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A B S T R A C T

Hydrogen energy storage has emerged as a promising technology to improve the integration of renewable energy 
sources in building microgrids. However, inaccuracies in the modelling of fuel cells and electrolysers reduce the 
performance of building microgrids' energy management system. To improve the flexibility of building micro-
grids, this paper proposes to associate a two-level hierarchical model predictive controller empowered with an 
Autonomous Observer of Hydrogen Storage (AOHS). This novel observer evaluates the hydrogen production and 
consumption rates, storing little past data and needing no tuning of the parameters. Relying only on instanta-
neous data measurement, the algorithm can estimate the tank's level of hydrogen with an average relative error 
inferior to 2 %, even under measurement noise. A case-study based on a building microgrid currently under 
construction serves as the basis for all simulations. The performance of the AOHS is evaluated by comparing the 
self-consumption rates of the case-study when governed by two-level energy management system: one level using 
a fixed parameters model and the other one equipped with the proposed AOHS algorithm. Results show that the 
microgrid associated to the AOHS has better self-consumption compared to the microgrid with fixed parameters, 
as well as a better robustness regarding the measurement noise and modelling error. Furthermore, this algorithm 
demonstrates a planning function as it facilitates the energy planning from the aggregator's point of view and the 
external grid management.   

1. Introduction

Even though energy is essential for society, the energy sector is built
on an unsustainable system that meets about 70 % of the primary energy 
demand with fossil fuel and nuclear power plants [1]. To foster the 
decarbonisation of the electricity systems, the fast energy transitioning 
scenario aims to integrate more than 5 thousand TWh of Photovoltaic 
(PV) panels into the grid by 2050 [1]. In this context, building micro-
grids, such as the ones described in [2–5], have emerged as a promising 
grid topology to enable the massive installation of renewable energy 
sources directly in the distribution sector. 

To avoid radical changes in the electricity system when incorpo-
rating building microgrids into the current power grid, the simplifica-
tion of the role of market operators is paramount. This simplification is 
performed by introducing the concept of self-consumption of PV elec-
tricity [6]. This grid regulation aims to minimise the building's micro-
grid daily power imbalance, allowing grid operators to supply the 
energy demand as efficiently as possible [7]. 

To attain high levels of self-consumption, energy storage systems 
(ESSs) are key elements to shift the building local energy surplus toward 
periods of energy deficit [8]. Particularly, due to the seasonality 
throughout the year, the combination of short- and long-term ESSs is 
increasingly envisaged for building microgrid implementation [9]. In 
recent years, hydrogen-based storage systems have become important 
seasonal ESSs, thanks to their high energy capacity (300–1200 Wh/kg) 
and their nearly zero self-discharging rates [10–12]. 

To take full advantages of hybrid ESSs while maximising PV self- 
consumption, it is necessary to design a proper building energy man-
agement system (EMS) [4]. Nonetheless, buildings are not homogeneous 
and require solutions tailored to their specific conditions. Therefore, this 
paper aims to propose a flexible solution to adapt EMSs to any hydrogen- 
based building microgrid automatically and independently of the elec-
trical equipment size. 

Among the existent EMS algorithms [13,14], model predictive con-
trol (MPC) has proved its robustness against environmental disturbances 
[15–17]. The capacity to consider prediction data and periodic optimi-
sations over a sliding window are the main strengths of the MPC 
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structure, making it highly appreciated for industrial applications. 
However, the performance of the MPC structure strongly depends on the 
quality of the predictions and on the models used. 

In the context of long-term power flow optimisation, as it occurs in 
energy management for building microgrids, MPC requires precise ESS 
models. However, in the literature, MPC architectures are usually 
composed of time-invariant parameters derived from the manufacturer's 
technical specifications, therefore holding inaccuracies concerning the 
real system [18]. To improve the model precision, a model can be 
devised from the linearisation of non-linear experimental curves [15] or 
by fitting sample measurements to a logarithmic equation [19]. Alter-
natively, advanced techniques to estimate the intrinsic parameters of 
proton exchange membrane (PEM) fuel cell and PEM electrolyser result 
in a precise estimation of the tank level-of-hydrogen. For instance, 
models based on the physical structure of the PEM fuel cell lead to an 
accurate model [20]. Similarly, Kalman filters and sliding mode ob-
servers [21] anticipate fuel cell model changes such as oxygen and 
hydrogen partial pressure and stack temperature. However, these 
models are too complex to be embedded in MPC prediction as it requires 
many parameters that are usually hard to measure. Furthermore, these 
methods are usually time-invariant which may be inaccurate for long- 
term operation, especially due to the ageing of components and unex-
pected changes in the operating environment. 

Aiming to reduce the effects of both imprecision in model-based state 
estimation and stochasticity in the building microgrid power imbalance 

without raising the complexity of the MPC algorithm, this paper pro-
poses the association of a two-level hierarchical MPC structure with an 
Autonomous Observer of Hydrogen Storage (AOHS). The primary 
objective of the proposed EMS is to maximise the annual self- 
consumption rate by optimising the building microgrid power flow. 
The innovation of the proposed EMS resides in the use of the AOHS and 
its direct inclusion in the MPC algorithm. This way, no parameter needs 
to be tuned to set up the MPC framework. Thanks to online data pro-
cessing embedded in the AOHS, the EMS is capable of identifying the 
hydrogen ESS model parameters even under noise measurements. 
Moreover, the proposed AOHS algorithm achieves a highly precise 
modelling performance without storing past measurements. Conse-
quently, the identification of the hydrogen ESS model is implemented 
only using a few stored variables. 

The remainder of this paper is organised as follows. Section 2 pre-
sents the context of the building microgrid and this paper's case-study. 
Section 3 describes the hierarchical MPC structure by highlighting its 
cost function and constraints. Section 4 details the hydrogen ESS 
autonomous observer. Section 5 compares the performance of an MPC 
architecture associated with the AOHS algorithm with a classical MPC 
architecture without an AOHS. Finally, Section 6 concludes this paper. 

