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Abstract

A MicroGrid (MG) is a distributed power system consisting of a number of heterogeneous components having direct/indirect
impacts on each other. In order to provide an appropriate collaboration (from several perspectives) between components, we
propose a ”Digital Ecosystem Cooperative Framework” called DECF. In this paper, we present the clustering algorithm of DECF
designed to build Alliances by gathering all the DE heterogeneous components having similar needs and preferences. Conducted
simulations showed that the proposed algorithms yield significant results.
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1. Introduction
A MicroGrid (MG) is a smaller version of the traditional power grid10 which consists of a number of heterogeneous

components (power generation, electrical loads, and storage systems) all within a controlled network. An MG can
enhance the power reliability thanks to the local power generation and its ability to be islanded from the main grid.
Thus, blackouts and power disturbances are significantly minimized. Since an MG is composed of a number of het-
erogeneous components, each having a direct/indirect impact on the other components and consequently on the entire
environment, there is a need of establishing a dedicated internal MG cooperation addressing the components’ hetero-
geneity and the problem of power exchange from different perspectives: technical16, ecological7 and economical14.
In addition, the power exchange problem becomes more tricky with the rapidly growing population, the increasing
energy demand, and the growing number of electrical equipment to be integrated into the MG. However, and to the
best of our knowledge, none of the current approaches16,20,13,12,7,14 seems to keep the pace since they don’t consider
the aforementioned perspectives at the same time nor allow end-users to fine-tune the importance of each one of them.

To address these issues, we propose DECF, a ‘Digital Ecosystem Cooperative Framework’ designed for optimizing
the MG power exchange. DECF contains two main components: 1) the Alliances Builder provides an appropriate
clustering algorithm aiming at gathering all the heterogeneous components having similar needs and preferences, and
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2) the Seller2Buyer Matcher is applied inside each cluster and between clusters, targeting a better collaboration
inside the MG. In this paper, we detail the Alliances Builder of DECF and show how it meets the MG constraints.

The rest of the paper is organized as follows. Section 2 provides details about existing power exchange optimization
techniques and their drawbacks. In Section 3, an overview of our MG information layers is given, before detailing and
illustrating in Section 4 the clustering algorithm. In Section 5, the experiments conducted to validate our approach
and the main results obtained are presented. Section 6 concludes the paper and draws several future directions.
2. Related work

Many approaches have been proposed in the literature to solve the optimization problem of the power exchange.
They can be categorized into two main groups: game-theory based16,12 and agent-based1,7,11.

2.1. Game-theory approaches
In16, the main goal was to develop an MG power exchange model which incorporates several energy sources (con-

sidered as Microgrids), allowing them to reduce the power load on the main grid and to minimize the transmission
power losses over the distribution lines. In12, the authors developed an approach that enables to determine the optimal
operation of a solar-powered MG with respect to the consumers demands. The adopted scenario is a multiple sell-
ers/buyers scenario, consisting of a village generating enough power and able to satisfy the demands (homes needs).
The objective of the proposed approach is to make the village be at least cost-neutral in power while improving the
revenue of the producers by comparing the uniform and discriminatory bidding. In17, the authors developed a non-
cooperative model within which the Plug-in Hybrid Electric Vehicles (PHEV) can decide on the amount of energy
they want to sell to the main grid. In addition, the authors proposed a scheme for determining the trading price of the
power exchanged between the PHEVs and the main grid.

2.2. Agent-based approaches
The literature is rich with examples of agent-based MGs optimization applications1,7,11. In most of these ap-

proaches11, the MG is designed as a distributed power network comprising various distributed agents (generators,
storage and loads, etc.) that are operated in interconnected or islanded mode. To do so, JADE framework is commonly
adopted for agents’ modeling. In7, the authors developed a multi-agent system that aims to minimize MG’s photo-
voltaic (PV) operating costs and the toxic pollutants emissions while maximizing the output of the energy sources.
In1, a decentralized control architecture for MG was presented, aiming at maximizing the use of renewable energy
sources and minimizing the use of conventional generators. The proposed control architecture contains different types
of agents (such as PV agent, Fuel cell agent, etc.), where each represents a major component in the MG.

