, 2015). 

1.2. Physiological roles of astrocytes in the healthy brain 

The purpose of this review is to examine the response of astrocytes 
following traumatic brain injury (TBI) during brain development. A 
brief review of the functional roles of the astrocytes in the healthy brain 
is important to better understand the consequences of astrocyte changes 
induced by TBI on the pathogenesis and/or recovery. Astrocytes are 
multitasking cells (Fig. 1) which: 1) regulate functions of synapses and 
neuronal networks during development; 2) are involved in brain ho-
meostasis (e.g., potassium, glutamate buffering) and energy metabolism 
(e.g., delivery of lactate); 3) play an important role in the development 
and maintenance of the blood-brain barrier properties as well as the 
regulation of the cerebral blood flow (Jurga et al., 2021); and 4) have 
distinct functional roles, which vary depending on the brain region. For 
more details on astrocyte functions in the healthy brain, please refer to 
the following recent reviews (Vasile et al., 2017; Vainchtein and 
Molofsky, 2020). 

1.2.1. Astrocyte role in the establishment and regulation of neural networks 
Brain injury occurring early in post-natal period can impact brain 

development. Astrocytes are known to play a critical role in neuronal 
network maturation. To better appreciate the impact of traumatic brain 
injury (TBI) on immature brain circuits, it is important to briefly review 
current knowledge about the roles of astrocytes in brain development. 

1.2.1.1. Astrogenesis. Neural precursor cells (NPC) are capable of 
generating both neurons and astrocytes in mammals as previously 

Fig. 1. Roles of astrocytes in brain development 
and in mature brain. Astrocytes have a unique po-
sition within the neuro-vascular unit (NVU) as astro-
cytic end feet cover blood vessels and astrocytic 
processes are in close proximity with neurons (soma, 
dendrites, axons and synapses). Astrocytes are 
involved in the NVU homeostasis, blood flow, energy 
metabolism, neuronal networks by regulating 
neuronal survival, synaptogenesis and synaptic plas-
ticity. [Image created with BioRender]. BBB - blood- 
brain barrier   
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reviewed (Freeman, 2010). After neurogenesis onset (Takouda et al., 
2017), a change in the potency of progenitor cells produces immature 
astrocytes in the late embryonic period (in mice >E18) (Freeman, 2010; 
Schober et al., 2022). Epigenetic mechanisms (DNA methylation, his-
tone modifications and microRNA) are involved in astrocyte develop-
ment (Neal and Richardson, 2018). The switch to astrogenesis in NPC is 
regulated by a repressive Polycomb group complex, which shuts down 
the expression of neurogenin 1 (ngn1) and ngn2. Then, JAK-STAT and 
Notch signaling pathways activate the expression of specific astrocytic 
genes by demethylation of their promoters via DNA methyltransferase 1 
(DNMT1). In rodents, astrocytes develop their specific transcriptomic 
profile, morphology and cytoarchitecture during the first 3 post-natal 
weeks (Bushong et al., 2002; Ogata and Kosaka, 2002), when they 
proliferate and migrate from subventricular zone to pia mater (Schober 
et al., 2022). The second and third postnatal weeks (post-natal days 
8–21, PND) in rodents correspond to early infancy in humans based on 
brain maturation timelines (Delage et al., 2021). Starting in the first 
week of post-natal development (PND7), astrocyte processes are un-
dergoing rapid growth and at this time-point neighboring astrocytes 
have significant overlap of processes (Freeman, 2010). By PND21 as-
trocytes acquire their mature morphology, densely infiltrating the 
neuropil and occupying their exclusive spatial domains with minimal 
overlap (Bushong et al., 2002). There is important molecular cross-talk 
between astrocytes, neurons and microglia during early post-natal 
development (Vainchtein and Molofsky, 2020) that could play an 
important role in astrocyte specification (Molofsky et al., 2012). Thus, 
positional identity of astrocyte populations could arise from the in-
teractions with the local environment during development. 

1.2.1.2. Astrocyte role in synaptogenesis in the developing brain. Astro-
cytes play crucial roles in regulating brain circuit formation and function 
(Chung et al., 2015). Astrocytes are involved in synaptic consolidation 
during brain development, when active synapses are stabilized and 
inactive synapses eliminated (Fig. 2A, B). Both astrocyte maturation and 
synaptogenesis are coordinated in time: the peak of synaptogenesis oc-
curs during post-natal weeks 2–3, rapidly after the initiation of astro-
genesis (Freeman, 2010). Astrocytes influence synapse maturation by 
secreting inducers of synaptic formation and maturation, e. g. throm-
bospondins, transforming growth factor β1 (TGFβ1), hevin (secreted 
protein acidic rich in cysteine (SPARC) family protein), cholesterol, 
brain-derived neurotrophic factor (BDNF) and other molecules as pre-
viously reviewed (Clarke and Barres, 2013; Chung et al., 2015). In 
concert with microglia cells, astrocytes eliminate synapses in the 
developing and adult mouse CNS via phagocytic receptors MEGF10 
(Multiple EGF-like-domains 10) and MERTK (MER receptor Tyrosine 
Kinase) to maintain circuit homeostasis (Chung et al., 2013; Lee et al., 
2021). Regulatory functions of astrocytes in neuronal network matura-
tion can be impaired by a TBI event during brain development as dis-
cussed below. 

1.2.1.3. Astrocyte regulation of neuronal networks in adulthood. Astro-
cytes maintain and control different brain circuits and their associated 
functions (Nagai et al., 2021) by regulating the inter-neuronal commu-
nications at the synaptic level. Adult astrocytes are in close physical 
contact with neurons (their somas, axons, dendrites) and their synapses 
(Arizono et al., 2020). Astrocytes are structural and functional parts of 
the synapse as astrocytic processes wrap up presynaptic and post-
synaptic membranes (Fig. 2A) (Allen and Eroglu, 2017). In addition, 
individual astrocytes occupy primarily distinct volumes of tissue in ro-
dents (Bushong et al., 2002; Ogata and Kosaka, 2002), with non- 
overlapping territories in the cortex and the hippocampus (Halassa 
et al., 2007). These distinct astrocytic “domains”, also called synaptic 
islands, cover between 20,000 and 140,000 synapses (Bushong et al., 
2002; Ogata and Kosaka, 2002; Halassa et al., 2007). In the human 
brain, an astrocytic domain can be associated with 270,000 to 2 million 

synapses (Oberheim et al., 2009), giving the potential to locally inte-
grate information from many synapses and providing exceptional 
computational power (Vasile et al., 2017) (Fig. 2A, B). 

Importantly, astrocytes can monitor the activity of the synapse via 
neurotransmitter receptors and modulate the activity of the synapse by 
releasing signaling molecules such as glutamate, D-serine, lactate and 
ATP (Henneberger et al., 2010; Chung et al., 2015; Harada et al., 2016). 
Astrocyte-neuron interactions are highly dynamic as astrocytic pro-
cesses can rapidly extend and retract from postsynaptic dendritic spines 
(Murai et al., 2003; Haber et al., 2006; Bernardinelli et al., 2014). Thus, 
astrocytes contribute to plasticity and homeostasis of neural circuits 
(Allen and Eroglu, 2017) (Fig. 2A, B). 

1.2.2. Astrocyte role at the blood-brain interface 
Astrocytes belong to the neuro-vascular unit (NVU), a physiological 

and functional unit composed of neurons, endothelial cells, vascular 
smooth muscle cells (VSMCs), pericytes and glial cells (astrocytes, oli-
godendrocytes and microglia) (Fig. 1). The NVU regulates the local ce-
rebral blood flow, energy metabolism and contributes to the blood-brain 
barrier properties (Kugler et al., 2021) (Fig. 2C, D). The term “blood- 
brain barrier” (BBB) describes a highly selective interface between CNS 
and circulating blood due to presence of endothelial tight junction 
proteins (claudin 5, occludin), expression of transporters (glucose 
transporter 1, GLUT1, P-glycoprotein, etc.) and enzymes, contributing to 
exchange between both compartments. 

Astrocyte end feet, which are in contact with blood vessels, are 
specialized structures (Oberheim et al., 2009) (Fig. 2C), covering up to 
99% of the blood vessels in rat hippocampus as demonstrated using 
electron microscopic 3D reconstruction (Mathiisen et al., 2010). Astro-
cyte end feet express various channels including potassium channels (e. 
g., inwardly-rectifying potassium channel Kir4.1) (Fig. 2C), water 
channel-forming protein aquaporin 4 (AQP4) and connexins 43 and 30 
(Cx43 and Cx30) (Nwaobi et al., 2016; Friscourt and Badaut, 2018). 
These channels contribute to brain water and ion homeostasis. Astro-
cytes with their end feet form a large network due to gap junctions, 
mostly formed by Cx43 and Cx30 (Chew et al., 2010). 

