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ABSTRACT

Objective: The aim of this study was to develop an accurate regional forecast algorithm to predict the number

of hospitalized patients and to assess the benefit of the Electronic Health Records (EHR) information to perform

those predictions.

Materials and Methods: Aggregated data from SARS-CoV-2 and weather public database and data warehouse

of the Bordeaux hospital were extracted from May 16, 2020 to January 17, 2022. The outcomes were the num-

ber of hospitalized patients in the Bordeaux Hospital at 7 and 14 days. We compared the performance of differ-

ent data sources, feature engineering, and machine learning models.

Results: During the period of 88 weeks, 2561 hospitalizations due to COVID-19 were recorded at the Bordeaux

Hospital. The model achieving the best performance was an elastic-net penalized linear regression using all

available data with a median relative error at 7 and 14 days of 0.136 [0.063; 0.223] and 0.198 [0.105; 0.302] hospi-

talizations, respectively. Electronic health records (EHRs) from the hospital data warehouse improved median

relative error at 7 and 14 days by 10.9% and 19.8%, respectively. Graphical evaluation showed remaining fore-

cast error was mainly due to delay in slope shift detection.

Discussion: Forecast model showed overall good performance both at 7 and 14 days which were improved by

the addition of the data from Bordeaux Hospital data warehouse.

Conclusions: The development of hospital data warehouse might help to get more specific and faster informa-

tion than traditional surveillance system, which in turn will help to improve epidemic forecasting at a larger and

finer scale.
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LAY SUMMARY

The objective of this work was to develop a forecast algorithm to predict the number of hospitalized patients at Bordeaux

Hospital. In addition, we assessed the benefit of the Electronic Health Records (EHRs) information to perform those predic-

tions. To perform this task, we used data between May 16, 2020, and January 17, 2022, from national database on SARS-

CoV-2 epidemics, public database on weather and the data warehouse of the Bordeaux hospital. The outcomes were the

number of hospitalized patients in the Bordeaux Hospital at 7 and 14 days. During the period of 88 weeks, 2561 hospitaliza-

tions due to COVID-19 were recorded at the Bordeaux Hospital. The best model had an error of 13.6% at 7 days and 19.8%

at 14 days. EHRs from the hospital data warehouse improved the performance by 10% at 7 days and 20% at 14 days. Graph-

ical evaluation showed remaining forecast error was mainly due to delay in slope shift detection. Forecast model showed

overall good performance which were improved by the addition of EHRs data. The development of hospital data warehouse

might help to get more specific and faster information than traditional surveillance system, which in turn will help to

improve epidemic forecasting at a larger and finer scale.

BACKGROUND AND SIGNIFICANCE

Since the end of 2020, millions of SARS-CoV-2 cases have been

reported worldwide.1–3 This pandemic has had a major impact on

health care with an increase of the hospitalizations leading to modi-

fications of the organization of care and to unprecedented popula-

tion lockdowns to avoid health care system saturation.4–6 The

ability to anticipate the evolution of the epidemic at a local level is

critical to manage the health care system.

To achieve this goal, several forecasting algorithms have been

proposed.7,8 None was fully satisfactory. Cramer et al8 compared

different approaches, including regression, compartmental, ensem-

ble, deep-learning, to forecast the number of death related to

COVID-19 in the United States. Best models included ensemble,

deep learning, and several compartmental methods. They all used

epidemiological data and, depending on the model, mobility, and

demographics data. Although the performances varied from algo-

rithm to the other, the data used differed between best models with-

out clear trend indicating which data would provide the best

performance.

