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Early warning signal for a tipping point
suggested by a millennial Atlantic
Multidecadal Variability reconstruction

Simon L. L. Michel 1,2 , Didier Swingedouw 2, Pablo Ortega3,
GuillaumeGastineau4, JulietteMignot 4, GerardMcCarthy 5 &MyriamKhodri4

Atlantic multidecadal variability is a coherent mode of natural climate varia-
bility occurring in the North Atlantic Ocean, with strong impacts on human
societies and ecosystems worldwide. However, its periodicity and drivers are
widely debated due to the short temporal extent of instrumental observations
and competing effects of both internal and external climate factors acting on
North Atlantic surface temperature variability. Here, we use a paleoclimate
database and an advanced statistical framework to generate, evaluate, and
compare 312 reconstructions of the Atlantic multidecadal variability over the
pastmillennium, based ondifferent indices and regressionmethods. From this
process, the best reconstruction is obtained with the random forest method,
and its robustness is checked using climate model outputs and independent
oceanic paleoclimate data. This reconstruction shows that memory in varia-
tions of Atlantic multidecadal variability have strongly increased recently—a
potential early warning signal for the approach of a North Atlantic
tipping point.

Since the early 20th century, the North Atlantic region has exhibited
successive decades of anomalously warm and cold sea surface
temperatures1 (SSTs) relative to the global average, effectively ampli-
fying or damping the effects of global warming in the North Atlantic2,3.
The underlying mode of variability, the Atlantic Multidecadal Varia-
bility (AMV), formerly named the Atlantic Multidecadal Oscillation1,
has been linked to a variety of climate effects4,5, including drought and
precipitation in the Sahel5,6, northeastern Brazil5, and central Asia5,6;
hurricane frequency and intensity in the Atlantic6,7; sea ice thickness
and extent in the Arctic8; and climate variability in the Pacific9.
Therefore, understanding AMV drivers is crucial to accurately predict
its future changes and related global and regional impacts.

However, the mechanisms driving the AMV and its dominant
timescales of variability remain highly debated. Disagreements

stem primarily from the relatively short period of approximately
150 years over which the AMV is directly observed—a time span
that includes large anthropogenic climate variations. Early studies
considered AMV to be mainly an internal mode of variability, in
part because SST variations in the North Atlantic were larger than
at a global scale, with a strong variability on multidecadal
timescales4,5,7,10. However, it has been shown that the last
observed period of cold AMV (∼1965–2000 C.E.) coincides with
both strong anthropogenic aerosol emissions from Europe and
North America11,12 and strong volcanic activity12, which are both
associated with cooling via their radiative impacts. Nevertheless,
the assumption that North Atlantic SST (NASST) variations are
purely externally driven is challenged by the observed char-
acteristics of the subsurface ocean in the tropical Atlantic, which
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were not correctly represented in simulations, including regional
aerosol forcing13.

Internal ocean variability has been identified in coupled
Atmosphere–Ocean General Circulation Models (AOGCMs) as a
potential key driver of the AMV, mainly through variations in the
Atlantic Meridional Overturning Circulation13–17 (AMOC), a large-scale
ocean circulation component transporting warm surface waters
northward in the North Atlantic13. The complexity and the large three-
dimensional spatial extent of the AMOC make it more difficult to
measure than surface ocean properties. Direct observations of its
strength have only been available since 2004 and at one specific lati-
tude (i.e., 26.5°N)18,19. Estimating the potential influence of the AMOC
on surface ocean conditions would, therefore, help to understand the
AMOC’s behavior over larger timescales. In this respect, the link
between AMOC and AMV has been highlighted by a wide range of
AOGCMs and experiments13–17. This connection is often explained by
the interhemispheric oceanic heat transport of the AMOC10, which
affects the temperature of the entire North Atlantic. Nevertheless, the
dominant timescales of the variability of both AMV and AMOC vary
greatly across these simulations20,21. This raises legitimate questions
about the preciseprocess underlying thismodeof variability, aswell as
how to reliably compare model simulations and observations of
the AMV.

In a context where variations in greenhouse gas and aerosol
concentrations were smaller than over the historical period, several
longpaleoclimate records22,23 and lastmillenniumclimate simulations17

also support the existence of multidecadal variability related to the
AMOC during the preindustrial era. Nevertheless, even for these long
periods, the role of internal and external factors in producing AMV
variations is also debated21,24.

Although modeling studies and paleoclimate data suggest that
AMOC has an effect on the multidecadal NASST variations13–17,22,23, it is
unclear how much the observed NASST is also influenced by external
factors. To address this issue, studies have proposed removing exter-
nal radiative signals when defining the AMV to isolate the intrinsic
component ofNASST variations driven byAMOCheat transport2,7,25. As
a result, the current study will concentrate on the latter AMV defini-
tion, excluding the direct radiative effects of external forcings by
design. To explore the sensitivity of commonly used approaches to
remove the radiative effects of external forcings, wewill consider three
different AMV indices, which are designated as AMVT

2, AMVTS
7, and

AMVF
25 (“Methods” and Fig. 1a), where the subscripts T, TS, and F refer

to associated references2,7,25. In contrast to simple detrending
methods25, which can leave spurious signals, the forced variability
removed in these AMV indices is expected to account for the evolution
of greenhouse gas and aerosol concentrations over the historical
period, using different approaches (see “Methods”).

The debate on the driving factors of the AMV also leads to
uncertainty concerning its spectral properties. The 150-year record of
instrumental SST observations does not allow for the identification of
consistent frequency bands at multidecadal timescales. Those two
limitations (blurred drivers and short timescale) can explain the dis-
crepancies between the AMV periodicity evaluated from instrumental
observations1 (50- to 70-year timescale) and the predominant 10- to
30-year periodicity found in most of the preindustrial AOGCM simu-
lations from the Climate Model Intercomparison Project Phase 5
(CMIP5)20. A recent study based on 16 simulations from eight CMIP5
AOGCMs found that transient last millennium simulations including
volcanic forcings consistently produce a spectral peak of 50–70 years
in global mean surface temperature (GMST), while such a model-wise
spectral consistency was not observed for preindustrial control
simulations21. As a result, they proposed that volcanic eruptions alone
could explain this frequency peak in the AMV in historical and paleo-
climate data21. However, the results from control simulations of the
aforementioned study21 contradict findings from another AOGCM

ensemble study, which used a much larger set of preindustrial control
simulations from up to 39 CMIP6models and found that most of them
show a robust relationship between the North Atlantic and GMST
variability at interdecadal to multidecadal timescales26. Furthermore,
an analysis of ice cores andmarine archives also calls the hypothesis of
a unique role of volcanic eruptions in shaping 50–70-year AMVpeaks19

into question, since it revealed that the 55–70-year AMV timescale was
essentially driven by the AMOC and atmospheric variability for the
majority of the Holocene27.

