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Abstract

Clustering is part of unsupervised analysis methods that consist in grouping samples into homogeneous
and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis
testing is often used to infer the variables that significantly separate the estimated clusters from each
other. However, data-driven hypotheses are considered for the inference process, since the hypotheses
are derived from the clustering results. This double use of the data leads traditional hypothesis test to
fail to control the Type I error rate particularly because of uncertainty in the clustering process and the
potential artificial differences it could create. We propose three novel statistical hypothesis tests which
account for the clustering process. Our tests efficiently control the Type I error rate by identifying only
variables that contain a true signal separating groups of observations.

Key words: Clustering, hypothesis testing, double-dipping, circular analysis, selective inference,
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1 Introduction
Cluster analysis is ubiquitous in medical research (see McLachlan [1992] for a comprehensive overview) to
perform data classification, data exploration, and hypothesis generation [Xu and Wunsch, 2008]. Clustering
works by grouping homogeneous observations into disjoint subgroups or clusters. When multivariate data are
clustered, it is common to seek to identify which variables distinguish two or more of the estimated clusters,
in order to interpret the clustering structure and characterise observation groups and how they differ from
each other.

Despite the widespread use of clustering, Hennig et al. [2015] state there is no commonly accepted and
formal definition of what clusters are. In fact, the definition of what a cluster should be varies depending
on the context and the analysis specifics. Here we will use the definition from Everitt and Hothorn [2006],
which includes only two criteria: i) homogeneity of observations within a cluster and ii) separability of
observations between two different clusters. These two criteria are general enough to encompass the majority
of the working definitions of clusters. Both can be quantified using various approaches such as distances or
similarity metrics, shape of distribution [Steinbach et al., 2004], multimodality [Kalogeratos and Likas, 2012,
Siffer et al., 2018], or distributional assumptions[Liu et al., 2008, Kimes et al., 2017].

While clustering is a multivariate methodology that takes into account all variables, only a set of variables
can be expected to differentiate two particular clusters (i.e. separate their observations, according to the
second criterion of our definition above). This question of which variable separate clusters of individuals
is particularly relevant for high-dimensional data such as omics data [Ntranos et al., 2019, Vandenbon and
Diez, 2020]. The current practice to identify such variables is often based on post-clustering hypothesis
testing. It leads to a two-step pipeline (a first step of clustering and a second step of inference) that is
actually testing data-driven hypotheses in a process sometimes referred to as “double dipping”[Kriegeskorte
et al., 2009]. This approach does not efficiently control the type I error rate when testing for differences
between clusters. In fact, it is always possible to cluster the data using a clustering method, even if there
is no real process separating groups of observations. In this case, the clustering method artificially enforces
the differences between the observations by dividing them into different clusters. The significant differences
between clusters identified during the inference process could just be an artifact of the previous clustering
step. To illustrate this phenomenon, we consider data generated from a univariate Gaussian distribution with
mean 0 and variance 1 (Figure 1 panel A). Two clusters can be built, e.g., using hierarchical clustering with
Ward’s method and Euclidean distance (Figure 1 panel B). These two estimated clusters are not separated
clusters, since all observations come from the same Gaussian distribution. One way to infer their separation
is to test for a mean shift between them, for example using the classical t-test. Since there is no real process
separating these two clusters, the resulting p-values should be uniformly distributed. However, when we look
at the p-values of the t-test for 2000 simulations of the data, the resulting p-values are too small, leading to
false positives (Figure 1 panel B). This simple example illustrates how it is possible to infer a separation of
two clusters, even if this separation is not explained by a real process in the data. Classical inference requires
a priori hypothesis. In this toy example, the hypothesis, i.e the lack of separation of the two clusters, is based
on clusters derived from the data. Moreover, here we force differences between groups of observations by
clustering them, so the clustering results do not represent the true structure of the data. Thus, the discoveries
are only the results of clustering algorithms and not those of a true biological signal due to this double use of
the data and the bad structures forced by clustering. For example, in the context of RNA-seq data analysis,
accounting for this clustering step during the inference step is one of the open problems in the eleven grand
challenges in single-cell data science mentioned by Lähnemann et al. [2020].

Our goal is to propose new methods for post-clustering inference that take into account the clustering
step and the potential artificial differences it may introduce. For any clustering method that can be applied
to all features of the data to build clusters, we are interested in testing the null hypothesis that a particular
feature does not truly separate two of the estimated clusters. In particular, this null hypothesis allows that
the feature: i) is not involved in the separation of the two subgroups and is not affected by the clustering
step, and ii) is only involved in this separation because the clustering method applied to the data forced
differences.

Recently, some methodological work has been done on post-clustering inference. Since the data is used
twice, many of them use selective inference [Tibshirani et al., 2016, Lee et al., 2016] to account for the
clustering step. Selective inference aims to control the selective type I error. This is defined as the probability
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Figure 1: Artificial differences created by clustering. panel A Data generated according to 200 realisations
of a Gaussian distribution with mean 0 and variance 1. panel B Hierarchical clustering with Ward method
and Euclidean distance is applied to build two clusters. panel C t-test p-values and p-values given by the
test proposed by Gao et al. [2022] for separating the two estimated clusters. The uniform distribution is also
shown for comparison
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under the null of rejecting the null hypothesis, given that the model and the null hypothesis have been selected
thanks to the data. When data splitting is not possible, Fithian et al. [2014] has proposed to condition on this
selection event during statistical hypothesis testing. In applying this approach, we use two different types of
data: the data, to construct the model and the hypothesis, and the data given the fact that it has been used,
i.e. data not yet observed, to perform the test. This leads to statistical hypothesis tests that efficiently control
the selective type I error. Selective inference was first proposed for linear regression, change point detection
[Jewell et al., 2019] and more recently for tree regression [Neufeld et al., 2021]. Clustering is also a framework
in which selective inference has been applied recently. For post-clustering inference applied on RNA-seq data,
Zhang et al. [2019] have developed a truncated-normal statistic that use selective inference and leads to valid
p-values under their null of no differential expression. However, in addition to selective inference, they use
data splitting, which is only possible if the number of observations is large enough. They also use a supervised
approach to predict the partition formed on half of the data on the remaining half. Instead of conditioning
on the clustering event in their statistical hypothesis test, they condition on the fact that in the remaining
half of the data, the labels of the observations are predicted thanks to a supervised approach. More recently,
Gao et al. [2022] have developed a multivariate selective test to investigate whether two estimated clusters
are truly separated or whether the observations they contain come from a single cluster. By using selective
inference, they account for the clustering step. Their approach is suitable for cluster validation because their
null hypothesis is the equality of two cluster centers. This method also leads to valid p-values under the null
hypothesis (Figure 1 panel c). However, this method is not suitable for our purpose, since in this particular
context the goal is to study the separation of two clusters at the feature level, i.e., in a univariate setting.

