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Rémi Girauda, Merlin Boyera, Michaël Clémentb,∗
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Abstract

Over-segmentation into superpixels is a very effective dimensionality reduction strategy, enabling fast dense image pro-
cessing. The main issue of this approach is the inherent irregularity of the image decomposition compared to standard
hierarchical multi-resolution schemes, especially when searching for similar neighboring patterns. Several works have at-
tempted to overcome this issue by taking into account the region irregularity into their comparison model. Nevertheless, they
remain sub-optimal to provide robust and accurate superpixel neighborhood descriptors, since they only compute features
within each region, poorly capturing contour information at superpixel borders. In this work, we address these limitations
by introducing the dual superpatch, a novel superpixel neighborhood descriptor. This structure contains features computed
in reduced superpixel regions, as well as at the interfaces of multiple superpixels to explicitly capture contour structure infor-
mation. A fast multi-scale non-local matching framework is also introduced for the search of similar descriptors at different
resolution levels in an image dataset. The proposed dual superpatch enables to more accurately capture similar structured pat-
terns at different scales, and we demonstrate the robustness and performance of this new strategy on matching and supervised
labeling applications.

1. Introduction

In many computer vision related applications, such as im-
age classification and segmentation, there is a important need
for fully automated results. To this end, a commonly em-
ployed strategy is to take inspiration from other data, in a
supervised way when ground truth annotations are available.
In this context, non-local methods have provided accurate re-
sults on various applications. In these methods, image re-
gions are independently considered, generally using a square
patch defined for each pixel, capturing a local pattern [4]. For
exemplar-based classification or segmentation, matching al-
gorithms are usually used to search for similar patterns in the
available data, to then transfer the associated information, at
the pixel or image scale after a global decision process.

This search for similar patterns is generally performed for
each image patch, and fast matching algorithms have been
developed e.g., PatchMatch [3], TreeCANN [24] or FLANN
[22], to efficiently exploit a large number of example im-
ages in a reduced computational time. To find similar con-
tent with such matching algorithms, it is common to extract
features from dense image patches or local interest points.
These features are usually designed to be robust to transfor-
mations such as scaling, viewpoint or illumination changes.
Standard descriptors include features based on gradient infor-
mation such as SIFT [20] or HoG [7, 8], or binary patterns,
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e.g., BRIEF [5].

In the last few years, convolutional neural networks have
also been able to extract particularly relevant features, and
have shown promising results in many applications related
to image processing [18]. However, although some recent
architectures such as U-Net may learn from relatively small
datasets [26], these methods rely on costly supervised learn-
ing strategies, and often require very large annotated datasets
to be trained efficiently. Besides, the results of these models
are generally difficult to interpret, and can be very sensitive to
small perturbations of their inputs [21]. In many cases, such
as medical imaging, these drawbacks can limit the potential
of automated processing pipelines. Therefore, there is still an
important need for methods that can perform without learn-
ing steps, as well as with limited training data and computing
power.

In this context of fast image search and matching require-
ments, many works have first focused on hierarchical ap-
proaches using prior image over-segmentation into regular
grids, e.g., [17]. To go further, other methods proposed to
group similar pixels into connected components of homoge-
neous colors called superpixels, drastically reducing the num-
ber of elements to process while preserving contours and spa-
tial structure [28]. Therefore, a process applied at such over-
segmentation scale can be close to the optimal pixel-wise re-
sult. Several works have used superpixels in non-local frame-
works, e.g., [12, 29], or in unsupervised learning-based su-
perpixel matching approaches using random forests [6, 16].
Nevertheless, the geometrical irregularity of such decompo-
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sitions [11] (i.e., in terms of shape, adjacency or contour
smoothness) can become an issue, since neighborhood infor-
mation is crucial to compute accurate matches in terms of
context.

Other approaches have attempted to use superpixel neigh-
boring information, e.g., [25, 27]. Among them, the Super-
PatchMatch (SPM) framework [10] partially addresses this
issue with a superpixel neighborhood structure called super-
patch and a dedicated metric to compare two structures hav-
ing different geometry and number of elements. However,
SPM remains sub-optimal in terms of computational com-
plexity and matching accuracy. The framework enables the
search for matches at the same superpatch scale and it only
computes features within each superpixel region, poorly cap-
turing contour information. Several works indeed highlighted
the need for accurate superpixel-wise features [23, 31, 30],
while most image descriptors are locally computed on a reg-
ular square neighborhood.

