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Abstract: Organic polymers can be made porous via continuous or discontinuous expansion processes
in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters:
(i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper.
The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch
foaming) foaming processes in scCO2, will be discussed in this article; especially for micro or nano
cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., ρ< 100 kg·m−3) and cell size
(e.g., average pore diameter φaverage

pores < 100 nm). Then a particular system where small “objects”
(coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in
poly(methyl methacrylate) (PMMA) will be presented. Such “additives”, considered as foaming aids,
are aimed at “regulating” the foaming and lowering the pore size and/or density of PMMA based
foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend,
via a quasi one-step batch foaming, a “porous to nonporous” transition is observed in thick samples.
A lower limit of pore size (around 50 nm) seems to arise.

Keywords: polymer foam; nanostructuration; batch-foaming; PMMA; MAM; core-shell particles;
supercritical CO2; foaming processes

1. Introduction

In the huge field of porous materials, porous organic polymers have been elaborated for a long
time by a lot of methods [1–3], involving either chemistry [4,5] or physical means [6,7]. These materials
are also named cellular, lightweight materials, sieve-like, membrane-like, sponges, or foams.

On the side of processes, physical foaming is one method where a volume expansion takes place
in the polymer, through a gas depressurization (CO2, N2, etc). This method has the advantage of a
fast process time, a relative low cost, it is applicable to several polymers and is an alternative to the
classical chemical foaming (CBA)—some of which tend to be forbidden by REACH regulation (such as
azodicarbonamide).

On the side of pore structure, an ultimate goal is to reduce both specific mass (e.g., ρ < 100 kg·m−3)
and cell size (e.g., average pore diameter φaverage

pores <100 nm). These features are hardly achievable
when a single polymer is used. A literature survey of the last ten years reveals some works and
methods on cellular bulk micro [8–12] and nano [13–17] polymer foams in a cellular size range around
or just below one micron.
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Nano cellular polymers (voids < 0.1 µm) is a rather new class of foams that can be found,
so far, mainly in polymer formulations, in structured polymers, in polymer blends or in nano
composites [5,14,18–20]. Furthermore, most of the time, they are obtained in batch, i.e., a discontinuous
process; as shown in the literature since 2002 [21–25]. The industrial (and even scientific) challenge is
now to produce this kind of foams following a continuous process (such as extrusion foaming) [26–28].

Generally speaking, the pore-generation methods are very numerous, ranging from solvent phase
separation—evaporation, degradation, extraction, leaching, and gas foaming methods. All methods
cannot be discussed extensively so we will concentrate on supercritical fluid assisted foaming (scCO2

in this article) [29].
Among foaming methods, the gas introduction is either direct—the method is named “physical

foaming”; or by blending with a gas-generating molecule (CBA)—the method is named “chemical
foaming”. Three types of chemical and physical data are ruling the foam formation: (i) Pressure
and temperature [30,31], (ii) capacity of the polymer to deform (melt strength), (iii) chemical affinity
(solubility, swelling) of the polymer in the gas and the fact that the gas moves more or less easily in
and out from the polymer (diffusion, permeability) [32].

Usually, swelling and solubility (being the two responses of a polymer to CO2 sorption) are
correlated but they do not necessarily vary with the same magnitude, i.e., a polymer may have a small
swelling and a high solubility.

Upon decrease of pressure or temperature, a one-phase (gas-polymer) system becomes a two-phase
system, i.e., a foam composed of gas cells (CO2, N2 or air) + polymer walls or struts. When scCO2 is
used as a blowing agent, a very difficult objective is to master the expansion at a very small size (nano)
while having a low density. In a continuous process, the problems for keeping the foams at a nano
level are indeed not yet solved [26]. Thus, nano and even micro gas-foamed bulk polymers still remain
a challenge for continuous production.

Microcellular CO2-foamed polymers are characterized by a cell density greater than
1010–109 cells·cm−3 and a cell size in the order of 1 to 10 µm. Yet cases for microcellular polyolefins and
polystyrene have been cited [33–35]. At an effective large fabrication scale, the MuCell process is nearly
the only process operating for injection molded micro foams (https://trexel.com/technology-solutions/
mucell), with some other less known methods [36,37].

Wrongly speaking but often used for polymer foams, the word “nano” is considered if the mean
pore size is less than about 80 nm; which is different from the IUPAC terminology: Microporous
0.2–2 nm, mesoporous 2–50 nm, macroporous > 50 nm.

In the domain of sub micrometric porous materials (e.g., pores < 1 µm), several methods are well
known such as “templating or templates”, “emulsion(s)”, “sacrificial methods”, “sol-gel methods”,
“phase separation” methods, and “solvent methods”, which are most of the time discontinuous and
non-foaming processes. Although allowing very small pore sizes (<<50 nm), these previous methods
are not really challengers to foaming. They are used for small thickness pieces (e ≤ 1 mm), in thin
layers or films but never for continuous bulk monoliths.

