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Abstract

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in 

Mendelian forms of neurodevelopmental disorders (NDD).

METHODS: This study describes the molecular and clinical characterization of 28 probands 

with NDD harboring heterozygous AGO1 coding variants, occurring de novo for all those whose 

transmission could have been verified (26/28).

RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were 

identified: 12 missense variants, two in-frame deletions of one codon, and one canonical 

splice variant leading to a deletion of two amino acid residues. Recurrently identified variants 

were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.

(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which 

functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional 

protein structure predictions suggest that these variants might alter the flexibility of the AGO1 

linkers domains, which likely would impair its function in mRNA processing. Affected individuals 

present with intellectual disability of varying severity, as well as speech and motor delay, autistic 

behavior and additional behavioral manifestations.

CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a 

novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.
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INTRODUCTION

Neurodevelopmental disorders (NDD), such as intellectual disability (ID) and autism 

spectrum disorder (ASD), have important genetic contributions characterized by extreme 

heterogeneity. More than a thousand genes have now been implicated in monogenic forms 

of NDD[1] and many more have been identified as candidates for ID/ASD, including genes 

showing enrichment of rare de novo variants in large-scale sequencing studies of affected 

individuals[2]. In individuals affected by ID or ASD, few de novo missense variants have 

been reported in AGO1 (or EIF2C1), a gene encoding a protein from the argonaute family, 

which participates in RNA silencing pathways, suggesting that AGO1 could be a promising 

candidate gene for NDD[3–6].

The argonaute protein family, identified originally in plants, includes AGO and PIWI 

proteins, and is involved in gene-silencing pathways guided by small non-coding RNAs 

(sncRNA, including short interfering RNAs, microRNAs, Piwi-interacting RNAs)[7]. PIWI 

proteins are involved in transposon repression in germinal cells whereas AGO proteins are 

involved in translation repression and degradation of targeted mRNA[8]. In addition to their 

role in mRNA post-transcriptional regulation in the cytoplasm, AGO proteins have also been 

shown to have nuclear activities, playing a role in the regulation of transcription, chromatin 

remodeling, alternative splicing regulation, and even in DNA double-strand break repair[8–

12].

Large deletions at the 1p34.3 loci including AGO1 together with AGO3 (and sometimes 

AGO4) among other genes were previously reported in five children with psychomotor 

developmental delay as well as additional non-specific features (feeding difficulty, language 

impairment, facial dysmorphy)[13,14]. In addition, AGO2 was very recently implicated 

in NDD[15]: 21 individuals with heterozygous de novo variants in AGO2 were reported, 

including 11 missense variants, one in-frame deletion and one 235 kb deletion involving the 

first three exons of AGO2. Functional studies revealed that those variants hampered correct 

sncRNA-mediated silencing, having a loss-of-function effect.

We here report 28 individuals from 26 families affected by NDD carrying heterozygous 

amino acid substitutions or deletions predicted-damaging in AGO1, thus, causally-linking 

coding variants in this gene to ID. These variants distributed along different domains of the 

protein, are predicted to affect the flexibility of AGO1 structure, which might impair its role 

in sncRNA-induced gene regulation.

MATERIALS AND METHODS

Identification of AGO1 variants

AGO1 variants were identified by laboratories from Europe, Canada, and USA using 

various high throughput sequencing strategies (targeted gene panels, exome sequencing 
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or whole genome sequencing) and retrieved through a worldwide collaborative network 

connected notably via GeneMatcher[16] (see Table 1 and Supplementary text). Variants 

are annotated according to the NM_012199.4 transcript, were confirmed by independent 

Sanger sequencing and concordance of the trio was checked. Predictions of missense variant 

effects were performed using in silico tools such as Combined Annotation Dependent 

Depletion (CADD)[17], SIFT[18] and Polyphen-2[19]. Effects on splicing were analyzed 

using SpliceAI[20], and via Alamut® Visual (Interactive Biosoftware) and confirmed by 

cDNA analysis from blood mRNA.