Contributions
In this paper, we address the limitations of previous non-

local methods only focusing on intra-region information
within superpixels or superpixel neighborhoods [10], by in-
troducing a novel dual superpixel neighborhood descriptor
called dual superpatch (DSP), containing two independent de-
scriptor sets (see Sec. 3).

First, intra-superpixel features capture color or texture in-
formation within cropped superpixel regions in order to avoid
influence of pixel contours or inaccurate superpixel borders
(see Sec. 3.1). Then, to capture structure information, for
instance in terms of contour orientations, we extract a rel-
atively regular grid of specific descriptors at superpixel in-
terfaces (see Sec. 3.2). To efficiently compare such irregu-
lar dual descriptors, having different geometry and number of
elements, we also propose new distances and optimizations,
significantly reducing the computational complexity.

The SuperPatchMatch (SPM) search algorithm [10] with
our accurate dual superpatch (DSPM), performs more rel-
evant superpixel matching. To go further, we also extend
DSPM to the search of matches at multiple scales (see Sec. 4),
and propose a framework to perform automatic labeling us-
ing exemplar-based images with ground truth labels. In our
framework, the comparison of DSP at different scales can be
easily performed since we consider reduced spatial informa-
tion, i.e., sets of barycenter positions. This way, we are able
to match similar objects at different sizes in heterogeneous
datasets.

Finally, to show the robustness of our framework, es-
pecially compared to [10], we consider several matching
and exemplar-based labeling experiments on a standard face
dataset [14] (see Sec. 5).

2. The SuperPatchMatch Framework

In this section, we first recall the SuperPatchMatch (SPM)
framework initially introduced by [10], which constitutes the

Figure 1: Superpatch definition. For a superpixel S i (filled blue), neighboring
superpixels (blue contours) having their barycenters (red dot) into a radius r,
centered on XS i the barycenter of S i, are part of the superpatch Si.

basis of our approach.

2.1. The SuperPatch Structure

To generalize standard patch-based frameworks to irregular
image decompositions, [10] proposed the superpatch struc-
ture. As for square patches of pixels defined around each
pixel, a superpatch Si, associated to a superpixel S i, contains
the adjacent neighbors of a superpixel S i with respect to a
fixed radius r. The proximity is simply computed according
to the superpixel spatial barycenters such that:

Si = {S i′ , such that ||XS i − XS i′
||2 ≤ r}, (1)

where XS i = [xS i , yS i ] and XS i′ = [xS i′ , yS i′ ] respectively de-
note the spatial barycenters of superpixels S i and S i′ . This
way, the superpatch structure only includes the most signif-
icantly neighboring superpixels, using reduced spatial infor-
mation. In Fig. 1, we show a superpatch example, defined for
a superpixel S i, containing its adjacent superpixels to provide
a superpixel neighborhood descriptor.

2.2. SuperPatch Comparison Distance

A comparison distance is also proposed in [10] to mea-
sure the similarity between two superpatches. The main is-
sue to design such distance is that the two structures are very
likely to have different geometry and number of elements.
Hence, there is no one-to-one association between superpix-
els, contrary to pixels within regular patches. To preserve
the ability to compare patterns, the spatiality must be taken
into account, and [10] proposed to simply consider the prox-
imity of superpixel barycenters after registration on the cen-
tral superpixels. In the following, we consider two super-
patches Si and Sj, for instance in two images A and B. A
weight w(XS i′ , XS j′ ) = exp(−‖XS j′ −(XS i′ −(XS i−XS j ))‖

2
2/σ

2
1),

measures the relative displacement between the registered
barycenters XS i′ and XS j′ of superpixels S i′ ∈ Si and S j′ ∈ Sj,
with respect to central superpixels S i and S j, and σ1 is a scal-
ing parameter set to 1/2

√
|I|/K, with |I| and K the respective

number of pixels and superpixels in the image. This way a
superpixel S i′ only compares to the closest ones in Sj.
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Figure 2: Comparison process of two superpatches Si and Sj from Eq. (2).
Superpatches are registered according to the barycenters XS i and XS j of their
central superpixel. The weights w in Eq. (2) favor the comparison to clos-
est superpixels after registration and the weight values corresponding to the
bottom superpixel of Si (filled blue) are represented within each compared
superpixel of Sj (darker meaning a higher w weight).

