Influence of lactic acid bacteria strains on ester concentrations in red

wines: specific impact on branched hydroxylated compounds

Marine Gammacurta, a,b,c,* Georgia Lytra, a,b Axel Marchal, b Stéphanie Marchand, b Jean

Christophe Barbe, a,b Virginie Moine, Gilles de Revel a,b

^a Univ. Bordeaux, ISVV, EA 4577 œnologie, 210 chemin de Leysotte CS 50008, 33882

Villenave d'Ornon Cedex, France

^b INRA, ISVV, USC 1366 œnologie, 210 chemin de Leysotte CS 50008, 33882 Villenave

d'Ornon, France

^c Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France

* Corresponding author:

Marine Gammacurta

Tel.: (33) 5 57 57 58 67

Fax: (33) 5 57 57 58 13

E-mail address: marine.gammacurta@u-bordeaux.fr

E-mail addresses of other coauthors:

georgia.lytra@u-bordeaux.fr

axel.marchal@u-bordeaux.fr

stephanie.marchand-marion@u-bordeaux.fr

jean-christophe.barbe@agro-bordeaux.fr

virginie.moine@laffort.com

gilles.de-revel@u-bordeaux.fr

Abstract

1	This research investigated the influence of lactic acid bacteria (LAB) strains on ester levels in
2	Bordeaux red wines. These wines were made in five Bordeaux areas in two vintages, using
3	three yeast strains. Malolactic fermentation (MLF) was carried out using industrial starters or
4	indigenous strains, each in triplicate. Ester concentrations were determined by liquid-liquid-
5	extraction- or HS-SPME-GC/MS at various stages in the winemaking process. The levels of
6	most compounds were slightly impacted by LAB, depending on grape variety. Nevertheless,
7	branched hydroxylated esters, such as ethyl 2-hydroxy-3methylbutanoate and ethyl 2-hydroxy-
8	4-methylpentanoate were the only compounds to be strongly influenced by the bacteria strain,
9	regardless of matrix composition or the yeasts used for alcoholic fermentation. Moreover, the
10	effect observed after MLF persisted over time, for at least 12 months. These esters are
11	apparently important markers of LAB esterase activity. To our knowledge, this was the first
12	time they had been identified in this role.

13

14

Keywords

lactic acid bacteria; branched hydroxylated esters; red wine; fruity aroma

1. Introduction

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

16

Red wine is not only the result of the fermentation of sugars by yeasts, but is almost always followed by malolactic fermentation (MLF), conducted by lactic acid bacteria (LAB), which may occur spontaneously or be induced by inoculation with commercial starters (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006). Early works by Ribéreau-Gayon and Peynaud (1964) revealed the usefulness of this second fermentation, which usually ensures the stability of wines, as well as improving their aromas and flavors. The main result of MLF is to transform L-malic acid into L-lactic acid, accompanied by a release of carbon dioxide. Of all enological LAB species, Oenococcus oeni is preferred for MLF, as it is resistant to the harsh environmental conditions, decomposes the malic acid first, followed by the sugars, and forms little volatile acidity. This decarboxylation naturally reduces the total acidity and is accompanied by a slight increase in pH, which contributes to softening the flavor on the palate and enhancing its smoothness. MLF also promotes the microbial stability of wines by substrate depletion. These secondary bacterial metabolisms associated to bacterial development are responsible for chemical modifications affecting the olfactory and gustatory perception of wine (Bartowsky, Francis, Bellon, & Henschke, 2002; Henick-Kling, 1993; Matthews et al., 2004). The most frequently-reported aromatic compound associated with MLF is diacetyl (butane-2,3-dione), mainly released by LAB (Bertrand, Zmirou-Bonnamour, & Lonvaud-Funel, 1984; de Revel, Martin, Pripis-Nicolau, Lonvaud-Funel, & Bertrand, 1999) and associated with an increase in buttery character (Bartowsky & Henschke, 2004). Ethyl lactate is another marker of bacterial activity (Boido et al., 1999), but its impact on fruity aroma is quite limited, contrary to other esters, which are considered some of the most important fruity compounds in wines (Ebeler, 2001; V. Ferreira, López, & Cacho, 2000).

From a qualitative point of view, all red wines contain the same set of ester compounds. However, their respective proportions vary considerably from one wine to another (Antalick, Perello, & de Revel, 2014). Generally, these molecules are present at concentrations well below their perception thresholds, so it would be logical to assume that they do not modulate wine aroma. Since 2009, new data has revealed that these compounds play a central role in the fruity expression of red wines, via synergistic phenomena (Lytra, Tempere, Le Floch, de Revel, & Barbe, 2013; Pineau, Barbe, Van Leeuwen, & Dubourdieu, 2009). Thus, small variations in the concentrations of one or more esters may have a significant effect on the perception of fruity aroma. In particular, previous research demonstrated the impact of ethyl esters, acetates, and branched ethyl esters on the fruity character of red wines (Falcao, Lytra, Darriet, & Barbe, 2012; Ferreira et al., 2016).

Since the late 1960's, studies have highlighted the capacity of LAB strains (*Lactobacillus*, *Pediococcus*, *Leuconostoc*) to increase concentrations of some esters in wine during MLF during MLF (Pilone, Kunkee, & Webb, 1966). Screening the enzyme activity of several wine LAB strains revealed that some of them were also able to hydrolyze esters (Davis, Wibowo, Fleet, & Lee, 1988). In that regard, several studies exploring the modulation of wine aromas revealed that ester concentration increased or decreased after MLF (Antalick, Perello, & de Revel, 2012; Delaquis et al., 2000; Zeeman, Snyman, & van Wyck, 1980). These results suggested that the esterase activity of wine LAB, like that found in the cheese industry, was capable of synthesizing and/or hydrolyzing these compounds. This hypothesis was recently validated by Sumby, Jiranek and Grbin (2013), highlighting the role of the synthesis and hydrolysis of two enzymes, EstA2 and EstB28, involved in the ester biosynthesis pathway in *O. oeni*. LAB ester metabolisms are apparently strongly influenced by several enological parameters. Maicas, Gil, Pardo, and Ferrer (1999) reported that the concentrations of some esters either increased or decreased during MLF, according to the type of bacterial strain used.

Delaquis et al. (2000) reported that the aromatic composition of wines was influenced by both yeast and LAB strains, as well as winemaking conditions. Finally, Knoll et al. (2011) demonstrated the influence of ethanol and pH on MLF and ester profiles.