In polymers, the range of sub micrometric pores is expected to exhibit “high” physical properties.
Indeed, several physical properties exhibit a step evolution in the porosity window from “micro”
to “nano” (typically below 80 nm). Such evolutions are expected for mechanical damping, specific
absorbed energy, rigidity, acoustic properties, electromagnetic sheltering, filtration or separation and
most of all thermal conductivity [2,17,38–40]. Moreover, transparency would be a further advantage.
For comparison, mainly inorganic, based on silica, or silica/organic polymer hybrids, (seldom neat
polymer aerogels) provide extremely light bulk nanometric or submicronic porous materials (both
semi-transparent and insulating). Transparency in amorphous polymer nano foams was cited as a
possible property by Dumon et al. [10]; it was developed theoretically by Perez Tamarit et al. [41],
then studied and proved on PMMA by Martin de Leon et al. [42–44]. The previous authors showed
that combination of rather difficult conditions (low saturation temperatures e.g., −32 ◦C) with high
saturation pressures (e.g., 20 MPa), i.e., high CO2 solubility and high nucleation density) are needed to
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reveal very good transparency (with sample thickness much less than 1 mm) or semi transparency
(with sample initial thickness of 2 mm). The fabricated homogeneous PMMA foams have cells all
below 50 nm and density around 500 kg·m−3. They also proposed models for scattering and effect of
wave lengths.

Inorganic aerogels (semi-transparent, and extremely light) have, so far, the lowest known values
of thermal conductivity, λtherm down to 15 mW·m−1

·K−1. Thus, nano porous polymers are for example
expected to be useful for super insulation thermal applications [40,45,46] with better mechanical
resistance than inorganic aerogels. Yet, if inorganic aerogels are constantly improving to solve the
antagonism between a poor mechanical behavior and very high thermal performances, they still need
a long synthesis process (multi steps, expensive products), with fragile textures; they remain sensitive
to wear, to friability and dusting.

The aim of this article is to analyze how micro and nano cellular foams from amorphous polymers
are prepared and controlled through a supercritical fluid saturation (mainly CO2) followed by an
expansion step, via different processes. Furthermore, the paper provides comparative chemical
physico-chemical literature data. Then we will give results on a specific polymer (PMMA, poly(methyl
methacrylate)) blended with CO2-philic additives (core shell particles CS) or nano structured acrylic
block copolymers, named MAM [47,48]. Acrylic core shell particles are chosen in the Durastrength®

range, with either a crosslinked core or a liquid core, used classically as impact modifiers. MAM
belong to the range of poly(methyl methacrylate-co-butylacrylate-co-methyl methacrylate) block
copolymers—Nanostrength® range.

2. Results and Discussion

2.1. Analysis of Literature Results: scCO2 Foaming Processes in Organic Polymers: Parameters Influencing
Foaming, Batch vs. Continuous

CO2 is the principal molecule to provide an easy supercritical state (roughly above 35 ◦C, 7.5 MPa)
and is chemically unreactive to most polymers. Even if N2, H2O and gas mixtures are also used in the
supercritical state, most of the physical foaming processes are done with CO2.

scCO2 is not rigorously speaking a blowing agent such as CBA—chemical blowing agents, that are
molecules decomposing chemically upon heating, releasing gas molecules (CO2, water, nitrogen, etc.);
but scCO2 is called a physical blowing agent. Although scCO2 has advantages, e.g., it is considered as
a “green”, non-toxic, and low cost molecule, it has a rather low solubility (Table 1) and a rather slow
diffusivity in organic polymers.

Polymer foaming results from an interplay of three groups of parameters: (i) Chemical,
(ii) physiso-chemical, and (iii) technological/process.

2.1.1. Chemical Parameters

They relate to macromolecules chemical composition, chain length (molar mass) and their
CO2 solubility.

CO2 solubility (%), also named CO2 uptake or CO2 mass gain or CO2 sorption, is defined as the
ratio of mass gain of CO2 after an equilibrium saturation step at a given temperature and pressure
(Equation (1)). In literature [49], solubility is expressed in the either of the following units: % CO2

uptake, or mass of CO2 in 1 g of polymer after saturation (P,T), or molgas/kgpolym (=0.227 × % CO2

uptake) or cm3 (STP)gas/cm3 polymer (we made the reasonable approximation that % CO2 uptake non
STP (i.e., RT) ~ 0.1626 × VCO

2 (STP)). Table 1 gives a comparative list of solubility in different polymers
where values have been translated in the same unit (% CO2 uptake, i.e., mass of CO2 in 100 g polymer).

%CO2uptake = 100×
mCO2 saturated sample −mnon saturated sample

mnon saturated sample
(1)
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Table 1. CO2 solubility in polymers: Summary of literature values expressed in % CO2 uptake.