Because many factors change over time (eg, population behavior,

government policies, vaccine coverage, virus strain), long-term fore-

cast of COVID-19 is impossible. In France, several approaches to

short-term epidemic forecast have been proposed relying on linear

algebra,9 ensemble methods10 or neural networks.11,12 All models

aimed to forecast hospitalizations (among other things), except the

one proposed by Carvalho et al,11 which focused on cases, ICU, and

deaths. The data used were hospitalizations, Reverse Transcriptase

Polymerase Chain Reaction (RT-PCR), Intensive Care Units (ICU),

weather, mobility, vaccination, variants of concern, and mask wear-

ing policy data. The approach proposed by Mohimont et al, based

on Convolutional Neural Networks seems to achieve the best results

with a normalized root mean square deviation at 14 days of 3.2%

compared to a mean absolute percentage error of 20% of the

approach proposed by Paireau et al at the national level. However,

the periods of evaluation are different (May 2021 for Mohimont et

al,12 March to July 2021 for Paireau et al10) and direct comparison

is difficult. In addition, graphical evaluation showed struggle to

anticipate slope shift, that is a change in the dynamic of the epidemic

toward an increase or a decrease of the number of cases. In addition,

the performance improvement added by the different data sources

was not formally evaluated. Finally, no model was satisfactory and

valid enough to implement immediately.

Previous work focused mainly on national9–12 or regional10,12

forecast. Yet, finer granularities are needed to inform on local epi-

demic evolutions. Because hospitals are key actors during this pan-

demic and their saturation is a critical factor of sanitary policies,

they are a relevant scale for local forecasting. Since November 2017,

the Bordeaux University Hospital has developed a data warehouse

based on i2b2 architecture.13 It facilitates the use of electronic

health records and allows extracting detailed information of the epi-

demic such as the emergency units and ambulance service notes. We

hypothesized that those local data should improve the forecast of

the SARS-CoV-2 epidemic.

OBJECTIVE

The objective of this work was to develop an accurate regional fore-

cast algorithm to predict the number of hospitalized patients and to

assess the benefit of the Electronic Health Records (EHR) informa-

tion to perform those predictions.

MATERIALS AND METHODS

Aggregated data from May 16, 2020, to January 17, 2022, regard-

ing French COVID-19 epidemic were included. In order to improve

forecasting, several data sources were used.

Open data
Open data included both epidemiologic data from Sant�e Publique

France and weather data from National Oceanic and Atmospheric

Administration (NOAA) Integrated Surface Database.14,15 Both pro-

vide department aggregated data and are daily updated.

Sant�e Publique France data included hospitalizations, number of

RT-PCR, positive RT-PCR, proportion of positive RT-PCR, domi-

nant variant, and number of first dose vaccinated. RT-PCR data

were available by age and were grouped as 0–19, 20–59, and 60 and

more years old categories. Variant identification data before Febru-

ary 18, 2021 were not available, and majority variant before that

date was assigned to wild type.

NOAA data, including temperature, wind speed, humidity, and

dew point, were extracted and the Predict Index for COVID-19 Cli-

mate Transmissibility—Index PREDICT de Transmissivit�e Clima-

tique de la COVID-19—(IPTCC) was computed.15 Missing weather

data were imputed using a 2-step procedure: (1) the mean value of

the adjacent department was imputed; (2) remaining missing values

were imputed using last observation carried forward.

EHR data
The Bordeaux Hospital is a large structure comprising 3 hospital

structures taking care of nearly 250 000 hospitalized patients and
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100 000 emergency consultations during 2020.16 A data warehouse

based on i2b2 structure was built in 2017.13 This star architecture is

based on a central fact table where each row represents a diagnosis,

a laboratory result, a procedure, a medical observation, etc. Each

fact is related to other tables with information about the patient, the

visit, the provider, or type of fact.17 This structure allows for quick

data queries compared to the usual siloed organizations.

To perform those queries, ontology alignment have been per-

formed on laboratory results, and ad hoc natural language process-

ing tools have been developed, including ROMEDI (ie, a French

drug terminology to extract drug information from text), IAMsys-

tem (ie, a dictionary-based approach for name entity recognition),

and SmartCRF (ie, a software to visualize and annotate EHR).18–20

Several applied projects were performed using those tools including

automatic detection of surgical site infection and transfusion associ-

ated circulatory overload.21,22

Thanks to those previous experiences, the Bordeaux hospital

data warehouse was used, during the pandemic, to describe the cur-

rent state of the epidemic at the hospital level on a daily basis. Those

data were then used in the forecast model including: hospitaliza-

tions, hospital and ICU admission and discharge, ambulance service

notes, and emergency unit notes. Concepts related to COVID-19

were extracted from notes by dictionary-based approaches (eg,

cough, dyspnea, COVID-19). Dictionaries were manually created

based on manual chart review to identify terms used by practi-

tioners. Then, the number and proportion of ambulance service calls

or hospitalization in emergency units mentioning concepts related to

COVID-19 were extracted. Detail of features is available in Supple-

mentary Table S1.

