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Abstract This paper deals with recursive continuous-
time system identification using fractional differentia-

tion models. Long-memory recursive prediction error
method is proposed for recursive estimation of all pa-
rameters of fractional order models. When differentia-

tion orders are assumed known, least-squares and pre-

diction error methods, being direct extensions of the

classic methods used for integer order models, are com-

pared to our new method, thus proving the efficiency

of our algorithms. Then, when the differentiation or-
ders are unknown, two-stage algorithms are necessary
for both parameter and differentiation order estimation.

The performances of the new proposed recursive algo-

rithm is studied through Monte-Carlo simulations. Fi-

nally, the proposed algorithm is validated on a biologi-

cal example where heat transfer in lungs is modeled by

using thermal two-port network formalism with frac-

tional models.
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1 Introduction

Fractional calculus was explored in the twentieth cen-

tury as a way to model diffusion phenomena for differ-

ent geometries [31],[32]. It has been shown that diffusion

phenomena can be modelled by using fractional order

transfer functions with differentiation orders that are

multiples of 0.5. In electro-chemistry, charge diffusion

in acid batteries is governed by Randles’ model, which

involve a half-order fractional integrator [37]. Studies

have also shown a half-order fractional integrator model

for semi infinite thermal systems [1]. This physical phe-

nomena have led to the theoretical conception of constant-

phase element [16,29], that may be used as building

blocks for circuit models. Constant-phase element may

be used to model intestine tissue behavior [9], cardiac
tissue [21], porous films [4] and lung behavior [14,42].

New challenges appear on system identification: [43]

provides new paradigms and challenges in system iden-

tification such as broader types of uncertainties, net-

worked systems or even data explosion; [34] proposes

kernel methods; [20] gives new kernel-based regulariza-
tion methods; [2] proposes to estimated time-delay with

sampled limit cycle in frequency domain; etc. There
is a vast literature concerning the analysis and iden-
tification of discrete-time models [19]. However, note

that such type of models may lead to parameters that

lack physical meaning. The sampling zero problem [45]

related to discretization should not be neglected ei-
ther. As a model with physical meaning is sought, a

continuous-time identification is better suited. The main

challenge with adapting system identification for conti-

nuous-time models from sampled data relies in the deriva-

tive approximations for the information matrix [10].

When dealing with fractional models, this information
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matrix will contain approximations of fractional order

derivatives from experimental data.

Since the 1990s, substantial contributions have been

made for fractional order system identification by es-

timating the coefficients of a fractional order transfer

function. In continuous-time identification, methods re-

lying on state-variable filters, least-squares and instru-

mental variables were introduced in [3,41,30]. These

techniques have been applied for identifying thermal

diffusion on an aluminium rod [24,41], charge diffusion

lithium-ion battery models [8], muscle relaxation [39],
heat transfers in biological system [42].

Most of the fractional system identification methods

work offline, which means that the whole data of an ex-
periment is used to provide parameter estimation. In

some cases, online parameter estimation is needed in
open-heart surgery where lung thermal modeling will
prevent pulmonary cell dying. The most famous online
identification method is the recursive least squares. Re-

cursive prediction-error methods are also available in

literature [19]. Padilla [33] provides a recursive versions
of LSSVF and RIVC for integer-order systems. By star-

ting from Le Lay’s method and online estimation con-
cepts, a method to estimate coefficients of a fractional
order transfer function was proposed in [6]. Fractional

order models may also require the estimation of one or

several differentiation orders, which has already been

studied in the offline cases by means of gradient descent

[41]. An extension of Djouambi’s identification method

has also been proposed to identify the order by using a
scheme similar to gradient descent in [13].

The aim of this paper is to first provide efficient re-

cursive all parameter estimation methods, namely, both
the coefficients and the differentiation orders. First of
all, when the differentiation orders are assumed known,

a new method called long memory recursive prediction

error method is proposed and compared to existing

methods through Monte Carlo simulation analysis. A

specific aspect of fractional differential equation mod-

eling is the determination of the differentiation orders.

In system identification of classic rational models, as

the model order remains unchanged, only the coeffi-

cients are estimated. When estimating both coefficients

and differentiation orders of fractional models, this task

is not trivial: indeed, in an online recursive algorithm,

the model order changes at each iteration. Therefore,
the long-memory prediction error method (LMRPEM)
is extended for estimating both parameters and dif-

ferentiation orders. Monte Carlo simulation analysis is

again proposed to analysis the statistical properties of

our new method. Finally, the new LMRPEM algorithm

is applied for identifying heat transfers on a human

bronchus.

