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1Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, QC, Canada,
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Valvometry is a non-invasive technique used to continuously monitor gaping

behaviour of bivalves at high frequency. In previous laboratory studies, valvometry

has revealed a behavioural sensitivity of bivalves to the presence of toxic microalgae

in seawater. However, the application of valvometry as an early-warning system for

detecting natural occurrences of toxic microalgae and their resulting toxicity in

bivalves remains largely unexplored. In this study, valvometry was used to

characterise changes in blue mussels (Mytilus edulis) gaping behaviour during

gradual exposure to the toxic dinoflagellate, Alexandrium catenella, which

produces paralytic shellfish toxins (PST). Laboratory experiments were first

performed to identify specific gaping behaviour changes and these responses

were subsequently validated in natural seawater conditions in a second

experiment. Under both laboratory and natural seawater conditions, mussels

exposed to A. catenella tended to remain open (yawning) longer than non-

exposed mussels. This change in gaping behaviour was observed at PST

concentration as low as 30 mg STXeq 100 g–1 of mussel tissue. We suggest that

increased opening is likely related to temporary muscular paralysis induced by toxic

algae, as this mechanism has been previously reported in other bivalve species.

Furthermore, we observed that biological rhythms of valve behaviour related to tidal

and daily rhythms were modified when mussels were intoxicated by PSP (Paralytic

Shellfish Poisoning). In conclusion, the effects of toxic algae on mussel gaping

behaviour reveals that valvometry could be used as an early-warning tool for the

presence of toxic Alexandrium sp. in the environment prior to mussels reaching the

regulatory threshold (80 mg STXeq 100 g–1) for harvest interdiction.

KEYWORDS

behavioural ecology, biomonitoring, environmental stress, Harmful Algal Blooms
(HABs), Paralytic Shellfish Poisoning (PSP)
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1 Introduction

Toxic algae are present in most aquatic ecosystems (Roelke,

2007), and represent around 300 species among the 5,000 species

of marine phytoplankton known (Hallegraeff, 1993; Bates et al.,

2020; McKenzie et al., 2021). Under certain environmental

conditions, these algae can proliferate, causing toxic algae

blooms known as “Harmful Algal Blooms” (HABs) (Anderson

et al., 2011) that can negatively impact aquaculture activities

through mass mortalities and/or harvest interruption to avoid

human intoxication (Granéli, 2006). For example, in Nova

Scotia, Canada, mass mortalities have been observed in salmon

farming during an Alexandrium catenella bloom (Cembella

et al., 2002). The dinoflagellate A. catenella can also be

consumed by filter-feeding organisms such as bivalves before

being bioaccumulated in higher trophic levels (Starr et al., 2017).

In contrast to finfish, many bivalve species can safely ingest toxic

algae, leading to toxin bioaccumulation in associated food webs.

Harvesting bivalves for human consumption is interrupted

during HABs when the toxin concentration reaches the 80 µg

SAXeq 100g-1 until the concentration of toxins in bivalve tissues

is reduced to levels safe for human consumption (Gouvernement

du Canada, 2018). Given the continual growth of bivalve

aquaculture worldwide (FAO, 2016), ways of detecting HABs

prior to bivalve intoxication could aid in mitigating impacts to

shellfish aquaculture industry.

One tool that has the potential to serve as an early-warning

system for environmental stressors, including HABs, is bivalve

valvometry (Andrade et al., 2016; Clements and Comeau, 2019).

Valvometry is a non-invasive, high-frequency monitoring

systems of the opening and closing behaviour of bivalves

(Andrade et al., 2016). Herein, individual’s valve movements

are measured with a small electrode sticked on one valve and a

magnet on the other one. These electrodes are connected to a

dynamic strain recorder, which translates the magnetic flux

between the sensor and magnet into a voltage value

proportional to the length of this opening. Thus, as bivalves

open and close their valves, these movements can be empirically

measured through changes in voltage readings produced by

valvometry systems. Since bivalves typically respond to

stressful events by modifying their gaping behaviour to avoid

stressful conditions, behavioural indicators can be identified

using high frequency valvometry and related to the presence

and intensity of specific environmental stressors. As such,

monitoring gaping behaviour through valvometry can be used

to both detect and characterise the impact of environmental

perturbations (Tran et al., 2003; Tran et al., 2010; Tran et al.,

2015; Comeau et al., 2019).

Among bivalve species cultured worldwide, mussels are

some of the most economically important. Mussel culture has

continuously increased through time, with global Mytilus edulis

production more than doubling from ≈100 KT in 1960 to >200

KT in 2000 (FAO, 2016). The main producers for the North
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American market are located on the east coast of Canada and

exclusively culture blue mussels, Mytilus edulis (FAO, 2016).

Naturally, these mussels form dense populations in temperate

and boreal regions, generally residing on hard substrates of

exposed or unexposed shores (Bayne, 1976). This species is

located in the intertidal and subtidal zones and can be dominant,

particularly in subarctic regions (Mathiesen et al., 2017). To feed,

blue mussels filter and consume phytoplankton including

diatoms and dinoflagellates, as well as some heterotrophic

flagellates and bacteria (Trottet et al., 2008). From a

valvometry research perspective, blue mussels (as well as other

mussel species) are among the most well studied and can thus

serve as a model species for contemporary valvometry research

(e.g., Riisgård et al., 2006; Robson et al., 2007; Robson et al.,

2010; Clements et al., 2021). Furthermore, related mussel species

are known to respond to toxic algae by exhibiting increased

“microclosures” (Comeau et al., 2019). The microclosures were

defined by 3% of Valve Opening Amplitude decreasing (VOA)

in 0.1 second. Moreover, M. edulis has the capacity to

accumulate more toxins than other sensitive species (Bricelj

et al., 1990; Lassus et al., 1999). As such, blue mussels are a prime

candidate for exploring the use of valvometry as an early-

warning tool for detecting HABs before they become

problematic, and notably to aquaculture and shellfish

farming industries.

In eastern Canada where blue mussels are cultured, the

dinoflagellate A. catenella is known to be involved in some

HAB events, particularly in the St. Lawrence Estuary (Therriault

et al., 1985; Larocque and Cembella, 1990). Globally, A. catenella

is present in Atlantic and Pacific America, Northern Europe,

South-East Asia and South-West Africa coasts (Lilly et al., 2007).