In this paper, we introduce three new methods for post-clustering inference. First, we adapt the method
proposed by Gao et al. [2022] for univariate hypotheses to investigate whether individual features contain
information about group (clustering) structure. In doing so, we use a data-driven and fixed clustering of
the data to ensure interpretations. To deal with the multiple clusters case, we also present an extension of
this first test based on an aggregation of its p-values. Second, we propose another approach using a test
of multimodality that account for the clustering step by investigating the presence of a continuum in the
distribution of the variable. The paper proceeds as follows. In the Methods section, we describe the methods
we proposed for post-clustering inference. These approaches are then evaluated and compared in the Results
section using extensive numerical simulations and a real ecological dataset. Some final comments can be
found in the Discussion section.

2 Methods
In the following, let X be a n × p random variable of n observations of p features, with gth column Xg.
On X we apply a clustering method c() to create c(X), a partition of the n observations into K disjoint
clusters C1, . . . , CK . We are interested in the ability of a given variable Xg to separate two clusters Ck and
Cl estimated using all the information contained in X with the clustering method c().

2.1 Selective test
To develop our statistical hypothesis testing, we first specify a generative model to the observations along
Xg. We assume that each of the n observations of Xg comes from independent Gaussian distributions with
unknown mean µgi and known variance σ2

g . Then, for all i ∈ {1, . . . , n}, Xgi ∼ N (µgi, σ
2
g). Because of the

independence between each Xgi, the multivariate distribution of Xg is a multivariate Gaussian distribution
Nn

(
µg, σ

2
gIn

)
with mean µg = (µg1, . . . , µgn)

t and covariance matrix Σ = σ2
gIn. Let xg be the realisation

of Xg observed in X. Now, for a cluster Ck, let

µCk
g =

1

|Ck|
∑
i∈Ck

µgi and X
Ck

g =
1

|Ck|
∑
i∈Ck

Xgi

be the true mean and empirical mean, respectively, of the variable Xg in cluster Ck. Testing for a mean shift
between the two clusters is a straightfoward way to evaluate the separation of two clusters along Xg. Thus,
we define the two following hypotheses:

H0 : µCk
g = µCl

g vs H1 : µCk
g 6= µCl

g (1)
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By introducing a contrast vector η ∈ Rn defined by: ηi =
1i∈Ck

|Ck| −
1i∈Cl

|Cl| ∀i = 1, . . . , n following Jewell et al.
[2019], Gao et al. [2022], we can rewrite (1) above as:

H0 : µt
gη = 0 vs H1 : µt

gη 6= 0 (2)

H0 in (2) is actually generated by a function of the data c(X), which clearly sets us in the context
of selective inference. Conditioning on this clustering event within statistical inference procedures is thus
required. In particular, we derive an adaptation of the p-value proposed by Jewell et al. [2019] (originally
intended for change point detection) for our purposes of clustering:

pCk,Cl
g ≡ PH0

(
|Xt

gη| > |xt
gη| | Ck, Cl ∈ c(X)

)
(3)

Here we condition on the estimation of Ck and Cl by c(X), which leads to the definition of H0, and the
resulting p-values (3) account for the clustering as well as the uncertainty associated with the estimation of
these two clusters. pCk,Cl

g quantifies the probability that the mean difference between Ck and Cl is as large as
the observed difference under H0 given the observed clustering structure. Its calculation relies on all possible
realisations of Xg resulting in the same estimation of Ck and Cl when we apply c() to X. Yet, enumerating
all such data sets X is hard. To get more tractable p-values, we follow Jewell et al. [2019] and Gao et al.
[2022] in constraining the randomness in the random variable Xg and we define our p-value as follows:

p̃Ck,Cl
g ≡ PH0

(
|Xt

gη| > |xt
gη| |Ck, Cl ∈ c(X),πη

⊥Xg = πη
⊥xg

)
(4)

where π⊥η = In − ηηt

‖η‖22
restricts the random variable Xg to a space defined by the scalar πη⊥xg without

losing control of type I error [Gao et al., 2022]. The p-value (4) can be rewritten as (see Supplementary
Materials for the proof):

p̃Ck,Cl
g = PH0

(
|φg| > |xt

gη| | φg ∈ Sg

)
(5)

where Sg = {φg : Ck, Cl ∈ c (x (φg))} is the set of perturbations of the gth variable from X where both Ck

and Cl are conserved by c(), and φg =Xt
gη
H0∼ N

(
0, σ2

g‖η‖22
)
. X(φg) thus represents a perturbed version of

the data X, where only the gth variable is perturbed:

xg −
ηηtxg

‖η‖22
+
ηφg
‖η‖22

This perturbation has a clear interpretation: if |φg| > |xt
gη| data from the two clusters are split further apart

along Xg than is observed in the data; whereas if |φg| < |xt
gη| instead, they are brought closer together

along Xg (and if φg = xt
gη the data are actually not perturbed because in this case X(φg) = X). Note that

(5) can be rewritten as PH0

(
|φg| > |xt

gη|, φg ∈ Sg

)
/PH0 (φg ∈ Sg). So if Ck and Cl can only be preserved

when the observation are perturbed further apart, then (5) will be large since PH0

(
|φg| > |xt

gη|, φg ∈ Sg

)
'

PH0
(φg ∈ Sg). In conclusion, this selective test can be interpreted in terms of separability of the two clusters

considered (even though it is based on a difference in means) as it boils down to quantifying the possibility
to bring closer together the observations from the two clusters while preserving their separation.

