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Abstract: This paper presents a multi-objective energy management system (EMS) to manage the
power dispatch of a hybrid power plant (HPP), consisting of a grid-connected wind farm and a
Li-ION battery storage system on the island of Guadeloupe’s electrical grid. Via a controller based
on Model Predictive Control (MPC), the EMS solves the problem of optimization by considering
the production forecast data and managing several operation rules, which ensures meet energy
targets considered for a sustainable power dispatching plan. The proposed strategy is tested in a
PowerFactory/MATLAB co-simulation environment.

Keywords: energy management system; day-ahead power dispatching plan; optimal model predic-
tive control; Li-ION battery storage system; wind turbine system; renewable energies

1. Introduction

Heavy dependence on imported energy in islands is one of the most important issues
for these territories. Currently, several problems are mostly related to imported fossil
fuel energy dependence, freshwater availability and waste management [1]. This is why
renewable energy resources have achieved high levels of penetration in island electricity
production over recent years.

Renewable wind energy is one of the most used sources on islands. The variable
nature and uncertainty of wind energy poses substantial challenges for the power systems
operations, in particular for weak or isolated grids. For these reasons, the grid code related
to wind power plants specifies the requirement for ensuring a controlled power output and
the supply of ancillary services. It is necessary to reduce frequency fluctuations caused by
the wind’s random behavior, which makes the scheduling more difficult while increasing
the system’s operational costs [2,3].

Consequently, the installation of wind turbines (WT) is growing worldwide on a
large-scale. Wind generation systems have intermittent power output due to the variability
of wind speed. Thereby, the penalties related to the infringement of day-ahead bids become
inevitable. These issues are amplified in the context of island grids, like Guadeloupe,
and should be managed to enhance grid efficiency without affecting stability and energy
quality [4,5].

A way of dealing with these problems consists of setting-up hybrid power plants
(HPPs), which combine wind turbines with production or storage technologies. In order
to manage the energy to mitigate the wind generated power fluctuations, HPPs can con-
sider renewable sources coupled with conventional/renewable power production, e.g.,
wind-diesel hybrid systems [6,7], wind-thermal [8,9], wind-hydro [10,11], and wind-solar
systems [12,13]. It is also possible to combine wind production with storage systems, like
batteries, fuel cells, and/or hydrogen storage. In this way, it becomes possible to instanta-
neously inject power into the grid and back up the conventional generation systems [14–16].
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Not only can hybrid power plants can accommodate several types of production and stor-
age resources, but their integration into conventional power grids can also bring reliability
and efficiency in order to supply the demand.

1.1. Literature Review

In order to achieve smooth HPP wind-storage operations, it is necessary to establish
an optimal control operations. The energy storage units in a wind power-based hybrid
facility can be configured in an aggregated way serving the whole wind farm, or it can be
distributed so that there is a storage unit associated locally to each WT. These configurations
can be managed through an energy management system. The objective of an energy
management system (EMS) is to find the best compromise among the operation objectives
which optimizes the performance of the generation facility. In order to find the most
suitable management approach, several aspects must be considered. These include hybrid
system design and operational requirements, as well as the control and optimization
strategy.

Recent research has addressed EMS development for the power dispatch of grid-
connected microgrids, considering HPPs that integrate wind turbines and energy storage
systems in rural areas and island territories [2,17–19]. The objective here is to deal with
high power availability periods by storing the surplus of power and releasing stored energy
when there is a power shortage.

Relevant EMSs have been reported in the literature based on heuristic methods, which
present low computational costs and allow quick results. However, this is achieved by
optimum trading and accuracy for speed. For example, the control system makes possible
the joint scheduling of energy and reserves of conventional units and hybrid power stations
on the island of Crete (Greece) in a stochastic form [20]. In Reference [2], a multi-objective
energy management system based on the fuzzy theory for the standalone microgrid on
the island of Flinders is presented. Another example is presented in Reference [21], where
a simulation tool for operating of a hybrid photovoltaic/wind plant coupled with hydro-
pumping storage was built on the island of Corsica’s electrical network. However, these
works do not consider forecasting algorithms for the production of renewable sources,
which is a key way to optimize the HPP operations and make it more realistic.

Other reported works are based on deterministic approaches, which take advantage
of the issue’s analytical properties, generating a sequence of points that converge with a
globally optimal solution, like Reference [17], who have studied the technical and economic
performance for a distributed electrical power system with micro hydro-power stations,
WTs, and solar photovoltaic on an island located off the west coast of Scotland. The
authors in Reference [18] have studied the effect of a large scale wind-battery plant in the
autonomous power system of Samos Island, in the Aegean Archipelago, by implementing
an optimal power flow analysis. However, these methods need to take into account
different criteria for improving the EMS, like, for example, predicting wind production and
the conditions for power dispatch operations.

Large scale HPPs brings great challenges with regards to transient voltage and fre-
quency stability in the power systems. More recently, different energy management strate-
gies based on supervisory control and data acquisition have been developed to ensure the
stable operating of the HPPs with different configurations [22–26]. The aim of these EMSs
ensures a suitable power dispatch while supplying ancillary services, like, for example,
frequency and voltage regulation.

The power dispatch of the wind/storage HPP is a problem without a priory knowl-
edge of future events in the environment. Indeed, the instant WT production and other
measurements in the hybrid plant are input information received at every calculation to
solve the optimization problem. This problem, therefore, requires reactive optimization.
More recently, Model Predictive Control (MPC) has received greater attention from the
energy management microgrids community. This control strategy has the ability to include
both forecasts and newly updated information to determine the system’s future trajectories,
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while efficiently handling different kinds of constraints [27]. The main advantages of
MPCs are the handling of constraints, as well as multi-variable and nonlinear models.
Furthermore, it integrates the disturbances and future variations in the references to the
optimization problem. Nonetheless, it is frequently combined with optimization methods,
such as quadratic programming [28,29] or Pareto solutions [30].

Some of these MPC algorithms have been used to achieve economic objectives. This is
the case of the authors in Reference [31], who propose a controller to operate at the pricing
level in order to fulfill the user’s needs while minimizing the power purchased from the
external grid. This proposal allows an optimal real-time power dispatch in a connected
microgrid, whereas considering the lifespan battery. This kind of strategy is applicable
to industrial or residential microgrids, as in Reference [32], where a dissipativity control
based distributed economic predictive model is proposed to allow microgrid users to
optimize their own benefits while ensuring the performance and stability of the residential
microgrid.

In Reference [15], an MPC scheme is proposed for the interlinking converter in a
hybrid AC/DC MicroGrid. The scheme allows the local power and voltage control and is
connected to a second control stage, responsible for maintaining the power balance under
varying generation and consumption conditions. In comparison with traditional linear
cascades, the strategy requires less tuning work. Often, this method is used to include the
Renewable Energy Sources (RES) production forecasts in the optimization problem, either
in terms of the expected generation or in terms of the primary source, (wind speed, solar
radiance, etc.) [14,27,33].

Despite all these research efforts, there are still a large number of challenges linked
to criteria, such as combining production sources, different storage technologies, effective
load management, profitability operations, etc. Depending on set functioning objectives,
the EMS aims to improve the system’s performance by maximizing the use of resources and
reducing the system’s operating costs, taking into account the global market, applications,
and different technical aspects [34].

1.2. Contribution

In this paper, a Multi-objective EMS that guarantees compliance with the day-ahead
power dispatching plan of a wind-storage HPP is developed. Such HPP consists of a
grid-connected wind farm and Li-ION battery storage system. Via a controller based on
MPC, several operation rules are managed, in order to solve the optimization problem
taking into consideration production forecasting data.

The main contributions of this paper can be briefly summarized as follows:

• A comprehensive island microgrid multi-objective energy management problem is
established, taking into account the day-ahead dispatch schedule commitment.