Aside from the fact that the AMVmay be strongly linked to AMOC
variations13–17,27, the AMOC is also well-known for its nonlinear
dynamics and is considered as potentially unstable28. However, the
AMOC fate in future climate projections is highly uncertain29.
Regarding observations, while a recent study based on subsurface
densities indicated that there was no discernible trend in AMOC fluc-
tuations over the last 30 years30, other studies have suggested that its
current intensity is abnormally weak when looking over a longer
timeframe.31–34. Indeed, an estimate of the AMOC strength based on
SST observations suggests that it may have reached an anomalously
weak state these last decades31, and some paleo-reconstructions even
show it to be a record low for at least a thousand years31–34. Other
recent studies35,36, however, have revealed that the strength of ocean
currents varies widely between regions, ocean depths, and time,
casting doubt on the hypothesis of a recent major basin-scale change
in the AMOC derived from a relatively small number of oceanic
cores31,33. In terms of the near-term future, evidence of significant Early
Warning Signals (EWSs) for an upcoming tipping point has been
recently shown for several indices of the AMOC based on observed
surface salinity or temperature of the last ~150 years37. However, it is
difficult to determine the robustness of these EWSs, especially because
of the short timeframe over which they are calculated38. In this study,
we investigate an AMOC EWS but on a much longer timescale using a
reconstruction of one of its surface fingerprints, namely the AMV. In
the formalism of dynamical systems theory, EWSs were developed to
anticipate critical transitions of a system’s internal dynamics as a result
of an external perturbation, typically in the form of strong changes in
persistence, variance, or skewness39. This definition supports our
attempt to track a potential approaching tipping point of the AMOC
using the AMV definitions depicted above, as it is expected to retrace
variability in ocean dynamics rather than external radiative forcings
acting on NASST.

Given the lack of SST measurements on sufficiently long time-
scales, one way to reconstruct the AMV is to rely on its observed cli-
mate impacts and fingerprints in specific paleoclimate proxy records.
To document these fingerprints, we performed a regression analysis
between (i) the mean of the three aforementioned AMV indices
(without direct radiative effects) computed from HadISST40 (back to
1870 C.E.), and (ii) the gridded fields of surface air temperature and
precipitation fromCRU TS441 (Fig. 1b–k). Overall, the AMV fingerprints
obtained from this regression analysis are consistent with the findings
from previous studies4–7. It confirms that the temperature anomalies
associated with the AMV are not limited to the North Atlantic region.
Indeed, AMV is also associated with temperature changes in southeast
Asia, Africa, the Middle East, and western North America (Fig. 1b–k).
TheAMV fingerprints on precipitation show that its positive phases are
associated with more intense summer precipitation over West Africa
and drought over western North America and northeastern South
America. We also find significant precipitation anomalies over Eurasia
(Fig. 1b–k), though with a more scattered and seasonally dependent
pattern. These fingerprints are in agreement with modeling studies9,42

that highlight the widespread and seasonally varying teleconnection
patterns of the AMV, including the remote impact over Asia (Fig. 1b–k).

We now focus on AMV variations during the last millennium, a
period with a relatively good spatial distribution of high-resolution
precipitation and/or temperature-sensitive proxy records, making it a
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very suitable timeframe for producing paleoclimate reconstructions at
annual resolution. Previous attempts to reconstruct the AMV over the
last millennium have relied on models with paleoclimate data
assimilation43, paleoclimate data from a single or a few sites23,27, or
statistical regression methods with multiple proxy records as
predictors22,44. Our study will focus on the latter type of approach

(i.e., regression) to extend back the AMV. In this respect, two previous
studies22,44 reconstructed the AMV over the last millennium using a
principal component regression method and continental proxy data
located in North Atlantic bordering regions. However, these statistical
models were calibrated using rawNASST anomalies22,44. As a result, the
obtained reconstructions inevitably included thedirect radiative effect
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of external forcings44, and thus does not correspond to the AMV as
defined in the present study2,7,25. In addition, former reconstruction
studies22,44 do not include any statistical tests for the selection of the
proxy records, which means that some of them may not be proper
predictors of the AMV. The present study thus relies on statistically
objective methods in the selection of proxy data45 from the PAGES 2k
database46 (“Methods”).

In contrast with previous studies that focused on a single recon-
struction, we here use an ensemble of 312 reconstructions to investi-
gate the sensitivity to (i) the target observed AMV index, (ii) the
regression method, and (iii) the calibration period over which the
statistical models are constructed45. Each of these reconstructions is
evaluated with appropriate validation scores47 (“Methods”), which are
then used to identify the best-performing one that is selected as the
final reconstruction. This best-performing reconstruction is subse-
quently validated using climate model outputs48 and independent
ocean records46. We later present a spectral analysis of its variability
and explore its potential modulation by radiative effects of natural
external forcings (solar and volcanic) over the last millennium. Finally,
we show a significant EWS in our AMV reconstruction, indicative of the
approach to a climate tipping point, and we use millennial-scale cli-
mate simulations to illustrate that the EWS metric applied to the AMV
can be a relevant indicator for detecting an EWS in the AMOC.

Results
Optimal selection of the regression model and validation
The present study compares 312 reconstructions produced by com-
bining 4 regression methods (principal component regression, ran-
dom forest, partial least squares, and elastic-net, Supplementary
Note 1), 3 definitions of the AMV index (AMVT

2, AMVTS
7, AMVF

25,
“Methods”), and 26 different time windows over which the regression
model is constructed (Methods). The reconstructions are performed
with theClimIndRec45 toolbox,whichevaluates their performancewith
Coefficient of Efficiency scores (SCE) and optimizes the specific control
parameters of each regression method by k-fold cross-validation45,49

(see “Methods”).
Each reconstruction covers the preindustrial period up to 850C.E.

and is made from a selection of proxy records significantly correlated
(at the 95% confidence level) with the observed AMV index. This
selection is realized separately for the three AMV definitions and
timeframes investigated (“Methods”). The year 850C.E. was chosen
since it is the starting point for the lastmillenniumclimate simulations.
Such simulations will be used later to further evaluate and validate our
reconstruction in a pseudo-proxy framework48. The observed time
series for the three AMV indices all reach back to 1870 C.E., the first
year for which gridded SST observations are available40. The selection
of the proxy records is made from a large set of annually resolved
proxies from the Northern Hemisphere, which includes the PAGES 2k
database46 and 41 others45 (Supplementary Table 1). This database
(hereafter P2k + ) consists of 457 records and was constructed using
different quality criteria (Methods). An important preprocessing step
is to remove from each P2k+ proxy record an estimate of the forced
variability of NASST (“Methods”). This approach is one of the main
differences with respect to previous NASST/AMV reconstructions22,44

which mixed forced and internal variability signals. Here, to account
only for the internal AMV signature in the proxy records, the compo-
nent of the radiative effects from external forcings is first estimated

using a signal-to-noise maximizing empirical orthogonal function
technique2 (“Methods” and Supplementary Fig. 1) based on NASST
time series from the average of historical simulations of 32 CMIP5
models (Supplementary Table 2). It should be noted that the forcing
component estimated from CMIP5 historical simulations is preferred
here over that estimated from CMIP6 models because a recent study
found that CMIP6 historical simulations may overestimate the North
Atlantic’s response to changes in aerosol concentrations50. Never-
theless, the inclusion of small tomoderate eruptions in CMIP6 forcings
largely influences the GMST response compared to CMIP5 simulations
and might have implications for simulated climate variability51. As a
result, we tested the robustness of our results to the uncertainty in the
CMIP generation used by reproducing the various reconstructions and
analyses of this study, but estimating the NASST forced component
from the CMIP6 historical simulations instead (Supplementary Table 3
and Supplementary Figs. 2–5).