Due to different data acquisition mechanisms, there was a delay

between the occurrence of events and the data acquisition. It was of

1 day for EHR data, 5 days for department hospitalizations and RT-

PCR, 4 days for weather, 2 days for variants, and 4 days for vacci-

nation. For the training and evaluation of the model, the chosen

date was the date of data availability to mimic a real-time streaming

forecast.

Statistical and machine learning models
The outcomes were the number of hospitalized patients with SARS-

CoV-2 infection in the Bordeaux hospital at 7 and 14 days. Several

statistical models and machine learning algorithms were compared:

linear regression and Poisson regression with elastic-net penaliza-

tion, random forest, and Fr�echet random forest (ie, a random forest

derived method able to learn directly from time series).23 Negative

predicted values were forced to 0.

Modeling strategy
To train the model, the primary analysis used a matrix where each

row corresponds to a day and each column to a feature from

Gironde (ie, the Bordeaux department) open source and Bordeaux

Hospital EHR data. Other department data were not added to limit

the number of features. Prediction performance were evaluated

depending on the data used for the forecast, initially using only hos-

pitalization and RT-PCR and progressively adding SARS-CoV-2

incidence in Gironde, weather, EHRs, Vaccine, and Variant data.

Because of the elastic-net penalization,24 each day the model might

select different features by shrinking beta coefficient of unimportant

features to zero.

An additional analysis considered the Bordeaux Hospital as an

additional unit among the other French departments. The advantage

was to leverage the information from all the departments; the draw-

back was the impossibility to include specific information only avail-

able for the Bordeaux Hospital. Of note, the incorporation as a

third level inside the Gironde department would be possible in

theory but it would lead to the same restrictions and it would not be

feasible in absence of other EHR data from other departments.

Results from this additional analysis are available in Supplementary

Table S2.

Several feature engineering transformations were performed.

The mean, minimum, and maximum value over the last 7 days were

computed for each feature, as well as the first derivatives over the

last 3, 7, 10, and 14 days. Features were smoothed using a local pol-

ynomial regression with a span of either 0 (ie, no smoothing), 7, 14,

or 21 days to take into account outliers and weekly variations.

Model evaluation
The models were evaluated every day on the data available from

December 1, 2020 to January 17, 2022 (ie, data from May 16, 2020

to December 1, 2020 were used for training only). The models were

trained using all prior data available at a given date d and the fore-

cast of the number of hospitalizations at both 7 and 14 days after d

was evaluated. Prediction performances were evaluated according to

median absolute error (MAE) and median relative error (MRE).

Median was chosen over mean because it is less sensitive to extreme

values which are frequent when the observed outcome is low (ie, a

small absolute error could result in a huge relative error). Boot-

strapped 95% confidence interval was provided with 500 samples

(more details in the Supplementary Material). Graphical evaluation

was also performed. Prediction intervals were estimated by boot-

strap and also with an operational rule of more or less 10% and

20% of the predicted value at 7 and 14 days. For the latter, given
dhosp the predicted hospitalization, the prediction interval at 7 and

14 days were [0:9� dhosp ; 1:1� dhosp � and [0:8� dhosp ;

1:2� dhosp ], respectively.

RESULTS

Description
Relationship between predictors and hospitalizations change over

time. For instance, as described in Supplementary Figure S1, both

RT-PCR in the Bordeaux Hospital and in Gironde well anticipated

hospitalizations from June 2020 to December 2020. Unfortunately,

the relationship become less consistent beyond December 2020. For

instance, Gironde RT-PCR are synchronous to hospitalization peak

in April 2021 but do not anticipate it. In addition, the large increase

of positive RT-PCR during the end of the summer 2021 is not asso-

ciated with a similar increase of hospitalizations, which is probably

due to vaccination. Those findings explain why the forecast of

SARS-CoV-2 hospitalizations is difficult and why it is interesting to

leverage different data sources to improve prediction capacity.