• The EMS proposed is able to manage the battery’s charge/discharge cycles and state-
of-charge (SoC) efficiently. This is possible due to the development of a Battery
Energy Storage System (BESS) model to find optimal solutions that bring the system’s
predicted output close to a trajectory of defined future power injections.

• Through a model predictive control strategy, the EMS proposed allows the BESS to be
optimized and, thereby, the power injection into the utility grid, while considering the
battery’s lifespan.

• An evaluation of the proposed Multi-objective EMS by analyzing and comparing the
simulation results from several study cases.

The EMS is tested in realistic scenarios via a PowerFactory/MATLAB co-simulation
environment while taking into account the island grid’s real operations. Contrary to the
paper by Reference [31], our strategy is not economic, but rather technical, which works
by evaluating the technical conditions to supply the power commitment while avoiding
economic penalties.

The organization of this paper is as follows. Section 2 presents a description of
the Grid-connected wind-storage hybrid power plant. Section 3 presents the problem’s
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formulation. Section 4 introduces the models and validation of the different components
which make up the wind-storage HPP. In Section 5, the multi-objective EMS based on the
MPC, together with the optimization strategy, is developed, and, finally, in Section 6, the
results are presented and discussed.

2. Island Grid-Connected Hybrid Power Plant

The archipelago of Guadeloupe is a French insular region and overseas department
located in the eastern Caribbean Sea. Guadeloupe has a land area of 1628 km2 and had an
estimated population of 449,089 in June 2018. The two main islands commonly referred to
as the main island, Basse-Terre (848 km2) and Grande-Terre (586.7 km2), are separated by a
narrow strait and are connected by bridges. The other three islands in the archipelago are
the Department’s Dependencies: Les Saintes, Marie-Galante, and La Désirade.

The Guadeloupe Archipelago is a Non-Interconnected Zone that must produce all the
electricity it consumes, where Électricité de France (EDF) is a public utility (production, single
buyer, transport, distribution, and marketing) [35]. For this, submarine cables connect each
of the islands to the loops of overhead lines covering Basse-Terre and Grande-Terre. The
installed capacity of Guadeloupe’s electrical grid is of 556.46 MW. The archipelago is a
territory almost totally dependent on thermal non-renewable sources (coal, diesel, and
combustion turbines), and 80% of the electricity consumed comes from these fossil fuels.

However, in recent years, Guadeloupe has adopted renewable energies. In 2017,
its electricity mix consisted of more than 20% of renewable energy. Thus, apart from
coal, diesel, and fuel, several renewable sources are used to produce electricity on the
island territory: solar (photovoltaic), geothermal, wind, hydroelectric, and biogas. For
this, different projects have been developed in order to size and install renewable power
plants in this territory, as shown in Figure 1 [36]. This paper proposes a study to assess and
validate the operating of a new hybrid wind/storage power plant at a particular point of
the Guadeloupe electric grid (Sainte-Rose).

0 10 20
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La Désirade

Grande-Terre

Basse-Terre

Diesel emergency 
generators
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Hydroelectric 10,5 MW
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Figure 1. Available power in Guadeloupe’s power grid by type of primary energy in 2018.

2.1. Guadeloupe’s Electrical Grid Model

Guadeloupe’s PowerFactory model of electrical system shown in Figure 2 was im-
plemented from the data presented in Reference [37]. The shaded area corresponds to
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the point of common coupling located within the Sainte-Rose node, where the HPP is
connected.

Guadeloupe’s electrical grid has a 63 kV high voltage transmission system, consisting
of two big loops of overhead lines. The first loop covering Basse-Terre is interconnected
through the Jarry Nord and Jarry Sud substations with the second Grande-Terre’s loop,
which is made up of 13 nodes that correspond to HTB/HTA (High Voltage B or HTB
is the electrical voltages range from 50,000 volts (50 kV) to 400,000 volts (400 kV). High
Voltage A or HTA (or Medium Voltage) can be between 1000 volts (1 kV) and 50,000 volts
(50 kV). HTB and HTA represent the voltage domains for electricity networks in France.)
substations, each comprising two 63/20 kV step down transformers connecting loads and,
in most cases, also reactive compensation stations. While an additional node corresponding
to the Jarry Nord generation site is considered, the generator sets located in the islands Les
Saintes, Marie-Galante, and La Désirade are not part of this grid model.
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Figure 2. Guadeloupe’s PowerFactory electric grid model.

The wind-BESS hybrid power plant is depicted Figure 3. The wind generation system
comprises four 2 MW wind turbines with their respective converters and transformers.
Meanwhile, the BESS consists of four storage units connected in parallel (1 MW/580 kWh
capacity by unit), with their respective converters and transformers.
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Figure 3. Hybrid power plant diagram: wind farm and battery storage.
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The hybrid power plant is connected through a point of common coupling located
within the Sainte-Rose node, as can be seen in the grid’s PowerFactory model in Figure 4.
As shown, the Sainte-Rose node comprises a 63 kV busbar connected to 63 kV/20 kV
transformers and two 20 kV busbars (Terminals 1 and 2), and, at the same time, it is
connected to the main busbars at the neighboring substations Bouillante and Baie-Mahault.
Terminal 1 relies on a local load and serves as a point of common coupling for the HPP.
Meanwhile, terminal 2 relies on a load and a static var system.

SVS

20 kV busbar1

SteRose

20 kV busbar 

2 SteRose

63 kV Sainte-Rose 

busbar

Load

SteRose1

PCC

SteRose trafo1

63 kV / 20 kV

Load

SteRose2

Cap. bank

SteRose2

SteRose trafo2

63 kV / 20 kV

Sainte-Rose – Bouillante, 63 kV

Sainte-Rose – Baie-Mahault, 63 kV

HPP

Figure 4. Sainte-Rose substation in Guadeloupe electrical grid.

According to the data presented in Reference [37], 53% of the load in Guadeloupe
can be considered static, representing mainly home appliances. For the sake of simplicity,
in the grid model implemented in this paper, all the loads were assumed to be static and
invariant with respect to the frequency and voltage changes.

3. Formulation of the Problem

This section provides the problem formulation for the HPP’s optimal operating, which
contains the objective function and technical and electrical constraints for the optimization
problem. Given the nature of the wind-storage HPP, and the complexity of the revenue
optimization problem dealt with, it seems appropriate to give priority to methods to find
optimal solutions combined with control strategies handling the forecasting aspects.

According to the HPP’s characteristics, the EMS proposed should ensure the contin-
uous power injection from the wind-storage HPP into the Sainte-Rose substation on the
island’s electricity grid, according to the commitment profile generated on the basis of the
wind forecast. Under those circumstances, the optimization problem consists of deciding
on how to use the battery energy storage system (i.e., which part of the production is used
to charge the BESS or how much power is to be discharged) as the WTs output instantly
varies, to transfer to the island grid according to a committed generation schedule.

In addition, the disrespecting the accepted injection region above and below the
commitment may lead to commitment failures (triggered by injection band overtakes
lasting 60 s) that are associated with economic penalties. The proposed strategy aims at
maximizing this profit and avoiding the occurrence of penalty conditions [38].

3.1. Power Dispatch Optimization

The aim of the Multi-objective EMS developed in this work is to ensure that the power
is supplied to the main grid in a robust way and respecting the operating rules, while
maximizing the plant’s profit. These operating rules are described below through objectives
and constraints which define the EMS:

3.1.1. Objectives

• Power injection band respect: a tolerance region (injection band) is established on the
basis of the injection schedule. This objective consists of minimizing the error differ-
ence between the power injected (PINJ) and scheduled (PSCHED), which is similar to
attracting PINJ towards the center of the tolerance region.
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• Favoring the BESS availability: this objective consists of seeking to reduce the occurrence
of BESS unavailable conditions, so, during strong wind periods, it can be used to store
power, and it can be discharged during weak wind periods.

3.1.2. Constraints

Several technical and electrical constraints should be considered for an optimal dis-
patch with respect to a day-ahead planning. These constraints include electrical and
operational constraints of the HPP’s different components:

• Maximal power injection: an upper bound is defined for PINJ to reduce the overtakes of
the band’s threshold.