2.3. Discussion
None of the existing approaches can solve all the requirements presented previously. First, all of the existing

approaches do not cope with ALL of the three objective aspects of an MG: technical, economical, and ecological
aspects. Second, agent-based approaches1,7,11 showed an efficiency in modeling all types of components, each repre-
sented by an agent, while game-theory approaches16,12,17 failed in doing that by targeting solely the optimization of
one type of MG components. Third, end-user requirements were almost absent in the existing approaches, with the
exception of7. All that lead us to develop a new cooperative model, based on a solid information model, taking into
account the various aspects of an MG while allowing the user to assign each aspect with an appropriate importance.
3. MG Information Layers

Beware that the MG can be perceived as a cyber-physical system, we designed our MG information model as a 5C
architecture (Connection, Conversion, Cyber, Cognition and Configuration), complemented with additional modules
specific to the needs in the MG. Our information modeling relies on three layers briefly described in what follows.

• Field Layer (FL): Via this layer, the data collector gathers all data exchanged between MG components via a
low-level communication environment19 relying on standardized protocols (e.g., BACnet9 , Modbus15 , etc.).
Once gathered, those data are stored in a low-level data repository and pushed up to the next layers.
• Knowledge Layer (KL): In order to resolve the interoperability issues and open up the possibility to model

the new trends in today’s energy systems (i.e., prosumers, electric vehicle, etc.), it is essential to capture and
understand the semantics of exchanged data to ensure a seamless communication between the MG components.
Through this layer, the semantic middle-ware insures the semantic translation of the collected data using our
ontology-based information model called OntoMG 18. Furthermore, the reasoner is responsible of processing
information and using it to infer additional value thanks to many rules and constraints defined in this layer.
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• Management Layer (ML): In this layer, a collaborative di-
agnostics, a self-optimization for disturbance, and a re-
mote visualization for the users (via an integrated simula-
tion and synthesis) are provided. Besides, the information
extracted from the knowledge layer is processed in order
to achieve the objectives of the MG. To do so, a battery of
advanced management services (e.g., Demand side man-
agement, minimization of transmission losses, etc.) is de-
signed. The DECF framework belongs to those services
and consists of two main modules, Alliance Builder and
Seller2Buyer Matcher. The Alliance Builder component
is provided to allow the MG to cluster its components ac-
cording to several criteria as described in the following.
The Seller2Buyer Matcher allows to align the schedule the
collaboration between components.

Figure 1. Our simplified MG information architecture
4. Alliance Builder

As it is more beneficial to promote an MG internal power exchange rather than relying on the main grid16, our
Alliance Builder has been designed to gather, into a set of alliances, the components having some interest to cooperate
and exchange power in MG while taking into account important (technical, ecological and economical) aspects. In
other words, an alliance consists of a number of MG components aiming at reducing internally the transmission power
losses, polluting less, maintaining a power balance (between the generation and the consumption), ensuring a stable
energy trading, etc. Since existing clustering techniques5,6,3,2,8 cannot be adopted to cluster the MG components
(mainly due to their heterogeneity), we propose our own algorithm. Before detailing the process, it is essential to
present some formal definitions used in our study. Let us consider an MG consisting of K components which are
heterogeneous (e.g., consumer, producer, etc.) and called nR.
Definition 1 (MG Component [nR]). An MG component has the possibility to play one or several roles during its
lifetime (i.e., produce, consume and store power). Formally, an nR is represented as:ă Id, Eco, Ecolo, Op, Geo, T
ą where Id, Eco, Ecolo, Op, Geo represent its identification, economic, ecological, operational and geographical
property sets respectively at a time T P [1,...,H] / H =24, since we are studying the behavior of the MG in an interval
of one hour. The property sets are defined in OntoMG (More details can be found in18)�
Definition 2 (Power Gap [G]). A power gap defines the power surplus, need or satisfaction of a component or a set
of components. Formally, a power gap of a component or a set of components R, denoted as G, is defined as:

GpRq “
|R|
ÿ

i“1

pnRi.g ´ nRi.d ` nRi.sq (1)

where nRi P R, and g, d, and s are respectively the component power generation, demand, and storage �

Definition 3 (Components [nR`], [nR´], [nR0)]). A seller, denoted as nR`, has a power surplus (G(nR) ą 0), while
a buyer, denoted as nR´, has a power need (G(nR) ă 0). A self-satisfied , denoted as nR0, has a power satisfaction
(G(nR) = 0). �

Definition 4 (Alliance [A] and Couple [C]). An Alliance A is a set of at least one seller and one buyer having a
mutual interest in working together. Formally, A :ă R`,R´ ą where R` “

