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Abstract

This paper is concerned with the computation of the inverse impulse
response of a parametrized structural dynamics problem using reduced-
order modeling and randomized excitations. A two-stages approach is
proposed, involving the solution of both direct and inverse problems. In
the first stage, the parametrized structural dynamics problem is formu-
lated in the frequency domain, and solved using a reduced-order modeling
approach. As a result, the parametric transfer function of the structure
is obtained, and then readily transformed into a parametric direct im-
pulse response (DIR). In the second stage, the parametric inverse impulse
response (IIR) is computed. We use randomized excitations to generate
synthetic samples inexpensively from the parametric DIR. Based on these,
the parametric IIR is computed by minimizing the mean square error be-
tween the estimate and the samples. Most importantly, we show that the
randomized excitations can be generated by sampling the frequency do-
main only. Hence, the parametric domain does not need to be sampled,
which makes the computation of the parametric IIR very efficient.

1 Introduction
Real-time reconstruction of both dynamic forces acting on a structure and the
system state (e.g. structure displacements) is of great importance in many
engineering applications. While the system state can often be measured at
least at specific locations, dynamic forces acting on a structure are generally
unknown. Extensive research has been done over the past decades in order to
estimate the time history of dynamic forces from indirect measures [42, 43, 44,
45, 46, 47, 48, 49].

The dynamic forces recovery problem can be seen as a particular instance
of general inverse problems. Literature in this area is vast and covers almost
every area of science and engineering. However, in next lines we give a general
overview on the main approaches that have been proposed in the literature to
address the ill-posedness of the dynamic forces recovery problem. In the frame-
work of linear time-invariant (LTI) systems, it is well known that the impulse
response fully captures the system behavior. In particular, the system response
can be computed from the convolution of the impulse response and the input
signal, that is the force. In this framework, deconvolution is used to reverse
the effects of convolution on the system’s response. A naive deconvolution ap-
proach based on direct inversion of the impulse response would fail because of
the drastic amplification of the noise inherent to both measures and computa-
tions. There is a vast literature aiming at addressing the noise amplification
issue in deconvolution [35, 18, 19].

Regularization methods are based on a functional description of the signal
(force, system response) [18, 7]. In particular, we require the deconvolved signal
to belong to a certain functional space and to minimize a certain error measure.
Several regularization techniques have been proposed over the years, including
Tikhonov regularization [35], which can be used to constrain the solution to
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the space of square-integrable functions, for instance. In other fields, such as
image processing, more sophisticated functional spaces may be preferable [6].
Finally, iterative regularization methods have also been proposed in order to ad-
dress large-scale systems, such as Landweber iteration [27]. Since applications
of signal and image processing are virtually unlimited, many field-specific de-
convolution methods have been proposed in areas such as radioastronomy [25],
optics [37] or geophysics [34], just to cite few examples.

The inverse problem can also be posed into a statistical framework, which
uses a statistical description of the signals and certain assumptions on the na-
ture of the noise. This approach is particularly fruitful in the field of signal
processing. The main advantage is that filtering theory for LTI systems, i.e.
Wiener filtering and deconvolution, was extended to general dynamical sys-
tems by Kalman filtering [24], and also nonlinear dynamical systems (extended
Kalman filter) [16]. Finally, Bayesian filtering provides an even more general
framework which reduces to the Kalman filter if variables are normally dis-
tributed and transitions are linear. Examples using statistical framework can
be found in [22].

Besides to the ill-posedness of the dynamic forces recovery problem, at least
two other important challenges can be identified in the literature. The first
one concerns the trade-off between model accuracy and real-time performance.
Many practical applications impose a real-time performance constraint which is
not always easy to meet, especially when simple dynamical models, such as con-
centrated parameters models, cannot be assumed. Hybrid laboratories [1, 23]
or soft robotics [13, 33] are two examples of new industrial applications which
require continuum mechanics modeling in order to describe both deformation
and forces properly. They usually result in large-scale computer models which
are most likely incompatible with the real-time constraint. The second chal-
lenge concerns model adaptivity to structural alterations and/or uncertainties.
Structures are prone to evolve and deteriorate over the time, making it very
difficult to assess the validity of structural models beforehand.

Reduced-order modeling (ROM) methods [8, 29, 14] constitute an appealing
alternative in order to address both previous challenges. ROM methods are
well-known for providing a scientific and mathematical basis for fast simulation,
sometimes even in real-time, of engineered systems. The basic idea is to exploit
the fact that the solution of many models can be approximated very efficiently
provided that a suitable representation basis is chosen. The two principal fam-
ilies of ROM methods, a priori and a posteriori methods, differ essentially on
how they build such appropriate representation basis. In this paper, we are
only concerned with the a-priori ROM methods, and more specifically, with the
Proper Generalized Decomposition (PGD) [10][15].

In this work, we propose a two-stages approach involving the solution of
both parametric direct and inverse problems, using PGD and randomized exci-
tations. The proposed approach is only concerned with the forced response of
LTI systems. In the first stage, we rely on parametric direct impulse responses
(DIR), already introduced in [2] in the context of thermal problems, and applied
to structural dynamics in [17, 28]. The computation of the parametric DIR in-
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volves a frequency-domain formulation of the structural dynamics problem for
reasons that will be made clear in Section 2. The key aspect of the parametric
DIR is that it does not only encode the system response, but also captures the
system behavior in a wide range of scenarios thanks to its parametric nature.
Specifically, if parameters represent structural alterations and/or uncertainties,
the parametric DIR can account for these changes and still be able to predict
the system response. In addition, the parametric DIR offers a simple procedure
to obtain a real-time feedback of the displacements via its convolution with the
excitation force.