• Rate of change of power injected: the speed of change of PINJ is limited in order to avoid
abrupt changes in the power transferred towards the grid.

• State-of-charge: the BESS must be operated in accordance with the recommendations
of the manufacturer in terms of depth-of-discharge and charging rates in order to
optimize its lifespan.

• BESS maximum charge/discharge current: Considering the manufacturer’s recommen-
dations, the BESS maximum continuous charge and discharge currents should be
respected.

In order to guarantee the reliability and stability of the microgrid, operating rules
corresponding to system objectives and constraints need to be established.

4. Mathematical Modeling of the HPP Subsystems

In this paper, a PowerFactory/MATLAB co-simulation methodology was carried out
in order to assess the impact of a wind-storage hybrid power plant, injecting power into
one of the HTA busbars of the Sainte-Rose substation. Both the hybrid power plant and a
basic EMS are considered being part of the system implemented in PowerFactory. The grid
model is then validated through simulation by comparison with respect to some literature
available data.

4.1. Wind Generation System Modeling and Validation

The wind generation system’s single line diagram described by PowerFactory software
is depicted in Figure 5. As shown, this system consists of four 2 MW WTs based on Doubly
Fed Induction Generators (DFIG) with their respective rotor-side converters (RSC) and
transformers.
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Figure 5. Wind generation system modeled via PowerFactory.
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The DFIG (electrical component) is modeled through the Pulse-Width Modulation
(PWM) converter, which allows for flexible and fast control of the machine by modifying
the magnitude and phase of the output voltage on the rotor-side [39,40].

The power curve of the wind turbine modeled is displayed in Figure 6. This curve
presents the steady-state electrical power obtained from simulation for wind speeds ranging
from start-up wind speed (3 m/s) up to shut-down speed (29 m/s). In this operating mode,
in order to get a constant power output above nominal speed, the pitch angle was adjusted
accordingly to control the stall effect. On the other hand, between start-up speed and
nominal speed (12 m/s), the power output is maximized.

3 6 9 12 15 18 21 24 27 30

Wind speed [m/s]

0

0.5

1

1.5

2

2.5

P
ow

er
 [M

W
]

power optimization power limitation

Static power curve

Figure 6. Doubly Fed Induction Generators (DFIG) wind turbine’s characteristic curve.

4.2. Li-ION Battery Modeling and Validation

The storage system is the main degree of freedom of the HPP management problem
dealt with in the present work. Two models of the BESS are implemented using the
Tremblay model equations [41]. The first is a nonlinear plant model, and the second, a
linear state-space model model for control. The modeling is inspired by the commercial
storage solution Intensium Max 20M (IM20M) of Saft. While the BESS comprises four
parallel IM20M units, the validation focuses on a single IM20M battery.

The Tremblay model describes the output voltage of a cell as a function of the capacity
in ampere hours (Ah) that have been obtained from it [41]. According to this model, the
battery cell is represented by a voltage source with variable magnitude in series with a
resistance.

Figure 7 shows the battery discharge curves at constant current obtained by the
proposed model, compared with the SimPowerSystems battery model available on the
MATLAB/Simulink [41,42]. For that, the discharge current considered was Inom/38 (A),
whereas the minimum voltage for the battery was 609 (V) [38]. The model presents a linear
section that indicates the charge that can be extracted from the battery before the voltage
drop below its nominal value (Vnom). Within this region, the state-of-charge lies between
20% and 80% of the battery’s nominal capacity.
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Figure 7. Battery discharge curves: red line, SimPowerSystems battery, and implemented nonlinear
Treblay model in gray.

Figure 8 represents the discharge model. An identification method for fitting the re-
sulting discharge curve to the curve in the battery manufacturer’s data-sheet was presented
by the authors in Reference [43]. The method was used in Reference [44] to obtain the
parameter values of the Saft’s VL41M cell, single unit of the IM20M, by comparison with
discharge curve in the battery manufacturer’s data-sheet.
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Figure 8. Discharge battery model.

The method applies optimization techniques to find the values of the X vector, subject
to Xmin and Xmax as follows:

X = [E0 Ā B̄ R K]

Xmin =
[

Emin
0 Āmin B̄min Rmin Kmin

]
Xmax = [Emax

0 Āmax B̄max Rmax Kmax]

, (1)

where E0 is the battery constant voltage (V), R represents the internal resistance of the
battery (Ω), Ā is the exponential zone amplitude (V), B̄ is the exponential zone time
constant inverse (Ah−1), and K represents the polarization resistances constant. These
obtained values allow the following cost function to be minimized:

fobj(X) =

√√√√i=n

∑
i=1

Q=Qnom

∑
Q=0

(Vmes(Q, Ii)−V(Q, Ii))2, (2)

where Ii = I1, ..., In represents the discharge currents, which allows that the quadratic error
among the manufacturer’s voltage Vmes and the model estimations V to be minimized.
Table 1 lists the parameters identified for the VL41M battery.



Energies 2021, 1, 0 10 of 34

Table 1. Cell parameters values.

Symbol Description Unit Value

Vf ull Fully charged voltage V 3.95
Vnom Nominal voltage V 3.6
Vexp Exponential voltage V 3.9
Qnom Nominal capacity Ah 39
Qmax Maximum cell capacity Ah 41
Qexp Exponential capacity Ah 1

I Nominal discharge current A 13.67
Vchlim Cell charge voltage limit V 4
Vdchlim Cell cut-off voltage V 2.7

The IM20M comprises 20 parallel branches and 174 series of the Saft’s VL41M cell
(3.6 V and 41 Ah) and allows a nominal power of 1 MW for a capacity of 580 kWh.
The Tremblay parameters values of the VL41M cell used in the implementation of the
nonlinear model of the battery stack, are: E0 = 3.24 V, R = 0.002Ω, K = 1.04× 10−4 V/Ah,
Ā = 0.75 V, and B̄ = 0.034 Ah(−1) [44]. For validation, the model response to a current
input signal is compared to the response of the battery block of Simulink, also configured to
represent the IM20M (Figure 9a). Table 1 presents the values used to configure the Simulink
battery. An initial state-of-charge of 50% is chosen for the test, and the battery response
times are set at 1.8 s, according to the battery’s specification. Figure 9b–d show the signals
obtained for the states it, i∗, and SoC.
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Figure 9. Validation of MATLAB implementation: (a) input current. In (b)–(d) the signals obtained
for it, i∗, and SoC are compared.

In turn, Figure 10 depicts the relative errors as percentages obtained when the imple-
mented model is compared to the Simulink battery block.
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Figure 10. Percentage errors of: (a) it, (b)–(c) comparison of i∗ and SoC signals obtained.

The errors in the model for the signals it and SoC are close to zero (Figure 10a,c).
Meanwhile, Figure 10b reveals an error caused by a delay between the i∗ signals obtained.
Error peaks take place when the input current changes. However, for the control objectives
of the EMS, these errors would be compensated by the controller as will be seen in the next
section.

In an additional test, the initial state-of-charge was set at 100%, and the minimum
and maximum SoC limits, at 0 and 100%. Figure 11a presents the discharge of the 1
MW/580 kWh storage system obtained from the nonlinear model in MATLAB. Further-
more, the power reference was defined to withdraw 580 kWh from the battery during 1
h. As can be seen in Figure 11b, the power followed the reference until the SoC reached
0% after 52 min. The validation of a standalone storage unit allows confirming that this
storage model is suitable for implementation in the hybrid plant model in the PowerFactory
environment.

Figure 11. Intensium Max 20M (IM20M) storage system discharge curve.

PowerFactory Model Validation

The PowerFactory BESS model (i.e., the controlled system model) is implemented as
a standalone storage unit containing a DPL (DIgSILENT Programming Language) script
with the Tremblay model equations and parameters to represent the IM20M battery.