In order to explicitly describe the set Sg while retaining as much generality as possible about c(), we
follow Gao et al. [2022] and use Monte-Carlo simulations to approximate p̃Ck,Cl

g . This strategy relies on (5)
being rewritten as:

p̃Ck,Cl
g =

E
[
1
{
|φg| > |xt

gη|, φg ∈ Sg

}]
E [1 {φg ∈ Sg}]

(6)

Namely, we sample φ1g, . . . , φNg
i.i.d∼ N

(
0, σ2

g‖η‖22
)
for some large value N , and replace the expectations in

(6) with the sums over all samples. This Monte-Carlo procedure avoids the need to formally describe Sg.
In order to enhance numerical efficiency, Gao et al. [2022] use an importance sampling approach originally
proposed by Yang et al. [2016] to improve the likelihood of preserving the clustering in the perturbed data.
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Our proposed estimation of p̃Ck,Cl
g is thus:

p̃Ck,Cl
g ≈

N∑
i=1

πi1
{
|ωi

g| ≥ |xt
gη|, Ck, Cl ∈ c(X(ωi

g))
}

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
} (7)

where ω1
g , . . . , ω

N
g ∼ N

(
xt
gη, σ

2
g‖η‖22

)
, and πi =

f1(ω
i
g)

f2(ωi
g)

the importance sampling probabilities with f1 the

density of a N
(
0, σ2

g‖η‖22
)
distribution and f2 the distribution of a N

(
xt
gη, σ

2
g‖η‖22

)
distribution. Of note,

we adapt the method from Phipson and Smyth [2010] to obtain unbiased Monte-Carlo p-values estimations
(see Supplementary Materials for details).

At the core of the above test is the scaling variance parameter σ2
g , which represents the variance of each

column of Xg. While σ2
g is assumed to be known in the test, it is not the case in practice and we propose to

use the following plug-in estimate instead:

σ̂2
g =

1

|Ck|+ |Cl| − 1

∑
i∈Ck,Cl

(
Xgi −X

Ck,Cl

g

)2
with X

Ck,Cl

g =
1

|Ck|+ |Cl|
∑

i∈Ck,Cl

Xgi

This variance estimate only takes into account observations from the two clusters of interest in the test, in line
our null hypothesis of no separation of the two clusters (the variance itself can informs on the separation of
the data [Liu et al., 2010]). In some cases, this σ̂2

g could underestimates the variance ofXg (particularly if the
clustering induces strong artificial differences). Meanwhile, Gao et al. [2022] rely on a different estimate, that
instead overestimate the variance in certain cases. Still they have showed type I error control is guaranteed,
even with an overestimated variance, at the cost of being overly conservative (see Supplementary Figure S1
for additional details).

2.2 A more powerful test in the presence of intervening clusters
The above selective test has been designed for comparing a pair of clusters. Yet, in practice there are often
more than 2 clusters. In such case, the test could have very limited statistical power even for well separated
clusters: if there is one or more additional cluster in-between the two clusters of interest, it quickly becomes
impossible to perturbed them closer together without changing the clustering (see Supplementary Figure S2).
To overcome this limitation, we extend the above selective test assuming that two estimated clusters Ck and
Cl are separated onXg if and only if at least one of the adjacent cluster pairs in-between them are separated.
This means that on the contrary, if there is a continuum on Xg to go from Ck to Cl, then Ck to Cl are not
separated. By testing only the separation of pairs of adjacent clusters we retain the statistical power of the
selective test. We propose to combine all the in-between adjacent pair selective test p-values into a so called
combined selective test to finally assess the separation of Ck and Cl on Xg.

To identify the clusters in-between Ck and Cl on Xg, we define the set:

Ck:lg :=
{
Ci, i = 1, . . . ,K / X

Ci

g ∈
[
min

(
X

Ck

g , X
Cl

g

)
,max

(
X

Ck

g , X
Cl

g

)]}
where X

Ci

g = 1
|Ci|

∑
j∈Ci

Xgj , implicitly sorting clusters according to their empirical mean on Xg. We define

two clusters Cm1
and Cm2

as adjacent on Xg if Cm1:m2
g = {Cm1

, Cm2
}. So if |Ck:lg | = M , there are M − 1

pairs of adjacent clusters in Ck:lg that draw a path from Ck to Cl. We can then define:

pCk:Cl
g := f

(
p1g, . . . , p

M−1
g

)
where f must be a merging function as described in Vovk and Wang [2020]. Based on numerical simulations,
we favor the use of the harmonic mean merging function, recommended by Vovk and Wang [2020] for potential
dependencies between the p-values – which is our case here since each cluster data contributes to two p-values
– and features a good trade-off between type I error and statistical power (see Supplementary Figure S3).
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Thus, we use:

pCk:Cl
g = min

e log (M − 1)
M − 1
M−1∑
i=1

1
pi
g

, 1


Of note, in order for all p1g, . . . , pM−1g to be computed using the same variance estimate, we propose this time
to plug-in an estimate of σ2

g that accounts for all observations belonging to either one the adjacent clusters
in Cg:lg :