2. The context of the building microgrid

The building microgrid selected as a case study is the future grid-

Abbreviations 

AOHS Autonomous observer of hydrogen system 
EMPC Economic model predictive control 
EMS Energy management system 
ESS Energy storage system 
HMPC Hierarchical model predictive control 
LoH Level of hydrogen 
MILP Mixed-Integer Linear Programming 
MPC Model predictive control 
PEM Proton exchange membrane 
PEME Proton exchange membrane electrolyser 
PEMFC Proton exchange membrane fuel cell 
PV Photovoltaic panels 
SoC State of charge 
TMPC Tracking model predictive control 

Variables 
Egrid

import Energy imported from the grid (Wh) 
Egrid

inject Energy injected from the grid (Wh) 
Ts Discrete sampling time of MPC (h) 
Econs Energy consumed by the building (Wh) 
Epv Energy generated by photovoltaic panels (Wh) 
SoCref Battery state of charge reference (%) 
LoHref Level of hydrogen reference (%) 
τsc Self-consumption rate (%) 
τc Coverage rate (%) 
Pfc Fuel cell operating power (W) 
Pbat Battery operating power (W) 
Pels Electrolyser operating power (W) 
Pi

max Maximum operating power (W), i = {bat,els, fc} 
δels Integer variable indicating whether the electrolyser is 

operating 
δfc Integer variable indicating whether the fuel cell is 

operating 
δbat

ch Integer variable indicating whether the battery is charging 
δbat

dis Integer n variable indicating whether the battery is 

discharging 
fbat Linear function to predict the energy stored in the battery 

pack 
fH2 

Linear function to predict the energy stored in hydrogen 
tank 

θels Coefficient linking the level of hydrogen and electrolyser 
power (% /W) 

θfc Coefficient linking the level of hydrogen and fuel cell 
power (% /W) 

Vtank Normalized tank volume (Nm3) 
ςels Hydrogen production coefficient (kWh/Nm3) 
ςfc Hydrogen consumption coefficient (Nm3/kWh) 
PEM Set referring to fuel cell or electrolyser. PEM = {fc,els} 
ṅPEM

H2 
Hydrogen flow throughout fuel cell or electrolyser (mol/s) 

Ncells
PEM Number of cells in fuel cell or electrolyser stack 

F Faraday constant (A s mol− 1) 
R Ideal gas constant (m3 Pa K− 1 mol− 1) 
βFaraday

PEM Angular coefficient linking the current in electrolyser or 
fuel cell with the tank's pressure variation (ΔPtank, k) (Pa 
A− 1) 

Ptank, k
meas Measure of the tank pressure at instant k (bar)

Ptank
max Maximum pressure supported by the tank (bar)

iPEM
meas Current measurement in the electrolyser or fuel cell stacks 

(A) 
vPEM

meas Voltage measurement in the electrolyser or fuel cell stacks 
(V) 

A, B and C Vertices of the linear hydrogen linear model 
PPEM

zonei Power zones of electrolyser or fuel cell, where i ∈ {1,2,3} 
(W) 

αPEM
zonei Angular coefficient linking the current and power 

consumed by the electrolyser or fuel cell if it is in power 
zone i ∈ {1,2,3} (A W− 1) 

Mk Measure point at instant k 
Gzonei

x X-coordinate of the median of the three-zone power lines 
σPEM, k Approximate angular coefficient linking the current and 

power consumed/generated by the electrolyser or fuel cell  
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connected microgrid that will be installed in the existing building of 
ESTIA Institute of Technology in Bidart, France. This medium-sized 
public building will be equipped with PV solar panels, Li-ion batteries 
and a hydrogen energy storage system with technical specifications 
presented in Table 1. The resulting microgrid is represented in Fig. 4, 
where the different elements and their connections are displayed, as 
well as the control structure, discussed further in Section 3. 

Since the objective of the building microgrid is to supply as much of 
its energy demand as possible with renewable energy, the PV panels will 
be controlled via the maximum power point tracking algorithm [22]. 
The PV power generation was modelled using real profiles of solar 
irradiation and temperature in Bidart [23], resulting in the annual 
power generation shown in Fig. 1. On the other hand, the building en-
ergy consumption – shown in Fig. 2 – follows the energy demand profile 
of the ESTIA building, in which weekends and holidays were considered 
for conceiving the dataset. It is worth noting that the building demand is 
about 25 % more elevated during the winter than in summer days due to 
heating devices. 

Due to low PV energy capacity, the energy exchange between the 
grid and the building microgrid is moderated by a community aggre-
gator [24]. In this configuration, prosumers send their day-ahead fore-
cast load consumption and energy injection to the aggregator. After that, 
the aggregator buys (or sells) electricity from the market operator at 
wholesale market prices and sells to (or purchases from) prosumers in 
the microgrid community at retail market prices. Consequently, the 
building EMS must provide a one-hour resolution day-ahead grid energy 
exchange plan to the community aggregators. 

One important restriction imposed by French grid regulations is the 
limitation concerning the annual energy injected into the grid [25]. The 
current grid code allows building microgrids to inject only the renew-
able energy generated locally and restricts building microgrids from 
discharging their ESSs to inject into the grid. Moreover, the building 
microgrid must be well-sized to minimise the annual PV energy gener-
ation injected into the public grid. 

Therefore, to reduce the energy injection and maximise the annual 
PV self-consumption rate, the building microgrid has to optimise its 
power flow by assigning the right setting points for its hybrid ESS. 
Particularly, to handle the seasonality throughout the year, the building 
microgrid under study will rely on a hydrogen energy storage which can 
reserve energy long-term, which enables shifting the summer energy 
surplus to the periods of energy deficit during the winter. In particular, 
the building microgrid is equipped with PEM technology for electrolysis 
and fuel cells. This kind of technology can be coupled with RESs, thanks 
to its faster response time and lower degradation rate when subjected to 
an intermittent power rate, compared to other technologies [26]. 