To validate it, a power reference profile of 1-h duration is imposed on both the Simulink
battery block and PowerFactory nonlinear BESS model.

The validation test results are presented in Figure 12. Figure 12a shows the reference
power profile is followed by the battery power signals obtained from the two battery
models. The resulting BESS current, state-of-charge (SoC), and integral current (it) signals
are presented in Figure 12b–d. The state-of-charge limits are set at 20% and 80%. A
sampling time of 1 s was used in the simulations. As can be seen, the power signals are
superposed, indicating the model proposed can be used in the control strategy.
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Figure 12. Battery Energy Storage System (BESS) model validation: (a) power reference profile and
active power obtained, (b) battery current, (c) SoC, (d) it.

Figure 13 presents the BESS implemented in PowerFactory. It comprises 4 Li-ION
IM20M storage units, as well as their respective converters, transformers, busbars, and
underground lines. This model will be coupled with the wind generation system to
complete the HPP representation.
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Figure 13. Battery energy storage system modeled via PowerFactory.

4.3. Storage System model for the MPC Strategy

A linear model of the storage system is required by the MPC strategy to generate
optimal control actions. The proposed model should meet two conditions: to capture the
dominant and important dynamics of the system, and also to remain simple enough to
allow the optimization problem to be solved [45]. With this aim, a discrete-time state-space
representation of the storage system model is given by the next equations set:

it(k + 1) = it(k) +4tiBESS(k)

i∗(k + 1) = (1− α)i∗(k) + α iBESS(k) (3)

SoC(k + 1) = 100
(

1− it(k)
Q

)
,

where iBESS is the battery current (model input), α is a mitigating factor, and ∆t represents
the simulation step time. In addition, k + 1 refers to the timestep one sample interval
after the current timestep k. Equation (3) describes the BESS model used to represent the
dynamic of the storage system extracted capacity it, filtered current i∗, and state-of-charge
SoC. The model is valid for SoC values within 20% and 80%. The model’s output vector
y(k) contains the variables to optimize:

y(k) = [i∗(k) Soc(k)]T . (4)

The HPP linear model for control is based on the BESS model and considers the power
of the Wind Energy Conversion System (WECS) output (PWECS) added to the battery power
(PBESS), allowing the power injected into the grid (PINJ) to be obtained according to:

PINJ = PWECS + PBESS. (5)

Figure 14 shows the hybrid power plant model in which outputs are the predictions of
i∗, SoC, PBESS, and PINJ at the sampling rate k + 1. Under those circumstances, vBESS is the
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storage system voltage, considered a measurable variable and available at every calculation
step.
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Figure 14. System inputs and outputs.

The battery power can be computed from the measured voltage and the filtered
current as:

PBESS = vBESS · i∗, (6)

where PBESS is negative in case of discharge and positive in charge. The HPP linear model
for control is then validated via PowerFactory/MATLAB simulations.

In Figure 15, the signals corresponding to the state variables are presented, as well
as the battery power obtained in both cases. Figures 15a–c present the integral current,
the filtered current, and the state-of-charge, respectively. The integral current and state-
of-charge resulting from the linear model behave as those obtained from the nonlinear
modeling (relative errors smaller than 0.2% and 0.3%, respectively). While the filtered
current plot (Figure 15b) shows an error smaller than 10% during 97% of the time. Some
peaks are presented during the reference changes. In Figure 15d, the linear model storage
system’s active power was calculated as v(BESS) · i∗ according to Equation (6). The voltage
signals involved being the same, it can be observed that i∗ introduced a filter effect reducing
the oscillations in the estimation of the active power done through the linear model. Figure
16 presents the input and output signals for the controller based on the storage system
linear model.

Figure 15. Hybrid power plant (HPP) modeling: inputs and outputs.

As can be seen, the active power reference profile PBESSre f is obtained from the com-
mitment generation schedule PSCHED and the output power of the wind energy system
PWECS, as:

PBESSre f = PSCHED − PWECS, (7)
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where the signal PSCHED can be understood as the reference for PINJ , i.e., the power injected
into the main grid. Then, dividing PBESSre f by the battery measured voltage vBESS gives
the reference current signal iBESSre f , which is defined as the decision variable u.
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-
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model 
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Figure 16. BESS model control diagram.

5. MPC Control Strategy

Model Predictive Control (MPC), refers to a family of control methods which use
the controlled system model to obtain a control signal by minimizing an user-defined
objective function [45]. MPC allows the incorporation of constraints as part of the control
design requirements, enabling their systematic handling. Compared to classical linear
unconstrained methodologies, such as PID techniques, MPC has proven to produce much
better results as it allows the systems to be operated near their constraint boundaries [46].

MPC is an intuitive strategy which consists of planning over a finite time window
(called prediction window) the future control actions that would lead to the desired outcome.
For that, the control signals are calculated by optimizing a criterion to keep the process as
close as possible to the reference trajectory via a cost function [45].

In this study, the MPC strategy uses the current state information of the Li-ION BESS,
as well as future references of the control objectives, to determine the control actions
optimizing the power injected into the grid. An assumption done consists of considering
that the control inputs, received at the beginning of the prediction window, remain constant
over that time window.

5.1. Energy Management with Respect to a Day-Ahead Power Injection Planning

The energy management problem of ensuring the wind-BESS storage HPP supply
a grid service that consists of complying with a day-ahead power injection schedule is
dealt with in the present work. Model predictive control and quadratic programming
optimization are combined to step-wisely generate optimum solutions while considering
forecasts, instant power generation and measures of the current system state.

5.1.1. Operational Objectives

The aim of the EMS developed is to ensure that the power supplied to the grid by
the wind-storage HPP respects the operating rules while maximizing the plant’s profit.
Below are described the functioning objectives taken into consideration during the strategy
design are described:

• Forecasts and power injection band: the plant operation is based on 24 h of wind speed
forecasts for the period 0:00–23:59 h for day D+1 (i.e., the next day, when the actual
production is taking place). A scheduling algorithm represents the forecasted injection
in the form of a half-hourly stepped profile.
Such a profile is taken here as the day-ahead power injection schedule (PSCHED). The
injection band represented in Figure 17 is built from PSCHED and established taking
into consideration the fact that the energy storage system must be controlled so that
the 30-min duration scheduled injection steps can be met. During the first year of
operating the HPP, the BESS should allow the respect a tolerance region of 25% of the
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installed power PMAX, above and below the scheduled injection. The band will be
narrowed down to 20% the second year and to 15% from the third year.
In this paper, the distance between PSCHED and the bounds of the band is called
injection tolerance and is set at 25% of the installed capacity of the wind farm, PMAX ,
as required in the first year of the project.

• Favoring the BESS availability: A reference is defined at a 50% SoC. Seeking to keep
the stored power at a half of BESS capacity means finding the right trade-off between
charging or discharging the BESS, avoiding if possible the SoC boundaries.

• Plant revenues and penalty system: Plant revenues are determined via a penalty sys-
tem. Power injections with excursions of 60 consecutive seconds outside the limits
are penalized with non-payment of the power supplied to the grid for the next 10
min. The plant revenue can then be calculated considering the energy selling price
(SP in /c per kWh) as:

PR =
sim.time

∑
t=0

PINJ(t)× SP(t)× ∂(t), (8)

where

∂(t) =
{

0 when a penalty condition is active
1 in other cases

.

Problème d’optimisation : nouvelle stratégie

Confidentiel 90
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Figure 17. HPP power injection band.

5.1.2. Operational and Technical Constraints

• Maximal power injection: PINJ is constrained by a limit equal to the band upper bound-
ary. With this, when searching for optimal solutions, the algorithm will not consider
possible solutions that drive the power injection above the mentioned boundary. In
line with this, Pmax

INJ , the upper limit for the power transfer, is computed according to
the evolution of the commitment profile, as follows:

Pmax
INJ = PSCHED + tol · PMAX , (9)

with 25% tolerance, the term tol · PMAX gives 2MW. Conversely, the minimum injec-
tion occurs when the WTs are not generating power and the BESS is not delivering
power. To avoid penalties, rather than setting constraints on both the upper and lower
injection band limits, the constraint Pmax

INJ is placed on the band ceiling PINJ ≤ Pmax
INJ .

