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Abstract 

Salt marshes are areas of high conservation value encompassing diverse ecological gradients 

responsible for creating unique vegetation structure and composition. In complement to the 

large body of studies developing vegetation mapping methods through the use of remote 

sensing data, we tested for the possibility of developing a cost-effective method to map salt 

marsh vegetation as a basis for monitoring a French Nature Reserve. Using classical 

multivariate ordination and cluster analyses, accurate and ecologically relevant vegetation 

groups matching existing typologies were determined from a vegetation database collected for 

management and conservation rather than mapping purposes. This resulted in six distinct 

vegetation groups, which were mapped through the combination of the NIR spectral band and 10 

radiometric indices (NDVI and NDWI) derived from multispectral 2m-resolution satellite 

images (Pleiades images). The addition of a LiDAR-derived digital elevation model (DEM) 

layer was also tested. The final classified map of the reserve based only on optical layers had 

an overall accuracy of 75.5% (Kappa coefficient of 0.71), with varying success between the 

different vegetation groups. The addition of the DEM slightly decreased map accuracy to 

73.6% (Kappa of 0.68). Decreasing the number of records used for map training had 

detectable negative effects on map accuracy. This study demonstrated that using already 

existing field observations combined with only a few spectral bands and radiometric indices 

from multi-temporal multispectral images with a high spatial resolution can be used as a basis 

to aid in vegetation classification and mapping of saltmarsh habitats, with the goal of 20 

monitoring their dynamics. 
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1. Introduction 

Saltmarshes, complex ecotones forming an interface between aquatic and terrestrial habitats, 

are considered to be some of the most productive ecosystems in the world (Boorman, 1995). 

They provide a wide range of valuable ecosystem services (Kelly and Tuxen, 2009) including 

coastal protection and nature conservation, and offer various socioeconomic activities such as 30 

fishing and recreation (Janssen, 2001; Belluco et al., 2006). These habitats, fringing fresh and 

saltwater ecosystems, are populated by halophytic vegetation adapted to saline and saturated 

soil conditions (Bertness and Ewenchuk, 2002; Boorman, 2003) exhibiting a strong spatial 

zonation (Chapman, 1976; Adam, 1990; Marani et al., 2003). Saltmarsh vegetation is a key 

element in the stability of these areas for their role in the feedback cycle involving 

hydrodynamic and sediment circulations (Belluco et al., 2006). 

Lying at the interface between land and sea, the existence and functioning of 

saltmarshes depend on the complex relationship of erosion and deposition processes, and are 

heavily influenced by their biotic components (primarily vegetation), making saltmarshes 

highly sensitive to environmental changes (Silvestri and Marani, 2004; Lefeuvre et al., 2003). 40 

Consequently, these coastal ecosystems face challenges corresponding to increasing global 

changes, such as anthropogenic activities and rising sea level. The latter has been identified as 

one of the greatest threats to saltmarsh communities and their ecosystem functioning, 

impacting sediment retention and accumulation capacities (Adam, 1990; Bromberg et al., 

2009; Robins et al., 2016) and shifting vegetation distribution, replacing high saltmarsh 

species with lower saltmarsh vegetation (Klemas, 2011). In a context of global change, 

appropriately monitoring saltmarshes and having quantitative and accurate observations of 

vegetation and their distribution is a critical component for managing these ecosystems and 

preserving the dynamics of natural communities (Belluco et al., 2006). To reach these 

conservation objectives, large data-sets of ground data are usually acquired, which first enable 50 
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the establishment of a vegetation classification and habitat typology. Such intensive field 

work is however time-consuming and thus hard to frequently reiterate. Developing 

operational tools to create accurate maps of saltmarsh vegetation based on the finest possible 

habitat typology, while limiting the cost and sampling effort, is thus indispensable for 

documenting and managing these natural areas. 

There has been a growing interest in applying remote sensing techniques to mapping 

saltmarsh vegetation, and studies have shown that it is an effective means of collecting 

spectral information at a large scale in a noninvasive and cost effective manner (Belluco et al., 

2006; Tuxen et al., 2008; Hladik et al., 2013). Additionally, it has been used to map detailed 

vegetation patterns, distribution, and detect vegetation change (Belluco et al., 2006; Hirano et 60 

al., 2003; Silvestri and Marani, 2004; Wang et al., 2007; Klemas, 2011) through synthesizing 

temporal and spatial dynamics of vegetation patterns (Kelly and Tuxen, 2009). Remote 

sensing techniques have long been used to monitor saltmarsh vegetation, and the availability 

of high resolution spectral imagery coupled with improved image processing and 

classification techniques make mapping increasingly accurate (Kelly and Tuxen, 2009). Fine-

scale representation of wetland plant species has proved to be challenging because of the high 

level of spectral confusion between species (Ozesmi and Bauer, 2002; Schmidt et al., 2004; 

Tuxen et al., 2011; Hladik et al., 2013). Additionally, wetlands exhibit high spectral and 

spatial variability which can also complicate mapping vegetation (Wang et al., 2007; Belluco 

et al., 2006). It is therefore recommended to have a combination of field data (McRoberts et 70 

al., 2002; Klemas, 2011; Tuxen et al., 2011) in addition to multi-temporal satellite images in 

order to acquire information from different vegetation development stages to increase 

mapping reliability (Belluco et al., 2006). Many studies have previously focused on sites with 

relatively limited species diversity (see Zhang et al., 1997, 2011), on the quantification of 

biomass and carbon stocks (see Byrd et al., 2014; 2018) or on the discrimination of broad 
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vegetation communities or general cover classes (see Kelly, 2001; Andresen et al., 2002; 

Hirano et al., 2003; Stankiewicz et al., 2003; Smith et al., 1998; Wang et al., 2007; Klemas, 

2011; Zhang et al., 2011). In line with the link between saltmarsh vegetation zonation and 

surface elevation (Pennings and Callaways, 1992; Kulawardhana et al., 2015 and references 

therein), several studies demonstrate a promising potential of using Digital Elevation Models 80 

(DEM) and/or two-frequency laser LiDAR imagery to derive vegetation maps in coastal 

wetlands (Rosso et al., 2006; Chust et al., 2008; Collin et al., 2010; Owers et al., 2016). In 

particular, the combination of multispectral images and LiDAR can be an effective way to 

quantify wetland aboveground biomass and carbon stocks (e.g., Kulawardhana et al., 2014; 

2015) or to map wetland vegetation classes (e.g., Rapinel et al., 2015; Ballanti et al., 2017). 