In the second stage, we use randomized excitations to generate synthetic
samples inexpensively from the parametric DIR. Then, the parametric inverse
impulse response (IIR) is computed by minimizing the mean square error be-
tween the estimate and the samples using PGD. Most importantly, we show that
the randomized excitations can be generated by sampling the frequency domain
only. Hence, the parametric domain does not need to be sampled, which makes
the computation of the parametric IIR very efficient. In summary, the objective
of this work is to compute a parametric inverse impulse response which is able
to compute the excitation force by reversing the effects of the structure on the
measured displacement, and that is able to do so in a wide range of scenarios
thanks to its parametric nature. Figure 1 show a general picture of the method.

The rest of the paper is organized as follows. Section 2 presents the model
problem being considered in this paper, first in the time domain, and then we
move to the frequency domain. In Section 2.3 we give a brief sketch on the
computation of the parametric DIR using the PGD method. We then show
how to use the parametric DIR for real-time monitoring of displacements under
arbitrary force. Section 3 is concerned with the computation of the parametric
IIR. We first give in Section 3.1 a brief outline of the proposed strategy in
a non-parametric framework. Then, in Section 3.2 we show how to generate
synthetic samples for the parametric DIR, which are then used to set up a
regularized minimization problem to compute the parametric IIR. We give the
details of the PGD computation of the parametric IIR in Section 3.2.2, which
can be completed with details in Appendix A. Section 4 is concerned with
some numerical examples that serve to test the performance of the proposed
approach. Finally, conclusions are drawn in Section 5.

2 Monitoring displacement
In this section we review the formulation of the direct problem, that is, comput-
ing displacements from known forces, and show how to compute the parametric
DIR. In order to compute the impulse response, the problem is first formulated
in the frequency domain, and then the solution transformed back to the time
domain. Therefore, we start with the model problem in the time domain and
then we move to a frequency-domain formulation. Finally, we show how the
parametric DIR can be used for real-time monitoring of displacements. This
constitutes the first stage of the approach presented in this paper.
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2.1 Model problem in the time domain
For the purposes of this paper, we consider a linear visco-elastic body that
occupies an open bounded domain Ω ⊂ Rd≤3. Its boundary, ∂Ω, is partitioned
into two disjoint parts, Neumann ΓN and Dirichlet ΓD frontiers, such that
∂̄Ω = Γ̄N ∪ Γ̄D. Under the assumption of small perturbations, the evolution of
displacements u(t) in the time interval of interest, t ∈ It = [0, Tfinal], is governed
by the elastodynamic equation of motion:

ρü−∇ · σ = 0 in Ω× It,
σ · n = t on ΓN × It,

u = 0 on ΓD × It,
(1)

where ρ is the mass density, σ is the stress and n is the outward unit normal
to ∂Ω. On the other hand, t stand for the surface traction. Appropriate initial
conditions for u and u̇ at Ω×{0} must also be provided. Eq. (1) is closed with
the constitutive law, the Kelvin-Voigt linear visco-elastic model,

σ = D : (ε+ τ ε̇) , (2)

where D is the fourth-order Hooke elasticity tensor and τ is a characteristic
time related to the viscous behavior. According to the small perturbations

hypothesis, ε =
1

2
(∇u + ∇tu).

Upon discretization, e.g. using the finite element method [5], we arrive to
the matrix differential equations of motion,

Mü(t) + Cu̇(t) + Ku(t) = f(t), (3)

where M,C,K ∈ RN×N are the mass, damping and stiffness matrices, respec-
tively, f(t) ∈ RN is the generalized force vector and u(t) ∈ RN is from now
on the generalized displacement vector. Since structural dynamics have been
studied in many scientific articles and textbooks [4, 21, 38], we do not provide
here an exhaustive literature review.

Many methods have been proposed over the time in order to solve Eq. (3),
including time-integration schemes [38], modal methods [12] and frequency-
domain methods based on harmonic analysis [30]. In spite of their wide ap-
plicability, these methods are not always suitable for real-time computation.
Besides, they are not designed to accommodate structural alterations or uncer-
tainty, at least in combination with the real-time constraint. Time integration
schemes, for instance, could not be fast enough in stochastic frameworks, where
calibration and active control must coexist. Moreover, modal methods cannot
deal easily with structural changes and uncertainties, because in principle, the
modal basis would have to be computed each time a change in the structure
takes place [36]. We recommend the interested reader the works [40, 41] for
more information about efficient computation of the modes under structural
modifications.
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2.2 Forced response via frequency domain formulation
Frequency-domain representations are a powerful approach to study the re-
sponse of the structure when initial conditions can be neglected, that is, we are
only concerned with the forced response. This framework, which was integrated
into the finite element (FE) framework from the very beginning, still is exten-
sively used today. Since it is well described in many textbooks [11], it is not our
aim to provide a detailed literature review here.

Consider that our dynamic system is submitted to some dynamic action rep-
resented by the generalized force vector, f(t). Under rather weak conditions, it
is possible to obtain a frequency representation, f(ω), of the generalized force
vector via the direct Fourier Transform. And vice versa, from the frequency
representation it is possible to recover the time representation of the general-
ized force vector via the inverse Fourier Transform. The pair of direct/inverse
transforms is defined as follows:

f(ω) =

∫ +∞

−∞
f(t) exp (−iωt) dt and f(t) =

1

2π

∫ +∞

−∞
f(ω) exp (iωt) dω.