Collection of clinical information

Physicians with experience in clinical dysmorphology examined a posteriori all 28 

individuals of this cohort, including the individual carrying the previously described variant 

in Hamdan et al[5] (F12). Photographs were collected from research participants after 

informed consent had been obtained. Clinical data for additional individuals with de novo 
variants previously reported[3–6,21,22] were retrieved from published data. Face2Gene 

Research application (FDNA Inc., Boston, MA) using DeepGestalt technology (algorithm 

19.1.9)[23] was used to compare 14 frontal facial photographs of individuals with AGO1 
variants compared to 14 control individuals matched for age, sex, and ethnicity provided 

by Face2Gene. To estimate the power of DeepGestalt in distinguishing affected individuals 

from controls, a cross validation scheme was used, including a series of binary comparisons 

for which the data were split randomly multiple times into training sets and test sets 

(10 times). The results of the comparisons are reported using the receiver operating 

characteristic (ROC) curve and area under the curve (AUC).

Building 3D Model for AGO1

The protein structure of human AGO1 has been experimentally determined (PDB 4kxt[24]). 

We used the available experimental structure with homology-based methods[25] to fill 

in short sections of the protein that were not resolved experimentally. Structures were 

solved with simple (poly A) guide RNAs that were also partially resolved. We added data 

from the rhotabacter sphaeroides Argonaute experimental structure (PDB 5awh[26]) and 

used Discovery Studio (BIOVIA. Dassault Systèmes BIOVIA, Discovery Studio Modeling 

Environment, Release 4.5, San Diego: Dassault Systèmes; 2015) to complete coordinates 

of a 21-base (A19U2) guide RNA. We used BioR[27] to compile protein annotations from 

multiple sources including dbNSPF[28]. We used FoldX[29] v4.0 for mutagenesis and 

structure-based calculations of ΔΔGfold. We visualized protein structures using PyMOL 

(Molecular Graphics System, Version 1.9 Schrödinger, LLC).

Molecular Dynamics Simulations

Generalized Born implicit solvent molecular dynamics (isMD) simulations were carried 

out using NAMD[30] and the CHARMM36 force field, using a similar procedure to our 

previous work. Briefly, we utilized an interaction cutoff of 12Å with strength tapering 

(switching) beginning at 10Å, a simulation time step of 1fs, conformations recorded every 

2ps. Each initial conformation was used to generate 6 replicates, and each was energy 

minimized for 5,000 steps, followed by heating to 300K over 300ps via a Langevin 
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thermostat. A further 13ns of simulation trajectory was generated and the final 10ns (60ns 

per variant) were analyzed.

Analysis of Protein Structures and Simulations

All trajectories were aligned to the initial wild type conformation using Cα atoms. Then, 

Root Mean-Square Deviation (RMSD) values were reported for each. We calculated 

per-domain RMSDs by first re-aligning all trajectories using each domain individually, 

then measuring the RMSD within that domain, alone, providing a measure of distortion 

within each domain and across MD simulation time. Residue-level Root Mean-Square 

Fluctuation (RMSF) values were calculated for the whole protein across trajectories. 

Variances were computed using median absolute difference (MAD) and Z-scores computed 

by MAD-scaling the observation-median differences. We used Cα cartesian space Principal 

Component (PC) analyses across simulations to define the dynamics of AGO1. Variant data 

was projected onto the PCs to compare how essential motion is altered by each genomic 

variant. Individual PCs were visualized using porcupine plots where a cone represents 

the direction and relative magnitude of each residue’s motion. We calculated free-energy 

landscapes (FELs) of MD trajectories using the approach of Karamzadeh, et al.[31]. We 

show topologic lines from the FEL where each line indicates a specific conformational 

sampling probability and matched by a corresponding color gradient where each color 

also indicates a specific conformational sampling probability. We measure alignment-free 

conformational changes using internal distances[32]. We calculated the ensemble-averaged 

median pairwise distance between residues on the last half of each trajectory to summarize 

internal distance changes. To simplify visualization of these median changes, we averaged 

information across groups of three consecutive amino acids. To conservatively estimate 

statistical significance, we used a permutation procedure where data were sub-sampled to 

100 points and compared using a t-test. This was repeated 1000 times and the median p-

value across repeats reported. The analysis was carried out using custom scripts, leveraging 

VMD and the Bio3D R package.