To evaluate and compare each of the 312 reconstructions pro-
duced, we compute SCE scores48 over 30 pairs of randomly drawn
training/testing periods, each of which is a partition of the learning
period under consideration45 (i.e., the entire period over which the
statistical model is evaluated and constructed, “Methods”). This SCE
metric quantifies the predictive ability of the reconstruction methods
over the testing periods45,47. When the SCE is significantly positive for a
given testing sample, it indicates that the statistical model provides
better estimates than the empirical mean of the AMV observations
from the testing sample45,47 (“Methods”). Among the 312 reconstruc-
tions, the random forest52 (RF) method provides the reconstruction
with the highest mean SCE score, although it is not necessarily the best
method when considering the average of the scores by method for all
the reconstructions produced (Supplementary Fig. 6). The best mean
SCE score calculated over testing periods is obtained when RF is
applied to the AMVF index, for the 850–1987 reconstruction period
(i.e., with the 1870–1987 learning period). For this specific recon-
struction, the average SCE score over 30 training/testing splits of the
learning period is positive at the 99% confidence level, validating its
use for reconstruction purposes47 (med(CE) = 0.25, mean(CE) = 0.23,
“Methods”).

A shortcoming of the four regression methods considered in this
study is that they do not permit the use of paleoclimate records with a
temporal gap over either the learning or reconstruction periods. To
overcome this limitation, the reconstruction setup associated with the
highest SCE scores for the period up to 850C.E. was subsequently
applied in a nested reconstruction framework44. This entails gradually
reconstructing the AMVF index over time (1 year at a time, startingwith
the oldest) by constructing a new RF model that includes newly
available proxies at each timestep44 (“Methods”). This nested recon-
struction procedure stops in 1869 C.E., the year before the observed
AMV indices start.

To gain more confidence in the trustworthiness of this final
reconstruction, we have used, in addition to the standard evaluation
metrics within the reconstruction framework45 (“Methods”), three
independent validation approaches:
1. A benchmark nested reconstruction was produced using ran-

domly generated red noise processes as predictors, with similar
spectral characteristics than the actual proxy records53. This
reconstruction was made with the same number of predictors,
target AMV index (AMVF), regression method (RF), and

Fig. 1 | Climate impacts of the Atlanticmultidecadal Variability (AMV) over the
historical era. aHistorical evolutionofAMV indices investigated in this study for the
period 1870–2017 calculated using the HadISST dataset40 (“Methods”).
b, d, f, h, jMaps of averaged regression coefficients between the 10-years smoothed
composite of the three AMV indices from panel a and CRU TS441 precipitation data
for the period 1901–2017. Maps are, showing Annual, December–January–February
(DJF), March–April–May (MAM), June–July–August (JJA), and

September–October–November (SON) regression coefficients, respectively.
c, e, g, i, kMaps of regression coefficients between the composite of the three AMV
indices from panel a and CRU TS441 surface temperature data for the period
1901–2017. Maps are respectively showing Annual, DJF, MAM, JJA, and SON regres-
sion coefficients, respectively. For allmaps,white gridpoints indicate that regression
coefficients are not significantly different than 0 at the 90% confidence level, using a
two-tailed student test with corrected degrees of freedom45 (“Methods”).
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reconstruction period (850–1987) as the final reconstruction (see
Supplementary Fig. 7 and “Methods” for further details).

2. A comparison with independent ocean proxy records from the
Ocean2k database46 withmulti-annual tomultidecadal resolution,
in order to assess whether our reconstruction agrees with those
slowly varying oceanic changes (see Supplementary Fig. 8,
“Methods” and Supplementary Note 2 for further details).

3. Two pseudo-proxy experiments based on climate model
outputs48 to assess (i) the robustness and reliability of the
reconstruction method, and (ii) the potential effect of nonstatio-
narities in the connection between the proxies and the AMV (see
Supplementary Figs. 9 and 10, “Methods”, and Supplementary
Note 3 for further details).

In addition, we independently performed a NASST reconstruction
where no radiative forcing effect is removed from the predictand
(NASST) and predictors (proxy records) with the same optimal model
selection (Methods, Supplementary Fig. 11). The purpose of this
additional reconstruction is to check whether our reconstruction
procedure for the AMV consistently produces no direct response to
external radiative forcings.

Selected proxy records for the best reconstruction
The nested RF reconstruction of the AMV uses a total of 55 proxy
records from the Northern Hemisphere (Fig. 2a, b) selected based on
their correlation with the AMVF index. Their final weights, given by RF
variables’ importance (“Methods”), and their temporal availability, are
shown in Fig. 2c, d. We identify three main groups of records with
similarly distributed weights: Central Asia, Europe, andWestern North
America. The relatively lownumber of Europeanproxies contrastswith
previous regression-based reconstructions that preselected proxies
solely on the basis of their geographic proximity to the North

Atlantic22,44. The fact that only five proxy records from Europe are used
could be due to their reduced presence in the proxy record database
we consider (<10% of the total of P2k + ), or could simply indicate that
the climate signal and seasonality of most European proxies are not
representative of the AMV signatures (Fig. 1). Among the five selected
European proxies, one of them has a large weight (>3.5%) and inter-
estingly covers the whole reconstruction period (Fig. 2c, d). It corre-
sponds to a time series of tree ring growth measurements in the
European Alps54, which is strongly correlated with summer instru-
mental temperature over the historical period (r =0.7, P <0.01, Sup-
plementary Table 4). The other four European proxy records are
related to summer or annual temperature and precipitation, and are
thus in agreement with the well-documented fingerprints of the AMV
on European summer temperatures4,5, also highlighted here in Fig. 1.
The proxy data from Asia and western North America are strongly
represented in the PAGES 2k46 database, whichmay partly explain their
relatively large presence in the reconstruction. The selected proxy
records fromwesternNorthAmerica aremost sensitive to summer and
annual variations in temperature and precipitation (Fig. 2c, d and
Supplementary Table 4), although the correlation remains moderate
over the instrumental period in this region (Fig. 1). Interestingly, the
reconstruction also selects several strongly weighted proxy records of
annual and boreal summer (June–July–August) temperature over
eastern Pakistan and the Tibetan Plateau. This link is supported in
some recent studies that have highlighted the role of AMV variations
for spring and summer temperatures in this region, through the
impact of the AMV on large-scale atmospheric pressure gradients in
the Eurasian sector55,56. The reconstruction further includes a large
number of proxy records from East Asia/North China, for which the
climate conditions have also been shown to be significantly affectedby
AMV variations through atmospheric Rossby waves propagation and
heat advection changes in thewesternPacific57. Several studies showed

Fig. 2 | Nested reconstruction of the Atlantic Multidecadal Variability (AMV)
and related proxies. a Black line: Annually resolved nested reconstruction of the
AMVF index using random forest52 (see “Methods”). Red line: 10-years kernel
smoothed nested reconstruction, black line: annually resolved nested reconstruc-
tion. The regression uncertainties of the annually resolved nested reconstruction
(black line) are defined for each timestep of the nested reconstruction as ±2 stan-
dard error of the regression. Green line is the time series of the instrumental

calculated from historical SST data40. b Validation metrics (coefficient of efficiency
in yellow and correlation in orange) obtained for 30 training-testing splits, and
proxy records’ types and availabilities for the nested reconstruction (bottom).
c Proxies weights from the random forest method, relative to the proxy records
temporal availability (“Methods”). d Temporal coverage of the availability of the
proxy records.
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that the tropical Pacific and the AMV are closely linked through the
propagation of large-scale equatorial waves and air–sea interactions,
also impacting climate in easternAsia9,57. Thus, although previous AMV
reconstructionsdidnot considerproxy records fromAsia22,44, we argue
that there are good physical and objective reasons for their selection
here9,55–57.

A detailed description of each proxy record used for our recon-
struction and their correlations with the instrumental data and AMV is
given in Supplementary Table 4. Their locations are shown on top of
the maps from Fig. 1 in Supplementary Fig. 12.