Real experiments for modeling heat transfers in sheep

lung was previously proposed in [42] for system iden-
tification by using black box model through Havriliak-

Negami functions. It is now proposed to use a more

realistic model for heat transfers in human lungs. By

using thermal two-port network formalism [22], which

is none other than the solving of the heat equation on a
unidirectional medium, and fractional order impedance

approximations [7], heat transfers in lungs of a human

main bronchus can be modeled as an equivalent T net-

work (see figure 5). All analytical developments for heat

transfer modeling are detailed in [7].

The paper is organized as follows: Section 2 de-

scribes the problem formulation for recursive fractional

system identification, Section 3 presents the recursive

estimation methods for parameter estimation of frac-

tional systems, then Section 4 introduces recursive es-

timation method for all parameter estimation by combi-
ning both coefficient and fractional differentiation order
estimation. Section 5 presents an application to thermal

transfer in human lungs and conclusions are drawn in

Section 6.

2 Problem formulation for recursive fractional

system identification

2.1 Mathematical background

Many definitions exist for fractional derivatives [15,11,
38].

Grünwald [12] and Letnikov [17] independently de-
veloped a definition for an arbitrary order derivative in

terms of a convergent series:

pαf(t) = lim
h→0

1

hα

⌊ t
h
⌋

∑

j=0

(−1)j
(

α

j

)

f(t− jh) (1)

where ⌊.⌋ stands for the floor operator, p is the differen-
tiation operator p = d

dt
, and

(

α
j

)

is Newton’s binomial

coefficient generalized to real numbers:
(

α

j

)

=
Γ (α+ 1)

Γ (j + 1)Γ (α− j + 1)
(2)

=
α(α− 1) . . . (α− j + 1)

j!
,

where Γ is Euler’s Gamma function. The slow conver-

gence of this binomial justifies why fractional order ope-
rators are well-suited for long-memory behavior model-

ing, as the whole past of the function is required for its
definition.

By replacing h by the sampling time Ts, one gets an

implementable approximation for the fractional deriva-
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tive:

pαf(t) =
1

Tα
s

⌊ t
Ts

⌋
∑

j=0

(−1)j
(

α

j

)

f(t− jTs) +O(Ts). (3)

Note that the error terms are proportional to the sam-

pling time [35, Section 7.4]. Consequently, the smaller

the sampling time, the lesser the approximation errors1.
If one considers a case with null initial conditions,

the Laplace transform of the fractional derivative may
lead to a simple expression [35, Section 2.8.4]:

L {pαf(t)} = sαF (s). (4)

For a fractional SISO model, a fractional differential
equation relates the input u(t) to the output y(t):

y(t) + a1p
α1y(t) + ...aNp

αN y(t) =

b0p
β0u(t) + b1p

β1u(t) + ...bMp
βMu(t)

(5)

where (ai, bj) are real numbers and α1 < α2 < ... <

αN and β0 < β1 < ... < βM are non-integer positive

numbers.

The Laplace transform of (5) gives the following
fractional order transfer function model:

G(s) =
B(s)

A(s)
=

M
∑

i=0

bis
βi

1 +
N
∑

j=1

ajsαj

. (6)

Definition 1 A SISO system G(s) (6) is commensu-

rate of order ν, if all differentiation orders are integer

multiples of ν:

G(s) =
B(s)

A(s)
=

M
∑

i=0

bis
iν

1 +
N
∑

j=1

aisjν
, (7)

where all j =
βj

ν
and i = αi

ν
are integer numbers.

Stability of fractional order systems has been ana-

lyzed in different contexts. The most well-known sta-

bility criterion was established by Matignon [25] and

allows to check the stability of a commensurate order

system through the location of its sν-poles. The ori-
ginal theorem was established for commensurate orders

0 < ν < 1, but this was extended for orders between 1

and 2 [28]. Orders with commensurate orders beyond 2

can be proven to be unstable [23]. Further extensions

have been developed in order to check stability of non-

commensurate systems [36].

1 If the sampling time is too small, numerical problems may
occur such as stability in digital implementation. In this case,
suitable discrete rational approximations could be used.