RESULTS

Identification of de novo variants in AGO1 in individuals with intellectual disability

A total of 15 different heterozygous variants in AGO1, including 12 amino acid 

substitutions, two single amino acid deletions, and one splice variant leading to a two-

residue deletion were identified in 26 unrelated families (Table 1, Figure 1, Figure 2A). For 

all individuals for whom parental DNA was available (all except F23 and F25), variants 

were found to occur de novo. No other genetic diagnoses potentially explaining the clinical 

manifestations were identified (Supplementary text). Two variants we identified had already 

been reported in individuals with NDD: p.(Leu190Pro) (Rauch et al.[3]) and p.(Gly199Ser) 

(Hamdan et al.[5] and Sakaguchi et al.[6]). Thirteen variants were novel to this study. 

The proband from family F15 has a de novo c.650–2A>G variant predicted to impair the 

use of the canonical acceptor splice site (MaxEnt: −100.0%, NnSplice: −100.0%) and to 

activate a cryptic acceptor site (Splice AI prediction). Activation of the cryptic acceptor 

site was subsequently confirmed by mRNA Sanger sequencing (Supplementary Figure S1), 

leading to the in-frame deletion of two amino acids (r.650_655del, p.Val217_Ser218). Six 
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variants were recurrent: p.(Gly199Ser) (six individuals), p.(Phe180del) (five individuals), 

p.(Leu190Arg) (two individuals), p.(Val254Ile) (two individuals) and p.(Glu376del) (two 

individuals). Including the three previously reported (p.(Glu195Lys)[21], p.(Asp216Val)[22] 

and p.(Thr355Ile)[4]), a total of 18 variants were identified in individuals with NDD (Table 

1, Figure 2A). All variants were absent from the general population (gnomAD) and all but 

one affect residues that are highly conserved until C. elegans (Supplementary Figure S1). In 
silico predictions (SIFT and Polyphen2) predict all these missense variants to be deleterious 

except p.(Arg253His) and p.(Val254Ile). AGO1 is constrained in the population for missense 

variation as observed in gnomADv2.1.1 (Z-score = 5.68, observed/expected = 0.31). The 

CADD scores of missense variants identified in individuals with NDD (mean = 27.8) are 

significantly higher than those of missense variants reported in gnomAD (mean: 24.3, t-test 

p-value = 0.0001).

Clinical manifestations observed in individuals with AGO1 variants

We report clinical data for a total of 33 individuals (17 males, 16 females) from 31 

unrelated families. We collected clinical data for the 28 affected individuals in this study 

including updated information for one previously reported[5] and retrieved clinical data 

from previously published individuals with AGO1 variants[3–6,21,22]. Head circumference, 

height, and weight measurements were in the normal ranges at birth and postnatally, except 

for three individuals (including two twins) who showed neonatal and postnatal microcephaly 

(<−2 SD). All affected individuals showed borderline to severe ID, (Table 2, Supplementary 

text) and all showed a severe language delay (30/30; 100 %). Most individuals were 

able to construct a sentence but with limited spontaneous communication. Three did 

not acquire language and one presented with language regression. Motor developmental 

delay was also observed in most affected individuals (28/30; 93 %, mean age at onset 

of independent walking ~25 months) and seven had persistent hypotonia (13/18; 72 %). 

Almost half of the individuals had documented or history of seizures (13/28; 46 %), fever-

induced in two families (F7, F18). Twin girls (F9) have different seizure types: one has 

photosensitive, drug-resistant seizures and the other has controlled seizures. Interestingly, 

the three individuals with the most severe epileptic phenotype (as indicated by the history of 

status epilepticus) share the p.(Gly199Ser) variant (the fourth individual with this variant has 

had no seizures by 5 years of age). Several behavioral features were observed in this cohort: 

most presented with autistic features (24/30; 80 %), and 11 showed self-harm behavior 

and/or hetero-aggressiveness (11/14, 78.5 %). Attention deficit/hyperactivity (15/22, 68 %) 

and anxiety (7/8, 87.5 %) were also reported. Additionally, a large majority had various 

sleeping disturbances (17/22, 77 %) including difficulties falling asleep, early awakening, 

or hypersomnia. Analysis using DeepGestalt technology by Face2Gene did not show 

significant differences in facial features from matched controls (mean AUC = 0.55 and AUC 