Response to external forcing of the reconstructions
We now investigate the response of the AMV to relevant natural
external forcings before the industrial era, namely aerosol emissions
from volcanic eruptions and changes in solar irradiance. Because by
construction, theAMVwas separated from thedirect radiative effectof
the external forcings25, the analysis focuses on responses that are
either nonlinear or delayed. The analysis is complemented with a
characterization of the fully forced responses of NASST, for which
reconstruction has been performed in the same way (i.e., nested
approach and methodological choices) as the AMV one but without
removing any forced effect from the predictand (NASST) and pre-
dictors (proxy records). The best NASST reconstruction produced this
way correlates significantly with the AMV reconstruction (r =0.64;
P <0.01, Fig. 3a, “Methods” and Supplementary Fig. 11).

Using a recent reconstruction of volcanic activity58, we perform a
superposed epoch analysis45 (Methods) on the NASST and AMV
reconstructions to characterize their radiative response to the 10 lar-
gest eruptions of the last millennium (Supplementary Table 5). While
the NASST reconstruction shows a decadal-long response after the
eruption, similar to the result from a previous study44, no significant
response is found for the AMV reconstruction (Fig. 3b). The volcanic
forcing might affect the AMV with a time lag, at multidecadal

timescales, through internal variability excitation and dynamical
oceanic response59. However, sucha lagged response is not detected in
Fig. 3b. Individual responses of the AMV to each volcanic eruption are
presented in Supplementary Fig. 13.

Concerning solar forcing, neither the 10-year filtered time
series nor the 30-year filtered time series of the total solar irra-
diance (TSI) reconstruction used in the PMIP3 protocol60 is sig-
nificantly correlated with our 10-year filtered AMV reconstructions,
even when solar forcing leads by a few years (r = 0.23, P > 0.2,
lag = 12; r = 0.32,P > 0.2, lag = 13; respectively, where r stands for the
maximal cross-correlation across possible lags, expressed in years,
cf. Supplementary Fig. 14). On the other hand, the 10-year and 30-
year filtered time series of the TSI reconstruction do show amodest
correlation with the NASST reconstruction when the TSI leads by
13–14 years (r = 0.5–0.52, 0.1 < P < 0.2).

Our results thus suggest that natural external forcing does not
have adirect influenceon thephasingof theAMV,while, as expected, it
could play a direct role on variation of the NASST reconstruction.
Therefore, the volcanic forcing is not found to act as a pacemaker for
the AMV, at least for the ten largest volcanic eruptions of the last
millennium.

Spectral analysis
The wavelet analysis in Fig. 4 shows that the AMV reconstruction
exhibits significant multidecadal variations. It varies primarily in the
20- to 90-year band, except for the 1400–1800 period, which is
dominated by shorter cycles (20- to 40-year band). Thus, the 50- to 70-
year preferential periodicity suggested by observations since 18701

may not be systematic. The wide range of AMV preferential timescales
can also be found in control simulations of climate models26,61 and was
also obtained in an AMV reconstruction based on data assimilation43.

To investigate the robustness of these results, the spectral ana-
lysis was also extended to the best 30 reconstructions in terms of SCE
scores (Supplementary Table 6). We notice that none of these 30
reconstructions’ spectral characteristics suggest a frequency range as
narrow as the 50- to 70-year timescales, as suggested by the short
instrumental period1 (Supplementary Fig. 15). Instead, all reconstruc-
tions also show a dominant variability in the lower part of the multi-
decade range (e.g., 20–50 years).

An early warning signal for an approaching tipping point
It has been shown that detecting the approach of an AMOC regime
shift in climatemodelsmay require knowledge of hundreds of years of
AMOC variations38, which is far from what direct observations at
26.5°N, currently covering less than 20 years18,19, provide. In this

Fig. 3 | Comparison of the Atlantic Multidecadal Variability (AMV) with North
Atlantic Sea Surface Temperature (NASST) and volcanic forcing. a Final
reconstructions of AMV and NASST in sea surface temperature anomalies (°C).
b Superposed epoch analysis45 for responses of the AMV and NASST reconstruc-
tions to the ten largest eruptions58 of the last millennium (see Supplementary
Table 5). Composite series are performed for 31 years, with the 11th year being the
year of the eruptions. Each individual response is centered to its values 10 years
before the eruption (fromN-10 to N-1, where N describes the year of occurrence of
the eruption) before computing the composite time series. 95% confidence levels
have been calculated using a Monte-Carlo approach45.

Fig. 4 | Discrete wavelet transform of the nested Atlantic Multidecadal Varia-
bility reconstruction from this study.Contours provide the 90%confidence level
of significance. The white line and the light white-shaded area below indicate the
coneof influence. The coneof influencegives the spectrumborderswhere the edge
effect (i.e., the time boundary effect) becomes too important, which cannot be
robustly interpreted.
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regard, the evaluation of ocean surface indices as reliable estimates of
AMOC variability is debated in the climate community. Indeed, while
the heat transport associated with the AMOC can certainly contribute
to changes in surface ocean properties10,13–17, NASST also responds
strongly to the direct radiative effect of external forcings11,12,21,24,44

(Fig. 3b). However, our reconstruction is, by construction, expected to
be largely controlled by the dynamics of North Atlantic ocean circu-
lation, and notably of the AMOC10,13–17,27. Indeed, due to its deep ocean
aspect, the AMOC may not respond to direct variations in radiative
forcings, which is consistent with our AMV reconstruction (Fig. 3b and
Supplementary Fig. 14) that we expect to be suitable to retrace AMOC
variations. However, delayed and nonlinear dynamical response of the
AMOC to other kinds of externally forced perturbations, such as
freshwater input in the northern North Atlantic, may still be detected
since it is not being removed in AMV indices.

To verify the linkages between the AMOC and AMV, their simu-
lated indices are first investigated in 12 members of CESM-LME62.
To date, the CESM climate model is the only one that provides
such a large number of simulations for the last millennium, making
it an invaluable framework for studying this period62. Its use here is
particularly relevant because historical runs are too short to study
multidecadal relationships between time series. In addition to the
simulated AMVF indices for the last millennium extracted from
CESM-LME for the pseudo-proxy experiment (“Methods” and
Supplementary Note 3), we also calculated the corresponding
AMOC indices. To quantify the AMOC strength in simulations, we
used the maximum stream function value below 500 meters and
between 20°N and 65°N (AMOCmax). Figure 5 shows, for each
CESM-LME member, the maximum lagged correlations when the
AMOCmax index leads the AMVF (using decadally smoothed time
series). The associated cross-correlation functions are presented
in Supplementary Fig. 16. We find that 10 out of 12 CESM-LME
members show maximum and significant correlations at the 90%
confidence level when the corresponding AMOCmax leads by 4–8
years. Among these members, the confidence level reaches 95% for
9 of the members and 99% for 4 of them. Similar percentages and
lead times are obtained when other alternative AMOC indices are
considered (Supplementary Figs. 16 and 17). The discrepancies
observed among members in terms of significance level demon-
strate the relevance of using an ensemble of simulations to prop-
erly study the relationships between climate phenomena,
especially for such a long timescale and when using a single
AOGCM62. These discrepancies may reflect the different internal
variabilities sampled among the ensemble members62.