The distance D between two superpatches Si and Sj is fi-
nally defined as:

D(Si,Sj) =

∑
S i′ ∈Si

∑
S j′ ∈Sj

w(XS i′
, XS j′

)ws(XS i′
)ws(XS j′

)d(FS i′
, FS j′

)

∑
S i′ ∈Si

∑
S j′ ∈Sj

w(XS i′
, XS j′

)ws(XS i′
)ws(XS j′

)
,

(2)
where ws(XS i′ ) also weights the influence of S i′ according to
its spatial distance to S i such that ws(XS i′ ) = exp(−‖XS i′ −

XS i‖
2
2/(2r2)), and d is the distance between the superpixel fea-

tures FS i′ and FS j′ . Note that any distance d and feature F can
be considered in Eq. (2).

The comparison process between two superpatches hav-
ing different number of element and geometry is illustrated
in Fig. 2. The weight w in Eq. (2) weights the feature dis-
tance d between a superpixel in Si and a superpixel in Sj after
registration on their central barycenters. In this Figure, the
weights w corresponding to the bottom superpixel of Si are
represented within each superpixel of Sj.

2.3. SuperPatchMatch Correspondence Algorithm
Non-local methods have soon highlighted the need for fast

patch-based matching algorithms to perform the search of
correspondences within large areas, e.g., library of example
images. A significant breakthrough has been obtained with
PatchMatch (PM) [3], a fast partly random matching algo-
rithm, providing for each patch of an image A, a match in an
image B. PM has very interesting properties such as no re-
quirements for learning or preprocessing steps, and its com-
plexity only depends on the size of the image to process A,
enabling to search for matches in a large set of example im-
ages.

The PM algorithm starts from random associations and
iteratively refines them with a sequential processing of all
image patches. The refinement process is mainly based on
the fast propagation of good matches from spatially adjacent
neighbors. Large regions are indeed very likely to correspond
between images. According to the scan order, which is re-
versed at each iteration, the shifted correspondences of two

Figure 3: Core of the SPM algorithm. Full lines indicate current best
matches. The direct adjacent neighbors of the blue superpixel are considered
to propose new match candidates (dotted lines). The relative orientations be-
tween superpixels in A tend to be respected in B, e.g., the yellow superpixel
remains on top of the blue one in both images. Remaining adjacent neigh-
bors (gray) that have not yet being processed during this iteration will be
considered at the next one, processing superpixels in the reverse order.

spatially adjacent patches are considered as new candidates.
Also, random patches are tested near the current best match
in B. Note that the PM process being partly random, several
processes carried out in parallel can potentially provide dif-
ferent matches.

The SuperPatchMatch (SPM) method generalizes PM to
superpatches [10], to provide a fast matching algorithm of
superpixels. The method mainly requires to adapt the propa-
gation of matches based on adjacent neighbors since there is
no more consistent geometry between adjacent superpixels,
contrary to the standard pixel grid case. The propagation step
of SPM is illustrated in Fig. 3 in the case of two images A
and B. The adjacent neighbors are considered to lead to new
matches while respecting the relative orientation between su-
perpixels in A and B, to favor the matching of larger regions.

Limitations

Nevertheless, the default SPM distance in Eq. (2) has a
quadratic complexity, i.e., each superpixel of a superpatch is
compared to all the ones of the other superpatch, and may
result in important computational time. Besides, this frame-
work only considers intra-superpixel descriptors. Although,
they may be sufficient to capture information within regions,
the superpatch does not explicitly focus on capturing contours
or gradient information. This may be an issue since such in-
formation generally lies at the border of a superpixel, and can
be shared between two regions, reducing the relevance of the
descriptor. Finally, the SPM framework does not consider
multi-scale information that would allow to capture objects
of different sizes.

We address all these issues in the following sections with
the proposed multi-scale superpatch matching framework that
uses new dual superpixel descriptors.