Model performance
Table 1 shows the forecast performance depending on the features

included in the model. A simple model including the hospitalizations

and the RT-PCR led to a MAE of 9.04 and MRE of 17.6%, that is a

prediction up to 17.6% more or less than the observed number of

hospitalization 7 days later. The addition of RT-PCR and hospital-

izations from the Gironde area slightly decreased MAE at 7 days by

0.25, increased it at 14 days by 1.33 and decreased MRE by respec-

tively 0.5% and 1.6% at 7 and 14 days. Adding weather data
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improved 7- and 14-day MAE by respectively 1.28 and 5.58 hospi-

talizations. The addition of specific EHR data from the hospital

data warehouse improved the forecast at both 7 and 14 days by

respectively 0.92 and 2.15 in term of MAE, and by 1.7% and 4.8%

in term of MRE. As both emergency units and ambulance service

data provide information about the symptomatic patients who are

different from the positive patients detected by RT-PCR and the

severe patients detected by hospitalization, they might help to better

anticipate the evolution of the epidemic. Figure 2C supports those

findings and shows that using EHR data anticipates the April peak,

better forecasts the 2021–2022 winter increase and is more robust

to the hospital cluster of December 2020. Last, we evaluated the

information added by the number of vaccinated people and the var-

iants distribution. Those additional data provided similar forecast

performance and vaccine-RT-PCR interaction improved forecast at

7 days but decreased it at 14 days. Similar results were obtained

with the additional analysis considering the Bordeaux Hospital as

an additional department; results are available at Supplementary

Table S2. Overall, we considered the model including all the data

but without the vaccine-RT-PCR interaction as the best model.

Information retrieval from data warehouse was done with a 1-

day delay whereas it was a 5-day delay for hospitalizations and RT-

PCR at the department level. Therefore, forecasting using data from

Bordeaux Hospital data warehouse gives a 4-day advantage over

usual open data. To evaluate its consequences, we compared 7-day

forecast with 11-day forecast and 14-day forecast with 18-day fore-

cast. As shown in Table 1, this resulted in a MAE and MRE decrease

of respectively 2.08% and 4.9% at 7 days and of respectively 2.6%

and 3.7% at 14 days.

Table 2 shows the performance according to feature engineering

and statistical model. Model performance were improved by

smoothing and by feature transformation (ie, mean, minimum, max-

imum, and first derivative) of respectively 1.67 and 0.83 absolute

error at 7 days and 2.47 and 3.24 absolute error at 14 days. Linear

regression with elastic-net penalization outperformed random for-

est, Fr�echet random forest, and Poisson regression with elastic-net

penalization. Finally, the best model was the elastic-net model using

hospitalizations, RT-PCR, weather, vaccine, variant, emergency

units, ambulance service data, vaccine, and majority variant with a

smoothing span of 21 days and the mean, min, max, and first deriva-

tive feature transformation.

Figure 1 represents the feature importance of the model in term

of percentage of selection over the days with asymptotic confidence

intervals. At 7 days, the most important features were the ones

related to hospitalization, as there is an intrinsic dynamic of hospi-

talizations, which is less susceptible to be influenced by external fac-

tors on such a short period. At 14 days, the most important features

were related to RT-PCR in the 60þ years old group, weather data,

emergency units, and hospitalizations.

Figure 2A shows the best model predictions from 1 to 14 days.

Predictions were mostly accurate except: (1) in December 2020 dur-

ing the hospital nosocomial cluster at Bordeaux Hospital which had

a specific dynamic, (2) in the end of March 2021 where the April

decrease is anticipated 2 weeks earlier, and (3) during the summer

2021 and the winter 2021–2022 where the forecast is overestimat-

ing hospitalizations partly because the RT-PCR increased massively

whereas the hospitalizations increased moderately as depicted in

Supplementary Figure S1. The latter might be a consequence of the

vaccination campaign and the omicron spread. Figure 2B shows the

prediction intervals of the forecast using an ad hoc rule of respec-

tively 20% and 40% prediction interval at 7 and 14 days, which has

better coverage percentage than bootstrapped prediction intervals

available in the Supplementary Material. This figure shows that pre-

diction intervals are mostly correct except during summer 2021 and

Table 1. Forecast performance by data source

Forecast Data [number of features] MAE [95% CI] MRE [95% CI]