Theorem 1 (Matignon’s stability Theorem) Let

S be a commensurate transfer function and ν its com-
mensurate order. G(s) = Qν(s)

Pν(s)
is BIBO-stable if and

only if:

0 < ν < 2 (8)

and, for every pole sk (Pν(sk) = 0):

|arg(sk)| > ν
π

2
. (9)

2.2 Problem formulation

Let be an input u(t) and its noise-free output y(t) re-
lated by equation (6), where A(s) and B(s) are assumed

coprime and the system stable. Data are collected at
regular samples from t = 0 to current time t = Tf
with the sampling time Ts. Furthermore, the number

of data sample is assumed to be large enough so that
the convergence of the estimated parameters to the true
ones is guaranteed. Moreover, the quasi-stationary in-
put signal {u(t), 0 ≤ t ≤ Tf} applied to the system is

persistently exciting, and gives rise to an output signal
{y(t), 0 ≤ t ≤ Tf}. The output data is corrupted by

an additive white measurement noise ξ(t) due to exper-

iment and sensor imperfections, normally distributed
with a zero mean and σ2 variance, considered at dis-

crete instants. The complete equation can be written

as:

S :

{

y(t) = G(p)u(t)

y∗(tk) = y(tk) + ξ(tk),
(10)

where y∗(tk) is the noisy sampled value of the unob-

served noise free output y(t).

When using model (6), the parameter vector, θ, is
defined as

θ = [ρ µ]T (11)

where ρ is the vector of N +M + 1 coefficients:

ρ = [b0, b1, ...bN , a1, a2, ...aM ]T , (12)

and µ is the vector of N +M +1 differentiation orders:

µ = [β0, β1, ...βM , α1, α2, ...αN ]T . (13)

The total number of parameters to be estimated is then
2×(N+M+1). If N orM are too high, the complexity

may be too high and nonlinear optimization algorithms
may fail to converge to a global minima.

In order to reduce the number of parameters, a com-

mensurate order model (7) can be used, where the dif-

ferentiation order vector µ is reduced to a single pa-

rameter ν. The parameter vector θ is then reduced to
N +M +1 coefficients as in (12) added up of the com-

mensurate order µ = ν.
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3 Coefficient estimation of fractional order

system

In this section, all differentiation orders are assumed

known, therefore, only the coefficients are estimated.

The parameter vector θ̂ boils down to:

θ̂ = ρ̂ = [b̂0, b̂1, ...b̂M , â1, â2, ...âN ]T . (14)

3.1 Recursive Least-Squares with State Variable Filter

(RLSSVF)

The estimated output can be expressed in a linear form

as:

ŷ(t) = φ∗(t)T θ̂ (15)

where the regression vector is as follows

φ∗(t)T =

[

pβ0u(t), ..., pβMu(t),

−pα1y∗(t), ..., −pαN y∗(t)

]

. (16)

A suitable error function is defined as:

ǫ(t) = y∗(t)− φ∗(t)T θ̂, (17)

where the parameter vector θ̂ minimizes the quadratic

error function:

J(θ̂) =
1

2

t
∑

k=1

ǫ(k, θ̂)2, (18)

which can be put under the form of an optimization

problem:

θ̂(t) = argmin

t
∑

k=1

ǫ(k)2. (19)

It is well-known that the least-squares are biased in
presence of noise, therefore, state-variable filters can be

used to obtain a filtered input uf (t) and output yf (t).

This filtering allows to reduce the noise influence on

the estimation and is normally a low-pass filter tuned

to emphasize a particular bandwidth. A typical choice

is the low-pass Poisson filter:

F (p) =
1

(

1 + p
ωf

)Nf
. (20)

The filter should be designed by respecting the follow-

ing [3]:

Nf > ⌈max(βM , αN )⌉, (21)

where ⌈·⌉ is the ceil operator. It has been shown in [5]

that the cut-off frequency ωf may have an influence

on the convergence rate of the algorithm, as well as

sampling time and input. This frequency is typically

chosen to be somewhat larger to the system bandwidth

[33]. This means that a priori estimation or tuning of

the system bandwidth may be required to get better

results.

The error function ǫ(t) is now replaced by its filtered

version ǫf (t):

ǫf (t) = y∗f (t)− φ∗f (t)
T θ̂ (22)

where the filtered regression vector φ∗f (t) is

φ∗f (t)
T =

[

pβ0uf (t), ..., p
βMuf (t),

−pα1y∗f (t), ..., −pαN y∗f (t)

]

. (23)

and the filtered input uf (t) and output yf (t) are defined

as:

uf (t) =F (p)u(t)

y∗f (t) =F (p)y
∗(t).