`
Ťn

i“1tnR`
i u

˘

, R´ “
´

Ťm
j“1tnR´

j u
¯

and (n ` mq ď K, n ě 1, and m ě 1. A couple, denoted as C, is a special case of an alliance composed of only one
buyer and one seller �

Definition 5 (Cost [P]). The cost of one or several components is defined according to the costs related to its op-
erational/technological, economical, and ecological properties. It represents the transmission power losses costs
(operational), the power generation costs (economic) and the environmental impact costs (ecological) of the MG
components during their functioning. Although it can be defined using different aggregation functions (e.g., maxi-
mum, average, etc.), we adopted the weighted sum function to combine the different objective aspects costs, allowing
the user to tune the weight of each criterion in accordance with her priorities. Formally:

PpR,Wq “ wop ˆ PoppRq ` weco ˆ PecopRq ` wecolo ˆ PecolopRq (2)
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where PoppRq represents the operational cost of R, PecopRq represents the economic cost of R, PecolopRq represents
the ecological cost of R, and wop ` weco ` wecolo “ 1 and wop,weco,wecolo ě 0�

Note that, in this study, the cost P does not consider the power exchange cost. This latter is considered in the seller-
to-buyer module. The main reason behind this choice, is building stable alliances based on reducing the ecological,
economical and operational costs independently from any market tariffs changes. In addition, in this way we are
prioritizing the alliances formation based on the three-dimensional factors without any market influence. For instance,
let us consider a consumer C1 having a need of 200 KW, and two producers both able to satisfy the need of C1: a
solar-powered system S 1 with a tariff of 50 Euros and a diesel generator S 2 with a tariff of 25 Euros. In our case, C1
and S 1 will belong to the same alliance since we are privileging the ecological aspect on the market tariffs. However,
while integrating the market prices, C1 and S 2 will belong to the same alliance neglecting the ecological aspect.
Definition 6 (Operational Cost [Pop]). The operational or technical cost of one or several components R, denoted
PoppRq, is defined as:

PoppRq “ PWLossCost ˆ
n,m
ÿ

i“0, j“0

pPWLossi, jq ` PWasteCost ˆ p|GpRq ´
n,m
ÿ

i, j

pPWLossi, jq|q (3)

where @ i and j, nR`
i and nR´

j P R, and n ` m “ |R|. The technical cost depends on various parameters such as the
power losses PWLosspnR`

i , nR´
j q between the seller nR`

i and the buyer nR´
j , and the fixed price PWLossCost paid

by the buyer nR´
j per unit of power loss (e.g., 0.5 e{watt). In addition, the wasted power is calculated by subtracting

the power lost in R from its gap G(R), and is multiplied by the fixed price PWasteCost paid per unit of power wasted
(e.g., 1 e{watt). Note that the power loss PWLoss between two components is defined as follows:

PWLossi, j “ Ri j ˆ I2 ` βˆ Qi (4)
where Ri j is the resistance of the distribution line between the two components i and j, β is the fraction of power lost,
I is the current flowing over the distribution line and Qi represents the power flowing between the two components. �

Definition 7 (Economical Cost [Peco]). The economical cost of one or several components R, denoted PecopRq, is
defined as:

PecopRq “
|R|
ÿ

i“0

pnRi.S UCost ` nRi.S DCostq `
n

ÿ

j“0

pnR`
j .PWCost ˆ nR`

j .gq (5)

where @ i, nRi P R, and @ j, nR`
j P R, and n ď |R|. The economic cost depends on several factors such as the

startup cost S UCost and the shutdown cost S DCost of each MG component nRi in |R|. In addition, it considers the
production cost PWCost paid by the seller nR`

j per unit of power production.�

Definition 8 (Ecological Cost [Pecolo]). The ecological cost of one or several components R, denoted PecolopRq, is
defined as:

PecolopRq “ GasEssCost ˆ
n

ÿ

i“0

pnR`
i .GasEss ˆ nR`

i .gq (6)

if @ i, nR`
i P R, and n ď |R|. The ecological cost depends on the toxic gas emissions GasEss evolved during the

power production, and the cost GasEssCost per unit of gas emission. �

Definition 9 (Isolated [I]). An MG component nR is called isolated RI if adding it to any existing alliance increases
the cost of the alliance. Formally, an nR P RI if PpA1 Y tnRu) ą P(A1q @A1 P

´

ŤL
i“1Ai

¯

where L is the number of
created Alliances �

Definition 10 (Neighborhood [V]). The neighborhood of a couple C, denotedVpCq, is the set of one or more sellers
or buyers, allowing the initial couple C to maintain its cost PpCq after its/their integration. Formally,

VpCq “ p
Ť

tnRiuq if @ nRi: PpCq “
#

PptC.nR`u
Ť

tnRiuq where nRi P
!