The power-to-power hydrogen ESS includes three main parts: a 

hydrogen producer device (fuel cell), a hydrogen consumer device 
(electrolyser), and the hydrogen reservoir (tank), as shown in Fig. 4. The 
electrolysis reaction happening in the PEM electrolyser cells converts 
water and electricity into heat, oxygen and hydrogen gases, as described 
in Eqs. (1)–(3) [27]. As shown in Fig. 3a, the electrons pass through the 
electrical circuit attached to the electrolyser, while protons pass through 
the membrane dividing the anode and cathode. Subsequently, the pro-
tons arriving through the PEME membrane at the cathode combine with 
the electrons arriving through the ancillary electrical circuit, generating 
hydrogen in the gaseous form. 

Complete electrolysischemical reaction :

H2O→H2 +
1
2
O2

(1)  

Anode : H2O→2H+ +
1
2
O2 + 2e− (2)  

Cathode : 2H+ + 2e− →H2 (3) 

The hydrogen produced in the cathode side of the PEM electrolyser is 
pushed into the hydrogen tank by using a hydrogen compressor [28]. 
The compressor adapts the difference of pressure between the PEME 
cathode and the hydrogen reservoir pressure, enabling the hydrogen to 
flow inside the tank. The stored hydrogen can be used later to generate 
electric power according to the building needs by regulating the oper-
ating pointing of PEM fuel cells and the outlet hydrogen flow. 

On the other hand, the chemical energy of the combustion of 
hydrogen with oxygen happening in the PEM fuel cells, produces water, 
electricity and heat, as specified in Eqs. (4)–(6) [27]. As illustrated in 
Fig. 3b, the electro-oxidation of the hydrogen happens in the anode side, 
while the electro-reduction of oxygen occurs in the cathode side. The 
regulation of the outlet hydrogen throughput is assured by setting up the 
position of a mechanical valve located in between the tank and the 
anode of PEM fuel cell, whereas the operating point of the PEMFC is 
assured by controlling its DC-DC power converter. One important 
remark to assure high PEM fuel cell electrochemical efficiency is that the 
PEM fuel cell hydrogen utilisation rate must be regulated to make the 
PEMFC consume all the hydrogen flowing throughout the cells. In this 
way, all hydrogen crossing the PEMFC is used to generated power, 
avoiding resources being wasted. 

Complete combustion chemical reaction :

H2 +
1
2
O2→H2O

(4)  

Anode : H2→2H+ + 2e− (5)  

Cathode :
1
2
O2 + 2H+ + 2e− →H2O (6)  

3. Hierarchical model predictive control structure

To adapt ESTIA's building microgrid into the electrical grid structure

Table 1 
Investigated building microgrid electrical components.  

Equipment Technical specification 

Photovoltaic panels Peak power at 1000 W/m2: 107 kWc 
Annual energy generation: 131 MWh 

Building load Annual energy consumption: 242 MWh 
Li-ion batteries Nominal capacity: 167 Ah 

Nominal voltage: 720 V 
Nominal discharge current: 70A 
Maximum power rate: 60 kW 

Hydrogen tank Maximum pressure: 30 bars @ 80 ◦C 
Maximum hydrogen mass: 18 kg 
Normalized volume (Vtank): 224 Nm3 

PEM electrolyser Nominal power: 25 kW 
Hydrogen production (ςels): 4.18 kWh/Nm3 

Maximum power rate: 30 kW 
PEM fuel cells Nominal power: 20 kW 

Hydrogen consumption (ςfc): 0.63 Nm3/kWh 
Maximum power rate: 48 kW 

Compressor Nominal power consumption (Pcomp): 1 kW  

Fig. 1. Photovoltaic power generation during an entire year, from January 
to December. 
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mentioned above, the two-level hierarchical MPC shown in Fig. 4 was 
designed. The proposed hierarchical EMS is composed of four individual 
control blocks, namely upper MPC, lower MPC, AOHS, and the com-
munity aggregator. They have different timescales and different roles in 
the general control structure. To assure the proper microgrid operation, 
they communicate with each other, by receiving information or 

transferring orders from one another. Therefore, the physical imple-
mentation of the algorithms is to be performed with different machines 
or different cores of the same real-time computer for each control 
element. 

The community aggregator communicates with the external grid, 
buys or sells electricity, and receives the day-ahead planification of the 

Fig. 2. Annual building power consumption from January to December.  

Fig. 3. Summary of chemical reaction in cathode and anode sides of (a) proton exchange membrane electrolysis cell and (b) proton exchange membrane fuel cells.  
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building microgrid. The upper EMPC optimises the flow of energy, 
giving references to the lower MPC, in charge of managing the power 
flow. The AOHS measures the current behaviour of the hydrogen storage 
system and communicates dynamic parameters to both MPC algorithms. 

Taking into account the stochasticity in the net power imbalance 
forecast (Epv − Econs), the upper MPC – named Economic MPC (EMPC) – 
determines the grid energy planning (Egrid, k

import and Egrid, k
inject ) for each discrete 

period k, where one period is an hour long (Ts = 1 h), the batteries state 
of charge (SoCref, k), and the tank level of hydrogen (LoHref, k). The 
objective of the EMPC is to minimise both the day-ahead energy im-
ported (Egrid, k

import ) and the energy injected into the grid (Egrid, k
inject ). This is 

guaranteed through the optimisation of the cost function expressed in 
Eq. (7), solved using Mixed-Integer Linear Programming of the CPLEX. 

min
θ

∑48

k=1
Eimport
grid,k + Einject

grid,k

where θ =
{
SoCref ,LoHref ,Eimport

grid ,Einject
grid

}
(7) 

The optimisation of Eq. (7) is implemented every day, at midnight or 
whenever the error between the planned energy exchange and the real 
imported and injected energy is higher than 7 %. This mechanism aims 
to reduce the number of unnecessary optimisations of the EMPC cost 
function. 

