
J. Fluid Mech. (2022), vol. 944, A43, doi:10.1017/jfm.2022.487

A macroscopic model for immiscible two-phase
flow in porous media

Didier Lasseux1,† and Francisco J. Valdés-Parada2

1I2M, UMR 5295, CNRS, Univ. Bordeaux, 351, Cours de la Libération, 33405 Talence CEDEX, France
2División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa,
Av. San Rafael Atlixco 186, col. Vicentina, 09340, Mexico

(Received 3 November 2021; revised 20 March 2022; accepted 30 May 2022)

This work provides the derivation of a closed macroscopic model for immiscible
two-phase, incompressible, Newtonian and isothermal creeping steady flow in a rigid
and homogeneous porous medium without considering three-phase contact. The mass
and momentum upscaled equations are obtained from the pore-scale Stokes equations,
adopting a two-domain approach where the two fluid phases are separated by an interface.
The average mass equations result from using the classical volume averaging method.
A Green’s formula and the adjoint Green’s function velocity pair problems are used
to obtain the pore-scale velocity solutions that are averaged to obtain the upscaled
momentum balance equations. The macroscopic model is based on the assumptions of
scale separation and the existence of a periodic representative elementary volume allowing
a local description as usually postulated for upscaling. The macroscopic momentum
equation in each phase includes the generalized Darcy-like dominant and viscous coupling
terms and, importantly, an additional compensation term that accounts for surface tension
effects to momentum transfer that is, otherwise, incompletely captured by the Darcy terms.
This interfacial term, as well as the dominant and viscous coupling permeability tensors,
can be predicted from the solutions of two associated closure problems that coincide
with those reported in the literature. The relevance of the compensation term and the
upscaled model validity are assessed by comparisons with direct numerical simulations in
a model two-dimensional periodic structure. Upscaled model predictions are found to be
in excellent agreement with direct numerical simulations.

Key words: porous media, multiphase flow, boundary integral methods

† Email address for correspondence: didier.lasseux@u-bordeaux.fr

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 944 A43-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:didier.lasseux@u-bordeaux.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.487&domain=pdf
https://doi.org/10.1017/jfm.2022.487


D. Lasseux and F.J. Valdés-Parada

1. Introduction

Multiphase flow in porous media is of broad scientific interest reflected in an abundant
literature dedicated to the subject over the past century. The description of two-phase
immiscible flow in porous materials, triggered by the booming of oil recovery, was
proposed nearly a century ago in the seminal work of Wyckoff & Botset (1936) and Muskat
& Meres (1936), who suggested the use of a generalized Darcy’s law. This long-lasting
domain of interest has been enriched by many others, ranging from flow in packed bed
reactors, remediation of dense non-aqueous phase liquids in contaminated soils, CO2
sequestration, hydrology, wastes storage in landfills or subsurface formations, flow in
biological tissues, drying of porous materials, gas–water management in fuel cells, flow in
filters and membranes, among others. Various aspects of this challenging topic have been
analysed by means of many different experimental, numerical and theoretical approaches
at different scales of analysis, ranging from the pore scale to macroscopic scales that
may include heterogeneities. A recent and comprehensive reference on the subject of
multiphase flow in porous media that encompasses both pore scale and macroscale
perspectives is the monograph by Blunt (2017). Despite the fact that the generalized
Darcy’s law originally proposed by Muskat & Meres lacks physical justification, it is still
of common practical use in large-scale simulators, for instance.

Experimental works at the pore scale have been carried out in systems mimicking a
porous structure (Avraam & Payatakes 1995) and the recent progress in imaging techniques
now provides the means to perform observations in real structures at micron to submicron
scales (Singh et al. 2018; Hunter & Dewanckele 2021). These observations give insightful
information about the physical mechanisms at play that help in understanding macroscopic
behaviours. In conjunction, two-phase flow simulations at the pore scale have also been
carried out extensively (Zhao et al. 2019) with the aim of reproducing both microscopic
and macroscopic observations. These have been performed using various representations
of porous structures like pore networks (Gjennestad, Winkler & Hansen 2020; Maalal et al.
2021), X-ray or scanning-electron-microscopy-based images (Aljasmi & Sahimi 2021;
Shams et al. 2021). Computations have been carried out in many different configurations
using lattice-Boltzmann (Taghilou & Rahimian 2014; Shi & Tang 2018; Gu, Liu & Wu
2021) and other techniques, either based on two-fluid systems taking explicitly into account
the interfaces with a volume of fluid method (Yang et al. 2021) or continuous two-fluid
approaches using level-set (Ambekar, Mondal & Buwa 2021; Jettestuen, Friis & Helland
2021) or Cahn–Hilliard models (Yang & Kim 2021) with improved algorithms making use
of machine learning (see, for instance, Silva et al. (2021)).

Although pore-scale investigations are important, they remain insufficient for
large-scale modelling, and macroscopic models are of major interest. To this end, several
works based on upscaling techniques (Battiato et al. 2019) have been reported using the
volume averaging method (Whitaker 1986; Quintard & Whitaker 1988, 1990; Whitaker
1994; Lasseux, Quintard & Whitaker 1996; Quintard & Whitaker 1999; Lasseux, Ahmadi
& Arani 2008; Luévano-Rivas & Valdés-Parada 2015; Davit & Quintard 2018; Chen, Sun
& Wang 2019) and the homogenization technique (Auriault 1987; Auriault, Lebaigue &
Bonnet 1989; Bourgeat 1997; Daly & Roose 2015; Picchi & Battiato 2018), both sharing
many points in common (Davit et al. 2013). The thermodynamically constrained averaging
theory (known as TCAT) was also employed to obtain averaged models (Jackson, Miller
& Gray 2009; Gray & Miller 2011, 2014; Gray et al. 2015; Rybak, Gray & Miller 2015;
McClure et al. 2016a,b) as well as the hybrid mixture theory (Schreyer & Hilliard 2021),
among others.
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A macroscopic model for two-phase flow in porous media

In the context of volume averaging, Whitaker (1986) derived a macroscopic model for
immiscible, steady and Newtonian two-phase flow in rigid and homogeneous porous media
under creeping flow conditions. The model consisted of a set of two macroscopic equations
for mass and momentum transport. This model was later revisited by Lasseux et al. (1996)
in order to express the macroscopic momentum balance equations in the form of Darcy’s
laws with two macroscopic pressure gradients contributions, which is consistent with the
model derived by Auriault (1987) using the homogenization method. The same type of
model was later derived by Picchi & Battiato (2018) also using homogenization. All
these macroscopic models were written in terms of four permeability tensors that can
be predicted from the solution of two associated closure problems. This approach was
later extended by Lasseux et al. (2008) to incorporate inertial effects. However, in the
analysis reported in these works, the contributions from surface tension and curvature
of the fluid–fluid interface is not present at the closure level. In the context of volume
averaging, such a simplification was thought as a valid one under the constraint of Bond
and capillary numbers much smaller than unity (as well as of a vanishingly small Weber
number value in the presence of inertia) (Whitaker 1994; Lasseux et al. 2008). Within the
framework of homogenization, this term was dropped as it was thought to be insensitive at
the order of the two-scale asymptotic expansion carried out in the method. Nevertheless,
these assumptions have not yet been carefully investigated, although many works have
suggested that the impact of the interfacial area may be of importance, without, however,
providing a closed expression of its contribution (Hassanizadeh & Gray 1993; Hilfer 1998;
Hilfer & Besserer 2000; Li, Pan & Miller 2005; Niessner & Hassanizadeh 2008; Niessner,
Berg & Hassanizadeh 2011). An accurate and physically sound macroscopic model that
does not rely on the above mentioned assumptions is still lacking, the derivation of which
is the purpose of the present work.

Recently, Daly & Roose (2015) and Chen et al. (2019) used the homogenization
technique and volume averaging method, respectively, to derive a macroscopic model
for two-phase flow in homogeneous porous media departing from a single equation for
mass balance in both phases and also for momentum transport at the microscale, together
with the Cahn–Hilliard equations. This approach makes use of a phase field to distinguish
the two fluid phases without assuming the existence of a sharp interface separating the
two. The resulting model consists of a modification to the mass equations that includes
a diffusion term of the macroscopic chemical potential in each phase. Although this
approach provides an interesting alternative, the present work is focused on the common
description based on a two-phase system including a separating interface with interfacial
effects which, for the sake of generality, may involve a surface tension gradient.

The objective of this work is the derivation of a macroscopic model for mass
and momentum transport applicable to isothermal, creeping, immiscible, steady and
Newtonian two-phase flow in porous media. This is performed using a modified (and
simplified) version of the volume averaging method that takes into account the use of
Green’s functions from the adjoint homogenization method reported by Bottaro (2019).
To this end, the manuscript is organized as follows. In § 2, the governing differential
equations and boundary conditions at the pore scale are presented. These equations involve
a set of starting assumptions that are clearly stated. In § 3, the essential elements of the
volume averaging method, including the use of Green’s formula, are recalled, together
with the assumptions associated with the upscaling process, namely, the existence of a
periodic representative elementary volume (REV) and the fact that macroscopic forcing
terms can be regarded as constants in a periodic unit cell. Sections 4 and 5 are dedicated
to the derivation of the upscaled mass and momentum transport equations, respectively.
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The resulting mass balance equations are compliant with the original work from Whitaker
(1986), whereas for momentum transport, the model incorporates a modification of
the generalized Darcy’s law with coupling by including a compensation term due to
surface tension effects that are not completely accounted for in the Darcy-like viscous
terms. This term, as well as the permeability tensors, are predicted from the solution
of two associated closure problems that coincide with those reported in previous works
(Auriault 1987; Lasseux et al. 1996; Picchi & Battiato 2018). The closed average model
is obtained assuming periodicity and scale hierarchy without any other assumptions
than those supporting the microscale model. Illustrative numerical results obtained on
a two-dimensional model configuration are reported in § 6, making use of a boundary
element method. They include a validation of the upscaled model (UM) with direct
numerical simulations (DNS) at the pore scale. The importance of the compensation
interfacial term with respect to the capillary number characteristic of the flow is also
highlighted. Finally, the main conclusions are presented in § 7.