No distinct notation is used for time-domain or frequency-domain representa-
tions for the sake of simplicity. Analogously, we may also consider the frequency
representation of the generalized displacement vector, u(ω), that may be com-
puted from(

−ω2M + iωC + K
)
u(ω) = f(ω). (4)

Notice that Eq. (4) is obtained by taking the Fourier transform over Eq. (3).
It can be seen that the dynamic response depends parametrically on ω. This
parametric dependence is intrinsic to harmonic analysis and renders it very
unattractive when compared to modal analysis or even direct integration. In
practice, harmonic analysis is only used to compute the response against rather
simple (with few frequencies) periodic forcing terms. If arbitrary (non-periodic)
forcing terms are of interest, in principle one has to deal with a continuous
frequency spectrum.

2.3 Computing the direct impulse response with PGD
In this section, we use the PGD method in order to deal with the parametric
nature of the frequency-domain formulation, Eq. (4). Specifically, we shall
compute a parametric solution in terms of the frequency. Then, by coming back
to the time domain, we obtain the direct impulse response. If extra parameters
(other than frequency) are considered in the PGD formulation, we can obtain a
parametric DIR.

Space-frequency separated representations have also been considered in [31,
32] for the so-called variational theory of complex rays. Obviously, there have
been many attempts considering such descriptions within the model reduction
framework; the interested reader can refer to [20, 39] and the references therein.
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Let us assume that the excitation can be expressed as a combination of
harmonics:

f(t) = fsp(t), (5)

where fs is the vector that collects the space distribution of the excitation and
p(t) is a function that modulates the excitation in time. Following classic anal-
ysis of LTI systems, the transfer function of the system, denoted by h(ω) ∈ RN ,
can be computed as the solution against the impulse. That is, we consider
p(t) ≡ δ(t), where δ(t) stands for the Dirac’s delta distribution. Recalling that
f(ω) = fsp(ω) and p(ω) = δ(ω) = 1, we arrive to:

(−ω2M + iωC + K) h(ω) = fs. (6)

Note that, if we were able to solve Eq. (6) for every frequency, we would dispose
of the transfer function of the system, which implies that the system response
under arbitrary p(t) could be obtained readily. Therefore, the idea is to use
a ROM approach, based on the PGD method, to compute h(ω) efficiently for
every frequency in the interval of interest, i.e. ω ∈ Iω = [ω−, ω+].

PGD devises an offline-online strategy to alleviate the computational burden
and reach real-time performance. In the offline stage, PGD encodes the system
response for a wide variety of scenarios, described by the parameters. For the
time being, we are only considering the frequency as a parameter, but as it will
be shown later, several parameters could be considered. This leads naturally
to a multi-dimensional problem which has to be addressed carefully in order to
avoid the so-called curse of dimensionality [50]. PGD makes use of separated-
variables representations, that is, the solution is sought as a sum of function
products, where each function depends on one parameter. The key point of the
PGD algorithm is to split the complexity of multi-dimensional problems into
lower-dimensional ones, much less complex to solve. Specifically, the transfer
function is sought using the following space-frequency separated representation:

h(ω) =

n∑
i=1

XiWi(ω), (7)

where Xi collects the nodal generalized space modes and Wi(ω) denotes the
frequency modes of the solution. Both are a priori unknown and must be deter-
mined by the algorithm. PGD builds Eq. (7) using a greedy enrichment that
adds one term at a time. Each term is computed using an alternating direction
method. The enrichment process is stopped using appropriate error estimation.
More detailed information about the procedure can be found in [9].

As noted previously, space-frequency separated representations can be gen-
eralized by considering extra parameters other than frequency. We can take
advantage of this feature in order to deal with structural alterations and/or un-
certainties. For illustrative purposes, let us assume that the elastic behavior of
the structure is not fully characterized, e.g. we do not have a precise knowledge
of one of the Young’s modulus. Instead, we may have access to a probability
density function of the Young’s modulus. Parametric solutions offer a simple

7



manner to account for that uncertainty, which consists in computing a paramet-
ric transfer function in terms not only of the frequency, but also the Young’s
modulus. Let us assume Young’s modulus E ∈ IE = [E−, E+]. PGD allows
computing a separated solution in the form:

h(ω,E) =

n∑
i=1

XiWi(ω) Ei(E), (8)

where Xi collects the nodal generalized space modes, Wi is a frequency mode
and Ei is a Young’s modulus mode.

Note that, in the online stage, the parametric transfer function defined in Eq.
(8) can be accessed in real-time for any parameter combination by performing
no more than look-up table operations.

Remark (Alternative separated formats). Although basis vectors Xi and func-
tions Wi(ω) are denoted exactly the same in Eq. (7) and Eq. (8) for notational
simplicity, we are not implying that both bases are the same. They will be dif-
ferent in general, and neither Xi nor Wi(ω) in Eq. (7) are reused in Eq. (8)
(although it is theoretically possible). The number of basis terms, denoted by
n both in Eq. (7) and Eq. (8), is different as well. Eq. (8) uses a canonical
format, which is at the base of the PGD method used here [9]. However, other
formats are possible and, in some cases, can be more convenient. The interested
reader can refer to [51] for an introductory review on the topic of tensor formats
and their decomposition.

2.4 Real-time monitoring of displacements
Once the parametric transfer function, Eq. (8), is available, we can apply simple
LTI systems theory in order to recover the parametric DIR. Since both Fourier
direct and inverse transforms are linear applications, the parametric impulse
response can be written as follows:

h(t, E) = F−1 [h(ω,E)] =

n∑
i=1

XiWi(t) Ei(E),

whereWi(t) = F−1[Wi(ω)] represents the inverse Fourier transform of frequency-
domain modes in Eq. (8). Note that the inverse Fourier transform is applied
only on frequency modes, which renders the operation extremely efficient.