We test whether an AMV reconstruction can detect a potential
AMOC tipping point, using the relationships between the AMV and the

AMOC found in CESM-LME (Fig. 5) and various other model simula-
tions in previous studies10,13–17. We employ a tipping point detection
metric, the critical slowing down EWS—a type of EWS which has pre-
viously beenused in studies basedon simulatedAMOC38,39 or observed
AMOC indices based on surface observations37. Dynamically, this
approach assumes that a given system might be approaching a bifur-
cation if its memory grows with time, i.e., the state of the system at
time t + 1 becomes increasinglydependent on the state of the systemat
time t. In other words, as the system’smemory grows, so does the time
it takes to recover fromvariations. In time series analysis, an increasing
memory of the system is reflected by an increasing first-order auto-
regressive (i.e., AR(1)) coefficient39. Kendall τ statistics are calculated
for the AR(1) coefficients to estimate their evolution in time for dif-
ferent sliding window lengths38,39 (WL, WL = 200–400 years with a 50-
year increment) in order to evaluate such an EWS in the AMV recon-
struction. Here, the Kendall τ statistic quantifies the AR(1) coefficients’
temporal evolution as the ranked correlation between the AMV’s
sliding AR(1) coefficients and time (“Methods”). Although this EWS
approach has been shown to be successful in an earth systemmodel of
intermediate complexity38,39, there are still some sources of uncer-
tainties about its application, such as the lack of information on the
exact time when the tipping point is crossed, as well as the Kendall τ
statistic’s dependence on the time span it is calculated on.

This EWS test applied to our “real” paleoclimate AMV recon-
struction indicates a highly significant increase in the AMV’s memory
over the recent period for all window lengths: τ2[0.47,0.55] (P < 0.01
for all, Fig. 6a, “Methods”). According to the theory of tipping point
detection in climate time series39, this is a robust estimate, as it is based
on sufficiently long observations38, that the AMV may now be
approaching a tipping point after which the Atlantic current system
might undergo a critical transition. Figure 6a also shows that the most
recent values of the AR(1) have seen a particularly sharp increase.
Indeed, when only the last 200 years of the time-varying AR(1) coeffi-
cients are considered, they reach much higher levels of increase:
τ2[0.86,0.94] (P <0.01 for all WL, Fig. 6a, “Methods”). The top 30
reconstructions (Supplementary Table 6) also suggest a significant
EWS, regardless of the length of the WL considered (τ2[0.39,0.77] for
all 90 tests, P <0.01 for 89 of the 90 tests, Supplementary Table 7 and
Supplementary Fig. 18), showing that this could not be found by
chance on the single reconstruction with the highest SCE scores.

To determine whether the AMV-based EWS can be interpreted as
an EWS for the AMOC, we also provide a similar analysis performed on
those CESM-LME simulations for which a significant lagged AMOC/
AMV relationship was identified in Fig. 5. We computed EWS AR(1)
statistics from the CESM-LME simulations for the AMOC and the AMVF

indices, for threedifferentwindow lengths39 (WL = 200, 300, and400).

Fig. 5 | Maximum lagged correlations when the Atlantic Meridional Over-
turning Circulation index (AMOCmax) leads the Atlantic Multidecadal Varia-
bility index (AMVF) index in 12 members of Community Earth System Model
Last Millennium Ensemble (CESM-LME). Squares correspond to the maximum
lagged correlation when AMOCmax leads the AMVF index. Orange, red, and blue

colors indicate 90%, 95%, and 99% confidence levels, respectively. White points
indicate no significanceat the 90%confidence level. Numbers ineachpoint indicate
the timestep where the maximum cross-correlation is reached. All time series are
smoothed with a 10-year kernel filter. Exact cross-correlation functions for each
member are given in Supplementary Fig. 18.
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The Kendall τ statistics obtained for the AMVF index are, for the most
part, consistent with those obtained for the AMOCmax index
(Fig. 6b–d). According to the linear regressions between the AMOCmax

and AMVF statistics (Fig. 6b–d), AMV may slightly overestimate the
AMOC autoregressive properties, but it accurately captures these
changes on a millennial-scale (at least P <0.1 for WL = 200 to 400,
Fig. 6b–d). Using these linear regression models computed in CESM-
LME between the AMVF and AMOCmax indices (Fig. 6b–d) and the EWS
statistics calculated from the AMV reconstruction (Fig. 6a), we esti-
mate the Kendall τ of AR(1) coefficients from the last millennium
AMOC to be 0.37, 0.34, and 0.39 for WL= 200,300,400, respectively
(P < 0.01 for the three; see “Methods”).

Discussion
The AMV reconstruction proposed here is based on robust optimiza-
tion and model selection techniques for statistical regression45,47,49.
This AMV reconstruction of the lastmillennium is basedon a total of 55
proxy records45,46 (Fig. 2) and has been validated against a recon-
struction based on surrogate time series with the same persistence as
the proxy records53 (Supplementary Fig. 7), AOGCM simulation out-
puts of the last millennium62 (Supplementary Figs. 9 and 10), and
independent ocean proxy records46 (Supplementary Fig. 8).

This AMV reconstruction provides an indirect estimate for past
variability in the ocean circulation and notably the AMOC, as verified in
last millennium model simulations17 (Figs. 5 and 6b–d). As previously
stated, the AMV in this study is reconstructed in such a way that the
direct radiative influenceof external forcings is not included. However,
delayed effects of the forcings on the AMV, in terms of intensity,
persistence, or changes in spectral characteristics, may remain as a
result of its interactions with other climate components responding to
forcings. On top of the absence of the direct radiative effect of natural
forcings, the AMV reconstruction varies in a wide frequency band

(20–90 years, Fig. 4), which is larger than the variability estimated at
50–70 years from observations1, but agrees with data assimilation43

and modeling26,61 studies.
We also found a significant EWS for an approaching tipping point

based on this AMV reconstruction (Fig. 6a). Tipping occurs as a critical
threshold, or tipping point, is crossed, leading the system into a dif-
ferent dynamical regime39. In this context, while our AMV recon-
struction does not show a consistent radiative response to natural
forcings (Fig. 3 and Supplementary Figs. 13 and 14), it may primarily
reflect changes in the AMOC internal variability caused by the forcings
(Figs. 5 and 6b–d). It must be emphasized that the critical slowing
down EWS we employ may generate false alarms for a variety of
dynamical systems63,64. Nevertheless, in contrast to the case of the
AMV/AMOC with, e.g., underlying and diffuse anthropogenic green-
house gas forcing causing strong and persistent freshwater anomalies
in the northern North Atlantic, false alarms may especially occur for
systems that are not prone to tipping63. Therefore, based on the rela-
tionship found in models between the AMV and AMOC at decadal
timescales13–17 (Figs. 5 and 6b–d), relating the EWS found in the AMV
with potential large upcoming changes in the AMOC, a well-known
tipping element of the climate system28, appears to be a reasonable
and consistent assumption.