This way, instead of allowing injections greater than the upper limit, extra available
power can be used to charge the storage system. This constraint was defined through
the state variable i∗, which is a controlled output.

• Rate of change of power injected: according to the contractual specifications of the HPP
operation, the speed at which PINJ varies (in MW/s) must be limited so that: (1),
the time it takes to go from 0 to PMAX is in the range (30–5 min), and (2), the time
it takes to go from PMAX to 0 is in the range (1–10 min). However, one single range
of (1–5 min) is considered for both, positive and negative power injection variations.
Moreover, as the constrained variable is the controller model input, u = iBESS, the
limits are expressed in terms of current:
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(PSCHED + tol)/300
vBESS

[
W/s

V

]
Lower limit (10)

(PSCHED + tol)/60
vBESS

[
W/s

V

]
Upper limit,

where the use of the absolute value indicates that the equation is valid for both going
from PMAX to 0, and vice versa. As noted, the lower limit is associated with the larger
time in the range (5 min or 300 s), whereas the upper limit is related to the case where
the passing takes place in 1 min (60 s). The reason for this is a shorter passing time
implies a steeper slope, or a bigger rate of change limit. Making the limits for the rate
of change of u = iBESS, in inequality form, gives:

1
300
· (PSCHED + tol)

vBESS
≤ du

dt
≤ 1

60
· (PSCHED + tol)

vBESS
, (11)

which are constraints for upward and downward steps of dPINJ/dt. In other words,
these constraints limit the speed of change of PINJ to avoid abrupt changes in the
power transferred towards the grid.

• State-of-charge: the BESS must be operated with 60% depth-of-discharge maximal in
accordance with the manufacturer’s recommendation. In addition, the linear model is
valid if the SoC is within 20% and 80% Hence, the SoC is limited to the aforementioned
range.

• BESS maximum charge/discharge currents: Considering the sign convention defined
for BESS, the maximum continuous charge and discharge currents are, respectively,
3280 A and −6400 A.

The extra power obtained by forbidding power injection levels beyond Pmax
INJ is ren-

dered available for charging the BESS. The extra power obtained by avoiding injections
beyond the band ceiling can be used to prevent penalties due to the overshoot of the lower
boundary. In addition, placing a constraint on the band floor could make the controller
diverge in the case of injection levels below the lower boundary, so such limitations are
avoided. Table 2 recapitulates the constraints limits established.

Table 2. Limitations assigned to the constraints.

Parameter Description Unit Value

i∗max Filtered current upper bound A PSCHED+tol
vBESS

umin Control amplitude lower bound A −6400
umax Control amplitude upper bound A 3280

SoCmin State-of-charge upper limitation % 20
SoCmax State-of-charge lower limitation % 80

dumin

dt Control actions rate of change lower bound A/s − 1
300 ·

PSCHED+tol
vBESS

dumax

dt Control actions rate of change upper bound A/s 1
60 ·

PSCHED+tol
vBESS

5.2. Prediction and optimization strategy

The proposed control and optimization strategy generates a control signal ũ opti-
mizing stepwise the quadratic cost function described in Equation (12), over a prediction
horizon of size Np. To do that, it requires future references and current state measurements
of the BESS.

Γ(k) =
Np

∑
i=1

{
λ1‖PINJ − PINJre f ‖2 + λ2‖SoC− SoCre f ‖2 + (12)

Qu‖ũ‖2
}

.
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In Equation (12), λ1 and λ2 are the control objective weights. PINJre f and SoCre f are
the references established for the transfer of power to the power grid and for the SoC
evolution. Qu ∈ Rnu×nu is a symmetric positive definite matrix for weighting and adjusting
the control effort of the inputs, with nu the number of inputs. The control sequence ũ
consists of elements u(k + i− 1) with i ∈ {1, · · · , Np}:

ũ(k) =


u(k)

u(k + 1)
...

u(k + Np− 1)

, (13)

for a total of Np possible future control actions. Finally, Γ can be interpreted as the cost ob-
tained by the evaluation of the future control actions function ũ using the future references
PINJre f and SoCre f and the present system state x(k) within the time horizon [k, k + Np].

The cost function described in Equation (12) was derived based on MPC control law
while considering the control objectives. An appropriate optimization algorithm is now
required to reduce future errors based on such a quadratic function and in the presence of
linear constraints. For that, the parametric prediction approach presented in Reference [47]
is used. The approach is compatible with the quadratic programming solver provided by
MATLAB’s optimization toolbox (quadprog). This solver finds the minimum x for problems
specified by the following expression [48]:

minimize
1
2

xTHx + fTx (14)

subject to Aineqx ≤ bineq

Aeqx = beq

l ≤ x ≤ u,

where H and f are required, whereas the other parameters are optional. Aineq and Bineq
allow inequality constraints to be defined, whilst Aeq and Beq allow equality constraints to
be defined. In the strategy applied, the quadprog function is used with the input variables
H, f , Aineq, and Bineq.

H is calculated based on the system’s matrices (from the state-space model), and
the weights λ1, λ2, and Qu. f depends on the system, on the weights λ1 and λ2, on the
present state vector x(k), and on the future references PSCHED(k + i) and SOCre f (k + i),
i ∈ {1, · · · , Np}. Aineq and Bineq are matrices containing information on the trajectory’s
constraints. The first depends only on the system, whereas the latter, in the present state,
depends on the limits assigned to the constraints and on the system.

The cost function is convex, i.e., it has a global optimum, if the Hessian matrix H is
definite positive. The last term in Equation (12) that takes into consideration the control
effort, ensuring the positive definiteness of H.

To use MPC strategy with the quadprog solver, the prediction information given to the
optimizer must be defined by the matrices H, Aineq, Aeq and vectors f, bineq, beq. The idea is
feeding at every time step a prediction-based cost function while reducing computations
taking place online as much as possible. This procedure enables solutions to be obtained at
every instant. Figure 18 shows a closed-loop, including a model predictive control with
quadratic programming (MPC/QP) composed of prediction and optimization stages used
to control the hybrid plant.
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Figure 18. Model predictive control with quadratic programming (MPC/QP) strategy structure.

At this stage, the optimization subroutine must receive at every time slot the input (H, f)
with the prediction information. Here, H is considered constant, whereas value f is updated
at every calculation step. Future references in Figure 18 and current state measurements
appear in the controller input. Furthermore, the first element from the control action optimal
sequence is sent to the BESS to indirectly control the power transferred to the grid PINJ .

5.3. Economic Optimization of the HPP Operation with Respect to a 24-H Commitment Profile

The aim of the proposed algorithm is to maximize the plant’s revenues by minimizing
commitment failures. As more transferred energy means an increased plant turnover, the
algorithm settings allowing to act on the amount of power injected into the main grid need
to be adjusted. Namely, two parameters can be used to optimize the HPP operation.

• Weights of the optimization objectives: Settings that can be modified to influence the
power injection are the relative weights of the optimization objectives and the com-
mitment PSCHED, through the addition of a vertical offset, as represented in Figure 19.
Such an offset that can be positive or negative.

• Other strategies may focus on maximizing of the energy stored in ESS or on keeping
the control actions to a minimum, while the commitment failures are minimized.

Unconstrained strategy

𝑆𝑜𝐶𝑚𝑖𝑛

𝑷𝑆𝐶𝐻𝐸𝐷

lower limit

upper limit
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+𝑜𝑓𝑓𝑠𝑒𝑡

𝑷𝑆𝐶𝐻𝐸𝐷
−𝑜𝑓𝑓𝑠𝑒𝑡

Figure 19. The power injection set-point.