Now the parametric DIR can be used to compute the response of the struc-
ture under an arbitrary excitation p(t):

u(t, E) =

∫ t

0

p(t− τ) h(τ, E) dτ, (9)

where u(t, E) is a parametric solution that collects the time evolution of the
nodal displacements, for all E ∈ IE . Note that the convolution is done between
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p(t) and each component of the parametric impulse response h(t, E):

u =

 u1(t, E) =
∫ t

0
p(t− τ)h1(τ, E) dτ
...

uN (t, E) =
∫ t

0
p(t− τ)hN (τ, E) dτ

 .
It is worth to highlight that Eq. (9) allows computing displacements only at
those degrees of freedom of interest (e.g. those where measures are actually
done), and consequently an important computational cost can be saved. Thanks
to linearity, convolution can be applied only to time-dependent modes, Wi(t).
We can therefore define:

Υi(t) =

∫ t

0

p(t− τ)Wi(τ) dτ,

and the parametric displacements are written as follows:

u(t, E) =

n∑
i=1

Xi Υi(t) Ei(E). (10)

Therefore, displacements can be readily evaluated from the parametric DIR,
under arbitrary force excitations and for a variety of Young’s modulus values.
Eventually, this feature could be used to reverse-engineer the Young’s modulus
based on simulation predictions, or to propagate uncertainty if a probability
density function on the Young’s modulus is available. However, in this paper
we will use randomized excitations to generate synthetic samples inexpensively
from the parametric DIR.

3 Monitoring force via parametric inverse impulse
response

While displacements can often be measured at least at specific locations, dy-
namic forces acting on a structure are generally unknown. Real-time estimation
of dynamic forces is of great importance in many engineering applications. For
instance, in hybrid laboratories [1, 23] combine experimentation in the part
of the system where complex (i.e. not well-established) physics happen, and
simulation where models can be trusted. Both experiment and simulation com-
municate via some actuator. Real-time feedback from the simulation is therefore
critical.

However, the force recovery problem is not straightforward as Eq. (3) may
not have unique solution for an unknown force. In this section, we address the
force recovery problem in a parametric framework. Starting with the parametric
DIR computed in Section 2, we compute a parametric inverse impulse response
using randomized excitations and a PGD formulation.
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3.1 Outline of the proposed strategy
The concept of inverse impulse response (IIR) is at the center of the proposed
strategy. Suppose displacement is measured at node j, with 1 ≤ j ≤ N ; then,
the IIR associated to that node, gj(t), allows to reverse the effects of the struc-
ture on uj(t) and delivers the excitation force p(t):

p(t) = uj(t) ∗ gj(t) ≡
∫ t

0

uj(t− τ) gj(τ) dτ, (11)

where “∗” stands for the convolution operation. Note that p(t) is the force
amplitude modulation, as defined in Eq. (5). Parametric dependency has been
ignored in Eq. (11) for the sake of notational simplicity. Moreover, note that Eq.
(11) makes the (physically reasonable) hypothesis that h−1

j (ω) is well defined
for all ω in the range of interest [52].

Computing the IIR can be seen as a deconvolution problem. As reviewed
in Section 1, one of the main approaches to address the ill-posedness of the
inverse problems is regularization [35]. This approach makes use of a functional
description of the signal, and in particular, requires the deconvolved signal to
belong to a certain functional space and to minimize a certain error measure.
Although other options are possible, here we follow a regularization approach
based on the use of training samples.

Suppose we are given a set of force samples and its corresponding displace-
ments, denoted by {p`(t),u`(t)}ntrain

`=1 , respectively. Note that, in particular,
displacements could be computed from the direct impulse response inexpen-
sively as u`(t) = h(t) ∗ p`(t). Then, in order to compute the IIR we consider a
regularized approach that seeks to minimize the mean square error between the
estimate and the samples:

ntrain∑
`=1

‖u`j(t) ∗ gj(t)− p`(t)‖2 + λ‖S(gj(t))‖2 for 1 ≤ j ≤ N, (12)

where ‖•‖ denotes the standard L2 norm over It, the time interval of interest;
u`j(t) denotes the j-th entry of u`(t); λ is the regularization parameter; and
S(•) is some linear operator in order to enforce the desired properties to the
solution. Note that the problem defined in Eq. (12) is uncoupled with respect
to the degree of freedom j; that is, gj(t) can be computed independently from
gk(t), with k 6= j.

By discretizing the time domain, and taking into account that convolution
is a linear operator, Eq. (12) can be written in matrix form as follows:

ntrain∑
`=1

‖U`jgj − p`‖22 + λ‖Sgj‖22, (13)

where U`j represents the discrete convolution operator associated to u`j(t). On
the other hand, S is the equivalent discrete of S(•), usually equal to the identity
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matrix if we seek the solution with minimum norm, or a Laplace operator, if we
want to enforce smoothness of the solution. Eq. (13) yields the solution:

gj =

(
ntrain∑
`=1

UT
`jU`j + λSTS

)−1(ntrain∑
`=1

UT
`jp`

)
. (14)

3.2 Parametric inverse impulse response
In Section 3.1 parametric dependencies have been omitted for the sake of sim-
plicity. Now we seek a parametric inverse impulse response in the following
separated-variables format,

g(t, E) =

n̄∑
l=1

X̄l W̄l(t) Ēl(E), (15)

such that gj(t, E) is able to reverse the effects of the structure on displacement
uj(t, E), for some d.o.f. 1 ≤ j ≤ N and every E ∈ IE . In Eq. (15), X̄l, W̄l(t)
and Ēl(E) are space, time and parameter modes of the parametric IIR, which
can be seen as the inverse of the parametric DIR, see Eq. (8). For simpler
notation, we shall consider all d.o.f., that is g(t, E) ∈ RN , but a subset of
the d.o.f. could also be taken. Note that in particular, d.o.f. where essential
boundary conditions apply should be excluded.

