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ABSTRACT 

A numerical simulation of a wood fire in a natural gallery is compared with experimental 

data. Temperatures, velocities, gases and particles concentrations as well as soot deposits are 

the measured quantities of the experiment. We expose in this article the comparison with a 

simulation performed by the open-source solver FireFOAM. In order to improve the accuracy 

of the modeling, the initial numerical tool has been modified. A boundary condition for 

temperature based on energy conservation has been added to better estimate thermal losses at 

the walls. A hypothesis regarding vertical velocity in a confined geometry containing a 

localized fire is also made. By assuming that the velocity is exclusively horizontal, the error 

between simulation and experiment is reduced. With the aim of comparing the temperature 

measurements with the simulation accurately, the thermocouple model commonly used in 

FireFOAM has been changed. The limitations of the previous models are also discussed. 

Then, two combustion side issues are presented. First, the model of Beresnev-Chernyak 

computes soot deposit on walls. Second, the fractional effective doses (FED) for toxicity, 

radiation and heat hazards have been implemented to evaluate the safety of the environment 

during the fire.  

Nomenclature 

� Absorption coefficient (m-1) 

� Concentration (% or ppm) 

�� Specific heat at constant pressure (J.kg-1.K-1) 

�� Specific heat at constant volume (J.kg-1.K-1) 

�� Power released by the chemical reaction (W) 

� Distance between the fire and the closest wall (m) 
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	 External force (N) 


 Friction factor 

� Incident radiation (W.m-2) 

� Specific enthalpy (J.kg-1) 

�
 Total specific enthalpy (J.kg-1) 

�′ Height of the ceiling (m) 

� Heat convection coefficient (W.m-2.K-1) 

� Radiative intensity (W.m-2) 

� Subgrid-scale kinetic energy (m².s-2) 

� Characteristic length (m) 

��  Mass loss rate (kg.s-1) 

� Pressure (Pa) 

��  Heat of combustion (J.kg-1) 

�� Convective heat release rate (kW) 

��� Incident radiative flux (W.m-2) 

�� Radiative heat flux (W.m-2) 

� Ideal gas constant (J.mol-1.K-1) 

� Specific gas constant (J.kg-1.K-1) 

� Ray direction 

� Source term (W.m-3) 

��� Strain rate (s-1) 

�� Stoichiometric coefficient of the oxidizer 

  Temperature (K) 

! Velocity (m.s-1) 

" Molar fraction 

# Mass fraction  

Greek terms 

Δ Filter size (m) 



% Emissivity 

%
 Turbulent kinetic energy dissipation (m2.s-3) 

& Error between simulation and experiment 

'()) Effective thermal diffusity (m².s-1) 

* Thermal conductivity (W.K-1.m-1) 

+ Dynamic viscosity (kg.m-1.s-1) 

+()) Effective dynamic viscosity (kg.m-1.s-1) 

, Stoichiometric coefficient 

,
 Eddy viscosity (m².s-1) 

- Density (kg.m-3) 

. Stefan-Boltzmann constant (W.m-2.K-4) 

/ Flux (W.m-2) 

0� 1 Chemical reaction rate (kg.m-3.s-1) 

Subscripts 


 Fuel 

2 Gas 

� Specie 

3 Oxidizer 

4 First cell within the wall 

5 Wall 

∞ Surrounding 

1 Introduction 

The fire research has known important changes with the beginning of CFD (Computational 

Fluid Dynamics) simulation. Nowadays, the advances of numerical simulation with the 

increasing computing capacities allow the reproduction of real fires. The quality of the 

numerical representation can be discussed and the complexity of combustion problems is still 

an important obstacle. The mixing of several physics is the main difficulty for CFD 

simulation. Turbulence, chemistry and radiation make combustion hardly predictable. CFD 

tools are currently used in different subjects within the general topic of combustion. For 

instance, a lot of investigations about LES (Large Eddy Simulation) simulation of 



compartment fires were conducted [1], [2], [3]. The authors managed to predict the behavior 

of fires thanks to numerical simulation. Close to these researches, this study handles the large 

eddy simulation of fires inside confined geometries. More particularly, this investigation 

concerns localized fires in gallery-like geometries. Basically, this matter falls within various 

fire fields such as fire safety in specific confined places like parking lot, underground mining 

or tunnels. Spread of fire as well as smoke circulation in parking lot is an important issue for 

people security and the risk of death for people in such public areas has to be estimated. This 

question was treated by numerical simulations in [4], [5]. The general problem of fires in 

tunnels is also prominently featured. The safety matter is obviously an old topic [6], [7], that 

CFD renewed [8], [9]. The storage of hazardous waste in confined places necessitates also 

caution because of fire risks [10]. This investigation has also links with flames beneath 

confined ceilings which are broadly studied experimentally and numerically [11], [12], [13]. 

Besides these contemporary matters, fires in gallery-like geometries can also be a 

prehistorical issue. For instance, the Paleolithic Chauvet-Pont d’Arc cave [14], [15] contains 

three kinds of witnesses of prehistorical fires: red colorations of stone areas [16], spallings 

and soot deposits. These evidence suggest that fires were carried out deep inside this cave 

between 37,000 and 33,500 years ago [17], [18]. Standard explanations can be suggested such 

as lighting, ignition source for torches or pigment production [19]. But the unusual scale of 

the fires in the confined Megaloceros gallery whereas the big Hillaire Chamber could have 

hosted them leads to other assumptions such as protection from animals or more symbolic 

functions. For conservation reasons, only numerical simulation can answer to this question. 

Simulation aims at providing information about the fires function by estimating the amounts 

of wood, the fire numbers and the ability to supply the hearths despite temperature and 

toxicity. More broadly, this modeling takes part in the study of the prehistoric Man’s 

appropriation of the underground environment. 

First, an experiment was carried out for the purposes of reproducing similar thermal 

alterations to the ones in the Chauvet-Pont d’Arc cave. A hearth was placed within a former 

limestone quarry described in the next section. Three fires (one per day) were made in order 

to test the reproducibility of this kind of combustion. The fire remained localized and no 

propagation occurred during the combustion. The experimental protocol is detailed in the 

following section. It should be noted that the quarry, like whichever caves, has an irregular 

geometry involving unusual difficulties in the numerical resolution. Because we are interested 

in the reproduction and the simulation of thermal marks, we must use the exact geometry of 

the quarry with all irregularities.  

From this perspective, a previous study [20], linked to the Chauvet-Pont d’Arc fires, was 

performed with the software FDS [21]. The geometry was simplified for the simulation of 

weak fires close to a flat wall. The approximation did not impact the numerical results for this 

kind of fire. However, since the final application of this investigation is the Chauvet-Pont 

d’Arc cave, the preliminary results of this article aim at validating the model on the exact 

quarry geometry. Among free open-source software, FireFOAM [22], a tool developed by FM 

Global, can simulate combustion in any geometry. This solver is then selected to simulate the 

experimental fire. 



Second, the numerical model of FireFOAM is described. It is an OpenFOAM [23] solver 

dedicated to fire simulations. This open-source software is a very promising tool allowing 

LES simulations and resolution of aerothermochemistry equations as well as radiation. The 

flames field is broadly studied with FireFOAM [24], [25], [26]. FireFOAM manages the 

simulation of fires in confined geometries as demonstrated in [27], [28]. OpenFOAM can also 

perform calculations in complex geometries which is a key point in this study. Its useful 

framework for personal C++ programming gives the possibility of implementing additional 

code. In particular, some general theoretical hypotheses have already been tested in other 

articles like [29] thanks to the modification of a former version of FireFOAM. 

