

Subcritical water: an original eco-sustainable process for wine lees valorization?

Benjamin POULAIN¹, Delphine WINSTEL¹, Claudia NIOI¹

¹Univ. Bordeaux, Bordeaux INP, Bordeaux Science Agro, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France

INTRODUCTION

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc [1]. During ageing of white wine on lees, it is well known that lees release compounds that limit oxidation of wine [2]. The antioxidant potential of wine lees is not totally elucidated. Glutathione seems to be one of the most important compounds involved in antioxidant activity [2]. In this way, white wine lees are a promising by-product to obtain biomolecules of interest.

In this study, we propose an eco-sustainable process to extract compounds with antioxidant activity from white wine lees.

METHODS

Raw material:

Sémillon wine lees (2021) from AOC Pessac-Léognan (France).

- 1. Impact of operating conditions and solvents on extraction yield and antioxidant activity:
 - Solvents impact: Water at 20 °C (W), Ethanol 50 % (v/v)(EtOH), Subcritical Water (SW) at 100, 150 and 200 °C at 30 bars (and 60 bars).
 - Optimised operating conditions: initial lees concentration 10 g/L and 15 min of extraction.
- 2. Evaluation of the antioxidant activity (antiradical and ferric reducing power):
 - DPPH and FRAP method (colorimetric).
- 3. Evaluation of glutathione in extracts:
 - DTNB method (colorimetric).

CONCLUSION

Subcritical water is a promising solution for gluthatione extraction and to obtain antioxydants extracts from white wine lees.

In conclusion, **subcritical water** seems to be an **original eco-sustainable** process for **wine lees valorization.**

RESULTS

Solvent impact:

Subcritical water and water 20 °C allow a better extraction yield compared to conventional solvent.

Subcritical water extraction:

Temperature has a positive impact on extraction yield.

Evaluation of the antioxidant activity

Ethanol 50 % and subcritical water at 200 °C extractions are favourable to obtain extracts with high antiradical and ferric reducing power.

Any differences observed between subcritical water at 30 and 60 bars (data not shown).

Evaluation of glutathione in extracts

Conventional solvent and subcritical water at 200 °C are best solvents for glutathione extraction.

The higher glutathione extraction with SW 200 °C could be one of the reason of it better antioxidant activity.

WHAT IS NEXT?

- Optimisation of subcritical extraction with DOE.
- Identification of molecules implicate in antioxidant activity of extract and lees.

REFERENCES

[1] C. Dimou, N. Kopsahelis, A. Papadaki, S. Papanikolaou, I. K. Kooks, I. Mandala, A. A. Koutinas, Food Res. Int. (2015) 81-87.

[2] V. Lavigne et D. Dubourdieu, J. Int. Sci. Vigne Vin. (1996), 30, n°04, 201-206

Acknowledgements: Authors grateful to Region Nouvelle-Aquitaine, Biolaffort (SANSOVIN project) and ANR for financial support.