3.2.1 Randomized excitations and parametric optimization problem

As outlined in Section 3.1, to obtain the parametric IIR, a training set of forces
and displacements must be known in advance, which can come from measure-
ments or simulation. In our approach, we shall take advantage of the parametric
DIR to generate a synthetic set of displacements inexpensively. In particular,
we consider a set of ntrain singleton excitations,

P := {p`(t) : p`(t) = cos(ω`t), ω` ∈ Iω, 1 ≤ ` ≤ ntrain} , (16)

where ω` is drawn randomly from a uniform distribution. Thanks to the para-
metric DIR, h(t, E) defined in Section 2, we can compute the set of parametric
displacements inexpensively by performing a convolution h(t, E)∗p`(t) for each
element in P. Specifically, at node j we have:

U :=

{
u`j(t, E) : u`j(t, E) =

n∑
i=1

Xij Υi`(t) Ei(E), 1 ≤ ` ≤ ntrain

}
, (17)

where Xij represents the j-th entry of Xi in Eq. (8). Observe that u`j(t, E) is
written in separated-variables form, where Υi`(t) = Wi(t) ∗ p`(t). Recall that
Wi(t) is the i-th time-dependent mode of the parametric DIR.
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Next, we proceed very much like in Eq. (12), i.e. we seek to minimize the
mean square error between the estimate and the samples but this time including
also the parameter domain:

ntrain∑
`=1

‖u`j(t, E) ∗ gj(t, E)− p`(t)‖2 + λ‖S(gj(t, E))‖2, (18)

where ‖•‖ denotes here the L2 norm over It × IE and gj(t, E) denotes the j-th
entry of g(t, E). Again, note that each gj(t, E) in Eq. (18) can be computed
independently from gk(t, E), with k 6= j.

By inserting parametric displacements definition given in Eq. (17) into Eq.
(18), we arrive to the following parametric optimization problem: find gj(t, E),
for 1 ≤ j ≤ N , which is the minimizer of

ntrain∑
`=1

∥∥∥∥∥
(

n∑
i=1

XijΥi`Ei

)
∗ gj(t, E)− p`(t)

∥∥∥∥∥
2

+ λ ‖S(gj(t, E))‖2 . (19)

3.2.2 PGD method for parametric IIR computation

The stationarity condition of the functional Eq. (19) can be found by means of
standard calculus of variations. Minimizing Eq. (19) is equivalent to solve the
following problem: find gj ≡ gj(t, E) ∈ L2(It × IE) such that

A(gj , g
?
j ) + λR(gj , g

?
j ) = L(g?j ) ∀g?j ∈ L2(It × IE), (20)

where we have introduced the following bi-linear forms: A,R : L2(It × IE) ×
L2(It × IE)→ R defined by

A(u, u?) =

n∑
i,k=1

XijXkj

∫
IE

∫
It

u? ∗ (EiLikEk) ∗ u dt dE,

R(u, u?) =

∫
IE

∫
It

S(u?)S(u) dt dE,

(21)

as well as a linear form L : L2(It × IE)→ R defined by

L(u?) =

n∑
i=1

Xij

∫
IE

∫
It

u? ∗ (qiEi) dt dE. (22)

Functions Lik(t) in Eq. (21) and qi(t) in Eq. (22) are defined as follows:

Lik(t) =

ntrain∑
`=1

Υi`(t)Υk`(t) and qi(t) =

ntrain∑
`=1

Υi`(t)p`(t). (23)

In next lines we describe the PGD algorithm for the solution of Eq. (20).
The main ingredients are a greedy algorithm for an incremental construction of
the separated-variables representation and an alternating directions algorithm
for the calculation of each separated-variables factor.
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Greedy algorithm: PGD builds the separated-variables representation given
of the solution, Eq. (15), by adding one term at a time. Therefore, assuming
that n̄−1 terms have already been computed, we seek a new term δg(t, E) such
that the solution with n̄ terms writes:

gn̄(t, E) = gn̄−1(t, E) + δg(t, E) (24)
with δg(t, E) = X̄W̄ (t)Ē(E).

Then, for a given d.o.f. 1 ≤ j ≤ N , or a subset of them since they are uncoupled,
the weak form given in Eq. (20) becomes: find δgj ∈ L2(It × IE) such that

A(δgj , δg
?
j ) + λR(δgj , δg

?
j ) = L(δg?j )−A(gn̄−1

j , δg?j ) (25)

∀δg?j ∈ L2(It × IE).

The rank n̄ can be adaptively chosen based on error estimates to achieve the
desired precision [3, 26].

Alternating directions algorithm: Eq. (25) defines a nonlinear problem
for the computation of the factors X̄j , W̄ (t) and Ē(E) which is solved using an
alternating directions linearization. These algorithms updates one factor at a
time while considering the other factors fixed. The algorithm is stopped when
it reaches a fixed point, i.e. the norm of the difference between two consecutive
iterations is small enough. In next lines we derive the updates for each one of
the factors:

• Update X̄. Assume both W̄ and Ē known from a previous iteration. Then,
for 1 ≤ j ≤ N the test function becomes δg?j = X̄?

j W̄ Ē . After some tedious
but conceptually simple manipulations, Eq. (25) becomes:

αj
XX̄j + λβXX̄j = γjX − η

j
X . (26)

See Appendix A.1 for a detailed derivation. Coefficients αj
X , βX , γjX and

ηjX are also given in the Appendix. In view of the above, X̄j can be
updated for every 1 ≤ j ≤ N by solving an uncoupled equation, i.e. a
diagonal system because X̄j does not depend on X̄k for k 6= j:

X̄j =
γjX − η

j
X

αj
X + λβX

⇔ X̄ = (DX + λβXIX)−1(γX − ηX), (27)

where DX is a diagonal matrix whose j-th diagonal entry is αj
X , IX is the

identity in RN and vectors γX and ηX collect γjX and ηjX , respectively,
for 1 ≤ j ≤ N .
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• Update W̄ . Assume both X̄ and Ē known from previous iterations. Then,
for 1 ≤ j ≤ N the test function becomes δg?j = X̄jW̄

?Ē . In this case, Eq.
(25) becomes:

n∑
i,k=1

αik
T

∫
It

W̄ ? ∗ Lik ∗ W̄dt+ λβT

∫
It

S(W̄ ?)S(W̄ )dt =

=

n∑
i=1

γiT

∫
It

W̄ ?qidt−
n∑

i,k=1

n̄−1∑
l=1

αikl
T

∫
It

W̄ ? ∗ Lik ∗ W̄ldt.

(28)

See Appendix A.2 for a detailed derivation. Coefficients αik
T , βT , γiT and

ηiklT are also given in the Appendix. After discretization of both time and
Young modulus domains, we have:

W̄ =
(
LT + λβTSTS

)−1
(γT − ηT ) , (29)

where S is the discrete counterpart of the linear operator S(•). Matrix
LT and vectors γT and ηT are given in the Appendix A.2.

• Update Ē . Assume both X̄ and W̄ known from previous iterations. Then,
for 1 ≤ j ≤ N the test function becomes δg?j = X̄jW̄ Ē?. In this case, Eq.
(25) becomes:

αE Ē + λβE Ē = γE − ηE , (30)

See Appendix A.3 for a detailed derivation. Coefficients αE , βE , γE and
ηE are also given in the Appendix. Observe that this is an uncoupled
equation, i.e. for arbitrary Em ∈ IE , Ēm ≡ Ē(Em) does not depend on
Ēk, with m 6= k. In view of the above, Ēm can be updated by solving an
uncoupled equation, i.e. a diagonal system:

Ēm =
γmE − ηmE
αm
E + λβE

⇔ Ē = (DE + λβEIE)−1(γE − ηE), (31)

where αm
E ≡ αE(Em), and similarly for γmE and ηmE , with 1 ≤ m ≤ NE ,

being NE the number of nodes used to discretize IE . DE is a diagonal
matrix whose m-th diagonal entry is αm

E , IE is the identity matrix in RNE

and vectors γE and ηE collect γmE and ηmE , respectively, for 1 ≤ m ≤ NE .

Remark (Avoiding regularization with the use of separated-variables represen-
tation). Numerical evidence (see Section 4) shows that the PGD method can
still be applied for solving Eq. (19) when no regularization is considered, i.e.
λ = 0. PGD method shows stability in that case, and therefore it appears to
have some kind of built-in regularization capabilities. A possible explanation
may be related to the truncated Singular Values Decomposition as a regular-
ization method, see [18]. This method expresses an approximated solution to
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the inverse problem by truncating the singular vectors associated to the smallest
singular values (i.e. those related to high frequencies). A precise truncation
can eliminate spurious oscillations introduced by the singular vectors associated
to high frequencies. Because PGD proceeds in a greedy manner to minimize the
mean square error, it first extracts the principal modes of the solution, which are
indeed those associated to lower frequencies. Higher frequency spurious modes
would only appear when PGD convergence is pushed to machine precision, which
in practice is never done because we are usually in achieving effective model re-
duction. Research outside the scope of this paper would be needed to confirm
this hypothesis.

4 Numerical example
In this section we describe the application of the method proposed in this paper
to solve a numerical test case.

We consider 2D plate of size 1×1m and circular hole in the middle of radius
0.5m, as depicted in Fig. 2. The mesh contains 124 first-order triangular finite
elements and 78 nodes. The plate is fixed at the bottom edge and a dynamic load
is applied on the leftmost edge. Displacements are measured at the right upper
corner of the plate (node P ), which is marked in red. Homogeneous isotropic
plane-stress visco-elasticity has been considered for the analysis, together with
the Kelvin-Voigt model for the viscous part (see Section 2.1 for details). The
mass density is considered ρ = 1kg/m3, and the stiffness is considered as a
parameter in a range of E ∈ IE = [10, 200]Pa. The Kelvin-Voigt time constant,
µ, is chosen such as to obtain make the damping factor ξ = 10%. Recall that
the ξ and µ are related via:

ξ =
1

2
µω0 with ω0 =

√
σ0,

where σ0 is the smallest eigenvalue (i.e. natural frequency) that results from
solving the generalized eigenvalue problem Ku = σMu.

In the offline phase, both DIR and IIR are computed. For the computation
of the DIR, a frequency is considered in a range ω ∈ Iω = [0, 500]Hz, which
allows for a time resolution of ∆t = 1ms (recall Nyquist-Shannon theorem). The
frequency domain is discretized using a step size ∆ω = 10mHz, which allows for
a signal length Tfinal = 1/2∆ω = 100s). Recall that frequency is a parameter of
the parametric DIR. PGD algorithm converged after computing n = 15 modes.
Fig. 3, Fig. 4 and Fig.5 show the space, frequency and Young modulus modes
of the DIR, respectively. For the computation of the parametric IIR, a training
set of ntrain = 10 forces covering frequencies in a range of [1, 25]Hz has been
considered. The PGD algorithm converged in this case after n̄ = 80 modes.