σ̂2
g =

1

|Ck:l
g | − 1

∑
C∈Ck:l

g

∑
i∈C

(
Xgi −X

Ck:l
g

g

)2

with X
Ck:l

g

g =
1

|Ck:l
g |

∑
C∈Ck:l

g

∑
i∈C

Xgi

2.3 Multimodality test
The separation of two clusters according to a given variable is equivalent to this variable’s distribution being
multimodal. Following Kim et al. [2021], multimodality thus becomes a marker for the separation of clusters:
each mode corresponds to a group of homogeneous observations (i.e., a cluster), separated by less dense
regions of the distribution. But as with artificial mean differences arising from clustering, multimodality may
also be an artefact caused by the clustering method c(). We propose to leverage this notion of continuum
between two clusters: if Ck and Cl are separated, then there must be dip in the distribution of this variable
at some point between the two (i.e. multimodality). On the other hand, if there is a continuum between
these two clusters, then they cannot truly be separated (i.e. unimodality). Fortunately, such a continuum
cannot be caused by the clustering method.

This second proposal can be seen as a simplified version of our first selective test. Indeed, by perturbing
the data in the selective test to see if we can bring the two clusters closer without changing the clustering,
we assess how likely it would be to observe a continuum between Ck and Cl. If there is a continuum between
Ck and Cl on Xg, then its distribution must be unimodal. Thus, to investigate separability of those two
clusters on Xg, it suffices to apply a unimodality test to its distribution restricted only to the individuals
from clusters of the set Ck:l

g . Indeed, if the Xg separates Ck and Cl, then there are at least two clusters in
Ck:l

g that are separated from each other, and in particular, since these clusters are between Ck and Cl, there
is also a separation between them on Xg.

A unimodality test compares the null hypothesis “distribution of Xg is unimodal” to the alternative
“distribution of Xg is multimodal”. In the context of unsupervised clustering, Kalogeratos and Likas [2012]
developed a clustering algorithm based on incremental unimodality testing, and Siffer et al. [2018] developed
unimodality a test to assess data clusterability based on their multivariate distribution. Ameijeiras-Alonso
et al. [2021] give a recent overview on unimodality testing, but three tests are the most frequent: i) the
Silverman test [Silverman, 1981] based on the kernel estimate of the density f of the data, ii) the Dip Test
[Hartigan et al., 1985] based on the cumulative distribution function F , and iii) the excess mass test [Müller
and Sawitzki, 1991]. The Dip Test avoids the need for estimating of additional parameters or making any
distributional assumption and has already been applied to clustering [Kalogeratos and Likas, 2012, Wasserman
et al., 2014, Schelling and Plant, 2020]. Furthermore, compared to several multimodality tests available in
the R package multimode Ameijeiras-Alonso et al. [2021], the Dip Test outperforms its competition both in
terms of computation times and performances (see Supplementary Figure S4).

The Dip Test from Hartigan et al. [1985] relies on the dip statistic dip(F ) = min
G∈U

ρ(F,G), where ρ(F,G) =

supx |F (x)−G(x)| and U is the class of unimodal distributions. Thus, the dip statistic is the distance of F
to the set of unimodal functions and it measures the deviation of our distribution from unimodality. If F is
unimodal, then dip(F ) = 0, and conversly if F is multimodal, then dip(F ) > 0. In practice p-values can be
computed as:

pD̂n
:= P

(
dUn
≥ D̂n

)
where dUn is the dip statistic computed for a n-sample drawn from U [0, 1] (the standard uniform distribution),
D̂n is the observed dip statistic, and n is the sample size. Hartigan et al. [1985] showed that the Uniform
distribution is the unimodal distribution with the asymptotically largest dip statistic among the unimodal
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distributions (intuitively the least favourable candidate for unimodality): a distribution with a dip statistic
larger than that of the uniform distribution cannot be unimodal. Thus pD̂n

is interpreted as the probability
under the null case of unimodality that the uniform distribution has a dip statistic greater than the observed
dip statistic of F̂n.

For our purposes, we apply the Dip Test to the distribution of the variableXg restricted to the individuals
that are in the clusters of the set Ck:l to test for a continuum between Ck and Cl.

3 Results

3.1 Numerical simulations study
We present here results evaluating the behaviour of our proposed tests in the Methods section both in terms
of type-I error control and statistical power.

3.1.1 Behaviour in a two-dimensional setting

We generated two-dimensional data (p = 2) under two scenarios: (i) first with no separated clusters from
a common standard Gaussian distribution N (0, 1); and (ii) second with three clusters from Gaussian dis-
tributions N (µCj , 1) and built-in mean differences µC1 = (−5, 0), µC2 = (5, 0), and µC3 = (0, 10) (thus X1

separated all three clusters while X2 only separated C3 from the rest, meaning X2 was under the null when
comparing C1 and C2). In both cases, we applied hierarchical clustering with Ward method and Euclidean
distance to build three clusters. Figure 2A shows an example realisation for each scenario. In the first
scenario, clusters were estimated by forcing differences between groups of observations, creating artificial dif-
ferences between clusters, while in the second scenario, the estimated clusters represented the true structure
of the data (each cluster weas a homogeneous and separate group of observations).

Figure 2B shows the results of the three proposed approaches compared to the p-values from the usual
t-test for 2,000 repeated simulations each with a sample size of n = 200. For the no cluster scenario, the
t-test yielded extremely small p-values which translates into a direct inflation of the type-I error. In fact,
the t-test identified the artificial differences created during the clustering process. Taking into account this
clustering step, the p-values of the selective test pCk,Cl

g and the p-values resulting from its merging extension
pCk:Cl
g were fairly uniformly distributed over [0, 1], ensuring a good calibration of the p-values and a control

of type-I error. As for the multimodality test, its p-values were overly conservatives but consistent with no
real separation of clusters. This was due to its reference being the Uniform distribution (the limit case for
a unimodal distribution) while the data were generated from a Gaussian distribution (which has a lower dip
statistic than the uniform distribution). Those good results were confirmed under the 3 clusters scenario
when comparing C1 and C2 along X2. For all other comparisons under this scenario, all 4 tests correctly
detected the separated clusters that are under H1.