Third, several unavailable features in the version 4.0 of FireFOAM have been added to 

improve the physical description of fires. We present modifications concerning thermocouple 

correction, resolution of temperature boundary condition in the case of convection along a 

wall, and an assumption of an exclusively horizontal velocity far enough from the fire. The 

latter is a hypothesis that allows FireFOAM to reach better results for this study. Additionally, 

the deposition of soot during a wood fire and the hazard assessment due to toxicity, 

temperature and radiation are modeled.  

Fourth, details about the numerical simulations are given. Especially, the reconstructed 3D 

geometry of the experimental cave is presented. Careful choices required for simulation with 

FireFOAM are also discussed. Lastly, the simulated results are faced with the experimental 

measures (temperature, velocity, gases and particles concentration). A validation of the 

numerical heat release rate (HRR) is also achieved in a dedicated section. 

2 Description of the fire experiments 

2.1 Compartment geometry and fire characteristics 
The experiments took place in a former rupelian limestone quarry, located in Lugasson 

(France). The L-shaped quarry is composed of two right-angle galleries of 9 meters. The 

entrance in the first gallery leads to the outside (Fig. 1). Because the quarried limestone was 

used in the Bordeaux building construction, the quarry has the typical dimensions of mine 

galleries. Keeping in mind the archeological matters [30], a major factor in the choice of the 

location was the dimensions which are similar to the Megaloceros Gallery in the Chauvet-

Pont d’Arc cave. Even if the fire was designed for archeological applications, the combustion 

consists in a general localized fire.  



 

Fig. 1. 3D geometry of the quarry acquired by photogrammetry (P. Mora, Archéotransfert).  

The objective of the experiment was the reproducibility of one localized fire. One fire per day 

was made over three days at the back of the gallery 2. The fireplace was located at 80 cm 

from the back of the second gallery and centered between both walls. Its diameter was about 

80 cm throughout the combustion of the three fires (Fig. 2). The entrance was large enough to 

ensure the ventilation of the fire.  

As regards the fuel, scots pine (pinus sylvestris) was burned. We chose to shape bundles in 

order to quantify the amount of wood precisely. Each bundle weighted about 4.5 kg. The 

initial moisture content of the bundles was measured before the tests by a humidity sensor and 

estimated to be about 22%. The bundles were all composed of branches with typical diameters 

of the population of scots pine. Each branch had a length of about 80 cm. So, the bundles 

were all similar and well characterized.  

At the beginning of each fire, 4 bundles were put on the burning site to initiate combustion 

(Fig. 2). According to tests achieved before the experiments [31], a tepee configuration 

produces a tall flame and optimizes the ceiling jet flow. To maximize the ceiling impact and 

produce thermo-alterations similar to the thermal marks visible in the Chauvet-Pont d’Arc 

cave [19], [14], the tepee arrangement was adopted (Fig. 2). The ignition of the 4 first bundles 

was done with a blowtorch. Then, the bundles were progressively added in pairs to the fire. In 

total, 30 wood bundles were burned per fire, representing about 135 kg of pinus sylvestris. 

Because of the extreme conditions, the firewood was brought to the hearth by firemen with 

security equipment at regular intervals (Fig. 2). The moment of each supply was chosen 

during the first fire, in order to prevent as good as possible any decay of the heat release rate 

(Tab. 1). The same supply times were used for the two other fires to have the same protocol.  



 

Fig. 2. On the left: Initial hearth in a tepee configuration at the back of the gallery 2. The 

wood is placed on a weighing scale. On the right: Wood supply by firemen with security 

equipment. 

Moment (min) 0 6 :28 10 :21 14 :40 17 :36 22 :52 25 :25 

Mass (kg) 17.14 9.53 8.51 9.02 8.7 8.42 9.63 

Moment (min) 28 :00 31 :10 34 :06 37 :26 39 :27 41 :29 42 :55 

Mass (kg) 9.38 9.6 9.27 8.86 8.88 8.65 8.37 

Tab. 1. Moments of supply and corresponding added masses. 

2.2 Instrumentation 
The galleries were instrumented with thermocouples trees, gas concentration sensors (oxygen, 

carbon monoxide and carbon dioxide), velocity sensors, pegasor particle sensors (soot 

concentration) and a weighing scale under the hearth. The locations of all the sensors are 

specified on the figure 3. The weighing scale permited to know the mass of wood burned 

during the experiment. The mass loss rate is therefore known and the heat realease rate (HRR) 

is deduced from the heat of combustion. The heating value was estimated to be about 

12.5 MJ/kg from a previous calorimeter hood test [31] and is supposed to remain constant 

during the experiment. 



 

Fig. 3. Cut-away view of the quarry with the locations of the hearth, the thermocouples trees 

and the soot deposit measures. A camera was placed on the floor, near the corner. Dimensions 

are in cm. 

The thermocouples were positioned in order to have a homogeneous spatial distribution in the 

fire gallery (trees T1, T2 and T3) and also a uniform vertical dispatching to measure 

temperature within the cold and hot layers (the exact vertical position of the thermocouples is 

given in the section 6). Eight 0.5 mm diameter type-K thermocouples were used for the 

experiment. As they are shielded thermocouples, they are sparsely affected by radiation. The 

gas sensors measure the concentration of the three gases (oxygen, carbon monoxide and 

carbon dioxide) at the tree T3, 23 cm under the ceiling. A pegasor particle sensor (PPS) was 

situated in the smoke at the point S1, 18 cm under the ceiling. It is based on an electrical 

measure linked to the particle concentrations (supposed soot). The standard calibration [32] is 

corrected for this kind of soot [33]. We set up the velocity sensors at the entrance of the 

quarry (T4). An ultrasonic anemometer was fixed at 70 cm above the floor and a McCaffrey 

probe was fixed at 21 cm under the ceiling. Finally, some aluminum plates were fixed on the 

walls (points S1 and S2) to collect soot particles and estimate the mass of soot deposited by 

the thermophoresis phenomena. Located in the corner of the cavity, a camera filmed the 

experimental fires. 

3 Numerical description 



In this section, the mathematical equations implemented in FireFOAM-4.0 are detailed. The 

governing equations are first explained. Then, the turbulence, combustion and radiation 

models are described.  

3.1 Governing equations  
FireFOAM solves the Favre averaged Navier-Stokes equations in addition to the Favre 

averaged transport equations for species mass fraction: 

78
9
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 (1) 

where    S is the Reynolds average symbol,     A  is the Favre average symbol, - is the fluid 

density, ! is the velocity, � is the pressure, +()) is the effective dynamic viscosity,  �@EIIII = 1 2⁄ D; !@A ;4�⁄ + ; !EA ;4�⁄ F is the strain rate, 	 is the gravity force, �
 is the total 

specific enthalpy, � is the specific enthalpy, '()) is the effective thermal diffusivity, �� is the 

radiative heat transfer, � is a source term, #1 is the mass fraction of the specie k, 01˙  is the 

chemical reaction rate, � is the universal gas constant divided by molar mass and   is the 

temperature.  

The unity Lewis number assumption is made. The mass diffusion coefficient is supposed to be 

equal to the thermal diffusion coefficient. This approximation is a current hypothesis in fire 

numerical simulation that comes close to the mass transfer reality [21]. The turbulent fluxes of 

species and total enthalpy are simplified and assumed to be gradients. For instance, regarding 

the species: -̄!@′′#1′′U ≈ −-̄'()); #1M ;4�⁄ . 