In order to validate the ability of the parametric IIR to recover the dynamic
forces, we generate a set of synthetic displacement measures at node P . To
this end, we consider three test forces with low, medium and high frequency
spectrum, respectively. These forces were generated by fitting a cubic spline on
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randomly drawn points. Therefore, none of this forces was explicitly contained
in the training set used for computing the parametric IIR. The three test forces
are shown in the leftmost column in Fig. 6. Notice that a shorter time scale has
been chosen in these figures in order to distinguish high-frequency oscillations.
The frequency spectrum of each test force is shown in the center column in Fig.
6. Then, structure displacements under the action of each test force can be
computed using the parametric DIR. These are shown in the rightmost column
in Fig. 6. It is worth to remark that these displacements are parametric,
i.e. valid for all E ∈ IE . However, in this numerical experiment we choose
E = 100Pa, which only required a simple particularization of the parametric
DIR. For clarity in the graphic representation, only displacements at measure
node P are depicted.

Now, from the only knowledge of displacements measured at node P , we
want to recover the dynamic forces (leftmost column in Fig. 6). To this end,
we use the IIR previously computed, i.e. we apply Eq. (11) at node j ≡ P :

prec,i(t) =

∫ t

0

uP,i(t− τ) gP (τ) dτ, i = 1, 2, or 3,

where prec,i(t) are the recovered test forces, uP,i(t) are displacements measured
at node P and gP (t) is the inverse impulse response at node P . Observe that this
equation only requires knowledge on the past signal, and therefore it respects
causality. Furthermore, the computation to be made is so simple that real-time
performance can be achieved effortlessly. Fig. 7 compares the three test forces
that were recovered by the algorithm against the reference, showing a good
matching. Relative errors, computed as in Eq. (32), were were ε1 = 3.510−6,
ε2 = 6.310−7, ε3 = 8.110−7.

εi =
‖prec,i(t)− pref(t)‖

‖pref(t)‖
. (32)

5 Conclusions
In this paper, a methodology for real-time monitoring of both displacements
and forces of linear time-invariant structures has been presented. Parametric
solutions have been proven very useful in this context, as they have made pos-
sible: i) an enhanced version of the harmonic analysis; and ii) a comprehensive
account for the system’s variability via the solution’s parametric nature. The
PGD method was used to compute the parametric solutions with an efficient
separated-variables representation, showing good computational performances
in terms of both memory and execution time. Finally, we have proposed a
strategy to compute the parametric solution of the inverse problem from the
parametric solution of the direct problem. This approach, which is specifically
designed for a parametric framework, makes use of synthetic samples generated
from the solution of the direct problem. Most importantly, we have shown that
the parametric domain does not need to be sampled to create the set of syn-
thetic samples, which would in practice be unfeasible when several parameters
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are considered. Hence, only the frequency domain needs to be sampled, making
the computation of the parametric inverse solution very efficient.

A Derivation of the update for PGD factors
In this section we give a detailed derivation of the equations for updating the
PGD factors, as a part of the alternating directions algorithm presented in
Section 3.2.2.

A.1 Updating the space factor X̄

Both W̄ and Ē are assumed known from previous iterations. The test function
reduces to δg?j = X̄?

j W̄ Ē . Then, the left-hand side of Eq. (25) becomes:

A(δgj , δg
?
j ) =

n∑
i,k=1

αik
XX̄

?
jXijXkjX̄j ≡ αj

XX̄
?
j X̄j ,

R(δgj , δg
?
j ) = βXX̄

?
j X̄j ,

(33)

where we have introduced the coefficients αik
X and βX defined below in Eq.

(36). Coefficient αj
X results from the contraction of the summations in Eq.

(33). Likewise, the right-hand side of Eq. (25) becomes:

L(δg?j ) =

n∑
i=1

γiXX̄
?
jXij ≡ γjXX̄

?
j ,

A(gn̄−1
j , δg?j ) =

n∑
i,k=1

n̄−1∑
l=1

αikl
X X̄?

jXijXkjX̄lj ≡ ηjXX̄
?
j ,

(34)

where X̄lj is the j-th component X̄l, which is the l-th mode, 1 ≤ l ≤ n̄ − 1,
of gn̄−1(t, E), already known at this point of the computation; see Eq. (24).
Coefficients γiX and αikl

X are defined in Eq. (36). Coefficients γjX and ηjX result
from the contraction of the summations in Eq. (34).

Considering Eq. (33) and Eq. (34) altogether, we arrive to:

αj
XX̄j + λβXX̄j = γjX − η

j
X . (35)

The following coefficient definitions have been used in the above equations:

αik
X =

∫
IE

ĒEiEkĒ dE
∫
It

W̄ ∗ Lik ∗ W̄ dt,

βX =

∫
IE

Ē Ē dE
∫
It

S(W̄ )S(W̄ ) dt,

γiX =

∫
IE

ĒEi dE
∫
It

W̄ ∗ qi dt,

αikl
X =

∫
IE

ĒEiEkĒl dE
∫
It

W̄ ∗ Lik ∗ W̄l dt.

(36)
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A.2 Updating the time factor W̄

Both X̄ and Ē are assumed known from previous iterations. The test function
reduces to δg?j = X̄jW̄

?Ē . Then, the left-hand side of Eq. (25) becomes:

A(δgj , δg
?
j ) =

n∑
i,k=1

αik
T

∫
It

W̄ ? ∗ Lik ∗ W̄dt,

R(δgj , δg
?
j ) = βT

∫
It

S(W̄ ?)S(W̄ )dt,

(37)

where we have introduced the coefficients αik
T and βT defined below in Eq. (39).