2. Pore-scale equations

Consider a rigid and homogeneous porous medium whose solid skeleton is the σ -phase
such as the one sketched in figure 1, in which two incompressible and Newtonian
fluid phases (i.e. the β-phase and the γ -phase) saturate the void space and flow under
isothermal, steady and creeping conditions. Consequently, the governing equations for
mass and momentum balance in each phase at the pore scale can be written as (α = β, γ )

∇ · vα = 0, in the α-phase, (2.1a)

0 = −∇pα + ραg + μα∇2vα, in the α-phase. (2.1b)

In the above equations, vα and pα represent the pore-scale velocity and pressure in
the α-phase, g is the gravity vector, whereas ρα and μα are the density and dynamic
viscosity of each phase, which are assumed to be constant in the remainder of this work.
Furthermore, since the fluid phases are immiscible, no mass transport takes place and
no phase change occurs, it follows from the mass jump condition and the continuity of
the tangential velocities that the following expression applies at the fluid–fluid interface
(Slattery 1999):

vβ = vγ = w, at Aβγ . (2.1c)

Here, w is the speed of displacement of the fluid–fluid interface. Taking this result into
account, the momentum jump condition at this interface takes the form

nβγ ·
[
−Ipβ + μβ(∇vβ + ∇vT

β)
]

= nβγ ·
[
−Ipγ + μγ (∇vγ + ∇vT

γ )
]

+ 2γHnβγ + ∇sγ, at Aβγ . (2.1d)

In this equation, nβγ is the unit normal vector directed from the β-phase towards the
γ -phase, I and ∇s, respectively, denote the identity tensor and the surface gradient operator
defined as

∇s = (I − nβγnβγ
) · ∇. (2.1e)

Moreover, γ is the surface tension and H = −1
2∇s · nβγ is the mean curvature of the

fluid–fluid interface. While including the possible variation of γ , the above boundary
condition disregards the effects of surface shear and dilatational viscosities acting at the
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Figure 1. (a) Sketch of a porous medium saturated by two immiscible phases, highlighting the characteristic
length and the corresponding interfaces. (b) Periodic representation of the microstructure and periodic unit
cell.

dividing surface. It should be noted that the capillary term only has a normal component,
whereas the surface tension gradient term is purely tangential.

Directing the attention to the fluid–solid interface, it is assumed that the no-slip
boundary condition is applicable, i.e.

vα = 0, at Aασ , α = β, γ. (2.1f )

To simplify the problem, it is further assumed that there is no three-phase contact
line; consequently the above equations are sufficient to describe the interfacial transport
phenomena under consideration. Certainly, the pore-scale problem statement requires
providing the boundary conditions for the pressure and velocity at the macroscopic
boundaries. However, this information is not required for the derivation of the UM that
follows and it is not presented here for the sake of brevity.

3. Essentials of the volume averaging

The derivation of the upscaled mass and momentum balance equations is performed using
elements of the volume averaging method (Whitaker 1999) and Green’s formula from the
adjoint homogenization technique (Bottaro 2019). The purpose of this section is to provide
the essential elements of this upscaling approach. To this end, consider an averaging
domain V (of constant measure V) containing portions of all the phases involved in the
system. Assuming that there exists a disparity between the largest characteristic length
scale associated with the pore scale (�p = max(�κ ), �κ representing the characteristic
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length of the κ-phase, κ = β, γ, σ , see figure 1(a) and the smallest macroscopic length
scale (L), it follows that, in order for V to be representative, its characteristic length (r0)
must be constrained according to (Bear 2018)

�p � r0 � L. (3.1)

On the basis of this constraint, V can be denoted, in the rest of this work, as a REV.
Moreover, in terms of this averaging domain, the superficial averaging operator can be
introduced for a piecewise smooth (scalar or tensorial) function, ψ , defined everywhere

〈ψ〉 = 1
V

∫
V
ψ dV. (3.2a)

For the case in which ψ is only defined in the α-phase (α = β, γ ), the above expression
yields (Whitaker 1999)

〈ψα〉α = 1
V

∫
Vα

ψα dV. (3.2b)

Here Vα represents the space occupied by the α-phase within V. In addition, the intrinsic
averaging operator is defined as

〈ψα〉α = 1
Vα

∫
Vα

ψα dV. (3.2c)

In the following, the volume fraction of the fluid phases in the REV is denoted as

εα = 〈1〉α = Vα
V
, (3.3)

and the two averages are related by 〈ψα〉α = εα〈ψα〉α .
Furthermore, the application of the spatial averaging operators to the pore-scale

equations often requires interchanging temporal differentiation and spatial differentiation.
This is achieved by means of the general transport theorem (Slattery 1999)

d〈ψα〉α
dt

=
〈
∂ψα

∂t

〉
α

+ 1
V

∫
Aα

nα · ψαw dA. (3.4)

Here, Aα = Aασ + Aβγ denotes the bounding surfaces of Vα , and nα represents the unit
normal vector at Aα pointing out of Vα , whereas w is the speed of displacement of Aα .
In addition, the interchange of spatial differentiation and integration is possible using
the spatial averaging theorem, which, for the gradient operator, takes the form (see, for
example, Howes & Whitaker (1985))

〈∇ψα〉α = ∇ 〈ψα〉α + 1
V

∫
Aα

nαψα dA, (3.5)

whereas an equivalent expression is applicable for the divergence operator. All these
elements are employed below for the derivation of the upscaled mass balance equations.

A key element in the volume averaging method is the spatial decomposition of
pore-scale quantities into their corresponding intrinsic averages and deviations (Gray 1975)

ψα = 〈ψα〉α + ψ̃α. (3.6)

In the volume averaging context, average quantities are slow-varying fields, and pore-scale
properties, such as the spatial deviations, are fast-varying fields. The determination of the
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A macroscopic model for two-phase flow in porous media

deviation quantities is usually done in a periodic unit cell where they are assumed to be
periodic at the inlet and outlet surfaces. In contrast, in the homogenization technique, the
derivations commence by considering the pore-scale equations in a periodic unit cell and
then performing the corresponding expansions and simplifications in terms of length scale
constraints. Both upscaling methods share many elements in common as detailed by Davit
et al. (2013) and it is thus pertinent to use elements from both approaches. In particular,
the derivation of the upscaled equations for momentum transport can be advantageously
carried out by following the adjoint homogenization technique outlined by Bottaro (2019).
This consists of combining the pore-scale flow problem with the adjoint Green’s functions
velocity pairs by means of a Green’s formula (Haberman 2012). For a scalar field aα ,
two vector fields aα and bα , and a second-order tensor field Bα , arbitrarily defined in the
α-phase (α = β, γ ), and having the appropriate required regularities, aα and Bα being
solenoidal, this formula can be written as (see the proof in Appendix A)∫

Vα

[
aα ·

(
−∇bα + ∇2Bα

)
−
(
−∇aα + ∇2aα

)
· Bα

]
dV

=
∫

Aα

[
aα ·

(
nα ·

(
−Ibα + ∇Bα + ∇BT1

α

))
− nα · (−Iaα + ∇aα + ∇aT

α

) · Bα
]

dA. (3.7)

Here, the superscript T1 denotes the transpose of a third-order tensor that permutes the
two first indices, i.e. (∇BT1

α )ijk = (∇Bα)jik. This approach allows deriving a solution of
the pore-scale problem. Application of the averaging operator to the formal solution of the
pore-scale velocity yields the macroscopic momentum transport equations.

4. Upscaled mass balance equation

The derivation starts by directing the attention to the pore-scale mass balance equation for
each phase given in (2.1a). Application of the superficial averaging operator (see (3.2b))
to this equation, and use of the spatial averaging theorem, yields (α = β, γ )

∇ · 〈vα〉α + 1
V

∫
Aα

nα · vα dA = 0. (4.1a)

Taking into account the no slip boundary condition at Aασ as well as (2.1c), allows
rewriting this last expression as

∇ · 〈vα〉α + 1
V

∫
Aβγ

nα · w dA = 0. (4.1b)

The last term on the left-hand side of this equation can be further developed by making
use of the general transport theorem (3.4) in which ψα = 1, taking into account the fact
that the solid phase is supposed to be immobile, that the averaging domain, V, is fixed and
the definition of the volume fraction of the α-phase is as given in (3.3). This yields

∂εα

∂t
+ ∇ · 〈vα〉α = 0, α = β, γ. (4.2a)

These equations correspond to those originally derived by Whitaker (1986) and represent
the final closed form of the upscaled mass balance equations.
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5. Upscaled momentum balance equations

As mentioned in § 3, it is convenient to begin the derivation of the upscaled momentum
balance equations by writing the pore-scale conservation equations in a periodic unit cell
as the one sketched in figure 1(b) that is representative of the phases distribution in the real
system. In this simplified domain, it is pertinent to spatially decompose the pressure into its
intrinsic average and deviations, so that the governing equations for mass and momentum
balance in a unit cell can be written as (α = β, γ )

∇ · vα = 0, in Vα, (5.1a)

0 = −∇p̃α + μα∇2vα − (∇〈pα〉α − ραg), in Vα. (5.1b)

In addition, the interfacial boundary conditions are expressed as follows:

vβ = vγ , at Aβγ , (5.1c)

nβγ · [−I p̃β + μβ(∇vβ + ∇vT
β)] = nβγ · [−I p̃γ + μγ (∇vγ + ∇vT

γ )]

+ nβγ (〈pβ〉β − 〈pγ 〉γ )
+ 2γHnβγ + ∇sγ, at Aβγ , (5.1d)

vα = 0, at Aασ , α = β, γ. (5.1e)

In the rest of the derivations, the two fluid phases are assumed to be connected. Note that,
to be compliant with periodicity, both interfaces Aβγ and Aασ (α = β, γ ) must also be
periodic. Furthermore, at the scale level of the unit cell, it is reasonable to assume that
the velocity and pressure deviations are periodic at the inlet and outlet surfaces of the unit
cell, which means (α = β, γ ),

ψα(rα) = ψα(rα + li), i = 1, 2, 3; ψ = v, p̃. (5.1f )

Here, rα is a position vector relative to a fixed coordinate system and li are the unit cell
lattice vectors. It is important to stress that the periodicity assumption is convenient to
make the flow problem solution local. Nevertheless, it is natural to expect that the range
of applicability of the developments that follow extends beyond this hypothesis, which is
barely met in practice.

Finally, in order for this problem to be well posed, the following average constraint for
the pressure deviations is imposed (α = β, γ ):

〈p̃α〉α = 0. (5.1g)

This constraint is a direct consequence of the separation of length scales given in (3.1), so
that average quantities can be treated as constants within the unit cell.