Astrocytes, with other cells of the NVU, coordinate local cerebral 
blood flow to match neuronal energy demand during enhanced neuronal 
activity (Masamoto et al., 2015; Institoris et al., 2022) (Fig. 2C). 
Communication between astrocytes and endothelial cells (vascu-
lar–astrocyte coupling) leads to changes in vascular diameter (reviewed 
in (Filosa et al., 2016)). Nearly every astrocyte is in direct contact with at 
least one blood vessel and the extent of interdigitation of astrocytic 
processes increases around blood vessels (Bushong et al., 2002). In the 
human cortex GFAP-positive astrocytes processes can contact up to five 
different blood vessels (immunostained with AQP4) and eight neuronal 
cell bodies (positive for MAP2), constituting an astrocytic domain 
(Oberheim et al., 2006). Importantly, the vessels can be “shared” be-
tween different astrocytes. Astrocytes release vasoactive molecules 
(epoxyeicosatrienoic acids, prostaglandin E2, 20-HETE or K+) from their 
end feet to regulate vascular tone via action on VSMCs of parenchymal 
and pial arterioles (Filosa et al., 2016). This process involves neuronal 
activity-dependent increases in astrocytic Ca2+ activity, which is 
glutamate-mediated (Zonta et al., 2003). Astrocytic Ca2+ transients in-
crease cortical arteriolar dilation in awake mice following prolonged 
sensory whisker stimulation (Institoris et al., 2022). The astrocyte 
regulation of blood flow and metabolism has been primarily demon-
strated in cerebral cortex, but it is important to note these regulatory 
relationships can differ between brain regions. 

Perivascular end feet are actively involved in energy metabolism and 
contain a complex network of mitochondria (Müller et al., 2018; 
Oberheim et al., 2009; Mathiisen et al., 2010; Bergami and Motori, 
2020). End feet are equiped with glucose transporter GLUT1 for glucose 
uptake by astrocytes (Morgello et al., 1995). Astrocytic glucose can be 
converted to lactate; and then exported to synapses via mono-
carboxylate transporters to be used as a fuel by the neurons (Magistretti 
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and Allaman, 2018; Roosterman and Cottrell, 2020) (Fig. 2D). Astro-
cytes can also transport glucose from their end feet to the synapses via 
endoplasmic reticulum (Müller et al., 2018). Following glycolytic con-
version to pyruvate, glucose can be utilized as an energy substrate by 
astrocytic mitochondria (Bergami and Motori, 2020). 

1.2.3. Astrocytic network heterogeneity in different brain regions 
Recent transcriptomic and proteomic data have shown heterogenous 

astrocytic subpopulations with important regional differences including, 
the somatosensory cortex, hippocampus, caudate-putamen, nucleus 
accumbens (NAcc), thalamus, and hypothalamus (Morel et al., 2017; 
Chai et al., 2017). For example, GFAP was highly expressed in the hip-
pocampus contrary to the striatum and conversely, the gene encoding 
μ-crystallin (Crym) was highly expressed in striatal, but not in hippo-
campal astrocytes (Chai et al., 2017). A recent study revealed distinct 
transcriptomic signatures between astrocytic sub-populations within the 
hippocampus (Batiuk et al., 2020) and within different cortical layers 
(Lanjakornsiripan et al., 2018), thus further illustrating the intra- 
regional complexity of astrocytic networks. 

Past morpho-functional studies have demonstrated differences in 
astrocyte behavior and function between brain regions. In the supra-
optic nucleus of hypothalamus, dynamic morphological plasticity of 
astrocytes is essential for optimizing glutamate transmission and 
oxytocin neuronal activity (Panatier et al., 2006; Theodosis et al., 2006; 
Li et al., 2021). A reduction of astrocytic coverage of oxytocin neurons 
by retraction of end feet has also been well described in lactation, 
parturition or chronic dehydration (reviewed by Oliet and Bonfardin, 
2010). Astrocyte plasticity has been also observed in other brain struc-
tures, such as in hippocampus, where astrocytic release of D-serine en-
ables long-term potentiation in CA1 excitatory synapses (Henneberger 
et al., 2010). Astrocytes modulate long-term synaptic plasticity and 
various memory processes in the adult hippocampus (reviewed in (Wang 
et al., 2022)). 

Regional differences between astrocytes in the hippocampal CA1 and 
the dorsolateral striatum were found (Chai et al., 2017) with “synaptic 
islands” being larger in the striatum than in the hippocampus and 
including more neuronal cell bodies (approx. 20 to 1 ratio). In the hip-
pocampus astrocytic domains contact more excitatory synapses and the 
physical interaction of processes with those synapses is tighter than in 
the striatum. Similarly, astrocytes in the limbic system, specifically in 
the NAcc, show Ca2+-signaling properties that seem to integrate inputs 
from other brain regions (the prefrontal cortex, the basolateral amyg-
dala, the ventral hippocampus) (Serra et al., 2022). Striatal astrocytes 
respond to cortico-striatal stimulation by increasing Ca2+ levels (Cav-
accini et al., 2020), which is critical for long-term depression and 
regulation of medium spiny neurons involved in striatal motor function 
(reviewed in (Khakh, 2019). Astrocyte Ca2+-signaling contributes to 
various physiological functions such as odor perception in the olfactory 
bulb, motor skill learning in the primary motor cortex, fear conditioning 
and spatial learning in the hippocampal CA1 region, psychomotor 
behavior in the NAcc and circadian rhythms in the suprachiasmatic 

nucleus of the hypothalamus (Nagai et al., 2021). Astrocytic sub-
populations display differences in morphology, protein expression and 
dynamics of calcium signaling, but also in the molecular signatures 
between regions in adult brain, as previously reviewed (Haim and 
Rowitch, 2017; Westergard and Rothstein, 2020). Astrocytic heteroge-
neity results in functional pathophysiological differences between brain 
regions. For example, hypothalamic astrocytes control systemic glucose 
metabolism, insulin sensitivity and thermogenesis (Herrera Moro Chao 
et al., 2022). Obesity promotes remodeling of hypothalamic astrocyte 
Ca2+ activity specifically in the paraventricular nucleus (Herrera Moro 
Chao et al., 2022). In addition to the responses and contributions of 
astrocytes to changes in metabolism, novel approaches will be required 
to assess the functional differences between different regions in brain 
injury. 

2. Pediatric traumatic brain injury 

2.1. Traumatic brain injury in children 

Traumatic brain injury (TBI) is caused by a sudden external and 
physical insult to the brain leading to physiological impairments (Delage 
et al., 2021). The variety of external mechanical forces, e.g. direct 
impact to the skull, rapid acceleration and deceleration, blast waves, or 
penetration injury, makes TBI a very heterogeneous and complex dis-
ease (Nizamutdinov and Shapiro, 2017). TBI severity in clinic has been 
classified as mild, moderate and severe using the patient’s level of 
consciousness measured by the Glasgow Coma Scale (GCS) (McKee and 
Daneshvar, 2015). Adult patients presenting with low GCS scores and/or 
suspected intracranial hemorrhage, often undergo computed tomogra-
phy (CT), but head CT scans in young children are prescribed with 
caution because of potential risks of ionizing radiation on developing 
brain (Niele et al., 2022). Overall, TBI affects about three million chil-
dren worldwide each year (Dewan et al., 2016). Epidemiological meta- 
analysis of TBI cases from retrospective studies in more than 165,000 
children has showed that 80% of injuries were classified as “mild TBI” 
(according to GCS). Often mild pediatric TBI is not reported to the health 
services and is, thus, likely to be underestimated (Schneier et al., 2006; 
Thurman, 2016). The initial brain injury can evolve into chronic brain 
alterations with cognitive impairments, persistent attention, memory 
and concentration deficits, and psychosocial disorders like anxiety and 
depression. For example, mild to severe TBI leads to reduced corpus 
callosum integrity and impaired interhemispheric transfer times asso-
ciated with poor neurocognitive function in children at 1–5 months after 
injury (Dennis et al., 2015). These cognitive impairments greatly influ-
ence patients’ academic and work performance and can lead to profound 
social dysfunction later in life, even after mild TBI (Babikian et al., 2015; 
Ryan et al., 2016; Babikian et al., 2015; Sariaslan et al., 2016). 