The specific heat capacities are estimated thanks to the Janaf thermochemical tables 

corresponding to polynomial approximations [34]. The thermal conductivities are calculated 

by the modified Eucken correlation [35]: * = +��W1.32 + 1.77 � ��⁄ Z with �� the specific 

heat capacities at constant volume. The dynamic viscosities are calculated by the Sutherland's 

law [36]: + = [\ W1 +  \  ⁄ Z √ ⁄ , with [\ and  \ two Sutherland’s law coefficients. 

Then, the fluid properties are calculated for the mixture as molar averages of all species.  

3.2 Turbulence modeling 
The numerical simulation is based on the Large Eddy Simulation (LES) model. A one-

equation turbulence model [37] is used to close the previous set of equations (1). FireFOAM 

determines the subgrid-scale kinetic energy � by solving: 

 ;- � ;=⁄ + ;-!EA � ;4�⁄ − ; ;4�⁄ ^+()); � ;4�⁄ _ =−2 3⁄ -�; !1̀ ;41⁄ + +()); !@A ;4�⁄ D2�@EIIII − 2 3⁄ �11IIIIK��F − �a- �b c⁄ d⁄  (2) 



where d is the filter size directly linked to the cell size and �a = 1.048. Then, the calculation 

of the eddy viscosity is computed by ,
 = �1√�d with �1 = 0.094. 

To estimate the eddy thermal diffusivity, we assume that the turbulent Prandtl number is 

constant and is worth 0.85 (value usually used and deduced from experimental data). 

3.3 Radiation Modeling 
FireFOAM assumes that turbulence does not affect radiation. Therefore, the radiative transfer 

equation (RTE) is solved without turbulence interaction. Moreover, the gases are supposed to 

be a grey medium and scattering is neglected because of the low experimental soot 

concentration (Fig. 19). The solved radiation equation is not dependent on the spectral 

properties of gases. With these hypotheses, the radiation equation is: 

 �. h�W�, �Z = �W�ZD. ⁴ W�Z k⁄ − �W�, �ZF + �W�Z (3) 

where � is the radiative intensity, s is the ray direction, � is the absorption coefficient of the 

medium and . = 5.67. 10nop. �nc. qnr is the Stefan-Boltzmann constant. The term � 

corresponds to the radiative emission from combustion which cannot be simulated directly 

because the grid cells are too coarse to estimate correctly local temperatures in the flames. 

Since the emission term is proportional to the fourth power of temperature, the simulation 

yields poor results in the flame region. To fix this issue, a source term depending on the heat 

release rate is usually added in simulations: � = 0.3�� where �� is the released chemical 

reaction power in OpenFOAM. We consider that 30% of the combustion energy is released by 

radiation for scots pine [38]. The absorption coefficient is estimated by the RADCAL model 

[39]. Soot radiation is embedded in the absorption coefficient through an additional term [40]: �\ss
 = t-\ss
"\ss
u1 + �\ss
W − 2000Zv where -\ss
 is the soot density, "\ss
 is the 

molar fraction of soot, t = 1232.4�². �2nx and �\ss
 = 4.8. 10nrqnx. 

Radiation is solved by the finite volume discrete ordinary method (fvDOM in FireFOAM). 

The radiative equation is solved in N directions in order to scan all the space (N is given in 

§5.4). 

Concerning boundary conditions, walls are considered as grey diffusive with an emissivity % = 0.95. The radiative intensity is computed as follows: �y = %. r +W1 − %Z k⁄ z �\.�{| �. }�~ with } the normal to the face. 

3.4 Combustion modeling 
It is necessary to model the chemical reaction rate appearing in the species equations and the 

energy equation. Because we are interested in the global results rather than an accurate flame 

description, the Magnussen model (Eddy-Dissipation Concept) [41] is sufficient: 

 0̇ = −-�� %
 �⁄ ��}D#) , #s ��⁄ F (4) 

where the indices 
 and 3 denote the fuel and oxidizer respectively, �� is the stoichiometric 

coefficient of the oxidizer, %
 is the subgrid-scale kinetic energy dissipation, � is the subgrid-

scale kinetic energy and �� is a model constant. To ensure a correct heat release rate, 



numerical tests end up at �� = 20. Then, the chemical reaction rate for each specie is 01˙ =,10̇ with ,1 the stoichiometric coefficient of the specie k.  

The chemical reaction of wood combustion is very difficult to figure out. Pragmatically, we 

choose a reaction that gives coherent results in comparison with the experiment:  

p33� +  0.4028 �c  +  1.516 �c  =  0.3609 ��c  +  0.8647 �c� +  0.0084 �� +  1.516 �c 

This equation is constant during the combustion. In OpenFOAM, the stoichiometric 

coefficient of soot is separated from the others and neglected in the calculations of the gases 

mass fractions. The soot modeling description is detailed in the following section. 

3.5 Soot modeling 
The soot mass fraction is not computed like the other species. Instead of solving a transport 

equation, FireFOAM assumes that the amount of soot is proportional to the carbon dioxide 

quantity. To specify the proportional constant, it uses the following relation: #\ss
 #\ss
,���⁄ = #��c #��c,���⁄  where #\ss
,��� and #��c,��� are both calculated under the 

assumption that all the fuel is burned in stoichiometric proportions. This simple equation is 

not time-consuming and is efficient enough for the study. Like gases, the stoichiometric 

coefficient is chosen to deliver consistent results: �\ss
 =  0.0015. 

4 Numerical contributions 
This section introduces additional models implemented in OpenFOAM-4.0 to carry out the 

simulation of the experiments (§2.1). 

4.1 1-D heat conduction in a virtual wall 
The fire is located within a gallery and a sizeable part of the energy is lost through the walls. 

In order to consider this phenomenon, we implement in OpenFOAM-4.0 a boundary 

condition which requires the resolution of the 1-D heat conduction equation for each 

boundary face. The interface temperature derives from the heat flux balance: 

 �� + �D � −  yF = * W y −  �Z �4⁄  (5) 

with � the convective heat transfer coefficient, * the thermal conductivity of the rock and �4 

the first spatial step discretization in the wall. The indices 2,5 and 4 correspond to the gas, 

wall surface and first discretization in the wall respectively. The model must account for the 

water in walls because they were saturated [42]. The evaporation of water is modeled through 

a high value of the specific heat capacity at 100°C [43], [20]. 

The convective tranfer corresponds to the loss due to boundary layers. Modeling them 

requires millimeter-sized cells in the parallel direction of the wall to catch the little 

irregularities. Then, because of the large geometry, the mesh of boundary layers necessary for 

wall-resolved LES would demand time-consuming computations. Moreover, the input 

geometry file (built by photogrammetry) is not precise enough to include such irregularities. 

Therefore, wall-resolved LES is not feasible in this study.  



So, the convective heat transfer must be modeled by empirical formulations. It is usually used 

in CFD simulations, for instance in FDS [21]. However, this approach highly depends on the 

first discretization at boundaries. The convective heat transfer coefficient should be estimated 

with the properties of the gas outside the boundary layer. In the simulation, we assume that 

the temperature of the first cell center approximates the gas temperature outside the layer. 

Then, this method is grid-dependent but a finer discretization would not necessarily provide 

more reliable results because the needed temperature must stay outside the boundary layer. 

Therefore, the safer approach in this specific case is the use of empirical formulations adapted 

to the experimental data.  