Ťm
j“1 nR`

)

PptC.nR´u
Ť

tnRiuq where nRi P t
Ťn

k“1 nR´u
where n and m are the number

of Sellers and Buyers, respectively. �
The pseudo-code of the Alliances Builder is provided in Algorithm 1. In short, the first phase of the process (lines

1-4) consists of taking away the self-satisfied components that have no need to sell or buy power in the MG. Then,
a classification is done aiming at identifying the sellers and the buyers that are willing to enter the power exchange
process. The idea implies that an MG component (a seller or a buyer) should join an alliance A rather than B, if it is
able to decrease the cost of A CpAq more than the cost of B CpBq. In other words, a component should be beneficial
to the alliance, in that it should reduce its ecological, economical and operational cost to the maximum while reducing
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the wasted power into the alliance. To ensure that we are forming alliances with minimum costs, we start by selecting
the couple (the seller and the buyer) having the minimum cost, and adding in the components that can reduce this cost.
Once done, we move to the next couple having the next minimum. The complete process is explained in details in
what follows. After this classification, a ‘start couple selection’ is initiated (line 9), resulting in one or more couples
having the minimum cost, minimum gap and maximum number of neighbors. In the aim of encouraging the MG
components cooperation, a compatibility test (line 15) is applied between the resulting start couple(s) and the existing
alliances called ‘Candidate Alliances Selection’.It consists of selecting all the existing alliances that can reduce their
costs by adding the start couples’ seller, buyer or the whole couple. When there is no resulting candidate alliance, we
create a new alliance formed by the start couple. Then, a ‘Final candidate alliance’ (line 17) is achieved, consisting
of creating an alliance formed by the candidate alliance having the biggest benefit by adding the start couple. After
the creation of the alliance, this latter is updated by adding its neighbors able to reduce its costs. If none exists, a new
‘start couple selection’ is launched. The whole process is repeated until there is no more start couple. An overview of
our Alliance Builder process is shown in Fig. 2. In the following, we detail its modules.

Figure 2. A simplified activity diagram of the Alliance Builder

Algorithm 1: Global Algorithm
Input: nRrs, Wrs // Set of MG components and weights (operational, economical and ecological)

Output: CM // The classification of the Micogrid

1 CCÐ CCpq // Retrieve the the set of MG components classified into three sets: sellers, buyers and self-satisfied

2 nR`rs Ð CC.R` , nR´rs Ð CC.R´ , nR0rs Ð CC.R0 // Retrieve the Sellers, the Buyers, and the Self-satisfied

3 RArs Ð rs, RCrs Ð rs, RIrs Ð rs, RCArs Ð rs // Initialize a list of Alliances, Couples, Isolated, and candidate alliance

4 while | nR`rs |ą 0 & | nR´rs |ą 0 do
5 RCrs Ð S tartCoupleS electionpnR`rs, nR´rs,RArs,Wrsq
6 if | RArs |“ 0 then
7 Couple Ð RNDpRCrsq
8 Alliance Ð UPDAT EpnR`rs, nR´rs,Couple,Wrsq RArs Ð ADDpRArs, Allianceq

9 else
10 RCArs Ð CandidateAllianceS electionpnR`rs, nR´rs,RCrs,Wrsq
11 if | RCArs |ą 0 then
12 RArs Ð FinalAllianceS electionpnR`rs, nR´rs,RCArs,Wrsq

13 else
14 Couple Ð RNDpRCrsq
15 Alliance Ð UPDAT EpnR`rs, nR´rs,Couple,Wrsq
16 RArs Ð ADDpRArs, Allianceq

17 for each nR`
i P nR`rs do

18 RIrs Ð ADDpRIrs, nR`
i q // This allows to add the isolated sellers to the isolated list

19 nR`rs Ð REMOVEpnR`rs, nR`rsq // This allows to remove the isolated sellers from the sellers list