One of the difficulties in finding a consensus is that the previous work on this topic focused mainly on a few cases of bacterial strains or wines, whereas many enological parameters may affect the influence of LAB strains on the ester composition of red wines. Thus, it was essential to conduct a comprehensive study. To investigate the influence of LAB strains on ester levels, MLF was triggered using two different commercial *O. oeni* starters and compared with spontaneous MLF. To elucidate the influence of the yeast strain on LAB metabolism, alcoholic fermentation (AF) was triggered by inoculation with three different commercial *Saccharomyces cerevisiae* starters. To evaluate the impact of the matrix on ester metabolism by LAB, experiments were conducted during two vintages, using two cultivars, Merlot and Cabernet Sauvignon. Finally, to confirm the influence of LAB strains on some ester levels, particularly in micro-vinification, some of the wines tested were made on an industrial scale.

2. Material and methods

2.1. Winemaking.

Two different experimentations were conducted in the Bordeaux region during the 2011 and 2012 vintages. Microvinifications were carried out with Cabernet Sauvignon grapes (named WEC 2011 and WEC 2012). Vinifications in four wineries were conducted with Cabernet Sauvignon or Merlot grapes at industrial scale (MRGX 2011, MDC 2011, PCLN 2012, and STEM 2012) (Table 1). In all six experiments, AF was initiated by inoculation with rehydrated dried yeast, according to the manufacturer's recommendations (*S. cerevisiae* yeasts

strains: Actiflore cerevisiae, 522D; Zymaflore FX10, Biolaffort, Floirac, France; and Excellence XR, Lamothe-Abiet, Canéjan, France). AF was performed in 2 h L stainless steel tanks in triplicate under micro-vinification conditions. In wineries, AF was completed in stainless steel tanks in bigger volume (Table 1). Implantation in each tank under all experimental conditions was checked at the middle of AF (density close to 1.040). Yeast starter culture implantation was monitored by PCR at SARCO laboratory (Biolaffort, Floirac, France) (data not shown). It confirms that, for each wine, AF was carried out by the yeast strain implanted. MLF was triggered using starters (O. oeni bacterial strains: Lactoenos 450 PreAc and Lactoenos B28 PreAc, Biolaffort, Floirac, France) or indigenous strains (spontaneous flora), in triplicate for all experimental conditions (Table 1) at the end of AF. In wines inoculated with bacteria, starters were rehydrated with bacterial nutrient (Energizer®, Biolaffort, Floirac, France), according to the manufacturer's instructions, and added to wines at the recommended dose. Malic acid concentrations were measured once a week throughout MLF under the various conditions, to monitor the bacterial metabolism. Implantation control of commercial bacterial starter cultures (data not shown) was performed by the Microflora® laboratory (ISVV, Bordeaux University, France), based on a method developed by Claisse & Lonvaud-Funel (2012). This analysis also confirmed that the indigenous strains (IND1 and IND2) responsible for MLF in wineries, MRGX 2011 and MDC 2011, were different from each other and from the commercial strains used in this study (data not shown). At the end of MLF (<0.1 g/L malic acid), 5 g/h L SO2 were added. Wines made under winery and micro-109 vinification conditions were sampled for oenological and volatile compound analyses at the end of AF (<0.2 g/L glucose/fructose) and after completion of MLF (malic acid ≤ 0.1 g/L). Samples were collected for volatile compound analysis in 0.75 L glass bottles, stored at 10 °C for 1 week, decanted, and frozen at -18 °C prior to analysis. The remaining wine was stored in a 30 L stainless-steel barrel for aging. SO₂ content was measured and adjusted if necessary. Samples

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

were collected for chemical analyses after 3, 6, and 12 months' aging under the same conditions as those applied after AF and MLF.

118 2.2. Standard Chemical Analysis.

The standard chemical parameters of wine (total acidity, sugar, malic acid, yeast assimilable nitrogen, SO₂, pH, and alcohol) were analyzed by SARCO laboratory (Biolaffort, Floirac, France), using the official methods or those recommended by the International Organization of Viticulture and Wine (OIV).

2.3. Volatile Compound Analyses.

2.3.1. Chemicals.

Compounds used as internal standards, including octan-3-ol (99%), were obtained from Sigma-Aldrich (Steinheim, Germany); deuterated compounds, including ethyl butyrate-4,4,4- d_3 (>99%), ethyl hexanoate- d_{11} (>98%), ethyl octanoate- d_{15} (>98%), and ethyl *trans*-cinnamate- d_5 (phenyl- d_5) (>99%), were obtained from Cluzeau (Sainte-Foy-la-Grande, France). Dichloromethane (>99%) and sodium chloride (norma pure) were from VWR Chemicals (Fontenay-sous-Bois, France), anhydrous sodium sulfate (99%) was supplied by Scharlau Chemie (Sentmenat, Spain), and ethanol (\geq 99.9%) was obtained from Merck (Damstadt, Germany). R-ethyl 2-hydroxy-3-methylbutanoate (>98%), S-ethyl 2-hydroxy-3methylbutanoate (>98%), R-ethyl 2-hydroxy-4-methylpentanoate (>98.7%), and S-ethyl 2-hydroxy-4-methylpentanoate (>98.7%), were synthesized by Hangzhou Imaginechem Co., (Hangzhou, China).

2.3.2. Ester quantification by HS-SPME-GC/MS.

The method developed and validated by Antalick, Perello & de Revel (2010) was used to quantify thirty-two esters: six ethyl fatty acid esters, seven higher alcohol acetates, four branched acid ethyl esters, four methyl esters, three isoamyl esters, three ethyl esters with odd numbers of carbon atoms, two ethyl cinnamates, and some other minor esters. A mixture of ethyl butyrate-4,4,4-d₃, ethyl hexanoate-d₁₁, ethyl octanoate-d₁₅, and ethyl *trans*-cinnamate-d₅ (phenyl-d₅) at about 200 mg/L in ethanol was used as internal standard. In accordance with this method, 20 μL internal-standard solution was added to 25 mL wine. An aliquot of 10 mL of the wine mixture was put into a 20 mL standard headspace vial with 3.5 g sodium chloride. Samples were extracted by HS-SPME and analyzed by GC/MS. The fiber used was 100 mm polydimethylsiloxane (PDMS-100) (Supelco, Bellefonte, PA, USA), conditioned before use as recommended by the manufacturer. Quantification was performed with calibration curves built using red wines.