Polymers T (◦C) Pressure (MPa) CO2 Solubility (%) Reference
Aliphatic and aromatic hydrocarbons (including polyolefins, polystyrenes and polyethers)

hydroxytelechelic
40 25 15 [50]

poly(butylene) (HTPB)

low density poly(ethylene) (LDPE) 150 0.7–3.5 0.5–2.5 [51]
25–40 7 0.2 [52]

high density poly(ethylene) (HDPE)
200 6.6–17 3.1–9.3 [53]
200 10 4.5 [53]
160 18 13 [53]

poly(ethylene glycol) (PEG) 40 5.3–11.6 11.1–22.6 [54]
400 g/mol 55 3–28 14–30 [55]

1500 g/mol 40 15 23 [56]
non commercial PEG 70 30 50 [57,58]

poly(ether imide) (PEI) 30 0.1 1 [59]
poly(isobutylene) (PIB) 50 20 16 [60]

isotactic poly(propylene) (iPP)

200 6.2–15.4 3–11 [53]
180 18 14 [53]
180 11.5 8 [53]
160 7.5–17.5 5–16 [53]

atactic poly(propylene) (aPP) 120 20 18 [61]
200 20 14 [61]

atactic poly(styrene) (aPS)

40 30 10 [9]
80 30 9 [9]

180 18 7 [53]
180 10 4 [53]
100 18.5 11.5 [53]
180 20 5 [62]

Carbonyl containing polymers
poly(amide) (PA6) 240 5–18 1.2–4 [63]

poly(butylene succinate) (PBS) 120 2.5–20 2–17 [64]
poly(carbonate) (PC) 25 7 13 [65]

Aromatic poly(ether amide) (PEA) 30 0.1 0.9 [59]
poly(ethyl methacrylate) (PEMA) 25 1.4 4.8 [66]

poly(ethylene terephthalate) (PET) 80–120 0–35 0–25 [67]
poly(lactic acid) (PLLA) 40 15 20–25 [68]

poly(methyl methacrylate)
(PMMA)

40 10.5 18.2 [69]
20 30 12.1 [12]
40 30 16.4 [12]

100 15 10 [70]
150 5 3 [70]
200 20 8 [70]
50 20 25 [70]
35 20 30 [70]
25 7 26 [65]
25 2 5–7 [71]
25 1.4 4.4 [66]

–32 20 48 [42]

poly(vinyl acetate) (PVAC) 25 1.4 6 [66]
Silicone containing polymers

poly(dimethylsiloxane) (PDMS) linear 50 10 25 [69]
10 20 8.5–10 [69]

crosslinked

35 2 5 [72]
55 2 4 [72]
42 20 55 [72]
42 7 20–30 [72]

Fluorinated or chlorinated polymers and copolymers
poly(vinyl chloride) (PVC) 40–70 5–30 5.5–13 [73]

poly(vinylidene fluoride) (PVDF) 220 10 3 [74]
poly(perfluoro-2-methylene-1,3-dioxolane) (poly(PFMD)) 35 1 10 [75]

poly(tetrafluoroethylene) (PTFE) 30 1 2.5 [76]
PS-b-PFDA 0 30 32 [75,77,78]

Other fluorinated copolymers * * *

* % CO2 uptake values are not provided in literature, but these polymers are stated to be very soluble.

While CO2 is a good solvent for many non-polar (and some polar) low molar mass molecules, it is
a poor solvent for macromolecules under readily achievable conditions (e.g., 100 ◦C, 10 MPa).

Thus, CO2 has a “moderate capacity” to expand polymers, although it is definitely used because
the supercritical conditions offer advantages such as a liquid-like solubility and an enhanced diffusivity.
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Table 1 shows that the only polymers that have good solubility in CO2 under mild conditions
are certain amorphous fluoropolymers (e.g., poly(perfluorooctyl acrylate) PFA/PPFA) and silicones
(PDMS—poly(dimethyl siloxane)). Generally, all amorphous fluorinated copolymers are stated to be
very soluble in scCO2 [77,78] but exact % CO2 uptake values are not reported in literature; solubility is
assumed via phase diagrams or structure/relationships studies [77,78].

The relative high solubility of amorphous fluoropolymers may be explained by weak complexes
with CO2, or by preferential clustering of CO2 near the fluorine atom of the C-F bonds, which are
more polar than C-H bonds. Hence, fluorinated side groups may “shield” the hydrocarbon main
chain from interacting with the solvent [79]. Li et al. [80] have shown that it is possible to enhance
the CO2-solubility of a fluorinated polymer foam (poly(perfluorooctylethyl methacrylate): PFMA) by
reducing its depressurization temperature from 0 to −40 ◦C.

The solubility of silicon polymers (e.g., PDMS) is enhanced by the very flexible nature of these
chains that provides them with large free volume (PDMS have the lowest Tg among polymers).