The St. Lawrence Estuary strain of A. catenella who served in this

study has a size between 25 to 50 µm length and 26 to 48 µm

wide (Bérard-Therriault et al., 1999) and produces a potent

mixture of toxins like saxitoxin and numerous derivatives, called

Paralytic Shellfish Toxins (PST), which are associated with

Paralytic Shellfish Poisoning (PSP) syndrome in humans

(Hégaret et al., 2007). These toxins attach specifically but

reversibly to the voltage-dependant sodium channels of

animals, stopping the action potential production in the

nervous system and muscles (Hégaret et al., 2007; James et al.,

2010). In the case of bivalves, adductor muscle paralysis can be

observed along with digestive system damage and reduced

hemocytes following exposure (Galimany et al., 2008).

Given the importance of blue mussels to the regional

economy of eastern Canada, coupled with the importance of

developing early-warning tools for HABs, the aim of this study

was to explore the potential forM. edulis valve gaping to serve as

an early-warning biomonitoring tool for HABs using high

frequency valvometry. Herein, we sought to identify gaping

behaviours and rhythmicity characteristic of A. catenella

presence, and to determine the ability of valvometry to detect

the presence A. catenella before blooms occur, in both laboratory
frontiersin.org
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and natural seawater settings. We hypothesized that specific

gaping behaviour changes would be detected in the presence of

PST using high frequency valvometry monitoring systems.
2 Materials and methods

2.1 Experiment 1: Laboratory experiment

In November 2018, two-year-old culturedM. edulis (average

shell length, 65.65 ± 2.33 mm n = 24) were collected from a

mussel lease in St. Peter’s Bay, Prince Edward Island, Canada

(46° 26’ 30.7” N, 62° 44’ 51.3” W), characterised by a pure M.

edulis population (Tremblay et al., 2011). The animals were

immediately transported on ice to the Station Aquicole de

Pointe-au-Père (Institut des Sciences de la Mer, Rimouski,

Canada) and acclimated to laboratory conditions for 30 days

in two 300 L maintenance tanks with 1 µm filtered seawater

(continuously aerated with a salinity ≈ 28, and a natural

photoperiod). During acclimation, the temperature was

increased by 1°C day-1 until the desired experimental

temperature was reached (described below). Mussels were

continuously fed with live non-toxic algae of Tisochrysis lutea

CCMP 1324, Chaetoceros muelleri CCMP 1316, and Pavlova

lutheri CCMP 1325 (ratio 1:1:1 respectively) at a rate of 60,000

cells L-1 per 50 mussels repartited in the two 300 L tanks. Algae

were batch-cultured in f/2 medium (with Si for the diatom C.

muelleri) (Guillard, 1975) at 18°C, under continuous

illumination, in 20 L carbons supplied continuously with CO2

to maintain a pH of ≈ 8 and a photosynthetic active radiation of

100 µmol quanta m–2 s–1. Cell counts were determined with a

Multisizer 4e Beckman Coulter counter with a 50-mm
pore orifice.

For the laboratory experiment, the strain of A. catenella

‘AT6’ from the St. Lawrence Estuary isolated at the Maurice

Lamontagne Institute (Department of Fisheries and Oceans;

DFO) during a 2008 severe red tide event was used (Starr

et al., 2017). Cells of A. catenella were cultured as already

described for other species and harvested in late exponential

growth and distributed in the mussel tanks during the

experiment, according to the necessary concentrations detailed

in 2.2. to obtain target toxicity. Previous cultures of A. catenella

showed toxin cell quotas ranging between 3 and 60 pg STXeq

cell–1 (Nadalini, J.-B. and Tremblay, R., unpublished data).

Assuming the lowest toxin content, production was set to

exceed the regulatory threshold for shellfish harvesting closure

of 80 mg STXeq 100 g–1.

The experiment was conducted over three days at 18°C, an

intermediate temperature between the optima for mussels (20°C;

Almada-Villela et al., 1982) and 14°C for A. catenella (Boivin-

Rioux et al., 2021). Following the 30-day acclimatation period

(as described above), 24 mussels were connected to valvometry

monitoring systems described in Nagai et al. (2006) and Comeau
Frontiers in Marine Science 03
(2014) (see Section 2.5 below for details). During the experiment,

mussels were equally distributed in six tanks (4 mussels tank-1)

containing 100-L of 1 µm filtered seawater (Figure 1A). Each

mussel was analysed individually for behaviour and PST

concentration accumulated in tissues.

Gaping behaviour of the mussels was continuously

monitored using valvometry (see Section 2.5 below) for 24-

hours prior to exposure to toxic algae to obtain baseline data.

After this reference period, cells of A. catenella were supplied to

each tank at the following concentrations: 0 (control), 1,330,

2,670, 4,000, 5,330 and 10,666 cell L-1. Twenty-four hours later,

a second pulse of non-toxic microalgae naturally consumed by

the mussels, (Tetraselmis suecica), was added in the tanks (5,000

cells mL-1) after a water change and maintained for one day with

a peristaltic pump to eliminate potential gaping behaviour

changes induced by food supply variation. Gaping behaviour

was continuously measured during the exposure of both A.

catenella and T. suecica.
2.2 Experiment 2: Natural seawater
experiment

In addition to the controlled laboratory experiment, a 90-day

in situ experiment was conducted with unfiltered natural

seawater at the Maurice- Lamontagne Institute (DFO, Mont-

Joli, Québec, Canada) from June to September 2019 – a period in

which A. catenella blooms are known to occur in the St.

Lawrence Estuary (Parkhill and Cembella, 1999; Boivin-Rioux

et al., 2021). The natural seawater experiment was performed

withM. edulis collected in a mussel lease in St Peter’s Bay, Prince

Edward Island in 2019. To expose mussels to natural seawater

and meteorological conditions, this natural seawater experiment

was carried out in outdoor tanks supplied with unfiltered raw

seawater from the adjacent St. Lawrence Estuary. The raw

seawater pumped at the surface (1-10m, depending of the tide)

was directed in a 150 L header tank and distributed by gravity to

three experimental conical 100 L tanks containing mussels at the

top of each tank (Figure 1B). The seawater was supplied with a

flow rate of 15 L min-1, replacing the total volume of the header

tank every 3 minutes (Figure 1C). Homogenous seawater mixing

in the experimental tanks was achieved by using a grid at the

surface of each tank. Mixing was validated by dispersion of food

colourants and use of GoPro cameras in each tank (GoPro

HERO4 Silver +LCD), demonstrating uniform repartition and

eventual elimination of coloured water. A calibrated CTD probe

was installed in the header tank to monitor temperature, salinity

and turbidity every 15 minutes. A total of 36 mussels were

equipped for valvometry and distributed equally among the

experimental tanks at the same depth (n = 12 mussels

experimental per tank), where they were allowed to acclimate

to the natural seawater conditions for one week prior to

experimentation; valvometry was not recorded during this
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acclimation period. The vertical flow of water and consistent

depth of the mussels ensured that secondary assimilation

through the absorption of pseudofeces and feces (Sonier et al.,

2020) was negligible.