From a mathematical point of view, several source terms can be identified in the above
flow problem. Nevertheless, not all of them are independent from each other. For example,
in order to guarantee that the fluid–fluid interface shape is periodic, the macroscopic
pressure gradients in both phases must be equal (see the proof in Appendix B). Also,
in the absence of any macroscopic forcing (pressure gradients and gravity effects) and for
a constant surface tension, it follows that H must be constant. This point is relevant to be
kept in mind in the macroscopic model that is derived below.

In order to derive the formal solution of this problem, the following two adjoint
fundamental problems for the velocity Green’s function pairs (Gα, gα) (α = β, γ ) are
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considered:

∇ · Gα = 0, in Vα, (5.2a)

0 = −∇gα + μα∇2Gα + δ(rα − r0α)I, in Vα, (5.2b)

Gβ = Gγ , at Aβγ , (5.2c)

nβγ ·
[
−Igβ + μβ

(
∇Gβ + ∇GT1

β

)]
= nβγ ·

[
−Igγ + μγ

(
∇Gγ + ∇GT1

γ

)]
, at Aβγ , (5.2d)

Gα = 0, at Aασ , (5.2e)

ψα(rα) = ψα(rα + li), i = 1, 2, 3; ψ = G, g, (5.2f )

gα = 0 at r0
α. (5.2g)

In the above equations, Gα and gα are the Green’s functions that map the influence of
sources located at a given position r0α onto the velocity and pressure deviations located
at rα . Moreover, δ(rα − r0α) represents the Dirac delta function centred at r0α . Although
not explicitly written for the sake of simplicity in notation, the velocity Green’s function
pairs depend on rα and r0α . Moreover, in (5.2) the derivation and integration operations
are taken with respect to rα . The last of equations (5.2) sets a point value (at r0

α) to gα to
have a well-posed problem, as should have been specified in equation (3.12d) in Lasseux,
Valdés-Parada & Bottaro (2021), instead of a zero average. Note that the statement of
this problem requires knowledge of Aβγ . This information can be acquired from the flow
problem solution at the pore scale or from experimental data.

At this point, the following decompositions shall be introduced (α = β, γ ):

Gα = Gαβ + Gαγ , (5.3a)

gα = gαβ + gαγ . (5.3b)

Substituting these expressions into (5.2) and taking into account linearity, the following
two subproblems can be written (α = β, γ ).

Problem I:

∇ · Gαβ = 0, in Vα, (5.4a)

0 = −∇gαβ + μα∇2Gαβ + δK
αβδ(rα − r0α)I, in Vα, (5.4b)

Gββ = Gγβ, at Aβγ , (5.4c)

nβγ · [−Igββ + μβ(∇Gββ + ∇GT1
ββ)]

= nβγ · [−Igγβ + μγ (∇Gγβ + ∇GT1
γβ)], at Aβγ , (5.4d)

Gαβ = 0, at Aασ , (5.4e)

ψαβ(rα) = ψαβ(rα + li), i = 1, 2, 3; ψ = G, g, (5.4f )

gαβ = 0 at r0
α. (5.4g)

944 A43-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.487


D. Lasseux and F.J. Valdés-Parada

Problem II:

∇ · Gαγ = 0, in Vα, (5.5a)

0 = −∇gαγ + μα∇2Gαγ + δK
αγ δ(rα − r0α)I, in Vα, (5.5b)

Gβγ = Gγ γ , at Aβγ , (5.5c)

nβγ · [−Igβγ + μβ(∇Gβγ + ∇GT1
βγ )]

= nβγ · [−Igγ γ + μγ (∇Gγ γ + ∇GT1
γ γ )], at Aβγ , (5.5d)

Gαγ = 0, at Aασ , (5.5e)

ψαγ (rα) = ψαγ (rα + li), i = 1, 2, 3; ψ = G, g, (5.5f )

gαγ = 0 at r0
α (5.5g)

In (5.4b) and (5.5b), δK
ακ denotes the Kronecker delta, so that, in problem I, the only

source term is located in Vβ , whereas, in problem II, the source term is in Vγ .
The two above Green’s function problems may now be related to the flow problem

given in (5.1) by means of Green’s formula expressed in (3.7). Directing for the moment
the attention to the β-phase, this formula can be employed, in a first step, with aα = vβ ,
aα = p̃β/μβ , bα = gββ and Bα = μβGββ . Since all these fields are periodic, and taking
into account the no slip conditions at Aβσ , this leads to the following relationship:

∫
Vβ

[
vβ ·

(
−∇gββ + μβ∇2Gββ

)
−
(
−∇p̃β + μβ∇2vβ

)
· Gββ

]
dV

=
∫

Aβγ

{
vβ ·

[
nβγ ·

(
−Igββ + μβ

(
∇Gββ + ∇GT1

ββ

))]

− nβγ ·
(
−p̃β I + μβ

(
∇vβ + ∇vT

β

))
· Gββ

}
dA. (5.6)

In the above equation, the integration is performed with respect to r0β . Substituting the
corresponding differential equations in the left-hand side of the above equation yields

vβ = − (∇〈pβ〉β − ρβg
) ·
∫

Vβ

GββdV

−
∫

Aβγ

{
vβ ·

[
nβγ ·

(
−Igββ + μβ

(
∇Gββ + ∇GT1

ββ

))]

− nβγ ·
(
−p̃β I + μβ

(
∇vβ + ∇vT

β

))
· Gββ

}
dA. (5.7)

In this last expression, the filtration property of the Dirac delta function was used as
well as the assumption of spatial invariance of volume-averaged quantities within the unit
cell. The superficial average, as defined in (3.2a) (integration with respect to rα), can now
be applied to this equation and the last term on the right-hand side of (5.7) can be further
reformulated after substitution of the interfacial boundary conditions given in (5.1c), (5.1d)
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and (5.4c), (5.4d). This leads to the following expression of 〈vβ〉β :

〈vβ〉β = − (∇〈pβ〉β − ρβg
) · 1

V

∫
Vβ

∫
Vβ

Gββ dVdV

− 1
V

∫
Aβγ

⎧⎪⎨
⎪⎩vγ ·

⎡
⎢⎣nβγ ·

⎛
⎜⎝−I

∫
Vγ

gγβ dV + μγ

⎛
⎜⎝∇

∫
Vγ

Gγβ dV +

⎛
⎜⎝∇

∫
Vγ

Gγβ dV

⎞
⎟⎠

T1⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦

−nβγ ·
(
−p̃γ I + μγ

(
∇vγ + ∇vT

γ

))
·
∫
Vγ

Gγβ dV

⎫⎪⎬
⎪⎭ dA

+ 1
V

∫
Aβγ

⎡
⎢⎣(2γHnβγ + ∇sγ

) ·
∫
Vβ

Gββ dV

⎤
⎥⎦ dA. (5.8)

Note that in this relationship, the average pressures were treated as constants within the
unit cell and the fact that ∫

Aβγ

nβγ · Gββ dA = 0, (5.9)

was taken into account. This results from integration of (5.4a) over Vβ and use of the
divergence theorem, taking into account the corresponding boundary conditions.

In a second step, Green’s formula is used with aα = vγ , aα = p̃γ /μγ , bα = gγβ and
Bα = μγGγβ . Repeating the derivations reported above leads to∫

Aβγ

{
vγ ·

[
nβγ ·

(
−Igγβ + μγ

(
∇Gγβ + ∇GT1

γβ

))]

− nβγ ·
(
−p̃γ I + μγ

(
∇vγ + ∇vT

γ

))
· Gγβ

}
dA = (∇〈pγ 〉γ − ργ g

) ·
∫

Vγ

Gγβ dV.

(5.10)

When the superficial average is applied to this equation and the result is substituted back
into (5.8), the following expression of 〈vβ〉β is obtained:

〈vβ〉β = − 1
V

(∇〈pβ〉β − ρβg
) ·
∫
Vβ

∫
Vβ

Gββ dVdV

− 1
V

(∇〈pγ 〉γ − ργ g
) ·
∫
Vγ

∫
Vγ

Gγβ dVdV

+ 1
V

∫
Aβγ

⎡
⎢⎣(2γHnβγ + ∇sγ

) ·
∫
Vβ

Gββ dV

⎤
⎥⎦ dA. (5.11a)

This result is consistent with the fact that the closure variables, which map the influence of
the source terms onto the deviation quantities, are the integrals of the associated Green’s
function pairs, as anticipated by Wood & Valdés-Parada (2013).
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The overall development carried out to obtain the average form of vβ can be repeated to
derive the expression of the γ -phase macroscopic velocity, yielding

〈vγ 〉γ = − 1
V

(∇〈pγ 〉γ − ργ g
) ·
∫
Vγ

∫
Vγ

Gγ γ dVdV

− 1
V

(∇〈pβ〉β − ρβg
) ·
∫
Vβ

∫
Vβ

Gβγ dVdV

+ 1
V

∫
Aβγ

⎡
⎢⎣(2γHnβγ + ∇sγ

) ·
∫
Vγ

Gγ γ dV

⎤
⎥⎦ dA. (5.11b)

These expressions are obtained on the basis of the initial hypotheses (creeping, steady,
isothermal, immiscible and incompressible flow in the absence of interfacial mass
transport and phase change) together with the existence of a periodic REV and under
the length scales constraint expressed in (3.1). They do not require any other assumption
and they can be rewritten as

〈vβ〉β = −
K∗T
ββ

μβ
· (∇〈pβ〉β − ρβg

)−
K∗T
γβ

μβ
· (∇〈pγ 〉γ − ργ g

)
+ 1
μβV

∫
Aβγ

(
2γHnβγ + ∇sγ

) · Dββ dA, (5.12a)

〈vγ 〉γ = −K∗T
γ γ

μγ
· (∇〈pγ 〉γ − ργ g

)−
K∗T
βγ

μγ
· (∇〈pβ〉β − ρβg

)

+ 1
μγV

∫
Aβγ

(
2γHnβγ + ∇sγ

) · Dγ γ dA. (5.12b)

Here, the following definitions were employed (α, κ = β, γ ):

Dακ = μκ

∫
Vα

Gακ dV, (5.13a)

K∗
ακ = 〈Dακ〉α. (5.13b)

Note that in (5.13a) the integration step is performed over r0α , whereas in (5.13b),
the integration variable is rα . In the above expressions, K∗

αα (α = β, γ ) represents the
dominant permeability tensor in the α-phase, whereas K∗

ακ (α, κ = β, γ, α /= κ) are the
coupling permeability tensors as defined by Lasseux et al. (1996). Moreover, Dακ are
the closure variables associated with the velocities. These variables solve the following
boundary-value problems that result from volume integrating (5.4) and (5.5) (α = β, γ )
with respect to r0α , recalling that the derivation steps are performed over rα .

