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Abstract: Research on sensorimotor rhythms (SMR) based on neurofeedback (NFb) emphasizes
improvements in selective attention associated with SMR amplification. However, the long-term
training proposed in most studies posed the question of acceptability, which led to the evaluation of
the potential of a single NFb session. Based on cognitive and autonomic controls interfering with
attention processes, we hypothesized changes in selective attention after a single SMR-NFb session,
along with changes in brain–heart interplay, which are reflected in the multifractality of heartbeat
dynamics. Here, young healthy participants (n = 35, 20 females, 21± 3 years) were randomly assigned
either to a control group (Ctrl) watching a movie or to a neurofeedback (NFb) group performing a
single session of SMR-NFb. A headset with EEG electrodes (positioned on C3 and C4) connected to a
smartphone app served to guide and to evaluate NFb training efficacy. A Stroop task was performed
for 8 min by each group before and after the intervention (movie vs. SMR-NFb) while collecting
heart rate variability and C4-EEG for 20 min. When compared to Ctrl, the NFb group exhibited
better Stroop performance, especially when facing incongruent trials. The multifractality and NFb
training efficacy were identified as strong predictors of the gain in global Stroop performance, while
multifractality was the only predictor regarding incongruent trials. We conclude that a single session
of SMR-NFb improves selective attention in healthy individuals through the specific reorganization
of brain–heart interplay, which is reflected in multifractal heartbeat dynamics.

Keywords: brain waves; complexity; entropy; HRV; multifractality; selective attention; SMR
neurofeedback

1. Introduction

Neurofeedback training (NFb) has developed in recent years as a mental practice
in which one is guided to generate selective brainwave magnifications during specific
sessions. NFb has proven beneficial effects in patients suffering from hyperactivity, brain
diseases, or sleep disorders. In healthy people, NFb is believed to enhance cognitive
functions and attention processes and helps improve behavior and well-being. A number
of brain waves have been targeted during NFb, among which sensory-motor rhythms
(SMR) (12–15 Hz) [1–4] have been associated with improved attentional processes [5–7],
even in healthy subjects [8,9] who did not suffer from any brain disease. A drawback
with such interventions is that people have been submitted to several sessions of SMR-
NFb [8–10], which poses the question of acceptability. Interestingly, recent findings point
to potential benefits of a single NFb session; as an example, Gadea et al. [11] showed
improved psychological markers (anxiety, depression, and anger) and biological markers
(EEG, and cortisol) of calmness and anxiety. By showing that both subjective (psychometric)
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and objective (biological) markers changed congruently after a single session of SMR-NFb
training, these results rule out a nonspecific (placebo) effect of a single SMR-NFb session.
They confirm that SMR activity, generally associated with internal inhibition, may have
links with a calm feeling, at least in calm resting conditions in their studies, which could rely
on the anxiety dimension suggested by Gadea et al. [11]. How this possible phenomenon is
connected with benefits for selective attention deserves further investigation because brain
and heart activities during calm conditions do not resemble the neural processes that arise
during cognitive activity.

In a number of daily activities, some cognitive resources are devoted to orienting
attention. This represents a critical function through which one detects errors and selects
information to prioritize for goal achievement. Attention is a complex neural and psycho-
logical phenomenon that unfolds across many brain structures and mechanisms [10,12,13].
As a multidimensional construct, attention cannot be reduced to a single measure of cogni-
tive performance [14] but rather emerges from a dynamic structuring of neural interactions.
According to the concept of neurovisceral integration developed by Benarroch [15] and
Thayer and Lane [16], those interactions cohere through nonlinear interdependencies to
form a complex system comprising cortical, subcortical, and cardiac autonomic regula-
tions [17,18]. As a matter of fact, the nonlinear dynamics in HRV have been shown to be
a reliable substrate to explore how a particular architecture takes place across a largely
distributed cognitive-autonomic network [19–23]. To date, researchers have attempted to
grasp two main aspects of behavior in brain–heart interplay, namely, system coordination
across multiple scales and a rich flux of information. So far, this information is supposed to
lie in the HRV properties evaluated by fractal and entropy metrics, respectively [21–26].
Meantime, developing tools to reach a finer analysis through these metrics has been an
active part of research in the last decades.

Since the introduction of detrended fluctuation analysis as a reliable method to capture
scaling exponents that characterize fractal-like temporal structures in HRV [27], it has been
recognized that complex phenomena in brain–heart interplay should not be oversimpli-
fied [28]. A multifractal behavior in heart rate variability [29] has been a common and
interesting observation that deserves further scale-dependent analyses to take into account
the crossover phenomena generally observed in short-range variations [28]. Scaling expo-
nents in HRV may vary with the size of the observational scale, which led Castiglioni et al.
to argue that a multiscale multifractal approach of HRV may provide a finer analysis of
complexity in heartbeat dynamics [26,28]. By depicting a bidimensional multiscale and
multifractal behavior in HRV, the mechanisms through which brain–heart interactions
cohere during selective attention might be modeled more completely. In fact, multiscale
multifractality was used recently to discriminate the conditions in which larger cascades
of neural processes dominate in brain–heart interactions [23]. Through the analysis of
the irregular behavior in HRV by using entropy metrics, these authors also inferred the
robustness in information flux through the central autonomic network (CAN) neurovisceral
integration. Computations of entropy adapted to relatively short RR time series [30] have
been suggested to indicate how a cognitive task exacerbates RR entropy, a phenomenon
that is abolished by a rise in anxiety [21,22]. To the best of our knowledge, the link between
the possible benefits of a single session of SMR-NFb and neurovisceral integration during a
task requiring selective attention has not been demonstrated.