The presence of carbonyl functions, in polyesters or polyacrylates (e.g., PMMA), tends to increase
CO2 solubility. This is the reason why we will use PMMA as a model system.

To further increase CO2 uptake, low molar mass CO2-philic additives can be added. On the
contrary, CO2 loss is favored by the existence of sharp immiscible interfaces, for example when
CO2-unsoluble fillers are added. Expecting a high CO2 uptake, CS and MAM additives are chosen
since their acrylic nature implies no sharp interfaces in PMMA [81].

In the molten state, i.e., at high temperatures (typically above 160 ◦C), under high pressure
(typically above 10 MPa), a polymer/gas one-phase solution is observed. On the one side, gas sorption
causes the polymer solution to swell; on the other side, a high hydrostatic pressure causes the polymer
chains to “contract” under stress, i.e., to pack, or modify their entanglement.

2.1.2. Physico-Chemical Parameters

They relate to phase structure (e.g., crystalline areas, areas with a nano structuration as micelles,
core shell particles, and lamellas) and to viscoelastic behavior (chain mobility, viscosity, flow and
stretchability) [46,82]. Semi crystalline polymers (mainly PE, PP), although “CO2-foamable”, constitute
a separate case due the impermeability of the crystalline or organized areas [83,84]. Our work is
discussing only amorphous polymers and their blends for the foaming process and technology.

The expansion ratio varies with the polymer state: It is limited in glassy solid, easier in viscoelastic
solid (solid state foaming), and much easier in melt foaming [85]; but consequently, porous morphologies
are more difficult to stabilize due to the chain mobility increase.

Expansion (closed or open cells) is triggered by a gas depressurization, after saturation in
supercritical conditions (scCO2, scN2). Depressurization induces a phase separation from a one-phase
gas-saturated polymer/gas system to a two-phase polymer/pore system [86]. This phenomenon has
been observed through a sapphire window during a PP batch-foaming in scCO2 (10 MPa, 180 ◦C
during 30 min). It is visually observable with bubbles apparition in the sample that was homogeneous
before depressurization [87]. At the moment of foaming (a fraction of seconds to some minutes),
the “gas foaming molecules” are in a “true” gaseous state (not supercritical); while those molecules are
in the supercritical state during the saturation period (several minutes to several days depending on
the process).

Gas solubility, diffusivity and pressure drop rates are first considered as the ruling parameters,
then technological parameters such as choice of process (batch vs. continuous, equipment, tooling,
time) come into account. To give an order of times involved, in batch-foaming: CO2-saturation is on
the order of hours (solid state bulk pieces, >2 mm), one-step foaming is on the order of one minute
and two-step foaming is on the order of some minutes [58]. In the melt state, the underlying scientific
problem is the coupling of rheology, thermodynamics and the sorption/desorption/diffusion kinetics,
and final foaming, in a short time (1 to 4 min) [1].
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2.1.3. Technological/Process Parameters

They relate to pressure, temperature, tooling, and equipment. Different processes can be followed
to produce solid foam in presence of a supercritical fluid: Batch-foaming, extrusion-foaming or injection
foaming (Figure 1). For each one, it is possible to modify several technological parameters in order to
improve foaming.
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Figure 1. Different foaming processes using supercritical fluids as blowing agents: (a) Batch-foaming,
(b) extrusion foaming, (c) injection foaming.

No matter the process, the blending ability is first crucial to ensure the homogeneity of the blend,
the diffusivity and the solubility of the gas into the material.

In the case of the extrusion process, scCO2 is nevertheless an extrusion aid by acting as a plasticizer
(chains disentanglement, increasing chain mobility); glass transition temperature (Tg) and viscosity (η)
of the CO2/polymer mixture are greatly decreased [88].

Various parameters, such as pressure, temperature and saturation time, are adapted considering
the process (batch, extrusion or injection foaming). Indeed, they will have a specific impact on the
foaming depending on the process (Table 2).

Table 2. List of influencing parameters on polymer CO2 foaming in batch vs. extrusion/injection.

Batch Foaming Extrusion Foaming Injection Foaming

Process Discontinuous Continuous Continuous

Polymer state Solid Initially solid pellets
Melted polymer during the process

Initially solid pellets
Melted polymer during the process

CO2 role Foaming agent Plastifying effect + foaming agent Plasticizer (in the extruder) +
foaming agent

Pressure

Easily controlled into
the vessel

The depressurization rate
can be controlled with

a valve.

Indirectly controlled with the screw
rate in the barrel, the shearing and

with the die geometry
Depressurization happens at the

end of the die

-Pressure in the injection molding
machine as in extrusion foaming

Expansion occurs in the mold (mold
may be opened at various

controlled thicknesses)
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Table 2. Cont.