7 days HospþRT-PCR [266] 9.04 [6.36; 11.88] 0.176 [0.116; 0.243]

7 days HospþRT-PCRþGironde hospþGironde RT-PCR [526] 8.79 [6.41; 11.19] 0.171 [0.119; 0.227]

7 days HospþRT-PCRþGironde hospþGironde RT-PCRþweather [666] 7.51 [4.72; 10.38] 0.156 [0.097; 0.222]

7 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance service [2986]

6.59 [3.05; 9.78] 0.139 [0.065; 0.222]

7 days Hosp 1 RT-PCR 1 Gironde hosp 1 Gironde RT-PCR 1 weather 1 CT-scan 1 emergency

units 1 ambulance service 1 variants 1 vaccine [2990]

6.67 [3.08; 9.75] 0.136 [0.063; 0.223]

7 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance serviceþ variantsþ vaccineþ interaction (vaccine � RT-PCR) [3470]

6.12 [2.12; 9.89] 0.125 [0.048; 0.218]

14 days HospþRT-PCR [266] 15.88 [9.30; 21.56] 0.334 [0.204; 0.435]

14 days HospþRT-PCRþGironde hospþGironde RT-PCR [526] 17.21 [9.92; 24.99] 0.318 [0.187; 0.458]

14 days HospþRT-PCRþGironde hospþGironde RT-PCRþweather [666] 11.63 [6.90; 17.16] 0.242 [0.143; 0.339]

14 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance service [2986]

9.48 [4.92; 15.46] 0.194 [0.103; 0.304]

14 days Hosp 1 RT-PCR 1 Gironde hosp 1 Gironde RT-PCR 1 weather 1 CT-scan 1 emergency

units 1 ambulance service 1 variants 1 vaccine [2990]

9.37 [4.85; 15.34] 0.198 [0.105; 0.302]

14 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance serviceþ variantsþ vaccineþ interaction (vaccine � RT-PCR) [3470]

9.74 [4.67; 16.87] 0.212 [0.097; 0.329]

11 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance serviceþ variantsþ vaccine [2990]

8.75 [4.13; 13.37] 0.185 [0.091; 0.298]

18 days HospþRT-PCRþGironde hospþGironde RT-PCRþweatherþCT-scanþ emergency

unitsþ ambulance serviceþ variantsþ vaccine [2990]

11.97 [5.51; 18.45] 0.235 [0.115; 0.350]

Note: In bold, the best model per forecast time frame.

MAE: median absolute error; MRE: median relative error.
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winter 2021–2022. The former is explained by the low number of

infected—which generates narrow prediction intervals—and the

introduction of vaccination which biases the prediction forecast.

The latter is explained by the overestimation of hospitalization rise.

Model evolution over time
Figure 3 shows the evolution of MAE and MRE at 7 and 14 days

over time. Globally, both MAE and MRE tend to be higher in

December 2020, which corresponds to an intrahospital cluster.

They also increase after June 2021, which is probably related to the

impact of the vaccination campaign followed by the rise of omicron

variant.

Selected features by elastic-net penalization change over time. At

14-day forecast, we observe that features related to UHB positive

PCR (especially in the elderly), hospitalizations, and IPTCC are fre-

quently selected during all the period. Of note, features related to

pediatric emergency are more often selected after August 2021. At

7-day forecast, the most frequently selected features are less variable

over time, with the RT-PCR in the elderly, the hospitalizations, and

the IPTCC frequently selected. More details are available in Supple-

mentary Figures S5 and S6.