The ceiling jet phenomenon prevents the application of Nusselt number correlations to the 

ceiling. Instead, the Alpert correlation � = 0.246
W��/�′Zx/b Wr/�′Zn|.��˙  is used [44]. r is 

the radial distance from the fire, �′ is the height of the ceiling above the fireplace, �� is the 

convective heat release rate and 
 is an empirical friction factor. This formulation is only 

valid while 0.17 < �/�′ < 4. In the turning region (�/�′ < 0.17), the convective heat 

transfer remains constant. For smooth plate unconfined ceilings, 
 = 0.03 gives satisfying 

experimental results but the simulation requires another value. The figure 4 displays 

qualitatively the differences between simulated and theoretical gas temperatures along the 

first cells near the ceiling [44]. The grid cells are too coarse to capture the increase of 

temperature a few centimeters under the ceiling. Then, the temperature  � in (5) is 

underestimated by the simulation as shown on Fig. 4. Therefore, the convective heat transfer 

coefficient must compensate for this underestimation. Considering these explanations, the 

best fit to the data leads to a subgrid-scale friction factor 
\�\ = 825. This correlation is 

applied to the ceiling until 2.7 m from the fire centerline, respecting the validity range. 

 

Fig. 4. Comparison between theoretical and simulated temperature profiles close to the 

ceiling.  



The convective heat transfer coefficient for walls is usually estimated from the Nusselt 

number correlations for planes [45]. Then, � = �! * �⁄  with �! the Nusselt number and � a 

characteristic length corresponding to the boundary layer length. A characteristic length of 

1 m is often applied in fire simulators (FDS for instance [21]). However, for enclosure fires, 

negative buoyant wall flows can happen [46]. This physical process (Fig. 5) occurs when 

walls are close enough to the fire (� < �′). Then, inertial forces can be stronger than 

buoyancy forces and downward wall flows can appear. The quarry is 2.4 meters wide (� =1.2 m) and 2.5 meters high at the fireplace so this gases circulation took place during the 

experiment.  

 

Fig. 5. Schematic representation of the ceiling jet-driven wall flows phenomenon (without 

penetration in the cold layer).  

Cooper in [47] and [48] showed that the ceiling jet-driven wall flows can go down up to 80% 

of the ceiling height. Therefore, the temperature close to walls is higher than in the hot layer. 

Again, the coarse grid does not allow accurate calculations of the temperature near walls. A 

subgrid-scale modeling has to be set up for the characteristic length. 

The characteristic length must depend on layers. In the cold layer, the same characteristic 

length as FDS is chosen: 1 m. In the hot layer, the value of the subgrid-scale characteristic 

length is taken at 0.1 mm to make the simulation values fit the experimental ones. 

A critical temperature of 400 K is chosen to distinguish the hot layer from the cold layer 

because this value gives consistent results. Nevertheless, it seems that the precision of this 

temperature is not very important when the hot layer temperature is far higher than the cold 

layer temperature. 

4.2 Soot deposit 



A thermophoresis model has been added to compare the experimental and numerical soot 

deposits. Thermophoresis is usually considered as the dominant process responsible for the 

deposition of soot particles on vertical walls when the temperature gradient between gases and 

solids is important. The motion source of particles is then the temperature gradient in the 

mixture of gases. In a hot surrounding gas, collisions are more important than in a colder gas. 

As a result, soot particles migrate to the colder surroundings, so partly to the walls. The 

thermophoretic velocity is defined by: �
� = −q
� +� -�⁄ h   �⁄ . 

The thermophoretic diffusion coefficient q
� has to be modeled. In this study, q
� is 

estimated by the Beresnev and Chernyak model [49] because some studies showed its good 

agreement with experimental data [50], [51].  

4.3 Fractional effective dose (FED) 
An essential issue is the toxicity assessment in a confined place. The capability for 

prehistorical men to stand near a fire in a cave is an important matter as well as the 

intoxication of trapped people in tunnels or mines. Hence, we set up a living condition 

modeling with the so-called fractional effective dose (FED). This model evaluates the severity 

of toxic effects, temperature and radiative hazards. In the simulation, two kinds of FED are 

calculated. The first one is dedicated to gas toxicity whereas the other one is focused on 

temperature and radiation hazards. The FED is based on the dose notion, so the more you are 

exposed to hazard, the more your dose increases without ever reducing. This dose is a time 

integration: 	�� = z �= =�|% ⁄ , where =�|%  defines the required time to kill half of people. 

Thus, when the FED is worth one, the mortality rate is 50%. The FED of radiation and heat is 

the sum of both parts. The radiative incapacitation time [52] is =�|%,��� = 10��nx.bb when �� > 2.5 �p/�² and tends to infinity in the other case (	�� = 0). The following formula 

gives the heat incapacitation time [52]: =�|%,�(�
 = 5.10cc nxx.�ob + 3.10⁷ nc.��b�. If the 

temperature is higher than 200°C, the incapacitation time is 0 (anyone dies). 

As regards gas concentrations, there are interactions between gases toxicities. The fractional 

effective dose is as follows [52] [53] [54]: 	�� = �����	���� + 	���� + 	�����  with 

 =�|%,�� = �4� �8.13 − 0.54D20.9 − ��₂F� 

=�|%,�� = 10� ���nx.|b� 2.764⁄  

=�|%,��� = � 0 if ���� < 5.5%2193.8 − 311.6��� − 311.6���₂ if 5.5% < ���� < 7�4�D6.1623 − 0.5189���₂F if ���� > 7%  

����� = �4� D0.1903���� + 2.0004F 7.1⁄  

(6) 

where �1 is the concentration of the specie k in % except for carbon monoxide in ppm (parts 

per million). 

4.4 An accurate thermocouple correction 



On the one hand, the experimental temperatures correspond to the temperatures given by the 

measuring sensors (thermocouples). On the other hand, simulation supplies the gas 

temperatures. But a gap necessarily exists between the gas temperatures and the measures. 

First, the sensor is solid and can be more affected by radiation than the surrounding gas. 

Second, a boundary layer occurs at the thermocouple surface and losses by convective heat 

transfer happen. Thus, a temperature correction is required to compare experimental measures 

with the simulation accurately. The following discussion handles temperature corrections 

applicable to general thermocouples.  

OpenFOAM already contains a thermocouple correction model [55]. However, we modify it 

to enhance the correction accuracy. The OpenFOAM model and our modifications are 

detailed below.  

First, the thermocouple is assumed to be thermally thin because its diameter is small enough 

(0.5 mm in this study). Consequently, the conduction in the sensor is neglected and the 

temperature in the thermocouple is homogeneous. The energy balance leads to: 

 -���;  ;=⁄ = ��[ + �D � −  F[ (7) 

where �� is the specific heat at constant pressure of the thermocouple, � is the thermocouple 

volume and [ is its area. The radiative heat transfer may be expressed as �� = %W�in − . ⁴Z 

with % the thermocouple emissivity.  

The key point is the calculation of the incident radiative flux �in. In the existing OpenFOAM 

model, the incident radiative flux is replaced by the incident radiation � = z� W�, �Z�~ and 

the equation (8) is then solved: 

 -���;  ;=⁄ = %W� − . ⁴Z[ + ��s��D � −  F[ (8) 

Contrary to this formulation, we decide to compute the incident radiative flux by the exact 

formula �in = z �\.�{| W�, �Z�. }�~ (with } the normal of the thermocouple). Without any 

information about the thermocouple normal, the incident radiative flux is averaged over the 6 

main directions.  

To check the efficiency of the implemented model, a simple test case with an analytical 

solution has been run. Physically, we want to describe the increase in temperature of a 

cylindrical thermocouple (% = 0.9) located within an empty cubic geometry whose the walls 

temperature remains at 500 K. The black body assumption for the walls is made. Because the 

area of the thermocouple is negligible against the box area, the thermocouple temperature is 

governed by - �r �� � �=⁄ = %.W  r −  rZ with    = 500 q the surronding temperature, - 

the thermocouple density, � the thermocouple diameter and �� the thermocouple specific heat 

capacity. The existing OpenFOAM model, the implemented one and the analytical solution 

are compared on the figure 6. The equations are solved with - = 8800 �2. �nb, � = 1 ��, 

and  �� = 440 ¡. �2nx. qnx. 