Problem I:

∇ · Dαβ = 0, in Vα, (5.14a)

0 = −∇dαβ + ∇2Dαβ + δK
αβ I, in Vα, (5.14b)
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Dββ = Dγβ, at Aβγ , (5.14c)

nβγ · μβ[−Idββ + (∇Dββ + ∇DT1
ββ)]

= nβγ · μγ [−Idγβ + (∇Dγβ + ∇DT1
γβ)], at Aβγ , (5.14d)

Dαβ = 0, at Aασ , (5.14e)

ψαβ(rα) = ψαβ(rα + li), i = 1, 2, 3; ψ = D, d, (5.14f )

dαβ = 0 at r0
α. (5.14g)

Problem II:

∇ · Dαγ = 0, in Vα, (5.15a)

0 = −∇dαγ + ∇2Dαγ + δK
αγ I, in Vα, (5.15b)

Dβγ = Dγ γ , at Aβγ , (5.15c)

nβγ · μβ[−Idβγ + (∇Dβγ + ∇DT1
βγ )]

= nβγ · μγ [−Idγ γ + (∇Dγ γ + ∇DT1
γ γ )], at Aβγ , (5.15d)

Dαγ = 0, at Aασ , (5.15e)

ψαγ (rα) = ψαγ (rα + li), i = 1, 2, 3; ψ = D, d, (5.15f )

dαγ = 0 at r0
α. (5.15g)

While writing these problems, the following additional definition was used: (α, κ = β, γ )

dακ = μκ

μα

∫
Vα

gακ dV. (5.16)

Note that an alternative way of obtaining the expressions of the macroscopic velocities
given in (5.12) is to combine closure problems I and II with the flow equations (5.1) using
Green’s formula (3.7).

Closure problems I and II are fully consistent with those obtained using the double-scale
homogenization approach and reported by Auriault & Sanchez-Palencia (1986) (see also
Auriault (1987)), Bourgeat (1997) (chapter 5) and recalled by Picchi & Battiato (2018).
They also coincide with the closure problems provided by Lasseux et al. (1996) using
the volume averaging method. These authors demonstrated that, for the flow process
under consideration, the dominant permeability tensors are symmetric (see also Lasseux
& Valdés-Parada (2017)). In addition, the following reciprocity condition was proved
(Auriault 1987; Lasseux et al. 1996; Lasseux & Valdés-Parada 2017):

μβK∗
βγ = μγK∗T

γβ. (5.17)

When these properties are introduced back into (5.12), the macroscopic momentum
equations take the following final form:

〈vβ〉β = −
K∗
ββ

μβ
· (∇〈pβ〉β − ρβg

)−
K∗
βγ

μγ
· (∇〈pγ 〉γ − ργ g

)

+ 1
μβV

∫
Aβγ

(
2γHnβγ + ∇sγ

) · Dββ dA, (5.18a)
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〈vγ 〉γ = −K∗
γ γ

μγ
· (∇〈pγ 〉γ − ργ g

)−
K∗
γβ

μβ
· (∇〈pβ〉β − ρβg

)

+ 1
μγV

∫
Aβγ

(
2γHnβγ + ∇sγ

) · Dγ γ dA, (5.18b)

and this is the salient result of the development. It must be emphasized that these
macroscopic equations are applicable under the assumption of the existence of a periodic
REV and the length scale constraint (3.1), in particular for an infinite periodic system.
Moreover, this model is fully closed as all the coefficients in the above expressions can
be evaluated from the solution of the two closure problems I and II, which requires the
location of Aβγ that satisfies the pore-scale flow problem.

In the absence of any macroscopic forcing and without interfacial tension gradient,
the two first terms and the last integral interfacial term on the right-hand side of (5.18)
are zero. Nevertheless, the interfacial integral term remains, suggesting that there is still
a macroscopic velocity induced by this term, which would be unphysical under steady
conditions. However, in the absence of any macroscopic force field, and with no surface
tension gradient, H must be constant. Consequently, this remaining integral term is also
zero because Dαα (α = β, γ ) is divergence-free, periodic and zero at Aβσ . Moreover,
despite the fact that periodicity implies equal macroscopic pressure gradients in both
fluid phases (see Appendix B), the applicability of (5.18) is thought to extend beyond
this hypothesis and, for this reason, the two macroscopic pressure gradients shall be kept
distinct in these equations.

In addition to the viscous effects that are accounted for by the (dominant and coupling)
Darcy terms represented by the first two terms on the right-hand side of (5.18), the last area
integral term at Aβγ expresses a compensation of surface tension to momentum transfer,
that is only partly contained in the permeability tensors through their dependence upon
the shape of this interface. This interfacial term is novel as, to the best of our knowledge, it
has not been included in two-phase flow macroscopic models in porous media derived
by upscaling and reported so far in the literature (Auriault & Sanchez-Palencia 1986;
Whitaker 1986; Auriault 1987; Whitaker 1994; Lasseux et al. 1996; Bourgeat 1997; Picchi
& Battiato 2018), despite the fact that, as mentioned above, the closure problems proposed
in these references coincide with problems I and II. The new terms provide an explicit
dependence of the momentum transport equations upon the interfacial area in a closed
manner and are in agreement with previous expectations (Hassanizadeh & Gray 1993;
Hilfer 1998; Hilfer & Besserer 2000; Li et al. 2005; Niessner & Hassanizadeh 2008;
Niessner et al. 2011).

More precisely, the difference in the macroscale momentum equations with respect
to previous models can be explained as follows. In the model developed with the
homogenization approach, a double-scale expansion in terms of ε = �p/L is performed.
It leads to a boundary-value problem at the order ε0 that involves non-local terms (i.e.
with a characteristic length of variation �p), in particular, a capillary source term in the
boundary condition at Aβγ (see (4.14)–(4.18) in Auriault & Sanchez-Palencia (1986),
(13)–(14) and associated boundary conditions in Auriault (1987), (1.26) in Bourgeat (1997)
and appendix B in Picchi & Battiato (2018)). To obtain the closed macroscopic model,
the solution (the closure) that is proposed is made local by not considering this capillary
term as a source term for the solution on the velocity. However, it is included in the
solution for the pressure (see (B.6) and (B.7) in Picchi & Battiato (2018)). In Auriault
& Sanchez-Palencia (1986) (see (5.6) therein), the capillary source term was filtered out
by considering the tangential projection of the boundary condition at the closure level.
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The normal component of this condition is said to be a ‘relationship between perturbations
at a higher order that are not determined in the framework of homogenization’ (see
remark 5.2, end of p. 150 in Auriault & Sanchez-Palencia (1986)). In the context of volume
averaging, the capillary term in the boundary conditions of the closure problems is also
finally dropped (see (2.10) and (2.11) in Lasseux et al. (1996) that exactly coincide with
the above problems I and II). The constraint put forth for such a simplification is

Caα = μαvα

γ
� 1, α = β, γ, (5.19)

where Caα is the capillary number associated with the α-phase and vα the order of
magnitude estimate of vα . In fact, on the basis of this argument, it was shown that the two
boundary terms nβγ (〈pβ〉β − 〈pγ 〉γ )+ 2γHnβγ can be simplified as follows (see details
in Torres (1987) and Whitaker (1994)):

nβγ
(〈pβ〉β − 〈pγ 〉γ )+ 2γHnβγ � 2γ H̃nβγ , (5.20)

where H̃ = H − 〈H〉βγ , 〈H〉βγ = (1/Aβγ )
∫
Aβγ

H dA and where Aβγ is the measure of
Aβγ . However, as cautiously pointed out by Whitaker (1994) (see (4.25) therein and the
associated remark), neglecting this remaining capillary term in the boundary condition
at Aβγ on the basis of the constraint (5.19) is ‘in the nature of a hypothesis’. At this
point, it is worth noticing that H can be replaced by H̃ in the macroscopic momentum
equations (5.18) because 〈H〉βγ can be treated as a constant in the area integral over Aβγ ,
Dβγ is solenoidal, periodic and zero at Aβσ . Taking into account the remark made above
just after (5.8), it follows that the approximation (5.20) with its associated constraint (5.19)
is unnecessary in the present development.

It is now of interest to explore whether the constraint expressed in (5.19) is consistent
with a negligible contribution of the interfacial term resulting from surface tension effects
to the average velocity in the α-phase in (5.18). To this end, an order of magnitude estimate
of this term may be performed, and this leads to (α = β, γ )

1
μαV

∫
Aβγ

(
2γHnβγ + ∇sγ

) · Dαα dA = O
(
γKαα
μαεα�p

aβγ

)
. (5.21)

Here, aβγ denotes the order of magnitude estimate of the fluid–fluid interfacial area per
unit volume of the porous medium, aβγ = O(Aβγ /V), whereas H and ∇s are assumed
to scale as the inverse of the pore-scale characteristic length, 1/�p. In addition, the order
of magnitude estimate for Dαα , which is the same as 〈Dαα〉α = 〈Dαα〉α/εα , was extracted
from the definition of Kαα given in (5.13b), yielding Dαα = O(Kαα/εα), Kαα denoting
the order of magnitude estimate of Kαα . Noticing that 〈vα〉α = εα〈vα〉α = εαO(vα),
where again vα = O(vα), it follows that the contribution of the interfacial term to the
α-phase macroscopic momentum transfer can be reasonably neglected when the following
constraint is satisfied:

ε2
α�p

aβγKαα
Caα � 1. (5.22)

Since the prefactor of Caα on the left-hand side of the last expression is not expected
to be systematically much larger than unity, this constraint is obviously quite different
from (5.19) that was assumed by Whitaker (1994) and Lasseux et al. (1996) to reach a
macroscopic model for momentum that coincides with (5.18) in which the area integral
terms due to capillary effects are negligible.
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0

σ-phase

β-phase

γ-phase

x�

y

�/2

–�/2

nβγ

βγ

βσ

Figure 2. Configuration of the two-dimensional structure considered for the numerical simulations. It consists
of a square pattern of parallel cylinders of circular cross-section (on the left) whose corresponding periodic
unit cell is represented on the right. The wetting β-phase is flowing as a core layer attached to the cylinders and
the non-wetting γ -phase is flowing as a shell layer.