3. Dual Superpixel Descriptors

In this section, we propose an approach to relevantly ex-
tract superpixel neighborhood descriptors. We introduce a
dual descriptor to efficiently capture around a superpixel, both
feature region content and contour information, potentially
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Figure 4: Illustration of the dual superpatch (DSP) descriptor. Intra-region
information (Ri′ ) within each superpixel S i′ with an offset of β = 3 pixels
from the border (blue regions) are considered along with information at the
superpixel interfaces Ii′ (green squares) within the same r radius.

lying at their borders. Features are computed within super-
pixel regions and additional contour features are extracted at
multiple interfaces between adjacent superpixels. The pro-
posed dual descriptor of superpixel neighborhood is called
Dual SuperPatch (DSP), is denoted S̄i for a superpixel S i, and
is represented in Fig. 4 on the same decomposition example
used in Fig. 1. In the following, we present the extraction ap-
proach for region (R), i.e., intra-superpixel, and interfaces (I)
descriptors, and we propose a general framework to compare
different DSP.

3.1. Superpixel Region Descriptors
The superpatch formulation of [10] considers features

computed on each whole superpixel region contained into the
neighborhood structure. However, superpixels tend to cap-
ture homogeneous regions, so pixels at thin contours can be
arbitrarily associated to superpixels, leading to altered de-
scriptors. A reduced block area or spatial weighting from
the superpixel barycenter could not be applied since these ap-
proaches do not guarantee to relevantly extract information
when superpixels have very irregular shapes [23].

In this work, we propose to consider the superpixel region
information with an offset of β pixels to its borders. This
way, we take into account almost all the region, while be-
ing robust to inaccurate superpixel borders or contour infor-
mation, that will be considered in another specific interface
descriptors within our DSP (see Sec. 3.2). In Fig. 4, the con-
sidered regions Ri′ for superpixels S i′ are represented in blue.
To each region Ri′ , feature FRi′ and spatial XRi′ information
are considered, so a dual superpatch contains a set of tuples
Ri = {FRi′ , XRi′ }.

To demonstrate the issue of considering the whole super-
pixel region to extract features, we consider two decomposi-
tions of images containing regions with 16 different oriented
textures (see Fig. 5). The superpatch radius is set to r = 0 to
only consider intra-region information, where HoG descrip-
tors [7] are computed. For each superpixel of the left im-
age, we compute in an exhaustive manner its closest match in
terms of superpixel content in the right image. If the texture

Figure 5: Two synthetic images containing 16 oriented textures and decom-
posed into superpixels with [9].

Table 1: Impact of border offset β for intra-region descriptor extraction. Tex-
ture matching results between images in Fig. 5 for different values of β and
Gaussian noise levels using both superpixel decompositions from [9] and
ground truth ones. Best and second results are respectively bold and under-
lined.

Superpixel decompositions Ground truth decompositions
Noise variance 0 50 100 125 0 50 100 125

β = 0 0.526 0.634 0.516 0.366 1.000 1.000 0.980 0.907
β = 1 0.616 0.654 0.558 0.419 1.000 1.000 0.993 0.913
β = 2 0.679 0.665 0.558 0.482 1.000 1.000 0.987 0.913
β = 3 0.711 0.675 0.521 0.482 1.000 1.000 0.953 0.900

are similar, we consider the matching as accurate (1), other-
wise inaccurate (0). We report in Tab. 1 the average match-
ing accuracy on all superpixels of the left image, according to
different β values and several levels of Gaussian noise applied
to both images after decomposition. We perform this evalua-
tion using the decompositions obtained with a texture-aware
method [9], and also the ground truth ones, perfectly captur-
ing texture changes. This experiment highlights the need to
restrict the area to extract superpixel information since super-
pixel decompositions may be not perfectly accurate. More-
over, even on perfectly fitting decompositions, the inaccurate
gradient information lying on superpixel borders is captured
with β = 0 and may impact the results with a noise variance
superior to 50, while we do not take into account texture in
other superpixels with β > 0.