Additionally, due to the complexity of wetland landscapes, many studies use hyperspectral 

imagery due to its advantage in spectral resolution (see Hirano, et al., 2003; Rosso et al., 

2005; Hladik et al., 2013). However, these sensors can be impractical as their deployment and 

the analysis of hyperspectral data can be complex and highly expensive (Klemas, 2011, Zhang 

et al., 2011). Moreover, studies have shown that spatial resolution has a higher impact than 90 

spectral resolution (see e.g., Belluco et al., 2006).  

Remote sensing has been extensively used for coastal wetland vegetation mapping 

(Ozsemi and Bauer, 2002). However, it still remains challenging to identify a cost-effective 

method, which can meet local managers’ expectations both in terms of accuracy and 

ecological relevance. One of the possible limits to using the remote sensing approach is that it 

requires spatially and temporally accurate field data both for map training and validation. 

Several strategies of in situ data collection have been used to match mapping purposes (e.g., 

systematic random sampling to cover environmental gradients, Kulawardhana et al., 2014, 

2015; stratified sampling from unsupervised classification, Rapinel et al., 2018, etc.). On the 
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contrary, field data formerly acquired for other purposes may not perfectly match remote 100 

sensing requirements, and their relevant coupling is still challenging (Luque et al., 2018). 

Thus, the present study addresses the possibility of using an existing vegetation data-set 

resulting from an intensive field campaign designed for in situ temporal vegetation survey to 

create a habitat map of the National Nature Reserve (NNR) of Arès and Lège Cap-Ferret 

(Southwestern Atlantic coast of France) through the combination of multi-temporal and 

multispectral imagery. Our objective was to test the possibility of developing a simple but 

accurate method to map plant communities that could reach local managers’ requirements in 

terms of vegetation typology. For that purpose, existing vegetation records were used for the 

identification and classification of plant communities by the means of classical ordination and 

cluster analyses, and their unique spectral signatures from satellite images were retrieved 110 

through a Maximum Likelihood Classification (MLC). Possible improvements derived from 

the use of additional LiDAR data were searched for. Finally, the effect of a decrease in the 

sampling effort of the field data and a reduction of ecological information by aggregating 

vegetation groups into broader classes was evaluated. 

 

2. Material and Methods 

 

2.1. Study Area 
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Fig. 1. Map of the Arcachon Bay (left) showing the location of the study area in Southwestern France. The study 

site is shown outlined in white (right). Image source: IGN BD ORTHO ® 50cm.

 

This study was conducted in the National Nature Reserve (NNR) FR3600065 of Arès and 120 

Lège-Cap Ferret saltmarshes located in the northern tip of the Arcachon bay (France, 

44°44'24.06"N; 1° 9'17.78"W), a macrotidal coastal lagoon and the only major indentation in 

the Southwest coastline of France (Figure 1). The Arcachon bay represents one of the most 

important oyster farming areas and tourist destinations in France. The Reserve occupies an 

area of 320 hectares and is home to the largest saltmarsh area in Southwestern France. 125 

Hydrologically, the Reserve is under the dual influence of saltwater from the Atlantic Ocean 

and freshwater from upstream freshwater lakes connected to the bay by a canal (“Canal des 

Etangs”), creating a gradient of salinity from the sea moving progressively inland. This factor 

contributes to the organization of plant communities ranging from the slikke (mudflats) to the 

schorre (saltmarsh) and finally transitioning to the foot of the sand dune where woody 130 

communities can be found. In addition to vegetated areas, the saltmarsh of the Reserve 

includes areas of bare sand, mudflats and artificially created hunting ponds. 

The Reserve is part of the European Natura 2000 site FR7200679 “Bassin d’Arcachon 

et Cap Ferret” (Reveillas et al., 2012). This site was chosen because it is one of the few 



8 

 

saltmarshes in France with a diversity of habitats containing the complete gradient from 135 

slikke to schorre.  

 

2.2. Field Data and Treatment 

Fieldwork was conducted between the months of June and September in 2011 on the 

saltmarsh of the Reserve (Reveillas et al., 2012). The sampling strategy was designed to build 140 

a temporal in situ survey of vegetation dynamics based on a spatially explicit method 

covering the extent of the Reserve under tidal influence. Survey sites were regularly 

distributed based on a 50m grid superimposed on the entire site extent, with each floristic 

record performed at the intersection of the axes of the grid. This resulted in a total of 832 

survey points across 193.43 hectares covering the elevation gradient from the slikke to the 145 

schorre. The survey points were comprised of 16m² records with their x and y coordinates 

defined a priori and found on site during the survey using a GPS with about 5m average 

accuracy (Garmin® 62S). Each record contained five 1m² quadrats: one in each corner and 

one in the center. In each quadrat, coefficients of abundance and cover for each detected plant 

species were noted. By averaging the values in each of the five 1m² quadrats, species’ 150 

abundance was then evaluated for the entire record. The cover of bare soil was also taken into 

account in each of the 1m² quadrats for each record. The notation used for species abundance 

and bare soil corresponds to the dominance scale (Hill et al., 2005) and varies from one (less 

than 4% of vegetation cover or bare soil) to 10 (91-100% vegetation cover or bare soil). 