The presence and concentration of A. catenella in the header

tank were monitored daily during low tide via detection tests and

microscope identification. Two detection tests (1. Jellet from

Scotia Rapid Testing, NS, Canada; and 2. Algal Toxin Enzyme-

Linked Immunosorbent Assay ELISA Plate Kits from Eurofins

Abraxis, PA, USA) were used to detect A. catenella in 48 L

seawater samples filtered to retain the 20-100 µm fraction,

which was concentrated in a 200 mL solution. The qualitative

Scotia Rapid Testing LTD test (SRT test) was use dayly and

indirectly detects A. catenella via the presence of saxitoxin and

neosaxitoxin antibodies (Jellett et al., 2002), with a manufacturer

indicated saxitoxin detection limit between 0.02 and 0.1 µg mL-1.

For the first 50 days, a 50 mL subsample obtained from the 200

mL sample mentioned above was concentrated and re-suspended

in 5 mL of 1 µm filtered seawater and a subsample of 500 µL was

used for the test. The following day 50, however, we adjusted the
Frontiers in Marine Science 04
protocol to ensure that we were not losing sensitivity because of

the re-suspension by recuperating the material filtered directly

with a spatula to avoid dilution and thus increasing the detection

limit of the SRT test. The rest of the protocol remained

unchanged, and the toxin extraction was realised with acetic

acid before being buffered and the test applied. Another

subsample from the 200 mL fraction described above was used

for the ELISA assay and was filtered on 11 µm nylon filter

(Millipore Sigma) and subsequently frozen. The saxitoxins and

the analogues potentially present on the nylon filter was extracted

with a known volume of 5 or 10 mL of 0.1 M acetic acid

(Dell’Aversano et al., 2005) depending of the difficulty of

resuspending the material. Extracts were submitted to ultrasonic

treatment for 5 minutes to favour cell disruption followed by

centrifugation and the filtrate submitted to ELISA assay following

the manufacturer protocol. Briefly, the saxitoxin present in the

sample, and a saxitoxin-enzyme conjugate, each compete for

rabbit saxitoxin antibodies in solution. The saxitoxin antibodies

are then bound by an anti-rabbit antibody immobilised on a

microtiter plate (Abraxis LLC,Warminster, PA, USA). In contrast
B C

A

FIGURE 1

Experimental design of the lab experiment, 4 mussel per tanks, T. suecica added after 48h (A), picture of mussel with electrode (B) and of the
natural seawater experiment (C), 1: seawater, 2: water intake, 3: water pump, 4: head tank, 5: CTD, 6: valvometers, 7: battery, 8: Tap, 9: sample,
10: flowmeter, 11: water sampled, 12: Elisa test, 13: cell count, 14: Jellet test.
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to the SRT test, the detection limit of the ELISA assay is much

lower at 0.015 ng mL-1. This assay recognises saxitoxin and its

derivatives with varying degrees; the cross reactivities are 100% for

Saxitoxin (STX), 29% for Decarbamoyl STX, 23% for GTX 2 & 3

and GTX-5B, 13% for Lyngbyatoxin, but drop to 2.0% for Sulfo

GTX 1 & 2, 1.4% for Decarbamoyl GTX 2 & 3, 0.6% Decarbamoyl

Neo STX, and for the powerful Neosaxitoxin and GTX 1 & 4, this

decreases to less than 1.3 and 0.2% respectively.

In addition to seawater samples for detecting PST, separate

samples of unfiltered seawater (200 mL) coming from the header

tank were also preserved daily in acidic Lugol’s solution for

microscope cell counts to quantify the concentration of A.

catenella. The daily microscopic count of potential toxic algae

(cells L-1 of A. catenella, Dinophysis acuminata and Pseudo-

nitzschia spp.) were estimated using the standard Utermöhl

method (Andersen and Throndsen, 2004).
2.3 PST detection in mussel tissues

The concentration of PST in the tissues of experimental

mussels, as well as in wild mussels, sampled from the shore of the

St. Lawrence Estuary (adjacent to our natural seawater setup to

estimate natural contamination levels) was determined using the

Algal Toxin ELISA Plate Kits as described above. The test was

conducted on each mussel individually, by crushing and

homogenizing whole mussel tissues in acetic acid with a ratio

of 1 mL of acid acetic for 1 g of mussel’s tissue. In addition, PST

content was regularly measured in PST concentrations in the

two mussel populations (estuarine shoreline three times every

week and experimental tanks at the end of the experience)

sampled the same day showed no significant difference

(Student test: df = 24,94, T-value = 0.055, p-value = 0.956).

Same PST level was measured in wild mussels tissue

than monitored.
2.4 Valvometry

To measure gaping behaviour in each experiment, mussels

were equipped with a Hall element sensor (HW-300a, Asahi

Kasei, Japan; 0.5 g) and a magnet (4.8 mm diameter × 0.8 mm

height; 0.2 g) glued with Solarez® UV epoxy resin (Wahoo

International, CA, USA), which polymerizes rapidly under UV

light. Electrodes were connected to 4-channel dynamic strain

recorders (DC-204 R, Tokyo Sokki Kenkyujo Co., Japan)

equipped with memory cards for data storage, which converts

the magnetic flux between the sensor and magnet into a voltage

value. To avoid pseudo replication, each of the four mussels

linked to the same valvometer were placed in different tanks,

except for the natural seawater experiment in which two mussels

from the same valvometer needed to be placed in the same tank

(i.e., there were only three experimental tanks). Electrodes and
Frontiers in Marine Science 05
magnets were fixed on mussels’ valves with an initial target

reading of ≈-80,000 µV when the bivalves were closed.