A generalized concept in the 1950s and 1960s was that “plastic is 
fantastic” for the developing brain (Kolb and Gibb, 2011), with an 
overall faster and better recovery after injury (reviewed in (Anderson 
et al., 2011). This concept has now been revised (Giza and Prins, 2006; 

Fig. 2. Astrocytes roles in synaptic transmission tuning (A), non-functional synapse elimination (B), the neurovascular unit (NVU) (C) and neuronal 
metabolism (D). 
(A) Astrocytic end feet around the synaptic bouton regulate synaptic activity (by releasing gliotransmitters, such as D-serine) and maturation (by secretion of growth 
factors, including BDNF). 
(B) Astrocytic end feet contribute to the elimination of inactive synapses through phagocytosis during brain development and in mature brain. 
(C) In the neurovascular unit, astrocytes (purple) control the function of blood vessels (red), along with neurons (blue): 1) They play roles in the homeostasis of the 
perivascular space and in the maintenance of the blood-brain barrier through the activity of a variety of ion channels and tight junctions. 2) They increase the 
cerebral blood flow (CBF) after neuronal activation through the release of vasoactive compounds (e.g., prostaglandin E2), which act on vascular smooth muscle cells 
(pink). 
(D) The astrocyte-neuron lactate shuttle is schematically presented: glucose is captured by vascular end feet, converted from pyruvate (Pyr) to lactate (Lac) and 
finally released into the synpase. In neurons, lactate serves as an energy substrate for ATP production. [Image created with BioRender]. 
20-HETE - 20-hydroxyeicosatetraenoic acid, AQP4 – aquaporin 4, ATP - adenosine triphosphate, BDNF - brain-derived neurotrophic factor, CBF - cerebral blood flow, 
Cx – connexin, Kir4.1 - inwardly rectifying potassium, Lac – lactate, NAD - nicotinamide adenine dinucleotide, Pyr – pyruvate, TCA - tricarboxylic acid, TGFβ1 - 
transforming growth factor β1. 
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Giza et al., 2009). Indeed, several studies have shown that the outcome 
after pediatric TBI is even worse compared to adult TBI with the same 
degree of severity, with more profound edema formation, higher dys-
regulation of cerebral blood flow (CBF), higher mortality risk and more 
behavioral sequelae (for review Pop and Badaut, 2011). Brain matura-
tion is a complex, fine-tuned process with a succession of synapto-
genesis, synaptic pruning, myelination, reorganization of neuronal 
networks, changes in basal CBF and metabolism up to age of twenty 
years in humans (Toga et al., 2006; Giza et al., 2009). This process is 
genetically programmed, but very sensitive to environmental stimuli 
and experience leading to dynamic modifications of structural and 
functional brain networks. While neuroplasticity is considered benefi-
cial in healthy development, recent research work indicates that chil-
dren aged less than 5 years are highly vulnerable to long-term deficits 
after TBI (Anderson et al., 2011). In general, pediatric TBI is frequently 
associated with poor outcomes including impairment of processing 
speed, attention, memory and executive functions (Babikian and Asar-
now, 2009; Anderson et al., 2013; Garcia et al., 2015). The extent of 

these deficits depends on the nature, the severity and the location of the 
injury (Catroppa et al., 2008). The timing of injury during brain devel-
opment is relevant to the severity of the subsequent dysfunctions. Early 
TBI disrupts newly established skills and potentially interferes with the 
course of acquisition and consolidation of later skills (Anderson et al., 
2005; Catroppa et al., 2008). Therefore, neuroplasticity may turn into 
vulnerability depending on injury-related factors and environmental 
influences during certain critical periods of brain development (Ander-
son et al., 2013). Ten years after mild to severe TBI, children exhibited 
anatomical changes in hippocampus and amygdala and had impair-
ments in intellectual abilities, particularly in processing speed, leading 
to long-term consequences on school performance (Beauchamp et al., 
2011; Anderson et al., 2012). Moreover, in later grades in school when 
the level of exigency increases for more complex and efficient cognitive 
processing abilities, the gap between these children and their healthy 
counterparts was even more evident (Babikian et al., 2015; Chevignard 
et al., 2016; Ryan et al., 2016). Despite significant advances, little is 
known of the pathophysiological mechanisms underlying the 

Fig. 3. Common rodent models of traumatic brain injury (TBI) induced by mechanical force. (A) The controlled cortical impact (CCI) model uses a piston 
driven by either a pneumatic or electromagnetic device to focally impact the exposed brain at a specified velocity and depth. The anesthetized animal’s head is fixed 
in a stereotaxic apparatus and craniotomy is performed before the procedure. During the impact, ear bars prevent head rotation. This model is easily reproducible and 
mimics focal brain contusion, axonal injury, blood-brain barrier disruption and edema formation. [adapted from (Fournier et al., 2021)]. (B) The fluid percussion 
injury (FPI) model applies a brief fluid pressure pulse directly on to the intact dural surface after craniotomy. This pressure is generated by a pendulum of calibrated 
weight striking the cylinder filled with saline. The FPI model mimics various types of TBI depending on the position of pressure pulse (lateral or central). [adapted 
from Fournier et al., 2021 and Bodnar et al., 2019]. (C) The weight drop (WD) model uses a tube to guide a calibrated weight dropping from a specified height on an 
animal head. Weight is dropped either directly on unprotected skull (mimicking focal injury) or on a steel plate which prevents skull fracture (mimicking diffuse 
injury). During the procedure the animal is placed on either on solid surface or on foam pad and its head is not fixed, allowing head rotation. This closed head injury 
model reproduces many characteristics of concussion and TBI of different severities in human. [adapted from (Bodnar et al., 2019) and (Marmarou et al., 1994)]. (D) 
The closed head injury with long term disorders (CHILD) model uses a piston with a rubber tip to impact lightly anesthetized juvenile mouse on the head with a 
specified velocity and impact depth. This model does not require any surgical procedure. The animal is placed on a foam pad with known elasticity and its head is 
allowed to rotate during impact. CHILD model mimics focal brain injury of mild severity without skull fracture. [Image created with BioRender]. 
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consequences of pediatric TBI at short- and long-term post-injury. 
Primary injury produces mechanical damage resulting in axonal 

stretching or shearing, hemorrhage and neuronal and glial cells death. 
Secondary injury occurrence is highly dependent of the severity and the 
location of the primary injury (Rodriguez-Grande et al., 2018; Ng and 
Lee, 2019; Clément et al., 2020) and can lead to increased disability and 
mortality (Zebrack et al., 2009). It includes a variety of inflammatory, 
metabolic, and vascular changes in the brain, edema formation, hypoxia 
and neuronal excitotoxicity linked to the excess of glutamate, known to 
potentially aggravate clinical outcome (McKee and Daneshvar, 2015; 
Sulhan et al., 2020). A brain injury, even a mild severity, occurring 
during the establishment of neural and astrocytic networks can have 
long-lasting effects on the brain and its functions (Fraunberger and 
Esser, 2019). In order to gain knowledge of the molecular and cellular 
mechanisms of the secondary injuries resulting from TBI, preclinical 
models are widely used. 

2.2. Preclinical models of traumatic brain injury 

Rodents are widely used to characterize TBI mechanisms due to their 
small size, easy maintenance and availability of tools for genetic 
modification. In pediatric rodent preclinical models of TBI, the primary 
injury is produced with a mechanical force directly applied to the brain 
typically using various apparatus that have quantifiable amplitude, 
duration, velocity and acceleration (Xiong et al., 2013). The rodent’s 
head can be fixed or allowed to move freely, and with the skull opened 
or closed (for concussion studies). There are four common models of TBI: 
1) controlled cortical impact (CCI), 2) fluid percussion injury (FPI), 3) 
weight drop (WD) closed head injury model and 4) closed head injury 
using electromagnetic or pneumatic impactor (as summarized in Fig. 3). 
For details on the animal models please refer to the following review 
papers: Marklund and Hillered (2011), Fournier et al. (2021), Delage 
et al. (2021). Two recent reviews from Bodnar et al. (2019) and Delage 
et al. (2021) nicely depict the complexity of preclinical models of TBI 
and show that outcomes depend on the age of injury. However, there is a 
lack of studies conducted on young rodents (Bodnar et al., 2019). Earlier 
injury (CCI at PND11, considered equivalent to human infant) induces 
increased tissue loss in the injured hemisphere than trauma during the 
juvenile period (at PND17). The anatomical changes were associated 
with impaired memory acquisition and cognitive deficits in rats 
(Raghupathi and Huh, 2007; Lengel et al., 2020). Repeated severe CCI at 
this age results in increased white matter atrophy compared to a single 
TBI (Huh et al., 2007). Neonatal brain injury at PND7 induces neuronal 
death and ventriculomegaly caused by the primary excitotoxicity and 
secondary apoptosis in rodents (Ikonomidou et al., 1996; Pohl et al., 
1999; Haldipur et al., 2014; Moretti et al., 2016; Chhor et al., 2017). In 
response to pediatric TBI astrocytes and microglia undergo morpho-
logical and functional changes, which we will discuss it more in details 
further (Haldipur et al., 2014; Chhor et al., 2017). 