The original dataset was treated following several steps in order to keep only 155 

floristically homogenous records suitable for the mapping purpose. First, out of the 832 

vegetation records initially planned, 156 were not visited in the field as they were positioned 

on bare soil, resulting in a total of 676 vegetation records in the database containing 68 plant 

species (see Table S1 for the complete species list). Correspondence analyses (CAs) were 
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used to identify the main gradients that structure species’ assemblages and were followed by 160 

hierarchical clustering (HAC, Ward’s method using Euclidean distance among records 

calculated from coordinates along the first three CA axes) to discriminate vegetation groups 

along these gradients. A first analysis allowed 12 groups of records to be discriminated on the 

basis of their floristic composition. Six of these groups were removed (representing 30 

records) as they either had too few records or were considered to be outliers on the gradient 165 

due to the presence of rare species. Plant species that were not representative of Atlantic and 

Continental Saltmarshes (Natura 2000 codes 1310-1330; six species, see Table S1) were also 

removed for data treatment. Then, floristically heterogeneous records were removed as they 

were expected to have a fuzzy spectral signature that would negatively impact pixel 

classification. In that purpose, a Bray-Curtis (BC) dissimilarity index was calculated for each 170 

record as the average Bray-Curtis distance among each pair of quadrats contained in a record 

(five quadrats per record leading to ten Bray-Curtis distances). This index was used to 

determine the floristic dissimilarity amongst the quadrats in a record based upon species 

composition, in order to determine floristically homogeneous or heterogeneous records. The 

index ranges between 0 and 1; 0 being exactly similar intra-record species composition and 1 175 

meaning that the quadrats within a record share no species. A threshold of 0.1 was established 

as a limit of homogeneity, and records with a BC score superior to 0.1 were not retained (194 

records). Finally, low frequency species (species present in only one or two records, 27 

species) were removed. All of these manipulations led to a final database of 452 records 

containing a total of 35 species (Table 1; see also Table S1 for the list of the remaining 180 

species). 
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Table 1. Phytosociological categories (alliance or association) and Natura 2000 habitat codes (N2000 Code) for the identified vegetation groups. Group codes and generic 
names are provided for each determined thematic class in addition to the total number of ground records and the maximal number of records remaining for map training. 

Group 

code 
Generic name Alliance Association 

N2000 

Code 

Total 

number of 

records 

Maximal 

number of 

training records 

Six groups 

A 
Top level Atlantic saltmarsh 

and grass communities 
Agropyrion 

pungentis 

Atriplici hastatae-

Agropyretum pungentis 
1330-5 42 22 

B High schorre communities 
Agropyrion 

pungentis 

Agropyro pungentis-

Inletum crithmoidis 
1330-5 95 75 

C Mid schorre communities 
Halimionion 

portulacoidis 

Halimionetum 

portulacoidis 
1330-2 104 84 

D 
High Atlantic slikke 

communities 
Salicornion 

dolichostachyae 

Astero tripolii-

Suaedetum maritimae / 
Salicornietum obscurae 

1310-1 51 31 

E 
High slikke Spartina 

maritima swards 
Spartinion anglicae Spartinetum maritimae 1320-1 72 52 

F 
High slikke Spartina anglica 

pioneer communities 
Spartinion anglicae Spartinetum anglicae - 88 68 

Five groups 

CD 
Low-mid schorre 

communities 
Halimionion 

portulacoidis 
- 1330 155 135 

Four groups 

AB 
Top level and high schorre 

communities 
Agropyrion 

pungentis 
- 1330-5 137 117 

Total 
 

   452 - 
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A final CA was applied to the filtered database, followed by a hierarchical clustering 

of the records based on their scores along the CA1 and CA2 axes (Ward’s method). 

Vegetation groups were determined by cutting the dendrogram initially to form six groups. 

Then to progressively merge the vegetation groups, the dendrogram was cut at higher levels 

forming five and four groups (Figure S2). The Indicator Value (IndVal), a quantitative index 

of the fidelity and specificity of a species to a group, was calculated for each species in the 

determined vegetation types (Dufrêne and Legendre, 1997). Only indicator species that were 

statistically significant (p-value < 0.05) with an IndVal greater than 0.2 were retained. On the 

basis of indicator species, each vegetation group was then identified and classified within a 190 

phytosociological typology (alliances and associations) following vegetation syntax described 

by the Provisional Reference Typology for Natural and Semi Natural Saltmarsh Habitats in 

Aquitaine by the French National Botanic Conservatory of South-Aquitaine (“Conservatoire 

Botanique National Sud-Atlantique”, CBNSA). When relevant, the N2000 habitat codes were 

also documented (Table 1). 

All statistical analyses were carried out using R 2.15.2 (R Development Core Team 

2016; http://www.r-project.org/ ). Packages used included vegan (Oksanen et al., 2016), Ade4 

(Dray and Dufour, 2007), labdsv (Roberts, 2016), and agricolae (de Mendiburu, 2016). 

 

2.3. Multispectral Image Acquisition, Processing and Spectral Band Selection 200 

Very high resolution multispectral images were acquired by the Pleiades Satellite 1B via a 

research dedicated program developed by the French National Center for Space Studies 

(CNES) for the site of the reserve on four different dates: April 14th and 25th, August 21st, and 

December 4th in 2013. Each image provides 2m ground resolution and 4-band multispectral 

(blue, green, red, and near-infrared/NIR) products, making a total of four multispectral images 

with 16 combined bands. The images for August and both dates in April were georeferenced 
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by IGN (French National Institute of Geographic and forest information) to the French 

Geodetic Network (RGF93) system and the Lambert-93 projection. The image for December 

was georeferenced by hand using well distributed ground control points (GCPs). No 

atmospheric corrections were made on the images, and all four images were cloud free. Two 210 

indicators, the Normalized Difference Vegetation Index (NDVI, Rouse et al., 1974) and 

Normalized Difference Water Index (NDWI, McFeeters, 1996), were calculated for each date 

of the satellite images to facilitate the detection of vegetation and water in the study area, 

creating an additional eight bands. A Kruskall Wallis rank sum test, with the vegetation groups 

as the main factor, was used to determine the bands that most easily discriminated the groups 

according to their numeric pixel values. The subset bands for which the Kruskall Wallis rank 

sum test detected a significant difference (p-value < 0.05) between vegetation groups were 

selected. The values of the four 2x2m pixels representative of the vegetation records were 

extracted for each band by creating 16m² square buffers around each GPS point. Finally, only 

NIR, NDVI and NDWI bands were retained for the four dates as they were statistically found 220 

to discriminate the best vegetation groups (see Figure S1 for a visual representation of the 

retained bands) and combined into a single false color composite image. 