Recording was set to a frequency of 10 measurements sec-1 to

obtain high resolution behavioural data. Data were retrieved

from the memory cards at the end of the experiments as.csv files

and were subsequently processed using R statistical software

version 1.3.1073 (R Core Team, 2020). Herein, VOA was

computed for each individual after conversion of µV data to

mm by the use of calibration curves estimated with known size

spacers. VOA was calculated as:

VOA = ½(opening −min)=(max −min)� � 100

where VOA is the valve opening amplitude in %, opening is the

measured valve opening in mm at a given period in time, and

max and min are, respectively, the maximum and minimum

opening (gaping of the valves in mm) values observed over the

entire observation period. VOA was then used to compute

various behavioural indicators, including 1. the number of

closures; 2. total closure duration; 3. average closure duration;

4. the average VOA and 5. the number of microclosures (as

defined by Comeau et al., 2019). A mussel was considered closed

when VOA was<10% of max. A microclosure was counted when

a 3% reduction of VOA within 0.1 sec was observed. In the

laboratory experiment, the behavioural indicators were

calculated for 3 periods: before and after the A. catenella

exposure, and during the following exposure of T. suecica. In

the natural seawater experiment, the behavioural indicators were

calculated for each day. All raw data were handled and processed

(i.e., µV values converted to mm values, and computations of

behavioural indicators) in R (R Core Team, 2020).
2.5 Statistical analysis

2.5.1 Experiment 1. Laboratory experiment
Statistical analyses were performed using R (R Core Team,

2020) with a significance threshold of p< 0.05. The impact of

mussel tissue PST concentration on gaping behaviour indicators

(number of closures, total duration of closures, average closures

duration and number of microclosures; n = 18 mussels) was

evaluated with non-parametric Pearson correlations (base

package), as Shapiro-Wilk test indicated non-normal

distribution of the data. Correlations were applied for the

period of A. catenella exposure (T1) and food addition (T2)

with the PST concentration to avoid tank effect and use the real

PST quantity affecting the mussel behaviour. Principal

Component Analysis (PCA; package ade4; Dray and Dufour,

2007) was also used to determine whether the T1 gaping

behaviour indicators were influenced by PST concentration in

mussels. Then, the mean of each gaping behaviour indicator

measured at different PST concentration ranges (C0:<10 µg

STXeq 100g-1, n = 3, C1: 20 to 50 µg STXeq 100g-1, n = 4,

C2: 50 to 80 µg STXeq 100g-1, n = 4, C3: >80 µg STXeq 100g-1,
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n = 7) were compared with a univariate one-way permutation

analyses of variance (PERMANOVA – package vegan; (Oksanen

et al., 2019)), using A. catenella concentration as factor (n=2).

With the non-normal distribution of the databases, this

approach is more accurate than parametric analysis. The

similarity matrices were calculated based on Euclidean

distances as recommended by Anderson et al. (2008) for

univariate analyses. A posteriori PERMANOVA pairwise tests

(Martinez Arbizu, 2019) were applied to determine the

concentration at which gaping behaviour changes were

induced. Finally, a cluster analysis with permutations

(SIMPROF) was appl i ed to va l ida te A. catane l la

concentrations showing a similar effect on gaping behaviour.

2.5.2 Experiment 2: Natural seawater
experiment

For the natural seawater experiment, Pearson correlations

were applied between the four gaping behaviours and the daily

measures of PST and the cell abundance of toxic algae (A.

catenella, Pseudo-nitzschia spp. and Dinophysis acuminata) in

the header tank. In parallel, the gaping behaviour indicators were

also correlated with a daily mean (90 days) of physicochemical

parameters obtained by the CTD probe (temperature, salinity,

fluorescence, and turbidity). With the same data set, a PCA was

used to determine which gaping behaviour indicators were most

linked to PST concentration in seawater (PSTw). These gaping

behaviour indicators were selected for PERMANOVA analyses.

Based on the daily estimations of PST concentration in field

mussels (PSTm), behavioural data were grouped into four PSTm

concentrations (C0:<10 µg STXeq 100g-1, C1: 30 to 50 µg STXeq

100g-1, C2: 50 to 80 µg STXeq 100g-1, C3: >80 µg STXeq 100g-1)

and compared by univariate one-way PERMANOVA (n = 6-15

mussels for each concentration group), followed by a posteriori

pairwise test (Martinez Arbizu, 2019) when significant. Finally, a

cluster analysis with permutations (SIMPROF) was applied to

validate PSTm groups with similar effects on gaping behaviour.
2.6 Chronobiological analysis

The mussel gaping behaviour was represented with

actogram (Figures 2B, C). Each column of the actogram

represents 2 days of VOA. The second day of a column

correspond at the first day of the next column. The colours

correspond to 10 VOA range detailed in the Figure 2, indicating

the mussel opening

To detect potential differences in the rhythmicity (tidal and

daily) of mussels gaping behaviour in relation to PST

concentration (Between 0 and 118.21 µg STXeq 100g-1), the

gaping behaviour recording was divided in hours and the

population (n = 27 mussels) average VOA was calculated for

each hour. Chronobiological analyses were performed using

TSA Serial Cosinor 6.3 software (http://www.euruestech.net/
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mainnuk.php) on time windows presented in the Figure 2

with a duration selected to have enough of cycle occurrence to

detect them but with a duration adapted to follow the speed of

the abundance or PSP concentrations variations. Several steps

were required to validate a significant rhythm (Gouthiere et al.,

2005; Payton et al., 2017). First, the quality of the data set was

assessed by controlling for the absence of randomness using the

autocorrelation diagram. Second, the absence of a stationary

phenomenon was assessed by using a partial autocorrelation

function (PACF) calculation. Third, the recorded data were

tested for periodicities in the tidal (12.4 ± 3.1 h) and daily

range (24 ± 4 h) by the spectral method of the Lomb and Scargle

periodogram (Lomb, 1976; Scargle, 1982). Fourth, the

rhythmicity was then validated and modeled with the cosinor

model. For a given period, the model is written as Y (t) = Acos

(pt/t + f) +M + ϵ (t) where Y (t) is an observation of the mean

VOA at time t, A is the amplitude, f is the acrophase, t is the

period, M is the mesor and ϵ is the relative error. Two key tests

validated the calculated model and the existence of a rhythm: the

elliptic test had to be rejected, and the probability for the null

amplitude hypothesis had to be< 0.05. A chronobiometric

parameter was calculated; the percent rhythm (PR, %) is the

percentage of cyclic behaviour explained by the model. For a set

of data, several significant periodicities could occur. To identify

significant secondary periodicities, we reinjected the previously

calculated residues of the Cosinor model to remove the trend

related to the first statistical period and then repeated the

entire procedure.
3 Results

3.1 Experiment 1: Laboratory experiment

The variations of the behavioural indicators during the

controlled laboratory experiment are presented in the

Figure 3. A decrease in the total closure duration was

observed, indicating increasing of the mussel opening with the

increasing PST concentration. The same tendency was found for

the average closure duration. In the same way, increasing mussel

opening was revealed by the increasing of the average VOA and

the decreasing of the number of closures. Significant negative

correlations between gaping behaviour indicators and PST

concentration during the A. catenella exposure period were

evident for total closure duration and the average closure

duration with an increasing of the opening (Table 1). For the

period following A. catenella exposure, no significant

correlations were detected (Table 1). Principal component

analysis confirmed that PST concentration was negatively

correlated with total closure duration and average closure

duration (Figure 4A). Herein, a weak correlation between

microclosures and PST concentration was also evident. As

such, total closure duration, average closure duration, and
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microclosures were selected as behavioural indicators for the