20 for each nR´
i P nR`

i do

21 RIrs Ð ADDpRIrs, nR´
i q // This allows to add the isolated buyers to the isolated list

22 nR´rs Ð REMOVEpnR´rs, nR´rsq // This allows to remove the isolated buyers from the buyers list

23 CM.RA Ð RArs
24 CM.RI Ð RIrs
25 CM.R0 Ð nR0rs
26 return CM // Return the set of MG components, classified into three separate sets of alliances, isolated and self-satisfied components

27

Algorithm 2: Start Couple Selection
Input: nR`rs, nR´rs, RArs,Wrs // Set of Sellers, Buyers, Created Alliances and weights (operational, economical and ecological)

Output: RCrs // Set of Start Couples

1 RCrs Ð MCCpnR`rs , nR´rs,Wrsq // Select the couples having the minimum Cost

2 if | RCrs | ą 1 then
3 RCrs Ð MGCpRCrsq // Select the couples having the minimum Gap

4 if | RCrs | ą 1 then
5 RCrs Ð MNCpRCrsq // Select the couples having the maximum number of neighbors

6 if | RArs | “ 0 then
7 RCrs Ð RNDpRCrsq // If many exist, choose a random start couple

8 return RCrs
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4.1. Classification Module
This module consists of classifying the MG components into three separate sets: (tnR`u), (tnR´u), and (

�

nR0
(

).
4.2. Start Couple Selection Module

The aim of this module is to select the starting couple(s) in each iteration. The pseudo-code of the Start Couple
Selection is provided in Algorithm 2. It starts by selecting the couples having the minimum cost (line 1). If many
resulting couples exist, the couple having the minimum gap is selected (lines 2-3). If many exist, the couple having
the biggest number of neighbors is selected (lines 4-5). If many exist and if there is no existing alliance, the start
couple is randomly chosen from the list of start couples (lines 6-7). Otherwise, the start couple will be a list of the
couples having the biggest number of neighbors.
4.3. Candidate Alliances Selection Module

The goal of this module is to select the existing alliances, that are able to decrease their costs by integrating any of
the start couples’ seller, buyer or both. The pseudo-code of the Candidate Alliances Selection is provided in Algorithm
3. If there is no existing alliance, a new alliance is created by a random start couple and then updated with the function
Update in the aim of testing the possibility to integrate its neighbors (lines 2-5). Otherwise, for each existing alliance
having a Gap ą 0 and for each start couple, it calculates the alliances costs after adding the start couple buyer and the
whole couple (since it is unnecessary to add a seller to an alliance that already has a surplus of power). Here, if the
new cost is less than the initial alliance cost, the new alliance is added to the list of candidate alliances (lines 9-19).
The same test is done on the alliances having a Gap ă 0, by testing the new alliances costs after adding the start
couple’s seller or the whole couple (lines 20-30). Algorithm 4 shows the pseudo-code of the update function.
4.4. Final Alliance Selection Module

The goal of this module is to select the final candidate alliance which has the biggest cost reduction when adding
the start couple seller, buyer or the whole couple. The pseudo-code of the Final Alliance Selection is provided in
Algorithm 5. For each candidate alliance resulting from the ‘Candidate Alliances Selection’ module, it selects the
alliances having the maximum benefit (line 2). If there is no resulting alliance, a new alliance is created formed by
a random start couple (lines 3-6). Otherwise, only one will be chosen randomly (lines 8-9). Then, a selection of a
new start couple selection is done. The whole same process will be repeated until there is no more start couples. An
illustration is provided in Appendix A.

Algorithm 3: Candidate Alliances Selection
Input: nR` rs, nR´ rs,RC rs, RA rs, Wrs // Set of Sellers, Buyers, Start Couples, Created Alliances and weights (operational, economical and ecological)

Output: RCA rs // Set of Candidate Alliances

1 RCA rs Ð rs
2 if | RArs | “ 0 then
3 CÐ RNDpRCrsq // If many exist, choose a random start couple

4 nR`rs Ð REMOVEpnR`rs,C.R`q
5 nR´rs Ð REMOVEpnR´rs,C.R´q
6 AÐ UPDAT EpnR`rs, nR´rs,Cq // Test if we can add in any start couple neighbor