Juvenile rodents (PND17–19) undergo active myelination and are 
particularly vulnerable to trauma (Sta Maria et al., 2019) during this 
period that corresponds to early human childhood (Delage et al., 2021; 
Semple et al., 2013; Rodriguez-Grande et al., 2018). Juvenile animals in 
moderate/severe CCI or FPI models present with neuronal tissue loss in 
cortex, corpus callosum, hippocampus and thalamus (Delage et al., 
2021). These anatomical changes result in long-term consequences on 
both motor and cognitive functions (Giza et al., 2005; Ajao et al., 2012; 
Kamper et al., 2013; Ichkova et al., 2019). Recently, we developed a 
pediatric closed-head injury with long-term disorders (CHILD) model 
(Fig. 3D) that generates a mild concussion using an electromagnetic 
impactor directed to the somatosensory cortex (Rodriguez-Grande et al., 
2018; Clément et al., 2020; Obenaus et al., 2023). This model in-
corporates both focal injury combined with head rotation in PND17 
juvenile mice resulting in long-term behavioral consequences (Rodri-
guez-Grande et al., 2018; Obenaus et al., 2023). Juvenile mild TBI has a 
long-term impact not only on brain, but also on peripheral organs with 

chronic cardiac dysfunction observed in the CHILD model correlating 
with early cerebrovascular hypoxia (Leyba et al., 2023). These longterm 
physiological changes could be linked to systemic inflammatory 
response triggered by trauma (McDonald et al., 2020). Tissue remod-
eling is observed in this mouse pediatric TBI model with significant 
changes in astrocytic molecular phenotype and morphology in various 
brain regions (Clément et al., 2020). Injured animals present persistent 
anxiety-like behavior one month post impact (Rodriguez-Grande et al., 
2018). One year later, the animals still have microstructural alterations 
and neuronal loss in the hippocampus and substantia innominata/nu-
cleus basalis (basal forebrain) with associated glial changes (both in 
astrocytes and microglia) and spatial memory impairments (Obenaus 
et al., 2023). 

Frequently, preclinical rodent models are criticized with regards to 
the small size of the brain and the low proportion of the white matter 
relative to humans (10% in mice, 14% in rat and 60% in human) 
potentially limiting clinical translation (Krafft et al., 2012). Rodents 
have a lissencephalic brain, while the human brain is gyrencephalic 
(Semple et al., 2013) and brain maturation differs importantly between 
these two species, thus making it difficult to find the correct corre-
sponding ages (Semple et al., 2013). Moreover, human GFAP positive 
astrocytes exhibit a more complex morphology than rodent GFAP as-
trocytes (see above). To date, functional differences between human and 
rodent astrocytic responses to brain injury are not well understood 
(Castejón, 2013). Recent efforts to develop the technical capacity to 
detect astrocytic response to blast injury using MRI in human could help 
to compare TBI pathology with data obtained in rodents in the future 
(Benjamini et al., 2023). Several preclinical translational models of TBI 
exist in large animals with gyrencephalic brains, such as pigs. Indeed, 
brain size and anatomy, proportion between grey and white matter and 
the time course of myelination during development are similar between 
pig and human as reviewed by Kinder et al. (2019). The juvenile pig 
model of moderate/severe CCI demonstrated a strong astrocytic 
response, but the consequences of mild brain TBI remain to be eluci-
dated (Baker et al., 2019). Several studies suggest potential sex differ-
ences in response to trauma in piglets (Missios et al., 2009), as well as 
differential age effects of trauma (Duhaime et al., 2000; Costine et al., 
2012, 2015). 

2.3. Neuroinflammation in pediatric traumatic brain injury 

Neuroinflammation is a complex cascade defined by a pathological 
immune process in the brain to the response to a pathogen or non- 
pathogen insult with involvement of both the innate and adaptative 
immunity (Estes and McAllister, 2014; Dinet et al., 2019). It has origi-
nally been proposed that the neuroinflammation response has four 
hallmarks: production of proinflammatory cytokines and chemokines, 
glial activation (including astrocytes), changes in BBB properties and 
immune cell infiltration into the brain (Estes and McAllister, 2014). In 
TBI, neuroinflammation contributes to secondary injuries that develop 
minutes to months after primary brain injury and could persist at long- 
term (Goryunova et al., 2007; Simon et al., 2017). Despite the limited 
knowledge on inflammation in the context of pediatric TBI, various 
biomarkers related to inflammatory processes have been assessed in 
cerebrospinal fluid (CSF) or plasma in children with different severity of 
TBI (Nwafor et al., 2022). Interleukin-6 (IL-6) levels were upregulated 
48 h after severe injury and were associated with better neurologic 
outcomes in children (Chiaretti et al., 2008). Levels of IL-1β in the CSF 2 
h post-TBI correlated with the injury severity and low levels were pre-
dictive of better outcomes (Chiaretti et al., 2008). Elevated levels of IL-8 
were found in CSF of children with severe TBI and correlated with poor 
outcomes (Whalen et al., 2000). In children with TBI, increased plasma 
GFAP levels predicted the presence of intracranial brain lesions which 
then were confirmed by CT (Papa et al., 2016). Few studies have 
explored the relationship between acute and long-term impacts of pe-
diatric TBI (especially mild severity) and neuroinflammatory processes 
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(Nwafor et al., 2022). The contribution of inflammatory mechanisms 
and astrocyte responses to survival and cognitive outcomes in children 
remains largely unknown. 

Preclinical work has proposed some putative mechanisms and a 
time-line of pediatric TBI-induced neuroinflammation. It consists of a 
combination of systemic immune activation (Jassam et al., 2017) with 
increseased levels of cytokines, chemokines, growth factors and local 
recruitment of astrocytes, microglia and immune cells to the lesion site 
(Lozano et al., 2015; Alam et al., 2020; Simon et al., 2017; Li et al., 2020; 
Faden et al., 2021; Pischiutta et al., 2022; Clausen et al., 2019; Alam 
et al., 2020). The exact role of neuroinflammation, beneficial or dele-
terious, is still debated, despite some consensus regarding the patho-
genic role of chronic neuroinflammation (Lozano et al., 2015; Jassam 
et al., 2017). There is clearly a lack of data regarding neuroinflammatory 
mechanisms in neonatal, juvenile, and adolescent preclinical models of 
TBI (Delage et al., 2021), and the long-term impacts of juvenile TBI 
remains understudied (Obenaus et al., 2023). 

3. Do astrocytes play an immune role in pediatric traumatic 
brain injury (TBI) 

3.1. Astrocyte phenotype after adult TBI and pediatric TBI 

The astrocyte is a primary responder to TBI and plays a key role in 
the initial immune response in concert with microglial cells (Fraun-
berger and Esser, 2019; Liu et al., 2020). Adaptive responses of astro-
cytes (“reactive astrocytes” or “astrogliosis”) allow to quickly adapt 
their function and preserve CNS tissue (Khakh and Sofroniew, 2015). 
Severe tissue damage induces robust innate and adaptive immune re-
sponses with reactive astrocytes adjacent to the lesion forming an 
“astroglial scar” (Burda et al., 2016). The metaphor “scar” can be 
misleading as “reactive astrocytes” are not “scar tissue”. “Astroglial 
scar” can be seen as a physical barrier crucial for isolating the lesion site 
and restraining the spread of inflammation and neurotoxicity to adja-
cent healthy regions (Sofroniew, 2020). Various signals originating from 
different cell types (neurons, microglia, immune cells) contribute to the 
transformation of astrocytes to their “reactive state” (Sofroniew, 2020). 
Extracellular mechanical stimuli induced by TBI increase astrocytic 
intracellular Ca2+ signals (Fig. 4), which, in turn, contributes to the 
increased expression of GFAP and vimentin (reviewed in (Shigetomi 
et al., 2019)). 