Here, we aimed to show that improved attention, as a result of a single session of
SMR-NFb, is reliably reflected in the multiscale multifractality of HRV dynamics (RR
time series) because of the particular structuring of brain–heart interplay resulting from
SMR-NFb. To illustrate this intuition with sufficient consistency, the efficacy of a single
session of NFb was quantified. A rigorous use of the Stroop Color Word Test (SCWT)
allowed the quantification of selective attention. A control (Ctrl) group was compared to
the neurofeedback (NFb) (SMR-NFb training) group. Multiscale multifractality [26] and
refined composite multiscale sample entropy [30] were computed from the HRV dynamics
collected during the SCWT.
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2. Materials and Methods
2.1. Participants

Thirty-five healthy students in sports sciences (20 females, 15 males, aged 21 ± 3 years
old) gave their informed consent to take part in the present study that was part of their
academic curriculum and for which they received credits. The IRB of the faculte des
STAPS endorsed all the procedures, which followed the rules of the Declaration of Helsinki
and its later amendments. All participants reported having no history of neurological or
physiological disorders and normal or corrected-to-normal vision. None of them had ever
experienced NFb training. The participants were asked to avoid alcohol and caffeine and to
abstain from heavy physical activity for the 24 h preceding the experiment. The participants
were randomly distributed in two groups. The NFb group (n = 17, age 21 ± 1 years,
10 females) underwent a single session of NFb for 20 min (as described below). Instead, the
Ctrl group (n = 18, age 21 ± 4 years, 10 females) watched a neutral movie during this time.

2.2. Procedure

Before and after the intervention (NFb vs. watching a movie) the participants per-
formed a Stroop Color and Word Test (SCWT) for 8 min while their heart rate variability
was collected. For that, they were quietly seated on a chair at a viewing distance of about
0.5 m from the 15.6-inch screen of a laptop whose keyboard was used to respond to the
stimuli of the SCWT displayed on the screen. To allow familiarization with the task, par-
ticipants performed an initial SCWT for 8 min, guided by the experimenter to perfectly
understand the task, mainly the instruction to respond as accurately as possible. Then,
each participant performed two trials of SCWT, lasting 8 min, one before and one after
the intervention: a single 20 min session of SMR-NFb in the NFb group and watching an
emotionally neutral movie for the Ctrl group (Figure 1).
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Figure 1. Procedure and measurements. SCWT, Stroop Color Word Test; SMR-NFb, neurofeedback
training based on SMR frequency band. Fatigue was evaluated by an analog visual scale. HRV,
Heart rate variability as collected by RR cardiac interbeat time series; EEG, electroencephalo-
graphic activities.

The overall procedure lasted about 40 min. In order to discard a potential confounding
factor associated with mental fatigue, the participants were asked to self-report their
feelings about fatigue at the beginning and at the end of the procedure (Figure 1).

2.3. Stroop Color and Word Test (SCWT)

The SCWT can be used to explore different cognitive functions depending on how the
experimenter designs the test. Selective attention was the focus of the present study, which
involved the subject selecting which information to process and to ignore during SCWT.
The “selective attention theory” argues that color recognition requires more attention than
word reading. Therefore, in our conditions, the participants were instructed to pay attention
to correctly name the color “ink” of a word that designated a color, with the ’ink’ and the
word sometimes designating the same color (a so-called congruent trial) or different colors
(incongruent). A given ratio between incongruent and congruent response times has been
proposed as a cue to infer that selective attention has been a dominant process during the
task (see Section 3.2).
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SCWT was implemented using the software PsyToolkit [31,32]. All stimuli were
presented in the center of the screen displaying a black background color. Each trial began
with the presentation of a fixation cross that was replaced by the word stimulus after
250 ms (Figure 2). During the task, a word naming a color among “blue”, “green”, “red”,
or “yellow” appeared in an unpredictable manner, displayed either in a congruent (similar)
color or in incongruent (different) color (blue, green, red, or yellow). The participants
had to type on the keyboard where stickers indicated the corresponding colors before the
displayed word disappeared (1000 ms) (Figure 2). The next word appeared on the screen
250 ms later.
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Figure 2. A typical sequence of the Stroop Color and Word Test (SCWT). max RT = maximum
response time tolerated, after which the response was considered incorrect.

SCWT performances were reported as two distinct dimensions: correct responses and
response times. Both indices were computed considering all responses indistinctively and
considering congruent and incongruent trials separately.

2.4. The Single Neurofeedback Session
2.4.1. Description of SMR Training

The single session of NFb lasted 20 min, during which five 3 min runs were used to
guide SMR magnification, interspersed by 1 min rest periods. The participant was wearing
a headband (Figure 3) (URGOnight, Urgotech, Paris, France) equipped with two electrodes
located on the C3 and C4 positions and two electrodes located on the mastoids [33]. To
reach SMR magnification, no specific instructions were given except to relax [34,35]. The
participant had to focus on a vertical bar displayed on a smartphone, thanks to the dedicated
app, coupled to auditory feedback that sent rewards each time the SMR power increased
for 400 µs. The participants reached a higher level in the app (as in video games) each time
the SMR power was maintained for 2 s. Conversely, they were visually informed of the
absence of SMR magnification for 7 s, which brought them back to the lower level. This
kind of gamification generally promotes rapid progress, which was carefully quantified
here to evaluate NFb training efficacy.