univariate PERMANOVA analyses. In the univariate

PERMANOVA, significant differences between the PST

concentrations were observed for total closure duration (DF=

3 and 14, Pseudo-F= 10.18, P(MC)= 0.0027) and average closure

duration (DF= 3 and 14, Pseudo-F= 4.16, P(MC)= 0.0242), but

not Microclosures [DF= 3 and 14, Pseudo-F= 2.09, P(MC)=

0.1082)]. Significant differences between PST concentrations

were also present when the three behavioural indicators were

analysed together with a multivariate PERMANOVA (DF= 3

and 14, Pseudo-F= 10.119, P(MC)= 0.003). PERMANOVA

pairwise tests showed significant differences between the

higher concentration (C3) of PST accumulated in mussels and

the other lower concentrations: C0, C1, C2. SIMPROF did not

detect any sufficient difference in Euclidean distance to establish
Frontiers in Marine Science 07
clusters between PST accumulation for the valve gaping

indicators. As such, clusters were established without using

SIMPROF but with the selection of the longest distance

between two knots. Valve gaping indicators showed different

clustering patterns in relation to PST accumulation (Figure 4B).

Thus, mussel behaviour was impacted only when PST

accumulation was over values measured in C1.
3.2 Experiment 2: Natural seawater
experiment

For the natural seawater experiment, all data (i.e., valve

gaping indicators, A. catenella concentrations, and seawater PST

[PSTw]) are presented daily in Figure 5. The most important
B

C

A

FIGURE 2

Physical and biological observations over the course of the 90-day natural seawater experiment. In panel a, the blue and black lines represent
photoperiod and water level, respectively. The actograms depict the mean hourly VOA (%) of the group (n = 27 mussels) in relation to (A).
catenella abundance (panel B, black line) and PST concentration in the mussel tissue (panel C, black line). The black rectangles represent the
times windows studies, with a duration of 4 days for panel b and 6 days for panel (C).
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valve gaping changes were observed when A. catenella was

initially detected in the seawater (Figures 5A–D), which

corresponds to the onset of PSTm accumulation in the tissues

of field mussels. Prior to day 25, PSTm concentration and

A. catenella abundance were negligible (Figure 5E).

The correlation between the behavioural indicators and the

physico-chemical parameters (Figure 4G) measured in the head

tank are presented in Table 2. No microclosures were detected
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over the entire experiment. Average closure duration was not

correlated with any of the three physicochemical parameters

tested, while the number of closures was negatively correlated

with turbidity. Salinity and temperature were negatively

correlated with total closure duration and positively correlated

with average valve open Amplitude, indicating that mussels

opened more when temperature and salinity were high. Of the

physicochemical parameters measured, salinity and the

temperature were most strongly correlated with mussel gaping

behaviour. The correlation test between the PST concentration

in seawater and the physicochemical parameters show a positive

correlation for the temperature (Rho = 0.397, p-v = 0.014) but

not for the salinity and the turbidity (respectively Rho = -0.197,

p-v = 0.241 and Rho = 0.035, p-v = 0.834) indicating a link

between the A. catenella presence and the seawater temperature.

PST concentration measured in the field (PSTm) mussels

was strongly correlated with all behavioural indicators. Herein,

PSTm was negatively correlated with the number of closures and

total closure duration, and positively correlated with average

valve open amplitude and average closure duration. These

correlations were stronger than those obtained with algae

abundances (Table 3). The correlation between experimental

mussel gaping indicators with A. catenella, Dinophysis

acuminata, Pseudo-nitzschia spp., and the PST measured from

the field mussels are presented in the Table 3. In the case of D.

acuminata, a weak negative correlation was observed with total
TABLE 1 Correlation between PSTm content in mussel tissues at the
end of the controlled laboratory experiment and the behavioural
indicators measured in the controlled laboratory experiment before (T0)
and during A. catenella exposition (T1), then and food addition (T2).

Laboratory experiment

T1 T2

Cor p-v Cor p-v

NC -0.394 0.105 0.007 0.764

TCD -0.711 0.001 -0.045 0.858

ACD -0.559 0.015 0.099 0.693

AVOA 0.063 0.803 0.274 0.269

MC -0.399 0.099 -0.238 0.339
Behavioural indicators included number of closures (NC), Total Closure Duration
(TCD), Average Closure Duration (ACD), Average Valve Open Amplitude (AVOA),
Number of Micro Closures (MC). In bold: significant correlation at 0.05, n = 19.
FIGURE 3

Variation of the mussel’s behavioural indicators for PST concentration for laboratory experiment. NC, Number of closures; TCD, Total Closure
Duration; AVOA, Average VOA; MC, Microclosure; ACD, Average Closure Duration. C0:<20 mg STXeq 100g-1, C1: 20 to 50 mg STXeq 100g-1,
C2: 50 to 80 mg STXeq 100g-1, C3: >80 mg STXeq 100g-1, T0: Acclimation and reference behaviour, T1: A. catenella exposition, T2: food
addition.
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closure duration and a weak positive correlation with the average

valve open amplitude (Figure 5F), suggesting that mussels react

little in presence of D. acuminata. The abundance of Pseudo-

nitzschia spp. was positively correlated with average valve open

amplitude and negatively correlated with total closure duration.
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Only total closure duration was negatively correlated with A.

catenella abundance. The correlation between A. catenella and

the behavioural indicators was lower than the correlation

observed with Pseudo-nitzschia spp., suggesting a stronger

reaction to Pseudo-nitzschia compared to A. catenella
B

C D

E F

G

A

FIGURE 4

Mussel gaping metrics and corresponding standard errors associated to running daily means (shaded areas) over the course of the 90-d
experiment in natural seawater for (A): NC - Number of Closures (Count day-1), (B): TCD - Total Closure Duration (hour), (C): ACD - Average
Closure Duration (hour), and (D): AVOA - Average Valve Open Amplitude (%). (E): A. catenella abundance (cells litre-1; solid line) in seawater and
PST concentration in mussels from the shore (µg STXeq. 100g-1; shaded area). (F): D. acuminate (cells litre-1; solid line) and Pseudo-nitzschia
spp. (cells litre-1; dotted line) abundances in seawater. (G): Temperature (°C; solid line), Salinity (dotted line) and Turbidity (broken line).
frontiersin.org

https://doi.org/10.3389/fmars.2022.987872
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Durier et al. 10.3389/fmars.2022.987872
abundance. A similar trend was observed for D. acuminata and

Pseudo-nitzschia, but the correlation was lower (respectively

Rho = -0.218 and -0.218 for total closure duration and Rho =

0.195 and 0.282 for average VOA) than the correlations between

the behavioural indicators and A. catenella. No correlation

between the behavioural indicators and the PST measured in

the seawater with the ELISA test were noted.