Batch Foaming Extrusion Foaming Injection Foaming

Temperature
Usually Tfoaming is close to

Tg to ensure cell growth
during the gas expansion

At the beginning T ≈ Tmelt to melt
the pellets

Then, depending on the materials’
viscosity the temperature has to

be decreased

In the screw zone, same events as
extrusion foaming

Then, mold temperature is better
controlled with heaters or fluid

circulation (water or oil)

Saturation time
Easy to control

Usually long time due to the
thickness of the samples

Indirectly controlled by the
extrusion rate (linked to the screw

rate and the viscosity of the material
at the temperature used)

Faster than in batch-foaming
because polymer is melted

Controlled by the screw speed + the
molding time chosen

Faster than batch foaming

References [11,87,89] [86,87,90] [35,36,91,92]

In batch foaming, pressure is easily controllable, whereas in extrusion foaming it is directly linked
to the extrusion rate and the screw speed [93]. In injection molding, pressure is controlled as in extrusion
foaming but the mold pressure also impacts the foaming [94]. For each process, pressure–temperature
parameters can be considered as pair parameters because the pressure applied varies with temperature.
So, the technological parameters that influence the temperature also impact the pressure.

As indicated in Table 2, it is harder to control saturation and foaming pressures–temperatures in
extrusion and injection than in batch.

For example, in extrusion, temperature adjustment is applied all along the barrel up to the die.
If the die temperature increases, the diffusivity of the gas will increase while the viscosity of the
polymer will be lowered. In these conditions, the cell walls will not be rigid enough to keep the CO2

in the foam at the beginning of foaming. Expansion may be easy at first, but walls shrink, and final
expansion will be low. If the temperature is too low, the polymer becomes too rigid, becomes non
extrudable, and the expansion is limited [95].

A minimum (critical) saturation time is crucial in all the processes, it determines the CO2 amount
that can be added into the material. In batch foaming this time is independent of the technological
parameters but this is not the case for the two others processes where it is linked to the screw speed
for extrusion foaming [93] and the molding cycle chosen for injection foaming. To reach smaller
cells in injection foaming it is possible to adjust the dwelling time. Increasing this time, the polymer
melt strength will increase what will lead to a restricted cell growth and a reduction of coalescence
phenomena [36].

In extrusion foaming it is nevertheless possible to partially control saturation time by adding
elements, such as a static mixer, at the end of the extruder [96]. This kind of modification can also be a
way to ensure the homogeneity of the blend and to reduce its temperature before depressurization.

Finally the geometry of the die (capillary, flat die, bent die, etc.) [93], and its diameter for capillary
dies, directly bias the cell density and the expansion of the foam. Depressurization happens at the end
of this zone when the material goes out and passes through the die to ambient pressure. For capillary
dies, pressure drop rate increases when the die diameter decreases and causes an increase in the
nucleation rate that leads to a density reduction, as shown for example in stark based materials [97] and
polystyrene (PS) [98]. For bent dies, there are some more pressure losses due to the energy dissipation
by friction; these losses can stabilize the polymer flow and thus facilitate the control of the expansion
at the end of the die [98].

2.2. New Examples Based on Amorphous Polymer (PMMA) Batch Foaming: PMMA Blends with
Core–Shell Performed Particles (CS) or a Structured Acrylic Block Copolymer (MAM), as CO2-Philic
Foaming-Aid Additives

This paragraph gives specific results on PMMA blends with 20 wt% of a CO2-philic structured
additive (MAM or CS) dispersed as “very small objects” in the PMMA matrix. The result is a structured
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blend where the compatibility between phases is excellent (no sharp interfaces); these additives are
considered as “foaming-aids”, especially to the nano or micro range.

MAM, i.e., PMMA-co-PBA-co-PMMA block copolymer, is organizing as micellar objects at 20 wt%
in PMMA and used for a foaming aid in PMMA foams [9,10,99]. Core shells (from Durastrength
series) are preformed acrylic spherical particles easily dispersible in PMMA and not yet used in
polymer foams.

In batch foaming process, polymer samples are saturated in a scCO2 vessel (also named reactor)
at Tsaturation (typically between RT and 80 ◦C; it can be lowered down to 0 ◦C to increase CO2

solubility [42,80,100]) and Psaturation (typically 5 to 30 MPa) for a time, tsaturation, (typically 12 h to
several days). After saturation, the solid material is back to RT and atmospheric pressure.

Depending on the state of the polymer at the moment of expansion: Glassy solid or rubbery
solid. Indeed, the value of Tg of the polymer/CO2 mixture depends on Psaturation. Indeed, the value
of Tg of the polymer/CO2 mixture depends on Psaturation. CO2 acts as a plasticizer so that Tg of the
polymer/CO2 mixture is always lower than that of the polymer (20 to 50 ◦C lower). This plasticization
enables batch one-step foaming. Heating in the two-step-foaming process gives mobility to the chains
and allows expansion at a temperature above Tg of the polymer/CO2 mixture at atmospheric pressure.