 

Fig. 6. Evolution of a thermocouple response in a simple test case, calculated with the existing 

model and the new implemented one. Both models are compared to the analytical solution. 

Because the computed value of �in is 3544 W.m-2 which is equal to .  r , the new model 

solves the same equation as the analytical theory. The existing model does not give 

satisfactory results. The value of � given by OpenFOAM is 14175 W.m-2. It is worth noting 

that in this case, we have the equality � 4⁄ = �in = .  r . This equality can be demonstrated in 

this simple case but it is not true in general. Nevertheless, some numerical tests have 

systematically given the approximation �in ≈ � 4⁄  with a good precision. Besides, the 

software FDS uses this approximation to provide thermocouple corrections. Therefore, the 

existing model could be extended to the one in FDS by replacing � by � 4⁄  in the equation 

(8). Nonetheless, the new model gives more satisfactory and safer results because it is based 

on mathematical considerations. 

All the considerations about the computation of the incident radiation are not applied to the 

simulation of the experiment because the thermocouples are shielded (% = 0). This 

assumption means that no radiation occurs between the measuring point and the sheath even if 

residual radiative fluxes can sometimes exist. 

4.5 The horizontal velocity hypothesis 
The measurements show that temperature is homogeneous in the hot layer. For instance, the 

figure 7 displays the temperatures measured in the hot layer at the tree T1. It is worth noting 

that the temperatures at the points T1_1 and T1_2 are similar despite a 50 cm vertical distance 

between both thermocouples. This well-known phenomenon has been observed for the three 

experimental fires. 



 

Fig. 7. On the left: measured temperature at the tree T1 at the points T1_1 and T1_2. On the 

right: cross section of the gallery near the tree T1, showing the vertical location (in cm) of the 

thermocouples. 

Physically, this observation necessarily involves the absence of any energy flux between both 

points. Therefore, by dividing the flux into the three usual heat transfers (conduction, 

convection and radiation), we reach the equation: /�s�� + /�s�� + /���  ~ 0. 

There is no difference of temperature between both points so the conduction heat transfer is 

almost nil. The radiative transfer can be separated into two contributions for each point: the 

incident and the emitted radiative heat fluxes. We note A and B the two points. So, /��� =/��,£ − /(�,£ − /��,¤ + /(�,¤ with /(� = . r. Since the temperatures are the same, /(�,£ ~ /(�,¤. Furthermore, the incident fluxes cannot be very different from one point to 

another as long as the distance between them stays relatively small. Consequently, /��,£ ~ /��,¤. We deduce that the radiative heat flux is worth about zero: /���  ~ 0. 

Therefore, the absence of global heat transfer leads to /�s�� ~ 0. The subsequent result of this 

property is the absence of vertical convective transfer between both points. Then, if a vertical 

velocity exists, a counter velocity is required to balance the flux. But, without any temperature 

gradient, there is no source of vertical motion because the effects of gravity on the layer are 

the same at every point. Consequently, only negligible vertical velocities can exist in a 

homogenous layer.  

We point out that the absence of convective heat transfer within hot layers is already used in 

fire zone models (homogeneous layer temperature assumption), for instance in CFAST [56]. 

Moreover, there is no convective heat transfer between both layers. In the fire compartment, 

the only transfer between the layers occurs in the turning region (above the fire) in CFAST. 

A simulation of the experiment with FireFOAM-4.0 cannot forecast this behavior. The 

vertical velocity is not low enough to prevent an excessive convective heat transfer. For little 

heat release rates (HRR), FireFOAM computes approximately two layers. But in such a 

confined geometry, the software does not simulate two layers correctly. Instead, a regular 

temperature gradient takes place as showed on the figure 8. 



 

Fig. 8. On the left: numerical temperature field in the median section of the second gallery 20 

minutes after the ignition of the combustion. On the right: simulated temperature at the tree 

T1 at the points T1_1 and T1_2. 

Therefore, without enforcing velocity, the temperature profiles do not represent two distinct 

layers which is not acceptable in this study because it is not the reality. To avoid this major 

problem, we neglect the vertical convective heat transfer which FireFOAM overestimates. In 

order to keep the code architecture, we simply force the value of the z-velocity to 0 after each 

calculation of the velocity. This enforcement is not made in a zone (� < 0,8Z a little greater 

than the turning region (� < 0,4Z. This assumption is schematically represented on Fig. 9.  

 

Fig. 9. Schematic representation of the horizontal velocity hypothesis. The enforcement is 

only applied far enough from the fire. 

Moreover, we want to keep simulating the upward convection due to temperature gradient 

because it is necessary with an irregular ceiling which may have some recesses. Therefore, in 



each cell, if the temperature of the cell above is lower, we keep the calculated velocity 

without enforcing !¥ =  0. By this way, we authorize the gases to rise in higher recesses. 

Now, the gradient is not regular anymore and two layers are simulated by this modified 

FireFOAM version (Fig. 10). Consequently, the temperature remains almost homogeneous in 

the hot layer. 

 

Fig. 10. On the left: numerical temperature field in the median section of the second gallery 

20 minutes after the ignition of the combustion. On the right: simulated temperature at the tree 

T1 at the points T1_1 and T1_2. Both are performed without z-velocity outside the turning 

region. 

The global comparison between experiment and simulation is presented with this assumption 

in the section 6. 

5 Numerical setup 

5.1 Geometry mesh 
Thanks to photogrammetry techniques, a 3D survey of the quarry has been achieved (Fig. 1). 

The input file of the simulation thus consists in a CAD file of the quarry. Then, the meshing 

tool “snappyHexMesh” [57] meshes the geometry with specified size cells. Because of the 

domain scale and the duration of the fire (50 minutes), choices must be made to mesh the 

geometry. In this study, we are not interested in describing accurately the flame but rather 

having an acceptable description of the global environment. The computational domain is 

meshed with cells of 3 cm above the hearth, 6 cm cells in the hot layer and 12 cm cells in the 

remainder of the quarry (Fig. 11). The mesh includes about 290,000 cells. A cartesian mesh 

has been chosen because snappyHexMesh cannot properly manage unstructured meshes with 

centimeter-sized cells. Moreover, for the purpose of applying this modeling to the more 

complex Chauvet-Pont d’Arc cave geometry, structured meshes appear safer.  



 

Fig. 11. 3D mesh of the quarry performed by the tool snappyHexMesh [57]. 

The hearth needs to be present and meshed as a wall in the simulation. Without it, the gases 

circulation would press the flame against the back of the gallery 2. Because of the sensitivity 

of FireFOAM, the hearth must be carefully meshed. The real teepee looks like a pyramid 

(Fig. 12) in the simulation in order to have plate burners numerically more stable.  

 

Fig. 12. 3D mesh of the hearth at the back of the gallery 2 with plate burners (black color). 

5.2 Heat release rate boundary condition 
The HRR is linked to the mass flow rate through the heat of combustion ��� = �� �� . The 

mass flow rate boundary condition at the burners corresponds to the measures of the weighing 

scale. Plate burners are sporadically placed on the hearth (in black on Fig. 12). The mass flow 

rate boundary condition is only applied to the plate burners. On the rest of the pyramid, the 

velocity is fixed at 0 (as a wall).  

Basically, the heat release rate (HRR) corresponds to the sum of the released chemical powers 

of all cells. So, a gap can exist between the prescribed boundary condition and the HRR 

calculated after the resolutions of the set of equations (1) if numerical errors happen. Some 

numerical tests show that the burner surface has a not expected great influence on the HRR. 