The boxplot of the Figure 6 shows the average VOA, the total

closure duration, and the number of closures in function of the
Frontiers in Marine Science 10
A. catenella abundance during the time windows shown on

Figure 6B. Average VOA and total closure duration varied

among the different A. catenella concentration. PERMANOVA

analysis (respectively DF= 3 and 380, Pseudo-F= 166,39,

P(MC)= 1e-04 and DF= 3 and 380, Pseudo-F= 226,29, P(MC)

= 1e-04) and pairwise tests indicated A0 (mean = 60.45 ± 0.79

for average VOA and mean = 4921.01 ± 227.75 for total closure

duration) was effectively lower than A1 (mean = 82.94 ± 0.56 for

average VOA and mean = 493.52 ± 101.17 for total closure
B

C

D

A

FIGURE 5

(A) Correlation circle of Principal Component Analysis for the behavioural indicators (NC, Number of closures. TCD, Total Closure Duration;
ACD, Average Closure Duration; AVOA, Average VOA; MC, Microclosure) in the laboratory experiment during the period T1 (addition of A.
catenella), in relation to PST concentration in mussel. (B) Cluster analysis of behavioural indicators in relation to PST concentration in mussels
during laboratory experiment. C0:<20 mg STXeq 100g-1, C1: 20 to 50 mg STXeq 100g-1, C2: 50 to 80 mg STXeq 100g-1, C3: >80 mg STXeq
100g-1; The red line represents a separation between the concentration groups established from these two clusters. This line was traced at the
higher distance between two knots of the cluster representing a group with the concentration C0 and C1 and a second group with the
concentrations C2 and C3, (C) Correlation circle of Principal Component Analysis for the behavioural indicators in the natural seawater
experiment and PST in mussels, (D) Cluster analysis for groupings of PST concentrations with behavioural indicators in natural seawater
experiment by SIMPROF method, C0:<10 mg STXeq 100g-1, C1: 30 to 50 mg STXeq 100g-1, C2: 50 to 80 mg STXeq 100g-1, C3: >80 mg STXeq
100g-1. Red line: group 1, blue line, group 2.
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duration) and A2 (mean = 79.62 ± 1.22 for average VOA and

mean = 373.21 ± 73.21 for total closure duration) for the two

indicators and A3 (mean = 85.94 ± 0.85 for average VOA and

mean = 1079.49 ± 121.96 for total closure duration) was

significantly higher A1 and A2 also for the two indicators. No

significant difference was observed for the number of closures.

In the natural sea water experiment, total closure duration

and number of closures were negatively correlated with PST

concentration in the littoral mussels (Figure 4C). Average

closure duration and average valve open amplitude were not

enough strongly correlated with mussel PST concentration, as

closure duration was too distant from the correlation circle, and

valve amplitude was in a different direction (Figure 4C). Thus,

only the total closure duration and the number of Closure were

selected to be tested with the univariate PERMANOVA analysis.

PERMANOVA revealed the presence of significant differences

between the different PST concentrations for the number of closures

(DF= 3 and 34, Pseudo-F=4.634, P(MC)=0.0086) and total closure

duration (DF= 3 and 34, Pseudo-F= 13.67, P(MC)= 1e-04). The

pairwise test for number of closures indicated very significant effects

of PST, with an increasing of closure, in the C2 (50 to 80 µg STXeq

100g-1, n = 9) and C3 (>80 µg STXeq 100g-1, n = 8) concentration

range, with significant results for C1 (30 to 50 µg STXeq 100g-1, n =

6), relative to C0. For total closure duration, no significant difference

was observed between C0 (<10 µg STXeq 100g-1, n = 15) and C1 or

between C1 and C2; however, all other contrasts were significant.

Additionally, multivariate PERMANOVA revealed a significant

effect of mussel PST accumulation when these two behavioural

indicators were treated simultaneously (DF=3 and 4, pseudo-
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F=13.67; P(MC)=0.0004). A pairwise test of this analysis

indicated an effect of PST in concentration ranges >C1.

Contrary to the laboratory experiment, a SIMPROF test was

possible for natural seawater experiment and showed two

distinct groups (Figure 4D). One group included only the C0

mussels, while the other group included C1, C2, and C3 mussels.

Herein, C2 and C3 concentration ranges had the most similar

effects on gaping behaviour, with C1 showing a slightly lower

similarity to C2 and C3.

In Figure 2, the actograms show the population-scale VOA

time series alongside the water-level and photoperiod

(Figure 2A), A. catenella abundance (Figure 2B) and PST

concentration in mussel tissue (Figure 2C). Firstly, the

presence of tidal and daily rhythms of VOA was not detected

by chronobiological analysis with the use of 4-days windows

chosen to analyse rhythmicity of mussel gaping behaviour in

relation to A. catenella abundance. However, for the PSP

concentration, the 6-day windows used to compare the

rhythmicity of mussels with the Lomb and Scargle

periodogram showed a significant daily period of 23.8 h

(Figure 7) for the concentration A0 (3.72 µg STXeq 100g-1),

and the rhythm was validated by the Cosinor model (p = 0.001)

with a percent rhythm of 63.53%. After residues injection, the

Lomb and Scargle periodogram showed a second significant

period in the tidal range equal to 12.9 h, and the rhythm was

validated by the Cosinor model (p = 0.028) with a percent

rhythm of 45.6%. For mussels contaminated with the PSP

concentration A1 (49 µg STXeq 100g-1 SE = 4.1), no

significant period was detected with the Lomb and Scargle
TABLE 3 Pearson correlation between the M. edulis gaping behaviour and the cells abundance (cells L-1) of toxic algae in natural seawater
measured in the head tank and PST concentration measured in field mussels (PSTm).

