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Abstract: Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic
diversity. Breeding programs that take advantage of this characteristic are widely used for selecting
starters for wine industry, especially in the recent years when winemakers need to adapt their
production to climate change. The aim of this work was to evaluate a marker assisted selection
(MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice.
Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background
carrying many “malic consumer” loci. Then, eleven quantitative trait loci (QTLs) already identified
were used for implementing the MAS breeding program. By this method, extreme individuals
able to consume more than 70% of malic acid in grape juice were selected. These individuals were
tested in different enological matrixes and compared to their original parental strains. They greatly
reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to
the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni.
This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae
strains with outlier properties for winemaking.

Keywords: wine yeast; malic acid; pH; breeding; malolactic fermentation; marker assisted selection

1. Introduction

The yeast Saccharomyces cerevisiae is involved in many biotechnological processes
including bioethanol, brewery, bakery and wine making [1]. This species displays a wide
genetic diversity that generates a high phenotypic variability for many traits of interest. In
the context of wine fermentation, the selection of industrial starters is particularly relevant
since yeast modulates the final quality of the product [2,3]. Indeed, numerous studies have
demonstrated that commercial S. cerevisiae strains are different regarding their ability to
complete the alcoholic fermentation, their fermentation kinetics and their contribution to
the final composition of volatile and non-volatile compounds [4–9].

The wine industry has developed basic genetic selection for making the best of phe-
notypic variability and proposing optimal starters. Indeed, clonal selection [10] and
yeast breeding programs [9,11,12] are nowadays widely used for developing new wine
starters; for documented reviews see [2,13,14]. Beside this applicative aspect, the genetic
basis of trait variability has been studied for several decades by forward [15–27] and
reverse [5,28–30] genetic approaches allowing the detection of numerous genes and allelic
forms that possibly impact phenotypes of interest. Recently, we reviewed the phenotypic
impact of 153 genes controlling traits of industrial interest [31]. The identification of such
allelic variations and the steady decreasing cost of genotyping methods paved the avenue
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for combining marker assisted selection (MAS) with classical breeding (cross and segrega-
tion). Despite its very efficient use in plant selection [32] and animal breeding [33], MAS
has been poorly used in order to optimize fungi. Indeed, only few authors implemented
this approach for accelerating breeding programs [34–38]. Generally, alleles used had a
high penetrance and controlled a large part of phenotypic variation. However, most of
allelic variations have a low penetrance and a small effect on the phenotype [39]. This is
particularly true when MAS is implemented in outbred backgrounds [40] due to modifier
alleles that drastically reduce QTL expressivity. The aim of this work is to evaluate MAS
efficiency for improving a complex quantitative trait in a four-parental genetic background
which represents an applied case of yeast breeding program.

We focused our investigation on the L-malic acid consumption by S. cerevisiae during
the alcoholic fermentation, that is a highly variable trait among wine strains (Peltier 2018).
The final concentration of this organic acid, originally present in grape, strongly contributes
to the acidic pH of wine, which has a significant impact on its organoleptic qualities.
Therefore, the control of its consumption is important for the choice of winemaking routes.
S. cerevisiae is unable to consume all the L-malic acid of grape juice due to the lack of
an active transporter [41]. Indeed, S. cerevisiae strains consuming more than 50% of total
L-malic present in a grape juice were never reported [42,43]. During the winemaking
process, malic acid can be transformed in L-lactic acid by wine-specific lactic bacteria
Oenococcus oeni [44]. This biotransformation step, called malolactic fermentation (MLF),
mostly occurs in red wines after or during the alcoholic fermentation. A part of L-malic
acid can be also consumed by the malo-ethanolic fermentation (MEF) as well as by the
fumarase activity [42,45].

Recently, the genetic determinism of malic acid consumption by Saccharomyces cere-
visiae has been partially unraveled [46]. Numerous quantitative trait loci (QTL) related to
the malic acid consumption were precisely mapped in the SBxGN background. Additional
loci controlling the consumption of malic acid in S. cerevisiae have been also reported [47].
The functional exploration of these QTLs reveals the role of seven genes (MAE1, PMA1,
PYC2, PNC1, YBL036c, PTC5, and SDH2) by reciprocal hemizygosity assay [46,47]. In this
present work, a large-scale breeding program was implemented for addressing how much,
the rational use of MAS can be implemented for boosting malic acid consumption during
the wine alcoholic fermentation. First, optimal individuals of two unrelated F1-hybrids
were crossed in order to get a new genetic background carrying many “malic consumer”
loci. Eleven unlinked QTLs previously identified were used for implementing a MAS
program. By this method, optimal individuals consuming more than 70% of the malic acid
of grape juice were obtained. Such individuals were tested in different enological matrixes;
they lower the malic acid content at the end of the alcoholic fermentation and accelerate
the ongoing of inoculated malolactic fermentations.

2. Materials and Methods
2.1. Yeast Strain Used and Culture Methods

Yeast (Saccharomyces cerevisiae) were propagated on YPD 2% (1% peptone, 1% yeast
extract, 2% glucose) at 28 ◦C in both liquid and plate cultures (2% agar). Long term storage
at −80 ◦C was achieved by adding one volume of glycerol to YPD 2% overnight cultures.
The main yeast strains used were described in the Table 1 and are derived from the two
F1-hybrids (M2xF15 and SBxGN) used in previous QTL mapping studies [26,48]. All the
strains are homozygous for the HO locus and are therefore diploids. The strains GS-28b
and GS-41b are meiotic spore clones of SBxGN while FM-8d is a meiotic spore clone of
M2xF15. These three strains were used as allele donors in a breeding program aiming to fix
in few individuals most of the alleles promoting the consumption of malic acid during the
alcoholic fermentation. The pedigree of the strains generated is shown in Table 1.



J. Fungi 2021, 7, 304 3 of 23

Table 1. Main Saccharomyces cerevisiae strains used.