2.4.2. Index of NFb Training Efficacy

As there is was risk that participants failed to achieve significant SMR magnification
during training, an assessment of NFb efficacy was needed. Following the guidelines
from Ros et al. [36], the within-session dynamics, meaning the dynamics of SMR produc-
tion over successive runs, were quantified. For that, we used the method proposed by
Reichert et al. [35] that consists of calculating the slope of a linear fit when a relative change
in SMR power is represented as a function of the five successive NFb runs (Figure 4). Re-
ichert et al. suggest that a better efficacy can be deduced from a higher slope, which makes
sense with our “gamification” design during the guided NFb training (see Section 2.4.1).
Therefore, the efficacy index corresponded here to the coefficient of a linear fit (slope),
computed as follows:
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Figure 3. The URGOnight tele-neurofeedback device. The EEG headband (a) permits the recording
of sensory-motor cortex electrical activity through four dry electrodes. Two of them are on the C3 and
C4 positions, and the others are for reference (ground) and are placed on the mastoids. The mobile
application (b) displays and emits visual and audio feedback according to the EEG fluctuations, and
the app guides the neurofeedback training.
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Figure 4. Two examples of individual efficacy quantification where linear fits of SMR relative power
as a function of the five successive NFb runs show better efficacy in participant (a) when compared to
participant (b).

First, for each run, the relative SMR power was computed as SMRpower
(8–12 Hz)/Totalpower (8–40 Hz). Second, the above ratio was averaged among the col-
lected C3 and C4 signals and calculated for each of the five runs (within session); then,
these averaged ratios were expressed as a function of the session mean (Z-score, Figure 4).
The NFb efficacy corresponds to the slope of the linear approximation computed over the
five-run Z-score values, as shown in Figure 4. The greater the slope, the better the efficacy.

2.5. Frequency Domain Analysis of C4-EEG Time Series during SCWT

C4-EEG data were collected with an URGOnight headband at 200 Hz during the
SCWT blocks for the NFb and Ctrl groups. This portable device was preferred to a con-
ventional EEG device for practical considerations. Preprocessed C4-EEG time series were
analyzed in the frequency domain by using the ensemble empirical mode decomposition
(EEMD) method adapted from Huang [37]. This method discriminates a nonlinear and
non-stationary signal into multiple intrinsic mode functions (IMF), allowing frequential
components of the signal to be defined. By adding white noise to the signal to assist the
decomposition (in the present study, an added white noise presenting a 0.1 standard devia-
tion for 10 realizations and 200 maximum iterations), the EEMD method solves the mode
mixing problem potentially described when using the EMD method initially described
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by Huang [37]. A detailed description of the EEMD procedure to analyze EEG signals
can be found in [38] by Xiao-jun et al. After the decomposition of the C4-EEG signal into
IMF, a Hilbert–Huang transform was used to compute the instantaneous frequency and
energy of each IMF for each participant (NFb and Ctrl group) during each SCWT (SCWT-pre
and SCWT-post).

2.6. HRV: Analysis of RR Time Series

Cardiac interbeat time intervals (RR) were collected during each SCWT in both the NFb
and Ctrl groups (Figure 1) using a bipolar electrode transmitter belt Polar H10© (Polar®,
Finland). The accuracy of this device has been demonstrated elsewhere [39]. The RR time
series were imported to Matlab (Matlab Release 2021a, Mathworks, Natick, MA, USA)
for subsequent analyses using existing Matlab functions and custom-designed algorithms.
First, occasional ectopic beats (the irregularity of the heart rhythm involving extra or
skipped heartbeats, e.g., extrasystoles and consecutive compensatory pause), were visually
identified and manually replaced with interpolated adjacent values.

2.6.1. Time and Frequency Domain Analyses of RR Time Series

The root mean square of the successive difference (RMSSD) in the RR time series
that relies on the magnitude of the short-range fluctuations of heart rate associated with
parasympathetic (vagal) modulation was computed. A discrete Fourier transform was com-
puted after cubic spline interpolation to obtain a 4 Hz resampled RR time series. The power
in the low-frequency (LF, [0.04–0.15] Hz) and high-frequency bands (HF, [0.15–0.40] Hz)
were extracted. The power ratio LF/HF was calculated as an index of the sympathovagal
balance [40].

2.6.2. Entropy in RR Time Series and Their Shuffled Surrogates

The irregularity of the RR time series was evaluated using sample entropy computed
over a range of observational scales [41] in experimental time series as well as in their shuf-
fled surrogates. The series were first pre-processed given that pronounced non-stationarity
could bias entropy measurement [42–44]. The drift in each series was subtracted as the
residual of an empirical mode decomposition (EMD). After removing the drift, the signal
stationarity was checked using the RWS method [42].

Then, the entropy in the pre-processed series was quantified using the refined compos-
ite multiscale entropy (RCMSE) method [30]. This method is better suited for the analysis
of short time series, achieves better accuracy in entropy computations, and presents a lower
risk of undefined entropy [30]. RCMSE was calculated as follows:

RCMSE(x, τ, m, r) = − ln

(
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ

)
, (1)

where x is the RR time series, τ the scale factor, m the embedded dimension (here, m = 2),
and r is the tolerance factor (here, 0.15) [45]. The RCMSE value was calculated for each
scale, τ, from τ = 1 to τ = 4. Since the length of the signal is critical for reliable entropy
determination, the length of each analyzed time series was determined based on the shortest
series among an individual set of recordings. Finally, we calculated an entropy index (Ei)
from the area under the curve of RCMSE vs. scales, obtained by using the trapezoidal
rule [22,23]. The same procedure was applied to 50 shuffled surrogates (mimicking white
noise) of each RR time series to ensure that the RCMSE in the original series departed away
from the RCMSE in the surrogates.