Notably, the EMPC sends references for the battery state-of-charge 
(SoC) and the level of hydrogen (LoH) of the tank to the lower MPC, 
whereas the first 24 h of the grid energy planning (Egrid

import and Egrid
injected) are 

sent to the community aggregator. A horizon of 48 h was chosen to 
better estimate the SoC and the LoH at the end of the day. A prediction 
horizon twice longer than the daily optimisation prevents the controller 
from fully discharging its ESS unnecessarily, therefore keeping the 
optimality not only for the current day but also for the next one. 

Meanwhile, the lower MPC aims to fulfil the grid exchange plan sent 
to the community aggregator by running the hybrid ESS at adequate 
power set points. Therefore, every hour it implements a tracking MPC 
(TMPC) to minimise the quadratic errors between the LoH and SoC 
references transmitted by the EMPC, as expressed in the cost function 
defined in Eq. (8). Its optimisation horizon is eight times shorter than the 
one of the upper MPC, so as to reduce the need for high computation 
resources. In this equation, each quadratic error is normalized regarding 
its respective maximum values and weighted to give more importance to 
instantaneous references than to farther references in the TMPC horizon. 
Consequently, TMPC will determine the power references for fuel cells 
(Pfc), electrolysers (Pels) and batteries (Pbat) that follow as much as 
possible the references of the upper MPC considering the updated ESS 
states. 

min
Pfc ,Pels ,Pbat

∑6

k=1

(
NTMPC

h − k − 1
SoCmax

)2
(
SoCref ,k − ŜoCk

)2

+

(
NTMPC

h − k − 1
LoHmax

)2
(
LoHref ,k − L̂oHk

)2
(8) 

One of the most important goals of the hierarchical MPC is to keep 
the energy balance between load (Econs) and generation (Epv) by 
considering the equality constraint (9). In this equation, the power 
consumed by the hydrogen compressor (Pcomp) to push the hydrogen into 
the tank is considered whenever the electrolyser is operating (δels = 1). 
Furthermore, the hierarchical MPC optimisation is constrained to 
maintain the safe operation of each ESS by limiting their power rate 
according to its maximum and minimum values, as expressed in Eqs. 
(10) for the hydrogen storage and (11) for batteries. Notably, δels, δfc, δbat

ch 

and δbat
dis are integer variables that are worth one when the ESS is active; 

and zero, otherwise. To avoid charging and discharging batteries and 
prevent the controller from filling in and filling out the hydrogen tank 
simultaneously, the inequality constraints in Eq. (12) must be embedded 
into the two-level MPC. 

Epv,k − Econs,k + Ts
(
Pbat,k +Pels,k +Pfc,k +Pcomp • δels,k

)
+Eimport

grid,k +Einjected
grid,k = 0

(9)  

− Pmax
els,k • δels,k ≤ Pels,k ≤ 0;

0 ≤ Pfc,k ≤ Pmax
fc,k • δfc,k

(10)  

Pmin
bat,k • δ

ch
bat,k ≤ Pch

bat,k ≤ 0;
0 ≤ Pdis

bat,k ≤ Pmax
bat,k • δ

dis
bat,k

(11)  

0 ≤ δels,k + δfc,k ≤ 1;
0 ≤ δchbat,k + δdisbat,k ≤ 1

(12) 

The hierarchical MPC also considers the grid code for small pro-
sumers in France [29] by limiting the charging of ESSs with the internal 
power surplus (Psurplus) and constraining their discharging to only supply 
the building internal power deficit (Pdeficit), as defined in Eqs. (13) and 
(14), respectively. 

−

⃒
⃒
⃒max

(
Pmin
bat − Pmax

els,k,Psurplus

) ⃒
⃒
⃒ ≤ Pch

bat,k +Pels,k ≤ 0 (13)  

0 ≤ Pdis
bat,k +Pfc,k ≤

⃒
⃒
⃒min

(
Pmax
bat +Pmax

fc,k ,Pdeficit

) ⃒
⃒
⃒ (14) 

The hierarchical MPC structure decides to use the batteries or the 
hydrogen storage according to their round-trip energy efficiency, which 
are embedded into the MPC internal models through the inequality 
constraints defined in Eqs. (15) and (16). In these two equations, the 
values of SoC and LoH for the next period (SoCk+1 and LoHk+1) are 
computed via the linear functions fbat and fH2 that are calculated through 
autonomous observers. 

In the case of batteries, an iterative algorithm that is further detailed 
in [30] determines the parameters of fbat. On the other hand, the pa-
rameters of fH2 are updated daily by the AOHS algorithm detailed in the 
next section. The AOHS was briefly introduced in the authors' previous 
work [31] to explain the context of another study focusing on a 
technical-economic analysis of installation of hybrid ESS in building 
microgrids. In this paper, the AOHS is mathematically detailed, and its 
operation performance is analysed in depth. Additionally, contrary to 
the work presented in [31], in this paper, the AOHS robustness against 
measurement noise is assessed to verify its impact on the annual self- 
consumption rate. 

SoCmin ≤ SoCk+1 = SoCk + fbat

(
Pch
bat,k ,P

dis
bat,k

)
≤ SoCmax (15)  

LoHmin ≤ LoHk+1 = LoHk + fH2

(
Pels,k,Pfc,k

)
≤ LoHmax (16)  

4. Algorithm of the AOHS

As shown in Fig. 4, in a closed loop with the hierarchical MPC
structure and the hydrogen storage, the AOHS aims to continuously 
improve the precision of the LoH estimation. The proposed AOHS up-
dates the parameters θels and θfc composing fH2 defined in Eq. (17). This 
operation is performed with the same sample time as the smallest con-
troller's discretisation time (Ts = 1 h) and relies solely on local mea-
surements. The θels and θfc parameters are determined either through 
physical values provided by the manufacturers (ςels,ςfc and Vtank defined 
in Table 1) or through the process implemented by the AOHS. 

fH2
(
Pels,k,Pfc,k

)
=

Ts

ςels⋅Vtank⋅1000
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

θels,k

Pels,k −
ςfc⋅Ts

Vtank⋅1000
⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟

θfc,k

Pfc,k (17) 

The continuous identification of θels and θfc is based on two iterative 
correlation processes and on a step of model polishing. Each of these 
operations will be detailed in the next subsections. 
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4.1. Step 1: correlation between current and pressure variation 

The relationship between the current and the tank pressure is 
inferred from the combination of Faraday's law of electrolysis with the 
ideal gas law. Defined by Eq. (18), Faraday's law of electrolysis links the 
current in the PEM stacks (iPEM in A) to the hydrogen flowing (ṅPEM

H2 
in 

mol/s) [32]. In this equation, Ncells
PEM is the number of cells in the PEME or 

the PEMFC, and F is the Faraday constant in C/mol. Notably, the nota-
tion PEM refers to the set PEM = {fc,els}, referring to PEMFC or PEME, 
respectively. 