2.3.3. Branched hydroxylated ester quantification by liquid-liquid extraction and GC/MS analysis.

The method developed and validated by Lytra, Tempere, de Revel & Barbe (2012) was used to quantify two branched hydroxylated esters: ethyl 2-hydroxy-3methylbutanoate (E2H3MB) and ethyl 2-hydroxy-4-methylpentanoate or ethyl leucate (E2H4MP). According to this method, 100 mL wine were spiked with 20 μL internal standard solution (octan-3-ol at 1.04 g/L in ethanol). The mixture was extracted once with 8 mL and twice with 4 mL dichloromethane. The organic phases were blended, dried over sodium sulfate, and concentrated under nitrogen flow (100 mL/min) to obtain 250 μL wine extract

Total ester content was quantified using an Agilent 7890A gas chromatograph coupled to a mass spectrometer (MSD 5975C, Agilent Technologies Inc., Santa Clara, CA). A 1 μL sample

of organic extract was injected in splitless mode (injector temperature, 250 °C; splitless time, 0.75 min) on a BP21 capillary column (50 m × 0.32 mm, 0.25 µm film thickness, SGE, Courtaboeuf, France). The oven was programmed at 40 °C for the first minute, heated to 220 °C at 3 °C/min, and then held at that temperature for 20 min. The mass spectrometer was operated in electron impact mode at 70 eV with selected-ion-monitoring (SIM), using 3 characteristic ions for E2H3MB: m/z 73 as quantifier and m/z 55 and 76 as qualifiers, as well as 3 characteristic ions for E2H4MP: m/z 69 as quantifier and m/z 87 and 104 as qualifiers. Quantifications were performed with calibration curves built using red wines. Enantiomers of both esters were assayed using an Agilent 6890N gas chromatograph coupled to a mass spectrometer (MSD 5973i, Agilent Technologies Inc., Santa Clara, CA). A 1 µL sample of organic extract was injected in split mode (injector temperature, 200 °C; split flow, 15 mL/min) on a Chiraldex Gamma-TA column (50 m × 0.25 mm, 0.12 μm film thickness, Astec, Whippany, NJ). The oven was programmed at 40 °C for the first minute, heated to 100 °C at 1 °C/min, and then at 3 °C/min to a final isotherm at 180 °C, which was maintained for 5 min. The mass spectrometer was operated in electron impact mode at 70 eV with SIM mode, selecting the same ions as previously described. After enantiomeric synthesis by an external collaborator, the R- and S-forms and a mixture of both (50:50) were injected separately to identify its LRI, and the peaks of the reference products were compared with those naturally

184

185

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

2.4. Statistical analyses

present in wines.

186

187

188

189

Volatile compound concentrations (micrograms per liter) were expressed as mean \pm standard deviation. For each experiment, a first one-way ANOVA was performed between esters levels quantified before and after MLF to study esters levels variation. A second one-way

ANOVA was carried out to study the influence of LAB strain on ester levels. ANOVA were followed by a Tukey *post hoc* test to identify differences between groups, using a 95% confidence interval. by Statistical analyses were performed using XLSTAT 2015.1.03.15659 (Addinsoft, Paris, France).

194

190

191

192

193

3. Results and discussion

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

195

A total of thirty-four esters were quantified before and after MLF in wines made under six different experimental conditions, using three yeasts and two commercial LAB strains. First, a two-way ANOVA was used to detect significant differences due to the yeast and LAB strains present during both fermentations for each experimentation. No yeast × LAB interaction effect was detected in any of the assays, indicating that the yeast strain responsible for AF did not influence the bacterial ester metabolism (Gammacurta, Marchand, Albertin, Moine, & de Revel, 2014). Therefore, for greater clarity, the results presented in this article will focus on the different bacteria strains used but only one yeast strain (522D). The results obtained with XR and FX10 yeasts are included in the supplementary data (Tables S2 and S3). As an overview of the results, mean variations (percentage) in post-MLF ester levels in wines made under winery conditions (PCLN and STEM), using yeast strain 522D are presented in Figure 1. Table 2 lists ester levels (in µg/L) in wines made under all experimental conditions. A one-way ANOVA followed by a Tukey test was applied to each assay to detect changes in wine composition before and after MFL (Table 3). Data were also processed using one-way ANOVA to highlight the effect of the LAB strain on ester concentrations (Table 4). Results revealed three principal groups: the first and the second group with a decrease or an increase general trend respectively, and the third group where ester levels increased regarding to LAB strain.

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

215

Two groups of esters were distinguished in terms of their contribution to red wine fruity aroma: one consisted of major esters, such as ethyl fatty acid esters and higher alcohol acetates and the other contained minor esters, including ethyl esters with an odd number of carbon atoms, methyl esters, isoamyl esters, and cinnamates (Guillaume Antalick et al., 2014).

A significant decrease in the concentrations of all esters in the "major esters" group was observed in all experiments (Table 2 and Table 3) irrespective of the vintage and the cultivar studied. Ethyl fatty acid esters (4-12 carbons) were significantly affected, with a decrease in the range of 2–15% (C4), 15–29% (C6), 2–59% (C8), 13–75% (C10), and 30–78% (C12) (Figure 1). These compounds are generally considered to make a key contribution to the flavor of red wines (Ebeler, 2001; Ferreira et al., 2000). As for higher alcohol acetates, concentrations of isoamyl acetate, the most powerful odorant in this group, characterized by banana notes, decreased following MLF, which is consistent with previous findings (Malherbe, Tredoux, Nieuwoudt, & Toit, 2011). The decrease was proportionately greater for long-chain acetates, as observed for ethyl esters. A similar decrease in ethyl fatty acid ester and acetate levels was observed in wines fermented with FX10 and XR yeasts, irrespective of the vintage or cultivar considered (Supplementary data). The results were less clear for minor compounds. In particular, variations in ethyl propanoate level were highly-dependent on the experimental conditions, with post-MLF concentrations increasing in WEC-11, WEC-12, and STEM-12 and decreasing in MRGX-11 and MDC-11. Finally, no changes were observed in ethyl propanoate levels in PCLN-12 wines after MLF. Concentrations of other ethyl esters with odd numbers of carbon atoms (5–9 carbons) and methyl esters (4–10 carbons) remained stable in WEC-11 and LP-11 wines, whereas post-MLF concentrations decreased in the other wines.