Fast comparison distance. The comparison between two
sets of superpixel region descriptors can be performed in a
more computationally efficient manner than with Eq. (2). We
propose to only select one superpixel S j′ ∈ Sj to compare for
each superpixel S i′ ∈ Si. To do so, the superpixel barycen-
ter XS i′ is first registered by the displacement between central
superpixels S i and S j, and we denote this new position by
XS j(i′) which is computed such that XS j(i′) = XS i′ − (XS i −XS j ).
In Fig. 2, these correspond to the red superpixel barycenters.
Then, we project the registered barycenters on the decom-
position of the image from where Sj is extracted. In Fig. 2,
the black superpixel containing a red dot XS j(i′) would be se-
lected to compare to superpixel S i′ of region Ri′ . This corre-
sponding superpixel containing XS j(i′) in the compared image,
is denoted S j(i′), and its associated intra-region is denoted
R j(i′). This way, we significantly reduce the distance com-
plexity, while potentially increasing the comparison accuracy
(see Sec. 5). The comparison between two region descriptors
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(a) Matching using only color information at intra-superpixel regions (α = 1) (b) Matching using only contour features at superpixel interfaces (α = 0)

Figure 6: Impact of the α parameter in the DSP distance (5). (a) Only region descriptors Ri′ are used (α = 1), with average color information. This result
corresponds to the one obtained using [10]. (b) Only interface HoG [7] descriptors Ii′ are used (α = 0) and enable to capture structure information. Radius r
is set to 25, i.e., approximately capturing the first adjacency ring.

Ri and Rj is defined using barycenter projections such that:

dp(Ri,Rj) =

∑
Ri′∈Ri

ws

(
XRi′

)
d
(
FRi′ , FR j(i′)

)
∑

Ri′∈Ri

ws

(
XRi′

) . (3)

Note that barycenters falling outside the image limits are pro-
jected to select the closest superpixel on the image boundary.

A similar projected distance was suggested in [10], in a
non-symmetric formulation. In our dual superpatch compar-
ison model, we consider a symmetric projected distance Dp

on intra-region descriptors defined as:

Dp(Ri,Rj) =
1
2

(
dp

(
Ri,Rj

)
+ dp

(
Rj,Ri

))
. (4)

3.2. Superpixel Interface Descriptors

To efficiently capture image contour information, we pro-
pose to also consider specific descriptors at superpixel inter-
faces. These can be easily extracted with a low complexity by
considering the presence of at least three superpixels in a 3×3
pixels neighborhood. To avoid over detection, a larger area
can be neglected after selection of an interface point. This
way, we directly obtain a relatively regular grid of potential
interest points in terms of contours, without introducing fur-
ther scaling or thresholding parameters. In Fig. 4, these inter-
face regions denoted Ii′ are represented as green squares. On
these regions, specific contour descriptors can be computed,
e.g., HoG [7].

Acceleration of quadratic distance. Since interface regions
do not provide a dense decomposition of the image domain,
the distance Eq. (3) using projections cannot be used to fastly
compare two sets of interface descriptors. A quadratic one-
to-many distance such as Eq. (2) could be used, but at the ex-
pense of important computational cost. To address this issue,
we propose a one-to-one association for each interface de-
scriptor Ii′ . Each Ii′ is only compared to the spatially closest
one I j′ in the other dual superpatch. This way, the framework
only requires exhaustive spatial distances between interface
barycenters. The distance is computed as for Eq. (3), where
I j(i′), the selected interface descriptor in Ij for Ii′ is defined
as I j(i′) = argmin

I j′

‖XIi′ − XI j′ ‖2. Finally, as for Eq. (4), the

distance is also computed from Ij to Ii to obtain a symmetric
distance.

3.3. General Dual SuperPatch Comparison Framework
Our dual superpatch (DSP) S̄i, for a superpixel S i, is de-

scribed by a set of intra-superpixel regions Ri = {FRi′ , XRi′ }

and superpixel interfaces Ii = {FIi′ , XIi′ } descriptors such that
S̄i = [Ri, Ii]. Note that Ri and Ii can have a different number
of elements. To relevantly measure the similarity of two DSP
S̄i and S̄j having different geometry and number of elements,
we propose the following general DSP comparison distance:

D(S̄i, S̄j) = αDp(Ri,Rj) + (1 − α) Dp(Ii, Ij), (5)

with Dp the fast distance on descriptors, using barycenter pro-
jections Eq. (4) for intra-region R, and selection of closest
descriptor for interfaces I. and α ∈ [0, 1] a setting parame-
ter. Note that any feature can be considered in FRi′ or FIi′ .
Therefore, α can have an intuitive tuning using the same or
normalized descriptors for both R and I.