 

2.4. LiDAR data Acquisition and Processing 

In December 2011, the Intercommunal Union for the management of the Gironde pond 

watershed (“Syndicat intercommunal d’aménagement des eaux du bassin versant des étangs 

du littoral girondin”, SIAEBVELG) acquired the LiDAR data for the study site. Data was 

collected with a LiteMapper 6800 mounted in a Cessna 206 (F-GDAP) flown at an altitude of 

500m above ground level. The survey was conducted with a laser PRF of 200 kHz with a total 

field of view of 60 degrees and a target point density of 3.8 laser points per m² (Parallele 45 230 
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Géomètres-Experts Associés, Lacanau, France). From this data, a digital elevation model 

(DEM) was derived (2 meter pixel resolution), creating an additional band (25 bands in total). 

 

2.5. Classification Method 

A Maximum Likelihood Classification (MLC) was then applied on the false color composite 

image with and without the DEM layer in order to create spectral signatures for each 

vegetation group defined by the typology and to assign each pixel to a given vegetation group. 

For the classification, two subset groups of the records were created (Wang et al., 2007): one 

to be used as a training group and the other as a validation group. The training and validation 

samples for the classification were defined by the range of pixel values contained in each 240 

record, which were then assigned to the vegetation group to which the corresponding record 

belonged. 

For the validation group, 20 records were randomly selected from each defined 

vegetation group to test the accuracy of the map. This number remained constant for each 

group in each classification. The records selected were evenly spaced according to the 

ecological gradient created by the CA (CA1 axis) and dispersed in the study zone in order to 

represent the full range of intra- and inter-group variability. This number was obtained for the 

sample size from Hay (1979) who concluded that a minimal sample size of 50-100 pixels per 

established group is recommended for accurate validation (Janssen, 2000). Each 16m² 

vegetation record contains four pixels, making a total of 80 pixels for validation per group. 250 

For the training samples, the remaining records independent of the validation groups 

were selected at 10% intervals ranging from 100% (all the remaining available records of 

each vegetation group) to 10% in order to assess the effect the sample effort on the overall 

accuracy. These records were randomly reselected for each group for each percentile of 

degradation in order to define a range of variance of pixels representative of each vegetation 
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group to be used in the image classification. The training records were also evenly spaced 

along the ecological gradient and dispersed throughout the study site. As no record was 

acquired in situ for sampling sites containing no vegetation, training samples of water 

(including channels and hunting ponds), bare mudflat, and sand were manually delineated by 

photo-interpretation and were included in the classification in order to increase spectral 260 

differentiation of the Reserve. The data-set did not include any validation samples for these 

habitats. 

A total of 60 classifications were examined for six, five, and four vegetation groups, 

both with and without the DEM data, with the training sample effort diminishing in 10% 

intervals. A post-classification Majority Filter using the eight nearest neighbors was applied 

on the classified habitat maps in order to smooth out erroneously classified pixels and reduce 

the “speckle” effect. The validation samples were then used to test the accuracy of the 

smoothed maps in predicting the vegetation groups across the study site. 

ArcMap version 10.2.1 software program (http://www.esri.com) was used for all 

image analyses, indicator calculations, and classification processes.  270 

 

2.6. Accuracy Assessment 

Quantitative standard accuracy measurements to assess the classified maps is based on the 

Confusion Matrix, in which the Kappa coefficient (K), overall accuracy, producer’s accuracy, 

and user’s accuracy for each vegetation group were calculated using the error matrix method 

on the final smoothed images (Congalton, 1991). The Kappa coefficient (K), a discrete 

multivariate technique used in accuracy assessment, is a measure of accuracy in which 0 

means an accuracy of less than what would be expected by chance and 1 is perfect accuracy 

(Viera and Garrett, 2005). Overall accuracy (A) is computed by dividing the sum of the total 

correct classified pixels by the total number of pixels in the vegetation groups. For each 280 



15 

 

classified map, the percent of the standard error for the overall accuracy (and the Kappa 

coefficient) was calculated, using the formula: 

���%� = ���%�	�%�
  

in which p is the overall accuracy (or the Kappa coefficient), q is 1-p, and n is the total 

number of pixels in the classification. The percent of the standard error was calculated for 

each classification map, and all errors were rounded to whole numbers or to the nearest tenth. 

Producer’s accuracy (or omission error) indicates the probability of a pixel being correctly 

classified, and is calculated by the total number of correct pixels found in a vegetation group 

divided by the total number of pixels of that group as derived from the ground data. Finally, 

the user’s accuracy (or commission error), a measure indicative of the probability that a pixel 290 

classified on the map actually represents that category according to the field data, is calculated 

by dividing the total number of correct pixels in a vegetation group by the total number of 

pixels that were classified in that group (Congalton, 1991). 

 

3. Results 

 

3.1. Vegetation Records and Groups 
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Fig. 2. (A) Hierarchical Classification performed on the [452 records x 35 species] data table. The red line 
indicates the level where the dendrogram was cut to define six clusters (named A-F) used for the 
associations. (B) Correspondence analysis on the F1-F2 factorial plan of the records showing the vegetation 
groups (defined in the Hierarchical Classification). Habitat turnover from high to low marsh is visualized by 
the arrow. 

 

Using the nomenclature provided by the CBNSA, the six distinct vegetation groups defined 

from using the 452 vegetation records and 35 species of the final data table and their 300 

corresponding indicator species (Figure 2, see Table S1 for corresponding names to species 

codes) were classified into five phytosociological alliances and six associations (Table 1). The 

vegetation groups present a clear spatial gradient permitting to visualize the typical zonation 

patterns of saltmarsh plant communities from the high schorre featuring top level Atlantic and 

high schorre communities (designated as groups A and B) to the slikke, containing Spartina 

maritima swards and Spartina anglica pioneer communities (groups E and F) (Table 1, Figure 

3). When the dendrogram was cut at higher classification levels, groups C (mid schorre 

communities) and D (high Atlantic slikke communities) were first merged, leading to a 

rougher group. Then, both A and B groups were merged (Table 1, Figure S2). 