DISCUSSION

This work demonstrates good overall forecast ability, both in term

of relative and absolute error of predictions which where both

improved by the addition of weather and data-warehouse informa-

tion. In addition, the intrinsic “rules” governing the epidemic evolve

over time, and external interventions such as vaccination make the

hospitalization time series nonstationary, which is an important

challenge for a data driven approach. To mitigate this, we used an

adaptive approach where the model is trained every day on histori-

Gironde RT−PCR 60+ yo [Maximum, derivative 3 days]
New ICU [derivative 3 days]
% positive RT−PCR 60+ yo

IPTCC [Maximum]
Emergency (site 2) "hyperthermia" % of sojourn [Mean]

Emergency (site 2) "hyperthermia" % of sojourn [Minimum]
IPTCC [Mean]

Hospitalisation [derivative 3 days]
IPTCC [Minimum]

UHB positive RT−PCR [Maximum]
Hospitalisation [Minimum]

% positive RT−PCR 60+ yo [Minimum]
Hospitalisation [Mean]

Hospitalisation [Maximum]
UHB positive RT−PCR

Weekday : Monday
Hospitalisation

New hospitalisation
New hospitalisation [Maximum]

New hospitalisation [Mean]
New hospitalisation [Minimum]

0.6 0.7 0.8 0.9 1.0
% selected

Forecast : 7 days

% positive RT−PCR All age groups [Maximum]
% positive RT−PCR 60+ yo [Minimum]

SAMU "headache" % of sojourn [Minimum]
New hospitalisation [Maximum]

Emergency (pediatric) "anosmia"
Gironde RT−PCR 60+ yo [Maximum, derivative 3 days]

Gironde RT−PCR 60+ yo [derivative 3 days]
Weekday : Monday

IPTCC
positive RT−PCR 60+ yo

Dew point [Maximum, derivative 10 days]
UHB positive RT−PCR

% positive RT−PCR 60+ yo [Mean]
Emergency (site 2) "hyperthermia" % of sojourn [Minimum]

New hospitalisation
Dew point [Maximum, derivative 14 days]

Emergency (site 2) "hyperthermia" % of sojourn
% positive RT−PCR 60+ yo [Maximum]

% positive RT−PCR 60+ yo
IPTCC [Minimum]

0.6 0.7 0.8 0.9 1.0
% selected

Forecast : 14 days

Figure 1. Top 20 features importance with 95% confidence interval of the best model. As model is retrained every day and is elastic-net penalized, each dot repre-

sents the proportion of days for which the feature is selected. SAMU—French ambulance service.
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cal data, which is realistic given the swiftness of penalized linear

regression training. In addition, elastic-net penalization allows the

model to select different features each day enhancing the adaptive-

ness of the model.

In their review, Rahim et al7 identify compartmental models and

deep learning as the most common approaches to perform short-

term forecast, followed by machine learning and statistical learning.

Formal comparisons of their performance is difficult because dates

and locations vary across the reviewed articles. Table 3 summarize

findings of selected related work. Cramer et al8 describe the

COVID-19 Forecast Hub, an open platform where several aca-

demic, industry, and independent groups proposed forecasting

model for US SARS-CoV-2 cases, hospitalizations, and deaths,

which permits head-to-head comparison. In their paper, they eval-

uated death forecast performance. They show that performances

varied from one algorithm to another, showing no trend as to which

data would consistently provide the best performance. Interestingly,

the best algorithm used ensemble method, second and third best

algorithms used compartmental method.

In France, forecast performance of previous studies are generally

claimed to be good as depicted at Table 3.9,10,12 However, bench-

marking and comparisons are difficult due to different time period

and geographical scales. Graphical evaluations help to qualitatively

compare model behavior, especially considering slope shifts, but it is
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Figure 2. Forecast of best model at 7 and 14 days. (A) The best model forecast from 1 to 14 days. Each string corresponds to the forecast from 1 (yellow) to

14 days (purple) at each day. (B) The 20% prediction intervals at 7 days and 40% at 14 days. Image (C) compares the forecast without EHR data (ie, hospitaliza-

tionsþRT-PCRþGironde hospitalizationsþGironde RT-PCRþweatherþvariantþvaccine).
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not always provided9,12 and can show difficulties to anticipate those.10

Off note, the work proposed by Mohimont et al12 was able to antici-

pate November hospitalization slope shift at the national level.

The main strength of our study was to leverage information

from different sources. The addition of weather did improve fore-

casting which is consistent with previous work.25 The use of specific

information from a hospital data warehouse improved the perform-

ance both by increasing the amount of information and by updating

the information faster than public data sources.