Of note, if clustering does not artificially force differences between groups of observations, e.g by discov-
ering the actual group structure in the data, the t-test also control the type-I error. This illustrates the
connections between artificial differences and the estimation of the number of clusters. But, this process is
still testing data driven hypothesis, which does not respect the classical inference setting where hypothesis
must be specified without using the data.

3.1.2 Statistical power

We now generated data from a univariate mixture of two Gaussian distributions with equal proportions and
variance: 0.5N (0, 1) + 0.5N (δ, 1), where the two components were separated by a mean difference of δ –
also called a contamination model [Laurent et al., 2018]. The two components distinguished two different
clusters, and the magnitude of δ tuned their separability. We applied hierarchical clustering with Ward
method and Euclidean distance to build either 2 or 4 clusters. Figure 3A displays an example realization of
this simulation. In the 2-cluster case, the true structure of the data was uncovered, while in the 4-cluster
case spurious clusters were introduced. We evaluated the statistical power of the three proposed tests to
detect the separation between clusters 1 and 2, the two most extreme clusters in the distribution of the data,
according to δ at significance levels α = 5% using N = 2000 Monte-Carlo replicates.
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Figure 2: Validity of p-values returned by our proposed tests, comparison with t-test. panel A Data
generation process. Two cases are studied: a case under a global null of no clusters in the data (No cluster)
and a case with three real clusters (3 clusters). In both cases, hierarchical clustering with Ward method and
Euclidean distance is used to build 3 clusters. panel B Resulting p-values for each possible cluster pair for
each variable for 2000 simulations of the data.
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Figure 3B displays the results. Intuitively, statistical power increases with δ. The multimodality test
appeared the most powerful in this setting , especially when δ ≥ 3. Siffer et al. [2018] has shown that δ = 3.04
is a threshold value above which bimodality begins to appear in such two-part Gaussian mixture. Moreover,
since all clusters in the 4-cluster case were between cluster 1 and cluster 2, statistical power achieved by the
multimodality test is exactly the same as in the 2-clusters case. In the two-clusters case, the direct selective
test and the merging selective test had the same statistical power (since only two clusters were estimated,
they were necessarily adjacent and therefore the direct selective test was exactly the same as the merging
one). Meanwhile, the direct selective test failed in the 4-cluster case, regardless of the value of δ. Indeed, it
was impossible to bring clusters 1 and 2 closer without mixing them with clusters 3 and 4. Fortunately, the
merging selective test avoided this pitfall, because the direct selective inference test performed favourably on
adjacent clusters, and carried over the separation between clusters 3 and 4. Of note, the merging selective
test remains valid when the numbers of adjacent p-values increases.

3.2 Application to real ecological data
To further assess our proposed approaches, we also analyzed real data available from the R package palmerpenguins
[Horst et al., 2020]. This benchmark dataset features p = 4 measured variables – bill length (mm), bill depth
(mm), flipper length (mm), and body mass (g) – for 344 penguins. After removing observations containing
missing values for at least one of the 4 variables, n = 333 observations were kept in our analysis. The
penguins belonged three different species: Adelie, Chinstrap, and Gentoo (with 146, 68 and 119 observations
respectively).

3.2.1 Negative control

We initially selected only female Gentoo penguins to create a negative control dataset. Since this dataset
contained only observations of the same species and sex, there should be no real differences between observa-
tions. We applied hierarchical clustering using Ward method and Euclidean distance on scaled data to build 3
clusters (scaling avoids the variable with the largest variance to dominate the clustering). Since there was no
information defining any group structure in this subset, the clustering artificially created differences. Table
1 presents the p-values of each of the 3 proposed test along with the ones from the t-test for all cluster pairs
along each of the four measures. Once again, the t-test identified numerous spurious associations. Mean-
while, all 3 proposed tests behaved properly by not identifying any of the four measures to be significantly
separating clusters.

Cluster pair tested Selective test (direct) Merging selective test Multimodality test t-test
Variable tested

Cluster 1 vs Cluster 2
bill length 0.4082 0.4110 0.4899 0.0759
bill depth 0.6478 0.6400 0.1478 0.4802
flipper length 0.1160 0.1154 0.0992 0.0017*
body mass 0.3321 0.3425 0.8320 0.0000*

Cluster 1 vs Cluster 3
bill length 0.1748 0.4995 0.6345 0.0001*
bill depth 0.2914 0.3025 0.5242 0.0000*
flipper length 0.3361 0.3206 0.6146 0.0005*
body mass 0.3404 0.3868 0.2918 0.1190

Cluster 2 vs Cluster 3
bill length 0.2096 0.2120 0.9140 0.0041*
bill depth 0.1867 0.6618 0.2376 0.0000*
flipper length 0.2101 0.4322 0.1337 0.0000*
body mass 0.1573 0.7967 0.6759 0.0000*

Table 1: P-values for all cluster pair tests along each of the 4 variables from the negative
control real data.
* highlights significant p-values at the α = 5% level
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Figure 3: Statistical power of the proposed tests. panel A Data generation process: data are generated
according to a univariate gaussian mixture with two components (with equal probability and variance) sepa-
rated by a mean difference δ (contamination model). Two cases are studied: a case where the true numbers
of clusters is estimated (2 clusters) and a case where more clusters are estimated (4 clusters). The orange
dashed line represents the mean of the component. panel B Statistical power (5% level) of the proposed tests
for the separation of Cluster 1 and Cluster 2 according the mean difference δ separating the two components
of the gaussian mixture.
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3.2.2 Full data analysis