Earlier studies revealed that MLF resulted in significant increases in the concentrations of individual esters potentially involved in modulating red wine fruity aroma, such as ethyl esters and acetates (Delaquis et al., 2000; Maicas et al., 1999). In contrast with these observations, Davis et al. (1988) indicated that enological LAB had esterase activities likely to degrade esters during MLF. Consistent with this study, several authors reported a decrease in ester concentrations following inoculation with *O. oeni* (Gámbaro et al., 2001) or spontaneous MLF (Du Plessis, Steger, Du Toit, & Lambrechts, 2002). Moreover, Knoll et al. (2011) recently highlighted the important role of pH during MLF, reporting an increase in ethyl ester and acetate level in wines at pH 3.2 following this bacterial fermentation, but a decrease in wines with higher pH values. In agreement with these results, our data indicated that MLF may result in a significant decrease in concentrations of these compounds in wines at pH 3.5–3.8, following either inoculated or spontaneous MLF (Supporting Information, Figure S1). Finally, no LAB effect was detected (Table 4), irrespective of the vineyard or the vintage considered, indicating that the ester metabolisms of the two LAB tested in this study were not influenced by the matrix.

3.2. Influence of LAB strain on branched ester levels.

In contrast with linear esters, concentrations of the four branched esters quantified in this study increased after MLF under all experimental conditions. Concentrations of ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, and ethyl 3-methylbutanoate increased to varying extents after MLF, according to a matrix effect (Table 2 and Table 3). Indeed, a 10–200% increase was observed for ethyl 2-methylpropanoate, 12–190% for ethyl 2-methylbutanoate, and 10–150% for ethyl 3-methylbutanoate. Ethyl phenylacetate content varied less after MLF, remaining relatively stable in WEC-11, MRGX-11, and MDC-11, but increasing by 12–50% in WEC-12, PCLN-12, and STEM-12 (Table 3). Quantification of these compounds during wine

aging revealed that concentrations continued to increase over time (Figure 2), in a range of 20–40%, depending on the esters and matrix considered. Moreover, no significant difference was correlated with the LAB strain, irrespective of the experimental conditions or the yeast strain used (Supplementary data). These esters, derived from the catabolism of amino acids, are mainly synthesized during wine aging, by esterification with ethanol and the corresponding branched acid (Díaz-Maroto, Schneider, & Baumes, 2005). Antalick et al. (2012) recently demonstrated that LAB synthesized branched ethyl esters during MLF. Quantification of these compounds before and after MLF, as well as during wine aging confirmed these results. However, in this study, the LAB strain used to conduct MLF was not found to be an important factor for the synthesis of these aromatic molecules (Table 4).

Two other branched ethyl esters with a hydroxyl group, ethyl 2-hydroxy-3-methylbutanoate (E2H3MB) and ethyl 2-hydroxy-4-methylpentanoate (E2H4MP), were also quantified. Concentrations increased after MLF in all wines, under all experimental conditions (Table 3), as described for branched esters. Variations observed were influenced by the matrix (Table 1), as well as the LAB strain used for MLF (Table 4). Indeed, E2H3MB concentrations were multiplied by 200–1000% in Lactoenos B28 wines, whereas those in wines fermented with Lactoenos 450 LAB increased by 60–150%, depending on the matrix considered. E2H3MB concentrations in spontaneous MLF wines also increased by 100 and 160% in MDC-11 and MRGX-11 wines, respectively. Similar observations were made concerning E2H4MP, with concentrations increasing by 100–550% in Lactoenos B28 wines, 50–100% in Lactoenos 450 wines, and 70–100% in spontaneous MLF wines. Samples fermented with FX10 or XR yeasts also developed higher concentrations of these two compounds when they were inoculated with Lactoenos B28 LAB than Lactoenos 450 LAB (Supplementary data). Quantification of these two aromatic compounds during wine aging revealed that concentrations increased over time (Figure 2). These results agreed with those of previous studies (Bordiga, Piana, Coïsson,

Travaglia, & Arlorio, 2014; Lytra et al., 2012). However, E2H3MB and E2H4MP clearly have one stereogenic center in position 2, indicating the potential existence of two enantiomers. Chromatograms analysis revealed that only the R forms of E2H3MB (Figure 3) and E2H4MP (data not shown) were found in all wines in this study after MLF. Lytra et al. (2012) previously demonstrated that young red wines contained only the R form of E2H4MP, whereas aged wines presented both enantiomeric forms in varying ratios, according to age. However, to our knowledge, this was the first time that the influence of the LAB strain on concentrations of these two aromatic compounds had been clearly demonstrated. In a previous publication, Lloret et al. (2002) reported that larger amounts of the (S)-enantiomer of ethyl lactate were produced by O. oeni. In the case of these branched hydroxylated ethyl esters, the (R)-enantiomeric pathway of LAB was apparently preferred. Campo, Cacho, & Ferreira (2006) revealed the presence of these two compounds in wine and hypothesized that they contributed significantly to some of its specific fruity notes. Falcão et al. (2012) then assessed the organoleptic impact of E2H4MP, suggesting that this compound contributed to fresh blackberry aromas. However, the results of sensory analyses of these wines, presented in a previous article, demonstrated that the yeast strain had a significant impact on fruity aroma modulation, whereas no LAB strain impact was observed (Gammacurta et al., 2014). Considering the significant difference in E2H3MB and E2H4MP concentrations observed between wines fermented with Lactoenos B28 and 450 LAB strains, and the absence of sensory variations, these two compounds apparently have little direct impact on overall red wine flavor.

310

311

309

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

4. Conclusion

312

313

314

These findings indicate that MLF has a significant influence on the ester composition of red wines from different Bordeaux vineyards, made with different cultivars – Cabernet

Sauvignon or Merlot – in two vintages, and fermented with three different yeast strains. The concentrations of the key esters known to play a major role in wine aroma, such as acetates and ethyl esters, decreased after MLF, whereas levels of branched esters increased, irrespective of the LAB strain considered. However, the matrix was apparently an important factor in variations in ester concentrations. Conversely, LAB strains had a strong influence on concentrations of branched hydroxylated esters. These results also revealed that commercial and indigenous LAB only synthesized the R forms of E2H3MB and E2H4MP. This effect was observed in samples vinified under experimental conditions and confirmed in wines made in wineries. Further experiments are required to elucidate the mechanisms involved in the biosynthesis of these aromatic compounds by *O. oeni*, as well as the impact of different bacterial starters, to confirm their interest as aromatic markers of MLF. Sensory investigations are also required to fully elucidate their impact on red wine fruity aroma, in order to establish a correlation between their synthesis by *O. oeni* and the flavor modifications associated with MLF.