The surface appears in the computation of the mass flow rate through �� = -¦[¤§��(�. 

Because the user specifies the value of the mass flow rate at the boundary, the surface should 

not affect the value of the HRR. To demonstrate that the contrary happens, a test case 



consisting in a square plate burner (in black on Fig. 13) within a cube is run. The mesh only 

includes cells of 3 centimeters. 

 

Fig. 13. 3D geometry of the test case corresponding to a cube. The plate burner is the black 

square (variable size depending on the configuration). 

The mass flow rate is fixed at 0.02 kg/s at the burner and the cube walls are adiabatic. The 

heat of combustion being 12.5MJ/kg, the HRR must be 250 kW. 4 configurations with 

various areas are inspected (Table 2): 

 Configuration 1 Configuration 2 Configuration 3 Configuration 4 
Area (cm²) 9 x 9 cm² 21 x 21 cm² 39 x 39 cm² 57 x 57 cm² 

Tab. 2. Plate burner areas for each configuration. 

The results of all configurations are showed on Fig. 14. The expected HRR should fluctuate 

around 250 kW for all configurations. This is true for the first two configurations but not for 

the third and fourth one. To get a consistent numerical HRR, we must use a little area. The 

larger the area is, the more the numerical HRR is overestimated. Under a critical area, the 

HRR does not decrease anymore. 21 x 21 cm² configuration seems to be just under this 

critical area for 3 cm cells and this combustion. This area is chosen in the simulation of the 

experiment (Fig. 12). For other discretizations and combustions, a critical area still exists but 

might be different from the configuration 2. 



 

Fig. 14. Comparison between the numerical heat release rates of the four configurations. The 

dashed line corresponds to the theoretical HRR. 

The comparison between the experimental and the numerical HRR is presented in the section 

6.1.  

5.3 Initial and boundary conditions 
The hearth is considered as adiabatic. At the quarry walls, the temperature is calculated by the 

equation (5). The velocity is fixed at 0 everywhere except at the burners where the HRR is 

imposed through a velocity boundary condition (§5.2). All mass fractions satisfy zero 

Neumann boundary conditions at every wall. Outside the gallery, a big volume (20 x 20 x 80 

m3) is added to the quarry geometry to keep a stock of ambient air. At the walls of this 

volume, the temperature is fixed at 12°C like the initial condition.  

5.4 Numerical considerations 
Radiation requires the discretization of the space in 32 solid angles. Moreover, the radiative 

transfer equation (3) is solved once every 10 flow resolutions. Some tests were conducted 

with more solid angles and more frequent RTE resolutions (equation 3). In this study, both 

parameters do not have any influence beyond these values.  

Finite volumes are used to solve the governing equations (1). The Courant number is limited 

to 0.6. A more restricted CFL (Courant-Friedrichs-Lewy) condition does not improve the 

results but a higher Courant number reduce precision.  

A decomposition of the domain is carried out in order to parallelize the calculation. 96 cores 

(8 processors) are used to perform the simulation on a Bullx DLC server with 4 x 24 cores 

Intel Haswell-EP Xeon 12-Cores E5-2690 V3 2.6 GHz. About 72 hours are needed to 

compute 50 minutes of combustion.  



6 Results and discussion 
This section presents the comparison between the experimental measures and the numerical 

results of the second fire. The comparison is made with this fire for measurement quality 

reasons. Temperatures, velocities, gas concentrations, soot concentrations, fractional effective 

doses and soot deposits are the investigated parameters. When it is significant, the average 

error & = ¨�©ª«n�¬­®¯¨�©ª«  is provided. 

6.1 Numerical Heat Release Rate 
The numerical HRR is calculated at every time step as the sum of the parameter �� which 

corresponds in OpenFOAM to the power released by chemical reactions. The experimental 

HRR is estimated from the mass flow rate and the assumption that the heat of combustion 

stays constant with a value of 12.5 MJ/kg. The figure 15 displays the comparison between 

both. 

 

Fig. 15. Comparison between the numerical and the experimental HRR (Heat Release Rates). 

Excepting for expected fluctuations, the numerical simulation is totally in accordance with the 

experimentation. The average error is & < 3%. It should be pointed out that we ensured this 

agreement with the value of the constant model �� (equation 4) and the decrease of the 

numerical burner area. But the good trend with all the variations does not only stem from 

these careful choices. So, it validates the combustion modeling of the simulation.  

6.2 Temperature 
The simulated temperatures, corrected by the thermocouple model presented in §4.4, are 

compared to the measured ones for the thermocouples trees T1, T2 and T3 (Fig. 3). As 

expected, a strong thermal gradient takes place between the hot and cold layers during the 

main part of the experiment. After the establishment of the convection inside the quarry, the 



limit between both depends on the location in the quarry but remains around 1 m from the 

floor.  

The first studied tree is T1. It is close to the fire at the back of the second gallery (Fig. 3). As 

described in §4.5, the thermocouples T1_1 and T1_2 desmonstrate that the temperature does 

not change on 50 cm (Fig. 16). Near the ceiling, the temperature exceeds 300°C during more 

than 40 minutes. The temperature sensor T1_3 is in the cold layer during the main part of the 

combustion excepting at the end when the existence of two layers can be challenged. 

 

Fig. 16. On the left: comparison between the numerical and experimental temperatures at the 

tree T1. On the right: cross section of the gallery near the tree T1, showing the vertical 

locations (in cm) of the thermocouples. 

In the simulation, thanks to the hypothesis of an exclusively horizontal velocity (§4.5), the 

temperature is almost homogeneous in the whole hot layer. Without it, the FireFOAM 

simulation of this experiment would have given quite higher temperatures in T1_1 than in 

T1_2. Moreover, the simulated temperature in the hot layer remains very close to the 

experimental one during the whole time of the fire. The average error for both points is less 

than 17%. The simulated temperature near the floor (T1_3) is colder than the experimental 

results, especially at the end of the experiment. It may be essentially due to the horizontal 

velocity assumption. Close to the fire, the heat transfer from the hot layer to the cold one 

could be important and the two layers might not be distinctly separated. Thereby, a vertical 

velocity could be not nil at the boundary between layers. Moreover, as we move away from 

the fire, the velocity becomes almost exclusively horizontal (Fig. 9). But, the tree T1 might be 

too close to the fire to consider that the assumption is entirely correct at T1. However, despite 

the likely excessive aspect of this assumption next to the fire, it yields better results than 

without it, even for the cold layer.  

The tree T2 is also near the fire and the distance from the fire is similar to the tree T1 (Fig. 3). 

However, this tree is closer to the entrance of the gallery than T1. The experimental 

temperatures look like those of the first tree but T2_1 is colder than T1_1 (Fig. 17). Because 

the first tree is trapped between the fire and the back of the gallery 2, the gases are hotter 



around the tree T1. The sensor T2_2 comes in the hot layer about 30 minutes after the 

ignition. The last thermocouple stays in the cold layer and is slightly affected by the fire.  

 

Fig. 17. On the left: comparison between the numerical and experimental temperatures at the 

tree T2. On the right: cross section of the gallery near the tree T2, showing the vertical 

locations (in cm) of the thermocouples. 

Like the tree T1, the simulated temperature near the ceiling (T2_1) is reliable (average error 

inferior to 16%). Concerning the two others, the simulation globally underestimates the 

temperatures. The medium temperature (T2_2) is tough to analyze because this point is 

somehow between both layers. So, the measured temperature is very different over a few 

centimeters. The difference of temperature can come only from a little gap between both 

locations. Nevertheless, like the coldest one, the simulation gives a lower temperature than 

expected. The previous conclusions about the proximity to the fire can be transposed to this 

tree. There is not enough heat transfer to the cold layer.  