We now included all n = 333 penguins in our analysis and analyzed the data as if we didn’t know the species
of the penguins. Since all 3 species were present, we want to identify which features are actually separating
them. Figure 4A displays the density distribution for the four (scaled) variables across all 3 species. Adelie
and Chinstrap penguins appear harder to distinguish, as they only appear to differ in bill length: Chinstrap
penguins have larger bills (comparable to those of Gentoo penguins) than Adelie penguins. The Gentoo
penguin species is the easiest to identify, as it is clearly different in the other 3 measures. Once again, we
applied hierarchical clustering to scaled data with Euclidean distance and Ward method. Figure 4B displays
the results of this clustering where we cut the dendrogram to get three clusters. Those three estimated clusters
recovered the true species: cluster 2 and cluster 3 each contained only penguins of the Gentoo and Chinstrap
species (respectively) while cluster 1 contained a mixture of two species (100% of the Adelie penguins plus
11 Chinstrap penguins).

Table 2 presents the p-values of each of the 3 proposed test along with the ones from the t-test for all
cluster pairs along each of the four measures. Since the identified clusters corresponded to the three real
penguin species, the clustering step was not expected to induce any artificial differences, and thus the t-test
results can be used as reference. Only one comparison was not significant at the 5% level according to the
t-test: bill depth did not separate Adelie (cluster 1) from Chinstrap penguins (cluster 3), which was visually
coherent with Figure 4A. The multimodality test seemed to lack statistical power here, but inspection of
the measures distribution depicted in Figure 4A showed that only a few comparison exhibited multimodality
(namely cluster 1/Adelie compared to either two other clusters along flipper length. Both selective tests
identified more significant differences (6/11 for the direct test and 7/11 for the merging test which is more
robust when more than 2 clusters are identified). The missed separations can be explained by the lack of
statistical power to detect small difference (see Supplementary Table 1 for additional details). By accounting
the clustering step, our proposed test could have a reduced power compared to other tests like t-test (which is
is the uniformly most powerful test [Lehmann, 2012]). But, this is because they are appropriately accounting
for the variability and the uncertainties of the clustering step leading to results that are always valid.

Cluster pair tested Direct selective test Merging selective test Multimodality test t-test
Variable tested

Cluster 1 vs Cluster 2
(Adelie vs Gentoo)
bill length 0.0024* 0.0023* 0.1647 0*
bill depth 0.0015* 0.0017* 0.3687 0*
flipper length 0.0725 0.1832 0.0047* 0*
body mass 0.0439* 0.0008* 0.6402 0*

Cluster 1 vs Cluster 3
(Adelie vs Chinstrap)

bill length 0.1748 0.0191* 0.0674 0*
bill depth 0.2266 0.2323 0.2373 0.0702
flipper length 0.4318 0.4434 0.0168* 0*
body mass 0.7036 0.7027 0.3311 0.0267*

Cluster 2 vs Cluster 3
(Gentoo vs Chinstrap)

bill length 0.2263 0.2115 0.0927 0*
bill depth 0.0084* 0.0051* 0.2245 0*
flipper length 0.0186* 0.0205* 0.1585 0*
body mass 0.0002* 0.0002* 0.4174 0*

Table 2: P-values for all cluster pair tests along each of the 4 variables from the positive control
real data.
* highlights significant p-values at the α = 5% level
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4 Discussion
In this paper, we propose three new statistical tests for post-clustering inference that can be used to identify
variables that separate two estimated clusters. We show that the double use of data (for clustering and for
inference) and the failure to propagate the uncertainty associated with cluster estimation can lead to invalid
p-values. This is particularly the case when too many clusters are estimated compared to the true underlying
structure of the data. In this case, since there is no true process separating every estimated clusters, the
clustering forces artificial differences between observations belonging to a common group of observations. Our
three proposed tests, which take into account this clustering step and/or its possible impact on inference,
give p-values that indicate a separation not induced by the clustering algorithm but emanating from the
underlying data generating process, while controlling the Type-I error rate adequately. Our approaches can
be used regardless of the chosen clustering algorithm and take into account many data analysis pipelines
where clustering results are used post-hoc to describe and interpret clusters.

All three approaches test whether there is a separation between clusters along a given variable. The
selective test is a rigorously defined test based on the concepts of selective inference, adapted from the
seminal work of Gao et al. [2022] and makes a Gaussian assumption on the data. Although it tests a
univariate mean difference between two clusters, it also exploits the multivariate structure of the data since
the (perturbed) clustering uses all variables. The multimodality test, on the other hand, is based on the
more intuitive concept of multimodality to characterise the separation of two clusters along a variable. It
only relies on univariate considerations, as the separation of clusters is examined based on the distribution of
each variable. Thus, unlike the selective test, which has longer computation times (dependent on the number
of observations, the number of variables, and the number of Monte-Carlo simulations required to estimate
p-values), it is very computationally efficient (see Supplementary Figure S5). However, this simplicity comes
at the expense of a larger null hypothesis: the multimodality test requires a clear separation between clusters
on the variable to work well, as it only uses the variable-level information and does not consider the entire
structure of the data. Finally, since false-negative problems could occur with the selective test (particularly
when the two clusters of interest are separated by other clusters), we also propose a merging method based
on the aggregation of p-values. This method has the advantage of correcting these false positive problems
while guaranteeing good statistical power. However, its computation cost is even greater than the selective
test because this approach requires the computation of all the adjacent p-values between Ck and Cl.

The selective test rely on some distributional assumptions. In particular, because it uses the selective
inference framework, it assumes Gaussian data to efficiently control the Type I error rate. We show that the
selective test remains robust to other distributions (see Supplementary Figure S6). The multimodality test
is based on the Dip Test which is a non-parametric test of unimodality. However, in practice, its p-value is
computed using the Uniform distribution as the reference distribution under the null of unimodality. It could
affect its statistical power but the control of the Type I error is still guaranteed.