(24)

Inspired by the recursive least-squares [19], the RLSSVF
algorithm is obtained for fractional order systems:



























θ̂(k) = θ̂(k − 1) + L(k)
[

y∗f (kTs)− φ∗f (kTs)
T θ̂(k − 1)

]

L(k) =
F (k − 1)φ∗f (kTs)

λ(k) + φ∗f (kTs)
TF (k − 1)φ∗f (kTs)

F (k) =
1

γ(k)

[

I − L(k)φ∗f (kTs)
T
]

F (k − 1)

(25)

where γ is a forgetting factor that can give more or less

weight to the most recent past of signals and F is the
covariance matrix.

Remark : the forgetting factor γ may actually be a
function of time and be adaptive as identification is

running [40]. In this study, it will be taken as a constant
and equal to unity.

3.2 Recursive Prediction Error Method (RPEM)

By following the prediction error method, a suitable

error function is given by the output error:

ǫ(t) = y(t)− ŷ(t), (26)

where the estimated output ŷ(t) is computed as:

ŷ(t) = G(p, θ̂)u(t). (27)

The quadratic error function defined in (18) is mini-

mized. By taking the gradient of the criterion:

∂J(θ̂)

∂θ̂
=

t
∑

k=1

ψρ(kTs)ǫ(kTs) (28)
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with

ψρ(kTs) =
∂ǫ(kTs)

∂θ
, (29)

its error sensitivity is computed by:

∂ǫ(kTs, θ̂)

∂θ̂
= −

[

∂ŷ

∂b0
, ...,

∂ŷ

∂bM
,
∂ŷ

∂a1
, ...,

∂ŷ

∂aN

]T
∣

∣

∣

∣

∣

t=kTs

(30)

where

∂ŷ

∂bi
=

pβi

1 +
N
∑

j=1

aipαi

u(kTs) (31)

and

∂ŷ

∂aℓ
= −

M
∑

i=0

bip
βi+αℓ

(

1 +
N
∑

j=1

ajpαj

)2u(kTs). (32)

for i = 0, . . . ,M and ℓ = 1, . . . , N .

Inspired by the recursive least-squares [19], the RPEM

algorithm is obtained for fractional order systems:











ǫ(kTs) = y∗(kTs)− ŷ(kTs)

θ̂(k) = θ̂(k − 1) + γρR
−1(k)ψρ(kTs)ǫ(kTs)

R(k) = R(k − 1) + γρ
[

ψρ(kTs)ψ
T
ρ (kTs)−R(k − 1)

]

(33)

where γρ is a refining gain analogous to the step in a

gradient descent. This forgetting factor γρ may actually

be adapted during the identification or be a function of

time. However, the determination of an adequate γρ
may prove to be non-trivial, as stated in [18]. For the

present work, it will be taken as a constant.

3.3 Contribution with Long Memory Recursive

Prediction Error Method (LMRPEM)

Fractional order systems have a natural long-memory

behavior as the whole past of a signal derivative is

needed, therefore an extended error with long memory

is more suited:

ǫ̃(kTs) = [ǫ(0), ǫ(Ts), ǫ(2Ts), ... ǫ(kTs)]
T
. (34)

This error signal ǫ̃ will include errors at all instants
from t = 0 to the current time t = kTs and will be in-

creased by one data-point per iteration. Consequently,

the resulting gradient ψ̃ρ(k, θ̂) is now a matrix:

ψ̃ρ(kTs) =













∂ǫ(0)
∂b0

∂ǫ(Ts)
∂b0

∂ǫ(2Ts)
∂b0

...
∂ǫ(kTs)

∂b0
∂ǫ(0)
∂b1

∂ǫ(Ts)
∂b1

∂ǫ(2Ts)
∂b1

...
∂ǫ(kTs)

∂b1
...

∂ǫ(0)
∂aN

∂ǫ(Ts)
∂aN

∂ǫ(2Ts)
∂aN

...
∂ǫ(kTs)
∂aN













(35)

where k indicates the present iteration.

By introducing the extended measured output Ỹ ∗(k)

and the extended estimated output Ỹ (k) as:

Ỹ ∗(kTs) = [y∗(0), y∗(Ts), y
∗(2Ts), . . . , y

∗(kTs)]
T

(36)

˜̂
Y (kTs) = [ŷ(0), ŷ(Ts), ŷ(2Ts), . . . , ŷ(kTs)]

T
, (37)

the long memory recursive prediction-error method (LM-

RPEM) is proposed for fractional order systems:















ǫ̃(kTs) = Ỹ ∗(kTs)− Ỹ ∗(kTs)

θ̂(k) = θ̂(k − 1) + γρR
−1(k)ψ̃ρ(kTs)ǫ̃(kTs)

R(k) = R(k − 1) + γρ

[

ψ̃ρ(kTs)ψ̃
T
ρ (kTs)−R(k − 1)

]

(38)

where again, γρ is a refining gain analogous to the step

in a gradient descent. As previously stated in section

3.2, γρ will be taken as a constant.