ṅPEMH2
=

NPEM
cell ⋅iPEM

2⋅F
(18) 

Considering that the temperature variation in the hydrogen tank is 
much slower than the model update time (Ts), the number of moles 
stored in the tank (nH2

tank) is proportional to the tank pressure (Ptank), 
following the ideal gas law defined by Eq. (19), where R is the ideal gas 
constant in m3•Pa

K•mol. By computing the derivative, the hydrogen flow (ṅPEM
H2 ,k)

can be estimated from the variation of tank pressure. As a result, Fara-
day's equation in Eq. (18) can be rewritten in function of the tank 
pressure, instead of the number of moles, as shown in Eq. (20). 

ntankH2 ,k

Ptank,k
=

Vtank

R⋅Ttank
→
d
dt ṅtankH2

=
Vtank

R⋅Ttank
⋅
Ptank,k − Ptank,k− 1

Ts
(19)  

ΔPtank,k =
R⋅Ttank

Vtank
⋅
NPEM

cells

2⋅F
⋅Ts

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
βPEMFaraday

⋅iPEM (20) 

Instead of attributing static values to compute βFaraday
PEM in Eq. (20), the 

AOHS algorithm determines it automatically thanks to a dynamic up-
date process. To identify βFaraday, k

PEM , the pressure and current measure-
ments are used. The sample measurement composed by the couple Mk =

(ΔPtank, k
meas , iPEM, k

meas ) are used to calculate βFaraday, k
meas, PEM, by using Eq. (21), where 

PEM = {els, fc} refers to either electrolyser or fuel cells. 

βmeas,PEMFaraday,k =
ΔPmeas

tank,k

imeasPEM,k
, if imeas

PEM,k ∕= 0 (21) 

With the instantaneous value of βFaraday, k
meas, PEM, the estimated value of 

βFaraday, k
PEM is updated through a weighted average between its last esti-

mation and the current measurement, as specified in Eq. (22). As shown 
in Fig. 5 and defined in Eqs. (23) and (24), the variable ωPEM, k is a 
confidence weight that grows with the acquisition of new measurements 
and is linearly reduced by a constant variable τPEM

decay. The value of τPEM
decay 

should be tuned according to the desired model robustness against noise 
measurement. Higher values of τPEM

decay will lead the model to adapt to 
changes in the external environment more easily, but it will reduce the 
model's robustness. Notably, the static parameter ΔωPEM – also known as 
the learning rate – is the variation of the confidence weight between two 

consecutive iterations. Therefore, the weight ωPEM, k increases as soon as 
a new measurement Mk is acquired, following Eq. (23). Subsequently, at 
each iteration (Ts = 1 h), all confidence weights are reduced according to 
a pace defined by Eq. (24). Fig. 5 shows that the weights ωPEM={els,fc} 
decrease when the PEMFC or PEME are not operating. 

βPEMFaraday,k+1 =
ωPEM,k⋅βPEMFaraday,k + ΔωPEM ⋅βmeas,PEMFaraday,k

ωPEM,k + ΔωPEM
(22)  

ωPEM,k = ωPEM,k + ΔωPEM , if iPEM,k ∕= 0 (23)  

ωPEM,k = ωPEM,k − τdecayPEM (24)  

4.2. Step 2: correlation between current and power 

The relation between the current and the power is non-linear. 
Consequently, representing the hydrogen flow through the tank's inlet 
and outlet as a single linear function, as suggested in most studies 
[15,18], may result in modelling inaccuracies. Considering this prob-
lem, a new intermediary linear model based on the intensity of power is 
proposed. This novel linear model divides the power references assigned 
to electrolysers (Pels) and fuel cells (Pfc) into three operating zones, 
which leads to the definition of three powers for each PEM technology, 
namely PPEM

zone1, PPEM
zone2 and PPEM

zone3. The objective is to enhance the model 
accuracy by linearising the non-linear power-current curve shown in 
Fig. 6 into three linear functions. 

Without storing any past measurements, the identification of these 
three lines relies only on the present measurements of the currents (ifc 
and iels) and of the voltages (vfc and vels) of PEMFC and PEME, and on the 
coordinates of three points, namely A, B and C. These three points are 
the vertices of the intersection between the power zones and the linear 
model, as shown in Fig. 6a. Therefore, as summarised in Table 2, their y- 
coordinates are fixed and dependent on the maximum power rate sup-
ported by each PEM technology (PPEM

max ), whereas their x-coordinates are 
defined by angular coefficients of each of the three lines, i.e. αPEM

zone1, αPEM
zone2 

and αPEM
zone3. Consequently, the linear model is determined by the AOHS 

through the identification of these three angular coefficients. 
At the first iteration, the vertices A, B, and C are initialised so that the 

three vertices are aligned with the first non-null measure Mk, as shown in 
Fig. 6a. Therefore, if the first point Mk = (iPEM, k

meas ,vPEM, k
meas ), in which iPEM, k

meas 

∕= 0, then the three angular coefficient are worth αels, k
zone1 = αels, k

zone2 = αels, k
zone3 

= 1/vPEM, k
meas . 