In Fig. 6, we show matching results obtained with our gen-
eralized model using average RGB color as intra-region fea-
tures FRi′ (Fig. 6(a), α = 1) and HoG descriptors as interface
features FII′ (Fig. 6(b), α = 0). Hence, we highlight the gen-
eral aspect of our framework that allows to either focus on
intra-region (Fig. 6(a)) or interface information (Fig. 6(b)).
In Sec. 5, we further demonstrate the performances obtained
using these complementary descriptors.

4. Multi-Scale Dual SuperPatchMatch

In this section, we propose to extend the SPM framework
with our dual descriptor (DSPM), to perform the search of
DSP at multiple scales. We first show how to compare two
DSP of different sizes, then we propose a multi-scale fusion
strategy.

4.1. Dual SuperPatch Rescale
In Sec. 3, we showed how to compare two DSP extracted

with the same radius size r. Nevertheless, the proposed dis-
tance Eq. (5) can easily adapt to DSP of different sizes, since
the spatial information is only measured by barycenter posi-
tions denoted with X. We consider two DSP S̄i and S̄j, with
different DSP extraction radius ri and r j in Eq. (1). To com-
pare them, all spatial information contained in S̄j can be ad-
justed according to the ratio between the radiuses, such that:

S̄j = [Rj, Ij] =

[{(
FR j′ , XR j′

ri

r j

)}
,

{(
FI j′ , XI j′

ri

r j

)}]
. (6)
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Figure 7: Example of matching result without (gray lines) and with (green
lines) a multi-scale search for matches. See text for more details.

This way, similar DSP can be searched at various scales, e.g.,
in example images. Note that features FR j′ and FI j′ remain
unchanged by this scaling transformation.

4.2. Multi-Scale Exemplar-based Framework
Most non-local methods perform a search for similar con-

tent in a heterogeneous dataset, with no prior information on
the targeted object size. In [10], no multi-scale strategy is
proposed since it considers an exemplar-based labeling ex-
periment on linearly registered images [14].

Here, we introduce a generalized multi-scale exemplar-
based framework allowing to search for similar DSP of dif-
ferent radiuses, in order to capture objects of different sizes.
The proposed DSP structure indeed enables to perform a sim-
ple automatic rescale, presented in Sec. 4.1. Hence, multiple
DSP sizes can be considered in a set of examples images B.
A set rB = {rB} is considered for setting the DSP radius in B.

In [10], a supervised labeling framework based on the non-
local means algorithm [4] was introduced to merge the infor-
mation of multiple superpatch matches computed in a library
of example images for an image A to process. A label map
LrB

m (S i) is computed for a superpixel S i, for all M different
labels m, such that:

LrB

m (S i) =
1
W

∑
S j∈Bm,rB

i

ω(S i, S j), (7)

where Bm,rB

i is the set of matches for S i computed at scale rB

and having a ground truth label m, and W is the normalization
factor W =

∑M
m=1

∑
S j∈Bm,rB

i
ω(S i, S j), withω a weight depend-

ing on the DSP similarity [10]. The final label of a superpixel

S i is computed as L(S i) = argmax
m∈{1,...,M}

(
argmax

rB∈rB

(
LrB

m (S i)
))

.

In Fig. 7, we represent matching results obtained without
(gray lines) and with (green lines) our multi-scale strategy.
We can see that the best match between searches at scales
rB = [0.5, 1, 2, 4]×rA enables to catch the larger flower with
similar colors, instead of the one at the same scale.

5. Experimental Validations

In this section, we present several quantitative experiments
to demonstrate the interest of the proposed DSPM framework.
We first validate the behavior of our model on standard im-
ages with respect to the method parameters. Then, we pro-
pose larger scale segmentation experiments on a standard face
dataset.
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Figure 8: Influence of radius r (a) and trade-off coefficient α (b) in the pro-
posed DSPM framework compared to SPM. We report the average distance
between each superpixel barycenter and the one of its closest match in an-
other decomposition of the same image. See text for more details.