STD = 0.14, p-value = 0.392) (Figure 1C). However, individuals with AGO1 variants share 

some subtle common traits such as a thin upper lip, a tall forehead, elongated almond eyes 

or a small nose (Figure 1A–B). Individuals with feeding difficulties (10/23, 43 %) showed 

low postnatal weight: six individuals needed a gastrostomy, three individuals had gastro-

esophageal reflux, and the twins of family 24 received tube feeding during the first three 

weeks of life in the context of prematurity. Two individuals had recent swallowing problems 

(F3 and F25). Finally, hypothyroidism was reported in two of five individuals with the 
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p.(Phe180del) variant. Variable brain MRI anomalies were noticed in 11/24 individuals (46 

%), including corpus callosum agenesis or hypoplasia, cerebral atrophy, cortical dysplasia or 

colpocephaly but also non-specific anomalies (increase in extra-axial fluid, T2 and FLAIR 

signal anomalies, arachnoid cyst).

Variants spatially cluster in AGO1

The AGO1 protein (NP_036331.1) functional domains include the MID (AA 427–508), 

PAZ (AA 226–368), and PIWI (AA 515–816) domains and two linker domains L1 and L2 

(Figure 2A). The PAZ domain contains the RNA binding module that recognizes the 3′ end 

of both siRNA and miRNA. The PIWI domain contains the cleavage site that is inactive in 

AGO1 and is involved in protein/protein interactions, notably with DICER and GW182.

Most of the variants affect amino acids clustered in 3D along the sides of L1 and PAZ 

domains facing one another (Table 1, Figure 2B). For instance, Arg253 is located within 

an alpha-helix in the PAZ domain and makes specific contact with the last residue in the 

helix, Asp250, and the backbone of Arg284. The variant p.(Arg253His) may modify these 

interactions and affect organization and stability of the PAZ domain. The nearby variant 

p.(Val254Ile) is conservative, but valine has the lowest helical propensity of the small 

hydrophobic amino acids[33]. Thus, this variant could over-stabilize the helix and limit 

motion of the PAZ domain. Three critical amino acid positions are within the L1 domain 

and in proximity to the PAZ domain: Pro189, Leu190, and Glu195 (Figure 2C). Pro189 

is at the base of a long loop and the backbone geometry of proline may be necessary for 

limiting the loop’s mobility; p.(Pro189Leu) may thus alter loop dynamics. Leu190 packs 

within a hydrophobic interface made up of amino acids from L1 and L2; p.(Leu190Pro) 

or p.(Leu190Arg) may distort the interface between the linker domains. Glu195 is close 

in space to Trp197 and Lys224, and p.(Glu195Lys) may repel these nearby residues and 

destabilize the L1 domain. Farther down the L1 domain, the most recurrent variant, p.

(Gly199Ser), introduces a serine which could clash with the Ser218 side chain and introduce 

an unfavorable polar contact, likely destabilizing the L1 domain. Phe180 makes contacts 

across all three strands of the L1 beta sheet and its deletion would significantly alter regional 

hydrophobic packing. Asp216 makes a salt bridge with Arg712 in the PIWI domain (Figure 

2D). Arg712 also makes specific interactions with the guide RNA. Thus, p.(Asp216Val) is 

likely to destabilize the interface between L1 and PIWI thereby indirectly altering guide 

RNA interactions. Finally, p.(His751Leu) is one of the few variants within the PIWI domain. 

His751 makes hydrogen bonds with the guide RNA and p.(His751Leu), therefore, likely 

alters the stability of the interaction between AGO1 and the guide RNA.

Variants are predicted to affect AGO1 dynamic conformational change

We used molecular dynamic (MD) simulations to assess variant-associated global and local 

changes to AGO1. Global changes to AGO1 conformation across our MD simulations 

were assessed using RMSD, RMSF and PC analysis (Figure 3). We found the variants 

have the largest change in mobility for the N-term and PAZ domains, and more modest 

mobility changes to the MID domain (Figure 3A). Because RMSF depends on how 

the trajectories are aligned, and we aligned based on the PIWI domain, we observed 

relatively small overall fluctuations of the PIWI domain. Therefore, patterns in RMSF 
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indicated that the largest features in our simulations were domain-domain motions, and 

that these were modified by genomic variants. Next, to assess domain-domain distance, 

we measured linear distances from specific residues in the PIWI, MID, and linker regions. 