Astrocytes exhibit significant GFAP-positive phenotypic changes 
post-injury in various preclinical pediatric TBI models (Adelson et al., 
2001; Clément et al., 2020; Fletcher et al., 2021; Huh et al., 2007; Huh 
et al., 2008; Ichkova et al., 2019, 2020; Pop et al., 2013; Prins et al., 
2010; Robinson et al., 2016;  Rodriguez-Grande et al., 2018; Russell 
et al., 2014; Schober et al., 2019. Table 1 lists studies focusing on 
astrocytic responses to TBI in pediatric preclinical models (Fig. 3). In 
mild closed-head juvenile injury mouse model, reactive GFAP-positive 
astrocytes were observed in the primary site of injury, the somatosen-
sory cortex, as well as in distant regions like the amygdala, hippocampus 
and corpus callosum as early as one day after impact (Rodriguez-Grande 
et al., 2018; Clément et al., 2020). Morphological astrocytic changes 
have been proposed to be a landmark of reactive astrocytes (Pekny and 
Nilsson, 2005; Escartin et al., 2021). Astrocytic aquaporin 9 (AQP9), a 
water channel, seems to play an important role in the change of astro-
cyte morphology following brain injury (Liu et al., 2012; Hirt et al., 
2018). The extent and “propagation” of astrocytic changes depend on 
the initial severity of the injury (Huh et al., 2007). However, an increase 
in astrocytic GFAP expression was not detected short- and long-term 
following a mild to moderate diffuse midline FPI in PND17 juvenile 
rats (Green et al., 2022). Thus, glial activation depends on the type of 
juvenile brain injury. Therefore, using astrocytic activation markers 
other than GFAP alone should help to define astrocyte reactivity. 
Increased mRNA expression of cytokines (IL-1β, IL-6, TNF-α, TGF-1β) 
has been described up to 7 days after juvenile brain trauma (PND20–21) 

(Hamood et al., 2022). Associated with astrocyte changes, microglia 
cells and macrophages are recruited in the neonatal brain (Kempuraj 
et al., 2017; Tong et al., 2002) with increased microglial cells observed 
one month after injury in a model of juvenile (PND 28) CCI (Smith et al., 
2019). Morphological changes of microglia cells have been described in 
the hippocampus even 12 months after a single mild closed head injury 
deliverd at PND17 (Obenaus et al., 2023). Juvenile TBI-induced changes 
after several months include morphologically transformed microglia 
(loss of ramifications, hypertrophic and/or amoeboid) expressing the 
phagocytic marker CD68 in the primary sensory barrel field (Doust et al., 
2021; Green et al., 2022). These results, obtained in pediatric TBI 
models, are interesting as reactive microglia and reactive astrocytes are 
frequently localized together and functionally interconnected in adult 
TBI preclinical models (Ren et al., 2013; Witcher et al., 2018) and in 
human TBI patients (Morganti-Kossmann et al., 2019). 

In addition to the morphological alterations of astrocytes, there are 
substantial transcriptomic changes. Little is known on the astrocyte in 
pediatric TBI, however there is growing literature on pathological mo-
lecular changes in astrocytes in adult brain. One of the first descriptions 
of astrocytic transcriptome profiles was performed using two different 
adult mouse brain disorder models: ischemic stroke and systemic bac-
terial lipopolysaccharide (LPS) inflammation model (Zamanian et al., 
2012). Reactive astrocytes were subdivided into two distinct sub-types 
“A1” (neurotoxic) and “A2” (neuroprotective) based on their respec-
tive transcriptional profiles (Zamanian et al., 2012; Liddelow et al., 
2017). However, this binary view of two subtypes of reactive astrocytes 
raises questions as to how these fit with the complexity of the patho-
physiology (Escartin et al., 2021). More recently, nine subtypes of 
reactive astrocytes with distinct transcriptomic signatures have been 
described in the cortex after LPS-injection in adult mice (Hasel et al., 
2021). Interestingly, reactive astrocytes showed region-specific (pre-
frontal versus visual cortex) inflammatory transcriptomic response 
following LPS injection (Diaz-Castro et al., 2021). So far, little is known 
about astrocytic transcriptomic changes in the context of TBI, even for 
adults. Recent studies have provided transcriptomic responses to severe 
brain injury using stab wound model. Microarray analysis of adult so-
matosensory cortex revealed 916 differentially expressed transcripts in 
astrocytes between injured and sham mice with up-regulation of in-
flammatory mediators: nuclear factor of kappa light polypeptide gene 
enhancer in B cells (NF-κB), tumor necrosis factor α (TNFα), IL-1β, and 
IL-6 (Sirko et al., 2015). The transcriptomes of microglia and astrocytes 
have been compared after fluid percussion injury in adult mice (Todd 
et al., 2021). In both glia cell types, most enriched pathways were 
related to innate immune response, viral defense response, response to 
interferon β and antigen processing and presentation of endogenous 
peptide antigen via MHC class I. The expression of 55 genes were 
impacted in astrocytes, including 15 genes overlapping with microglia, 
mostly interferons. To our knowledge, there is no information on the 
astrocyte transcriptomic response to the trauma during brain develop-
ment with temporal and spatial differences between immature astro-
cytes subpopulations and this should be an important question to answer 
in the future. Mechanisms of reactive astrogliosis during brain matura-
tion must be explored to better understand long-term impairments 
observed in pediatric TBI, as we have previously described in our pre-
clinical CHILD model (Rodriguez-Grande et al., 2018; Clément et al., 
2020; Obenaus et al., 2023). 

3.2. Blood-brain barrier, glia limitans and its immune protective function 
in relation with astrocyte response 

The blood-brain barrier at the endothelial level is a highly selective 
filtering membrane mediating bilateral exchange between the blood and 
the brain. Abnormal permeability of the BBB (Fig. 4) can lead to the 
extravasation (leakage) and accumulation of plasma-derived proteins 
(fibrinogen, albumin) and immunoglobulin G (IgG) (Pop and Badaut, 
2011; Pop et al., 2013; Badaut et al., 2015; Rodriguez-Grande et al., 
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Fig. 4. Role of the astrocyte in the inflammatory cascades induced by an injury in the adult brain. 
(A) Traumatic brain injury induces astrocytic changes via multiple signaling pathways. Macrophages, neutrophils and lymphocytes infiltrate the surrounding 
neuropil from damaged blood vessels, contributing to the elimination of cellular debris and myelin from injured neurons. Released cytokines from infiltrated cells and 
microglia, as well as damage-associated molecular patterns (DAMPs), contribute to the activation of astrocytes. Reactive astrocytes contribute to phagocytisis, 
activation of microglia, fragilization of the BBB (with MMP release) and chemoattraction of circulating immune cells to the lesion site. 
(B) Mechanisms and consequences of astrocyte reactivity. Mechanical shear forces induced by injury are detected by astrocytic mechanosensitive receptors, 
increasing ion influx which leads to ATP release. This is followed by a rapid change of phenotype (morphological and inflammatory). [Image created with Bio-
Render]. 
AQP4 – aquaporin 4, AIM2 - absent in melanoma 2, ASC - apoptosis-associated speck-like protein containing a caspase recruitment domain, ATP - adenosine 
triphosphate, BBB - blood-brain barrier, CCL2 - chemokine (C-C motif) ligand 2, CXCL - chemokine (C-X-C motif) ligand, Cx43 – connexin 43, DAMPs - damage- 
associated molecular patterns, IF - intermediate filaments, IgG - immunoglobulin G, IL – interleukin, HMGB1 - high-mobility group box 1, MMP - matrix metal-
lopeptidase, NF-κB - nuclear factor of kappa light polypeptide gene enhancer in B cells, NLRC - NLR family caspase recruitment domain (CARD)-containing protein, 
NLRP2 - NACHT, LRR and PYD domains-containing protein 2, P2X7 - purinoceptor 7, TGFβ1 - transforming growth factor β1. 
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2018), infiltration of immune cells (T and B lymphocytes, macrophages, 
and neutrophils) (Jassam et al., 2017) and development of edema 
(Badaut et al., 2019; Fukuda et al., 2013) and excitotoxicity (Baracaldo- 
Santamaría et al., 2022). Increased IgG, albumin and fibrinogen in brain 
parenchyma are considered as markers of BBB dysfunction and we have 
observed that IgG extravasation peaks at 1–3 days after CCI in juvenile 
rats (Badaut et al., 2015) and normalizes 2 months post-impact (Pop and 
Badaut, 2011; Pop et al., 2013). Related to BBB dysfunction, astrocytic 
AQP4 increases after CCI in juvenile rats and plays a role in brain edema 

formation following trauma (Fukuda et al., 2012). Silencing of astrocytic 
AQP4 using smallinterfering RNA decreases edema formation, reactive 
astrocytes and improves long-term cognitive outcomes after TBI 
(Fukuda et al., 2013). 

Closed-head mild juvenile TBI also leads to cortical and white matter 
transient increases in IgG extravasation associated with increased water 
content at 1 day post impact (Rodriguez-Grande et al., 2018). These 
early changes in BBB permeability were associated with astrocyte 
reactivity and an increased level of AQP4 in white matter astrocytes’ 

Table 1 
Summary of the literature depicting GFAP-positive astrocytic changes in preclinical juvenile TBI (ordered in function of the age of the impact). 