Likewise, the right-hand side of Eq. (25) becomes:

L(δg?j ) =

n∑
i=1

γiT

∫
It

W̄ ?qidt,

A(gn̄−1
j , δg?j ) =

n∑
i,k=1

n̄−1∑
l=1

αikl
T

∫
It

W̄ ? ∗ Lik ∗ W̄ldt,

(38)

where W̄l is the l-th time-domain factor, 1 ≤ l ≤ n̄ − 1, of gn̄−1(t, E), already
known at this point of the computation; see Eq. (24). Coefficients γiT and αikl

T

are defined in Eq. (39).
The following coefficient definitions have been used in the above equations:

αik
T =

N∑
j=1

X̄jXijXkjX̄j

∫
IE

ĒEiEkĒ dE,

βT =

N∑
j=1

X̄jX̄j

∫
IE

Ē Ē dE,

γiX =

N∑
j=1

X̄jXij

∫
IE

ĒEi dE,

αikl
X =

N∑
j=1

X̄jXijXkjX̄lj

∫
IE

ĒEiEkĒl dE.

(39)

Finally, after discretization, the following definitions have been used in Eq.
(29) (recall Eq. (23)):

LT =

n∑
i,k=1

αik
T Lik ≡

n∑
i,k=1

αik
T

ntrain∑
`=1

ΥT
i`Υk`

γT =

n∑
i=1

γiTqi ≡
n∑

i=1

γiT

ntrain∑
`=1

ΥT
i`p`

ηT =

n∑
i,k=1

n̄−1∑
l=1

αikl
T LikW̄l ≡

n∑
i,k=1

n̄−1∑
l=1

αikl
T

ntrain∑
`=1

ΥT
i`Υk`.W̄l,

(40)
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where we have denoted by Υi` (resp. Υk`) the discrete convolution operator
associated to Υi`(t) (resp. Υk`(t)).

A.3 Updating the parameter factor Ē
Both X̄ and W̄ are assumed known from previous iterations. The test function
reduces to δg?j = X̄jW̄ Ē?. Then, the left-hand side of Eq. (25) becomes:

A(δgj , δg
?
j ) =

n∑
i,k=1

αik
E

∫
IE

Ē?EiEkĒdE,

R(δgj , δg
?
j ) = βE

∫
IE

Ē?ĒdE,
(41)

where we have introduced the coefficients αik
E and βE defined below in Eq. (45).

Likewise, the right-hand side of Eq. (25) becomes:

L(δg?j ) =

n∑
i=1

γiE

∫
IE

Ē?EidE,

A(gn̄−1
j , δg?j ) =

n∑
i,k=1

n̄−1∑
l=1

αikl
E

∫
IE

Ē?EiEkĒldE,
(42)

where Ēl is the l-th parameter factor, 1 ≤ l ≤ n̄ − 1, of gn̄−1(t, E), already
known at this point of the computation; see Eq. (24). Coefficients γiE and αikl

E

are defined in Eq. (45).
Note that, very much like in Section A.1, the computation of Ē is algebraic,

i.e. for arbitrary Em ∈ IE , the solution Ēm ≡ Ē(Em) is uncoupled with respect
to all Ēk for k 6= m. Therefore, let us write both Eq. (41) and Eq. (42) into
their strong form:

n∑
i,k=1

αik
E EiEkĒ + λβE Ē =

n∑
i=1

γiEEi −
n∑

i,k=1

n̄−1∑
l=1

αikl
E EiEkĒl, (43)

which reduces to:

αE Ē + λβE Ē = γE − ηE , (44)

upon contraction of the summations, defining coefficients αE , βE , γE and ηE .
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The following coefficient definitions have been used in the above equations:

αik
E =

N∑
j=1

X̄jXijXkjX̄j

∫
It

W̄ ∗ Lik ∗ W̄ dt,

βE =

N∑
j=1

X̄jX̄j

∫
It

S(W̄ )S(W̄ ) dt,

γiE =

N∑
j=1

X̄jXij

∫
It

W̄ ∗ qi dt,

αikl
E =

N∑
j=1

X̄jXijXkjX̄lj

∫
It

W̄ ∗ Lik ∗ W̄l dt.

(45)
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OFFLINE PROCEDURE 
for Parametric IIR Computation

ONLINE PROCEDURE 
for Real-Time Force Reconstruction

1. Compute Parametric Transfer Function 
(PTF) 

Using PGD Method

2. Compute Parametric Direct Impulse 
Response (DIR) 

Apply the Inverse FFT on PTF

3. Generate Training Set

Forces 
Frequency Domain 

Randomization

Displacements 
Convolution of Forces 

with DIR

4. Compute Parametric Inverse Impulse 
Response (IIR) 

Minimize Regularized Mean Square Error Using PGD

Input Data 
Measured displacements 
Parameter realization (*)

Reconstruction

Output Data 
Reconstructed Force Time History

Evaluate IIR 
For the Parameter Realization —Look-up Table 

Operations Only

Compute Convolution 
IIR with Measured Displacements

(*) Accounts for structural alterations or uncertainties. Depending on the application, it can be measured, assumed or simply 
guessed, as a part of an inverse identification algorithm for instance.

Figure 1: General picture of the method.
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Figure 2: Geometry and mesh of the numerical test case: a 2D plate with of
size 1× 1m and circular hole in the middle of radius 0.5m. Measure node P is
marked in red.
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Figure 3: First four space modes of the parametric direct impulse response.
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Figure 4: First four frequency modes of the parametric direct impulse response.
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Figure 5: First four Young’s modulus modes of the parametric direct impulse
response.
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Figure 6: Test forces and synthetic displacements at measure node P for val-
idation. Left column: three test forces with low, medium and high frequency
content. Center column: frequency spectra of the test forces. Right column:
displacements at point P under the action of the test forces.
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Figure 7: Comparison of the recovered dynamic forces against the reference
shows good agreement.
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