7 RArs Ð ADDpRArs,Aq // Add the new alliance to the created alliances set

8 else
9 for each Ci P RCrs do

10 for eachA j P RArs do
11 if GappA jq ą 0 // If A j needs a buyer

12 then
13 Ak Ð ADDpA j ,Ci .R´q
14 if PpAk ,Wrsq ď PpA j ,Wrsq // If the couple’s buyer Ci .R´ reduces the cost of A j
15 then
16 A j Ð Ak // Add the buyer Ci .R´ to the alliance A j
17 RCArs Ð ADDpRCArs,A jq // Add the alliance A j to the set of candidate alliances RCArs

18 else if PpADDpAk ,Ci .R` ,Wrsqq ď PpA j ,Wrsq // If the couple’s buyer Ci .R´ and the couple’s seller Ci .R` reduce the cost of A j
19 then
20 A j Ð ADDpAk ,Ci .R`q // Add the seller Ci .R` to the alliance A j
21 RCArs Ð ADDpRCArs,A jq // Add the alliance A j to the set of candidate alliances RCArs

22 else if GappA jq ă 0 // If A j needs a seller

23 then
24 Ak Ð ADDpA j ,Ci .nR`q
25 if PpAk ,Wrsq ď PpA j ,Wrsq // If the couple’s seller Ci .nR` reduces the cost of A j
26 then
27 A j Ð Ak // Add the seller Ci .nR` to the alliance A j
28 RCArs Ð ADDpRCArs,A jq // Add the alliance A j to the set of candidate alliances RCArs

29 else if PpADDpAk ,Ci .R´ ,Wrsqq ď PpA j ,Wrsq // If the couple’s buyer Ci .R´ and the couple’s seller Ci .R` reduce the cost of A j
30 then
31 A j Ð ADDpAk ,Ci .R´q // Add the buyer Ci .R´ to the alliance A j
32 RCArs Ð ADDpRCArs,A jq // Add the alliance A j to the set of candidate alliances RCArs

33 return RCArs
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Algorithm 4: Update
Input: nR` rs, nR´ rs, C, Wrs // Set of Sellers, Buyers, the Couple to be updated and the set of weights (operational, economical and ecological)

Output: A // The resulting alliance

1 AllianceA
2 Set of candidate Alliance RCArs
3 Set of final Alliance RFArs
4 VC Ð VpCq
5 if | VC | ě 1 // If C has neighbors

6 then
7 if GappCq ą 0 // If C needs a buyer

8 then
9 for each nRi P VC do

10 Rrs Ð AddpC, nRiq
11 if GappnRiq ă 0 & PpRrs,Wrsq ď PpCq // If nRi is a buyer and reduces the cost of C
12 then
13 AÐ ADDpC, nRiq // Creating an alliance A resulting from adding the neighbor nRi to the couple C
14 nR´rs Ð REMOVEpnR´rs, nRiq RCArs Ð ADDpRCArs,Aq // Add the alliance A to the set of candidate alliances RCArs

15 RFArs Ð MCABpRCArsq // Select the alliances having the biggest benefit

16 if | RFArs | ą 1 then
17 AÐ RNDpRFArsq

18 if GappCq ă 0 // If C needs a seller

19 then
20 for each nRi P VC do
21 Rrs Ð AddpC, nRiq
22 if GappnRiq ą 0 & PpRrs,Wrsq ď PpCq // If nRi is a seller and reduces the cost of C
23 then
24 AÐ ADDpC, nRiq // Creating an alliance A resulting from adding the neighbor nRi to the couple C
25 nR`rs Ð REMOVEpnR`rs, nRiq RCArs Ð ADDpRCArs,Aq // Add the alliance A to the set of candidate alliances RCArs

26 RFArs Ð MCABpRCArsq // Select the alliances having the biggest benefit

27 if | RFArs | ą 1 then
28 AÐ RNDpRFArsq

29 returnA

Algorithm 5: Final Alliance Selection
Input: nR` rs, nR´ rs, RC rs, RCA rs , Wrs // Set of Sellers, Buyers, Start Couples, Candidate Alliances and weights (operational, economical and ecological)

Output: RArs // Set of Created Alliances

1 Set of Alliances RFArs
2 RFArs Ð MCABpRCArsq // Select the alliances having the biggest benefit

3 if | RFArs | “ 0 then
4 CÐ RNDpRCrsq
5 nR`rs Ð REMOVEpnR`rs,C.R`q
6 nR´rs Ð REMOVEpnR´rs,C.R´q
7 AÐ UPDAT EpnR`rs, nR´rs,C,Wrsq // Update the created alliance