MAM is known to regulate (to homogenize) cell size distribution and tends generally to lower
the cell size of batch PMMA foams. PMMA/MAM being a good model system, a huge collection of
experiments on batched-foamed PMMA/MAM structured blends was published varying wt% MAM
(0.1 to 20 wt%), Psaturation, Tsaturation, ∆P/dt, one-step vs. two-step foaming, Tfoaming. All works show
that density is accessible between 1 and 0.25·103 kg·m−3, mean pore diameter between several tens
of micrometers to 0.1 µm, exceptionally down to 50 nm (thanks to hard low temperature saturation
conditions) [39,81,89,101,102].

The PBA rubbery block (very low Tg, never vitrifying) has a higher CO2-affinity than the less
CO2-philic PMMA side blocks which are able to vitrify, Tg being around 110 ◦C. Thanks to this
PBA block, under the same saturation conditions (e.g., RT, 30 MPa during 16 h), MAM has a higher
CO2-philicity (e.g., CO2 uptake: 24.1 wt%) than PMMA (e.g., CO2 uptake: 12.1 wt%) [12].

Finally, MAM micelles act as CO2 reservoirs during the saturation and due to the CO2 amount
added into the material, the cell density will be increased whereas growth and coalescence would be
limited below Tg.

Here we investigate the role of two additives vs. type of foaming and their relative or mutual
influence. We use two “foaming aids” and submit them to different types of foaming. In Tables 3 and 4
two sets of experiments (I, II) are presented in PMMA-based foams.

Set “I” (Table 3) compares the use of the two additives (MAM, CS) at 20 wt%, after a one-step
batch foaming (saturation at 80 ◦C, 31.5 MPa, ∆P/dt ~12 MPa·min−1). This choice is always inducing
expansion upon depressurization. Foams’ morphologies are shown on SEM (Figure 2). The average
pore diameter classically lies in the micrometer range in one-step batch foams from a temperature
where the system is rubbery and expandable.

Table 3. Set of experiments I: Characteristics of PMMA-based foams obtained after a one-step
batch foaming at a saturation temperature of 80 ◦C, a saturation pressure of 31.5 MPa and at a gas
depressurization speed of ∆P/dt~12 MPa·min−1.

PMMA/20 wt% Additive Average Density
(103 kg·m−3)

Average Pore Diameter
(µm)

MAM 0.29 12.8
D200 0.30 14.5
D480 0.32 13.5
Dlab 0.24 15.5
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Table 4. Set of experiments II: Density variations observed in various batch foaming conditions
(Psat, Tsat).

Psat

(MPa)
Tsat

(◦C)
Post

Treatment
ρpmma/20wt%D200

(103 kg·m−3)
ρpmma/20wt%D480

(103 kg·m−3)
ρpmma/20wt%Dlab

(103 kg·m−3)
ρpmma/20wt%MAM

(103 kg·m−3)

10 30 OS + IB NF NF NF NF
10 a 30 OS 0.81 0.83 0.7 0.9
10 b 60 OS 0.7 0.71 0.63 -

31.5 c 80 OS 0.3 0.32 0.24 0.29
10 d 80 OS 0.57 0.55 0.56 0.52
7.5 e 100 OS 0.5 0.52 0.5 0.5

OS + IB: One step foaming (OS) followed by an iced water bath (IB) (=quasi one-step foaming). OS: (Classical) one
step foaming; *** NF: No foaming, letters (a–f) are used in Figure 3.Molecules 2020, 25, x 9 of 18 
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Figure 2. SEM microstructure of poly(methyl methacrylate) (PMMA)/20 wt% additive based foams in
Set I (a) D200, (b) D480, (c) Dlab, (d) block copolymer MAM.

Set “II” (Table 4) uses of a quasi-one-step batch foaming, i.e., samples are left either at RT after
depressurization or immersed in ice bath (IB) just after depressurization. According to saturation
temperature and pressure, after the pressure drop, this method induces or not an expansion.
The expansion is so qualitatively observed with time. A gradient of opacity may grow through
a sample, from transparent state at the end of depressurization.

2.2.1. Comparison of CoreShell and MAM Tri Block Copolymer

For set I, saturation at 80 ◦C, 31.5 MPa (Table 3), no real difference appears in density (ρ) between
the two crosslinked-core CS and MAM. But there is a noticeable lower density for the liquid-core
CS (0.24·103 kg·m−3), in accordance with its better capacity to swell, particularly for foaming at RT.
However, the average diameters are comparable for all CS’s and MAM, between 12.5 and 15.5 µm.