Most of the 196 vegetation records considered floristically heterogeneous according to the 310 

Bray-Curtis dissimilarity index were located (i) within vegetation groups B, C, and D (high 

schorre, intermediate schorre, and high slikke respectively), (ii) at the interface between these 
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groups or (iii) at the interface between these groups and groups A (high schorre) or E (high 

slikke) (Figures S3 and S4). 
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Fig. 3. Maximum likelihood classification (MLC) maps (after application of the post majority filter), obtained using 100% of the remaining available records for the training 

groups (A) only with optical layers (overall accuracy: 75.5%) and (B) with optical and digital elevation model (DEM) layers (overall accuracy: 73.6%). The six vegetation 

groups in addition to water bodies (channels and hunting ponds), sand, and mudflats are featured. No LiDAR data were available for water bodies and mudflats, which do not 

appear on the resulting map (B). 
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3.2. Quantitative Map Accuracy 

Table 2. Interactive Supervised Classification (ISC) error matrix of the final map using 100% of the remaining 
available records for the training groups (A) only with optical layers and (B) with optical and digital elevation 
model (DEM) layers. Columns represent the reference data (what the pixel actually was based on validation 
data) and rows represent the image data (what the pixel was classified as). Shaded cells show the correctly 
classified pixel observations for each association. Results are in total number of pixels, while the producer and 
user’s accuracy are in percentage. 
 
 

(A) Without DEM layer 

Ground Data A B C D E F User’s Accuracy 

Map Data        

A 51 10     84% 

B 29 70 10 4   62% 

C   53 4  1 91% 

D   17 51 5 2 68% 

E    7 69 8 82% 

F    14 6 66 77% 

Producer’s Accuracy 64% 88% 66% 64% 86% 86% 
Overall Accuracy: 75.5% 

K = 0.71 

(B) With DEM layer 

Ground Data A B C D E F User’s Accuracy 

Map Data        

A 48 9     84% 

B 32 70 7 4   62% 

C   54 8  2 84% 

D   19 47 5 2 64% 

E    7 64 7 82% 

F    14 6 56 74% 

Producer’s Accuracy 60% 89% 68% 59% 85% 84% 
Overall Accuracy: 73.6% 

K = 0.68 

 

When 100% of the classification records were used, the map representing the six vegetation 

groups reached an overall accuracy of 75.5% (K= 0.71) for the optical and DEM classification 320 

(Table 2A). User’s accuracy was the highest for vegetation group C (91%), intermediate for 
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groups A, E and F (77% - 84%) and the lowest for groups B and D (62% and 68%). Variations 

in Producer’s accuracy were different with the highest values obtained for group B (88%), E 

and F (86%) and the lowest values for groups A, C and D (64 – 66%; Table 2A). These values 

were overall lower when DEM was included in the classification (Table 2B). 

The best classification results were obtained for the five vegetation groups, when 

100% of classification records were used, having overall accuracies of 83.6% (K= 0.8) and 

82.4% (K= 0.78) for the optical and DEM classifications, respectively. The results show that 

including the DEM layer in the classification systematically results in lower A and K values 

for all groups in all categories, with the exceptions of when 10% and 30% of records were 330 

selected for the five and six vegetation groups in which the A and/or K values are slightly 

higher after the addition of the DEM layer (Table 3, Figure 4, Appendix S2). 

 

Table 3. Overall accuracy assessment (%) of the classification results for six, five, and four vegetation groups, 
with and without digital elevation model (DEM) layers. 

Input Variables Remaining Records Used in Training Sample (%) 

  100 90 80 70 60 50 40 30 20 10 

Six Groups           

 Optical 75.5 67.0 65.9  68.4  68.2 62.1 60.8 53.3 49.9 9.6 

 Optical + DEM 73.6 62.0 58.4  61.1 64.1  58.0 52.8 52.3 47.9 18.6  

Five Groups           

 Optical 83.6 73.5  72.6 76.0 78.0 70.6 68.2 58.7 57.5 17.1  

 Optical + DEM 82.4  70.0 67.2  67.1  73.2 66.1 63.9 59.0 50.4 21.2 

Four Groups           

 Optical 80.1 81.0 81.0 80.4 80.7 81.1 77.5 75.7 75.8 57.5 

 Optical + DEM 76.7 72.2  76.7  70.6 76.3 77.7 69.2 70.0  73.4 54.2 

For each vegetation group, the validation sample comprised 20 vegetation records. 
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Generally, the results show higher A and K values with an increasing percentage of 

classification records used, coupled with decreasing the number of vegetation groups, despite 

a few exceptions (Table 3, Figure 4).  
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Fig. 4. Comparison of obtained K values for the six, five, and four vegetation groups with (dashed lines) and 

without (solid lines) digital elevation model layer. Bars represent the standard error of the K values for the 

classifications. 

 

For the six and five vegetation group categories, the trends in the A and K values for 

both optical and DEM classifications follow the same fluctuational tendencies (Table 3, 340 

Figure 4). The K values for these two groups decrease when reducing the number of records 

used for map training from 100 to 90%, remained rather constant from 90 to 60%, then 

steadily decrease with reducing the sample effort to 20%. The MLC accuracy performed with 

four vegetation groups however, does not follow this general tendency. The K values are 

stable when the sample effort ranges between 100-50%, and slightly decrease when reducing 345 

the sample effort to 20%. Regardless of the number of vegetation groups, decreasing the 

percentage of classification records down to 10% corresponds in a very small number of 

records for some classes, ranging between 2 records (8 pixels) for class A and 14 records (56 

pixels) for class CD (Table 1). This has severe consequences on the map training, as shown by 
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collapses in overall accuracy and null to negative Kappa values (Table 3, Figure 4), and the 350 

failure to map some of the vegetation groups (Appendix S2). Reducing typology accuracy to 

only four vegetation groups prevented this dramatic effect (Table 3, Figure 4).  

 

3.3. Qualitative Map Accuracy 

 355 

 

Fig. 5. Maximum likelihood classification maps demonstrating results for 100% (top), 50% (middle), and 20% 

(bottom) of the remaining available records for the training groups for the six (A, D, G), five (B, E, H), and four 

(C, F, I) thematic classes. Only classifications including optical layers are shown. 