In § 6, two-phase flow numerical results are reported with the aim of validating the
macroscopic model derived in this work and illustrating, in a particular example, the
importance of the interfacial term in the upscaled momentum equations with respect to
the above constraint.

6. Numerical simulations

This section is dedicated to a validation of the macroscopic model that is performed by
first carrying out DNS of the pore-scale flow problem (5.1) using a boundary integral
element method (BIEM). The solution provides the location and shape of Aβγ that
satisfies the pore-scale equilibrium, as well as the velocity (and pressure deviation) fields
in each phase from which the average velocities can be computed. Second, the two closure
problems I and II are solved with the same BIEM procedure, allowing the computation of
the required permeability coefficients and the interfacial integral terms representing the
contribution of capillary effects to momentum transfer. The average velocities predicted
from the upscaled model (UM) are then computed from (5.18) and further compared with
the numerical averaged fields obtained from DNS. This is carried out in a two-dimensional
model configuration in the absence of surface tension gradient and ignoring gravity, i.e.
∇sγ = 0 and g = 0.

6.1. Configuration and dimensionless forms
The two-dimensional configuration under consideration is made of a periodic square
pattern of parallel solid cylinders of circular cross-section, a unit cell of which is depicted
in figure 2. The β-phase is supposed to be the wetting phase, flowing under the form of a
connected periodic layer attached to the cylinders at the core of the unit cell, whereas the
non-wetting γ -phase flows in shell periodic layers (see figure 2). A macroscopic pressure
gradient is only applied in the x-direction in each phase (∂〈pα〉α/∂y = 0, α = β, γ ). As
shown in Appendix B, periodicity requires adopting a common value for the macroscopic
pressure gradients in both phases, namely

∂〈pα〉α
∂x

= −h, α = β, γ. (6.1)

For convenience, the pore-scale problem, the two closure problems and the macroscopic
momentum equations are made dimensionless employing the following scalings
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(dimensionless quantities are denoted with the superscript ∗; α, κ = β, γ ):

r∗ = r
�
, v∗

α = μγ

h�2 vα, p∗
α = μγ

μα

1
h�

pα,

d∗
ακ = dακ

�
, D∗

ακ = Dακ
�2 , K∗

ακ = Kακ

�2 .

⎫⎪⎪⎬
⎪⎪⎭ (6.2)

Here, � represents the length of the unit cell (see figure 2). In addition, the symbol ∇ is kept
as such and must be understood as a dimensionless operator when applied to dimensionless
quantities.

As a result, the two-phase flow problem only depends on the following parameters: the
porosity, ε, the wetting β-phase saturation, Sβ , the capillary number, Ca, and the viscosity
ratio, μ∗, respectively, defined as

ε = Vβ + Vγ
V

, (6.3a)

Sβ = εβ

ε
= Vβ

Vβ + Vγ
, (6.3b)

Ca = h�2

γ
, (6.3c)

μ∗ = μβ

μγ
. (6.3d)

Since ∂〈p∗
α〉α/∂y∗ = 0, (α = β, γ ), there is no macroscopic flow in the y-direction and

the interest is focused on the dimensionless x-component of the macroscopic velocities.
Because of the scaling choice, ∂〈p∗

α〉α/∂x∗ = −(μγ /μα), and this yields

〈
v∗
βx

〉
β

= k∗krββ

μ∗ + k∗krβγ + α∗
βx, (6.4a)

〈
v∗
γ x

〉
γ

= k∗krγ γ + k∗krγβ

μ∗ + α∗
γ x. (6.4b)

Here, α∗
κx, (κ = β, γ ) stand for the contribution of capillary effects to momentum transfer

and are given by

α∗
βx = 1

μ∗CaV∗

∫
Aβγ

2H∗niD∗
ββix dA∗, i = x, y, (6.5a)

α∗
γ x = 1

CaV∗

∫
Aβγ

2H∗niD∗
γ γ ix dA∗, i = x, y, (6.5b)

where the Einstein notation is implied on index i, and ni is the i-component of nβγ , i = x, y.
In (6.4), k∗ denotes the dimensionless intrinsic permeability of the porous structure that
is isotropic (K∗ = k∗I), whereas krακ , α, κ = β, γ represent the xx components of the
dominant (α = κ) and coupling (α /= κ) relative permeability tensors, defined by

krακ = 1
k∗
〈
D∗
ακxx

〉
α
, α, κ = β, γ. (6.6)
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μ∗ = 0.1

μ∗ = 1

μ∗ = 10

β

γ

β

γ

β

γ

β

γ

β

γ

β

γ

(a)

(d )

(b)

(e)

(c)

( f )

Figure 3. Interface configurations for (a–c) Sβ � 0.4 (see actual values in table 1) and (d– f ) Sβ = 0.7 ±
0.3 % with (a,d) Ca = 0.1; (b,e) Ca = 1; (c, f ) Ca = 10. For symmetry reasons, only the top half of the unit
cell is represented.

6.2. Results and discussion
The DNS and closure problems solutions presented below were carried out using a BIEM.
This method is particularly well adapted for an accurate determination of the position and
shape of Aβγ that satisfy the pore-scale flow equations. The implementation of the method
and the algorithm are detailed in Appendix C. Results are presented for ε = 0.8. For this
porosity, the computed value of k∗ is k∗ � 1.9407 × 10−2. This result was obtained using a
one-phase version of the boundary element code with a boundary element size of 3.603 ×
10−4. This dimensionless permeability value differs by less than 1.44 × 10−3% when the
element size is 1.862 × 10−3, taking the former value as the reference.

Before focusing on the comparison between DNS results and the predictions from the
UM, it is of interest to report on the flow characteristics at the pore scale. Examples
of steady shapes and positions of Aβγ resulting from DNS are reported in figure 3.
They were obtained for two values of Sβ , i.e. Sβ = 0.4 (figure 3a–c, see exact
corresponding values of Sβ in table 1) and Sβ = 0.7 ± 3 × 10−3 (figure 3d– f ),
considering three values of μ∗, namely, μ∗ = 0.1, 1 and 10, combined with three values of
Ca, i.e. Ca = 0.1 (figure 3a,d), Ca = 1 (figure 3b,e) and Ca = 10 (figure 3c, f ). This figure
shows that, for the configuration under consideration, the interface shape sensitivity to the
viscosity ratio depends on Ca. At small values of Ca (Ca ≤ 1), the steady interface shape
does not significantly depend on μ∗ as it barely changes when this parameter is varied by
two orders of magnitude (see figure 3a,d). Nevertheless, for a given value of Ca, velocities
are very different when μ∗ is changed, as indicated by the average values reported in
table 1. The interface shape sensitivity to the viscosity ratio increases while increasing
Ca, in particular when μ∗ > 1 (cf. figure 3c, f ). This is to be expected because in this case
the influence of the macroscopic forcing is greater than surface tension. On the contrary,
when Ca is small compared with unity, the interface remains almost flat (see figure 3a,d)
since in this case surface tension is larger than the macroscopic pressure gradient thus
leading to a fluid–fluid interfacial area that reduces to its minimum. In addition, for larger
capillary numbers, the local curvature also decreases in magnitude with μ∗, in particular
when μ∗ is smaller than unity (see figure 3c, f ).

The above last two features are also highlighted in figures 4 and 5, representing the
streamlines superimposed to the dimensionless velocity magnitude colourmaps in the
situation of steady flow. Results represented in figures 4 and 5 were obtained taking
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μ∗ 0.1 0.1 0.1 1 1 1 10 10 10

Ca 0.1 1 10 0.1 1 10 0.1 1 10
Sβ 0.4000 0.4004 0.4007 0.4000 0.4000 0.4001 0.3997 0.3998 0.4001

〈v∗
βx〉βDNS(10−3) 0.603 3.642 9.020 0.049 0.356 2.287 0.004 0.034 0.273

Errβ (‰) 0.40 0.01 0.00 0.11 0.04 0.05 0.38 0.05 0.00
wβ (%) 1229 150.7 1.61 4778 563.8 9.46 9342 953 15.14
Ca∗

β 3 × 10−3 0.2 4.0 8 × 10−4 0.06 3.4 4 × 10−4 0.03 2.9

〈v∗
γ x〉γDNS(10−2) 3.9844 5.7776 6.9525 1.3109 1.4027 1.6779 0.9665 0.9395 0.8054

Errγ (‰) 0.02 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00
wγ (%) 41.02 15.24 0.17 29.73 21.49 0.75 6.51 4.96 0.27
Ca∗

γ 0.02 0.2 2.6 0.02 0.2 2.5 0.02 0.2 2.4

Table 1. Comparison of the average velocity results obtained from DNS and predicted from the UM. Here
Errκ (‰) is computed as Errκ = 103(|〈v∗

κx〉κDNS − 〈v∗
κx〉κUM |/〈v∗

κx〉κDNS), whereas wκ (%), defined in (6.7),
evaluates the relative contribution of the capillary term to the corresponding average velocity. Here Ca∗

α ,
defined in (6.8), is an indicator of the importance of the capillary term in 〈v∗

αx〉α . In all cases, ε = 0.8.
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Figure 4. Unit-cell fields of the dimensionless velocity magnitude and corresponding streamlines (in white)
obtained from DNS with Ca = 0.1; (a–c) μ∗ = 0.1; (d– f ) μ∗ = 10; (a,d) Sβ = 0.4: (b,e) Sβ = 0.5; (c, f )
Sβ = 0.7. Here Aβγ and Aβσ are shown by black lines; ε = 0.8.

Ca = 0.1 and Ca = 10, respectively, considering μ∗ = 0.1 (figures 4a–c and 5a–c) and
μ∗ = 10 (figures 4d– f and 5d– f ) whereas Sβ = 0.4 (figures 4a,d and 5a,d), Sβ = 0.5
(figures 4b,e and 5b,e) and Sβ = 0.7 (figures 4c, f and 5c, f ).