2.6.3. Multiscale Multifractality in RR Time Series and Their Phase-Randomized Surrogates

The multifractal multiscale structure of the 1 Hz resampled [23] RR time series were
analyzed by the fast DFA algorithm developed by Castiglioni et al. [26]. Given the resam-
pled RR time series xi of length N samples, we calculated its cumulative sum, yi. We
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split yi into M maximally overlapped blocks of τ seconds. We detrended each block with
a least-square linear regression and calculated the variance of the residuals in each k-th
block, σ2τ(k). The variability function, Fq(τ), is the q-th moment of σ2τ [46]:

Fq(τ) =
(

1
M ∑M

k=1

(
σ2

τ(k)
) q

2
) 1

q

f or q 6= 0, (2)

Fq(τ) = e
1

2M ∑M
k=1 ln (σ2

τ (k)) f or q = 0, (3)

We evaluated Equation (2) for q between [−5; 5] and block sizes, τ, between 10 s and
N/4 s. We evaluated the multifractal multiscale coefficients as a function of the time-scale,
τ, α(q, τ), calculating the derivative of log Fq(τ) vs. log n [26].

The parameter q in Equations (2) and (3) defines the moment order calculated for the
variances of the residuals. In the traditional monofractal DFA [27], the variability function
corresponds to the second-order moment (i.e., q = 2). While monofractal series exhibit the
same α coefficient for all moment orders, q, in multifractal series, positive moment orders,
q, weigh more in the contribution of the fractal components with greater amplitudes, and
negative moment orders, q, weigh more in the contribution of the fractal components with
lower amplitudes.

To define a multifractal degree as a function of scale, τ, MFi(τ) was obtained by calcu-
lating the standard deviation of all α(q, τ). Then, individual MFi profiles were observed as
a function of time scales, τ. To compare conditions and groups, we computed a unique mul-
tifractal index called MFI by calculating the area under the curve (trapezoid rule) obtained
between specific scales. In reference to 22, here, we selected τ = 10 s to τ = 17 s [23]

, which is quite similar to the alpha short-term coefficient reported by [47], τ = 8 s
to τ = 16 s, but takes into account the excessive deviations introduced by the method in
alpha values at the shortest scales, typically τ < 10 s [26,28].

The proportion of non-linear components in the multifractal time series was com-
puted by generating 50 surrogate series using the iterative amplitude adjusted Fourier-
transformed method(IAAFT, [48]) from the 1 Hz resampled HRV time series.

2.7. Statistical Analyses

Values are expressed as means and standard deviations (SD). Outliers were identified
using the interquartile range method [49] and replaced by the mean value for the considered
sample. The prerequisites for parametric tests were checked using the Shapiro–Wilk test
(normality) and the Levene test (homogeneity of variance in samples). To test the NFb
training effect on attention, RR dynamics, and EEG frequential features, a two-way repeated
measures ANOVA in a 2 × 2 design (a group between factor (Ctrl and NFb) and a time
within factor (pre- and post-training) was computed. Holm’s correction for multiple
comparisons was used as a standard post hoc test to neutralize the potential increase in
type I error.

In addition to the classical frequential approach, Bayesian tests (log(BF10)) were
computed to extend insight and guide the interpretation of the significance (p-values) ac-
cording to the likelihood of the alternative hypothesis versus the null hypothesis [50,51] (see
Bouny et al. [23] for an interpretation scale of this parameter adapted from Jeffreys, [52]).

A multiple regression analysis using the backward elimination technique was used
to predict SCWT performance. The backward elimination begins with all variables of the
model. At each stage, the variables that contribute the least to the discriminatory power
of the model are removed. If all the remaining variables meet the remaining criteria in
the model, the process is stopped. In addition, we rigorously conformed to the basic
assumptions of the regression model: linearity, independence, continuity, normality, ho-
moscedasticity, autocorrelation, and outliers. The significance of the model was verified
using the F-test for each multiple regression model developed. The coefficients of deter-
mination (R2), adjusted coefficients of determination (adjusted R2), and standard error of
estimate (SEE) for the estimated multiple regression model were calculated.
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Because in the presence of multicollinearity the solution of the regression model
becomes unstable, the variance inflation factor (VIF) was computed. The VIF measures
how much the variance of a regression coefficient is inflated due to multicollinearity.

The data were analyzed using JASP (version 0.16.2.0, https://jasp-stats.org, accessed
on 12 May 2022) and R (version 4.2.0, R: The R Project for Statistical Computing (r-project.org)
accessed on 12 May 2022).

3. Results
3.1. Index of NFb Efficacy

A significant positive slope in SMR power vs. training runs was observed in 60%
of the participants, who therefore demonstrated a high capacity to improve the level of
SMR generation as the runs were repeated. The heterogeneity observed in individual
NFb efficacy provided the opportunity to test NFb efficacy in relation with gains in SCWT
performance (Section 3.6).