5.4. Energy Management System KPIs

In order to evaluate the proposed Day-Ahead Energy Management System, several
Key Performance Indicators (KPIs) have been established for monitoring the good wind-
storage HPP performance. In projects related to smart grid development in isolated energy
systems, this evaluation allows a quantitative assessment, by adopting representative
KPIs, providing the relevant stakeholders with a useful comparison between the proposed
solutions [49].

The KPIs chosen in this work are not only performance indicators assessing the char-
acteristics of the technology solution proposed but also to identify the margins available,
towards optimizing the smart and efficient operating of a grid in a cost-effective way. Here,
the functioning goals and restrictions of the wind-storage HPP were needed for the KPIs’
definition.

1. Commitment Failure (CF %): The optimization problem consists of deciding on how the
storage system is used (i.e., which part of the production is used to charge the BESS
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or how much power is to be discharged) as the wind turbines output instantly varies,
to inject power into the island grid respecting a committed generation schedule. Then, the
commitment profile is generated based on day-ahead forecast data. In addition, the
disrespecting of the accepted injection region above and below the commitment may
lead to commitment failures (triggered by injection band overtakes lasting 60 s) that are
associated with economic penalties. Then, the commitment failures are calculated as
the percentage of the time during which the penalty condition was active, or:

CF% = 100
Number o f minutes with penalty triggered

Total test time in minutes
. (15)

2. Curtailment Power (Pcurt%): In some cases, losses can be presented due to a power
overproduction by the wind turbines while the BESS is fully charged. This KPI
allows these losses to be monitored and the effectiveness of the EMS proposed to
be tested, which handles the way in which battery’s cycles respect the day-ahead
commitment at the same time as minimizing these losses. To obtain this KPI, whenever
PWECS > PSCHED + tol, the lost power due to curtailment is calculated as:

(i f PWECS > band ceiling) : Pcurt = PWECS − (PSCHED + tol). (16)

By considering the dissipated power, Equation (5) could be rewritten as:

PINJ + Pcurt = PWECS + PBESS, (17)

where the curtailed power is considered lost power. Then, the percentage of the
power produced that was curtailed is obtained from:

Pcurt% = 100
Pcurt

PWECS
. (18)

3. Not Supplied Power:
Whenever a commitment failure has been triggered, the power not billed is calculated as:

(i f CF = ON) : Pnot billed = PWECS + PBESS. (19)

This means that the total remunerated injection is:

PINJ = PWECS + PBESS − Pcurt − Pnot billed. (20)

The energy injected (EINJ in MWh) is computed from the injected power by consider-
ing the time. Finally, the non-remunerated production (due to commitment failures)
as a percentage is obtained by:

Pnot billed% = 100
Pnot billed
PWECS

. (21)

4. Counting Battery Cycles: the lifetime of a battery is influenced by several factors,
including the number of charge-discharge cycles. For this reason, correctly estimating
battery deterioration is needed to establish an adequate operating region to maximize
their lifetime, as well as to obtain the highest returns on investment. Thus, in order to
keep track of the storage system’s use, partial charging and discharging cycles are
considered as follows:

chg = chg +4SoC, i f 4SoC > 0
dchg = dchg +4SoC, i f 4SoC < 0

, (22)

where chg and dchg are percentages (%) obtained from adding all the positive and
negative changes in the SoC, respectively. Those changes (4SoC) are given by:

4SoC(k) = SoC(k)− SoC(k− 1). (23)
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Then, the storage system cycles (at 60% DoD) are computed as:

BESScycles = BESScycles + (chg + dchg)/120, (24)

meaning that, when each chg and dchg is equal to 60%, BESScycles are incremented
by one cycle. The method used to count the cycles here is based on the approach
introduced in Reference [50].

5.5. Rule-Based Strategy Operation

The rule-based that was taken as a benchmarking algorithm was taken from the
Insulgrid project. The idea of that rule-based algorithm was to obtain simulations that
allowed project planners to better understand the design of the studied HPP. Later on,
it became necessary to replace this first management method with a more sophisticated
management approach due to the complexity of the system. After describing the algorithm,
in the results section the management methods are used to determine the BESS control
actions under several case scenarios.

The rule-based strategy operation is described next: for productions exceeding the
band ceiling (PWECS > PSCHED + tol), the target injection is the upper value of the band
(PSCHED + tol), and the difference is stored in the BESS. If, due to the storage system
limits, a part of the power oversupply cannot be stored, this excess production by wind
turbines is considered curtailed. On the contrary, if the product is below the band floor
(PWECS < PSCHED − tol), the target injection is the lower value of the band (PSCHED − tol),
and the BESS is discharged. Figure 20 shows the different cases considered by the strategy
with respect to the current production PWECS.

𝑃𝑊𝐸𝐶𝑆

If 𝑃𝑊𝐸𝐶𝑆 is above the band, charge the BESS with:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= (𝑃𝑆𝐶𝐻𝐸𝐷+𝑡𝑜𝑙) − 𝑃𝑊𝐸𝐶𝑆

If 𝑃𝑊𝐸𝐶𝑆 is bellow the band, discharge the BESS with:
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𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= 𝑃𝑆𝐶𝐻𝐸𝐷−𝑃𝑊𝐸𝐶𝑆 (charge)

Else if 𝑃𝑊𝐸𝐶𝑆 = 𝑃𝑆𝐶𝐻𝐸𝐷:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓 = 0

𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷

𝑃𝑊𝐸𝐶𝑆

Charge with:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= 𝑃𝑊𝐸𝐶𝑆 − (𝑃𝑆𝐶𝐻𝐸𝐷+𝑡𝑜𝑙)

Discharge with:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= 𝑃𝑊𝐸𝐶𝑆 −(𝑃𝑆𝐶𝐻𝐸𝐷 −𝑡𝑜𝑙)

If 𝑃𝑊𝐸𝐶𝑆> 𝑃𝑆𝐶𝐻𝐸𝐷 and 𝑆𝑜𝐶 < 60% :
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓=𝑃𝑊𝐸𝐶𝑆 − 𝑃𝑆𝐶𝐻𝐸𝐷 (charge)

𝑃𝑊𝐸𝐶𝑆 < 𝑃𝑆𝐶𝐻𝐸𝐷 or 𝑃𝑊𝐸𝐶𝑆 = 𝑃𝑆𝐶𝐻𝐸𝐷:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓 = 0 (no BESS usage)

𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷

Tapez une équation ici.

𝑃𝑏 = 𝑃𝑤 − 𝑃𝑔

Figure 20. Simple rule-based management algorithm.

Commitment failures are triggered in the same way as in the case of the optimal
management strategy, namely when the power transferred to the grid is outside of the
tolerated region for 1 min. As for the case when PWECS is within the tolerance band, two
possibilities are considered:

• If PSCHED < PWECS < PSCHED + tol and SoC < 60%, the targeted injection is the
commitment (PSCHED), and the power excess is stored.

• If PSCHED − tol < PWECS < PSCHED + tol) but SoC ≥ 60%, the ESS is not charged or
discharged.

6. Results

Electrical networks are subjected to production and load variations, depending on the
time of year (season) and even the time of day. It is, therefore, necessary to know production
and consumption amounts at all times to ensure stability and balance. Especially on island
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networks, it is important to manage in the best and most efficient way the suitable quantity
of renewable energy to be injected, in order to meet ongoing load electricity needs.

In the event of non-compliance with these production commitments, the operator of
the HPP is liable to financial penalties which will be negotiated with the manager of the
distribution and/or electrical transport network. These penalties could include:

• Electricity tariff is decreased for a certain time (before and/or after the energy supply
error).

• No purchase of electricity for a certain time (before and/or after the energy supply error).
• Obligation to disconnect the HPP after a certain number of errors noted.
• Re-invoicing by the distribution network manager and/or transport of the costs of

mobilizing other means of production to compensate for the lack of energy supply
compared to the forecast.