As shown in figure 4 (where Ca = 0.1) the fluid–fluid interface remains quite flat
whatever the values of the viscosity ratio and β-phase saturation, as expected from the
previous observations. For this value of Ca and Sβ � 0.5, the wetting phase remains
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Figure 5. Unit-cell fields of the dimensionless velocity magnitude and corresponding streamlines (in white)
obtained from DNS with Ca = 10; (a–c) μ∗ = 0.1; (d– f ) μ∗ = 10; (a,d) Sβ = 0.4; (b,e) Sβ = 0.5; (c, f ) Sβ =
0.7. Here Aβγ and Aβσ are shown by black lines; ε = 0.8.

almost entirely trapped ahead and behind the cylinder, with a wide region of this phase
occupied by recirculating zones (cf. figure 4a,b,d,e). As the wetting-phase saturation
increases, a thicker film-like zone is present between the cylinder apex and Aβγ ; this
makes the area occupied by vortices in this phase decrease (see figure 4c) with an even
more pronounced effect when μ∗ increases (cf. figure 4 f ). As expected, the velocity
magnitude in both phases decreases when μ∗ increases as a result of increasing viscous
drag effects as reported in the colourbars of this figure and also in table 1.

When Ca = 10 (figure 5), similar observations can be made about the flow patterns.
However, for all the values of μ∗ and Sβ , the fluid–fluid interface curvature is much
more pronounced due to the dominance of viscous effects over capillarity. This effect
is amplified when Sβ decreases due the influence of the solid obstacle. When μ∗ = 10, no
recirculation zone is observed within the wetting phase. This is attributed to the fact that,
as the wetting phase viscosity increases, viscous dissipation is more capable of dampening
the eddies in the recirculation zones. For the same reason, when viscous forces are smaller
than surface tension, eddies are observed in all the cases reported in figure 4.

As expected, in all the situations depicted in figures 4 and 5, Aβγ coincides with
a streamline, in agreement with the fact that the normal component of the interfacial
velocity, w∗ · nβγ , is zero at steady state. It should also be noted that, whatever the values
of Ca,μ∗ and Sβ for which results are reported in these two figures, the velocity magnitude
is always larger in the non-wetting γ -phase than in the wetting β-phase (see also results on
the average velocities in table 1). This is due to the viscous drag contrast in the two phases,
combined, in some circumstances, to a lubrication effect that will be further discussed in
the following. In all cases, no eddies are generated in the non-wetting γ -phase.

Attention may now be directed to the comparison between the macroscopic velocities
obtained by averaging the DNS results, 〈v∗

αx〉αDNS, on the one hand, and the
macroscopic velocities, 〈v∗

αx〉αUM (α = β, γ ), predicted from the UM, on the other hand.
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This comparison is illustrated with results obtained for Sβ � 0.4, Ca = 0.1, 1 and 10,
together with μ∗ = 0.1, 1 and 10, and reported in table 1. More precisely, the UM
validity can be evaluated by the relative error (in ‰) that is computed as Errα =
103(|〈v∗

αx〉αDNS − 〈v∗
αx〉αUM|/〈v∗

αx〉αDNS) (α = β, γ ). As can be observed from the values
reported in table 1, the predictions from the UM are in excellent agreement with the DNS
results, the relative error remaining less than ∼0.4‰ for both phases in all cases. This
validates the UM and confirms its pertinence. In addition, the relative contribution of the
capillary terms in (6.4) is estimated by the ratio wκ (%), which is defined as

wκ = 102
∣∣∣∣ α∗

κx

〈v∗
κx〉κUM

∣∣∣∣ , κ = β, γ, (6.7)

whose values are also reported in table 1. It can be clearly seen that the contribution of
the interfacial term has an increasing impact when Ca decreases since this translates into
an increment of surface tension over the macroscopic forcing. For the value of Sβ under
consideration, this term even becomes strongly dominant in the β-phase for Ca ≤ 1 and
the effect is more pronounced when μ∗ increases. It is of less importance in the γ -phase
but still remains very significant in this range of Ca when μ∗ ≤ 1.

At this point, it is of interest to investigate whether the constraint expressed in (5.22)
is pertinent to predict a negligible contribution of the interfacial capillary term to the
macroscopic velocity in the corresponding phase. To do so, an alternative form of this
constraint may be expressed in terms of Ca as

μαCaεα�∗p〈v∗
αx〉α

μγ a∗
βγK∗

αα

= Ca∗
α � 1, α = β, γ. (6.8)

To arrive at this expression, (5.22) was written with dimensionless quantities and the
fact that vα = O(〈vα〉α/εα) was employed. In the configuration under study, it seems
reasonable to consider �∗p � 1. The resulting values of Ca∗

α , α = β, γ , are reported in
table 1. When Ca∗

α > 1, wα remains quite small, indicating a weak contribution of the
capillary term to 〈v∗

αx〉α , whereas the opposite holds when Ca∗
α < 1. It should be noted

that this is correlated to the values of Ca. These results confirm that the constraint (6.8) (or
(5.22)) is a reasonable indicator of the importance of the interfacial term in the prediction
of the average velocity.

To be more exhaustive, computations were carried out for Ca = 0.1 and 10 in
combination with μ∗ = 0.1 and 10 over an extended range of the wetting-phase saturation.
Results on the dimensionless x-component of the interfacial capillary term contributing to
momentum, α∗

κx (κ = β, γ ), are presented in figure 6 versus Sβ for Ca = 0.1 (figure 6a),
Ca = 10 (figure 6b) and the two values of μ∗. In all cases, α∗

κx < 0, indicating that 〈v∗
κx〉κ

is overestimated if this term is omitted. Physically, this means that curvature fluctuations
induce an additional drag that is not accounted for by the purely viscous drag terms. In
addition, for a given saturation, α∗

κx strongly increases in magnitude when Ca decreases
as mentioned above, and this effect amplifies while decreasing μ∗. In the configuration
under study, the dependence of these interfacial terms on Sβ is complex and changes with
both Ca and μ∗. For Ca = 0.1, α∗

βx exhibits a maximum in magnitude at an intermediate
value of Sβ , whereas α∗

γ x is monotonically increasing in magnitude while decreasing
the saturation. For this value of Ca, α∗

κx (κ = β, γ ), increases in magnitude by a factor
∼20 when μ∗ decreases by two orders of magnitude for a given saturation. For Ca = 10,
|α∗
βx| > |α∗

γ x| over the entire range of saturation, whatever μ∗. Moreover, α∗
κx (κ = β, γ ),

presents a minimum for an intermediate value of Sβ , except α∗
βx for μ∗ = 0.1 which

monotonically increases in magnitude when Sβ decreases.
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Figure 6. Dimensionless x-component of the interfacial capillary term (α∗
κx, κ = β, γ ) versus the wetting (β)

phase saturation: ε = 0.8; (a) Ca = 0.1; (b) Ca = 10.

In figure 7, wκ (κ = β, γ ) are represented versus Sβ for Ca = 0.1 (figure 7a), Ca = 10
(figure 7b) and the two values of μ∗. Results in these figures confirm that the importance
of the interfacial terms increases as Ca decreases. These terms even become strongly
dominant in the β-phase for Sβ � 0.5 (μ∗ = 0.1) and Sβ � 0.65 (μ∗ = 10). Whatever
Ca, wβ increases with μ∗ at a given saturation. In all cases, the interfacial term contributes
more to the average velocity in the wetting phase than in the non-wetting phase (wβ > wγ )
and this contrast weakens when Sβ increases. In addition, wβ decreases with Sβ in all
cases. This also holds for wγ for the smallest values of Ca and μ∗ (0.1) whereas, for
Ca = 10, wγ presents a bell shape. For Ca = 0.1 andμ∗ = 10, wγ remains almost constant
(∼ 10 %).

To complete the analysis, it is of interest to focus on the dominant and coupling relative
permeability curves, i.e. krαα and krακ (α, κ = β, γ , α /= κ), respectively, versus Sβ . They
are represented for the two values of Ca, for μ∗ = 0.1 in figure 8 and for μ∗ = 10 in
figure 9. In all cases, the dominant relative permeability of the wetting phase, krββ , takes
the classical shape of an increasing function of Sβ . Its dependence on the capillary number,
that varies by two orders of magnitude, is extremely weak regardless the value of μ∗.
This dependence is more pronounced on krγ γ when μ∗ = 10. In that case, the dominant
relative permeability in the γ -phase also has a classical decreasing shape versus Sβ . When
the viscosity ratio is smaller than unity, krγ γ is not monotonically decreasing when Sβ
increases, but adopts a bell shape with a maximum value larger than unity at Sβ � 0.5 (see
figure 8a). This is not a surprising behaviour, however, and this kind of result has already
been reported with an analytical solution in a somewhat simpler configuration of a pair of
parallel plates and a cylindrical tube of circular cross-section in which the wetting phase
flows under the form of a film at the walls while the non-wetting phase flows in the core of
the channel (Bacri, Chaouche & Salin 1990) (see also § 4.3 in Picchi & Battiato (2018)).
The physical origin of this behaviour can be explained as follows. When μ∗ < 1, viscous
drag in the wetting phase is weak and, due to continuity of the tangential stress at Aβγ ,
it contributes to enhance the flow of the non-wetting more viscous phase as an ensemble
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Figure 7. Relative contribution, wκ = |α∗
κx/〈v∗

κx〉κUM |, κ = β, γ , (%), of the interfacial capillary term to the
velocity in the x-direction in each phase versus the wetting (β) phase saturation: ε = 0.8; (a) Ca = 0.1;
(b) Ca = 10.

motion that results from a lubrication-like effect. Such effects were discussed by Berg et al.
(2008) to explain relative permeabilities larger than unity in the commonly used approach
of the empirical generalized Darcy’s law. In all cases, the dominant relative permeabilities
are zero at the end point saturations, i.e. when Sβ → 0 for krββ and when Sβ → 1 for
krγ γ . Regarding the coupling relative permeabilities, represented in figures 8(b) and 9(b)
for μ∗ = 0.1 and μ∗ = 10, respectively, it can be noticed that their values are in perfect
agreement with the reciprocity relationship given in (5.17) for all the values of μ∗ and Ca,
confirming the validity of the numerical results. When μ∗ = 0.1, these coefficients do not
significantly depend on Ca whereas, for a larger value (i.e. for μ∗ = 10), viscous coupling
effects are weakened by a capillary number increase, i.e. a decrease of the capillary effects
at the fluid–fluid interface (see figure 9b). In all cases, krακ tends to zero as Sβ → 0. The
same is not true when Sβ → 1 due to the fact that, in that limit, the non-wetting phase
layer thickness tends to zero so that the two symmetric parts of Aβγ collapse on each
other towards a flat interface, leading to a degenerated situation from the viscous coupling
point of view.