Strain Description Reference WDCM-791 (CRB
ISVV, Bordeaux)

M2
parental strain, a meiotic spore

clone from Enoferm M2
(Lallemand, Canada)

[26] CRBO L2010

F15
parental strain, a meiotic spore

clone from Zymaflore F15 (Laffort,
France)

[26] CRBO L2011

GN
parental strain, a meiotic spore

clone from Zymaflore VL1 (Laffort,
France)

[48] CRBO L2002

SB
parental strain, a meiotic spore
clone from Zymaflore BO213

(Laffort, France)
[48] CRBO L2001

M2xF15 F1-hybrid (M2 x F15) [26] CRBO L2005

SBxGN F1-hybrid (SB x GN) [48] CRBO L2003

GS-28b meiotic clone of SBxGN this work CRBO L2012

GS-41b meiotic clone of SBxGN this work CRBO L2013

FM-8d meiotic clone of M2xF15 this work CRBO L2014

FMGS-1 F1-hybrid (GS-28b x FM-8d) this work CRBO L2015

FMGS-1-647 meiotic clone of FMGS-1, malic
acid consumer strain this work CRBO L2016

FMGS-2 F1-hybrid (GS-41b x FMGS-1-647) this work CRBO L2017

FMGS-1-889 meiotic clone of FMGS-1, malic
acid consumer strain this work CRBO L2018

FMGS-1-215 meiotic clone of FMGS-1, Malic
acid consumer strain this work CRBO L2019

FMGS-2-107 meiotic clone of FMGS-2, Malic
acid consumer strain this work CRBO L2020

FMGS-2-265 meiotic clone of FMGS-2, Malic
acid consumer strain this work CRBO L2021

2.2. Spore Mating and Purification

Since all the strains are homothallic, F1-hybrids (FMGS-1 and FMGS-2) were obtained
by spore to spore mating on YPD 2% using a routine method previously described [9]. After
few hours, zygotes (trilobed shaped) were observed and manually isolated; their heterozy-
gous genotype was verified by Mass Array genotyping (see below). Spore purification was
carried out by using the hydrophobic properties of the spore cell wall. Each F1-hybrids was
sporulated by cultivating 109 cells in 5-mL of potassium acetate 1% (ACK) during three
days at 24 ◦C. This high-density spore culture was digested with cytohelicase (10 mg/mL)
for 2 h at 28 ◦C under permanent shaking. Spore preparation was then washed twice
(de ionized water) and the pellet was recovered in 100 µL in one centrifuge tube (1.5 mL).
The suspension was vigorously vortexed for 2 min and the suspension was removed by
pipetting. The remaining mixture of spores and cells was purified by adding/removing
1 mL of de ionized water two times. The remaining spores were unstacked from the tube
wall by adding 1 mL of sterile Nonidet P40 (0.01%). The purification rate obtained ranged
between 85 and 95% of spore clones. The purified spores were then sonicated (30 min),
incubated 2 h on YPD (28 ◦C) and plated on several Petri dishes in order to obtained more
than 1000 isolated colonies per preparation.
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2.3. Cell Culture and DNA Extraction in Microplates

Each single colony picked up from YPD-agar plate was cultivated in 96-Well mi-
croplate (coated with gas-permeable sheets (BREATHsealTM, Greiner Bio-one, Courtaboeuf,
France) allowing CO2 production. Genomic DNA was extracted by using a Li-Ac SDS
protocol previously adapted for microplate handling [49]. Broadly, 5 × 106 cells (200 µL
of overnight cultures) were centrifuged and incubated with 50 µL of 200 mM LiAc/1%
SDS at 70 ◦C for 5 min. Genomic DNA was extracted by mixing cell lysates with 150 µL
of pure ethanol and vortexed for 15 s. After a brief spin (2 min, 4000 rpm) the pellet was
washed with 70% ethanol and was the solubilized in 200 µL of milliQ water at 60 ◦C for
5 min. Some liquid handling steps were assisted by the robotic platform NxP (Beckman
Coulter, Villepinte, France).

2.4. Mass ARRAY Genotyping

Genotyping was mostly carried out by using Mass ARRAY technology (Agena Bio-
science, San Diego, CA, USA), which allows large multiplex SNP detection as previously
described [50]. Less than 15 ng of DNA were used for genotyping the strain. The Online
Resource 1 lists the identity of wanted SNP that possibly enhance the malic acid consump-
tion according to a wide QTL mapping study recently published. SNPs were encoded
according to the international nomenclature [51]. The genotypes of each parental strain
founder (M2, F15, SB, GN) and the sequence of primers used were also provided. Primers
were designed using the tool MassARRAY® Assay Design (v4.0.0.2) in order to amplify
short fragments (<115 bases) with a molecular weight differences ranging between 16 and
80 Da. By this method, 11 bi allelic loci were simultaneously tracked corresponding to the
following QTLs (II_661, IV_31, IV_360, IV_414, VII_427, VII_480, XI_382, XI_631, XII_53,
XV_491, XV_1052) which control malic acid consumption in the SBxGN background. The
SNP calling was carried out by the MassARRAY® System suite with an average SNP calling
of 94.3%. Control strains (SB, GN, F15, M2) were genotyped several times giving in any
case the identical SNP calling. All clones showing a fully homozygous genotype and 10 or
more loci assigned were included in the analysis, which corresponds to 593 and 797 clones
for FMGS-1 and FMGS-2, respectively.

2.5. Alcoholic Fermentation Assays
2.5.1. Grape Must

The grape musts Merlot 2015 (M15) and Sauvignon Blanc 2016 (SB16) used were
provided by Vignobles Ducourt (Ladaux, France) and stored at −20 ◦C. Grape musts were
sterilized by membrane filtration (nitrate cellulose 0.45 µm, Millipore, France). In order
to test the phenotypic robustness of some relevant strains, these musts were spiked with
different amounts of L-malic acid and nitrogen source (Table S2). The mixture of amino
acid used mimics the average composition of organic sources in a grape wine as previously
described [12]. The composition of the different grape musts in fermenting sugar, nitrogen
sources and malic acid content as well their pH are listed in Table S2.