The main limitation of our tests lies in the high dimensional setting. Due to the large number of variables
and their correlation, perturbation-based approaches can fail. In our case, this result is amplified by the fact
that the perturbation is only univariate. Thus, the selective inference test performs poorly in high dimension
since it is exclusively based on perturbations. In addition, the calculation of the p-values is done using a
Monte-Carlo approach requiring the clustering step to be repeated for each simulation and for each variable.
So, if the number of variables is high, the computation time of the selective test can therefore be too long.
Another problem of our approaches is related to the "signal vs. noise" ratio of the high dimension. In high
dimension, a small signal repeated over a large number of variables is sufficient to create separated clusters
in the high dimensional space [Klawonn et al., 2012]. For example in a two-components gaussian mixture,
for n = 100 observations, a mean difference δ = 1 repeated over p = 50 variables is enough to generate
separated clusters on the first principal component of a PCA. However, the unimodality test is not powerful
enough when the signal is too weak. The problem here is that the existence of clusters is only due to the
repetition of the signal on a large number of variables, i.e. one has to take into account all the variables
and the information they bring to explain the separation between clusters, but the unimodality test is purely
univariate, being only interested in the information brought by the tested variable and this is why it lacks
power in high dimension. Therefore, all the issues raised by the high-dimension constitute a natural path to
apply and extend the results of our work presented here.
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A Proof: Computation of the selective p-values
We want to compute the selective p-value given in (4):

pCk,Cl
g ≡ PH0

(
|Xg

tη| > |xg
tη| |Ck, Cl ∈ c(X),Πη

⊥Xg = Πη
⊥xg

)
To compute (4), we have to write our data matrix X as a function of our statistic Xg

tη and the residual
term Πη

⊥Xg where Πη
⊥ = In − ηηt

‖η‖22
Since, Xg = Πη

⊥Xg +
(
In −Πη

⊥
)
Xg, then :

c(X) = c ([x1| . . . |Xg| . . . |xp])

= c ([x1| . . . |0n| . . . |xp] + [0n| . . . |Xg| . . . |0n])

= c
(
[x1| . . . |0n| . . . |xp] +

[
0n| . . . |Π⊥ηXg + (In −Πη

⊥)Xg| . . . |0n

])
= c

(
[x1| . . . |0n| . . . |xp] +

[
0n| . . . |Π⊥ηXg +

(
In − In +

ηηt

‖η‖22

)
Xg| . . . |0n

])
= c

(
[x1| . . . |0n| . . . |xp] +

[
0n| . . . |Π⊥ηXg +

ηηt

‖η‖2
Xg| . . . |0n

])
= c

(
[x1| . . . |0n| . . . |xp] +

[
0n| . . . |Π⊥ηXg +

ηφg
‖η‖22

| . . . |0n

])
with φg =Xg

tη

= c

(
[x1| . . . |0n| . . . |xp] +

[
0n| . . . |Π⊥ηXg +

ηφg
‖η‖22

| . . . |0n

])
= c

([
x1| . . . |xg −

ηηtxg

‖η‖22
+
ηφg
‖η‖22

| . . . |xp

])
We also have :

Xt
gη ⊥ Π⊥ηXg

because Π⊥η is the orthogonal projection matrix onto the subspace orthogonal to span(η) [Jewell et al., 2019,
Gao et al., 2022].

Finally, we have :

Xg ∼ Nn(µg, σ
2
gIn)⇒Xt

gη ∼ N (µt
gη, σ

2
g‖η‖22)

⇒ φg
H0∼ N

(
0, σ2

g‖η‖22
)

Thus, the p-value (4) is equal to :

PH0

(
|φg| > |Xg

tη| | φg ∈ Sg

)
with Sg = {φg : Ck, Cl ∈ c (X(φg))} and φg

H0∼ N
(
0, σ2

g‖η‖22
)
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B Numerical computation of the selective p-value
Since the selective p-value given in (4) is intractable, in practice it is computed using a Monte-Carlo approach
with important sampling resulting in the p-value described in (7). However, Phipson and Smyth [2010] showed
that the classical Monte-Carlo estimator of a p-value could be biased for near to zero p-values. In fact, very
tiny p-values could be approximated by exactly 0 using the Monte-Carlo approach, leading to statistical
hypothesis testing that does not efficiently control the type I error rate. To overcome this problem, they
propose to correct the Monte-Carlo p-value by adding 1 in both the numerator and the denominator of the
estimated p-value. With this correction, instead of having exactly 0 Monte-Carlo p-value, the near to zero
p-values are approximated by 1

N+1 where N is the number of Monte-Carlo samples.
Unfortunately, we showed using numerical simulation studies that this correction could not work with the

selective p-value computed as in (7) for two reasons. The first one is because this p-value originally come from
a conditional probability (4), so by definition, there are in fact two probabilities to compute and to correct.
The second problem arrives because of the important sample approach. In fact, because under H1 the πi in
(7) are very small, adding 1 will drastically change the scale of the p-value. So, because of the important
sampling approach, we need to correct our Monte-Carlo p-value by adding a constant in the same order of π.

We propose to add π = 1
N

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}
in both the numerator and the denominator of (7).

This correction is reasonable since for small p-value, that is under H1 we have :

i) |xt
gη| is large because Ck and Cl are truly separated on Xg

ii)
N∑
i=1

πi1{|ωi
g| > |xt

gη|, Ck, Cl ∈ c(X(ωi
g)} ' 0 since each πi =

f1(ω
i
g)

f2(ωi
g)

where f1 is the density of a gaussian

distribution with mean 0. Then, because ωi
g ∼ N (xt

gη, σ
2‖η‖2) where |xt

gη| is large, f1 is evaluated in
a point that is far away of the mean, and that is why f1(ωi

g) ' 0.