Eventually, the tree T3, which is the farthest from the fire, is analyzed. The comparison is 

presented on the figure 18. 

 



Fig. 18. On the left: comparison between the numerical and experimental temperatures at the 

tree T3. On the right: cross section of the gallery near the tree T3, showing the vertical 

locations (in cm) of the thermocouples. 

In the cold layer (T3_2), the temperature is not affected by the fire. The simulation is then in 

accordance with the reality even though a temperature increase dwells until the end of the 

combustion. But, the error remains acceptable considering that the deviation does not exceed 

30°C. In the hot layer, the trend is well described by the simulation and the temperature is 

very comparable to the experiment. The average error is inferior to 17%. But, the simulated 

hot layer is slightly colder than the measure, especially during the beginning. The hot layer 

seems to be too thick in the simulation. The energy is spread out on a larger volume and 

because it is less concentrated, the upper temperature is too low and the bottom temperature is 

too high. Even with the assumption of an exclusively horizontal velocity, it turns out to be 

difficult to compute the thickness of both layers as we move away from the fire. These 

troubles can be the expression of the accumulation of inaccuracies due to coarse 

discretization. FireFOAM being very costly, we are limited in the number of cells. And even 

if some tests were made with finer discretizations without major changes, we cannot rule out 

this source of error. 

6.3 Gases and particles concentration 
The gases concentration was measured at the point T3_1 (Fig. 3). Sensors measured the 

concentration of three gases: dioxygen, carbon dioxide and carbon monoxide (Fig. 19). The 

dioxygen decreases until about 16% and then oscillates around this value with the wood 

supply. The carbon dioxide (CO2) increases until a value of about 5% and stays at this order 

of magnitude during the fire. This value can cause pathologies if the residence time is too 

important. The carbon monoxide (CO) increases sharply and reaches a 1000 ppm 

concentration, which is not fatal for a human. The toxicity evaluation of the gases mixture 

within the whole quarry will be treated in the section 6.5.  

 

Fig. 19. Comparison between the numerical and experimental gases concentration at the point 

T2_1. 



The simulation of the gases concentrations gives very satisfactory results. The dioxygen and 

the CO2 are very well described and the average errors are 6% and 21% respectively. The 

experimental curves follow the numerical concentrations. The carbon monoxide is also 

similar to the experiment even if the gap between experiment and simulation is higher than 

the two others (& = 27%). It should be noted that the numerical results highly depend on the 

chemical reaction and the stoichiometric coefficients which were chosen to fit with the 

experimental results (section 3.4). Therefore, the range of the concentrations cannot be fully 

inaccurate. But the simulated trends are comparable with the measures and this point does not 

only stem from the stoichiometric coefficients. Indeed, the good description of the 

temperature at this point allows precise gases concentrations computations. A bad description 

of gases circulation would be a crippling handicap. 

In the same way, we measured the soot concentration 18 cm below the ceiling at the point S1 

(Fig. 3). Similarly, the simulated soot concentration is very accurate during all the combustion 

except at the beginning (Fig.20). It can be explained by the crossing of water vapor stemming 

from wood drying at the ignition. The amount of aerosols is large at the ignition of such wood 

fires. The establishment of the combustion takes time and the soot production is higher than 

for the rest of the fire. The simulation does not take this effect into account because the 

stoichiometric coefficient of soot remains constant. Excepting this spike, the simulation is 

conformed with the measures. Without considering the first five minutes, the average gap 

between simulation and experiment is 22%. 

 

Fig. 20. Comparison between the numerical and experimental soot concentrations at the point 

S1. 

The soot deposit comparison at two points (S1 and S2) reveals that simulation and experiment 

are not in the same order of magnitude, especially for the point S1 (Table 3): 

Point Experiment Simulation 
S1 0.84 mg 0.72 mg 
S2 3.09 mg 0.54 mg 

Tab. 3. Soot deposits at the points S1 and S2. 



Several issues may explain the difference. First, the temperature gradient is very small near 

the wall. Therefore, the main processus of soot deposition could be another one than 

thermophoresis which is based on temperature gradient.  Furthermore, the convective heat 

transfer is modeled from empirical formulations (see §4.1). The grid size is important in such 

a method as demonstrated in [58]. More generally, the inaccuracies could stem from the 

treatment of convective heat transfer to the walls. Estimating soot deposit on walls seems to 

require a precise method such as wall-resolved LES. As a result, we think that empirical 

formulations are not advanced enough to work out the soot deposition issue. 

Nonetheless, this model informs about the smoke path during the combustion because of the 

borderline of the deposition (Fig. 21). It is an important matter for prehistorical fires because 

only the observation of soot deposit is possible. The numerical limit of deposition matches 

very well with the visual observation achieved after the end of the combustion.  

 

Fig. 21. Simulated soot deposit on the walls of the galleries. 

6.4 Velocity 
As previously mentioned in the section 2.2, two velocity sensors were placed at the entrance 

of the first gallery in order to measure the velocity in both layers. As expected, the velocity in 

the hot layer was higher than in the cold layer considering that the cold layer is larger with 

denser gases. The comparison with the numerical simulation is described on the figure 22. 

 



Fig. 22. On the left: comparison between the numerical and experimental velocities at the tree 

T4. On the right: cross section of the gallery near the tree T4, showing the vertical locations 

(in cm) of the velocity sensors. 

The speed of outgoing flow is well simulated and the average is in the good range. Overall, 

the simulated cold layer velocity is in accordance with the experiments (& = 24%). However, 

at the end, a little error exists. Because of the HRR increase, the experimental velocity reaches 

a higher value. In the simulation, the upper velocity does not exceed 2.5 m/s. The experiment 

shows an increase until about 4 m/s at 45 minutes. This big gap (& = 36%Z could be 

explained by the accumulation of inaccuracies from the fire to the entrance. The tree T4 is the 

farthest removed from the fire and consequently, it is the least accurate. This error could also 

be explained by the ceiling jet phenomenon. The sensor could be at the height of the 

maximum velocity. But the cells size in the hot layer is 6 cm. Hence, the simulation only 

gives an average of the hot layer velocity without being able to describe the velocity variation 

(see §4.1). The numerical velocity is then lower than the experimental one.  

6.5 Fractional effective dose (FED) 
The fractional effective dose for gases 50 minutes after the ignition is displayed on the figure 

23.  

 

Fig. 23. Numerical estimation of the fractional effective dose for gases 50 minutes after the 

ignition in the median sections of both galleries. 

As a reminder, half of people subjected to a FED of 1 are in the incapacity of leaving by 

themselves. So, the red color means that the location is very dangerous and may be lethal. But 

when the FED is worth 0.3, 11.4% of people cannot leave by themselves. Therefore, a great 

hazard is still present while the color is not clearly blue. The figure 23 shows the toxicity 

danger in the quarry during the experiment. Even close to the ground, everybody could risk 

serious trouble, fatal or not. This observation was expected because staying 50 minutes in 

such an environment is obviously unsafe.  

The fractional effective dose for radiation and temperature 50 minutes after the ignition is 

displayed on the figure 24. 



 

Fig. 24. Numerical estimation of the fractional effective dose for radiation and heat 50 

minutes after the ignition in the median sections of both galleries. 

Once again, the red color indicates a death rate of at least 50%. However, near the ceiling, the 

FED is far higher than 1. Being in this area definitely implies the death. In the gallery 1, even 

a person lying on the floor would be in the critical red area. Besides, within the whole quarry, 

the minimal value for this FED is 0.2. In any locations, the human presence is very unsafe and 

the intervention of the fire department to supply the hearth was absolutely legitimate.  