2.5.2. Alcoholic Fermentation Monitoring

Small-volume alcoholic fermentations were implemented in screwed vials fermenta-
tions according to the general procedure described in [52]. Rapidly, 20 mL-screwed vials
(Thermo Fisher Scientific, Bordeaux, France) were filled with 12 mL of filtered grape must
and were tightly closed with screw cap-magnetic (Agilent Technologies, hdsp cap 18 mm
PTFE/sil 100 pk, Les Ulis, France) perforated by hypodermic needles (G26–0.45 × 13 mm,
Terumo, Shibuya, Tokyo, Japan) for allowing the CO2 release. Vessel was inoculated by
2.106 viable cell.mL−1 precultured in liquid YPD for 24 h. Cellular concentration and
viability was estimated by flow cytometry using a Cell Lab Quanta apparatus (Beckman
Coulter, Villepinte, France) as described by Zimmer et al. (2014). Fermentation took place
at 24 or 28 ◦C in shaken vials by using an orbital shaker (SSL1, Stuart, Vernon Hills, IL,
USA) at 175 rpm. Fermentation kinetics were estimated by monitoring manually (2–3 times
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per day) the weight loss caused by CO2 release using a precision balance with automatic
weight recording (LabX system, Mettler Toledo, Viroflay, France). The amount of CO2
released according to time was modeled by local polynomial regression fit [52] allowing
the estimation of the time necessary to reach the maximum CO2 produced.

2.6. Malolactic Fermentations Monitoring

At the end of the alcoholic fermentation, vials were placed for 24 h at 4 ◦C for settling
yeast lees. Sedimented part were then solidified by soaking vials in a thin layer of liquid
nitrogen. Thus, yeasts were eliminated in order to avoid lees impact on MLF and to repro-
duce enological-like conditions. Ten mL of wine were transferred into 10 mL cylindrical
vials (Thermo Fisher Scientific, Bordeaux, France, ref: 11981523), closed with screw caps
(Agilent Technologies, hdsp cap 18 mm PTFE/sil 100 pk, Les Ulis, France). The wines
were inoculated with Lactoenos® B7 Direct rehydrated lactic bacteria at a concentration
of 10 mg·L−1, as recommended by the supplier (Laffort, Bordeaux, France). Fermentation
samples were taken every 2 to 5 days for measuring L-malic acid decrease as a proxy of the
MLF progress. The MLF ongoing was fitted by a 3 parameters logistic function using the R
package (drm function of drc package), four kinetics parameters were extracted: t_MLF_lag,
and t_MLFend, correspond to the time to initiate and to achieve the MLF, respectively.
t_MLF50 corresponds to the time for consuming 50% of malic acid, and rmax_MLF is
the maximal malic acid consumption rate (g·L−1·h−1). Data fit and MLF parameters are
illustrated in the Table S3.

2.7. Enzymatic Assay of Wine

At the end of the alcoholic fermentation, a sample volume of 800 µL was manually
transferred in Micronics tubes (Novazine, Lyon, France, ref: MP32033L) and stored at
−20 ◦C. The concentrations of the following organic metabolites were measured: acetic
acid, glycerol, malic acid, pyruvate, acetaldehyde and total SO2 using the respective enzy-
matic kits: K-ACETGK, K-GCROLGK, K-LMAL-116A, K-PYRUV, K-ACHYD, K-TSULPH,
(Megazyme, Bray, Ireland) following the instructions of the manufacturer. Glucose and
fructose were assayed by using the enzymatic method described by Stitt et al. [53]. All the
enzymatic assays were performed by a robotic platform using the Bordeaux metabolomics
facilities (http://metabolome.cgfb.u-bordeaux.fr/). Only the strains able to complete the
fermentations (<1.5 g·L−1 of residual sugars) were retained.

2.8. Use of Previous Phenotypic Datasets

Two previously published datasets were used for estimating the heritability and
the efficiency of this marker assisted selection program. Fermentation phenotypes were
measured in the same conditions and in the same grape musts allowing to compare the data.
Malic Acid Consumption (MAC) was the ratio of malic acid consumed ([L-malic acid]initial-
[L-malic acid]final)/[L-malic acid]initial expressed in %. The MAC values of the 35 enological
strains and the 94 progenies of SBxGN hybrid were extracted form Peltier et al. (2018a) [46]
and Peltier et al. (2020) [52], respectively. The MAC values of M2xF15 offspring were
measured in the same conditions described by Peltier et al. (2018b) [48] but are only
released in this present work.

2.9. Statistical Analyses

All the statistical and graphical analyses were carried out using R software [54]. Plots
were computed using the ggplot2 package and analyses of variance were carried out using
the car package. Four linear models were applied: LM1 investigated the effect of QTL
numbers on MAC according to the formula:

yi = m + EAi + εi, (1)

where y is the MAC value for a strain carrying i Enhancers Alleles (i = 1 . . . 11) and εi the
residual, m is the overall mean of the 154 FMGSs progenies phenotyped. The LM2 model

http://metabolome.cgfb.u-bordeaux.fr/
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estimated the effects of the following factors must, strain, temperature, nitrogen, and malic
acid as well as the first order interaction of all the factors on MAC value according to
the formula:

yijklm = m + straini + mustj + tempk + nitrol + malicm + inter̂2
ijklm + εijkmn, (2)

where yijklm is the MAC value for a strain i (i = 1 . . . 6) fermented in a must j (j = 1,2) at
the temperature k (k = 1,2) and containing the nitrogen level l (l = 1,2) and the malic acid
level m (m = 1,2,3). Levels taken by each factor are given in the Online Resource 2. The
term inter̂2

ijklm represents the first order interactions for each factor and εijklm the residual,
m is the overall mean of the 84 fermentations carried out in triplicate in an equilibrated
fractional design. This model was refined with the models LM3 and LM4 allowing the
estimation of each factors in the SB16 and M15 must, respectively.

The analysis of variance of models LM2, 3 and 4 allows the estimation of the primary
effect of the strain, the grape must, the temperature, the nitrogen and the malic acid
concentration as well as their primary interaction effects. The normal distribution of
residues as well as the homoscedasticity of the variances were tested by Shapiro test and
Levene test (car package).