3.4 Simulation results for recursive coefficient
estimation

3.4.1 True system description

Let us consider the following true system model:

G(p) =
K

1 + 2ζ
(

p
ω0

)ν

+
(

p
ω0

)2ν

=
1

1− 1.414p0.5 + 2p1
(39)

with K = 1, ζ = −0.5, ω0 = 0.5rad/s and ν = 0.5. Such

a general structure represents a second kind fractional

order system [23], and has a resonant peak around ωr =
0.45rad/s (see Fig. 1).

The model structure is chosen such as the true one
(39) and is expressed by:

G(p) =
b0

1 + a1pν + a2p2ν
, (40)

with differentiation orders assumed known and fixed

just like the true system (39) (ν = 0.5). The aim is to es-

timate the coefficients of the system and to see the sta-

tistical properties of the proposed LMRPEM algorithm



6 Stéphane Victor et al.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

Frequency (rad/s)

G
ai
n
(d
B
)

P
h
as
e
(◦
)

Fig. 1 Bode diagram of the true system (39)
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Fig. 2 Input/output data used for recursive system identifi-
cation

through Monte Carlo analysis, with Nexp = 100runs
and different signal to noise (SNR) levels.

The input signal is a pseudo random binary se-
quence oscillating between −5 and 5 and containing

1000 values with a sampling time Ts = 0.01s. All simu-
lations are initialized with θT = [1, 0.5, 2.5] and ν = 0.5

such as the true system (39). Fig. 2 shows the input used

for simulations, as well as the noise-free output and the

noisy output with a SNR = 15dB.

All simulations have been carried out with the CRONE

toolbox developed in Matlab®, which is dedicated to
fractional calculus, fractional system simulation and sys-

tem identification with fractional models2.

2 The new version of the CRONE toolbox is an object-
oriented version with several classes defined for fractional
models (LTI, explicit form, implicit form, ZPK, state-space
representation, etc.). This CRONE toolbox is freely available
on http://archive.ims-bordeaux.fr/CRONE/toolbox/

Table 1 Monte Carlo simulation results (100 runs) for coeffi-

cient estimation with different SNR.
¯̂
θ denotes the parameter

mean value and σ̂θ the standard deviations

b0 a2 a1

True 1.000 2.000 −1.414

Method SNR
¯̂
b0 σ̂b0

¯̂a2 σ̂a2

¯̂a1 σ̂a1

20 0.866 0.014 1.740 0.017 −1.317 0.016
RLSSVF 15 0.644 0.026 1.357 0.030 −1.110 0.059

10 0.295 0.035 0.819 0.042 −0.764 0.138
20 1.001 0.010 1.999 0.034 −1.414 0.031

RPEM 15 0.999 0.020 1.985 0.051 −1.403 0.050
10 1.000 0.035 1.954 0.098 −1.374 0.102
20 0.999 0.004 1.999 0.006 −1.415 0.006

LMRPEM 15 0.999 0.009 2.001 0.011 −1.416 0.012
10 0.998 0.016 2.001 0.019 −1.417 0.022

3.4.2 Coefficient estimation with known differentiation
orders

From Fig. 1, the true system is resonant in the fre-

quency range [1, 10]rad/s. Therefore, the Poisson filter

(20) is set with a cut-off frequency of ωf = 10rad/s and

as max(βM , αN ) = 1, Nf = 2.

Note that in a realistic scenario such information
may not be available and an empirical estimation of the

cutoff frequency ωf and the order Nf will be required.

Monte-Carlo simulation results for 100 runs are sum-

marized in Table 1.

The RLSSVF method lacks robustness with respect
to measurement noise. The lesser the SNR, the greater

the estimation bias and the greater the standard de-

viations. Moreover, the RLSSVF is not efficient as the

parameters are not correctly estimated for any noise

level. An improvement can be obtained by adjusting

the cut-off frequency of the filter, however, it should be

noted that a frequency ωf extremely close to the sys-
tem bandwidth would deteriorate the estimation in a

practical scenario.

The RPEM method (γρ was set to 0.01) is more

consistent than the RLSSVF method as the bias is less

present. However, the lesser the SNR, the greater the
bias. The true value of the parameters is always in-

cluded in the range determined by the standard devi-

ation. On the other hand, a rough factor of 3 can be

observed between the standard deviations of SNR =

20dB and 10dB.