Certain PAZ and linker variants such as p.(Val254Ile), p.(Gly199Ser), p.(Arg253His), and 

p.(Pro189Leu) were associated with significantly shorter distances between the PIWI and 

linker (Figure 3B). The same variants p.(Val254Ile) and p.(Gly199Ser) and additional 

ones p.(Tyr418Phe) and p.(His751Leu) were associated with significantly shorter distances 

between the MID and linker (Figure 3C). Because the relative orientation of these domains 

is likely important for AGO1 function, we also assessed the angles between them. Variants 

in multiple domains altered the orientation of PAZ with respect to linker (Figure 3D), 

and the MID-PIWI-PAZ orientation (Figure 3E). Thus, we identified additional and more 

specific changes in domain-domain orientations associated with genomic variants. Because 

many conformational changes occur concurrently in MD simulations, we next assessed 

all dynamics data together using PC analysis (Figure 3F). We visualized the predominant 

dynamics of AGO1 using a free-energy landscape. We found that the WT protein sampled 

one side of the landscape, while variants had significant sampling of a different side. PC 

states are characterized by the relative orientations of the PAZ, Nterm, and MID domains 

(see Supplemental Animation 1 for PC visualizations). The variants had two effects on 

these predominant dynamics. First, they shift the average conformation to one favoring a 

wider angle of the PAZ-PIWI-MID domains. Second, the transition between conformations 

was blurred with a significant amount of time spent deviated from WT-like confirmations. 

This indicates that these variants may be leading to dysregulated dynamics. We investigated 

internal distance changes as a summary of dysregulated dynamics (Supplementary Figure 

S3) and demonstrated the variants were associated with lower coordination between 

domains. Changes to domain coordination could be an additional informative criterion for 

assessing multi-domain enzymes. To further assess the intra-domain change associated with 

each variant, we calculated the per-domain RMSD (Supplementary Figure S4) and found 

variants throughout the structure could be associated with alterations of the same or distant 

domains. For example, p.(Leu190Pro) in the linker domain and p.(Val254Ile) in the PAZ 

domain both lead to alterations of linker and MID domain internal organization.

DISCUSSION

This study clinically and molecularly characterizes a cohort of 28 individuals from 26 

unrelated families with heterozygous coding variants in AGO1 and establishes that de 
novo AGO1 variation is responsible for a form of NDD characterized by psychomotor 

delay, behavioral features and language impairment. Including three previously reported 

variants, 18 total variants have been described in AGO1 in 33 individuals with NDD, 

six being recurrent (Table1). All variants lead to substitutions or deletions of one or two 

amino acids, and no truncating variants were observed. Interestingly, four of the affected 

AGO1 residues, Phe180, Leu190, Gly199 and Thr355, were also found altered at equivalent 

residues in AGO2 (p.Phe182del, p.Leu192Pro, p.Gly201Cys or Val, p.Thr357Met) in ID 

patients (Supplementary Figure S1)[15].

ID and language delay were reported in all affected while most displayed motor delay, 

seizures, autistic features, and behavior problems. No recurrent structural brain nor other 
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organ malformation was noticeable and if individuals share some common facial traits, 

no typical specific gestalt was observed. Therefore, the AGO1-associated NDD does not 

present as a clinically recognizable entity. Moreover, the individuals present differences in 

phenotypic severity, which do not appear to correlate with the nature or location of the 

variant. The severity of ID, as well as growth parameters, was for instance highly variable 

among the three individuals with the p.(Phe180del) variant. We could therefore suggest that 

additional genetic or environmental factors might play a role in the phenotypic expressivity, 

modulating the effect of the AGO1 variant. On the contrary, some specific traits seem to 

correlate with specific variants, such as hypothyroidism reported in two individuals with 

the p.(Phe180del) variant, or status epilepticus in three individuals with the p.(Gly199Ser) 

variant. A larger cohort would be necessary to confirm these observations. Individuals with 