3. Results
3.1. A Basic Breeding Strategy for Improving Malic Acid Consumption

The main goal of this study consists to significantly increase the S. cerevisiae consump-
tion of malic acid during alcoholic fermentation. Previously, it has been reported that wine
strains were unable to consume more than 50% of the malic acid grape juice in controlled
conditions. This overall feature was previously confirmed in our laboratory by measuring
the residual malic acid concentration at the end of the alcoholic fermentation for 35 strains
in 5 grape juices [52]. Since the initial amount of malic acid varied according to the grape
juice, we computed the percentage of malic acid consumed (MAC) for comparing strains
within multiple environmental conditions. On average, MAC ranged between 30.0 and
53.0% within a population of 31 commercial starters plus the four founder strains of this
study (SB, GN, M2, F15), that are haploid derivative from commercial starters. Strong
differences between grape musts were found (Table S3). The continuous distribution of this
trait was illustrated for a red grape juice Merlot 2015 in the Figure 1a. Strains SB and GN
had extreme phenotypes, metabolizing between 40.0% and 3.5% of malic acid, respectively.
Strains M2 and F15 had an intermediate phenotype, consuming up to 20% of malic acid in
the same conditions. This analysis demonstrated that MAC is a quantitative trait with im-
portant variation among commercial starters and therefore we decided to took advantage
of this natural variation by initiating a selection program with a breeding approach.

We decided to use two previously generated mapping populations as starting material.
These populations originated from two hybrids, resulting from the mating of SB with GN
(SBxGN) and M2 with F15 (M2xF15) that were sporulated to generate 94 and 96 segre-
gants, respectively. The rational being that meiosis segregation would reveal transgressive
phenotypes. SBxGN offspring was phenotyped for MAC in a previous study [48] and
the phenotypic characterization of M2xF15 offspring was achieved in the same conditions
but the MAC values are only released in this present work (Table S3). The fermentation
conditions applied (grape juice, fermentation volume, temperature) are the same in all the
studies. In both F1-hybrids, the meiotic segregation yields few clones consuming up to
60% of malic acid (Figure 1b,c). Thanks to this first approach, we were able to select two
progeny clones GS-28B from SBxGN offspring and FM-8D from M2xF15 one that had high
MAC value of 58.0%and 45.4%, respectively. These high values correspond to the reported
limits of Saccharomyces cerevisiae physiology [43,55–57].
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Figure 1. Cont.
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Figure 1. Malic acid consumed (MAC) at the end of alcoholic fermentation in a merlot grape juice.
(a) Phenotypic distribution of 31 starters and relative position of the 4 founder strains SB, GN, M2,
F15 (data previously published by [52]). (b) Phenotypic distribution of SBxGN hybrid and 94 related
progeny clones including GS-28B (data previously published [46]). (c) Phenotypic distribution of
M2xF15 hybrid and 96 related progeny clones including FM-8D (this work). All fermentations were
carried out in the same conditions. (d) Phenotypic distribution of FMGS1 hybrid and 50 related
progeny clones. The vertical bar indicated the value of the F1-hybrid of each progeny.

To pursue trait improvement, strains GS-28B and FM-D8 were mated by manually
paring spores of both strains. The resulting F1-hybrid (FMGS-1) should have inherited
from both genetic backgrounds independent genetic factors controlling MAC that can be
recombined through meiosis. Therefore, FMGS-1 was sporulated and a high number of
spores were purified by taking advantage of the hydrophobicity properties of spore wall.
A spore preparation of 95% was obtained and around 1000 clones were isolated on solid
YPD and stored at −80 ◦C. Fifty randomly picked individuals were fermented in the M15
grape juice and their MAC was measured. In this population, the consumption levels of
malic acid were on average significantly much higher than those previously observed in
SBxGN and M2xF15 progenies as well as in the commercial starters panel (Figure 1d). This
result demonstrates that the simple cross of two optimal individuals derived from different
background is very efficient for optimizing complex phenotypes. Such strategy is routinely
used by microbiologists for improving yeast strains and have been reported and reviewed
by many authors [11,14,36,58,59].

3.2. Use of Marker Assisted Selection (MAS) for Enhancing Malic Acid Consumption

To go further, we used at a large-scale genetic markers for selecting optimal individual
prior any phenotypic tests. Indeed, getting genotypic data is generally easier than setting
up a phenotypic characterization. For testing the relevance of this strategy, we first defined
a set of eleven genetic makers that are nucleotide variations genetically linked to QTL
controlling MAC and identified in SBxGN background [46,47]. The Figure 2a,b summarize
SNP position and enhancer or preserver alleles that were define for each QTL. The genotype
of the founder strains (SB, GN, M2 and F15) and the parental strains GS-28B and FM-8D is
given panel c. We applied this genotypic screening on the ~1000 meiotic spores previously
isolated from FMGS-1 and sought for meiotic spore clones having preferably inherited
Quantitative Trait Loci (QTL) allele promoting the malic acid consumption. As detailed
in the material and method section, each QTL was tracked by using the MASS-array
technology able to discriminate in a unique experiment eleven pairs of biallelic Single
Nucleotide Polymorphisms (SNP) (Table S1). The inheritance of the 11 loci for 924 FMGS-1
progenies was interrogated. SNP calling was higher than 94% and most of the strains were
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fully genotyped. A first segregation analysis confirmed that spore purification was very
efficient for removing residual F1-hybrids (fully heterozygous). Indeed, most of the clones
(77%) were fully homozygous while a minor fraction (15.5%) harbored both homozygous
and heterozygous loci and could be considered as sibling-pair hybrids (F2) (Figure S1 left
panel). Only fully homozygous strains with less than one missing genotype were analyzed
representing 583 individuals. According to parental genotypes, the segregation of five loci
was expected (Figure 2). Indeed, 5 enhancer alleles were fixed (IV_360G, IV_414T, VII_480G,
XI_382T, and XI_631T), one preserver allele was fixed (II_661G), and the five other loci
segregated in a mendelian fashion (chi2test p > 0.05) (Figure 3a).

Figure 2. Quantitative trait loci (QTLs) tracked, and mass-array markers used, dotted lines represent the position of a
marker. (a) Genetic position of the eleven QTLs mapped modulating malic acid consumption in SBxGN hybrid. The parental
allele (GN or SB inheritance) promoting a stronger consumption was indicated for each locus. (b) SNP corresponding to the
enhancer and preserver allele, the exact position is given in Table S1. (c) SNP call in the four founder and in the parental
strains GS-28B and FM-8D.
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Figure 3. Marker assisted selection of FMGS-1 progeny for five segregating alleles. (a) Allele
frequency in the progeny, enhancer and preserver alleles are shown in green and red, respectively.
(b) Distribution of the number enhancer alleles counted in the FMGS-1 progeny (593 fully genotyped
progenies). (c) Phenotypic difference between progenies having enriched and minimized number
of enhancer alleles; values indicated represented the average percentage of Malic acid Consumed
(MAC) for each strain (3 replicates).