To avoid these penalties, several scenarios were analyzed to establish the best func-
tioning conditions by tuning the optimization parameters. With this purpose, the control
strategy developed is now applied to manage the hybrid plant during a 28-day period.

During validation tests of the strategy, it was found that the technique produces better
results with smaller prediction window sizes (Np). Even if MPC performance is usually
better as the horizon size increases, the assumption that the instant production PWECS(k)
remains constant during the prediction window becomes less truthful as (Np) increases.
As the penalty system punishes excursions outside the injection band lasting 60 s, it is best
to choose an (Np) smaller than 60. Considering all the above, the prediction window was
fixed at 10 s. Table 3 displays the algorithm parameters values to be used in these tests. As
can be seen, the strategy combines a choice of the relative weights prioritizing the objective
of reducing the tracking error instead of the power injection objective over the tracking of
the SoC error.

Table 3. Optimization parameters values.

Parameter Description Unit Value

λ1 Weight of objective related to PINJ - 0, 50, 100
λ2 Weight of objective related to SoC - 0, 50, 100
Qu Weighting of the inputs control effort - 1

offset Vertical displacement of PSCHED MW 0
SoCre f SoC set-point level % 80

Np Optimization window length - 10

To do so, the interaction between the hybrid power plant and the Guadeloupean
grid, as well as the control/optimization strategies, are presented in co-simulation in the
PowerFactory/MATLAB environment (Figure 21). As can be seen, PowerFactory inserts
the key signals that are handled by the DigSilent (DSL) control structure into a common
workspace that can be accessed by MATLAB. This way, the simulation takes place in the
PowerFactory environment while enabling the use of the different MATLAB functions and
toolboxes.



Energies 2021, 1, 0 23 of 34

DSL modelNetwork model

PowerFactory

Network model

PowerFactory

M-File

Matlab

function [t,x,y]= Control_MPC_QP

…

y=[u]

Matlab

DSL model

inputs

outputs

inputs

Ctrl. action

References

M-File

function [t,x,y]=ctrlfun

global par1 ref1 u 

x=[x1;x2;x3];

…

y=[u ref1];

DSL modelNetwork model

PowerFactory Matlab

M-file

-Measurements

-Parameters

-States

-Ctrl. actions

-References

M-File

function [t,x,y]=fun

global par1 ref1 u 

x=[x1;x2;x3];

…

y=[u ref1];

M-file

Measurements

Parameters

States

Figure 21. PowerFactory/MATLAB co-simulation scheme.

The field wind speed and production data to be used in the simulation tests are shown
in Figure 22. Wind speed data (Figure 22a) were generated by a wind farm operator and it
was collected every minute using a measurement tower in Sainte Rose, Guadeloupe. The
power production data shown in Figure 22b were obtained using the power curve of a
2 MW Gamesa G90 wind turbine. According to the average of both the wind speeds and
the productions obtained, these are classed as:

• weak wind zones (displayed in Figure 22 in violet), in which the average wind speeds
and power productions are 4.8 m/s and 0.8 MW;

• medium wind zones (in blue), with average speeds of 7.2 m/s and average productions
of 2.50 MW; and

• strong wind zones (in gray), with average speeds of 9.2 m/s and average productions
of 4.71 MW.
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Figure 22. Wind and power profiles for 28 days.
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Testing the energy management algorithm requires an injection commitment firm
(PSCHED) associated with the production data. Based on the power profiles, a stochastic
approach is followed for the generation of the day-ahead commitment profile. Under this
approach, the commitment is obtained from the production data by adding a random
error considered as a forecast error. Figure 23 shows commitments for the 28-day period;
different profiles with ±10%, ±20% and ±30% error were generated here.

In order to validate the proposed energy management scheme for the HPP injecting
power into the island grid, different case studies were carried out and analyzed below.
The situation of loads, reactive compensators, and generation units are considered for the
simulations.
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Figure 23. Commitment profiles, 28-day period.

The algorithm maximizes the plant’s revenue by minimizing the commitment failures.
Nonetheless, the strategy’s performance is affected by the choice of the weights λ1 and λ2,
carried out empirically. The HPP operation’s two main scenarios are studied. To do so, the
expected and real production of a day was considered to set the storage system’s initial
SoC and the SoCre f . Scenario 1 considers the production is greater than expected, whereas,
in Scenario 2, the production is below the commitment.

6.1. Scenario 1: Production is Greater Than Expected

This scenario investigates the HPP’s operating on the island grid when the production
is high enough to predominantly require the storage system to be charged. The assumption
here was to consider a commitment with a maximum error of −30% with respect to the
average of production. The initial SoC is 50%, while SoCre f is set at 60%.

In Scenario 1, three cases are considered: in case 1 more importance is given to the
objective relating to PINJ , i.e., the interest is focused on the respect of the injection reference.
This first case promotes the best profit maximization strategy, by optimizing the amount of
power transferred to the storage system that allows holding the injection commitment, in
order to avoid penalties and to inject production that will not be billed.

Case 2 considers the same importance given to weight of the objective relating to PINJ
(λ1) and the weight of the SoC-related objective (λ2). Finally, within case 3, the greater
weight was attributed to minimizing the SoC tracking error. Figure 24 presents the power
injected by the HPP into the Guadeloupe’s electricity grid over a day, considering the cases
1, 2 & 3. As can be seen in Figure 25 with a higher λ1 value (case 1), PINJ closely follows the
reference PSCHED. In case 2, when both objectives have the same weight, the performances
are very close to those obtained in case 1. Consequently, the tracking error of the injection
set-point is greater in the case 3, and the storage system’s usage is smaller.

Figure 26 shows the SoC levels obtained during test scenario 1. As shown, production
curtailments occur when the wind turbines output is above the upper limit of the tolerated
injection region, and the BESS is at 80% SoC. Thus, whereas, in case 1, the curtailment
amounts to 0.34%, in case 3, this quantity is 0%.
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Figure 24. Scenario 1: Injected power and tolerated band/injection region.

Figure 25. Scenario 1: Zoom in the njected power and tolerated band/injection region.
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Figure 26. Scenario 1: state-of-charge (SoC) signals with Case 1: λ1 = 100, λ2 = 0, Case 2: λ1 = λ2 = 50, and Case 3: λ1 = 0,
λ2 = 100. Initial SoC: 50% and PSCHED with maximum ±30% error.

As can be appreciated in Table 4 and Figure 26, in case 1 and case 2, there are no
commitment failures, and the total amount of energy injected is higher. However, when
the BESS is fully charged (SoC = 80%), curtailments are present. This is due to fact that
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the production is greater than the upper band limit, and it is not possible to store more
energy. At the same time, the smallest energy injection error was observed, which is
coherent with having energy available in the storage system to maintain the injection close
to the commitment, unlike case 3, where the BESS is less in demand, and, consequently, the
storage system’s lifetime is preserved. We can observe that with a greater λ2 the storage
system remains close to the set-point SoCre f , but the energy injection is smaller.

Table 4. Key Performance Indicators (KPIs) evaluation for Strategy 1.

Case CF (%) Pnot billed(%) Pcurt(%) EIN J (MWh) BESScycles PIN J error(%)

Case 1 0 0 0.34 56.2 1.90 16.84
Case 2 0 0 0.34 56.2 1.46 18.55
Case 3 8.33 12.16 0 49.9 0.08 28.60

6.2. Scenario 2: Production Lower Than Commitment

Scenario 2 investigates the EMS performance during a period where the production
is less than expected. The initial conditions and assumptions considered here are: a
maximum commitment error of 30% with respect to the average of production, an initial
SoC of 50%, while the SoCre f was established at 39%. With lower production compared to
the commitment, the objective of the investigated cases is to fulfill the commitment and
avoid economic penalties as far as possible.

As for scenario 1 explained above, this scenario presents three cases that are considered
with different weights assigned to the objectives:

• case 4, where the greatest weight was assigned to the SoC-related objective (λ2) to
prioritize minimizing the power injection’s tracking error,

• case 5, the same importance is given to the weight of both objectives, and
• case 6, the greatest weight was attributed to the minimizing the SoC tracking error.