For the set of experiments II, the data of Table 4 are plotted in Figure 3, where ρ = f(Tsaturation).
Set II is a quasi-one-step batch foaming from different saturation temperatures (Tfoaming) and pressures
(Psaturation). CS’s and MAM behave rather similarly; each additive lies close to each other for a pair
of (Psat, Tsat). In these experiments, one observes that Tsat and Psat are the influencing parameters.
The classical dependence of decreasing density with Tsat and Psat, independently of the additive,
are shown in Figure 3. Indeed at 10 MPa, density decreases linearly (from ~0.8·103 to ~0.5·103 kg·m−3,
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while the temperature increases (from 30 ◦C to 80 ◦C). On another side, at a given temperature (80 ◦C)
the density decreases while the pressure increases.
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Interestingly, things are somehow different at low saturation temperatures (e.g.,≤30 ◦C). Even more
in ice, the role of vitrification prevails and stops expansion for all systems (no foaming, denoted as NF).
This role is attributed to vitrification of both PMMA matrix, shells or side PMMA blocks, and the fact
that Tg of CO2-swollen PMMA lies above 0 ◦C. Thus it appears that liquid-core CS have in interest in
low temperature foaming.

2.2.2. Role of a Quasi One-Step Batch Foaming

The occurrence of gradient or gradient-like porosity or a sharp nonporous/porous transition at a
porosity scale of tens of nm on thick samples was investigated. Thick samples have an intrinsic thermal
insulation that enables temperature gradients during foaming, and therefore the presence of potential
differently foamed areas, or layers in which foaming would be changed layer by layer. We also want
to see if pore size is reduced (or not) in the different potential foaming areas. So blend samples of
PMMA/foaming-aid nano (MAM) or micro (CS) structured additives are submitted to batch foaming
in view of creating inhomogeneous foams, for example true gradient foams or either a material with a
sharp porous/non porous transition. For this, foaming needs to be quickly limited by vitrification or
by CO2 diffusion. Note that in batch solid-state-foaming, gradient effects are possible only in thick
insulating samples and thanks to a post temperature effect.

To do so, we focused on the effect of a simple post temperature treatment. Samples are treated
in by a quasi one-step batch foaming, i.e., classically saturated in a pressure vessel, depressurized at
room temperature (foamed or not, depending on conditions) and immersed immediately in an ice bath
(instead of remaining at RT).

We characterized samples both by visual and SEM observations. First porosity is not present over
the whole sample. Then the level to which pore size may be reduced is looked for, while maintaining
an expansion (i.e., a density reduction).

Figure 4 depicts a scheme of a sample exhibiting an area where a transition from translucent to
opaque appearance is observed. Nanopores are present and rather well distributed in the observed
opaque areas. SEM micrographs (Figure 5a) show only a few nano cells in the range of 50 nm in a
translucent area (unfoamed). But in the porous areas (Figure 5b,c), a lot of nano cells are indeed well
distributed with cell size between 50 to 120 nm. However, SEM reveals that the transition from dense
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to porous is sharp. This porosity results from a temperature gradient through the insulating character
of thick samples during foaming and from a gradient of CO2 diffusion (the central area is hotter and
richer in CO2, it can foam).
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Figure 5. Set II PMMA/20 wt% MAM ice immersed after batch foaming at 10 MPa and 30 ◦C, (a) area
of the sample where a transition transparent to translucent is observed, that is a “nonporous to porous”
transition (reminder: Sample is thick), (b,c) area of the sample where opacity (even slight) is observed,
that is a porous region (reminder: Sample is thick).

Thus, through this experiment, we show that a true porosity gradient is not revealed; and there
seems to be a porosity “discontinuous” transition in batch foamed thick samples (minimum 2 mm
thick). It is also shown in our conditions that pore size lower than 50 nm cannot be generated.

3. Experimental Section

3.1. Materials and Unfoamed Precursors Production

Details on initial materials (PMMA, MAM, CS) can be found in the literature [20,47,48]. All of
them were kindly supplied by Arkema (Lacq and Lyon, France).

Materials, as pellets, were first dried at 80 ◦C during 4 h before processing. Then PMMA/20 wt%
additive blends were compounded using a Scamex CE02 (Scamex, Crosne, France) single-screw
extruder (L/D = 28; d = 45 mm), with a temperature profile from 165 to 225 ◦C, at a screw speed of
60 rpm. Pellets were produced using a continuous cutting machine operating at the end of the line.
Then, the pellets were dried again (8 h at 80 ◦C) before being injected as tensile test bars (ISO 180/U
80 × 10 × 4 mm3) by a classical injection molding (DK 50T, DK Technologie, Gonesse, France), with a
screw temperature of 240 ◦C and a mold temperature of 50 ◦C. The injected samples present the aspect
and the properties shown in Table 5.
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Table 5. Characteristics of the additives used in a PMMA matrix.