Futureobservations of the actual AMOCstrength are still required
to draw a reliable picture of its exact impact on the AMV, as this
assumption is still primarily based on AOGCM simulations13–17 (Figs. 5
and 6b–d). As a result, moreobservation-based evidenceof the precise
AMOC impacts on ocean surface properties remains crucial in under-
standing the extent to which EWSs observed at the ocean surface37

(Fig. 6a) can provide robust insights into future AMOC variations.
Consequently, the discovered AMV EWS could be a sign of an
approaching bifurcation of amore localized featureof theAMOC, such
as an abrupt convectionweakening in the North Atlantic subpolar gyre

Fig. 6 | EarlyWarning Signal (EWS) test of the Atlantic Multidecadal Variability
reconstructed index (AMVF) and relevance in Community Earth SystemModel
Last Millennium Ensemble (CESM-LME) simulations. a EWS for the reconstruc-
tion. The applied test is based on first-order autoregressive coefficients (AR(1)), for
different window lengths (WL)38, 39. For each WL, sliding AR(1) coefficient are
computed, and a Kendall τ statistics between time and the sliding AR(1) time series
are calculated (see “Methods”). Significances are approximated using Gaussian
distributions because of the large length (>50) of the AR(1) coefficients (see

“Methods”). b–d EWS statistics in CESM-LME simulations. Kendall τ statistics
obtained for the maximum Atlantic Meridional Overturning Circulation strength
below 500 meters depth (AMOCmax) AR(1) coefficients (ordinates) are plotted
against the Kendall τ statistics obtained for the AMVF AR(1) coefficients (abscissas)
for WL = 200 (b), WL = 300 (c), and WL=400 (d), respectively. Plotted numbers
indicate the member index of the CESM-LME simulations (from 2 to 13). Red lines
are the ordinary least squares regression lines, and their significance is calculated
using a two-tailed Student t test of the regression slope.
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region, as observed in some future projections from both the CMIP565

and CMIP666 AOGCM ensembles.
The debate over the fate of the AMOC has intensified recently30,36,

as evidenced by the fact that many paleoclimate records are incon-
sistent with the current strength of the AMOC being below normal35,36,
and subsurface density observations extending back 30 years show no
consistent trend in the AMOC strength over this period30. A study67

recently critiqued these various statements, arguing that some
paleoclimate proxies that do not show an AMOC decline35 may not
necessarily reflect its variations. Moreover, this study67 illustrated that
the absence of a trend in the AMOC over the last 30 years30 does not
contradict its longer estimates based on a paleoclimate
reconstruction32 and observations31 of SST fields. The growing evi-
dence from various sources that a strong AMOC state changemight be
on-going31–34,37 must be taken seriously in the panel of plausible sce-
narios in order to better communicate the potential consequences this
implies and thus better support decisionmaking68. Indeed, such awell-
documented AMOC state bifurcation could have significant climate
and ecological consequences28,69,70. Therefore, this finding emphasizes
the importance of taking into account the potential consequences of
such a large change in the Atlantic in climate adaptation plans68.

Methods
Estimation of NASSTs forced component using signal-to-noise
maximizing EOF
The forced component of NASST (all North Atlantic grid points
between latitudes 0° and 60°N) is estimated from historical simula-
tions of 32 coupled climate models (Supplementary Table 2). NASST
time series from the 32 simulations are extracted and merged as col-
umns of the same matrix. Using a principal component analysis of the
lattermatrix, the first principal component is retained as the estimated
forced component of NASST (Supplementary Fig. 1).

Instrumental AMV indices
Historical AMV indices have been calculated using annually resolved
observations of SST data from theHadleyCenter dataset (HadISST) for
the period 1870–2019. Three instrumental AMV indices are defined as
the spatially averaged SST over the North Atlantic region, differing in
the way the externally forced signal is removed, either beforehand or
afterward.

The first index (AMVTS, Fig. 1a) uses the global averaged SST
anomalies between 60°S and 60°N as a proxy for the externally forced
signal that is subtracted from NASST.

A second index (AMVT; Fig. 1a), is built using climate model his-
torical simulations to isolate the forced component in NASST. It is
calculated with a signal-to-noise maximizing empirical orthogonal
function (“Methods”) that is then removedby linear regression froman
estimate of its 10-year smoothed effect at each grid point of the North
Atlantic. The AMVT index is then obtained as the average of regression
residuals over the North Atlantic region.

Finally, the AMVF is obtained as the spatial average of the North
Atlantic time series residuals obtained after regressing out the ten-year
moving average of the global mean SST between 60°S and 60°N.

Only after being reconstructed, each AMV index has been
smoothed with a 10-year kernel filter, following the classical AMV
definition.

Proxy records database
To select theproxy recordsof this study, afirst largedataset ismadeby
merging the PAGES 2k database (686 records) with other proxy
records in neighboring continents of the North Atlantic published by
different studies (Supplementary Table 1). Duplicates from the three
sources are removed leading to a final database of 727 proxy records
(P2k-ALL). The proxy records from P2k-ALL used in the reconstruction
have been selected to fulfill the following conditions: (i) they are

annually resolved, (ii) they are located in the Northern hemisphere
(latitude >0°), and (iii) they are significantly correlated at the 95%
confidence level with at least one historical time series of either annual
or seasonal precipitation or surface temperatures from the nearest
grid point within the CRU TS4 historical dataset.

First analyses singled out a proxy record in Asia named “Asia.-
MOR1JU” which had abnormally large RF weights (more than 5 times
higher than the second) such that SCE scores were almost doubled due
to its inclusion. The reason for this behavior was not clear but high-
lighted a limitation of the nonlinear method. Whatsoever, since hun-
dreds of proxy records are tested against the AMV indices, such a
statistical anomaly does not appear unlikely. In order to prevent
biasing the reconstruction toward this single proxy record, wedecided
to remove it from the database used in this study.

In the next sections, we describe how different reconstructions
are compared and how a final nested reconstruction of the AMV is
obtained. These reconstructions also use correlation tests to select
proxies from P2k+ that are significantly correlated with a given AMV
index, for a given learning and reconstruction period. This means that
only a subset of the most relevant proxy records from the P2k+ data-
base is finally used in each reconstruction.

Generation of the AMV and NASST reconstruction ensembles
The 312 reconstructions compared in this study are performed for
26-time windows Γ: from 850–1975 to 850–2000, subsequently
incrementing the superior boundary by 1 year. We use this approach
to sample the sensitivity of the reconstructions to the calibration
period, which goes from 1870 to the upper bound of Γ. For lower
upper bounds, more proxies are available, but the regression mod-
els are built over shorter calibration periods and therefore have
fewer degrees of freedom. These 26 temporal windows are used in
combination with three AMV indices and four regressionmethods. A
detailed description of these regression methods is given in Sup-
plementary Note 1. We thus obtain 26 × 3 × 4 = 312 final reconstruc-
tions which are compared using the SCE metric which allows us both
to determine the best model and to say how reliable it is (next
Methods section, Supplementary Fig. 6). All these setups are tested
by only using proxies available and significantly correlated at the
95% confidence level with the respective AMV index. Noteworthy, it
is, of course, possible that some proxies correlate significantly with
AMV just by chance, which implies that some spurious predictors
might be used in the reconstruction. However, the weights of these
proxies are expected to be low, as they should be penalized in the
cross-validation process.

For the NASST reconstruction, 104 setups are compared by
shuffling the same 26 temporal windows and the same 4 regression
methods as for each of the AMV indices. As for the AMV, the best-
performing NASST reconstruction is retained as the one with the
highest SCE scores (“Computation of reconstruction and evaluation“
and Supplementary Fig. 11).