8 RArs Ð ADDpRArs,Aq // Add the alliance to the existing alliances

9 else
10 AÐ RNDpRFArsq
11 RArs Ð ADDpRArs,Aq // Add the alliance to the existing alliances

12 return RArs

5. Experiments
We have developed a prototype to validate our DECF framework. A set of tests have been conducted to validate

our approach as explained below. A prototype has been implemented using Java to conduct the test on a PC with an
Intel Core i7-3630 QM CPU, 2.40 GHz processor with 8 GB RAM. Since the MG is relatively a recent concept in the
power systems area, there is a lack of a current Benchmark to be based on. Hence, we carried out our experimental
scenario inspired by the one provided in16 but adapted to fit better the scope of our study. Here, we set up an MG
within an area of 10 km ˆ 10 km with: 1) the main grid located at the onshore , and 2) the MG components randomly
located within this area. The power gap (G) of any MG component nR: 10 MW ď GpnRq ď 316 MW. Note that,
the exchange cost between an MG component and the Main Grid is set to 10. The main criteria used to evaluate the
effectiveness of our approach are: i) the alliances formation impact on the MG operation, and ii) the time needed to
generate the alliances. We detail the obtained results below.

5.1. Alliance Builder impact on the MG operation
We measured the alliances costs per MG, where we varied the number of components from 2 to 50 components

(following the recommendation in4, in an average of 10 times. Note that, the highest number of components used
in the literature was 30 components16. In this test, four different scenarios were considered: 1) a non-cooperative
one, consisting of calculating the average cost of the MG components exchange with the Main grid, 2) a random one,
consisting of calculating the costs average of a random alliances formation, 3) the cooperative model presented in16,
and 4) our cooperative one.

As mentioned before, the work in16 takes only into account the operational aspect of the MG. Hence, in order to
be able to compare their approach with our work, we considered only the operational aspect in our cost calculation
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(by assigning 1 to the operational cost weight and 0 to the others, i.e., wop “ 1 and weco “ wecolo “ 0). Fig.

Figure 3. Average Alliances Cost w.r.t. the number of MG components

3-A shows that, the worst case scenario is the non-cooperative one, with a constant value of 10. This result shows
that as the number of components increases, the resulting alliances average cost decreases more the random scheme
averages. This is due to the fact that, for our cooperative algorithm, as N increases, it becomes easier for the MG
components to find other components with which they can cooperate in a beneficial way in order to decrease the
alliances costs and therefore increase the performance of the MG. In addition, it is clear that, compared to the random
scenario, our proposed method has a significant performance improvement, in terms of average alliances cost, which
is increasing with N and reaching up to 40% of cost reduction (at N = 50) relative to the random scenario. Comparing
to the existing approach in16, obtained results show that our proposed model ensures better results reaching up to
30% of cost reduction (at N = 30). For the rest of the tests, we reconsider the three aspects of the MG equally
(wop “ weco “ wecolo “ 3.33). In Fig. 3-B, we show the same test conducted while integrating all the aspects in the
cost computation. The result shows that our method is better than the other approaches as well.

Another test was conducted to calculate the resulting noise of the alliance builder module. It consisted of calculating
the number of the generated isolated components in the Classified Microgrid (CM). Fig. 4-B shows that the biggest
number of isolated comes down to ”4”, which can be considered as a very promising result and fully satisfies our
initial goal in conceiving a cooperative environment.
5.2. Alliance Builder Performance

In addition to testing the effectiveness of our approach in reducing alliances costs, we evaluated its time perfor-
mance. This test consisted of measuring the time to build the alliances while varying the number of MG components.
Fig. 4-A shows that the time needed to create alliances grows in an almost linear fashion (since N is small) w.r.t. the
number of components. This is intuitive, since every component is a part of the alliances builder algorithm input and
therefore it should be parsed in order to associate it the adequate alliance.