5.1. Parameter Settings
The proposed method was implemented with MATLAB

using C-MEX code on a standard Linux computer with 4
cores at 1.90 GHz and 16 GB of RAM. The number of DSPM
iterations is set to 5, and we use a `2-norm as distance d be-
tween features F as in [10]. To avoid over detection, inter-
faces are detected at least each 4 pixels. Default parameters
are set such that β = 1, the border offset for region features
R, α = 0.5, the trade-off parameter between intra-region and
interface distances in Eq. (5), and superpatch radius r = 50.
The considered descriptors in R and I are reported according
to the application.

5.2. Influence of Parameters
To demonstrate the interest of each contribution, we con-

sider a matching experiment on standard images Baboon,
Barbara, House, Lena and Peppers, each decomposed with
two superpixel methods: SLIC [1] and SNIC [2]. For each
superpixel in a given decomposition, we compute the closest
DSP match in the other one. A robust descriptor should in-
deed be robust to variations in the segmentations. In terms of
features, we compute normalized cumulative RGB histogram
with 9 bins per canal on intra-regions FRI′ , and HoG [7] on a
local 9×9 pixels window for interface region descriptors FII′ .

We evaluate the matching accuracy by the average distance
between the superpixel barycenters and the one of their match
in the other decomposition. In Fig. 8(a) and Fig. 8(b), we
respectively report the average distance with respect to the
radius parameter r and with respect to the α parameter for
r = 50. On the first hand, Fig. 8(a) shows that the accuracy
logically increases with the superpatch radius, and with each
contribution, i.e., symmetrical projected distance (Eq. (4)),
offset to border (β > 0), and interface descriptors. On the
other hand, Fig. 8(b) illustrates the interest of using interface
descriptors in Eq. (5) in conjunction with cropped regions for
α > 0.2, and that a balanced trade-off parameter α ≈ 0.5 pro-
vides the best matching accuracy. In Fig. 9, we also show an
example of matching result for DSPM with default parame-
ters compared to SPM.

5.3. Segmentation and Labeling Experiments
Validation framework. We evaluate the proposed DSPM

approach on the same face labeling experiment than [10]. The
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(a) SLIC (b) SNIC (c) SPM (d) DSPM

Figure 9: Matching accuracy of DSPM vs SPM. (a) and (b): decompositions
with SLIC and SNIC. (c) and (d): SPM and DSPM matching results (r=50).
Distances between superpixel barycenters are shown with standard optical
flow representation (stronger colors represent larger displacements).

Table 2: Labeling accuracy for the multi-scale experiment. Training images
have been either downsampled or upsampled by a factor of 1.5 or 2 and rA is
set to 50. The argmax columns correspond to the fusion strategy proposed in
Sec. 4.2 for different combined scales.

Radius rB 50∗ 25∗ 33∗ 75∗+ 100∗+ argmax∗ argmax+

w/o (6) 94.08% 94.05% 93.93% 94.11% 94.07% 94.25% 94.16%
w/ (6) 94.08% 94.22% 94.13% 94.87% 94.80% 94.78% 94.96%

considered Labeled Faces in the Wild (LFW) dataset [14],
contains 1500 training and 927 testing images of 250×250
pixels, linearly registered with [13], and already decomposed
into approximately 250 superpixels. LFW contains decompo-
sitions and labeling ground truths, so comparisons with state-
of-the-art methods do not depend on the superpixel decom-
positions. Note that to fairly compare with [10], we use the
same HoG implementation on a regular grid [8] and compute
50 DSP matches by 50 independent DSPM processes for each
superpixel, merged in Eq. (7).

Multi-scale validation. In this experiment, the goal is to
validate the interest of our proposed multi-scale matching
strategy introduced in Sec. 4. To this end, we have manu-
ally applied random scaling transformations to the registered
training images. Each image and its corresponding decompo-
sition has been either downsampled or upsampled randomly
by a factor of 1.5 or 2 (with no interpolation). As a result,
faces depicted in the images can appear up to twice as big
or small compared to their initial scales. Hence, the dataset
contains face patterns at different scales that would not be ef-
ficiently captured using the same DSP radius in A and B.