Next, we investigated the phenotypic impact of markers segregation. The progeny
population was split in two groups according to the number of enhancer alleles detected.
122 individuals harbor 9 or 10 enhancer alleles while 125 individuals harbor only 5 or 6
enhancer alleles (Figure 3b). Each group represents nearly 20% of the total population
genotyped. In order to test QTLs effect in the FMGS-1 background, 30 and 23 individuals
belonging to each group were randomly selected and phenotyped in the Merlot grape juice.
Strains enriched for enhancer alleles (9 to 10 optimal loci) consumed more malic acid than
the control group (Figure 3c). On average, the enhancer group consumes 53.7% of malic acid
while the control only 48.0% of malic acid (Wilcoxon test p < 0.05). Although the phenotypic
gain observed (+5.7% of malic acid) was moderated, this demonstrates that MAS allows
the blind selection of highly performing individuals without any phenotypic screening.
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3.3. Construction and Characterization of a Backcrossed FMGS-2 Population

A possible cause of the moderate efficiency of MAS in the FMGS-1 background would
be the fact that many QTLs were fixed (i.e., have a homozygous inheritance). Therefore,
a second hybrid (FMGS-2) was obtained in order to increase the number of segregating
loci. A progeny clone of FMGS-1 (FMGS-1#647) was crossed with GS-41B, one segregant of
SBxGN hybrid. FMGS-1#647 has an optimal MAC (65.7%) and harbor 8 out 11 enhancer
alleles. GS-41B has a moderated MAC value (40.4%) but allows the introduction of other
enhancer alleles in the resulting hybrid. Indeed, in the FMGS-2 hybrid, all but two QTLs
(VII_480 and XII_53) were heterozygous (Figure 4a). From FMGS-2, 1232 spore clones were
isolated and genotyped using the same procedure than for FMGS-1 offspring. Mass-array
analysis confirmed the Mendelian segregation of 9 out the 11 markers typed (chi2test
p > 0.05). The genotyping of these clones allows the identification of nearly 12% of residual
F1-hybrids and F2-sibling pair hybrids due to a less efficient spore purification. In the
further analysis, 797 fully homozygous meiotic segregants were used. In order to test MAS
efficiency in this new background, the same approach than for FMGS-1 was used. Fifty
randomly selected individuals were phenotyped for characterizing the overall performance
of FMGS-2 progeny. Random progenies of FMGS-1 and 2 have similar average values
(52.6 and 48.7) (Table 2 and Figure S2), however the phenotypic variability (variance) in
the FMGS-2 offspring is two folds higher (130 vs. 58). This result is likely due to the
higher number of QTLs in segregation in FMGS-2 population. Beside this difference, the
proportion of clones with optimal malic acid consumption is broadly the same (Table 2).

Figure 4. Marker assisted selection of FMGS-2 progeny for nine segregating alleles. (a) Allele frequency in the progeny,
enhancer and preserver alleles are shown in green and red, respectively. (b) Distribution of the number enhancer alleles
counted in the FMGS-2 progeny (797 fully genotyped progenies). (c) Phenotypic difference between progenies having
enriched and minimized number of enhancer alleles; values indicated represented the average percentage of Malic acid
Consumed (MAC) for each strain (3 replicates).
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Table 2. Biometric comparison of the populations used.

Populations Number Mean Variance
Quantiles % of Individuals with a

MAC Above

50% 75% 95% 65% 70%

Starters 31 28.3 33.3 28.2 31.5 36.5 no no

pop SBxGN 93 31.0 206.6 28.6 36.9 58.5 2.2 2.2

pop M2xF15 94 17.8 138.9 18.6 24.8 34.1 no no

random FMGS-1 50 52.6 58.6 51.7 57.2 65.7 12.0 no

selected FMGS-1 a 30 53.7 77.0 54.1 59.2 65.8 10 no

random FMGS2-1 50 48.7 130.4 49.0 56.6 64.3 4.0 2.0

selected FMGS2-2 b 17 53.7 121.2 54.2 57.1 72.3 17.6 11.7
a Genetically selected for 9–10 enhancer alleles; b genetically selected for 10–11 enhancer alleles; no: not observed.

Similarly, a MAS was carried out by selecting individuals according to their genotype.
Seventeen individuals that have inherited of 10 and 11 enhancer loci were selected among
the 797 FMGS-2 progeny genotyped. This enhancer-rich group was compared to a small
group of 10 strains harboring only 2 to 4 enhancers loci. On average, the enhancer group
consumes +8% of malic acid at the end of the alcoholic fermentation (53.7% vs. 45.8%,
Wilcoxon test α = 0.05) (Figure 4c). This also demonstrates that, in the FMGS-2 background,
MAS is a convenient way for selecting extreme individuals in a small group of strains.
Indeed, within the 17 genetically selected strains, two strains consumed more than 70% of
malic acid which represents 11% of the population (Table 2); this proportion is significantly
higher than those expected in the random population (hyper geometric test α = 0.05).

3.4. Study of QTL Penetrance in FMGS-1 and FMGS-2 Populations

Although a significant difference was found between enhancers and preservers groups
(Figures 3c and 4c), many individuals with a nearly optimal genotype reach a moderate
MAC value. Encompassing the random and marker-selected strains of each FMGS popula-
tions, a total of 154 strains were phenotypically and genetically characterized (Table S4).
This set of strains was used for estimating the cumulative impact enhancer allele on the
malic acid consumption. A linear model confirms that, the more the number of enhancer
alleles, the stronger the percentage of malic acid consumed (Figure 5a). Although, this
correlation is very significative (Spearman test, rho = 0.23, p-value < 0.0001); a great residual
variation within extreme groups is still observed. Indeed, the number of QTLs explained
only 4.2% of the total variance observed in the linear model (LM1 see methods). This result
illustrates the low penetrance level of the QTL pool used, which is a frequent case in MAS
programs [40].