Changes in GFAP expression are color-coded: increase in green, no difference in blue and decrease in orange. We used the following key words: ‘astrocyte’, 
‘traumatic brain injury’, ‘juvenile’, ‘mouse’, ‘rat’, ‘pig’. AQP4 – aquaporin 4, CCI - controlled cortical impact, CHILD - closed-head injury with long-term disorders, 
Cx43 - connexin 43, FPI - fluid percussion injury, GFAP - glial fibrillary acidic protein, PND - post-natal day, S1BF - primary sensory barrel field, SI/NB - substantia 
innominata/nucleus basalis, siRNA - small interfering ribonucleic acid, WD - weight drop. 
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processes and end feet, alongside with changes in vascular reactivity and 
vessel diameter (Rodriguez-Grande et al., 2018; Ichkova et al., 2020). 
Microstructural DTI changes in hippocampus and basal forebrain up to 
one year after juvenile mild trauma were associated with region-specific 
astrocytic AQP4 expression (Obenaus et al., 2023). Moreover, persistent 
vascular changes were observed in injured mice, as the proportion of 
small microvessels was decreased in the basal nuclei compared to hip-
pocampus (Obenaus et al., 2023). 

At the cellular level, tight and gap junctions are important regulators 
of the integrity of the BBB. Tight junctions form close physical links 
between endothelial cells, preventing penetration of molecules into the 
brain parenchyma. BBB loss of integrity is related to loss and 
misplacement of tight junction proteins. Astrocytes along with pericytes 
are key regulators of the integrity of the endothelial layer. Reactive 
astrocytes can modulate BBB properties during brain injury (Dinet et al., 
2019). Astrocytes secrete various vascular permeability factors such as 
vascular endothelial growth factor (VEGF), MMP-9, nitric oxide (NO), 
and glutamate which induce endothelial cell apoptosis and decrease the 
expression of endothelial tight junctions, thus contributing to increased 
BBB permeability (reviewed in (Michinaga and Koyama, 2019)). In a 
clinical study, circulating VEGF levels were decreased on the first day 
after TBI but started to increase from 4 day and peaked 2 weeks after 
injury in adult patients, normalizing by 3 weeks (Li et al., 2016). An 
elevated ratio VEGF/ VEGI (vascular endothelial growth inhibitor) at 7 
days after TBI has been proposed as a prognostic parameter for clinical 
outcomes in adult patients. Patients who had improved neurological 
conditions after TBI had lower levels of circulating VEGF on day 7 but 
higher levels on day 21 compared to patients who presented with 
deterioration. There is scant data available in pediatric TBI, but a rapid 
elevation of VEGF levels in CSF from children with severe TBI suggests 
rapid vascular response (22 h post-TBI) (Shore et al., 2004). 

Claudin-5 (CLDN5) is the most enriched tight junction endothelial 
cell protein of the BBB (Greene et al., 2019). Severe TBI in adult rats 
induced the loss of CLDN5, occludin and extravasation of serum proteins 
into brain parenchyma (Başkaya et al., 1997), but BBB properties may be 
age-dependent. Similarly, a transient loss of CLDN5 has been observed at 
3 days post-CCI performed at PND17 juvenile rats (Badaut et al., 2015), 
suggesting a disruption of the BBB. An increase in CLDN5 was observed 
in large cortical blood vessels two months after juvenile brain injury, 
consistent with a mechanism for functional BBB restoration (Pop et al., 
2013). CLDN5 changes and increases of IgG extravasation in the juvenile 
CCI model can also be explained by changes in caveolin expression 
(Badaut et al., 2015). Caveolin proteins are involved in the formation of 
caveolae necessary for endo-, trans- and exocytosis in endothelial cells 
and their expression is altered after juvenile CCI (Badaut et al., 2015) 
and appear to be linked to resolution of BBB disruption. Importantly, 
Cav-1 and Cav-3 are expressed by reactive astrocytes following juvenile 
TBI, but their functional role in the reactive astrocytes remains to be 
elucidated. 

Other astrocyte-derived factors contributing to permeability of BBB 
after adult TBI include matrix metalloproteases (MMP) which degrade 
the extracellular matrix and tight junctions at the level of endothelial 
cells (Abdul-Muneer et al., 2016; Zhang et al., 2016). Chemokines and 
inflammatory cytokines released by astrocytes and other cells up- 
regulate expression of endothelial cell adhesion molecules (intercel-
lular adhesion molecule-1, ICAM-1 and vascular cell adhesion molecule- 
1, VCAM-1) (Michinaga and Koyama, 2019). In adult mice, ICAM-1 
promotes adhesion and transmigration of leukocytes across the BBB to 
the injury site induced by fluid percussion via activation of matrix 
metalloproteinase (MMP), oxidative stress and VEGF pathways (Bhow-
mick et al., 2021). High levels of soluble ICAM-1 were found in children 
with severe TBI (Briassoulis et al., 2007). Whether ICAM-1 and 
lymphocyte migration could be regulated by astrocytes following pedi-
atric trauma remains to be elucidated. Similarly, gap junction proteins 
such as connexin 43 (Cx43) have been implicated in immunoregulatory 
properties of astrocytes, by controlling recruitment and penetration of 

immune cells through the BBB in the adult brain (Boulay et al., 2015, 
2018). Deletion of Cx43 in mice induces continuous recruitment of B- 
and T lymphocytes (positive for CD4 and CD8 antigens), macrophages 
and neutrophils (Boulay et al., 2018). However, several studies have 
shown increased astrocytic connexin 43 expression in adult injured 
brain (reviewed in (Chew et al., 2010)). An increase of Cx43 expression 
was observed in the perilesional cortex up to 2 months after juvenile CCI 
in rats and silencing of Cx43 expression using siRNA decreased GFAP- 
positive astrocytes and improved behavioral outcomes, such as motor 
function (Ichkova et al., 2019). Silencing Cx43 post-injury possibly 
limits water and signaling molecule Ca2+ diffusion by blocking gap 
junctions between astrocytes and limiting the spread of changes in GFAP 
expression (Ichkova et al., 2019). Silencing Cx43 did not mitigate edema 
formation or BBB dysfunctions, even though a close relation between 
Cx43 and AQP4 expression has been described in pediatric brain (Jul-
lienne et al., 2018). Astrocytes can secrete vascular protective factors, 
such as angiopoietin-1, sonic hedgehog, glial-derived neurotrophic 
factor (GDNF), retinoic acid, insulin-like growth factor-1 (IGF-1) and 
apolipoprotein E (Michinaga and Koyama, 2019). These factors could 
protect endothelial cells from apoptosis and promote recovery of tight 
junctions. Astrocytes play a key role in the properties of the brain 
endothelial cells after injury, but limited studies on the role of astrocytes 
in pediatric TBI preclude to conclude whether astrocytic phenotypic 
changes are detrimental or beneficial to the blood-brain interface. 

Recent studies have highlighted the potential role of astrocytes in 
protection of the CNS against the infiltration of lymphocytes from the 
peripheral blood by forming a “barrier” with expression of tight junction 
proteins (Horng et al., 2017). In addition to the BBB, the glia limitans 
could constitute a second layer of brain protection. The glia limitans is 
between the pia mater and the brain tissue with a layer of astrocytic end 
feet that are connected by tight junctions forming a protective layer as 
reported in an adult mouse model of autoimmune encephalomyelitis 
(EAE) (Horng et al., 2017; Quintana, 2017). Horng and colleagues 
showed that tight junction proteins in astrocyte end feet regulate the 
entry of immune cells and serum proteins during inflammatory response 
in an EAE. Treatment with pro-inflammatory cytokine Il-1β has been 
shown to induce the expression of CLDN1, CLDN4 and junction adhesion 
molecule-A (JAMA) proteins in human astrocytes in vitro (Horng et al., 
2017). Conditional inactivation of Cldn4 in astrocytes increases 
neuronal cell death and subsequently lesion area, demyelination and 
mortality, associated with exacerbated CD4+ and CD11b+ cells infil-
tration (Horng et al., 2017). These results suggest that astrocytic glia 
limitans can be in “close” configuration with tight junction proteins 
during inflammation to protect the CNS from entry of immune cells; and 
under physiological conditions, astrocytic glia limitans would be in 
“open” configuration with absence of tight junctions (Horng et al., 2017; 
Mora et al., 2020). To date, the role of the glia limitans in juvenile TBI 
hasn’t been explored and could represent a new therapeutic target. 