We apply DSPM with rA=50 and rB ∈ {25, 33, 50, 75, 100}.
In Tab. 2, we report the labeling accuracy for each radius and
for the multi-scale label fusion proposed in Sec. 4.2. From
these results, when rA , rB, we can observe that the per-
formance for smaller or larger radiuses is always better after
applying the rescale strategy, i.e., with Eq. (6). The multi-
scale fusion averaging the result over the different radius sizes
performs better than the default rB = 50 and than most sin-
gle scales. Moreover, by considering only larger scales, i.e.,
rB = 75, 100, thus more precise DSP comparisons, we obtain
the highest labeling accuracy, demonstrating the framework
ability of the framework to merge information from multi-
scale matching. In future works, we plan to apply this ap-
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Figure 10: Influence of the number of selected k-ANN for SPM [10] and
DSPM on face labeling accuracy.

Table 3: Exemplar-based labeling accuracy on the LFW dataset.

Method Superpixel accuracy Pixel accuracy
Spatial CRF [15] 93.95% not reported
CRBM [15] 94.10% not reported
GLOC [15] 94.95% not reported
DCNN [19] not reported 95.24%
SPM [10] w/ (2) 91.88% 92.21%
SPM [10] w/ (3) 95.08% 95.43%
DSPM 95.24% 95.59%

proach on non-registered datasets where objects might natu-
rally appear at different scales.

Comparison to state-of-the-art methods. In Fig. 10, we
first compare the influence of the number k of selected ANN
for each superpixel, then merged in the label fusion process
Eq. (7) for the proposed DSPM method and SPM [10] using
Eq. (3). For all ANN numbers, DSPM provides the best re-
sults, and is already reaching 95.13% of accuracy with only
k = 20 ANN. Note that for both methods, a plateau is reached
around k = 50 ANN.

In Tab. 3, we also compare the performance of the pro-
posed DSPM method with the results of state-of-the-art ones,
mostly based on supervised (deep) learning approaches. In
[15], several approaches are used to label the LFW dataset
such as a spatial conditional random field (CRF) and a condi-
tionnal restricted Boltzmann machine (CRBM). The GLOC
(GLObal and LOCal) method [15] is also proposed to jointly
use both CRF and CRNM approaches to introduce global
shape priors in the training process. Finally, in [19], a deep
convolutional neural network (DCNN) is proposed and ded-
icated to the face labeling application. Note that the results
in Table 3 are the ones reported by the authors. For SPM,
the results correspond to the initial framework using costly
quadratic comparisons with Eq. (2), and the results reported
by the authors using non-symmetric projected distances with
Eq. (3). DSPM reports the best compared labeling accu-
racy at both superpixel and pixel-wise level. Labeling ex-
amples compared to SPM are also represented in Fig. 11.
The proposed DSP enables to relevantly capture the context
of a superpixel neighborhood in terms of texture and struc-
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Figure 11: Examples of labeling results with superpixel accuracy obtained
with the proposed DSPM approach on the LFW dataset, compared to the
initial SPM method.

ture. Moreover, without further optimizations on non fully
multi-threaded code, DSPM performs in less than 3s per sub-
ject, against 45s for SPM using Eq. (2). Note that compared
state-of-the-art approaches may provide faster computational
times but at the expense of previous costly learning-based
processes.

Our method is particularly interesting due to its simplic-
ity of use, parameter tuning, and interpretability compared
to learning-based approaches, while providing more accurate
results than SPM. Besides, any feature can be directly used
in the method, even more advanced descriptors, e.g., [31, 30],
eventually based on previously trained deep learning archi-
tectures.

6. Conclusion

In this work, we addressed some important limitations of
existing superpixel matching frameworks, in terms of robust-
ness and computational complexity. We introduced the dual
superpatch, a new superpixel neighborhood descriptor con-
taining both intra-region and interface information that are re-
spectively robust to the inaccuracy of superpixel borders and
capture contour structures. We also proposed optimized dis-
tances and a multi-scale framework to search for similar dual
superpatches in an image dataset. Our validations showed
an accuracy improvement with our method on matching and
exemplar-based labeling applications. The relevance of the
proposed dual approach should benefit to all superpixel-based
non-local approaches and future works will focus on apply-
ing the method to heterogeneous computer vision and medical
datasets, and tackling other applications such as superpixel-
based image editing.

References

[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.,
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