Subsequently, for the next iterations, the vertices are updated ac-
cording to the location of the measurement Mk. If the point Mk belongs to 
a specific power zone, then one of the vertices limiting this power zone 
will be modified. For instance, if the Mk is in zone3, as shown in Fig. 6b or 
c, either the vertices B or C will be modified. The upper vertex (point C) 
will be updated, if Mk is nearer to the vertex C than vertex B, as shown in 
Fig. 6b. On the opposite case, the lower vertex (point B) will be modified 
if the point Mk is nearer to vertex B than vertex C, as illustrated in Fig. 6c. 

To update the upper vertex C, the angular coefficient of the third 
zone, i.e. αPEM

zone3, is calculated. Implemented through Eq. (25), this 
updating process corresponds to a weighted dynamic averaging opera-
tion of the last estimation of the angular coefficient of the line BC (i.e. 
αfc

zone3) and the new measured αfc, meas
zone3 . The variable αfc, meas

zone3 is the angular 
coefficient of the line BMk that is calculated through Eq. (26), whereas 
ωfc, k

zone3 is the confidence weight of the estimation of αfc
zone3. The term Δωfc 

– also called learning rate – indicates the importance of the new mea-
surement regarding the current estimation of αfc

zone3. Both ωfc
zone3 and Δωfc 

are initialised to a small value, typically in the order of 0.1. The weight 
ωfc

zone3 grows with the acquisition of measurements close to the vertex C, 
following Eq. (25). To deal with the ageing of the PEMFC and PEME, at 
each sampling time (Ts = 1 h), the confident weights linearly decrease 
according to the variable τdecay, as defined in Eq. (28). 

Fig. 5. Temporal evolution of pressure-current confident weights.  
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αzone3
PEM,k+1 =

ωzone3
PEM,k⋅αzone3

PEM,k + ΔωPEM ⋅αzone3
PEM,meas,k

ωzone3
PEM,k + ΔωPEM

(25)  

αzone3
PEM,meas,k =

CPEM
y,k − vmeasPEM,k

CPEM
x,k − imeasPEM,k

(26)  

ωzone3
PEM,k = ωzone3

PEM,k +ΔωPEM (27)  

ωzone3
PEM,k = ωzone3

PEM,k − τdecay (28) 

In the opposite scenario, if the point Mk belongs to zone3 and is 
nearer to vertex B than vertex C, the x-coordinate of the vertex B is 
modified. Firstly, as shown in Fig. 6c, an intermediate point B′ = (Bx

′, 
By

′) is determined. This point B′ corresponds to the intersection between 
CMk and the line dividing zone 2 and zone 3. Subsequently, the point B is 
updated similarly to the upper vertex. Firstly, the angular coefficient of 
line AB′ , namely αfc, meas

zone2 , is calculated through Eq. (29). Thereafter, the 
same update process of the upper vertex is applied to the lower vertex. 

αzone2
PEM,meas,k =

B′

y − Afc
y,k

B′

x − Afc
x,k

(29) 

To better understand the second step of the algorithm, Fig. 7 shows 
the temporal evolution of the confident weights. As expected, the 
weights ωfc

zone1, ωfc
zone1 and ωfc

zone1 grow when the PEME or PEMFC are 
operating and decrease when they are in an idle mode. After having 
identified the three angular coefficients (αPEM

zone1, αPEM
zone2 and αPEM

zone3), the 

final step consists of determining a unique correlation parameter, 
namely σPEM, linking power to current, as expressed in Eq. (30). Instead 
of building a model with multiple variables – for instance, power at 
zone1, zone2 and zone3 – the idea is to facilitate the MILP optimisation 
process by including only two control variables, i.e. power references for 
PEMFC (Pfc) and PEME (Pels). 

PPEM,k = σPEM,k⋅iPEM,k (30) 

Therefore, from the values of the three angular coefficients, it is 
possible to determine σPEM, k through the minimisation of the weighted 

Fig. 6. Detail of the fuel cell RTMI. (a) Initialisation step. (b) Update step when the measurement point is near to the upper vertex. (c) Update step when the 
measurement point is near to the lower vertex. 

Table 2 
Coordinates of the vertices points A, B, and C.  

Vertex point x-Coordinate (current) y-Coordinate (power) 

A Ax
PEM = iPEM

A Ay
PEM = PPEM

max/3 
B Bx

PEM = iPEM
B By

PEM = 2 • PPEM
max/3 

C Cx
PEM = iPEM

C Cy
PEM = PPEM

max

Fig. 7. Temporal evolution of power-current confident weights.  
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quadratic distance between the x-coordinate of the median of the three- 
zone power lines (Gzone1

x , Gzone2
x and Gzone3

x , as illustrated in Fig. 8) and 
the approximative linear model defined by Eq. (30). This approximation 
is assured by the minimisation of the cost function defined by Eq. (31). 

min
σPEM

∑3

i=1
ωzonei

PEM ⋅
(

Gx
zonei −

(2⋅i − 1)⋅Pmax
PEM

6⋅σPEM

)2

(31)  

4.3. Step 3: approximation and definition of the linear model 

The final step of the AOHS algorithm consists of building the final 
model by identifying the direct correlation between power (Pels and Pfc) 
and variation of the LoH (ΔLoH = fH2(Pels,Pfc)). The real LoH can be 
estimated from the current tank pressure (Ptank, k

meas ) and the maximum 
tank pressure (Ptank

max), as shown in Eq. (32). By combining this equation to 
the correlation between current and pressure variation determined in 
the first step (βFaraday

PEM of Eq. (22)) and the correlation between current 
and power (σPEM of Eq. (31)) calculated in the second step, it is possible 
to determine the direct link between power and variation of the LoH. 
Consequently, the function fH2 in Eq. (17) can be calculated using Eq. 
(33). 