7. Conclusions

In this work, a new upscaled model was derived to study isothermal, steady,
Newtonian incompressible and creeping two-phase flow in homogeneous porous media
using a simplified version of the volume averaging method. The model consists of
effective-medium equations for mass and momentum balance. The mass equations are
fully consistent with previous derivations by Whitaker (1986) and Auriault (1987). For
momentum transport, the upscaled model contains the well known Darcy-like and phase
coupling terms present in the models reported so far in the literature (Auriault &
Sanchez-Palencia 1986; Whitaker 1986; Auriault 1987; Whitaker 1994; Lasseux et al.
1996; Bourgeat 1997; Picchi & Battiato 2018). However, it includes an additional
compensation term that accounts for surface tension effects to momentum transfer.
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Figure 8. (a) Dominant (krαα , α = β, γ ) and (b) coupling (krακ , α, κ = β, γ , α /= κ) relative permeabilities
versus the wetting (β) phase saturation: μ∗ = 0.1; ε = 0.8.
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Figure 9. (a) Dominant (krαα , α = β, γ ) and (b) coupling (krακ , α, κ = β, γ , α /= κ) relative permeabilities
versus the wetting (β) phase saturation: μ∗ = 10; ε = 0.8.

To the best of our knowledge, this term has never been identified and formulated in
the existing literature, although its importance was qualitatively anticipated by Li et al.
(2005). In the Darcy-like and phase coupling terms, the contribution from interfacial
effects is incompletely contained in the permeability tensors through their dependence
upon the shape of the fluid–fluid interface. Along with the starting assumptions involved
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A macroscopic model for two-phase flow in porous media

in the governing equations at the pore scale (i.e. steady, incompressible and Newtonian
flow in the creeping regime without considering triple-phase contact, neither mass
exchange between phases nor phase change), the model derivation relies on the following
assumptions: the existence of a REV (which requires separation of length scales between
the pore scale and the macroscale) and the pertinence of a periodic representation
of the system geometry and interfaces. The macroscopic velocities were obtained
from a combination of the microscopic mass and momentum transport equations and
associated velocity Green’s function pairs adjoint problems through a Green’s formula.
The associated closure problems result from integration of the adjoint Green’s functions
problems over a periodic unit cell. The permeability tensors and the new compensation
term can be computed from the solution of these two closure problems that are identical
to those reported so far for the existing macroscopic momentum equations. Despite the
locality assumption, the resulting model is expected to operate even in non-periodic
systems, which are more commonly encountered in practice.

The model validation was carried out by comparisons with direct pore-scale numerical
simulations. This was performed over an extended range of the parameters characterizing
the system made of a simple two-dimensional porous medium model structure and a phase
distribution compatible with Stokes equations, finding excellent agreement. The results
show that the compensation terms are required by the model whenever surface tension
effects overpass the macroscopic forcing, i.e. for Ca ≤ 1. This is consistent with an order
of magnitude analysis performed on the macroscopic equations, shedding light on the
approximation made in the existing macroscopic model. The interfacial terms present in
the macroscopic momentum equations exhibit complex dependence on the parameters
characteristic of the system. For the configuration under consideration, the contribution
of the interfacial term increases with the wetting to non-wetting phase viscosity ratio and
is always larger in the wetting phase where it decreases with the corresponding saturation.
In addition, the main and coupling permeability coefficients exhibited functionalities with
the saturation, capillary number and viscosity ratio that are consistent with the literature.

The validation reported here should be regarded as a first step on the subject as it
does not replace the need for comparisons in more topologically complex configurations
and with experimental data. As a matter of fact, with the aid of current imaging
techniques, it does not seem unrealistic to locate interface positions during a steady-state
flow process as reported by Gao et al. (2017) that would represent a key input in the
closure problems solutions. Finally, the current analysis can be extended to study other
multiphase-flow situations that may include inertia, unsteady flow, three-phase contact as
well as more complex pore-scale geometries in the periodic unit cell. In addition, some
special attention must be dedicated to the derivation of the macroscopic capillary pressure
(Starnoni & Pokrajac 2020). These, and other situations, will be addressed in future
works.
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Appendix A

This appendix provides the proof of Green’s formula given in (3.7). In the remainder, the
subscript α denotes both the β- and the γ -phase.
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The starting point is the Green’s formula reported in appendix A in Lasseux,
Valdés-Parada & Bottaro (2021), i.e.

∫
Vα

[
aα ·

(
∇ ·

(
∇Bα + ∇BT1

α

))
− (∇ · (∇aα + ∇aT

α

)) · Bα
]

dV

=
∫

Aα

nα ·
[
aα ·

(
∇Bα + ∇BT1

α

)
− (∇aα + ∇aT

α

) · Bα
]

dA. (A1)

Here, aα and Bα are arbitrary regularly behaved vector and second-order tensor fields.
A vector field bα and a scalar field aα , arbitrarily defined in Vα and having the required
regularities, may now be considered to write the following relationship:

∫
Vα

[aα · (−∇bα)− (−∇aα) · Bα] dV

=
∫

Aα

[aα · (nα · (−Ibα))− nα · (−Iaα) · Bα] dA

+
∫

Vα

[∇ · aαbα − aα∇ · Bα] dV. (A2)

To arrive at this expression, the following vector and tensor identities were employed:

∇ · (aαbα) = ∇ · aαbα + aα · ∇bα, (A3a)

∇ · (aαBα) = ∇aα · Bα + aα∇ · Bα, (A3b)

nα · (aαbα) = aα · (nα · (Ibα)) , (A3c)

nα · (aαBα) = nα · (Iaα) · Bα, (A3d)

together with the divergence theorem.
Adding (A1) and (A2) leads to

∫
Vα

[
aα ·

(
−∇bα + ∇ ·

(
∇Bα + ∇BT1

α

))
− (−∇aα + ∇ · (∇aα + ∇aT

α

)) · Bα
]

dV

=
∫

Aα

[
aα ·

(
nα ·

(
−Ibα + ∇Bα + ∇BT1

α

))
− nα · (−Iaα + ∇aα + ∇aT

α

) · Bα
]

dA

+
∫

Vα

[∇ · aαbα − aα∇ · Bα] dV. (A4)

Here, the following identity was used:

nα ·
[
aα ·

(
∇Bα + ∇BT1

α

)]
= aα ·

[
nα ·

(
∇Bα + ∇BT1

α

)]
. (A5)
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γ-phase

σ-phase

β-phase

nβγ

βγ

βσ

�

NM

x

Figure 10. Schematic representation of a section of a periodic unit cell for two-phase flow in a porous
material showing the β- and γ -phase distribution.

When both aα and Bα are divergence-free fields, noticing that ∇ · (∇aT
α) = ∇(∇ · aα)

and ∇ · (∇BT1
α ) = ∇(∇ · Bα), (A4) simplifies to∫

Vα

[
aα ·

(
−∇bα + ∇2Bα

)
−
(
−∇aα + ∇2aα

)
· Bα

]
dV

=
∫

Aα

[
aα ·

(
nα ·

(
−Ibα + ∇Bα + ∇BT1

α

))
− nα · (−Iaα + ∇aα + ∇aT

α

) · Bα
]

dA. (A6)

This equation corresponds to (3.7), thus concluding the proof.

Appendix B

In this appendix, it is shown that, if one accepts that the system, including the porous
structure and the phases distribution, can be considered as periodic, as illustrated with the
schematic example depicted in figure 10, then the macroscopic pressure gradients in the
two phases must be equal, i.e. ∇〈pβ〉β = ∇〈pγ 〉γ .

The proof starts by considering the boundary condition at Aβγ expressing the balance
of the stress jump by the capillary and surface tension gradient effects, given in (5.1d), that
is given by

nβγ
(〈pβ〉β − 〈pγ 〉γ )

= nβγ ·
[(

−I p̃β + μβ(∇vβ + ∇vT
β)
)

−
(
−I p̃γ + μγ (∇vγ + ∇vT

γ )
)]

− 2γHnβγ − ∇sγ, at Aβγ . (B1)

This condition can be written at points M and N (see figure 10), located at Aβγ at an
entrance and exit of the unit cell. Forming the difference between the two relationships,
taking into account periodicity of nβγ , H, γ , p̃α and ∇vα (α = β, γ ), and dividing the
result by the cell size, �, in the MN direction, yields

〈pβ〉β |N − 〈pβ〉β |M
�

= 〈pγ 〉γ |N − 〈pγ 〉γ |M
�

. (B2)
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σ-phase

nβγ

x

y

S0

S1β

S3γ

S3β

S2
βγ

S1γ

βσ

γ -phase

β-phase

Figure 11. Computational domain corresponding to half the unit cell.

Keeping in mind that ∇〈pα〉α (α = β, γ ) is treated as a constant within the unit cell, that
is

∇〈pα〉α · ex = cα, (B3)

where ex denotes the unit vector of the coordinate system in the x-direction and cα is a
constant, and integrating this expression between points M and N, leads to

〈pα〉α|N − 〈pα〉α|M
�

= cα. (B4)

Therefore, on the basis of (B2), it follows that

∇〈pβ〉β · ex = ∇〈pγ 〉γ · ex. (B5)

This result can be generalized to any direction of the unit-cell lattice, leading to the
conclusion

∇〈pβ〉β = ∇〈pγ 〉γ . (B6)

Appendix C

In this appendix, the flow and closure problems I and II are rewritten in a dimensionless
form (that makes use of (6.2)) compliant with the boundary integral formulation that is
subsequently provided. In addition, implementation details of the discretization scheme
and the algorithm are reported. Throughout this appendix, the subscripts α and κ

indifferently denote the β and γ -phases, whereas ei represents the unit vector of the
coordinate system in the i-direction, i = x, y. In addition, nα is again the unit normal vector
at Aα pointing out of Vα .

C.1. Flow and closure problems reformulation
Due to symmetry with respect to the x-axis, the computational domain to be considered is
that represented in figure 11, corresponding to half the unit cell depicted in figure 2.