NC TCD AVOA ACD

Cor p-v Cor p-v Cor p-v Cor p-v

PSTm -0.526 0.00069 -0.675 0.0000033 0.429 0.0071 0.151 0.018

A.c -0.109 0.308 -0.218 0.039 0.195 0.066 -0.115 0.342

D.a -0.0307 0.774 -0.218 0.039 0.282 0.007 -0.124 0.243

P-N -0.202 0.057 -0.280 0.007 0.415 5.2e-05 -0.178 0.093
frontiers
Number of closures (NC), Total Closure Duration (TCD), Average Valve Open Amplitude (AVOA), Average Closure Duration (ACD), A.c, Alexandrium catenella; D.a, Dinophysis
acuminata; P-N, Pseudo-nitzschia spp. In bold: significant correlation at 0.05, n = 90.
The bold values are the values with a p-values < 0.05.
TABLE 2 Correlations between the M. edulis gaping behaviour and the variability of physical and chemical parameters measured in the natural
seawater from the head tank.

NC TCD AVOA ACD

Cor p-v Cor p-v Cor p-v Cor p-v

Temperature -0.122 0.254 -0.443 0.000013 0.251 0.017 -0.023 0.8481

Salinity -0.144 0.176 -0.377 0.00026 0.376 0.0002 -0.0211 0.8629

Turbidity -0.335 0.04 -0.265 0.108 0.208 0.209 -0.284 0.082
Number of closures (NC), Total Closure Duration (TCD), Average Valve Open Amplitude (AVOA), n = 90.
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periodogram. For the concentrations A2 (72.16 µg STXeq 100g-1

SE =3.8) and A3 (104.46 µg STXeq 100g-1 SE = 3.72), the Lomb

and Scargle detected respectively a 12.3 h and 12.5 h period.

However, no rhythms were detected by the Cosinor model for

the mussels intoxicated by A. catenella.
4 Discussion

In both the laboratory and natural seawater experiments,

behaviour indicators could be used to indicate the presence of

toxic algae, like A. catenella. Particularly, the number of closures,

total closure duration and average valve open amplitude were

adequate indicators of toxic algae presence indicating an

increasing of opening. Results of the laboratory experiment

indicated that total closure duration and average closure

duration were negatively correlated with PST accumulated in

mussels, indicating that mussels remained open longer as A.

catenella accumulation increased. Likewise, a similar trend was

observed in the natural seawater experiment, as the number of
Frontiers in Marine Science 12
closures and total closure duration decreased, and as average

valve open amplitude increased, with increasing PST

accumulation in mussels (Table 3). These results confirm a

longer period of valve opening when PSP concentration in

mussel tissue is higher, and when PST concentration in

mussels increases as compared to when A. catenella is absent.

Changes in mussels’ gaping behaviour indicates a real impact

of the algae A. catenella that is observable by monitoring

valvometry. In the context of stressful conditions as chemical

toxin or predator presence, mussels close their valves to be

isolated from the external environment (Rajagopal et al., 1997;

Clements et al., 2021; Durier et al., 2021). As such, a decrease in

average valve opening amplitude and an increase in total closure

duration and the number of closures, should be anticipated

under stressful conditions. However, the results of our study

reveal the inverse phenomenon when these animals are exposed

to A. catenella. This response has been observed in other bivalve

species exposed to toxic algae as well. For example, Tran et al.

(2010) and Haberkorn et al. (2011) reported similar results for

the oyster, Crassostrea (Magallana) gigas, exposed to PST-
B

C

A

FIGURE 6

Boxplot of the (A) Average VOA, (B) total closure duration and (C) number of closures in function of the A. catenella abundance during the tested period
of the time window of the fig 5b. A0: 0 cell L-1, A1: 560 cell L-1 (SE = 23.38), A2: 1190 cell L-1 (SE = 39.87), A3: 1680 cell L-1 (SE = 26.07).
frontiersin.org

https://doi.org/10.3389/fmars.2022.987872
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Durier et al. 10.3389/fmars.2022.987872
producing dinoflagellate, Alexandrium minutum. Bricelj et al.

(2005) also observed increased in valve opening of soft-shell

clams, Mya arenaria, exposed to PST from toxic dinoflagellates,

Alexandrium spp. The increased opening under the stress of

toxic algae could be explained by a paralysis of the adductor

muscle induced by PSP toxins, as demonstrated for multiple

species of bivalves includingM. edulis (Galimany et al., 2008), C.

virginica and C. gigas exposed to A. catenella and/or A.

fundyense (Hégaret et al., 2007; Tran et al., 2010). Since

mussels accumulate PSP toxins in the muscle, mantle, foot,

and gills (Bricelj and Shumway, 1998), the mechanism

previously mentioned seems probable. Mechanistically,

voltage-gated sodium channels can be blocked by the toxin,

thus limiting action potential in the muscle and the nervous

system (Hégaret et al., 2007).

The correlations between behavioural indicators and

physico-chemical seawater parameters suggest that mussels

may be sensitive to these parameters. Indeed, both

temperature (Clements et al., 2018; Clements et al., 2021) and

salinity are reported to affect valve gaping behaviour in bivalves

but with more of closures contrary to our results who shown less

of closure. However, A. catenella development in the Lower St.

Lawrence Estuary is also associated with these physico-chemical

parameters, in particular salinity and water temperature
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(Fauchot et al., 2005; Navarro et al., 2006; Aguilera-Belmonte

et al., 2013; Starr et al., 2017; Boivin-Rioux et al., 2021). The

optimal temperature for the development of this algae is ≈14°C

(Boivin-Rioux et al., 2021), a temperature only present during

summer in the St. Lawrence Estuary. Salinity also regulates A.

catenella development, with growth increasing at higher salinity

(Aguilera-Belmonte et al., 2013). In the St. Lawrence Estuary,

salinity increases after the spring when snow melt stops, and

precipitation decreases. Thus, the correlation between these

physico-chemical parameters and the variation of the

behavioural indicators could be, at least partly, explained by

the ecological link between temperature, salinity, and A.

catenella development in the Lower St-Lawrence Estuary. This

idea is further supported by the correlation between seawater

temperature and A. catenella abundance observed in the study,

as well as correlations between behavioural indicators and PST

accumulation in the laboratory experiment when temperature

and salinity were stable.