In order to compare with Scenario 1, Figures 27 and 28 present the power injected by
the HPP into the Guadeloupe’s electricity grid over a day, while Figure 29 shows the SoC
levels obtained during test scenario 2 considering different sets of values for the weights
λ1 and λ2.

Figure 27. Scenario 2: Injected power and tolerated band/injection region.
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Figure 28. Zoom Scenario 2: Injected power and tolerated band/injection region.
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Figure 29. Strategy 2: SoC signals with Case 4: λ1 = 100, λ2 = 0, Case 5: λ1 = λ2 = 50, and Case 6: λ1 = 0, λ2 = 100.
Initial SoC of 50% and PSCHED with maximum ±30% error.

As was observed in previous scenario, Figure 28, with a higher value of λ1, PINJ
follows the BESS reference PSCHED best. Instead, the tracking error of the injection set-point
is greater in case 6, considering λ2 = 100, and, consequently, the storage system’s usage
is smaller.

As can be seen in Figure 29 and in Table 5, in case 4 and case 5, more BESS usage
(BESScycles) is required to keep to the injection schedule owing to the production which is
lower than the commitment. Therefore, the EMS optimizes the injection while allowing
smaller variations in the state-of-charge. In case 4 and case 5, a greater power injection is
achieved by using the BESS to try to fulfill the commitment. Due to lower production,
several times the storage system’s minimum SoC threshold is reached (20%).

Table 5. KPIs evaluation for Strategy 2.

Case CF (%) Pnot billed(%) Pcurt(%) EIN J (MWh) BESScycles PIN J error(%)

Case 4 6.25 8.49 0 52.7 2.21 11.70
Case 5 6.25 8.71 0 52.6 1.72 12.91
Case 6 7.64 11.93 0 50.4 0.07 21.47
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Analyzing case 6, with λ1 = 0 and λ1 = 100, the BESS usage is limited, but, as
expected, the amount of the resulting power injection signal is lower. In this case, more
importance is given to weight of the objective relating to minimizing of the SoC tracking
error, and the BESS is forced to maintain the SoCre f set at 39%. The storage system is used
less, but the commitment tracking goal is not reached; therefore, less power is injected into
the grid, which causes PINJ error to be greater.

6.3. Comparison with a Rule-Based Strategy

In order to compare the two energy management algorithms, some simulation results
are obtained considering a commitment profile with an maximum error of ±10% (shown
above in Figure 23). For this simulation both, the MPC/QP and rule-based algorithms in
PowerFactory were tested with the following initial conditions: initial SoC of 30% and
SoCre f = 60%.

Different values were used for the control objectives weights. Figure 30 plots the
resulting BESS power signals for both algorithms. As can be seen, the time of no use of the
storage system is longer in the case of the scheme based on rules. In both cases, the more
recurrent non-availability of the BESS translates into lesser filtering of the wind turbine
production lacks and excesses and, ultimately, the lower injection of power. We can also see
that, although the limits of the storage system are the same for both algorithms, the ways
in which it is used are very different. While the MPC algorithm used the BESS whenever
the SoC is not at its maximum or minimum threshold in order to closely follow the power
reference, the rule-based strategy shows an on/off-like behavior with a tendency to use the
BESS maximum power either during charging or discharging.
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Figure 30. MPC/QP and rule-based algorithms: storage system power with λ1 = λ2 = 50, commitment with maximum
10% error, initial SoC of 50%, and 50% as SoC set-point.

As can be seen in Figure 31, the signal PBESS obtained from the algorithm based
on simple rules is zero most of the time. This is because when the SoC is smaller than
SoCre f = 60%, and, whenever PWECS is bigger than PSCHED, the storage system is charged
accordingly to the rules. Moreover, after the 60% SoC level is reached, several short time
charges take place. On the other hand, the MPC-based controller manages the BESS
responding to the instant active power needs (the difference between planned injection
and current production).
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Figure 31. Close view of BESS power using MPC/QP and rule-based algorithms in PowerFactory.

Figures 32 and 33 plot the state-of-charge charts obtained from the MPC/QP and
rule-based algorithms. As can be seen, on several occasions, the MPC/QP algorithm
activates the constraints SoCmin and SoCmax, i.e., minimum and maximum allowed levels
are reached several times. Under the rule-based algorithm, the SoC control evolves between
the 40% and 80% levels.

As can be appreciated from Figure 33, the ability of the MPC to both track the reference
values and save the lifetime of the BESS leads to an smooth SoC variation during this period.
The predictive control-based algorithm varies PBESS to compensate or to absorb power
according to the evolution of the instant production, trying to respect the commitment.
Meanwhile, the rule-based algorithm limits the use of the storage system due to its simpler
operating, which results in BESS being discharged rarely. However, a difference in the final
storage levels is observed, which could strongly influence the microgrid management of
the following day.
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Figure 32. MPC/QP and rule-based algorithms: state-of-charge with λ1 = λ2 = 50, commitment with maximum 10% error,
initial SoC of 50%, and 50% as SoC set-point.
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Figure 33. Close view of state-of-charge using MPC/QP and rule-based algorithms in PowerFactory.

As noted in Figure 34, the tracking of PSCHED is better when using the MPC/QP
algorithm. The MPC control strategy is able to optimize the real-time power dispatch
and takes into account the preserving the BESS. This is an important factor, especially for
stand-alone microgrid configurations.

Figure 34. Zoom in the total power injected by the HPP into the Guadeloupe island electric grid using MPC/QP and
rule-based algorithms in PowerFactory.

Table 6 summarizes the results obtained from 28-day simulations with three sets of
values for λ1 and λ2. These results confirm the importance of an optimized algorithm to
better manage the energy flow of an HPP when dealing with a day-ahead commitment
and demonstrates the effectiveness of the MPC-based strategy proposed.

Table 6. KPIs for comparison of MPC/QP and rule-based algorithms.

λ1 = 20, λ2 = 80 λ1 = λ2 = 50 λ1 = 80, λ2 = 20

Indicator MPC RB MPC RB MPC RB

CF(%) 1.7 8.5 1.8 8.5 1.7 8.5
Pnot billed(%) 0.3 13.6 0.4 13.6 0.4 13.6

Pcurt(%) 5× 10−4 0 7× 10−3 0 1× 10−2 0
EIN J (MWh) 1811.2 1504.5 1807.3 1504.5 1807.5 1504.5
BESScycles 45.6 15.8 91.2 15.8 111.7 15.8

PIN J error(%) 0.18 0.24 0.09 0.24 0.06 0.24
SoCerror(%) 20.3 27.7 27.2 27.7 28.7 27.7
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7. Conclusions

In this paper, an EMS was designed to manage the power dispatch of a hybrid
power plant injecting power into the Guadeloupe’s electricity grid. The system combines
wind turbines with a Li-ION BESS. The HPP and control structure were modeled using
PowerFactory. Moreover, the energy storage system model was validated to be used in the
control strategy. Based on this model, the development of an adapted management strategy
for predictive control and quadratic programming optimization determined the power
flow management of the HPP to comply with the day-ahead commitment according to the
WECS output variations. To reach the objectives, a quadratic cost function was formulated
that considers the problem’s objectives and is attached to several physical and operational
constraints. Using PowerFactory/MATLAB co-simulation, it was proven that the proposed
EMS has the ability to handles the battery’s charge/discharge cycles to inject the power
into the grid continuously, fulfilling two aims: minimizing the commitment failures and
extending the storage system’s lifespan. Several case studies were investigated focusing
on the economical or technical aspects of the HPP’s operating. The impact of the tuning
parameters was shown through different co-simulation scenarios, allowing the strategy
to be adapted over a 28-day period in order to test its performance. It was proven that
the proposed strategy based on MPC enables the systematic handling of constraints by
managing the optimization problem.
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