The LMRPEM method (γρ was set to 0.01) has the
most consistent estimation as the estimation has no bias

and the estimation variances are the lowest whatever

the noise level. This method has significantly reduced

the parameter deviations.

http://archive.ims-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page
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3.5 Commensurate order with unknown differentiation

orders

In practice, the differentiation orders are not always

known a priori. The commensurate order influence is

evaluated by computing the cost function, defined as

the ℓ2-norm of the normalized output error:

J(θ̂) = 10log
||ǫ̃(NTs, θ̂)||2

|| ˜̂Y (NTs), θ̂)||2
(41)

where the long memory error ǫ̃(NTs, θ̂) is defined as in

(34):

ǫ̃(NTs, θ̂) = Ỹ ∗(NTs)− ˜̂
Y (NTs, θ̂) (42)

are given by relations (36) and (37).

Figure 3 shows the criterion J versus the commen-

surate order obtained by using LMRPEM method for

different values of the commensurate order in order to

approximate the true system with a noise to signal ratio

NSR = −20 dB. As expected, the criterion minimum is

obtained at ν = 0.5, which is the true commensurate or-
der. Indeed, when the model is in the same model class

as the true system, the minimum of the cost function
is found at ν = 0.5 and equals −20dB which exactly

corresponds to the NSR. Other values of ν lead to non-

negligible modeling errors as the coefficient estimation

would not converge to the true parameters. For exam-

ple, at ν = 1, the cost function is around −10.01dB,
which corresponds to a modeling error around 10dB.

This simulation result motivates to estimate the frac-

tional differentiation orders, as they may considerably

influence the estimation.

4 Differentiation order estimation and all

parameter system identification

In this section, the differentiation orders are assumed

unknown, as it is often the case in practice. Thus, it

is helpful to consider differentiation order estimation

along with coefficient estimation. As the differentiation

orders are not expressed in a linear way in (6) or (7), it is

necessary to recursively estimate these parameters with
a suitable error function. As the LMRPEM method has
given the best estimation results in the previous sec-
tion for coefficient estimation, it is proposed to use this

method for the differentiation order estimation. Then,

two variants are proposed to identify all parameters,

both the coefficients and the differentiation orders in a

two stage algorithm.

4.1 Differentiation order estimation

In a general context, a vector of differentiation orders

could be determined and when dealing with a commen-

surate model, a single differentiation order is estimated.

By following the prediction error method, a suitable
error function is given by the output error:

ǫ(t) = y∗(t)− ŷ(t), (43)

and differentiation orders may be recursively adjusted

by adding a correction term to the previous iteration:

µ(k + 1) = µ(k) + γµR
−1
µ ψµ(kTs)ǫ(kTs) (44)

where:

ψµ(kTs) =
∂ǫ(kTs)

∂µ
= − ∂ŷ

∂µ
. (45)

Recall that the LMRPEM method has given the

best results for estimating the coefficients for fractional
order systems. Consequently, an extended error is used
to take into account the long memory behavior of the
system:

ǫ̃(kTs) = [ǫ(0) ǫ(Ts) ǫ(2Ts) ... ǫ(kTs)]
T
, (46)

which turns the error sensitivity into a matrix:

ψ̃µ(kTs) =













∂ǫ(0)
∂β0

∂ǫ(Ts)
∂β0

∂ǫ(2Ts)
∂β0

...
∂ǫ(kTs)

∂β0

∂ǫ(0)
∂β1

∂ǫ(Ts)
∂β1

∂ǫ(2Ts)
∂β1

...
∂ǫ(kTs)

∂β1

...
∂ǫ(0)
∂αN

∂ǫ(Ts)
∂αN

∂ǫ(2Ts)
∂αN

...
∂ǫ(kTs)
∂αN













. (47)

For commensurate order estimation, the gradient boils

down to:

ψ̃µ(kTs) = ψ̃ν(kTs)

=

[

∂ǫ(0)

∂ν

∂ǫ(Ts)

∂ν

∂ǫ(2Ts)

∂ν
...
∂ǫ(kTs)

∂ν

]

. (48)
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The commensurate order output sensitivity ∂ŷ
∂ν

is

expressed by:

∂ŷ

∂ν
= ln(p)

M
∑

i=0

ibip
iν

M
∑

i=0

N
∑

j=1

(i− j)biajp
(i+j)ν

(

1 +
N
∑

j=1

aipαi

)2 u(t). (49)

As time simulation of such a function is non-trivial, the

gradient will be numerically computed and the LMR-
PEM will be used for differentiation order estimation:















ǫ̃(kTs) = Ỹ ∗(kTs)− Ỹ ∗(kTs)

ν̂(k) = ν̂(k − 1) + γνR
−1(k)ψ̃ν(kTs)ǫ̃(kTs)

R(k) = R(k − 1) + γν

[

ψ̃ν(kTs)ψ̃
T
ν (kTs)−R(k − 1)

]

(50)

4.2 All parameter system identification: hybrid

algorithms

The best previous method for coefficient estimation is

combined with differentiation order estimation for all

parameter estimation of a fractional order model. This

hybrid LMRPEM algorithm has a coefficient estimation

step and a differentiation order estimation step.

Algorithm 1: Hybrid LMRPEM algorithm

Step 1: Initialization

k = 0
Initialize parameter vector θ(0) = [ρ(0)T ν(0)T ]T

Step 2: Recursive algorithm

for k = 1 : end

(a) Coefficient estimation

Assuming the order ν(k − 1) known,
compute ρ(k) from equation (38)

(b) Differentiation order estimation

Assuming the coefficient ρ(k) known,
compute ν(k) from equation (50)

As stated by Young in [44], the tuning of the forget-

ting factor γ in recursive PEM methods is non-trivial

and influences the convergence of the parameters. Con-

sequently, algorithm 1 requires the tuning of two for-

getting factors (one for the coefficients and one for the
differentiation orders).

4.3 Simulation results for recursive all parameter

estimation

The same system (39) as detailed in section 3.4.1 is

used with different noise levels: ∞ without noise, 20dB,

0 100 200 300 400 500 600 700 800 900 1000

-2

-1

0

1

2

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.35

0.4

0.45

0.5

a1
a2

b0

ν

ν
ρ

Iterations

Iterations

Fig. 4 Parameter estimation evolution with hybrid LMR-
PEM alg. 1 for SNR = 20dB

and 15dB. The tuning of the γ gains was performed

empirically and is given in Table 2.

Table 2 Hybrid LMRPEM algorithm parameters

Hybrid algorithm 1 γρ = 0.005 and γν = 0.05

The parameter evolution for an SNR = 20dB are
plot in Fig. 4 for Alg. 1. On the commensurate order

estimation, hybrid LMRPEM Alg. 1 exhibits some os-

cillations at the beginning. However, the hybrid LMR-

PEM algorithm tends to the true commensurate order

ν = 0.5.

Monte Carlo Simulation analysis are provided in

Table 3. Three levels of noise are considered and for

each level, 100 runs have been carried out. Note that

all runs have converged to stable models. In noiseless

conditions, the hybrid LMRPEM Alg. 1 has converged

to the true commensurate order, and therefore the co-
efficient estimations is pretty accurate in mean. As the
noise level increases, Hybrid LMRPEM Alg. 1 presents

consistent estimates, with minimum variance and with-

out bias.

The present work shows parameter estimation within

a finite data length. In practice, realistic applications

may require much longer datasets. One main issue re-

garding longer datasets lies on the computation time.

Grünwald-Letnikov’s derivative is longer to calculate

at each iteration when the dataset gets long enough,

as the whole past of the signal is used for its computa-

tion. If the dataset gets even longer, the computation

time will definitely be affected. Therefore, an extremely

long dataset would require an extremely long calcula-

tion time by the end of the simulation, which would
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Table 3 Monte Carlo simulation results (100 runs) for all parameter estimation with different SNR.
¯̂
θ denotes the parameter

mean value and σ̂θ the standard deviations

b0 a2 a1 ν

True 1.000 2.000 −1.414 0.5

SNR
¯̂
b0 σ̂b0

¯̂a2 σ̂a2

¯̂a1 σ̂a1

¯̂ν σ̂ν

Hybrid LMRPEM ∞ 0.991 2.001 −1.431 0.497
Alg. 1 20 0.987 0.023 2.001 0.007 −1.437 0.042 0.496 0.007

15 0.989 0.029 2.001 0.010 −1.434 0.052 0.496 0.009

be impossible to implement in a real-time scenario. By
allowing some approximation errors, the past of the
function used may be limited to a memory length L,

as stated by the Short Memory Principle [35].

5 Application: human bronchus heat transfer

system identification

Medical and surgery applications need online biologi-

cal parameter estimation: time can be highly critical

and more especially, accurate real-time estimation is

required. Real experiments for modeling heat transfers

in sheep lung was previously proposed in [42] for sys-

tem identification by using black box model through
Havriliak-Negami functions. It is now proposed to use a
more realistic model for heat transfers in human lungs.