3.2. Self-Reported Feeling of Fatigue

A two-way (pre vs. post x NFb vs. movie) ANOVA indicated increased levels of
self-reported fatigue in each group at the end of the experimental procedure (Figure 5)
(simple main effect of time within factor—F = 50.68, p < 0.001; log(BF10) = 12.76) and the
absence of group-specific increase (interaction effect—F = 0.36, p = 0.55; log(BF10) = −0.59).
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Figure 5. Effect of the intervention on subjective fatigue report by visual analog scale (VAS) of fatigue
for the control (Ctrl) and the neurofeedback (NFb) groups. Dashed gray lines indicate decreases
while solid black lines indicate increases. Interpretation scale: H1 **** means extreme evidence for
the alternative hypothesis.

3.3. Performance in SCWT

We distinguished two dimensions in SCWT performance in both congruent and
incongruent trials: the ratio of correct responses and respective response times.

3.3.1. Correct Responses

The ratio of correct responses was significantly improved after NFb, with an interaction
effect of group (Ctrl/NFb) x time (pre-/post-training) (F = 5.22, p < 0.05; log(BF10) = 0.39)
(Figure 6a). The post hoc analysis indicates that subjects in the NFb group significantly
improved their ratio after NFb training compared to the Ctrl group (t = −3.24, p < 0.05;
log(BF10) = 3.33).

https://jasp-stats.org
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Figure 6. Proportion of correct responses provided by each individual participant in the pre- and
post-training Stroop color and words tests (SCWT) for all trials (a), only incongruent trials (i.e., ink
color does not match the displayed color word) (b) and only congruent trials (i.e., ink color matches
the displayed color word) (c). For all trials (a) and incongruent trials (b), the NFb group showed
significantly better performances than the control (Ctrl) group after training. For congruent trials, no
differences were observed. An individual improvement in performance is highlighted by a solid line;
a decline in performance is highlighted by a dashed gray line. Interpretation scale: In panels (a) and
(b), H1 **** and H0 ** mean, respectively, extreme evidence for the alternative hypothesis and strong
evidence for the null hypothesis. No evidence in panel (c).

Going one step further by focusing on congruent and incongruent trials, it is worth
noting that only the ratio of incongruent trials was improved after NFb, with an interaction
effect of time x group (F = 6.77, p < 0.05; log(BF10) = 0.56) (Figure 6b)). Subjects in the
NFb group significantly improved the ratio of incongruent responses after NFb training
compared to the Ctrl group (t = −3.32, p < 0.05; log(BF10) = 3.48).

3.3.2. Response Times

The two-way ANOVA (pre vs. post × NFb vs. movie) applied on SCWT response
times indicated an absence of an NFb effect on these parameters. NFb training did not
modify response times on SCWT among all trials or for the congruent or incongruent trials
compared to the Ctrl condition (Table 1).

Table 1. Descriptive statistics (means ± standard deviations) of SCWT response times.

SCWT Response Times (Unit) Ctrl (N = 18) NFb (N = 17)

Pre Post Pre Post

RTtotal (ms) 616 ± 55 606 ± 64 640 ± 34 611 ± 36

RTcorrect (ms) 614 ± 54 604 ± 63 633 ± 33 606 ± 35

RTerror (ms) 664 ± 139 656 ± 99 703 ± 40 669 ± 56
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Table 1. Cont.

SCWT Response Times (Unit) Ctrl (N = 18) NFb (N = 17)

RTcongruent (ms) 584 ± 51 571 ± 53 597 ± 42 575 ± 38

RTincongruent (ms) 629 ± 60 621 ± 70 652 ± 65 623 ± 34

RTtotal = average response time among all trials; RTcorrect = average response time for correct responses only;
RTerror = average response time for wrong responses only; RTcongruent = average response time for congruent
trials (i.e., ink color matches the displayed color word); RTincongruent = average response time for incongruent
trials (i.e., ink color does not match the displayed color word); SCWT = Stroop color and word test.

3.4. Frequencies and Energy on C4-EEG during SCWT

C4-EEG signals, recorded during the SCWT blocks thanks to the URGOnight, were
decomposed into intrinsic mode functions (IMF, Figure 7). Both the IMF instantaneous
frequency and instantaneous energy were calculated from the Hilbert–Huang transform
for each SCWT (SCWT-pre and SCWT-post) (Table 2).
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Figure 7. Empirical mode decomposition of typical C4-EEG signals (a 10 s window) into six intrinsic
mode functions (IMF). Signal recorded before (a) and after (b) a control movie for a subject from the
Ctrl group and before (c) and after (d) the SMR-neurofeedback session for a subject from the NFb
group. Arrows and † indicate a significant evolution of the magnitude of the associated IMF. Here,
the window size of M = 2000 corresponds to a 10 s epoch.

Table 2. Means (±standard deviations) of frequency and energy values of the six IMFs computed
based on the ensemble empirical mode decomposition method [53] conducted on the cerebral activity
in the sensory-motor cortex (C4). IMFs were calculated for each group of subjects on pre- and
post-NFb training or watching a movie.