In our work, the vaccine and variants data had little effect on the

performance of the model. This was partly expected because vaccine is

a monotonous increasing curve and majority variant is relatively stable

over time as shown in Supplementary Figure S2. In addition, there

might be mismeasurement bias of variant as not every Sars-CoV-2 pos-

itive swab is tested for variant identification. Furthermore, the infor-

mation added by variant and vaccine might already be captured by

both the RT-PCR and hospitalization features. We also observed that

RT-PCR-variant interaction deteriorated the model performance at

14 days. This was explained by a spurious positive correlation

between the interaction term and the hospitalizations. Nevertheless,

both vaccine and variant are linked to the SARS-CoV-2 epidemic and

the inability to leverage that information in machine learning

approach might call for a more mechanistic one.25–27

The moderate impact of the addition of Gironde data to the

model might be explained by: (1) the information already being cap-

tured by the local data from the Bordeaux Hospital and (2) the data

collection being slower at the department level than in the hospital.

Data consolidation (ie, the update of prior data thanks to new infor-

mation) was not taken into account because of lack of availability of

data versioning. For instance, hospitalization related to Sars-Cov-2

is sometimes identified in the EHR through billing codes in Interna-

tional Classification of Disease, 10th revision, which are only avail-

able at the end of the sojourn. This also might have biased the

performance evaluation.

Linear regression with elastic-net penalization outperformed

other more complex models such as Fr�echet or classical random for-

est. This might be explained by: (1) a linear relationship between the

features and (2) the difficulty for random forest to extrapolate fea-

tures relationship outside of the training set space that a linear

regression can handle more naturally.

This work outlined the advantage of adding information from

the EHRs to improve the forecast, especially at 14 days and during

November and December 2021 as depicted at Figure 2C. This was

expected because the EHRs provide additional information about

the local evolution of the pandemic through the emergency units

and the ambulance service data. Those data inform on the more spe-

cific population of COVID-19 symptomatic patients who are differ-

ent from the overall COVID-19 patients detected by RT-PCR and

the severe COVID-19 patients who are hospitalized.

Figure 3 outlined that model performance is not homogeneous.

Relative error was generally higher when the number of hospitaliza-

tions was low (summer 2021, November 2021) which is expected

because the denominator is lower during those periods. Absolute error

was higher during December 2020, which is expected because the

model did not learn on many observations yet, and there was a hospi-

tal cluster at this period. It was also higher during the summer 2021

that might be explained by the beginning of vaccine campaign effect.

Although the model performance can be considered as good,

there are some limitations. First, performance tends to deteriorate

when there is a sudden change of the hospitalizations dynamic. For

instance, in February and March 2021, the decrease and the increase

of the hospitalizations were not well anticipated by the model. Sec-

ond, change of the infectiousness of the virus either due to a muta-

tion or vaccine were not immediately learned by the model. This

might explain the overestimate during summer 2021 and it might

occur again in the future. Third, the model used for this task is a lin-

ear regression and it might not capture complex relations. As dis-

cussed before, random forest did not improve forecast but other

machine learning methods such as reservoir computing may.28

The model is currently used in the Bordeaux University Hospital

on a daily basis to anticipate the evolution of the number of

COVID-19 hospitalizations. The forecast is used in conjunction

Table 2. Forecast performance depending on modeling hyperparameters

Forecast Feature transformation Smoothing span Machine-learning model MAE [95% CI] MRE [95% CI]

7 days Raw, Mean, Min Max, Derivative 0 days Linear elastic-net 8.34 [3.13; 13.21] 0.168 [0.063; 0.284]

7 days Raw, Mean, Min Max, Derivative 7 days Linear elastic-net 8.23 [2.72; 13.24] 0.169 [0.057; 0.284]

7 days Raw, Mean, Min Max, Derivative 14 days Linear elastic-net 7.00 [2.42; 11.34] 0.162 [0.057; 0.263]

7 days Raw, Mean, Min Max, Derivative 21 days Linear elastic-net 6.67 [3.08; 9.75] 0.136 [0.063; 0.223]