By using thermal two-port network formalism [22], which

is none other than the solving of the heat equation on a

unidirectional medium, and fractional order impedance

approximations [7], heat transfer in lungs of a human

main bronchus can be modeled as an equivalent T net-
work (see figure 5). All model developments are detailed

in [7].

Tin

Z1(s)

Q̇in

Z3(s)

Z2(s)

Q̇out

Tout

Fig. 5 Thermal two-port network

The bronchus is modeled as an air cylinder with an

intermediate length of L = 0.0236m [27] and radius

r ≈ 1mm [26]. Impedance approximations are given

by:

Z1(s) = Z2(s) ≈
150240

1 + 2.5158
√
s

(51)

0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

0 50 100 150 200 250 300 350 400 450 500

-1

-0.5

0

0.5

1

In
p
u
t
u
(t
)

O
u
tp
u
t
y
(t
)

Time (s)

Noise free output
Noisy output y

Fig. 6 Input and output data for bronchus application (zoom
on 500s of the 2000s dataset)

and

Z3(s) ≈
11869

s
. (52)

For an insulated output case (φout = 0), the trans-

fer function relating input and output temperatures is
given by:

Gbronchus(s) =
2.516

√
s+ 1

12.66s+ 2.516
√
s+ 1

. (53)

The input signal is a pseudo random binary se-

quence oscillating between −1 and 1 and containing

2000 values with a sampling time Ts = 1s. The initial-
ization is θT = [2, 5, 5, 10] and ν = 0.35. The noise was

set to SNR = 20 dB. The input/output data is shown
in figure 6.

This model is set as the true system (53):

G(s) =
b1s

ν + b0

a2s2ν + a1sν + 1
. (54)

Hybrid LMRPEM Alg. 1 is used to estimate the
parameters as it is the most efficient algorithm for all

parameter estimation (see section 4.3). γρ and γν are

the same as given in Table 2. The recursive coefficient

and differentiation order estimations are shown in fig-

ure 7. The commensurate order convergence is slow but

very accurate towards the system true commensurate

order ν = 0.5. The coefficient convergence exhibit fairly
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Fig. 7 Parameter estimation for bronchus application

slow convergence rate, especially for a2, however as it

tends to its true value towards the end of the simula-

tion. Therefore, the longer the dataset, the better the

convergence to the true parameters.

Finally, at the last iteration, the estimated model is

expressed as the following:

Ĝ(s) =
2.519s0.502 + 1.013

12.66s1.005 + 2.601s0.502 + 1
, (55)

an estimated model that has well converged to the true

parameters such as predicted by hybrid LMRPEM Alg.

1.

Note that the coefficients have correctly converged

to their true values only after the convergence of the
commensurate order. Consequently, well estimating the

differentiation orders is necessary so that the coeffi-

cients well converge and therefore physical parameters

can be extracted.

6 Conclusions and perspectives

A new method called LMRPEM is proposed for pa-

rameter recursive system identification of continuous-

time fractional order models. Least squares (RLSSVF),

prediction error method (RPEM) were compared to a

new variant of the RPEM, called LMRPEM. The lat-

ter method method takes into account the long-memory

behavior of fractional order systems. RLSSVF method

showed poor performances, as it provides high bias as

noise increases and implies a priori estimation of the

system bandwidth. Other methods provided more accu-

rate coefficient estimation as they present no bias. The

statistical properties of the LMRPEMmethod have proven

to produce the lesser parameter variance as compared

to other methods.

Then, for all parameter estimation, especially for

differentiation order estimation, a new hybrid algorithm

is introduced: the hybrid LMRPEM for both coefficient

and differentiation order estimation. The LMRPEM al-

gorithm proved to be consistent: parameter estimations

are without bias with very low variance. Also, the longer

the dataset, the better the convergence to the true pa-

rameters as fractional systems have long memory be-
haviour.

Finally, a biological example was proposed: heat
transfer in lungs is modeled on a human main bronchus

by using thermal two-port network formalism with frac-

tional models. Applying the hybrid LMRPEM method

have provided consistent estimates without bias and

very low variance.

Research perspectives may include further studies

regarding a method to tune the forgetting factor γ in a

methodical way. The issue regarding computation time

with long datasets should also be studied by taking into

account the short memory principle as well as the fre-

quency content of the analyzed signals. Real experi-

ments on sheeps will be carried out at the Bordeaux

University Hospital and IHU Liryc Institute for online

system identification of lung heat transfers.
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