Computation of reconstruction and evaluation
We define the reconstruction period as Γ, defined by N annual time
steps, and the commonperiodof theproxy records and theAMV index
asT, in this case defined by n <N annual time steps such thatT � Γ. We
then define the AMV index as Y 2 Rn and the matrix of the p available
proxy records as X 2 RN ×p. We finally denote as x 2 Rn ×p the sub-
matrix of X that contains the proxy records values over the timeframe
T: The X matrix can then be denoted as X= ½ðXj

tÞt2Γ �1≤ j ≤p
and x = ½xj �1≤ j ≤p = ½ðXj

tÞt2T�1≤ j ≤p.
We then randomly split T in R = 30 pairs of training/testing

samples respectively denoted, 81≤ r ≤R, as fxðrÞ
ðtrainÞ;Y

ðrÞ
ðtrainÞg and

fxðrÞ
ðtestÞ;Y

ðrÞ
ðtestÞg. Here, the training sample size is set to be 80% of the

length of T so, by extension, the testing sample size is 20% of the
length of T.
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For statisticalmodeling,weuseYðrÞ
ðtrainÞ as thepredictand andxðrÞ

ðtrainÞ
as the predictors. For a given regression method denoted M, we apply
KFCV (see subsection “k-fold cross-validation (KFCV)”) to each training
set x rð Þ

trainð Þ;Y
rð Þ
trainð Þ

n o
as a metric to find the optimal set of parameters

associated to the training sample and M.
M and the associated optimal set of control parameters are then

applied to X(r) in order to reconstruct Y(r) on the testing period, which
gives Ŷ

ðrÞ
ðtestÞ, and the reconstruction period, which gives Ŷ

ðrÞ
ðrecÞ. This

requires that Ŷ
ðrÞ
ðtestÞ = ðŶ

ðrÞ
ðrecÞÞt2T: The validation score associated to the

rth training sample is then calculated using the SCE47 over the rth testing
sample:

sðrÞ = SCE Ŷ
rð Þ
testð Þ,Y

rð Þ
testð Þ

� �
= 1�

∑
m

i= 1
Y rð Þ
i testð Þ � Ŷ

rð Þ
i testð Þ

� �2

∑
m

i = 1
Y rð Þ
i testð Þ � �Y

rð Þ
testð Þ

� �2
, with �Y

rð Þ
testð Þ =

1
m

∑
m

i= 1
Y rð Þ
i testð Þ ð1Þ

Where m is the length of the testing sample.
This validation score gives an estimation of the accuracy of the

statistical model when reconstructing the observed variability not
included in the reconstruction period. When SCE < 0, it means that a
simple sample averageover the testing period is better than the output
given by the statistical model. Contrarily, SCE >0 means that the sta-
tistical model gives a more reliable reconstruction than the average
over the testing sample45, the associated reconstruction is thereby
considered as reliable in this study.

The reconstruction for a given AMV indexY performed on a given
timeframe Γ using a given statistical regression method M is obtained
by applying it with KFCV over the whole learning sample. This recon-
struction is associated to a global validation score, calculated as the
mean of the individual validation scores obtained for the randomly
drawn training and testing splits: s = avgðfsðrÞg1≤ r ≤RÞ.

k-fold cross-validation (KFCV)
Each method requires an optimization of its own set of control para-
meters θ. To estimate the optimal set of control parameters θopt on a
given training set fxðtrainÞ,YðtrainÞg, we use a k-fold cross-validation
(KFCV) approach.

The KFCV splits the observations into a partition of K groups of
the same size (or with approximately the same size if the length of the

training set is not divisible by K). We denote x kð Þ,Y kð Þ
n o

81≤ k ≤K ,
which contain only observations for the kth drawn sample. We denote

as x �kð Þ,Y �kð Þ
n o

the K-1 other sets. For all possible values of θ 2 Θ, we

scan the K models based on the sets fxð�kÞ,Yð�kÞg. The empirical opti-
mal set of control parameters is obtained by minimizing the averaged
Root Mean Squared Errors (RMSE) on the K splits by considering all
possible values of θ (or as much as possible if θ is defined in a con-
tinuous set; see Supplementary Note 1). The optimal KFCV set of
control parameters θKF is determined by:

θ̂opt =θKF = argminθ2Θ
1
K

∑
K

k = 1
RMSEðYðkÞ,ŶðkÞ,θÞ ð2Þ

Nested reconstruction
In this study, the best reconstruction found (defined as the one
yielding the best SCE scores) is the reconstruction of the AMVF index
with the random forest method over the period 850–1987 (Supple-
mentary Fig. 6).

Using the same methodological choices (calibration period, AMV
definition and reconstruction method), we have then performed a set
of 1020 nested reconstructions for the periods 850–1987 to
1869–1987, subsequently using increments of one year for the inferior
boundary, which allow us to use an increasing number of proxy
records to reconstruct the most recent years. The nested

reconstruction (i.e., the reconstruction presented in this study), is
obtained by concatenating the first year in each of these 1020
reconstructions.

Best 30 reconstructions
As additional validation of the results found for the best reconstruc-
tion from this study, the 30 best reconstructions out of the 312 have
been also produced and studied. Of note, nested reconstructions
ranked from the 30th to the 2nd positions have all been producedwith
a 20-year timestep instead of the one-year one for the best recon-
struction in order to largely limit the amount of computing time and
energy used. A detailed description of each of these reconstructions
and their average SCE score are given in Supplementary Table 4.

Random forest weights
The weights of the proxy records used for the nested reconstruction
are presented in Fig. 2c. Those weights have been calculated using the
random forest variable importance. Different importance metrics
exist, and for this study, we have selected the commonly used Mean
Decrease in Impurity (MDI), also known asGini importance. TheMDIof
a given proxy record is calculated as the sum of the number of splits
where it is used across theK trees (Supplementary Note 1 for details on
the regression methods), proportionally to the numbers of split sam-
ples in all trees (cf. SupplementaryNote 1). For Fig. 2c, theMDI for each
proxy is aggregated over the 1020 reconstructions using a weight of
n/N, where n is the number of used proxies for a given timestep, and
N = 55 the total number of proxies used at the end for the recon-
struction. Finally, Fig. 2c is computed by calculating the weight of each
proxy as a fraction of (i) its calculatedMDIs over the timeframes of the
nested reconstruction where it is used, and (ii) its total MDI over these
timeframes. The same is done in Supplementary Figs. 9 and 10, but
each MDI is also averaged over the pseudo-proxy experiments per-
formed on the 12 CESM1-LME members used.

Validation using random red noise predictors
To verify the relevance of the SCE metric and the quality of our statis-
tical model, a further validation was performed based on randomly
generated red noise predictors. The red noise processes are randomly
drawn as first-order autoregressive processes, based on the empirical
first-order autoregressive coefficient derived from the proxy records.
The average reconstruction scores obtained from random red noise
predictors are significantly negative (−0.08, P < 0.01) and significantly
lower than the average scores obtained from real proxies over the
different periods of the nested reconstruction (0.25, P < 0.01, Supple-
mentary Fig. 7).

Composites of ocean proxy records time series
Since corals are often very short records and ocean sediment cores
have too low temporal resolution (preventing them to meet the
requirement of being annually resolved), there is a shortage of ocean
records contributing to the reconstructions, which are almost exclu-
sively based on terrestrial records. Interestingly, the low-frequency
part in the annually resolved reconstructions can be verified against
the ocean records from theOcean2Kdatabase that have not been used
in the reconstruction. To avoid overfitting, correlation significance
shown in Supplementary Fig. 8a is only calculated for the preindustrial
period (before 1870) with an AR(1) correction for significance tests to
avoid false detections due to the low resolution of some proxies
(“Methods”). The composite average time series are performed by
multiplying by −1 (i.e., calibrated) ocean proxies which have negative
correlations with the AMVover the historical period only, such that we
mimic a composite-plus-scale reconstruction based on these records
only. There is an exception for some ocean records (<10 from Sup-
plementary Fig. 8a) that do not overlap with our reconstruction over
the historical period. These time series are thereforemultiplied by −1 if
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their correlations are negative over their overlapping period with the
AMV reconstruction.