3.3. Role of the astrocytes in phagocytosis: potential phagocytic function 

Appropriate clearance of dead cells by phagocytosis is necessary for 
development, maintenance, and regeneration of the CNS. Accumulated 
cell debris from axons and myelin can trigger neuroinflammation 
(Konishi et al., 2022). Microglial cells are an important component of 
innate immune system and can be considered as potential “resident 
macrophages” of the brain and specialized phagocytes during brain 
development including pathological situations. Several lines of evidence 
support the idea that astrocytes share phagocytic receptors with 
microglia, such as AXL receptor tyrosine kinase, myeloid-epithelial- 
reproductive tyrosine kinase (MERTK), G-protein coupled receptor 56 
(GPR56), brain-specific angiogenesis inhibitor 1 (BAI1), αvβ3/5 integrin 
and low-density lipoprotein receptor-related protein (LPR1) as previ-
ously reviewed (Konishi et al., 2022). The receptor multiple EGF-like- 
domains 10 (MEGF10) is specific to astrocytes and plays a role in cir-
cuit refinement during brain development and in adulthood (Chung 
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et al., 2013). Mouse primary cortical astrocytes phagocyte neighboring 
laser-damaged astrocyte cells in vitro (Wakida et al., 2020). In patho-
logical situations, myelin debris is detected in astrocytes at sites of acute 
myelin breakdown in autopsy brain tissue of adult patients with various 
demyelinating CNS diseases (Ponath et al., 2017). Astrocytic phagocy-
tosis of myelin debris via LPR1 receptor results in activation of pro- 
inflammatory NF-κB pathway in vitro (Ponath et al., 2017), which reg-
ulates cytokine production and cell survival in inflammatory states (Liu 
et al., 2017). NF-κB activation leads to secretion of lymphocyte- and 
macrophage-attracting chemokines by astrocytes and culture medium 
from myelin-treated rat astrocytes increased directed migration rates of 
CD4+ T helpers and microglia (Ponath et al., 2017). Astrocytes show 
phagocytic properties following ischemia with astrocytic processes 
enwrapping neuronal debris and expressing galectin-3, a phagocytic 
biomarker (Morizawa et al., 2017). Astrocytic ATP-binding cassette A1 
(ABCA1) is crucial in triggering the phagocytic function in astrocytes. 
Myelin uptake could be an early response of astrocytes in disease such as 
stroke and adult TBI. The phagocytic capacity of reactive astrocytes is 
mediated by AXL / signal transducer and activator of transcription 1 
(STAT1) / ABCA1 pathway in adult mouse CCI model (Zhou et al., 
2021). Intraventricular injection of the specific AXL ligand growth 
arrest-specific 6 (Gas6) promoted phagocytic function in cortical astro-
cytes of injured mice. Pharmacological activation of AXL by Gas6 
attenuated TBI effects on the expression of IL-6, TNFα, and IL-1β and 
improved motor coordination deficits and neurological severity scores at 
3 and 7 days after injury (Zhou et al., 2021). Reactive astrocytes also 
phagocyte degenerated synapses, cells and myelin in human adult se-
vere TBI patients as shown by electron microscopy (Castejón, 2013). 
Thus, astrocytic phagocytosis plays an important role in TBI pathology, 
protecting healthy brain tissue from damaged neurons and cell debris 
and limiting neuroinflammation. It is important to further explore the 
phagocytic ability of astrocytes in different brain regions in relation to 
pediatric TBI. 

3.4. Immune role of astrocytes following adult traumatic brain injury 

The immune system is hard to perceive of anatomically in contrast to 
the nervous system (CNS), but the immune system is much better 
described functionally than the CNS. This also means that beyond bone 
marrow-derived leukocytes, other cells, for example epithelial cells can 
be considered to have immune functions (Paludan et al., 2021). And 
while the distinction of non-self from self has long been considered the 
main function of the immune system, a more recent view proposes that it 
detects antigenic discontinuity (Pradeu et al., 2013). Similarly to the 
immune system in periphery, astrocytes are behaving as sensors of 
micro-environmental changes in neuropil in healthy or injured brain like 
the microglial cells. Mechanical stress, homeostasis changes and para-
crine immune signals are detected by astrocytes, triggering various 
changes in astrocyte properties. Astrocyte responses are rapid in order to 
prevent brain injury expansion by different processes depending on the 
type, gravity and location of the injury (Burda et al., 2016). Astrocytes 
assure neuroprotection and can form a protective quasi-permanent 
“astroglial scar” surrounding the lesion site in the case of severe in-
juries (Sofroniew, 2020). Different sub-populations of cortical astrocytes 
project their processes after brain injury to the lesion site (Bardehle 
et al., 2013). The diversity in the astrocyte responses is a key part of CNS 
innate immunity (Sofroniew, 2020). Vascular and parenchymal cells 
damaged during primary brain injury release damage-associated mo-
lecular patterns (DAMPs) which initiate the innate immune response 
(Jassam et al., 2017; Alam et al., 2020). DAMPs include ATP, alarmins, 
S100 proteins, high-mobility group box 1 (HMGB1) and can be detected 
by the astrocytes via a variety of Toll-like receptors (TLR) as previously 
reviewed (Sofroniew, 2020). Similarly, stressed or dying astrocytes can 
also produce DAMPs and alarmins which activate resident CNS macro-
phages (microglia) and peripheral macrophages in order to clear cellular 
debris (Burda et al., 2016; Alam et al., 2020). For example, nuclear 

alarmin IL-33 is released from damaged oligodendrocytes in white 
matter and in grey matter astrocytes at 1 day following spinal cord 
injury (Gadani et al., 2015). Primary astrocytes obtained from injured 
mice showed secretion of monocyte-attracting chemokines such as CCL2 
and CXCL10 in response to IL-33. 

Astrocytes are able to detect mechanical shear forces associated with 
trauma via activation of mechanoreceptors, allowing rapid influx of 
extracellular Ca2+ and Na+ into astrocytes (Fig. 4B) that induces a 
“reactive state” and ATP release via connexin semi-channels (reviewed 
in (Burda et al., 2016)). Extracellular ATP further activates the sur-
rounding astrocytic network and contributes to the recruitment of 
microglial and immune cells to the injury site (Fraunberger and Esser, 
2019). Astrocytes detect ATP via purinergic receptors P2X7 and P2Y1R 
expressed on their end feet (Talley Watts et al., 2013). These receptors 
contribute to brain edema formation and release of pro-inflammatory 
cytokine IL-1β by astrocytes in response to CCI in mice (Kimbler et al., 
2012). ATP signaling mediates astrocyte reactivity after TBI and inhi-
bition of P2X7 improves neurobehavioral outcomes. Additionally, ATP 
released by astrocytes and other damaged cells mediates chemotaxis in 
microglia, activating the motility of microglial processes to the lesion 
site (Davalos et al., 2005; Wu et al., 2007). 

Cross-talk between astrocytes and microglia via interaction and co-
ordination between these two glial cell types in the context of neuro-
inflammation are mediated by secretion of cytokines. (Jha et al., 2019; 
Vainchtein and Molofsky, 2020). After brain injury, astrocytes activate 
microglial responses and vice versa but data are sparse and exact 
mechanisms remain unknown for the pediatric brain (reviewed in (Mira 
et al., 2021)). During healthy neural circuit development, astrocytes 
directly promote microglia phagocytosis and synapse engulfment by 
secreting a nuclear alarmin IL-33 (Vainchtein et al., 2018), but knowl-
edge of astrocyte-microglia interactions in pediatric brain disorders is 
underdeveloped. Classically, microglia have been seen as the primary 
driver of changes in astrocytes with a larger literature showing, in adult 
brain or in vitro, the effects of activated microglia on astrocyte proper-
ties. For example, LPS-activated microglia inhibit astrocytic phagocy-
tosis by secretion of TNF-α, IL-1α and complement component subunit 
1q (C1q) and thus contribute to neurotoxic astrocytic capacities in vitro 
(Liddelow et al., 2017). In addition, microglial cells act on developing 
astrocytes, as microglial-conditioned medium increased the percentage 
of cells positive for GFAP in vitro (Nakanishi et al., 2007). Thus, IL-6 and 
leukemia inhibitory factor (LIF) released by activated microglia promote 
astrocytic differentiation via the activation of the JAK / STAT and MAPK 
pathways (Nakanishi et al., 2007). In response to neuronal damage 
induced by CCI in adult brain, microglia release IL-6 via HMGB1/TLR4 
signaling (Laird et al., 2014). Interleukin-6 is recognized by its receptor 
IL-6R on astrocytes and leads to up-regulation of AQP4 expression, 
reactive astrocyte formation and consequently the promotion of edema 
(Laird et al., 2014). In case of pediatric brain trauma, mechanisms of 
interaction between astrocytes and microglia are unknown and deserve 
to be identified in future studies. 