IMFs Ctrl (N = 18) NFb (N = 17)

Frequency (Hz) Energy Frequency (Hz) Energy

Pre Post Pre Post Pre Post Pre Post

IMF1 50.7 ± 1.6 51.3 ± 2.6 21.8 ± 17.2 42.5 ± 35.6 † 51.0 ± 1.6 52.0 ± 1.2 44.5 ± 23.2 36.9 ± 18.8
IMF2 30.0 ± 1.1 30.6 ± 1.8 18.3 ± 10.5 27.9 ± 16.2 † 31.4 ± 1.5 31.6 ± 1.0 23.8 ± 13.8 20.0 ± 6.8
IMF3 17.7 ± 0.4 18.2 ± 1.2 17.2 ± 6.7 21.7 ± 8.4 18.4 ± 0.9 18.8 ± 1.2 19.8 ± 7.0 17.7 ± 5.8
IMF4 10.3 ± 0.6 10.6 ± 0.9 18.6 ± 5.0 20.0 ± 5.3 10.8 ± 0.6 10.8 ± 0.4 18.5 ± 3.1 18.1 ± 5.7
IMF5 5.9 ± 0.4 6.2 ± 0.5 19.7 ± 5.5 18.5 ± 3.4 6.2 ± 0.5 6.3 ± 0.3 23.3 ± 9.3 18.7 ± 4.7
IMF6 3.5 ± 0.2 3.6 ± 0.2 16.5 ± 4.6 14.8 ± 3.4 3.6 ± 0.2 3.8 ± 0.3 19.2 ± 3.5 19.5 ± 4.1

IMF = intrinsic mode function. † indicates a significant difference considering the interaction between time within
factor and group between factor.
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The instantaneous energies of IMF1 and IMF2 did not change after the session for the
NFb group but were significantly decreased for subjects in the Ctrl group, with a significant
time × group interaction (F = 10.70, p < 0.01; log(BF10) = 1.68 and t = −3.71, p < 0.01;
log(BF10) = 1.75 for the IMF1, F = 9.66, p < 0.01; log(BF10) = 1.68 and t = −3.31, p < 0.05;
log(BF10) = 1.84 for the IMF2). As illustrated in Table 2, subjects in the NFb group better
maintained C4-EEG activity in the highest frequencies (50 Hz and 30 Hz) compared to
Ctrl. These bands correspond, respectively, to gamma and beta cerebral waves, which
are associated with information processing (gamma) and attention processes (beta) in
cognitive tasks.

No differences were found for the other IMF frequencies.
The capacity of subjects in the NFb group to maintain cerebral activities in both IMF1

and IMF2 after NFb was not correlated with the index of NFb efficacy or, consequently, to
the subject’s ability to produce SMR.

3.5. Heart Rate Dynamics during SCWT
3.5.1. HRV Analysis in Time-Domain and Frequency-Domain

Although vagal and sympathetic markers changed in post vs. pre conditions in each
group, a two-way (pre vs. post × NFb vs. movie) analysis of variance showed that HRV
markers in time and in frequency domains failed to show any specific effects of NFb
(Table 3). Overall, HF power and LF power (thus total power in HRV) tended to increase
after both watching a movie and NFb session, with no change in LF/HF (sympathovagal
balance), but this happened indistinctively in the Ctrl and the NFb group.

Table 3. Mean (±standard deviation) of time-(RMSSD) and frequency (Low Frequencies: LF, High
Frequencies: HF, sympatho-vagal ratio: LF/HF) domains indices and nonlinear complexity indices
(entropy index, Ei and multifractality, MFI) computed from RR time series.

HRV Variables (Unit) Ctrl (N = 18) NFb (N = 17)

Pre Post Pre Post

RMSSD (ms) 51.4 ± 24.0 62.8 ± 27.2 * 47.2 ± 20.2 54.7 ± 17.0 *

LF (ms2Hz) 1399 ± 764 2374 ± 1660 * 1618 ± 1103 1943 ± 1351

HF (ms2/Hz) 1041 ± 795 1339 ± 947 * 727 ± 486 1097 ± 711 *

LF/HF 1.50 ± 0.62 1.68 ± 0.72 2.28 ± 0.85 1.97 ± 0.85

Ei (u.a.) 5.98 ± 0.62 6.02 ± 0.21 6.11 ± 0.31 6.13 ± 0.47

MFI (u.a.) 0.65 ± 0.40 0.42 ± 0.17 † 0.48 ± 0.23 0.50 ± 0.19

RMSSD = root mean square of successive difference; LF = low frequencies power in HRV power spectrum;
HF = high frequencies power in HRV power spectrum; LF/HF = ratio of low frequencies on high frequencies;
Ei = entropy index; MFI = multifractal index. * indicates a significant difference considering time within factor,
† indicates a significant difference considering interaction between time within factor and group between factor.

3.5.2. Entropy in HRV

Complexity was quantified by entropy (RCMSE, marker: Ei) and the self-similarity
multifractal multiscale DFA (marker: MFI) during both SCWT-pre and SCWT-post.

The entropy marker (Ei) did not differ between groups or experimental conditions.
NFb training did not modify entropy markers compared to watching a movie.

The Bayesian factor confirmed this result by supporting strong evidence for the null
hypothesis for the main time effect on the RCMSE measure (log(BF10) = −1.34) and very
strong evidence for the interaction effect (log(BF10) = −3.21).

3.5.3. Scale-Specific Multifractality in HRV

The multiscale multifractal marker MFI, obtained from HRV during SCWT, signif-
icantly decreased in the Ctrl group but reached similar values before and after the NFb
session (t = −0.26, p = 1.00; log(BF10) = −1.08), with a significant interaction effect of time
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x group (F = 6.59, p < 0.05; log(BF10) = 0.99), showing a loss of multifractality in the Ctrl
group (t = 3.42, p < 0.01; log(BF10) = 2.23). In order to depart from background noise
as a possible explanation of this effect, we performed the same ANOVA on the average
values of 50 phase-randomized (IAAFT) surrogates of each original series. After phase-
randomization, as expected, the ANOVA showed that the NFb effect disappeared (F = 0.05,
p = 0.83; log(BF10) = 0.14). Therefore, the NFb effect observed in the MFI of the original
series was not fortuitous.