7 days Raw 21 days Linear elastic-net 7.50 [0.90; 17.02] 0.151 [0.021; 0.331]

7 days Raw, Mean, Min Max, Derivative 21 days Poisson elastic-net 11.50 [5.75; 19.37] 0.262 [0.144; 0.419]

7 days Raw, Mean, Min Max, Derivative 21 days Random Forest 8.00 [4.00; 13.00] 0.173 [0.088; 0.265]

7 days 14-Day raw curves 21 days Fr�echet Forest 7.62 [3.44; 12.11] 0.169 [0.084; 0.274]

14 days Raw, Mean, Min Max, Derivative 0 days Linear elastic-net 11.84 [5.62; 18.43] 0.249 [0.107; 0.363]

14 days Raw, Mean, Min Max, Derivative 7 days Linear elastic-net 12.79 [6.78; 19.25] 0.267 [0.123; 0.387]

14 days Raw, Mean, Min Max, Derivative 14 days Linear elastic-net 10.75 [5.29; 16.78] 0.217 [0.097; 0.344]

14 days Raw, Mean, Min Max, Derivative 21 days Linear elastic-net 9.37 [4.85; 15.34] 0.198 [0.105; 0.302]

14 days Raw 21 days Linear elastic-net 12.61 [3.01; 25.47] 0.306 [0.056; 0.580]

14 days Raw, Mean, Min Max, Derivative 21 days Poisson elastic-net 15.31 [7.17; 25.73] 0.370 [0.205; 0.552]

14 days Raw, Mean, Min Max, Derivative 21 days Random Forest 13.00 [10.00; 18.00] 0.269 [0.190; 0.357]

14 days 14-Day raw curves 21 days Fr�echet Forest 13.52 [7.77; 18.49] 0.232 [0.145; 0.339]

Note: In bold, the best model per forecast time frame.

14-day raw curves: as Fr�echet model are able to learn trends directly from curves, they are not provided with transformed features.

Models with “Raw” data (ie, no transformation) are trained on 159 features. Models trained on “Raw, Mean, Min Max, Derivative” are trained on 2990 fea-

tures.

MAE: median absolute error; MRE: median relative error.
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with other indicators (number of hospitalizations, RT-PCR, emer-

gency unit’s workload, etc.) and is discussed with both clinicians

and public health experts. In our experience, the forecast is particu-

larly informative to anticipate when a local peak is reached and the

hospitalizations will decrease or the arrival of a new wave.

CONCLUSION

This work highlights the advantage of leveraging several different

data sources to improve forecast accuracy. The development of

hospital data warehouse might help to get more specific and faster

information than a traditional surveillance system, which in turn

will help to improve epidemic forecasting at a larger and finer

scale.
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Figure 3. Evolution of MAE and MRE over time at 7 and 14 days. Each dot corresponds to the median absolute error of the corresponding month with the 95%

bootstrapped confidence interval.

Table 3. Summary of discussed forecasting methods

Study Location Dataa Methods Outcomeb Performance

Paireau et al10 France EDMW Ensemble H at 14 days MAPE at 14 days: 20%

Mohimont et al12 France EDM Convolutional Neural Networks H at 14 days Normalized root mean square

deviation at 14 days: 3.2%

Pottier et al9 France E Linear algebra H at 14 days Average relative error: 12%

Carvalho et al11 France E Neural Networks C, D, and ICU at

14 days

MAPE: C 4.13%, D 10.26%,

ICU 0.92%

Cramer et al8 US EDM Ensemble (best) D at 4 weeks RMAEvB: 0.66

E UMass-MechBayes, Bayesian com-

partmental model (second best)

D at 4 weeks RMAEvB: 0.67

E Karlen-pypm, discrete time compart-

mental model (third best)

D at 4 weeks RMAEvB: 0.70

Note: Relative Mean Absolute Error compared to a baseline model of constant prediction (RMAEvB).
aE (Epidemiological), D (Demographic), M (Mobility), W (Weather).
bH (Hospitalizations), D (Death due to COVID-19), ICU (Intensive Care Units), C (Cases).

MAPE: mean absolute percentage error.
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