AGO1 or AGO2 variants showed common clinical findings: ID with autistic features and 

aggressiveness, impaired speech development, motor delay, MRI anomalies and frequent 

gastrointestinal disorder or reflux. Minor additional clinical features are also reported in 

both cohorts: skeletal (clinodactyly or bradymetacarpy, scoliosis), vision problems (strabism, 

myopia/hyperopia, visual impairment), heart, dental or breathing anomalies, and also 

anxiety and sleeping disturbance. To note, we observed three monozygotic twin sets in 

AGO1/AGO2 cohorts. This apparent excess of monozygotic twins (6/54 patients) requires 

further study.

The 3D conformational model of AGO revealed a flexible protein with two mobile domains, 

the L1 and L2 linker domains. The global structure contains four globular domains (PAZ, 

MID, PIWI and N terminal), and a deep cleft bordered by L1 and L2 linkers. L1 and PAZ 

domains seemed to be more flexible than the L2, PIWI and MID domain, as shown in 

Figure 2. The flexibility of the protein seems to be important to permit transitions between 

the different phases of the RISC process: sncRNA loading and processing, mRNA target 

clip, helper protein recruitment, and finally RISC complex release. Opening and closure 

of the PAZ/L1 jaw seems necessary for the proper function of AGO protein. Among the 

18 AGO1 variants reported to date the majority clustered within the L1, PAZ and PIWI 

domains. We analyzed the effects of variants located in several domains using structural 

biology as an interpretive framework. Our assessment indicated that they were deeply 

buried in the cleft region and close to the RNA guide molecule, but did not affect the 

residues involved in RNA guide anchorage; in addition, dynamical simulations showed these 

variants narrowed the angulation between the PAZ/L1 domains, suggesting these variants 

may hamper AGO1 flexibility during the phases of mRNA processing. Recently, the AGO1x 

protein isoform was described, product of the translational stop read-through of AGO1 

transcripts induced by the expression of the Let7a miRNA. Ectopic expression of AGO1x 

is a negative competitor of the miRNA pathway[34]. We could hypothesize that mutated 

AGO1 may act as the AGO1x isoform through competitive inhibition of wild type AGO 

proteins. Functional studies will be necessary to investigate this hypothesis.

The absence of truncating AGO1 variants in our cohort is surprising and is not in favor 

of a loss-of-function (LoF) as the unique molecular mechanism involved in AGO1-related 

ID. However, the observation of five children with large heterozygous deletions including 

AGO1 together with AGO3 (and sometimes AGO4 among other genes), and a deletion 

encompassing the AGO2 first 3 exons challenges this observation[13–15]. AGO2 variant 
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functional analysis revealed a complex cellular deregulation: a decrease in mRNA silencing 

was observed as expected for a LoF mechanism but with a variable impact, depending 

on the mRNA target and the tested AGO2 variant. Reduced target release and reduced 

phosphorylation of the serine cluster at residues 824 to 834 in AGO2 was observed for most 

of the tested variants due to probable protein dynamics perturbation, likely leading to AGO2 

deregulation and reduced functions [15].

A better understanding of how AGO1 functions in the brain will be essential to resolving 

how pathogenic AGO1 variants cause this NDD. In the developing mouse brain, although 

ubiquitously expressed, Ago1 was shown to be upregulated in neurogenic progenitors 

and mature neurons[35]. This expression pattern correlates with neuroblastoma SH-SY-5Y 

cell studies showing human AGO1 participates in promoting differentiation after neuronal 

induction[35]. Homozygous inactivation of Ago1 in mice showed postnatal lethality as 

reported in IMPC (International Mouse Phenotyping Consortium, mousephenotype.org): 

only 9 % of homozygotes Ago1tm1a/tm1a mice are obtained from heterozygous mating 

suggesting a prenatal lethality. The surviving homozygotes (both males and females) 

showed decreased body weight and increased anxiety (abnormal behavior in the open 

field). Pathogenic variants in several other genes encoding protein partners of AGO1/AGO2 

involved in the regulation of mRNA decay and translation, such as CNOT1–3[36],[37],[38] 

or DDX6[39], reportedly cause NDDs[40]. Apart from their role in post-transcriptional 

regulation, human AGO1 and AGO2 are also involved in the transcriptional regulation 

and splicing[9]. Therefore, alterations of these nuclear functions could contribute to the 

pathophysiology of the neurodevelopmental disorders caused by pathogenic variants in these 

genes.