The relative evolution of the neurophysiological (EEG and HRV) and psychological
(fatigue) parameters that could explain the observed changes in cognitive performance are
illustrated in Figure 8.
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Figure 8. Psychological (visual analogic scale (VAS) of fatigue) and neurophysiological (from C4-EEG
and HRV) feature evolution from before and after a neurofeedback training for the NFb group or
a control movie for the Ctrl group. IMF = intrinsic mode function; RMSSD = root mean square of
successive differences; LF = low-frequency power in HRV power spectrum; HF = high-frequency
power in HRV power spectrum; LF/HF = ratio of low frequencies and high frequencies; Ei = entropy
index; MFI = multifractal index. † indicates a significant difference considering interaction between
time within factor and group between factor.

These parameters have been integrated in a multiple linear regression model using
backward elimination to define the best predictors of attention performance enhancement.
This methodology is presented in the section below.
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3.6. Multiple Linear Regression

Multivariate linear regressions using backward data entry were performed, consid-
ering the NFb group, to determine potential predictors of NFb-induced changes in SCWT
performance. When considering the ratio of correct responses among all trials, changes
in multifractality (∆MFI = MFIpre − MFIpost) was the stronger predictor, in association
with individual ability to generate SMR during NFb training, quantified here as “efficacy”
(Equation (4), F = 10.49, p < 0.05).

As a major outcome, it is worth noting that ∆MFI on its own was a strong predic-
tor of performance when focusing on the ratio of correct answers on incongruent trials
(Equation (5) F = 18.663, p = 0 < 0.01).

∆ NFb-induced changes in SCWTall trials = 0.039 + (0.062 × ∆MFI) + (0.117 × efficacy) (4)

∆ NFb-induced changes in SCWTIncongruents = 0.064 + (0.176 × ∆MFI) (5)

Although we noted a weak collinearity between ∆MFI and efficacy, which was too
low to affect the validity of the model in Equation (4) (VIF = 1.96), we thought it was
interesting to note that a positive correlation existed between training efficacy and ∆MFI
(r = 0.70, p < 0.05). The more a participant was able to produce SMR during NFb, the more
he maintained heartbeat complexity, and, based on Equation (5), SCWT performances, thus
highlighting selective attention.

4. Discussion

As a main finding in the present study, we show that a single session of neurofeedback
training (NFb) improved selective attention, which was tightly coupled with the emergence
of a new dynamic structuring of brain–heart interplay. The links we observed between NFb
efficacy, an NFb-induced gain in cognitive performances during SCWT, and the multifractal
behavior of HRV add significant value to conclude the real effects of a single SMR-NFb
session in our conditions, beyond a placebo effect, and go beyond a simple observation to
suggest a mechanistic neurovisceral support. Although studies exploring a single session
of SMR-NFb are scarce to date, our results extending the data to heart–brain interplay are
coherent with a recent initiative extending self-reported and EEG improvements to cortisol
regulation [11]. Both studies report on EEG correlates and go beyond these local effects
to argue for the remodeling of much larger neurovisceral networks after a single session
of NFb.