 

For purposes of brevity, nine out of the sixty classifications were chosen to demonstrate 

general trends for the classification results (100%, 50%, and 20% intervals for the three group 

categories for the optical classification; Figure 5). From visual interpretation of the vegetation 



24 

 

groups, all classifications demonstrated the distribution of vegetation groups in the final 360 

classified products to be generally consistent with typical zonation patterns of saltmarshes and 

more specifically represented by the field records, showing the gradation from high schorre to 

slikke (Figure 5), with exception to the 10% category (not shown) for five and six vegetation 

groups. In reducing the percentage of records used in the training sample, certain spectral 

groups become more dominant while others become less prominent, or completely disappear 365 

(e.g., group A with 20% of training samples and six vegetation groups, Figure 5G, Appendix 

S2). However, regardless of the quantity of records, the maps produced exhibit an overall 

agreement with the general spatial patterns of the observed records. 

 

4. Discussion 370 

Complementary to previous studies aiming at mapping saltmarsh plant communities, we 

developed an approach combining robust but already existing field data collected for other 

purposes than vegetation mapping with multi-date multispectral imagery. This approach 

proved efficient in capturing the full gradient of saltmarsh vegetation, from the slikke to the 

schorre, deriving a complete vegetation typology and mapping of these vegetation groups.  375 

The classification results show that the mapping method devised from hierarchically 

classifying vegetation into groups derived from a complete habitat typology is generally in 

quantitative and qualitative agreement with observed field data. The overall classification 

accuracy of the most complete map (i.e., using 100% of available records for map training 

and 6 vegetation groups) was rather high (75.5%) with a moderate Kappa coefficient of 0.71 380 

(see Viera and Garrett, 2005 for Kappa interpretation scale). Both producer’s and user’s 

accuracies varied according to the vegetation group considered. The producer’s accuracy was 

the highest for groups B (high schorre communities), E, and F (high slikke Spartina maritima 

swards and S. anglica pioneer communities), ranging from 86-88%, with group B being the 
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best classified. From a user’s perspective, the most accurate groups were groups A (top level 385 

Atlantic saltmarsh and grass swards), C (mid schorre communities), and E (high slikke 

S. maritima swards), with a user’s accuracy reaching 91% for group C. These results imply 

that the detailed spectral information provided by the multispectral image data may be 

particularly effective for differentiating vegetation groups in the upper and lower marsh. 

However, in the intermediate marsh (mostly low schorre and high slikke), the classification 390 

was less accurate. Vegetation group D (high Atlantic slikke occupied by Salicornia species) 

had the lowest scores (user’s and producer’s accuracies of 64 and 68% respectively), showing 

that there is significant spectral confusion in discriminating this cluster from other clusters. 

Using hierarchical methods to classify vegetation groups from a robust data-set spanning the 

entire study site allowed us to build a thorough habitat typology, therefore reducing 395 

uncertainties of the data. Vegetation typology and the way by which it is built may affect 

vegetation group mapping. In wet grasslands, Rapinel et al. (2018) demonstrated that a 

compromise of vegetation typology based on both floristic and spectral information provided 

a better accuracy than classic phytosociological typology. In the present study, only floristic 

composition was used to classify vegetation composition, using classical ordination and 400 

cluster analyses. Although this may have decreased mapping accuracy, as suggested by 

Rapinel et al. (2018), our approach enables the ability to build a typology that can match local 

managers’ knowledge and conservation needs, independently of the acquisition of remote 

sensing data. Other studies on supervised image classification for precisely defined vegetation 

classes such as phytosociological associations are rare, however one study combining 405 

hyperspectral imagery with field samples collected using the Braun-Blanquet method to 

classify and map vegetation groups had an overall accuracy of 40% with a Kappa coefficient 

of 0.35 (Schmidt et al., 2004). This same study also showed that by combining ancillary data 

to the classification, such as height, slope, aspect, and terrain position, the classification 
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accuracy improved to 66% with a Kappa coefficient of 0.64. Using supervised classification 410 

for general cover classes based on four saltmarsh dominant species in the Lagoon of Venis, 

Belluco et al. (2006) reported accuracies ranging from 74.6-96.1% with Kappa coefficients 

ranging from 0.67-0.86. These high accuracies are typical with broad cover classes, as 

supervised classifications have been shown to have higher performance when fewer classes 

are distinguished (Janssen, 2001). In our study, the use of multi-temporal, although 415 

opportunistically acquired, Pleiades images certainly contributed to the improved map 

accuracy as it enables the integration of phenological differences between vegetation groups, 

thereby increasing their spectral discrimination. 

Increasing spatial and spectral resolutions have been proposed to increase mapping 

efficiency. Using images with higher spatial resolution presents the advantage of having a 420 

larger number of reference pixels to be used in the classifier training, and therefore increasing 

the spectral separability of classes (Janssen, 2001; Hladik, 2012). This is a particularly 

important advantage in the case of highly heterogeneous vegetation communities (Belluco et 

al., 2006) where under-represented classes can be lost in the mixed pixels when performing a 

supervised classification (Hladik, 2012). In our study, all of the four pixels constituting a 425 

vegetation record were assigned to the vegetation group defined at the scale of this record. 

Thus, floristically heterogeneous records, which represented almost 30% of the 676 records 

containing vegetation, were removed from the analysis as they were thought to have fuzzy 

spectral signatures that could have impacted classification accuracies. Floristically 

heterogeneous records indicating small scale (i.e., less than 16m²) heterogeneity were found 430 

all along the slikke to schorre gradient, both within vegetation groups and at the boundaries 

between vegetation groups (Figures S3 and S4). As it was removed from the analysis, such 

heterogeneity cannot explain differences in map accuracy. For instance, group C (mid schorre) 

appears to be the one in which the largest number of heterogeneous records are found, but it is 
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also the group with the highest user’s accuracy. Similarly, group B (high schorre), for which 435 

we obtained the highest producer’s accuracy, also contained several heterogeneous records. 