The effect of each QTL on malic acid consumption was tested and compared to their
effect observed in the SBxGN background that was used for their identification. When
a significative difference was observed (one-way ANOVA α = 0.05), the part of variance
explained was indicated (Table 3). Since all the loci did not segregate in both progenies this
test was in some cases not applied.
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Figure 5. Overall QTL effect and pair wise interactions. (a) Linear relationship between the number
of enhancer alleles and the MAC value in the 154 FMGS’ progenies tested; the red and blue dots
represent the FMGS-1 and FMGS-2 progenies, respectively. (b,c) Genetic interactions between QTLs
observed in the FMGS-2 population (72 individuals). The red, orange, and green dots are the average
values observed for the bad, intermediate, and good combinations expected.
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Table 3. QTL penetrance in various populations a.

Population II_661 IV_31 IV_360 IV_414 VII_427 VII_480 XI_382 XI_631 XII_53 XV_491 XV_1052

Gene validated PYC2 PNC1 PMA1 MAE1 SDH2 PTC5

SBxGN (n = 94) 3.87 4.22 ns ns ns 8.20 2.97 ns 4.45 7.61 ns

FMGSs (n = 154) - 7.14 - - ns - - - - ns 4.92

FMGS-1 (n = 82) - 9.31 - - ns - - - ns ns 9.74

FMGS-2 (n = 72) ns 6.41 ns ns ns - ns 3.10 - ns ns
a Part of variance explained in %, one-way analysis of variance, p-value <0.05. ns: not significative, -: not relevant.

Among the eleven QTLs used, only six have a significative effect in the SBxGN
population (Anova α = 0.05). This result is explained by the fact that those QTLs were
detected in three different environments [46] which is not the case in the present analysis of
variance. Surprisingly, although the effect of the causative genes PNC1 has been molecularly
validated [46], the inheritance of the marker VII_427 did not impact MAC in the population.
When the two FMGSs populations were pooled, two of the four segregating QTLs had
a significative effect (IV_31 and XV_1052). The locus IV_31 has a complete penetrance
since is significative in the four populations. The locus XV_1052 has a more contrasted
effect; it accounted for 9.7% of total variance observed in FMGS-1 progeny but did not
significantly impact the malic acid consumption in FMGS-2 or SBxGN populations. Finally,
the locus XI_631 has a significative effect only in the FMGS2 population (Table 3). These
results show that most of the QTLs tracked have an incomplete penetrance in the FMGS
hybrids. This result can be explained by at least three causes: (i) the limited number of
progenies tested (less than 100), (ii) the epistatic relations withing QTLs, (iii) the presence
of modifier loci. We tested possible pair-wise interactions within the nine segregating
QTLs in the FMGS-2 population (Table S5). Interestingly, two significative interactions
were found (XV_1052 vs. XI_382) and (II_661 vs. XV_491). In the first case, the inheritance
of the allele XI_382C impairs the enhancer effect of the allele XV_1052G (Figure 5b). This
explains why XV_1052G allele has a much higher penetrance in the FMGS-1 progeny
where the XI_382T allele is fixed (Figure 2). Concerning the II_661 and XV_491 interaction,
the best combination expected II_661G/XV_491T has a similar effect than the worst one
II_661T/XV_491C (Figure 5c); suggesting a possible metabolic trade-off between their
associated genes PYC2 and PTC5.

3.5. Phenotypic Characterization of High Malic Acid Consuming Strains

Four malic consumer strains belonging to both FMGS’ populations (FMGS_215,
FMGS_889, FMGS2_107, FMGS2_265) were selected in order to be phenotypically char-
acterized in various environmental conditions. These strains were compared to SB and
GN which represent the extreme limits of the starter population (Figure 1a). Small-volume
alcoholic fermentations were carried out in two grape musts (M15 and SB16) adjusted with
different concentrations of malic acid and nitrogen and incubated at two different tempera-
tures (see methods). The objective was to assess the impact of several basic environmental
factors in enology that could affect MAC. The part of variance of each factor as well as
their first-order interactions were estimated by applying a fractional experimental design
(see methods). The effect of each factor is represented in the Figure 6a and summarized in
Table S6.
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Figure 6. Cont.
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Figure 6. Biotic and abiotic factors affecting the variation of malic acid consumption. (a) Bar graphs
indicate the part of variance explained by the different factors considered by the linear model
applied: malic acid concentration, must origin, nitrogen content, strain origin, and temperature.
(b) Temperature effect according to the strains used; (c) nitrogen effect according to the strains used;
(d) initial malic acid concentration effect according to the strains used; (e) strain effect in both grape
juices. For panels (b–e) the full dots represent the average values.

All conditions combined; MAC varies mainly with the nature of the must (55.2% of
total variance explained). Indeed, yeast strains consumed in average 32.5% more malic
acid in white must compared to red must (Figure 6a). In contrast, temperature had a
low impact on MAC and can be considered as poorly significant in the present study
(Figure 6b). The important must-effect observed is likely due to the highest malic acid
concentrations found in white must (SB16) compared to those of the red one (M15). This
difference strongly impacts the pH of the matrix and may affect the diffusion of malic acid
through cell membrane since this acid is protonated below pH = 3.4 [60].

In order to dissociate this matrix effect, a second set of ANOVA was carried out
by splitting the dataset according to the must. The new models shed light on the effect
of nitrogen and malic acid concentrations that were partially hidden by the must effect.
Nitrogen concentrations impacted malic acid consumption in both musts (Figure 6c). In
our experiment, malic acid consumed was 10% higher in low nitrogen condition (150 mg/L
N). However, this trend was not observed for the strain GN that consumes more malic acid
(+4%) in rich nitrogen condition (300 mg/L N). The impact of grape juice concentration of
malic acid on MAC was also strongly contrasted. As shown on the Figure 6d, the malic
acid level accounts for 11.8% of the total variance explained in the white wine but only
0.9% of the total variance in the red one. In the white grape juice, the MAC decreases (−8%)
for the highest malic acid concentration (9.39 g/L) while this trait is steadier in red grape
juice. Again, the response of GN differs from the malic consumer strains. Indeed, in red
must, the impact of initial malic acid was stronger, with an increased MAC with higher
initial malic acid concentration.