SMR-NFb training is a brainwave technique whose main effects on neural processes
have been associated with the attenuation of somatosensory information flux to the cortex
during SMR activity [3,8,9,11], which can persist in the form of cognitive and behavioral
improvements after the training session [54]. The underlying mechanisms supporting a
persistent effect are still poorly described to date regarding a single NFb session. Most of
the time, mechanisms must be inferred from experimental conditions, the dispositions of
participants (e.g., the healthy or diseased), and EEG correlates, but inconsistent results can
make it difficult to organize insights in a coherent way. Goncalves et al. [55] observed no
effect in healthy participants completing the attention network task. By contrast, a recent
study showed a feeling of calm and reduced tension that was coherently associated with
persistent EEG enhancements in the SMR band and reduced levels of salivary cortisol [11].
Less cortisol accumulation in the organism, a process modulated by the hypothalamic–
pituitary–adrenal axis, indicates that the positive effects of a single NFb session are not
confined to a few areas of the brain but rather rely on processes that unfold across a
neurovisceral network where the adrenal glands represent the end effector. Our approach
also built on NFb consequences across a neurovisceral integration, using the heart as an end
effector, and focused on HRV as a source of information. Although part of the information
may be grasped by the classical mode decomposition of HRV, the way dynamic interactions
cohere through an intricate cognitive-autonomic network has been better described by
fractal and entropy metrics in recent studies [21–26]. In line with this intuition, here, we
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found no relevant information in the time and frequency domains of HRV in response
to NFb but rather entropy and fractal metrics in HRV helped elaborate on the integrated
effects of NFb. The reasoning is deeply rooted in recent links established between cognitive
activity, autonomic control, and HRV [21–23]. The level of irregularity in HRV is classically
assessed by entropy metrics [41]. This level is thought to describe the activity of the
CAN and its interference with cognitive modulations [19,22]. A situation where anxiety-
driven changes in amygdala activity interfere with cognitively driven processes leads to
a significant reduction in HRV irregularity [21]. Since in our conditions entropy did not
change after NFb, the reduction in anxiety might not be the main factor restructuring the
main network supporting a sharpened attention during SCWT (Figure 6). There is no
discrepancy with the recent observation by Gadea et al. [11] that a reduction in anxiety
can result from a single NFb session because our participants were cognitively active
during the experimental measurements, though they were evaluated in resting conditions
in the later study. Here, when facing SCWT requirements, anxiety reduction may not
represent a dominant effect participating in the restructuring of the neurovisceral system,
which is associated with better selective attention. Rather, by showing substantial changes
in the scale-specific multifractality of HRV, other mechanisms are suspected. With a
multifractality during SCWT that was better maintained in participants of the NFb group,
the positive effects of a single NFb session most likely concern the ability to preserve critical
interconnections in structuring the emergence of selective attention. By considering the
degree of multifractality at distinct time scales of HRV, Castiglioni et al. [26,28] claimed to
have developed a fine way to analyze multifractality in heart rate dynamics. Particularly
in the short-range of HRV where scale-free and mode-locked processes are intertwined,
evaluating scale-specific multifractal behavior has been valued when it comes to depicting a
cognitive-autonomic architecture [23]. In agreement with Bouny et al. [23], the restructuring
of this network seemed to operate across scales 10-to-17 s after NFb, as indicated by levels
of multifractality (Table 3). The ability of participants in the NFb group to maintain normal
levels during the post-SWCT while said level dropped in the Ctrl group appeared as the
main correlate of a gain in selective attention (Equation (5)). When taking account of
individual behavior during the single NFb training session, these two combined variables
were also strong predictors of SCWT gains (Equation (4)). The multifractal properties in
complex system behavior have been linked to adaptability [56]. It should be concluded
that NFb in our conditions allowed the maintenance of a flexible cognitive adaptation
to SCWT, where this particular ability was dropped in participants of the Ctrl group
who lost part of their adaptability during the post-SCWT. The loss of adaptability in the
Ctrl group may be explained by fatigue, a feeling that was self-reported in each group
(Figure 5). By maintaining the complex structuring of neurovisceral integration in the
NFb-trained participants who declared a similar level of fatigue, NFb might facilitate the
emergence of cognitive functions [23], including selective attention. A specific network
has been identified by neuroimaging studies and called the sustained attention network
(SAN), including cortical areas (prefrontal cortex, anterior insula, and parietal areas) and
subcortical structures (cerebellar vermis, thalamus, putamen, and midbrain) [13]. By using
neuroimaging-based feedback to selectively activate this core network while concomitantly
deactivating the default mode network (mind-wandering), an alternative method to the
presently used SMR-NFb showed that it is possible to improve sustained attention [57].
Since SMR-NFb facilitates the modulation of thalamocortical networks [3], it might be
proposed that this NFb technique improves the brain–heart interplay specifically in the
selective attention parts of the SAN.

The C4-EEG analysis during SCWT provides additional evidence about the role of
NFb in counteracting the onset of mental fatigue. In particular, high-frequency modulations
are affected by mental fatigue [58], and these particular frequencies were better maintained
during the 8 min SCWT in the NFb group (Table 2). To resume in our conditions, while
fatigue deteriorated the neural capacities of activation as well as neurovisceral networked
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coordination, a single session of NFb practice helped counteract these effects to the benefit
of a neurovisceral structuring in favor of the emergence of selective attention.

As a whole, the present study also helped to assess the single-session NFb technique
beyond any placebo effect and may help structure future NFb interventions. Despite
obvious interest in NFb training for health and well-being, the practice in itself may appear
unattractive as long as a significant number of daily repeated sessions is needed. The
individual ability to generate SMR waves with sufficient propensity during training is
another drawback. Our results might pave the way for one-shot NFb practice, inviting a
rigorous control on training efficacy. Thanks to the visual NFb training provided by the
headset/smartphone device, here, 60% of the NFb participants were able to generate more
and more SMR during five short successive trials in a single session (Figure 3), though
they had no previous experience with NFb. This means that NFb practicability can be
strengthened over years thanks to the development of user-friendly connected devices.

5. Conclusions

Using the SCWT as an experimental challenge, our study elaborated on cognitive-
autonomic interactions to grasp the NFb effects on the cognitive dispositions of young
healthy subjects. Our observations add to recent intuitions that a single SMR-NFb session
improves brain modulations, as reflected in both self-reported feelings and neurophys-
iological correlates. It is speculated that the underlying mechanisms may involve two
critical networks known as SAN and CAN with common structures that are jointly stimu-
lated by SMR-NFb, which may provide a neurophysiological background explaining the
improvement in selective attention.

However, this study is not without limitations; since we used a home-based device de-
signed for non-clinical use, using a sham-controlled group, as consensually recommended
by guidance, was not possible. Rather, we used a control group watching a cognitively
and emotionally neutral documentary. Better evidence of the NFb effect could also be
obtained by replicating this experiment with a broader sample of participants, which would
strengthen the observed effect size.

To conclude, adding to a recent work showing improved mood modulations using
a single session of SMR-NFb to achieve anxiety reduction, we suggest here that other
mechanisms might operate through a new structuring of heart–brain interplay that supports
the emergence of better selective attention. Further studies are needed to explore which
neurophysiological processes can be remodeled after a single session of NFb. They might be
inspired by the fact that improved selective attention is useful on its own and in combination
with other cognitive processes, such as those involved in learning.
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