Figure 4. Time performance & Noise of Alliance building

6. Conclusion
In this work, we proposed a digital ecosystem cooperative framework for MG distribution network. The proposed

approach is based on two main modules: 1) the alliances builder and 2) the Seller2Buyer matcher. In this paper, we
detailed our novel clustering algorithm consisting of gathering the MG components into ‘alliances’. Each alliance
contains a number of MG components, having mutual interests. Their interests is expressed by an objective function,
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taking into account several MG objectives: operational, economical and ecological. Simulation results show that the
proposed algorithm yields a significant improvement leading to minimizing the total power exchange cost in the MG.
We are currently integrating our framework into ISare project 1 in order to test its performance in real situations. Also,
we are exploring different alternatives to automatically compute the weights provided by end-users.
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Appendix A. Alliances Builder Illustration

Let us consider an MG consisting of 9 components having the power generation (g), demand (d) and storage (s) as
shown in Table A.1.
• Classification module: After classifying the MG components, they will be put into three main categories: the

sellers willing to sell their power surplus (nR1 Ñ nR`
1 , nR4 Ñ nR`

2 , nR6 Ñ nR`
3 , nR8 Ñ nR`

4 ), the buyers
willing to buy their power needs (nR2 Ñ nR´

1 , nR3 Ñ nR´
2 , nR5 Ñ nR´

3 , nR9 Ñ nR´
4 ), and the self-satisfied

components (nR5 Ñ nR0
1) (c.f. Table A.2.). In what follows, the sellers will be visually represented by ‘�’ and

the buyers by ‘_’.
• Start Couple Selection module: After classifying the MG components, a start couple selection is executed.

Table A.3. shows the costs matrix of all the couples. Table A.5. shows the execution result of the Start Couple
Selection algorithm. After selecting the couples having the minimum cost, several resulting couples having
Cost “ 2 (line 2) are found, the couple having the minimum gap is selected (line 3). In this example, there are
many resulting couples having the same gap Gap “ 2 (line 4), hence, the couple having the maximum number
of neighbors is selected (line 5). Also here, several couples have the same number of neighbors | VpCq |“ 2,

1 http://www.i-sare.net/html5/index.html
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thus, a random couple is selected (e.g., C1 “ă nR´
2 , nR`

3 ą). As a result, a new alliance A1 is created consisting
of the seller and the buyer of the start couple, A1 :ă tnR´

2 u, tnR`
3 u ą as shown in Fig. A.5-1.

• Update Module: After creating the first alliance A1 “ă tnR´
2 u, tnR`

3 u ą, the update module is called to
test the possibility of adding any of its neighbors as long as it reduces the alliance cost. VpA1q “ tnR`

4 u
and CpADDpA1, nR`

4 qq ă CpA1q, hence the alliance should be updated by adding the seller nR`
4 resulting

A1 “ă tnR´
2 u, tnR`

3 , nR`
4 ąu as shown in Fig. A.5-2.

• Candidate Alliance Selection Module: After creating the alliance A1 “ă tnR´
2 u, tnR`

3 , nR`
4 u ą, we update the

costs matrix by removing the buyers and the sellers being part of existing alliances (cf. Table A.4). Here, a new
start couple selection is done, resulting the couple C2 :ă nR´

3 , nR`
1 ą as shown in Fig. A.5-3.

Before creating a new alliance with the resulting start couple, we check the possibility of adding any of the cou-
ple’s seller, the buyer or both to the existing alliance A1 (cf. Table A.2.6). Our example shows the impossi-
bility of adding the buyer nR´

3 or the seller nR`
1 or the whole couple (line 10) to the existing alliance (line 11)

A1 “ă tnR´
2 u, tnR`

3 , nR`
4 u ą, since once added to A1, they would increase its cost (lines 27-33). Hence, a new

alliance A2 “ă tnR´
3 u, tnR`

1 u ą is created. Here, a new start couple selection is done, since this alliance A2 has
no neighbors to check the possibility of adding it resulting the couple C3 :ă nR´

1 , nR`
2 ą. Before creating a new

alliance with the resulting start couple, we check again the possibility of adding any of the couple’s seller, buyer
or both to the existing two alliances A1 and A2. Our example shows that by adding the seller and the buyer of the
couple to the alliance A2, the cost of this latter is decreased. Hence, the alliance A2 will be updated and becomes
A2 “ă tnR`

1 , nR`
2 u, tnR´

3 , nR´
1 u ą. Here, the only one remaining component, nR´

4 , will be an isolated since it is
impossible to add it to the existing alliances as it increases their costs once added as shown in Fig. A.5-4.

Figure A.5. Visual representation of the MG components’ clustering status after each step