Correlations between behavioural indicators and the

abundance of the multiple algae species (A. catenella, D.

acuminata and Pseudo-nitzschia spp., the two last don’t

producing PST) were evident in this study. Correlations were

the strongest for Pseudo-nitzschia spp., suggesting that mussel

gaping behaviour may be more strongly linked to Pseudo-
FIGURE 7

Lomb and Scargle periodograms done on VOA data during the time windows of the fig 5c. A0: 3.72 µg STXeq 100g-1, A1: 49 µg STXeq 100g-1 (SE =
4.1), A2: 72.16 µg STXeq 100g-1 (SE = 3.8), A3: 104.48 µg STXeq 100g-1 (SE = 3.72). The red line represents the significancy threshold (p = 0.95).
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nitzschia spp. than A. catenella. Despite the low correlations

detected with the comparison of the mussel gaping behaviour

with the A. catenella abundance during the 90 days of the

experience, it was possible do identify differences between the

gaping behaviour with the use of time windows corresponding at

the different A. catenella abundances. The bioaccumulation of

the toxins produced by A. catenella in mussels (Starr et al., 2017)

and their subsequent detoxification have a half-life time between

5 days (Nielsen et al., 2016) and 20 days (Marcaillou et al., 2010),

corresponding to the increased period of A. catenella influence

on mussel gaping behaviour observed in this study. This could

explain the higher correlation coefficient for the relationship

between gaping behaviour and PSP concentration in the

mussels’ tissue, as compared to the relationship between

gaping behaviour and A. catenella in the seawater. This result

was also observed with seawater PST concentration measured

with the ELISA test. Thus, using PSP toxin concentration in

mussel tissues makes it possible to determine the period where

mussels and their gaping behaviour were affected. The domoic

acid presence were not tested in this study, however, in St

Lawrence Estuary the domoic acid is below the regulatory

action level (20 mg g-1 shellfish tissue; Bates et al., 2020). This

indicating the Pseudo-nitzschia specie detected could be a non-

toxic specie considering the abundance measured.

In the laboratory experiment, correlations between the

behavioural indicators and the toxin concentration were

weaker after A. catenella exposure (T2) than during A.

catenella exposure (T1). This difference could be explained by

the mussel detoxification process, and by mussels feeding on

non-toxic alga (T. suecica) during T2. Previous studies indicate

that mussel detoxification rates are high during the first days

following intoxication (Blanco et al., 1997) and increase in

mussels fed non-toxic algae (Marcaillou et al., 2010).

Based on the analysis of behavioural indicators selected from

PCA, is it possible to identify the PST concentration in mussel

tissues whereby gaping behaviour is affected. Identifying this

PST concentration allows for the suggestion of a detection

threshold for the use of valvometry as an early warning system

in detecting toxic algae in the environment. In the laboratory

experiment, behavioural change was detected above a PST tissue

concentration exceeding the regulatory harvest closure limit

(>80 µg STXeq 100g-1). In the natural seawater experiment,

behavioural change was detected with a lower PST concentration

(>30 µg STXeq 100g-1). The difference between these detection

thresholds could be explained by the duration of exposure to A.

catenella, being longer in the natural seawater experiment (1 day

in laboratory conditions and between 3 to 21 days in natural

environment conditions). The SIMPROF test revealed gradual

change in mussel gaping behaviour in relation to PST

accumulated in mussels until C2 concentration, as effects at

C2 and C3 were similar. Given the detection of the threshold >30

µg STXeq 100g-1 under field conditions, valvometry may be

considered as an early-warning system against toxic blooms.
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Under the field conditions of 2019, it provided a warning signal

10 days prior to PST levels reaching the regulatory harvest

closure limit. The use of actogram could also early indicate the

presence of A. catenella. Indeed, on the actogram of the Figure 2,

it was possible to visually observe a behavioural change in

mussels before their contamination at the detection threshold.

In this study, two techniques were used to detect PST in

mussel tissues – valvometry and ELISA assays. Likewise, two

techniques were used to detect PST in seawater (SRT test and

ELISA assays). The use of these three techniques (valvometry,

SRT and ELISA) allowed us to compare these methods as early-

warning systems for toxic A. catenella presence. Considering a

detection threshold of >30 µg STXeq 100g-1 in mussel tissues as

observed in the natural seawater experiment (estimated with

ELISA), valvometry is less sensitive than the SRT (0.2 µg STXeq

100g-1) and ELISA assay (0.0015 µg STXeq 100g-1). However,

valvometry offered other advantages that the other two methods

did not. Firstly, valvometry and ELISA are applied directly to

mussels and consequently are sensitive to the depuration period,

during which time a SRT test may not detect any toxic algae in

seawater. Secondly, the use of valvometry is easier than both

other tests, as once the mussels are equipped with the

valvometer, no additional manipulations are required. The

automation of data collection and signal processing should

ultimately allow the detection of PST without much human

intervention. Finally, the frequency of measurements provided

by valvometry far exceeds that of both SRT and ELISA,

increasing the temporal resolution at which toxic algae can be

detected. The valvometry have a good sensibility to detect PST

with the paralysis induced. However, the valvometry can detect

others stress like synthetic substances occasioning valves

closures (Durier et al., 2021).

Generally, mussel species follow a tidal rhythm synchronised

by the tides cycle and a daily rhythm linked to the day-night

succession (Gnyubkin, 2010). Without A. catenella, the mussels

monitored during this study followed these rhythms. However,

when the mussels were intoxicated by A. catenella and

accumulated PSP, these two rhythms became non-significant.

These results were in agreement with the previous studies on

oysters Crassostrea gigas in the case of intoxication by A.

minutum for the daily rhythm (Tran et al., 2015) and for the

tidal rhythm (Mat et al., 2016). Thus, A. catenella impacted the

biological rhythms of the mussels during a PSP intoxication,

probably by the paralysis observed indicating that mussel

becomes unable to follow the rhythm. This effect on rhythms

could impact the metabolism and the physiology (Tran et al.,

2015; Mat et al., 2016).
5 Conclusion

We evaluated the potential use of the valvometry to detect

changes inM. edulis gaping behaviour during an exposure to the
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toxic dinoflagellate A. catenella to determine the efficacy of

valvometry to serve as an early warning system. Our results

suggest that valvometry is adequate for detecting paralysis

induced by PSP toxins produced by A. catenella, as the

reduction of valve closure duration (i.e., increased valve

opening) were indicative of toxic A. catenella presence. Herein,

mussel gaping behaviour was rapidly impacted at the onset of

PST accumulation. The fast reactivity of the mussels in presence

of PST and the capacity of valvometry to detect these changes

suggests that this technology can be used on this bivalve species

to alert the presence of A. catenella blooms before they become

problematic. As such, valvometry systems such as the HFNI

valvometry biosensor linked to the GPRS (General Packet Radio

Service; Andrade et al., 2016), which wirelessly transmit real-

time data, could be used as early warning systems by shellfish

growers to quickly detect the presence of PST producing algae

and take appropriate measures to minimise negative impacts to

their operations.
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Technologies, no. 2014-RS-171172). Fisheries and Oceans

Canada provided in-kind assistance that was motivated by the

Galway Statement on Atlantic Ocean Cooperation.
Acknowledgments

The authors thank the scientific group Ressources
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