Thus, for these groups, small-scale floristic heterogeneity (i.e., at the record scale) did not 

affect classification quality. On the contrary, group D (high Atlantic slikke) was the least well 

represented group. Rather than small-scale floristic heterogeneity, a sort of “ecological 

heterogeneity” within records located at the interface between two vegetation groups could be 440 

responsible for misclassification. Several factors other than floristic composition, which we 

used for vegetation typology (e.g., proposition of bare soil, water content, biomass), can lead 

a single vegetation group to be characterized by several spectral signatures (Rapinel et al., 

2018). Indeed group D is a spatially complex mosaic narrow habitat at the transition between 

groups C (mid schorre) and E (high slikke S. maritima swards), represented by the smallest 445 

number of vegetation records. Defining a clear signature from this group proved challenging. 

Other studies have also shown that, in heterogeneous areas of saltmarshes, supervised 

classifications are generally unable to classify under-represented classes and mixed pixels 

(Belluco et al., 2006). Increasing sampling effort within this vegetation group would thus be 

required to try and increase the accuracy of its mapping. Additionally, positional discrepancies 450 

in the referenced data due to accuracy errors of the GPS should also be considered. These 

differences could have resulted in a slight shift in the position of the records on the map, 

leading to a misrepresentation of pixels.  

Increasing spectral resolution of the satellite images by using hyperspectral imagery 

instead of multispectral imagery could also improve the identification of saltmarsh 455 

associations. Hyperspectral images are able to collect a high number of continuous spectral 

bands (sometimes greater than 200) and allow for better species differentiation when 

compared to multispectral imagery (Belluco et al., 2006; Hladik, 2012). However, studies 

have shown that there is a redundancy in the information of hyperspectral bands, creating a 
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tradeoff between the number of spectral bands chosen and the accuracy of the classifier, 460 

therefore the number of spectral bands chosen must be limited. Additionally, although higher 

spectral resolution yields more accurate results, studies have shown that having higher spatial 

resolution is more important than higher spectral resolution (Belluco et al., 2006).  

In the present study, the Pleiades images used were opportunistically recorded and 

dates were not chosen with a specific aim. Another study in the Arcachon bay defined the 465 

potential of using long term time-series of satellite imagery to derive exhaustive maps of 

intertidal and saltmarsh habitats (Lafon et al. 2014), demonstrating that good quality maps 

were obtained by fusing the results of the Mahalanobis Distance classifier applied to SPOT5 

imagery acquired from winter to summer 2011 to Iterated Conditional Modes (ICM) 

classification results derived from Synthetic Aperture Radar (SAR) seasonal acquisition. They 470 

also showed that imagery obtained in the springtime is particularly advantageous in 

distinguishing species and assemblages, therefore, Pleiades images from April are of great 

interest. It is also important to consider the difference in the dates of data acquisition, as the 

remotely sensed imagery was taken two years after the field surveys were conducted. As 

saltmarsh vegetation is dynamic, vegetation patterns are subject to change rather quickly 475 

(Janssen, 2001). Using synchronized field samples and satellite images could have potentially 

different classification results. 

Identifying boundaries in which one vegetation group stops and another begins is often 

difficult, especially in saltmarsh communities which exhibit mixed vegetation types blending 

into one another (Kelly and Tuxen 2009). In our study, this heterogeneity was detected in 480 

almost 30% of the vegetation records, suggesting that about one third of the vegetation 

surface is likely to be hardly assigned to one vegetation group or another. Previous research 

has shown that it is difficult to classify saltmarsh plant communities by purely using their 

spectral signatures (Zhang, et al., 2011) therefore many studies use a combination of satellite 
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images with topographic and edaphic data to increase classification accuracies (see Schmidt et 485 

al., 2004; Tuxen and Kelly 2009; Hladik, 2012; Hladik et al., 2013) and verify the accuracies 

afterwards with a select number of field samples. Saltmarsh vegetation exhibits a strong 

spatial structuration (Chapman, 1976; Adam, 1990; Marani et al., 2003) and it is well 

established that inundation frequency and elevation are the primary determining factors for 

these patterns (Adam, 1990; Boorman, 2003; Silvestri and Marani, 2004; Wang et al., 2007; 490 

Bilodeau, 2010). Studies show that incorporating elevation data improves the accuracy of 

saltmarsh aboveground biomass or carbon stock quantification (Kulawardhana et al., 2014; 

2015), in addition to saltmarsh (Klemas, 2011; van Beijma et al., 2014; Owers et al., 2016), as 

well as other wetland habitat mapping (Rapinel et al., 2015; Ballanti et al., 2017; Rapinel et 

al., 2018). On the contrary, our results show that adding LiDAR-derived DEM layer to optical 495 

information generally decreased overall map accuracy. This suggests that LiDAR data used in 

the present study were not accurate enough to detect sharp variations in altitude. In our study, 

LiDAR data were used to derive a DEM, while classification improvements provided by 

LiDAR data do not strictly rely on the accurate description of elevation, but also on the use of 

LiDAR data to characterize three-dimensional vegetation structure (Kulawardhana et al., 500 

2017), which may help in defining vegetation groups. Moreover, several factors can affect 

LiDAR accuracy such as sensor resolution or vegetation density, which may limit laser 

penetration (Hladik, 2012). DEM derived from raw LiDAR data may not be accurate enough 

for flat vegetated habitats such as those targeted in the present study (Chust et al., 2008; 

Fernandez-Nunez et al., 2017). Indeed, poorer vertical accuracy is found for taller vegetation 505 

(Hladik and Alber, 2012). The application of species or habitat-specific correction factors 

(e.g., vegetation height or aboveground biomass density) greatly improves the accuracy of the 

LIDAR-derived DEM (Hladik and Alber, 2012; Fernandez-Nunez et al., 2017). Corrections 

are thus generally recommended, without what using LiDAR data for saltmarsh vegetation 
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mapping may be useless (Hladik and Alber, 2012). In the present study, the way LiDAR data 510 

were processed is thus the most probable explanation for the negative effect of adding the 

LiDAR-derived DEM band on map accuracy.  