Finally, this experiment demonstrates that in both musts, the factor “strain” has the
major impact explaining 74.8% and 60.5% of “red” and “white” models, respectively
(Figure 6e). As expected, all the strains selected by genetic markers consumed significantly
more malic acid than the control GN. The strongest consumer is the strain FMGS_889
that metabolized 32% and 11% more malic acid than the strains GN and SB, respectively
(Wilcoxon test p < 0.01). Although minor variations were attributed to nitrogen and malic
acid content, those strains steady consume malic acid which is not the case of the strain GN.
The founder strain SB belongs to the malic consuming group but has always a lower MAC
than the four individuals selected. As a direct consequence, the resulting pH of wine at the
end of the alcoholic fermentation was drastically impacted (Figure S2). Indeed, in the most
discriminating conditions, the pH difference measured in produced wine between extreme
strains (GN and FMGS_889) was of 0.42 units (M15_high_initial_24), demonstrating the
strong impact of S cerevisiae strains in the modulation of wine pH.
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3.6. Ongoing of Malolactic Fermentation

During the winemaking process, most of the red wines and some white wines un-
derwent the malolactic fermentation (MLF) due to the development of the lactic bacteria
Oenococcus oeni [44]. The malic acid is one key energetic substrate of the MLF and its
content in wine at the end of the alcoholic fermentation has an obvious impact on the
process. It has been reported that L-malic acid concentration delays the MLF duration
but does not drastically affect the O. oeni fermentation rate [61,62]. In addition, low pH
has a negative impact on MLF initiation and efficiency [44]. Since strains selected clearly
impacted malic acid concentration (Figure 6e) and wine pH (Figure S2), their influence on
MLF was evaluated by inoculating the different wines produced with a malolactic starter
(see methods). MLF ongoing was monitored by measuring the L-malic acid degradation
by an enzymatic assay. MLF kinetics were fitted by a logistic function and four kinetics
parameters were extracted (t_MLF50, t_MLFend, t_MLF_lag, rmax_MFL) (Figure S3). For
the malic consuming yeast strains, the MLFs were completed between 10 and 15 days.
In contrast, MLFs carried out in wines fermented by GN were much slower and were
sometimes not achieved (Figure 7a).

Figure 7. Cont.
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Figure 7. Malolactic fermentations with high malic consumer strains. (a) Malic acid concentration
(g/L) according to the time (h) for each stain used in the 6 inoculated wines. (b) Time (h) to achieve
50% of the MLF according to the strains used. (c) Correlation between the time at 50% of the MLF
(t_MLF50) and the malic acid concentration (g/L). (d) Maximum fermentation rate (g/L/h) according
to the strains used.

A correlation analysis performed on the 36 wines (6 strains and 6 conditions) clearly
demonstrated a positive correlation between the initial malic acid content and the time
for consuming 50% of malic acid (t_MLF50) (Figure 7b). Indeed, the amount of malic
acid in wines fermented with GN was 1.1 g·L−1 higher, on average, than those from other
strains (Figure 7c). GN was different from the other strains (Kruskal–Wallis test, α = 0.05)
and MLFs of wines fermented with GN required twice more time for consuming 50%
of total malic acid. In contrast, the maximum fermentation rate (rmax_MLF) was quite
similar between the strains. Indeed, strains FMGS_889 and GN have similar rmax_MLF
but opposed t_MLF50 values (Figure 7d). Thus, the time for completing MLF (t_MLFend)
proved to be faster (less than 300 h) when malic acid concentration was below 2 g·L−1. In
addition, a low initial concentration in malic acid does not seem to impair the initiation
of MLF since the lag time of MLF (t_MLFlag) is quite similar in all the conditions tested.
Altogether, these results suggested that malic consuming strains are compatible with
sequential inoculation of lactic acid bacteria and should facilitate the MLF by increasing
wine pH and reducing the malic acid concentration to consume.

4. Discussion
4.1. Assesment of a Wide MAS Program for Improving a Complex Trait

Marker assisted selection (MAS) constitutes the applied side of quantitative genetics
and has been widely used for improving plant varieties and animal races [32,63,64]. For the
last two decades, Saccharomyces cerevisiae has been raised as a perfect model for addressing
fundamental questions in quantitative genetics [65–68]. Furthermore, the budding yeast
is also the prime industrial microorganism involved in bioethanol and fermented foods
production. Although methods for identifying QTLs are perfectly controlled [31], their
use for improving yeast strains for industrial applications is poorly documented. In the
present study, we aimed to increase the malic acid consumption of wine starters in order to
propose new strains with outlier features. To achieve this program, we get a new F1-hybrid
(FMGS-1) resulting from the cross of two optimal unrelated strains (GS-28b and FM-8d).
Then, we implemented for the first time a wide MAS program using 11 QTLs controlling
the same trait.

First, a robust protocol was developed for isolating and genotyping a wide number
of meiotic progenies derived from prototrophic and homothallic yeast. Although these
features complexify breeding operations [14], the purification of FMGSs hybrids yielded
more than 80% of spore clones (doubled haploids) or sibling-pair hybrids (F2) (Figure S1).
The use of robotic-assisted DNA extraction and mass array genotyping allow a SNP call
average of 94% and most of the strains were unambiguously genotyped. This technique
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allows the parallel genotyping of up to 40 markers which would strongly decrease the
genotyping cost per SNP.