An interesting point is the comparison between both FED. The radiation and the temperature 

in this experiment are more constraining than the toxicity. The gases are dangerous but for 

intense fires like these ones, the gases circulation is important and the toxic gases escape. In 

the cold area, the hazard exclusively stems from radiation because the temperature is cold 

enough to be bearable. Yet, the cold area is the safer location in such a fire. Therefore, 

radiation is the main threat that avoids human beings to remain in the galleries, close to the 

ground. The hot layer gases radiate too much energy to dwell on the floor without burning 

injuries. However, in confined caves, toxicity could be the main risk factor far enough from 

the fire, where prehistorical men could stay during the combustion. 

7 Conclusion 
Driven by archeological questions, an experiment is carried out in a former underground 

quarry. Three identical wood hearths are burned in order to test the reproducibility of such a 

combustion. The typical dimensions of the quarry make the results applicable to most of 

galleries, tunnels and mines. Various sensors are positioned throughout the gallery to measure 

gases and particles concentrations, temperatures and velocities. Some plates are fixed to the 

walls in order to collect the deposited soot. Then, the experimental measures are compared 

with the simulation performed by the numerical tool FireFOAM [22].  

Three contributions have to be added to the program to get consistent results. First, a thermal 

boundary condition is needed to estimate the losses through the walls correctly. The ceiling jet 

phenomenon is modeled by an appropriate convective heat transfer estimation. Secondly, a 

thermocouple correction is implemented to compare measures with simulation aptly. A test 

case reveals a significant gap between the existing model and the implemented one which 

exactly gives the analytical solution. Finally, in light of the experimental results, an 



assumption on the vertical velocity is required to simulate a meaningful solution. The velocity 

is considered exclusively horizontal outside the fire region except in the cells where the upper 

temperature is lower than the cell temperature. This enforcement suitably allows the 

simulation of two levels of stratification. This hypothesis seems to be valuable for the 

FireFOAM simulations of localized fires in confined geometries with opening.  

The simulation of the experimental fire with FireFOAM is satisfactory. The comparison 

reveals a good agreement with the measures of temperatures, gases and particles 

concentrations. The velocity range of the cold layer also fits to the experiment. These results 

validate the modeling with FireFOAM and allow its application to the Chauvet-Pont d’Arc 

cave. The gap between simulation and experiment is small enough to characterize the fires of 

the Chauvet-Pont d’Arc cave efficiently. 

In the purpose of improving the information about the environment, the soot deposition is 

estimated by the Beresnev-Chernyak model [49]. Even though the simulation does not 

successfully assess the amount of particles deposited on the quarry walls, the limits match 

with the visual observations. The hazard due to toxicity, radiation and temperature is 

calculated by means of the fractional effective dose (FED). In this study, the convection is 

efficient enough to evacuate gases and the greatest hazard turns out to be radiation. Therefore, 

the main hazard in a cavity such as the Chauvet-Pont d’Arc cave is likely radiation. This 

observation is of great importance for the supply of the hearth. Radiation is the more 

constraining danger in a gallery to supply the fireplace. 

Great care should be given to the numerical heat release rate (HRR) in FireFOAM. The 

burner area has an important impact on the numerical HRR value. The mass flow rate 

imposed on the burner is not sufficient to ensure the same flow rate after the calculation of the 

species transport. In this simulation, we carefully design the hearth to provide the same HRR 

as the experimental one. 

In the future, this modified version of FireFOAM will be used to simulate several fire 

scenarios in the Chauvet-Pont d’Arc cave. It should allow the discussion about the possible 

characteristics of these Paleolithic hearths. Afterwards, this modeling will be used in other 

archeological cavities with similar matters. Then, it could be used in more general contexts 

such as galleries, tunnels, mines or whichever comparable places. 
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Figure captions 

Fig. 1. 3D geometry of the quarry acquired by photogrammetry (P. Mora, Archéotransfert). 

Fig. 2. On the left: Initial hearth in a tepee configuration at the back of the gallery 2. The 

wood is placed on a weighing scale. On the right: Wood supply by firemen with security 

equipment. 

Fig. 3. Cut-away view of the quarry with the locations of the hearth, the thermocouples trees 

and the soot deposit measures. A camera was placed on the floor, near the corner. Dimensions 

are in cm. 

Fig. 4. Comparison between theoretical and simulated temperature profiles close to the 

ceiling.  

Fig. 5. Schematic representation of the ceiling jet-driven wall flows phenomenon (without 

penetration in the cold layer).  

Fig. 6. Evolution of a thermocouple response in a simple test case, calculated with the existing 

model and the new implemented one. Both models are compared to the analytical solution. 

Fig. 7. On the left: measured temperature at the tree T1 at the points T1_1 and T1_2. On the 

right: cross section of the gallery near the tree T1, showing the vertical location (in cm) of the 

thermocouples. 

Fig. 8. On the left: numerical temperature field in the median section of the second gallery 20 

minutes after the ignition of the combustion. On the right: simulated temperature at the tree 

T1 at the points T1_1 and T1_2. 

Fig. 9. Schematic representation of the horizontal velocity hypothesis. The enforcement is 

only applied far enough from the fire. 

Fig. 10. On the left: numerical temperature field in the median section of the second gallery 

20 minutes after the ignition of the combustion. On the right: simulated temperature at the tree 

T1 at the points T1_1 and T1_2. Both are performed without z-velocity outside the turning 

region. 

Fig. 11. 3D mesh of the quarry performed by the tool snappyHexMesh [57]. 

Fig. 12. 3D mesh of the hearth at the back of the gallery 2 with plate burners (black color). 

Fig. 13. 3D geometry of the test case corresponding to a cube. The plate burner is the black 

square (variable size depending on the configuration). 

Fig. 14. Comparison between the numerical heat release rates of the four configurations. The 

dashed line corresponds to the theoretical HRR. 

Fig. 15. Comparison between the numerical and the experimental HRR (Heat Release Rates). 



Fig. 16. On the left: comparison between the numerical and experimental temperatures at the 

tree T1. On the right: cross section of the gallery near the tree T1, showing the vertical 

locations (in cm) of the thermocouples. 

Fig. 17. On the left: comparison between the numerical and experimental temperatures at the 

tree T2. On the right: cross section of the gallery near the tree T2, showing the vertical 

locations (in cm) of the thermocouples. 

Fig. 18. On the left: comparison between the numerical and experimental temperatures at the 

tree T3. On the right: cross section of the gallery near the tree T3, showing the vertical 

locations (in cm) of the thermocouples. 

Fig. 19. Comparison between the numerical and experimental gases concentration at the point 

T2_1. 

Fig. 20. Comparison between the numerical and experimental soot concentrations at the point 

S1. 

Fig. 21. Simulated soot deposit on the walls of the galleries. 

Fig. 22. On the left: comparison between the numerical and experimental velocities at the tree 

T4. On the right: cross section of the gallery near the tree T4, showing the vertical locations 

(in cm) of the velocity sensors. 

Fig. 23. Numerical estimation of the fractional effective dose for gases 50 minutes after the 

ignition in the median sections of both galleries. 

Fig. 24. Numerical estimation of the fractional effective dose for radiation and heat 50 

minutes after the ignition in the median sections of both galleries. 

 

 

 

 

 

 

 

 

 

 

 



Table captions 

Tab. 1. Moments of supply and corresponding added masses. 

Tab. 2. Plate buner areas for each configuration. 

Tab. 3. Soot deposits at the points S1 and S2. 
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