Acknowledgements

We would like to thank Château Latour-Martillac, Château Léoville-Poyferré, Château les Graviers, and Union des Producteurs de Saint-Emilion for providing wine samples.

References

Antalick, G., Perello, M. C., & de Revel, G. (2010). Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-

339	solid-phase microextraction-gas chromatography-mass spectrometry. Food Chemistry,
340	<i>121</i> (4), 1236–1245.
341	Antalick, G., Perello, M. C., & de Revel, G. (2012). Characterization of Fruity Aroma
342	Modifications in Red Wines during Malolactic Fermentation. Journal of Agricultural
343	and Food Chemistry, 60(50), 12371–12383.
344	Antalick, G., Perello, MC., & Revel, G. de. (2014). Esters in Wines: New Insight through
345	the Establishment of a Database of French Wines. American Journal of Enology and
346	Viticulture, 65(3), 293–304.
347	Bartowsky, E. J., Francis, I. L., Bellon, J. R., & Henschke, P. A. (2002). Is buttery aroma
348	perception in wines predictable from the diacetyl concentration? Australian Journal of
349	Grape and Wine Research, 8(3), 180–185.
350	Bartowsky, E. J., & Henschke, P. A. (2004). The "buttery" attribute of wine—diacetyl—
351	desirability, spoilage and beyond. International Journal of Food Microbiology, 96(3),
352	235–252.
353	Bertrand, A., Zmirou-Bonnamour, C., & Lonvaud-Funel, A. (1984). Aroma compounds
354	formed by malolactic bacteria (pp. 39-49). Presented at the Proceedings of the Alko
355	Symposium on Flavour Research of Alcoholic Beverages, Helsinki: Nykanen, L.,
356	Lehtonen, P.
357	Boido, E., Carrau, F., Dellacassa, E., Lloret, A., Medina, K., & Versini, G. (1999).
358	Modificaciones producidas por la fermentacion malolactica en la composicion
359	aromatica de les fracciones libre y ligada para la variedad Tannat. Presented at the VII
360	Congreso Latino-americano de Viticultura y Enologica, Mendoza, Argentina.
361	Bordiga, M., Piana, G., Coïsson, J. D., Travaglia, F., & Arlorio, M. (2014). Headspace solid-
362	phase micro extraction coupled to comprehensive two-dimensional with time-of-flight
363	mass spectrometry applied to the evaluation of Nebbiolo-based wine volatile aroma

364	during ageing. International Journal of Food Science and Technology, 49(3), 787-
365	796.
366	Campo, E., Cacho, J., & Ferreira, V. (2006). Multidimensional chromatographic approach
367	applied to the identification of novel aroma compounds in wine. Identification of ethyl
368	cyclohexanoate, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-
369	methylpentanoate. Journal of Chromatography A, 1137(2), 223–230.
370	Claisse, O., & Lonvaud-Funel, A. (2012). Development of a multilocus variable number of
371	tandem repeat typing method for Oenococcus oeni. Food Microbiology, 30(2), 340-
372	347.
373	Davis, C. R., Wibowo, D., Fleet, G. H., & Lee, T. H. (1988). Properties of Wine Lactic Acid
374	Bacteria: Their Potential Enological Significance. American Journal of Enology and
375	Viticulture, 39(2), 137–142.
376	Delaquis, P., Cliff, M., King, M., Girard, B., Hall, J., & Reynolds, A. (2000). Effect of Two
377	Commercial Malolactic Cultures on the Chemical and Sensory Properties of
378	Chancellor Wines Vinified with Different Yeasts and Fermentation Temperatures.
379	American Journal of Enology and Viticulture, 51(1), 42–48.
380	de Revel, G., Martin, N., Pripis-Nicolau, L., Lonvaud-Funel, A., & Bertrand, A. (1999).
381	Contribution to the Knowledge of Malolactic Fermentation Influence on Wine Aroma.
382	Journal of Agricultural and Food Chemistry, 47(10), 4003–4008.
383	Díaz-Maroto, M. C., Schneider, R., & Baumes, R. (2005). Formation Pathways of Ethyl
384	Esters of Branched Short-Chain Fatty Acids during Wine Aging. Journal of
385	Agricultural and Food Chemistry, 53(9), 3503–3509.
386	Du Plessis, H. w., Steger, C. l. c., Du Toit, M., & Lambrechts, M. g. (2002). The occurrence
387	of malolactic fermentation in brandy base wine and its influence on brandy quality.
388	Journal of Applied Microbiology, 92(5), 1005–1013.

- Ebeler, S. E. (2001). Analytical chemistry: Unlocking the secrets of wine flavor. *Food Reviews International*, 17(1), 45–64.
- 391 Falcão, L. D., Lytra, G., Darriet, P., & Barbe, J. C. (2012). Identification of ethyl 2-hydroxy-
- 4-methylpentanoate in red wines, a compound involved in blackberry aroma. *Food*
- 393 *Chemistry*, *132*(1), 230–236.
- Ferreira, V., López, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of
- young red wines from different grape varieties. *Journal of the Science of Food and*
- *Agriculture*, 80(11), 1659–1667.
- 397 Ferreira, V., Sáenz-Navajas, M.-P., Campo, E., Herrero, P., de la Fuente, A., & Fernández-
- Zurbano, P. (2016). Sensory interactions between six common aroma vectors explain
- four main red wine aroma nuances. *Food Chemistry*, 199, 447–456.
- 400 Gámbaro, A., Boido, E., Zlotejablko, A., Medina, K., Lloret, A., Dellacassa, E., & Carrau, F.
- 401 (2001). Effect of malolactic fermentation on the aroma properties of Tannat wine.
- 402 *Australian Journal of Grape and Wine Research*, 7(1), 27–32.
- Gammacurta, M., Marchand, S., Albertin, W., Moine, V., & de Revel, G. (2014). Impact of
- Yeast Strain on Ester Levels and Fruity Aroma Persistence during Aging of Bordeaux
- Red Wines. *Journal of Agricultural and Food Chemistry*, 62(23), 5378–5389.
- 406 Henick-Kling, T. (1993). Malolactic fermentation. In Wine microbiology and biotechnology
- 407 (Harwood Academic Publishers, pp. 289–326). Chur, Switzerland: Fleet, G.H.
- Knoll, C., Fritsch, S., Schnell, S., Grossmann, M., Rauhut, D., & du Toit, M. (2011).
- Influence of pH and ethanol on malolactic fermentation and volatile aroma compound
- 410 composition in white wines. LWT Food Science and Technology, 44(10), 2077–
- 411 2086.
- Lloret, A., Boido, E., Lorenzo, D., Medina, K., Carrau, F., Dellacassa, E., & Versini, G.
- 413 (2002). Aroma variation in tannat wines: Effect of malolactic fermentation on ethyl