LoHk =
Pmeas
tank,k

Pmax
tank

(32)  

fH2

(
Pfc,k,Pels,k

)
=

βfcFaraday,k
σfc,k⋅Pmax

tank⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
θfc

Pfc,k +
βelsFaraday,k
σels,k⋅Pmax

tank⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
θels

Pels,k (33)  

5. Case studies

To assess the performance of the MPC empowered with the AOHS
algorithm, the building microgrid of sizing defined in Table 1 was 
simulated in MATLAB Simulink® using the PEMFC SimPower-Systems 
model and a PEME model validated through experimental data re-
ported in [19]. The analysis of the proposed EMS is divided into two 
main parts. The first part is focused on the robustness of the proposed 
linear model against measurement noise. Meanwhile, the second part 
consists of a benchmark with the common linear model [18] defined by 
Eq. (17). 

5.1. Precision and robustness against measurement noise 

To verify the precision and the robustness of the proposed AOHS 
against measurement noise, the real voltage, current, and tank pressure 
measurements were disturbed by a normalized Gaussian noise of vari-
ance of 1 %, 5 %, and 10 % of their nominal values. To assess the error 
between the day-ahead LoH calculated by the EMPC and the real one, 
the TMPC in these scenarios was considered as a perfect router. 
Consequently, instead of optimising Eq. (8), it implements the control 
variables determined by the EMPC. Therefore, the effect of the TMPC is 

decoupled, highlighting the impact of errors in the estimated LoH. 
After simulations of 50 days of operation of the PEMFC and PEME 

under these three measurement noise intensities, the temporal evolution 
of the current-voltage (σfc and σels) and current-pressure (βFaraday

els and 
βFaraday

fc ) correlation factors are shown in Fig. 10. It is noteworthy that in 
these simulations, ΔωPEM and τdecay were set up as 0.1 and 0.001, 
respectively. In addition,ωPEM, ωPEM

zone1, ωPEM
zone2 and ωPEM

zone3 were initialised 
as 0.5. Table 3 indicates that the AOHS can identify the current-power 
coefficients with an average error below 2 % regarding the theoretical 
model, whereas the pressure-current is determined with an average 
error inferior to 11 %. Notably, the theoretical model was obtained from 
the complete linear regression of the real PEME and PEMFC models. 

Despite including a measurement noise with a variance of 10 %, the 
graphs in Fig. 10 highlight that the final estimated hydrogen storage 
parameters are close to the theoretical model, demonstrating that the 
proposed AOHS algorithm is robust, especially against voltage and 
current noise measurements. Nonetheless, since the algorithm is based 
on the variation of the pressure (Eq. (21)), the pressure measurement 
noise is amplified, harming the precision of pressure-current parameter 
identification (βFaraday

els and βFaraday
fc ), as shown in Fig. 9. 

Besides its robustness, the precision of the proposed algorithm is 
comparable to the theoretical model. According to Table 3, the algo-
rithm can assure almost the same average error under the three in-
tensities of noise measurement, with an average difference below a 0.6 
percentage point (p.p.) regarding the theoretical model. In particular, 
the AOHS demonstrated highly robust against noise measurement with 
variance inferior to 1 %, since the maximum and the average LoH errors 
were kept almost the same with 0 % and 1 % of noise variance. 

Notwithstanding, as shown in Table 3, the maximum error in the 
estimation of the LoH when including noise measurements with a 
variance of 5 % and 10 % is higher than the theoretical model. As dis-
cussed previously and shown in Fig. 10, this is due to the inaccuracies in 
the estimation of the pressure-current correlation factors created by the 
computation of the pressure variation. Therefore, to keep the same 
precision as the theoretical model, a pressure measurement noise below 
5 % must be guaranteed. This can be assured through the inclusion of 
moving average filters or using more precise pressure sensors. 

Fig. 8. Visualisation of the definition of the approximate model.  

Table 3 
Average precision of the level of hydrogen estimation according to the intensity 
of noise measurement.  

LoH error Noise measurement intensity 

Theoretical 0 % 1 % 5 % 10 % 

Average (p.p.)  0.57  0.77  0.75  1.2  0.68 
Maximum (p.p.)  4.3  4.9  4.9  6.8  7.2  

Fig. 9. Estimation of current-power (σfc and σels) and current-pressure (βFaraday
els 

and βFaraday
fc ) correlation factors estimated by the AOHS in comparison with 

their theoretical values. 
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5.2. Comparison with the time-invariant model 

The proposed MPC with the AOHS is compared to an MPC with the 
time-invariant model specified in Eq. (17). This comparison aims to 
verify the impact of parametric errors on the annual building microgrid 
self-consumption and coverage rates, as well as the accuracy of day- 
ahead grid energy planning transmitted to community aggregators. 

In this view, the building microgrid and its HMPC (EMPC and TMPC) 
were simulated in MATLAB Simulink® for 365 days under four sce-
narios. The first three scenarios are when the HMPC is equipped with a 
time-invariant hydrogen storage model holding +20 %, 0 %, and − 20 % 
parametric errors in θfc and θels defined in Eq. (17). Finally, the fourth 
scenario is when the HMPC is endowed with the AOHS algorithm with a 
noise measurement of variance of 5 %. Since no parameter needs to be 
tuned when employing the AOHS algorithm, it is not necessary to 
analyse the impact of parametric errors. 

τsc = 1 −

∑8760

k=1
Einjected
grid,k

∑8760

k=1
Epv,k

; τc = 1 −

∑8760

k=1
Eimport
grid,k

∑8760

k=1
Econs,k

(34) 

By comparing the annual self-consumption and annual coverage 
rates defined by Eq. (34) summarised in Table 4, it is possible to observe 
that the HMPC with the AOHS algorithm assures practically the same 
coverage and self-consumption rates as the time-invariant model with 
no parametric errors. Moreover, by comparing the annual coverage rate 
of these four simulation scenarios, it is possible to note that it is almost 
insensitive to parametric errors. In contrast, the self-consumption rate is 
reduced by 3 p.p. with a parametric error of − 20 %, and it was un-
changed with a parametric error of +20 %. 