The capacity of astrocyte to secrete various substances (VEGF-A, IGF- 
1, retinoic acid etc.) modulates the blood-brain interface status. This can 
contribute to the recruitment of immune cells, as well as to the inter-
action with the immune system (Han et al., 2021). Astrocytes are thus 
key players in inflammatory responses triggered by brain trauma. They 
can produce and secrete immunomodulatory anti- and pro- 
inflammatory mediators like cytokines and chemokines which are 
involved in the innate immune response and modulate the neuro- 
vascular unit (Weiss et al., 1998; Szmydynger-Chodobska et al., 2010; 
Choi et al., 2014; Alam et al., 2020; Sofroniew, 2020). Cytokines and 
chemokines could have both neurotoxic and neuroprotective roles at the 
lesion site. Cortical astrocytes produce chemokine (C-X-C motif) ligand 1 
(CXCL-1) and chemokine (C-C motif) ligand 2 (CCL2) in a rat CCI model 
at 6 h post impact, which is associated with an influx of inflammatory 
cells (Szmydynger-Chodobska et al., 2010). Mild TBI in adult rat FPI 
model up-regulates the levels of TGF-β1 in blood, cortex tissue and CSF 
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(Patel et al., 2017). This cytokine can potentially be released by astro-
cytes and increase the permeability of BBB via effects on claudin-5 
(Constam et al., 1992; Shen et al., 2011). Importantly, TGF-β1 levels 
peak in the CSF in adult patients with severe TBI on the first day of injury 
(Morganti-Kossmann et al., 2009). The role of TGF-β1 in pediatric TBI 
patients remains unknown. A recent study showed that human astro-
cytes secrete IL-6 in response to shear stress in vitro (Khodadadei et al., 
2021). Following trauma, astrocytic NF-κB pathway is activated allow-
ing the production of IL-6, TNFα, IL-1β and metalloproteases (MMP-9) 
(Szmydynger-Chodobska et al., 2010; Pan et al., 2012; Zhou et al., 
2021). Levels of a key pro-inflammatory cytokine IL-1β increase after 
TBI in human patients (Yue et al., 2019) and in rodent models (Kamm 
et al., 2006; Clausen et al., 2019; Zhou et al., 2021). The so-called 
“inflammasome” is a large intracellular multiprotein complex allowing 
the secretion of cytoplasmic IL-1β and IL-18 via the activation of 
caspase-1 (Kerr et al., 2018). Adult TBI patients have elevated levels of 
inflammasome-associated proteins such as IL-18, caspase-1 and ASC 
(apoptosis-associated speck-like protein containing a caspase recruit-
ment domain) in serum and cerebrospinal fluid (Adamczak et al., 2014; 
Kerr et al., 2018). Closed-head injury is also associated with a release of 
IL-18 both in humans and rodents (Yatsiv et al., 2002). Recent data 
suggest that inflammasomes are present not only in neurons (de Rivero 
Vaccari et al., 2009), microglia and infiltrating macrophages, but also in 
astrocytes. Human astrocytes express a functional inflammasome which 
consists of NLRP2 (NACHT, LRR and PYD domains-containing protein 
2), caspase-1 and ASC (Minkiewicz et al., 2013). NLPR2 inflammasome 
activation by ATP contributes to the maturation of pro-IL-1β and its 
secretion as part of an astrocytic innate immune response. Reactive as-
trocytes express NLRC3 and NLRC4 inflammasome (NLR family caspase 
recruitment domain (CARD)-containing protein 3 and 4, respectively) in 
both mice and patients with demyelinating disease (Freeman et al., 
2017). Absent in melanoma 2 (AIM2) inflammasome and caspase-3 were 
activated in astrocytes in the spinal cord from mice with induced mul-
tiple sclerosis (Barclay et al., 2022). This AIM2 inflammasome activation 
was astrocyte specific as microglia showed no inflammasome activation. 
Only very few data exploring the role of astrocytic inflammasomes in 
TBI models are currently available and this topic requires further 
investigation (Liu et al., 2013; Brickler et al., 2016). Brain injury acti-
vates the NLRP3-inflammasome in astrocytes along with neurons and 
microglia in adult rats in an adult WD model (Liu et al., 2013). 
Inflammasome proteins (NLRP3, ASC and caspase-1) were colocalized 
with GFAP-positive astrocytes in peri-contusional cortex 3 days after 
injury. 

In line with the paracrine role of astrocytes in pathological situa-
tions, a recent hypothesis proposes that astrocytic microRNAs contained 
in extracellular vesicles (exosomes) could regulate gene expression in 
neighboring cells and thus modulate immune response (reviewed in 
(Lafourcade et al., 2016)). Mouse primary astrocytes release exosomes 
containing 135 different microRNAs after application of brain extract 
from adult TBI mice, which promote an anti-inflammatory phenotype in 
primary microglia suggesting a new mode of astrocyte-microglia cross-
talk (Long et al., 2020). Moreover, treatment with microRNA (miR- 
873a-5p), highly enriched in astrocytic exosomes, inhibited NF-κB pro- 
inflammatory pathway in adult mouse CCI model leading to reduced 
cortical lesion area, attenuated edema and improved neurological out-
comes during 2 weeks post injury. Along with reciprocal communication 
between microglia and astrocytes (Vainchtein and Molofsky, 2020), 
there could be a common synchronous response in both glial cell types, 
induced by the same factors. Altogether, these findings suggest the 
importance of cross talk between the astrocyte and microglia cells as 
part of a potentially coordinated innate immune response after pertur-
bations to brain homeostasis. 

4. Concluding remarks 

It is clear that astrocytes are an integral and essential part of innate 

immune response triggered by brain trauma, as they detect tissue 
damage and rapidly respond to injury by releasing numerous cytokines, 
chemokines and growth factors. The rapid astrocytic immune response 
to TBI is due to the presence of inflammasomes in astrocytes, but re-
quires further confirmation. Several lines of evidence indicate that as-
trocytes interact with immune-competent cells (cross-talk with 
microglia) and recruit peripheral immune cells to the lesion site. Reac-
tive astrocytes have the capacity to regulate the neuro-vascular unit in 
response to brain trauma. The mechanisms of communication of astro-
cytes with surrounding cells (release of exosomes, ATP, growth factors, 
cytokines and chemokines) in order to coordinate response to injury 
need further investigation using pre-clinical brain trauma models. 

The immunological abilities of astrocytes highlighted in this review 
should be explored in the context of pediatric TBI, as very few studies 
have focused on neuroinflammation in the developing brain (Fraun-
berger and Esser, 2019). Little is known about the capacity of immature 
astrocytes to secrete cytokines/chemokines and to interact with immune 
cells during acute phase of pediatric TBI. Another open question would 
be that of astrocytic “molecular immunological memory” of inflamma-
tory conditions happening early in life. Do astrocytes keep a specific 
molecular signature, acquiring a primed or sensitized state, after a 
neuroinflammatory response linked to brain trauma (Cunningham et al., 
2019)? If yes, another question would be for how long astrocytes could 
stay primed? Finally, there are remaining questions as to how this 
eventual “immunological memory” of astrocytes could impact cognitive 
functions and susceptibility to neurodegenerative or depressive-like 
conditions later in life? A better understanding of the immune role of 
astrocytes is particularly relevant for the TBI in children with following 
key questions summarized in Table 2. Further translational studies 
would facilitate therapeutic solutions for pediatric TBI patients which 
are currently lacking to improve recovery rate and offer a better quality 
of life. 
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Table 2 
Some outstanding questions on the role of astrocytes in pediatric TBI.   

Question: 

1 
Do all astrocyte sub-populations respond equally to injury in adult and pediatric 
TBI? Is there one specifically defined astrocyte sub-population actively 
responding to the injury? 

2 Does similar heterogeneity of astrocyte populations exist in the context of 
pediatric TBI? 

3 Are cellular and molecular mechanisms similar after TBI in adult and developing 
brain? 

4 
Do the changes in astrocyte properties impact the brain development and 
maturation of the brain circuitry? And how? 

5 
Are there functional differences between astrocytic response to the TBI between 
different species? 

6 How do astrocyte changes differ between brain regions after TBI in adult and 
pediatric patients? 

7 
Immunological properties of astrocytes have been proposed in preclinical models 
of immune challenges. Do immature astrocytes play an immune function after 
pediatric TBI? 

8 
How do pediatric “reactive” astrocytes evolve over the time and in the different 
brain regions after the injury? Do the reactive astrocyte keep an immune memory 
for future brain injuries?  
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