Detailed descriptions of the results are given in Supplemen-
tary Note 2.

Two-way multimember pseudo-proxy experiments
For thepseudo-proxy experiment,weuse 12members (number 2 to 13)
of the National Center of Atmospheric Research (NCAR) Community
Earth SystemModel LatMillenniumExperiment (CESM-LME). Since the
calculation of a trend for a given NASST time series is time-dependent,
we distinguish the calculation of themodel AMVover the preindustrial
(PI) period (pre-1870, AMVPI) and the historical one (AMVH), notably
because anthropogenic forcings were small during the PI period as
compared to the recent one (historical). For AMVH, we calculate the
AMVby subtracting the ensemblemeanof theCMIP5models, similarly
to the real-world reconstruction. The AMVF is computed by estimating
the NASST regression coefficients with the global SST over the PI
period.

Each pseudo-proxy mimics a specific real-world proxy by taking,
in the model, the variable and season (or annual values) with the lar-
gest absolute correlations between the real proxy record and the
closest grid points from theCRUTS4 dataset (Supplementary Table 4).
Gaps and missing values in real proxy records are also reproduced in
the pseudo-proxy time series.

For both pseudo-proxy experiments presented below, and for the
sake of reducing computational costs, nested reconstructions have
been made with a 20-year timestep for the inferior boundary (from
850–1987 to 1850–1987) instead of the 1-year one that is used for the
real reconstructions.

The first pseudo-proxy experiment consists of reconstructing the
AMV within model simulations using the same proxy records and RF
method as for the real-world reconstruction, and for each timestep of
the nested reconstruction. Therefore, the reconstruction scores pre-
sented in Supplementary Fig. 9a for each CESM-LME member are
averaged over the different timeframes of the nested reconstruction.
The correlations are those calculated between the RF-based recon-
struction of the model AMV and AMVPI. For each member, the proxy
record weights are calculated in the same way as for Fig. 2c (“Meth-
ods”), and an ensemble average is presented in Supplementary Fig. 9b.

The second pseudo-proxy experiment consists of training RF
models directly within the CESM-LME members, in which the pseudo-
proxies are selected if the confidence level of the correlation test with
the model AMV is above 95%. These trained RF models tailored to the
model simulations are then applied to the AMVF index over the same
portion of the historical period than in the real experiment. The
obtained reconstructions are then compared to the reconstruction
using real-world derived weights in Supplementary Fig. 10c. Since real-
world proxy records have been measured with specific units (tree ring
MXD, ice core δ18O,…), the pseudo-proxies are rescaled to the mean
and the variance of the corresponding real-world proxy. For the same
reason, the pseudo-proxy is multiplied by −1 if its correlation with the
model AMV has an opposite sign to that of the real-world proxy with
the real-world AMV.

For the twopseudo-proxy validations, detailed descriptions of the
results are given in Supplementary Note 3.

Response to volcanic eruptions
To study the potential response of the reconstructed time series (AMV
and NASST) we use a superposed epoch analysis. It consists in sub-
tracting for each eruption the years from N–10 and N + 20, where N
stands for the year where a given eruption effectively occurred. A
composite is then computed as the average of the time series corre-
sponding to the ten strongest eruptions. The 95% confidence level
envelope is then calculated for each timestep from the distribution of
the surrogate time series.

For the best 30 reconstructions, it is considered that the negative
AMV response is significant if at least two yearsbetweenN andN + 20 is
lower than the 95% Monte-Carlo envelope.

Early warning signal test
We base our approach on methods for the detection of incoming cli-
mate tipping points using the AR(1) critical slowing down metric. The
AMV reconstruction is firstly smoothed using a Kernel Gaussian fil-
tering with a bandwidth of 100 years. The annually resolved AMV is
then regressed onto its 100-year filtered version to remove potential
long-term trends. The AR(1) coefficients of the residuals from this
regression are calculated for different sliding window lengths WL =
200, 250, 300, 350, 400 years (Fig. 6a). The Kendall rank correlation,
called Kendall τ, is calculated for each of the AR(1) coefficient series.
Contrary to a former study focusing on early warning signal applied to
an AMOC collapse in an earth system model of intermediate
complexity38, we cannot use a model-based estimate of the sig-
nificance of Kendall τ, which is rather calculated using a gaussian
approximation as detailed in the “Statistical information” section.

Statistical information
Figure 1b, c: For each grid point, a two-tailed Student test is applied to
the regression coefficients between the corresponding climate vari-
able and the AMV indices. The degrees of freedom are corrected using
time series autocorrelations45.

Figure 6a: The Kendall rank correlation coefficient, or Kendall τ
coefficient, measures the ordinal association between two quantities,
here AR(1) coefficients denoted ðxiÞ1≤ i ≤n here, and time denoted
ðyiÞ1≤ i≤n. The statistic is given by:

τ =
nc � nd

n0
ð3Þ

Where, considering (x1, y1), (x2, y2), …, (xn, yn) the ensemble of joint
pairs:

nc = cardi≠j xi >xj \ yi >yj

n o
∪ xi <xj \ yi < yj
n on o

, i,jð Þ 2 1,n½ �½ �2

ð4Þ

nd = cardi≠j xi >xj \ yi <yj

n o
∪ xi <xj \ yi > yj
n on o

, i,jð Þ 2 1,n½ �½ �2

ð5Þ

n0 =
nðn� 1Þ

2
ð6Þ

For large sample (n > 50), as in this study, the distribution is
approximated with a Gaussian distribution of mean 0 and variance
2ð2n+ 5Þ
9nðn�1Þ, under the null hypothesis H0: “τ = 0” which is tested against
the alternative hypothesis H1: “τ ≠0”. The P value (shown in Fig. 6a) of
the test is deduced from the quantiles of this distribution.

Unless stated otherwise correlation are tested using a Student
t test for correlation, with corrected degrees of freedom using time
series autocorrelation, as shown for instance in Supplementary Fig. 8a.

For all boxplots of the study, the median is shown as a heavy
darkline. Boxplots edges give first and third quartiles. Boxplot “whis-
kers” gives the full range without including outliers, which are not
shown here for better graphical representations. A point from a box-
plot is here considered as an outlier when it is outside 1.5 times the
interquartile range above the upper quartile and below the lower
quartile.

Article https://doi.org/10.1038/s41467-022-32704-3

Nature Communications |         (2022) 13:5176 11



Data availability
The whole data generated and treated in this study have been
deposited on a Zenodo repository: https://zenodo.org/record/
4896670#.YLjdOS2w3dc. The source and treated data to compute
figures in this study are provided in the SourceData file. The generated
data in this study are provided in the Data file. Simulation outputs for
the LME experiments can be accessed from the NCAR Climate Data
gateway website: https://www.earthsystemgrid.org/. The CRU TS4
datasets can be accessed from the CRU data download webpage:
https://crudata.uea.ac.uk/cru/data/hrg/#current. The HadISST data
can be accessed from the Met Office Hadley Center website: https://
www.metoffice.gov.uk/hadobs/hadisst/. For thehistorical experiments
of CMIP5 and CMIP6 model outputs, data can be accessed from the
ESGF website: https://esgf-node.llnl.gov/projects/esgf-llnl/. Source
data are provided with this paper.

Code availability
All codes needed to reproduce this study are publicly available on the
following Zenodo link: https://zenodo.org/record/4896670#.
YLjdOS2w3dc. Codes have been made using bash UNIX and R lan-
guages. R packages are listed in Supplementary Table 8.
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