Second, we demonstrated that individuals carrying a high proportion of enhancer
alleles consumes statistically more malic acid than those carrying a high proportion of
preserver alleles in both FMGS progenies (Figures 3c and 4c). This result confirms that a
blind preselection of strains can be achieved on the basis of their genotype. Nevertheless,
the overall effect of this pool of alleles is limited regards to the general cross effect observed.
Indeed, many FMGS-1 and FMGS-2 progenies reach high MAC value whatever their
genotype. This result indicates that the simple selection of optimal outbred parental strains
is very efficient for optimizing quantitative phenotypes. Indeed, the average malic acid
consumed by randomly selected FMGS-1 progenies (50 strains) is statistically similar to
average value of the FMGS-1 enhancer group (52.6% vs. 53.7%). This is explained by the
fact that five enhancer alleles are homozygous (fixed) in FMGS-1 hybrid and only five QTLs
are in segregation (Figure 2a) reducing the proportion of non-optimal genotypes. Thus,
36% of randomly selected segregants (18) carry at least 8 enhancer alleles of the 11 possible
one. These strains include FMGS-647, FMGS-215 and FMGS-889 that are among the top
malic consumers. A second blind selection was then carried out in the FMGS-2 progeny.
Since 10 of 11 QTL segregated, the difference of MAC between enhancer and preserver
groups was larger (8%). A tight significative difference was found between random and
enhancer enriched groups (48.7% vs. 53.7%, respectively, Wilcoxon test < 0.1). In addition,
the proportion of optimal clones consuming more than 65 or 70% is higher than in random
population (Table 2). This highest proportion supports the idea that MAS would be efficient
for the blind selection of many optimal individuals and should be used as a prescreening
step. Since many other quantitative traits segregate independently in FMGS’s offspring,
MAS may allow the selection of a collection of top-degrading malic acid strains to be
used in downstream selection programs focusing on other traits (aromatic, fermentation
performances, temperature adaptation . . . ).

4.2. Possible Causes of Incomplete QTLs Penetrance

Although it was successfully applied in many organisms, the efficiency of MAS is
strongly depending on the number of marker used, the type of breeding design, the
complexity, and the number of traits to improve [32,40,64,69]. Indeed, when QTLs detected
in a specific background are introduced in an outbred individual, their expressivities are
much lower than those observed in the initial QTL population [40]. This general trend
was also observed here since only three QTLs of the eleven used has a significant effect of
FMGSs hybrids (Table 2). This incomplete penetrance can be explained by several causes.
First, the 11 QTLs used were detected in a multiple environmental design which increase
the detection power of QTLs [46,47]. Thus, it is not surprising that minor QTLs showing
GxE does not raise the significant threshold imposed in the subset of 94 SBxGN progenies.
Second, possible alleles controlling MAC% in the M2xF15 background were not considered
at all. Since 50% of FMGS-1 genome is constituted by M2 or F15 alleles, QTLs governing
the phenotypic variability of M2xF15 background are likely influencing the MAC% of
FMGS’s progeny. Third, the lack of penetrance observed for the marker VII_427 related to
the causative gene PNC1 would result to the complex genetic structure of the chromosome
VII that contains many causative genes including PMA1 a major contributor of MAC% [43].
Finally, some QTLs seems to show epistatic interactions (Figure 5b,c) that modulate their
expressivity in a non-predicable manner.

4.3. Outlier Strains for Specific Enological Applications. Lowering the Acidity of Rich Malic Wines
and Shortening the MLF of Red Wines

From an enological point of view, this study provides new strains for managing
atypical vinification conditions. Indeed, S. cerevisiae strains consuming more than 50% of the
total malic acid are quite rare and have been scarcely described [55,57,70,71]. Such strains
would be useful to better managing wine acidity and may have two distinct enological
applications. First, in very acidic grape juice (cold climate white grapes), the excess
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malic acid is a concern since the taste of related wines is quite sour [72]. Therefore, the
biotechnological reduction of malic acid would contribute to provide smoother wines (less
aggressive) from a tasty point of view. In the Sauvignon blanc grape juice containing
9.39 g/L of L-malic acid, the difference in final L-malic acid concentration reached 1.3 g/L
(Figure 7a) representing a pH shift close to 0.2 pH unit (Figure S2) with a possible impact
on the acidity perception. Second, such strains would contribute to facilitate malolactic
fermentation by increasing wine pH and reducing L-malic concentration. Indeed, we
demonstrated that none of the FMGSs strains selected has a negative impact MLF ongoing
inoculated with a commercial starter (Lactoenos® B7 Direct, Laffort oenology, FRANCE).
In contrast, the malic acid reduction and the pH increase promote the MLF by reducing
its duration. Therefore, whatever the residual amount of L-malic acid at the end of the
alcoholic fermentation, the MLF is initiated readily without any significative impact on the
consumption rate of bacteria.

By measuring the MAC% in several musts and conditions (temperature, nitrogen
composition and L-malic concentration) we demonstrated that the high consumption
properties of FMGS’s strains are quite robust to environmental changes. Temperature did
not impact this trait and the main factor is the nature of grape juice (Figure 6a). Although
the compositions of the two grape juices are not chemically defined, a possible cause of
this discrepancy should be the pH of the media that affects the charge and the transport
of malic acid [70]. However, in a specific must, L-malic acid concentration has moderated
effect (Figure 6c). Beside the nature of the must, the impact of nitrogen seems to be the most
important factor with strain specific interactions that has been previously reported [57].
Indeed, malic-consumer strains achieved a stronger MAC in nitrogen rich conditions which
is not the case of GN. The GN’s behavior was previously reported for other wine yeast
strains [57]. This suggest that the high malic-consumer strains selected would have a
particular response to nitrogen level.

Although significantly improved, the consumption of the total amount of malic acid
by S. cerevisiae seems to be illusive. Indeed, the strain FMGS_889 consumed 84% of malic
acid in SB16 and 67% in M15. In both cases, the final concentration of malic acid fall
to 0.9 g/L constituting a kind of physiological threshold. This limit is likely due to the
absence of an active malic acid transporter able to pump in this organic acid through the
cell membrane [73]. A further improvement of malic acid consuming ability would require
the enhancement of malic acid uptake. Beside the expression of recombined proteins [41],
this new skill might be acquired by activating quiescent transmembrane transporter by
mutagenesis as achieved for xylulose import [74].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7040304/s1, Table S1: SNPs detected by mass array, Table S2: Composition of grape
must, pH and nitrogen sources added, Table S3: MAC measured in 31 starters and the four founder
strains [52], Figure S1: Purification rate of progeny clones of FMGS-1 and FMGS-2 hybrids, Table S4:
FMGS-1 and FMGS-2 genotypes and phenotypes, Table S5: Part of variance of pair-wise interactions
in FMGS-2 population, Table S6: Analysis of variance of environmental and strain effect in selected
strains, Figure S2: pH of wines at the end of the alcoholic fermentation, Figure S3: MFL parameters.
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