One way to improve the overall accuracy of the classification in this study would be to 

merge training samples into broader vegetation classes, defining the groups at a higher 

hierarchical level in the typology. Merged samples are known to give a better spectral 515 

representation of the vegetation class as a whole (Janssen, 2001), as shown by the high 

classification accuracies in Belluco et al., 2006. This, however, would be at the expense of 

important information in regards to the vegetation groups. Accordingly, merging vegetation 

records into coarser groups (i.e., C-D low-mid schorre communities for the 5-group, and A-B 

top level and high schorre communities for the 4 group mapping) overall enhanced map 520 

accuracies. In addition, combining clusters E (high slikke Spartina maritima swards) and F 

(high slikke Spartina anglica pioneer communities) could further decrease confusion amongst 

pixels and increase spectral differentiation and accuracy mapping of the slikke from the 

intermediate levels of the saltmarsh, at the expense of distinguishing between the groups E 

and F. The general trend of the classification maps shows that the accuracy results become 525 

highly degraded when finer vegetation groups are distinguished coupled with reduced ground 

information. As finer vegetation groups may occupy a smaller area on the study site, our 

systematic field sampling design resulted in a smaller number of records within these 

vegetation groups. For instance, vegetation groups A and D were respectively represented by 

42 and 51 records, leading to a maximum number of 22 and 31 records for map training after 530 

the removal of the 20 validation record. A 10% sub-sample of training records is thus 

insufficient to map these vegetation groups. As suggested above, a stratified field sampling 

i.e., sampling of previously defined vegetation groups, would help increase the sampling 
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effort in vegetation groups occupying small areas but could lead to the omission of unknown 

vegetation types. 535 

 

5. Conclusion and Perspectives 

Although the reliability of the final map can be improved by several methods, the approach 

developed in this study demonstrates that vegetation data-sets that are not initially designed in 

mapping purpose (i.e. systematic rather than stratified sampling, ca. 5m-accurate record 540 

positioning) can be used in combination with rather easily acquired and processed multi-

temporal multispectral imagery to create adequate saltmarsh vegetation maps. The uniqueness 

of this study also lies within the robust data-set of ground referenced data covering the entire 

site, a rich source of information permitting to create a thorough vegetation typology 

(phytosociological associations) of the Reserve. Decreasing the number of vegetation records 545 

altered classification accuracy, proving that large ground data-sets are required for such a 

mapping approach to be efficient. Field data resulting from the fine scale systematic sampling 

scheme used in this study would hardly be acquired at larger scales. Nevertheless, providing 

that a sufficient amount of vegetation records and corresponding pixels per vegetation group 

are available, our approach can be transferred to other saltmarshes even on larger areas such 550 

as the entire Arcachon Bay. Despite their lower spectral accuracy, compared to radar or 

hyperspectral images, multispectral images represent an interesting alternative providing that 

they are acquired at several dates. Our results also provide further evidence of the negative 

effects of including LiDAR data without any correction for the mapping of vegetated 

saltmarsh habitats (Fernandez-Nunez et al., 2017). 555 

Quantitative, accurate, and repeatable observations of vegetation distribution over time 

in saltmarshes are highly important for monitoring purposes. Such observations must cover 

spatial and temporal scales, and remote sensing techniques are therefore ideally suited for this 
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task. The ability for repeated data acquisition of remotely sensed imaging coupled with the 

accurately determined spectral signatures of vegetation groups can therefore be used to assess 560 

spatial changes in the distribution of vegetation over time. 
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Figures 

Fig. 1. Map of the Arcachon Bay (left) showing the location of the study area in Southwestern 

France. The study site is shown outlined in white (right). Image source: IGN BD ORTHO ® 

50cm. 

Fig. 2. (A) Hierarchical Classification performed on the [452 records x 35 species] data table. 

The red line indicates the level where the dendrogram was cut to define six clusters (named 

A-F) used for the associations. Indicator species’ codes are provided above the branches of 

each cluster group. Species richness is shown for each group. (B) Correspondence analysis on 

the F1-F2 factorial plan of the records showing the vegetation groups (defined in the 

Hierarchical Classification). Habitat turnover from high to low marsh is visualized by the 

arrow. See Table S1 in Electronic Supplementary Material for complete species’ names and 

corresponding codes. 

Fig. 3. Maximum likelihood classification maps (after application of the post majority filter), 

obtained using 100% of the remaining available records for the training groups (A) only with 

optical layers (overall accuracy: 75.5%) and (B) with optical and digital elevation model 

layers (overall accuracy: 73.6%). The six vegetation groups in addition to water bodies 

(channels and hunting ponds), sand, and mudflats are featured. No LiDAR data were available 

for water bodies and mudflats, which do not appear on the resulting map (B) 

Fig. 4. Comparison of obtained K values for the six, five, and four vegetation groups with 

(dashed lines) and without (solid lines) digital elevation model layer. Bars represent the 

standard error of the K values for the classifications. 

Fig. 5. Maximum likelihood classification maps demonstrating results for 100% (top), 50% 

(middle), and 20% (bottom) of the remaining available records for the training groups for the 

six (A, D, G), five (B, E, H), and four (C, F, I) thematic classes. Only classifications including 

optical layers are shown. 
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Tables 

Table 1. Phytosociological categories (alliance or association) and Natura 2000 habitat codes 

(N2000 Code) for the identified vegetation groups. Group codes and generic names are 

provided for each determined thematic class in addition to the total number of ground records 

and the maximal number of records remaining for map training. 

Table 2. Interactive Supervised Classification (ISC) error matrix of the final map using 100% 

of the remaining available records for the training groups (A) only with optical layers and (B) 

with optical and digital elevation model (DEM) layers. Columns represent the reference data 

(what the pixel actually was based on validation data) and rows represent the image data 

(what the pixel was classified as). Shaded cells show the correctly classified pixel 

observations for each association. Results are in total number of pixels, while the producer 

and user’s accuracy are in percentage. 

Table 3. Overall accuracy assessment (%) of the classification results for six, five, and four 

vegetation groups, with and without digital elevation model (DEM) layer. 

 