414	lactate level and its enantiomeric distribution. Italian Journal of Food Science, 14(2),
415	175–180.
416	Lytra, G., Tempere, S., de Revel, G., & Barbe, J. C. (2012). Distribution and Organoleptic
417	Impact of Ethyl 2-Hydroxy-4-methylpentanoate Enantiomers in Wine. Journal of
418	Agricultural and Food Chemistry, 60(6), 1503–1509. http://doi.org/10.1021/jf204378u
419	Lytra, G., Tempere, S., Le Floch, A., de Revel, G., & Barbe, J. C. (2013). Study of Sensory
420	Interactions among Red Wine Fruity Esters in a Model Solution. Journal of
421	Agricultural and Food Chemistry, 61(36), 8504-8513.
422	Maicas, S., Gil, JV., Pardo, I., & Ferrer, S. (1999). Improvement of volatile composition of
423	wines by controlled addition of malolactic bacteria. Food Research International,
424	<i>32</i> (7), 491–496.
425	Malherbe, S., Tredoux, A. G. J., Nieuwoudt, H. H., & Toit, M. (2011). Comparative
426	metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to
427	red wine composition. Journal of Industrial Microbiology & Biotechnology, 39(3),
428	477–494.
429	Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P., & Jiranek, V. (2004).
430	Lactic acid bacteria as a potential source of enzymes for use in vinification. Applied
431	and Environmental Microbiology, 70(10), 5715–5731.
432	Pilone, G. J., Kunkee, R. E., & Webb, A. D. (1966). Chemical Characterization of Wines
433	Fermented with Various Malo-lactic Bacteria. Applied Microbiology, 14(4), 608-615.
434	Pineau, B., Barbe, J. C., Van Leeuwen, C., & Dubourdieu, D. (2009). Examples of Perceptive
435	Interactions Involved in Specific "Red-" and "Black-berry" Aromas in Red Wines.
436	Journal of Agricultural and Food Chemistry, 57(9), 3702–3708.

437	Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of
438	Enology Vol. 1. The microbiology of wine and vinifications (Vol. 2). John Wiley &
439	Sons, Ltd.
440	Ribéreau-Gayon, P., & Peynaud, E. (1964). Traité d'oenologie. Béranger.
441	Sumby, K. M., Jiranek, V., & Grbin, P. R. (2013). Ester synthesis and hydrolysis in an
442	aqueous environment, and strain specific changes during malolactic fermentation in
443	wine with Oenococcus oeni. Food Chemistry, 141(3), 1673-1680.
444	Zeeman, W., Snyman, J. P., & van Wyck, C. J. (1980). The influence of yeast strain and
445	malolactic fermentation on some volatile bouquet substances and on quality of table
446	wines. Presented at the Grape an Wine Centennial Symposium, Department of
447	Viticulture and Enology, University of California, Davis.
448	

Tables

Table 1. Experimental design carried out for this study according to alcoholic and malolactic fermentations parameters.

	_	Alcoholic fer	mentation	Malolactic fermentation			
Wine	Cultivar	Stainless steel tank (replicate × hL)	Yeast strain	Stainless steel tank (replicate x L)	LAB strain		
WEC 2011	CS	3 × 2.5	522D, XR, FX10	3 × 30	B28, 450		
MRGX 2011	CS	1 × 120	522D, FX10	3 × 30	IND1		
WEC 2012	CS	3 × 2.5	522D, XR, FX10	3 × 30	B28, 450		
PCLN 2012	CS	1 × 65	522D, FX10	3 × 30	B28, 450		
MDC 2011	Merlot	1 × 120	522D, XR	3 × 30	B28, 450, IND2		
STEM 2012	Merlot	1 × 190	522D, XR	3 × 30	B28, 450		

IND, indigenous bacterial strain; CS, Cabernet Sauvignon.

Table 2. Concentration of ester (μ g/L) after AF (522D) and mean values in the different wines studied after MLF.

-	Cabernet Sauvignon										Merlot			_				
	WEC 2011		MR	RGX 2011		PCLN 201	2		WEC 12			M	DC 2011			STEM 20	12	
	522D	522D/B28	522D/450	522D	522D/IND1	522D	522D/B28	522D/450	522D	522D/B28	522D/450	522D	522D/B28	522D/450	522D/IND2	522D	522D/B28	522D/450
ethyl fatty	acid este	rs																
C2C4	192.8	218.1	208.1	133.0	120.5	155.4	150.2	151.7	209.8	203.3	205.2	187.2	157.3	168.3	176.6	179.2	171.5	176.9
C2C6	406.4	310.4	310.7	205.2	174.2	304.0	237.6	238.4	746.5	540.4	540.4	228.8	178.0	184.1	193.5	438.7	310.4	322.3
C2C8	371.1	332.8	355.6	235.7	181.6	308.4	153.5	154.1	2089.0	1914.5	1872.4	307.0	231.3	239.4	263.1	764.7	322.9	315.6
C2C10	186.1	159.2	160.4	106.9	63.9	185.3	53.4	46.5	1063.6	1218.6	1136.9	169.3	97.0	101.9	170.4	412.9	113.0	114.8
C2C12	17.9	11.1	11.2	10.6	5.4	9.8	2.3	2.4	94.2	124.6	105.6	30.6	8.9	10.0	20.9	39.7	9.0	8.9
higher alc	ohols ace	etates																
C3C2	25.2	23.8	20.1	6.9	5.7	16.0	15.4	15.7	35.5	31.5	32.0	7.7	6.2	6.7	6.4	11.0	10.7	10.6
iC4C2	64.9	55.7	50.7	28.4	22.8	47.5	42.2	42.9	190.0	159.8	161.8	23.1	18.8	20.2	19.7	40.9	38.1	38.6
C4C2	1.8	1.6	1.5	1.6	1.1	1.3	1.0	1.1	3.6	2.6	3.8	1.0	0.9	1.0	0.9	1.1	1.0	0.9
iC5C2	1868.7	1521.2	1330.2	795.9	678.4	1234.7	999.3	973.8	7072.9	5193.6	5356.0	305.9	272.3	281.0	271.4	822.4	662.5	721.6
C6C2	10.0	9.1	10.3	2.8	2.3	7.9	5.1	5.0	267.1	134.9	142.8	0.4	0.3	0.3	0.3	2.5	1.6	1.7
C8C2	0.4	0.2	0.2	0.1	0.1	0.1	0.0	0.0	3.1	0.6	0.6	NQ	NQ	NQ	NQ	0.1	0.0	0.0
2- PhC2C2	186.6	131.6	151.4	57.2	43.9	88.1	70.5	66.7	1483.5	1132.1	1119.5	18.5	17.4	17.8	15.5	48.4	39.1	39.3
ethyl ester	s with od	d number of	carbon															
C2C3	425.0	444.5	437.9	136.2	119.6	187.3	197.6	197.8	47.0	63.0	64.0	166.2	134.2	145.0	147.2	142.3	145.4	149.1
C2C5	1.0	1.0	1.0	0.1	0.1	0.7	0.7	0.6	0.6	0.8	0.8	0.4	0.2	0.4	0.5	1.1	0.9	1.0
C2C7	1.2	1.3	1.3	1.5	1.1	0.6	0.4	0.4	0.9	0.6	0.6	0.4	0.5	0.5	0.6	0.8	0.4	0.4
C2C9	1.3	2.7	2.1	1.7	1.0	1.0	0.3	0.3	1.5	1.4	1.4	1.5	1.1	1.2	1.3	4.4	0.8	0.8
methyl est	ers																	
C1C4	1.1	1.2	1.1	3.2	0.4	0.8	0.9	0.7	0.0	0.0	0.2	1.1	0.9	0.9	1.0	1.4	1.3	1.3
C1C6	2.5	2.0	1.9	0.7	0.6	1.1	0.9	0.9	0.7	0.5	0.5	1.0	0.7	0.7	0.8	2.1	1.5	1.6