The reason behind this result is that the power reference of the PEME 
is almost the same (around 30 kWh) in the scenarios with the AOHS 

algorithm and the time-invariant models with +20 % and 0 %, as shown 
in Fig. 11. According to Fig. 11, the EMPC minimises the grid energy 
exchange by using its ESS as much as possible. Consequently, to maxi-
mise the self-consumption rate τsc, the EMPC absorbs the PV energy 
surplus by storing hydrogen through the operation of the PEME. 

As shown in Fig. 11, as in all scenarios the hydrogen tank is not full 
(the LoH is below 90 %), the EMPC can operate the PEME most of the 
time at maximum power rate (around 30 kWh) to minimise the grid 
energy injection. Since there are low parametric errors when employing 
the AOHS and the time-invariant models with 0 % (Fig. 11b and d), the 
TMPC can follow the LoH references strictly, resulting in an operation of 
the PEME close to the maximum power rate, as expected from the EMPC. 
On the contrary, even though the LoH reference is not followed by the 
TMPC when θels is over estimated (Fig. 11c), the power set point of the 
PEME is equal to the EMPC estimated values. This is because the over-
estimation of θels leads the LoH references to be always higher than the 
real capacities of the PEME. Therefore, this will induce the PEME to be 
operated over its estimated capacity, which is bounded by its maximum 
power rate. Consequently, the power references of both the TMPC and 
the EMPC are equivalent, assuring similar self-consumption rates. 

On the other hand, when θels is underestimated (Fig. 11a), the errors 
in the LoH estimation calculated by the EMPC will lead the PEME to be 
underused. In this scenario, the EMPC tries to operate the PEME at 
maximum power rate (around 30 kWh), but due to parametric errors in 
θels it will transmit to the TMPC the references of the LoH that are smaller 
than the real hydrogen production rate. Therefore, the PEME will be 
underexploited, resulting in the reduction of the self-consumption rate. 

It is important to note that a similar phenomenon happens with the 
operation of fuel cells. Nonetheless, due to the low round-trip efficiency 
(below 40 %) of hydrogen conversion, the use of fuel cells is minimal. 
According to graphs shown in Fig. 12, even though the annual use of fuel 
cells can vary up to 17 % (1.3 MWh) regarding the time-invariant model 
with no errors, this difference is small compared to the annual building 
consumption, which amounts to 242 MWh/year. Consequently, the 
coverage rate (τc) defined by Eq. (34) is almost unaffected by the inac-
curacies in the PEMFC models. 

Although the imprecisions in the LoH estimation do not always 
impact the annual self-consumption and coverage rates, it affects the 
grid energy planning sent to community aggregators. As shown in 
Fig. 13, compared to time-invariant models with no parametric errors, 
the error in the day-ahead grid energy exchange planning sent to the 
community aggregator increases by respectively 55 % and 10 % with 
time-invariant (T.I.) models holding − 20 % and +20 % of parametric 
imprecision. Conversely, the proposed AOHS algorithm can assure an 
average error of 334 Wh, which is 52 % lower than the ideal time- 
invariant. This result indicates that the AOHS algorithm can facilitate 
grid energy management from the point of view of the external grid by 
providing more reliable day-ahead grid energy planning to community 
aggregators. 

6. Conclusion

In this paper, a two-level hierarchical model predictive controller
(HMPC) with an Autonomous Observer of Hydrogen Storage was pro-
posed to reduce the HMPC internal model inaccuracy. This modelling 
inaccuracy issue is particularly important when considering long oper-
ating times. The proposed solution incorporates an external observer to 
the HMPC structure, requiring little to no modification of the MPC al-
gorithms while offering better performance. Even subjected to strong 
measurement noise, the designed energy management proved capable of 
identifying the real hydrogen production and consumption rates. This 
operation was performed while relying only on a few storage variables 
and requiring no tuning of the parameters. This facilitates its imple-
mentation in embedded systems. It could guarantee an average precision 
inferior to 2 % points regarding the theoretical model that holds the full 
knowledge of the system. 

Fig. 10. Comparison between the final estimated model correlation factors 
(σPEM and βFaraday

PEM ) and their corresponding theoretical values in the case with 
noise measurement variance of 10 %. 

Table 4 
Comparison of the coverage and self-consumption rates when using time- 
invariant models and the AOHS algorithm.   

Time-invariant model AOHS 

− 20 %a 0 %a +20 %a 

Coverage rate (%)  47.1  47.5  47.2  47.4 
Self-consumption (%)  94.3  97.1  97.3  97.2  

a Parametric error included in θfc and θels. 
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The flexibility of the algorithm in adapting automatically to external 
environments reduces the negative effects of model parameter inac-
curacies provided by manufacturers. Through simulations, it was 
noticed that a 20 % underestimation of hydrogen production reduces the 
building's annual self-consumption by about 3 % when using a rudi-
mentary model approach. On the other hand, through a more accurate 
estimation of the tank level hydrogen provided by the novel algorithm, 
the self-consumption and coverage rates are similar to the ideal model 
that holds the full system knowledge. Additionally, the algorithm en-
ables the HMPC to provide reliable day-ahead grid energy planning to 
community aggregators, facilitating the external grid energy manage-
ment and reducing the errors by about 52 % compared with the 

conventional modelling approach. 
Since the ESTIA's building microgrid studied in this paper is under 

construction, the future work consists of testing the algorithms and so-
lutions described in this paper using hardware in the loop approach. The 
fact that the three elements of the control structure described in this 
paper, EMPC, TMPC and AOHS, are operating with different time scales 
will make possible to implement them using different machines or 
different cores of the same real-time computer for each control element. 

Fig. 11. Comparison between the EMPC and TMPC control variables with the AOHS algorithm subjected to measurement noise of 5 % and with time-invariant 
models subjected to parametric errors of − 20 %, 0 %, and +20 %. 

Fig. 12. Annual use of energy storage systems when using time-invariant 
models with parametric errors and the AOHS algorithm with noise measure-
ment of 5 %. 

Fig. 13. Average (red squares) and standard deviation (blue bars) of the error 
in the day-ahead grid energy exchange planning sent to community aggregator. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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