So using i) and ii):

N∑
i=1

πi1
{
|ωi

g| ≥ |xt
gη|, Ck, Cl ∈ c(X(ωi

g))
}
+ π

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}
+ π

=
0 + π

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}
+ π

'

1
N

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}
+ 1

N

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}

=

1
N

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
}

N∑
i=1

πi1
{
Ck, Cl ∈ c(X(ωi

g))
} [

1 + 1
N

]
=

1
N

1 + 1
N

=
1

N + 1

So, by correcting our Monte-Carlo p-value by adding π we obtain the estimator proposed by Phipson and
Smyth [2010] for small p-value.
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C Supplementary Figure 1

Figure 5: Impact of the variance estimation on the p-values of the selective test. panel A The data are sim-
ulated according to a two-component Gaussian mixture: X ∼ 0.5N (0, 4)+0.5N (10, 1) for the overestimation
panel and according to a standard Gaussian distribution with mean 0 and variance 1 for the underestimation
panel. panel B QQ-plot of selective p-values against the uniform distribution according to the variance
estimator for the test Cluster 1 vs. Cluster 2 for 2000 simulations of the data. Overestimation of variance
leads to conservative p-values, while underestimation leads to false positives.
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D Supplementary Figure 2
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Figure 6: Illustration of the possible loss of statistical power of the selective test in cases where there are
more than two estimated clusters. panel A Data generation process. A bivariate dataset is simulated such
as three clusters are all separated only on X1. Cluster 1 and Cluster 2 are separated according to a mean
difference δ ∈ {0.5, 1, 1.5, 3, 6, 12, 15, 18, 19, 19.5}. panel B Statistical power at the α = 5% level of the
selective test computed using 500 simulation of the data as described in panel A according to δ, the mean
difference between Cluster 1 and Cluster 2. For each simulation, the selective test is applied to test the
separation of Cluster 1 vs Cluster 2 and Cluster 1 vs Cluster 3 only on X1.
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E Supplementary Figure 3

0.00

0.25

0.50

0.75

1.00

K=3 K=4 K=5 K=6 K=7

Number of estimated clusters (K)

p−
va

lu
es

 (
un

de
r 

H
0)

A

0.00

0.25

0.50

0.75

1.00

K=3 K=4 K=5 K=6 K=7

Number of estimated clusters (K)

p−
va

lu
es

 (
un

de
r 

H
1)

B

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7

Number of estimated clusters (K)

Fa
ls

e 
po

si
tiv

e 
ra

te

C

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

Value of the mean difference δ

S
ta

tis
tic

al
 p

ow
er

 (
5%

 le
ve

ls
)D

 

5% level

Merging function

Bonferoni (min)

Geometric Mean

Harmonic Mean

 

5% level

Merging function

Bonferoni (min)

Geometric Mean

Harmonic Mean

Figure 7: Comparison of three different merging functions presented in Vovk and Wang [2020]. panel A
Distribution of the resulting merging p-values under H0 as a function of the number of estimated clusters.
panel B Distribution of the resulting merging p-values under H1 (Gaussian mixture with only two compo-
nents of equal proportion and variance) as a function of the number of estimated clusters. panel C False
positive rate as a function of the number of estimated clusters. panel D Statistical power as a function of
the mean difference δ between the two modes of the mixture where K = 4 clusters are estimated (the same
simulation as in Figure 3. The selective test is always applied to the most extreme clusters, and in such a
way that the maximum number of adjacent p-values are merged. 2000 simulations of the data were used.
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F Supplementary Figure 4
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Figure 8: Comparison of different multimodality tests implemented in the R package multimode[Ameijeiras-
Alonso et al., 2021]. panel A p-values of each multimodality tests under the null for 500 simulations of 200
realisations of the Gaussian and uniform distributions. panel B Mean computation time required by each
test as a function of the number of observations n (averaging over the 500 simulations. panel C Statistical
power (at the α = 5% level) of each multimodality test as a function of δ, the difference in means between
two modes of a two-components Gaussian mixture (n = 200 observations). panel D Statistical power( at
the α = 5% level) of each multimodality test as a function of the number of observations for δ = 3.5 fixed.
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G Supplementary Figure 5

2 clusters 4 clusters

3 6 9 3 6 9

1e−02

1e−01

1e+00

1e+01

1e+02

Number of dimensions (p)

M
ea

n 
tim

e 
to

 p
er

fo
rm

 o
ne

 te
st

 (
se

c)
   

   
 lo

g1
0 

sc
al

e

Method Multimodality test Selective test (direct) Merging selective test

Figure 9: Mean computational time of the three proposed tests (based on 500 simulations of the data)
according to the number of dimensions (p) of X. The tests are performed only for the first variable, so
the dimensionality of the data only affects the computation times of the selective tests since the clustering
method must be applied on the data for each Monte-Carlo simulation using all the dimensions of X
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H Supplementary Figure 6
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Figure 10: Robustness of our tests for misspecification of the distributional assumption under the null.
panel A Data generation. The behaviour of our tests was studied on 7 different univariate and unimodal
distributions. For each distribution, Ward’s clustering on euclidean distance was applied to build 2 clus-
ters. panel B QQ-plot against the Uniform distribution of the p-values returned by our two tests for 500
simulations of each distribution.
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I Supplementary Table 1

Cluster pair bill length bill depth flipper length body mass
Cluster 1 vs Cluster 2 1.67 1.53 1.94 1.75
Cluster 1 vs Cluster 3 0.16 1.93 0.50 0.16
Cluster 2 vs Cluster 3 1.83 0.40 1.44 1.59

Table 3: Values of the mean difference (δ) on each (scaled) variable between each estimated pair of clusters
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