C1C8	1.9	2.0	2.0	0.8	0.6	0.9	0.5	0.5	1.5	1.2	1.3	1.1	1.0	1.0	1.1	3.4	1.6	1.6
C1C10	0.9	0.9	1.0	0.3	0.2	0.5	0.1	0.1	0.9	0.9	0.9	0.6	0.3	0.4	0.6	1.8	0.4	0.4
isoamyl est	ers																	
iC5C4	0.8	1.0	1.0	0.5	0.4	0.5	0.3	0.4	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.6	0.4	0.5
iC5C6	3.1	2.7	2.3	1.5	1.0	1.8	0.7	0.8	4.4	3.6	3.5	1.2	1.3	1.4	1.5	3.7	1.6	1.6
iC5C8	7.9	8.0	7.2	3.1	2.2	3.0	1.5	1.3	10.3	12.1	11.6	3.0	3.1	3.6	3.6	9.0	4.3	4.4
minor ester	.c																	
C2hex	1.9	1.9	1.7	2.1	2.1	2.3	2.2	2.1	3.0	3.4	3.3	1.0	0.7	0.7	0.8	2.4	2.0	2.0
iC4C6	0.3	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1
C1ger	0.4	0.3	0.4	0.6	0.5	0.2	0.1	0.1	3.4	5.6	5.5	2.0	0.6	0.6	1.2	0.9	0.3	0.3
C2dhcinn	2.2	1.5	1.6	0.4	0.3	0.8	0.6	0.6	0.9	0.9	0.9	0.3	0.3	0.3	0.3	0.7	0.6	0.6
C2cin	2.4	2.2	2.4	1.0	0.8	0.9	0.6	0.6	0.1	0.2	0.2	0.4	0.8	0.4	0.6	0.6	0.5	0.6
ethyl branc	hed acid	esters																
C2 2-	32.3	45.4	15.0	40.3	41.1	12.7	67.7	67.7	19.2	57.8	56.2	12.6	42.2	47.2	£1.4	24.0	50.7	51 A
mC3	32.3	43.4	45.6	40.3	41.1	43.7	07.7	07.7	19.2	37.8	30.2	42.6	43.2	47.3	51.4	34.8	50.7	51.4
C2 2- mC4	6.8	10.6	10.9	13.5	13.5	11.4	15.9	16.1	1.9	5.5	5.4	10.2	11.4	12.2	13.4	6.1	8.3	8.5
C2 3- mC4	8.4	13.3	11.8	17.0	15.0	15.2	20.6	20.7	3.5	8.9	8.8	12.8	14.2	15.7	15.9	8.5	12.0	12.0
C2PhC2	3.6	3.8	3.7	3.7	3.2	2.8	3.4	3.3	1.5	2.3	2.1	2.6	2.7	2.8	2.9	1.7	1.9	1.9
ethyl branc	hed hydr	oxylated est	ers															
E2H3MB	NQ	NQ	NQ	105.2	177.2	69.5	169.7	117.0	13.4	83.8	26.6	61.2	90.4	66.2	71.5	40.7	91.9	52.9
E2H4MP	NQ	NQ	NQ	4.0	10.8	3.0	8.8	5.1	0.6	6.6	1.5	2.1	5.6	3.0	3.8	1.8	6.6	3.0

NQ: not quantified; ND: not detected

Table 3. General trend of esters level variation observed after a one-way ANOVA (p < 0.05): \uparrow ester level significantly increased, \downarrow ester concentration significantly decreased, \leftrightarrow ester concentration remained unchanged.

			Cabernet S	Merlot			
		WEC	MRGX	PCLN	WEC	MDC	STEM
Compounds	Abbreviations	2011	2011	2012	2012	2011	2012
ethyl fatty acid esters							
ethyl butanoate	C2C4	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
ethyl hexanoate	C2C6	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
ethyl octanoate	C2C8	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
ethyl decanoate	C2C10	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
ethyl dodecanoate	C2C12	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
higher alcohols acetates							
propyl acetate	C3C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
isobutyl acetate	iC4C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
butyl acetate	C4C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
isoamyl acetate	iC5C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
hexyl acetate	C6C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
octyl acetate	C8C2	\downarrow	\downarrow	\downarrow	\downarrow	NQ	\downarrow
2-phenylethyl acetate	2-PhC2C2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
ethyl esters with odd number of carbon							
ethyl propanoate	C2C3	↑	\downarrow	\leftrightarrow	↑	\downarrow	↑
ethyl valerate	C2C5	\leftrightarrow	\downarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow
ethyl heptanoate	C2C7	\leftrightarrow	\downarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow
ethyl nonanoate	C2C9	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow
methyl esters							
methyl butyrate	C1C4	\leftrightarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow

methyl hexanoate	C1C6	\downarrow	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow
methyl octanoate	C1C8	\leftrightarrow	\downarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow
methyl decanoate	C1C10	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow	\downarrow
isoamyl esters							
isoamyl butanoate	iC5C4	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow
isoamyl hexanoate	iC5C6	\downarrow	\downarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow
isoamyl octanoate	iC5C8	\longleftrightarrow	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow
minor esters							
ethyl trans 2-hexenoate	C2hex	\leftrightarrow	\leftrightarrow	\downarrow	\leftrightarrow	\downarrow	\downarrow
isobutyl hexanoate	iC4C6	\leftrightarrow	\leftrightarrow	↓	\downarrow	\leftrightarrow	\downarrow
methyl trans-geranate	C1ger	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow	\downarrow	\downarrow
ethyl dihydrocinnamate	C2dhcinn	\downarrow	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow
ethyl cinnamate	C2cin	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow
ethyl branched acid esters							
ethyl 2-methylpropanoate	C2iC4	↑	↑	↑	↑	\uparrow	↑
ethyl 2-methylbutanoate	C2 2-mC4	↑	↑	↑	\uparrow	\uparrow	\uparrow
ethyl 3-methylbutanoate	C2iC5	↑	↑	↑	↑	\uparrow	\uparrow
ethyl phenylacetate	C2PhC2	\leftrightarrow	\leftrightarrow	↑	↑	\leftrightarrow	↑
ethyl branched hydroxylated esters							
ethyl 2-hydroxy-3-methylbutanoate	2OH3C1C4C2	↑	↑	↑	↑	↑	↑
ethyl 2-hydroxy-4-methylpentanoate	2OH4C1C5C2	1	1	1	1	<u> </u>	<u>†</u>

NQ: not quantified

Table 4. Influence of LAB strain on esters levels after MLF determined with a one-way ANOVA.

	Ca	bernet Sauvigr	non	Me	edoc
	WEC 2011	PLCN 2012	WEC 2012	MDC 2011	STEM 2012
Compounds					
ethyl fatty aci	d esters				
C2C4	NS	NS	NS	NS	NS
C2C6	NS	NS	NS	NS	*
C2C8	NS	NS	NS	NS	NS
C2C10	NS	NS	NS	NS	NS
C2C12	NS	NS	NS	NS	NS
higher alcoho	ols acetates				
C3C2	NS	NS	NS	NS	NS
iC4C2	NS	NS	NS	NS	NS
C4C2	NS	NS	NS	NS	NS
iC5C2	NS	NS	NS	NS	*
C6C2	NS	NS	NS	NS	NS
C8C2	NS	NS	*	NS	NS
2-PhC2C2	NS	NS	NS	NS	NS
ethyl esters w	rith odd numbe	er of carbon			
C2C3	NS	NS	NS	NS	NS
C2C5	NS	NS	NS	NS	*
C2C7	NS	NS	NS	NS	NS
C2C9	NS	NS	*	NS	NS
methyl esters					
C1C4	NS	*	NS	NS	NS
C1C6	NS	NS	NS	NS	NS
C1C8	NS	NS	NS	NS	NS
C1C10	NS	NS	NS	NS	NS
isoamyl					
esters	NG	NG	NG	NC	NG
iC5C4	NS NC	NS NC	NS *	NS NC	NS NC
iC5C6	NS NC	NS *		NS NC	NS NC
iC5C8	NS	***	NS	NS	NS
minor esters					
C2hex	NS	NS	NS	NS	NS
iC4C6	NS	NS	NS	NS	NS
C1ger	NS	NS	NS	NS	NS
C2dhcinn	NS	NS	NS	NS	NS
C2cin	NS	NS	NS	NS	NS

ethyl branched acid esters												
C2 2-mC3	NS	NS	NS	NS	NS							
C2 2-mC4	NS	NS	NS	NS	NS							
C2 3-mC4	NS	NS	NS	NS	NS							
C2PhC2	NS	NS	NS	NS	NS							
ethyl branched	l hydroxylated	d esters										
E2H3MB	NQ	***	***	***	***							
E2H4MP	NQ	***	***	***	***							

^{*,} significant at p < 0.05; **, significant at p < 0.01; ***, significant at p < 0.001; NS, not significant; NQ: not quantified.

Figures

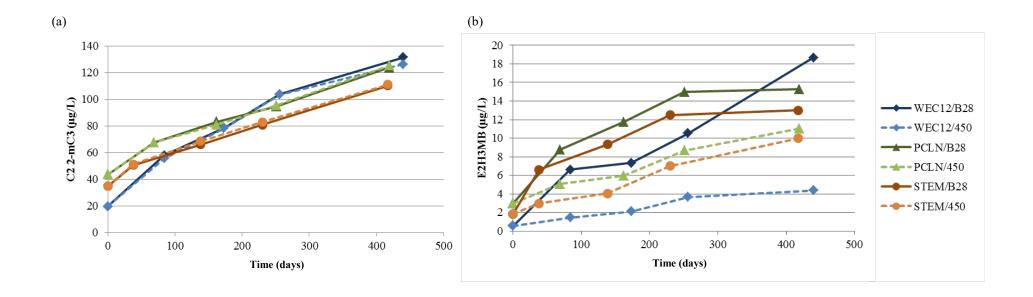
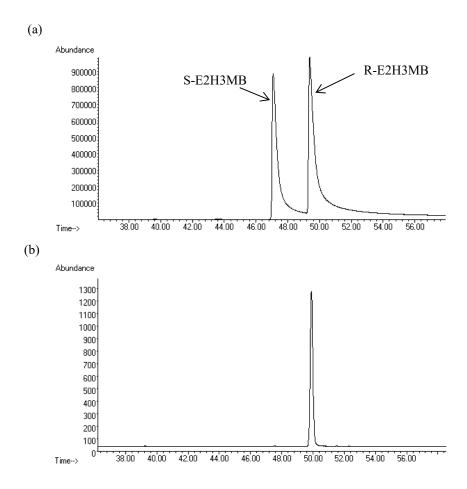



Figure 1. Mean concentrations (in μ g/L, n = 3) of ethyl 2-methylpropanoate (a, C2 2-mC3) and ethyl 2-hydroxy-3-methylbutanoate (b, E2H3MB) in WEC 2012, PCLN, and STEM wines fermented with the same yeast and two different bacteria.

Figure 2. Chromatograms obtained after chiral column analysis of: (a) E2H3MB commercial racemic mixture and (b) a post-MLF PCLN wine extract.