To begin with, the pore-scale flow problem is rewritten using the variables p∗
α and v∗

α
and defining the boundary conditions in terms of v∗

α and the dimensionless stress vector
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σ ∗
α given by

σ ∗
α = nα · (−p∗

α I + ∇v∗
α + ∇v∗T

α

)
, at Aα. (C1)

Considering no surface tension gradient and no gravity effects, this problem takes the
following form Flow problem (α = β, γ )

∇ · v∗
α = 0, in Vα, (C2a)

0 = −∇p∗
α + ∇2v∗

α, in Vα, (C2b)

v∗
β = v∗

γ (= w∗), at Aβγ , (C2c)

σ ∗
γ = −μ∗σ ∗

β + 2
Ca

H∗nβγ , at Aβγ , (C2d)

v∗
β = 0, at Aβσ , (C2e)

v∗
α|S1α = v∗

α|S3α , (C2f )

σ ∗
β |S1β = −σ ∗

β |S3β + 1
μ∗ ex, (C2g)

σ ∗
γ |S1γ = −σ ∗

γ |S3γ + ex, (C2h)

v∗
βy = 0, at S0, (C2i)

σ ∗
β · ex = 0, at S0, (C2j)

v∗
γ y = 0, at S2, (C2k)

σ ∗
γ · ex = 0, at S2. (C2l)

The problem is well-posed with the addition of a pressure point constraint. Similarly,
the two closure problems I and II are formulated so that the momentum-like equations
are homogeneous, the sources being reflected at the boundaries. For this purpose, the
following changes of variables are adopted:

P ∗
ακ = d∗

ακx − δK
ακx∗, (C3a)

w∗
ακ = D∗

αβxxex + D∗
αβyxey, (C3b)

where δK
ακ is again the Kronecker delta. In addition, a stress-like dimensionless vector is

defined as

s∗ακ = nα · (−P ∗
ακ I + ∇w∗

ακ + ∇w∗T
ακ

)
, at Aα. (C3c)

With these definitions, the two closure problems can be rewritten as
Closure problem I (α = β, γ )

∇ · w∗
αβ = 0, in Vα, (C4a)

0 = −∇P ∗
αβ + ∇2w∗

αβ, in Vα, (C4b)

w∗
ββ = w∗

γβ, at Aβγ , (C4c)
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s∗γβ = μ∗
(
−s∗ββ + x∗nβγ

)
, at Aβγ , (C4d)

w∗
ββ = 0, at Aβσ , (C4e)

w∗
αβ |S1α = w∗

αβ |S3α , (C4f )

s∗ββ |S1β = −s∗ββ |S3β + ex, (C4g)

s∗γβ |S1γ = −s∗γβ |S3γ , (C4h)

w∗
ββy = 0, at S0, (C4i)

s∗ββ · ex = 0, at S0, (C4j)

w∗
γβy = 0, at S2, (C4k)

s∗γβ · ex = 0, at S2. (C4l)

Closure problem II (α = β, γ )

∇ · w∗
αγ = 0, in Vα, (C5a)

0 = −∇P ∗
αγ + ∇2w∗

αγ , in Vα, (C5b)

w∗
βγ = w∗

γ γ , at Aβγ , (C5c)

s∗γ γ = −μ∗s∗βγ − x∗nβγ , at Aβγ , (C5d)

w∗
βγ = 0, at Aβσ , (C5e)

w∗
αγ |S1α = w∗

αγ |S3α , (C5f )

s∗βγ |S1β = −s∗βγ |S3β , (C5g)

s∗γ γ |S1γ = −s∗γ γ |S3γ + ex, (C5h)

w∗
βγ y = 0, at S0, (C5i)

s∗βγ · ex = 0, at S0, (C5j)

w∗
γ γ y = 0, at S2, (C5k)

s∗γ γ · ex = 0, at S2. (C5l)

As in the flow problem, the above two closure problems become well-posed by the addition
of a constraint for P ∗

ακ .
The flow and closure problems, I and II, are now in a similar form allowing the use of

the same integral formulation and numerical code that are detailed below.

C.2. Numerical method and algorithm
In order to carry out the numerical solution of the above problems, it is convenient
to combine them with the associated adjoint (fundamental) problem for the free-space
dimensionless velocity Green’s function pair, (U, q). It is given by

∇ · U = 0, (C6a)

0 = −∇q + ∇2U + δ(r∗ − r∗
0)I. (C6b)
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In the above equation, δ is the Dirac delta. In two dimensions, the solution of this
fundamental problem is (Ladyzhenkaya 1969; Pozrikidis 1992; Van de Vorst 1993)

U
(
r∗, r∗

0
) = 1

4π

[
− (ln r∗) I +

(
r∗ − r∗

0
) (

r∗ − r∗
0
)

r∗2

]
, (C7a)

q
(
r∗, r∗

0
) = 1

2π
∇ ln r∗ = r∗ − r∗

0
2πr∗2 , (C7b)

with r∗ = ‖r∗ − r∗
0‖, r∗ and r∗

0, respectively, locating a field point and a source point that
can be positioned either in Vα or at Aα .

Application of Green’s formula (3.7), considering the flow problem (C2) (respectively,
the closure problem I (C4) or II (C5)), and taking bα = q, Bα = U , aα = p∗

α , aα = v∗
α

(respectively, aα = P ∗
ακ , aα = w∗

ακ ), leads to write (r∗
0 ∈ Vα ∪ Aα):

ηαv
∗
α

(
r∗

0
) =

∫
Aα

[
v∗
α

(
r∗) · Sα

(
r∗, r∗

0
)− σ ∗

α

(
r∗) · U

(
r∗, r∗

0
)]

dA∗ (r∗) , (C8a)

ηαw∗
ακ

(
r∗

0
) =

∫
Aα

[
w∗
ακ

(
r∗) · Sα

(
r∗, r∗

0
)− s∗ακ

(
r∗) · U

(
r∗, r∗

0
)]

dA∗ (r∗) . (C8b)

In the above equations, ηα = 1 if r∗
0 ∈ Vα and ηα = 0 if r∗

0 ∈ Aα . In addition, Sα(r∗, r∗
0)

is defined by

Sα
(
r∗, r∗

0
) = nα ·

(
−Iq

(
r∗, r∗

0
)+ ∇U

(
r∗, r∗

0
)+ ∇UT1 (r∗, r∗

0
))
. (C9)

Moreover, the pressure in Vα (α = β, γ ) is given by the following integral equation:

p∗
α

(
r∗

0
) =

∫
Aα

[
σ ∗

α

(
r∗) · q

(
r∗, r∗

0
)

− 2nα
(
r∗) · ∇q

(
r∗, r∗

0
) · v∗

α

(
r∗)] dA∗ (r∗) , r∗

0 ∈ Vα. (C10)

Discrete forms of (C8) (and (C10)) were implemented in a computational code using
constant boundary elements to discretize all the boundaries of the computational domain
(see figure 11) (Lasseux, Fabrie & Quintard 1992). All the integrals resulting from
this discretization, including their singular parts, were calculated analytically to avoid
numerical error from this step. The whole solution was carried out according to the
following six-step algorithm.

(i) An initial guess for the interface shape, Aβγ , is taken according to the chosen value
of Sβ .

(ii) The discretized form of (C8a) is solved, taking r∗
0 at Aα together with the discretized

boundary conditions (see (C2c) to (C2l)). To compute the curvature at each mesh
element of Aβγ , the interface is parametrized with a curvilinear abscissa, s, and
H is obtained from Frenet’s formula 2Hnβγ = dt/ds, t denoting the unit tangential
vector at Aβγ so that (t,nβγ ) forms a local direct orthogonal system of coordinates.
This formula is discretized with a finite difference scheme that is second order in
s. The overall discretization procedure leads to a linear system that is solved with a
direct method (LU decomposition with Gauss elimination) yielding the components
of σ ∗

α and v∗
α on the parts of Aα where this information is missing. In particular, it

provides the velocity, w∗, at Aβγ .
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(iii) Mesh elements of Aβγ are moved in a Lagrangian way using an explicit first-order
Euler discretization scheme on the following kinematic condition:

Dφ(r∗, t∗)
Dt∗

= ∂φ(r∗, t∗)
∂t∗

+ w∗ · ∇φ(r∗, t∗) = ∂φ(r∗, t∗)
∂t∗

+ |∇φ|nβγ · w∗ = 0,

(C11)

where φ(r∗, t) denotes the equation of Aβγ at the pseudotime t∗ so that nβγ =
∇φ/|∇φ|. Boundaries are remeshed, keeping the element size uniform and equal to
the initial one.

(iv) Steps (ii) and (iii) are repeated until nβγ · w∗ � 0, finally yielding the steady shape
of Aβγ . Velocity fields in Vα and their averages can then be computed (cf. step (v))
and the closure problems I and II can be solved (cf. step (vi)).

(v) At this stage, v∗
α (and p∗

α) can be computed at any probe point r∗
0 ∈ Vα using the

discrete forms of (C8a) (and (C10)). Note that this step does not require any linear
system to be solved. In order to compute 〈v∗

αx〉α , a Delaunay triangular mesh of Vα
is applied, and v∗

α is computed at the centroid of each triangle. The resulting value
is assumed constant over each triangle to compute the corresponding average. This
step completes the pore-scale DNS.

(vi) Closure problems I and II are solved using the discrete forms of (C8b) along with
the discrete boundary conditions for each problem (see (C4) and (C5)). This is
achieved by first considering r∗

0 at Aα . The same linear system solver as in step (ii)
is employed to obtain w∗

ακ and s∗ακ everywhere at Aα . The fields of w∗
ββ and w∗

γ γ at
Aβγ are then used to compute α∗

βx and α∗
γ x from (6.5). Second, w∗

ακ are computed
at the centroid of each element of the triangular meshes described in step (v). From
these fields, the relative permeabilities are computed according to (6.6). To do so,
a one-phase version of the boundary element code is employed to compute k∗. The
average velocities predicted by the UM are then computed from (6.4).

Computational accuracy was controlled by checking
∫
Vα

∇ · aα dV∗ with aα = v∗
α

and aα = w∗
ακ for the flow and closure problems, respectively. Due to periodicity and

the no-slip condition, this integral reduces to
∫
Aβγ

nακ · aα dA∗, and for all the results

reported below, this quantity was always less than 10−9, down to 10−11, with a typical
dimensionless boundary element size of ∼3 × 10−3. The iterative process described in
step (iv) to determine the steady position of Aβγ was carried out until the maximum value
of nβγ · w∗/‖w∗‖ everywhere at Aβγ was ≤10−4. The triangular mesh in Vα was such
that the minimum triangle side size was larger than, or equal to, the boundary element
size.
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