In conclusion, this collaborative study, reporting molecular and clinical data from 26 

families with heterozygous de novo coding variants in AGO1, confirms the involvement 

of rare coding variants in this gene in NDD. Future studies investigating transcriptional and 

posttranscriptional regulation defects or other dysfunction stemming from AGO1 pathogenic 

variants will be important for elucidating the precise mechanisms of disease that may inform 

potential therapeutic strategies.
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WEB RESOURCES

CADD, https://cadd.gs.washington.edu/snv

GeneMatcher, https://genematcher.org/

GnomAD browser, https://gnomad.broadinstitute.org/

OMIM, https://www.omim.org/

SySID, https://sysid.cmbi.umcn.nl/
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Figure 1: Facial characteristics of individuals with AGO1 variants.
(A) Front faces, (B) profile faces from families who consented for photographs publication 

(C) Face2Gene Facial analysis using Face2Gene Research application (FDNA Inc. Boston, 

MA) of unrelated individuals with AGO1-associated disorder (n = 14) compared to controls 

matched (n= 14) for sex, age, and ethnicity.
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Figure 2: Schematic representation of AGO1 protein with its functional domains showing the 
locations of the coding variants identified in individuals with ID
(A) AGO1 protein (NP_036331.1) with its functional domains: N-terminal domain (34–

164), Linker 1 (L1) domain (173–225), PAZ domain (226–368), Liker 2 (372–418), Mid 

domain (427–508), and PIWI domain (515–816). PAZ and PIWI domains have motifs of 

interaction with RNA guide and PIWI domain has motif of RNA blocked access to the 

active site. The arrows show de novo variants identified in individuals from this cohort or 

previously reported (P: previously reported in literature); T: found in monozygotic twins, 

and in underlined those that are recurrent. (B) Protein structure of AGO1 colored by protein 

domain and with the sites of variants indicated by spheres. The linker domains, designated 

L1 and L2, are separated in sequence by the PAZ domain, but intertwine in 3D, forming 

common interfaces between the N-terminal, PAZ, and PIWI domains (C) Many of the 

variants of interest are within the first linker domain. This domain forms a narrow beta sheet 

with three strands. Variants occur in the middle of these strands at the closest point between 
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domain L1 and the guide RNA backbone, and towards the end of L1 and near the PAZ 

domain interface (D) D216 is within L1 and makes specific contacts with R712 in the PIWI 

domain. R712 also interacts directly with the guide RNA.
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Figure 3: Simulations reveal changes in domain orientation associated with de novo missense 
AGO1 variants
We used MD simulations to assess how the native structure of AGO1 would respond to the 

introduction of a subset of identified genomic variants. (A) Variability of each amino acid 

was quantified using RMSF after aligning each trajectory to the initial WT conformation 

of the PIWI domain and averaging across replicates. Domains are colored as in Figure 

1 and each variant colored according to the domain it is within. (B-E) We monitored 

selected distances and angles as a simple way to assess conformational changes between 

the (B) linker and PIWI domains, (C) linker and MID domains, (D) the orientation of 

the PAZ domain, and (E) the openness of the RNA binding region. (F) We show the free 

energy landscape across molecular dynamics (MD) simulations as a color gradient from 

high-energy to low energy. Above, we show one-dimensional PC samplings as a combined 

violin and boxplot. The left- and right-hand panels summarize all data from the WT and 

from our novel variants, respectively. Selected variant’s PC1 sampling is shown above 

the panel, and all variant’s (that underwent MD) PC2 sampling to the side of the panel. 

Four regions of low energy are indicated by letters A-D. Representative images of AGO1 

structure from the simulations taken from these points of low energy are shown below and 

labeled by the corresponding letters with the WT shown for comparison. To summarize one 

aspect of the difference between these four regions, we show the angle between the centers 

of mass of the MID, PIWI, and PAZ domains.
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