Material State at Tamb Other Characteristics Density
(103 kg·m−3)

Aspect

PMMA V825T clear 101 Glassy amorphous solid Use as polymer matrix 1.19 Transparent

MAM M42 Rubbery center block Triblock copolymer
PMMA-36 wt% PBA *-PMMA 1.18 Transparent

Core shell D ** 200 Crosslinked soft core PBA core, PMMA shell 1.14 Opalescent
Core shell D480 Crosslinked soft core PBA core, PMMA shell 1.21 Opaque

Core shell Dlab Liquid core
uncrosslinked PBA core, PMMA shell 1.13 Opaque

* PBA: Poly(butyl acrylate). ** DuraStrength is a range of commercial core shell particles (CS), with either a
crosslinked core or a liquid core, used classically as impact modifiers, MAM is a range of block copolymers
(nanostrength), methylmethacrylate-co-butylacrylate-co-methylmethacrylate block- copolymers.

3.2. Porous Samples Production

All the materials presented in the article were foamed in batch foaming in presence of supercritical
carbon dioxide (scCO2) at 99.9% pure from Air Liquide (Grand Couronne, France). The experiments
were done into a high-pressure vessel provided by TOP Industrie (Vaux-le-Pénil, France). This vessel
has a capacity of 300 cm3 and it is possible to use it up to 40 MPa and 250 ◦C. The pressure and
temperature are kept at desired values through a pressure pump controller Teledyne ISCO model 260
(Teledyne ISCO, Lincoln, USA).

In this study the samples were saturated at different pressures and temperatures during 24 h to
ensure the CO2 dissolution in the polymer. Two kinds of experiments were conducted.

The first one, called Set I, corresponds to a “one-step” batch-foaming method. The samples
(PMMA/20 wt% MAM and PMMA/20 wt% CS) are saturated at 80 ◦C and 31.5 MPa during 24 h before
the depressurization. These conditions have been selected to be sure that the samples always expand
after depressurization. When the pressure is released, the temperature shows a great drop [9,10] and
we go from supercritical conditions to ambient conditions.

The second method, called Set II, corresponds to a “quasi one-step” batch-foaming. Generally,
the term “two-step foaming” is used when samples are first rapidly depressurized without expansion
(or a negligible expansion), then expanded out of the vessel by dropping and heating them in an
oil or water bath at a chosen temperature (Tfoaming, typically 30 to 100 ◦C). In two-step foaming,
temperature is generally well controlled and constant. In this study, the samples are saturated at
different temperatures (from 30 to 100 ◦C), and pressures (from 7.5 to 31.5 MPa) that leads, or not,
to a sample expansion after the pressure drop (at ∆P/dt ~12 MPa·min−1). After depressurization the
samples are left either at RT or immersed in ice bath (IB) out of the vessel.

3.3. Characterization Techniques

Density of materials (unfoamed: ρs and foams: ρf) were measured using a water pycnometer.
Following the water displacement method based on Archimede’s principle, it is possible to determine
the density of the material easily. Indeed, for each sample three measurements were done. Then the
density was determined with the following Equation (2):

ρ =
mdry sample

mdry sample + ∆m
, (2)

where mdry sample is the mass of the sample, ∆m is the mass loss between the pycnometer filled only
with water and the pycnometer filled with water in which we have added the sample. So, we can write
it as in Equation (3):

∆m = mpycno+H2O −mpycno+H2O+sample. (3)

Foams cellular structure was determined on the micrographs obtained with a scanning electron
microscopy HITACHI model S-3000N (Tokyo, Japon). The samples were fractured in liquid nitrogen,
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then gold coated with a sputter coater and observed under a voltage of 10 kV, and a working distance
WD = 9 mm, in secondary electron (SE) mode. Determination of the mean cell diameter (φcell), cell
density (dcell), and observations were done with FIJI/ImageJ software (“Image J.2”, 2017).

4. Conclusions

Bulk scCO2-foamed polymers result from the interplay of three main groups of parameters:
(i) Chemical, (ii) physico-chemical, and (iii) technological/process. Polymer solubility in scCO2 is often
the first order parameter, with the difficulty of the polymer poor solubilities, especially in the short
times allowed in continuous processes.

We provided comparative values where literature data have been expressed in the same unit (wt%
CO2). We summarized the other physico-chemical influencing parameters (e.g., state of the polymer,
and Tg).

Then we compared the advantages and drawbacks of continuous (extrusion) continuous (injection)
or discontinuous (batch) foaming processes in scCO2, especially for micro or nano cellular polymers.
Whatever the process, a challenge is to reduce both specific mass (e.g., <0.1·103 kg·m−3) and cell size
(e.g., average pore diameter φaverg

pores < 100 nm).
Finally, we have presented a particular system where acrylic small “objects” (coreshells CS, or block

copolymer MAM) are perfectly dispersed and structured in poly(methyl methcarylate) (PMMA). Some
differences between these foaming-aid additives are shown in a one-step batch process. A liquid-core
CS presents advantages for a decrease in density, even at room temperature foaming. On another side,
in a PMMA/20 wt% MAM blend, through a quasi one-step batch foaming, a “porous to nonporous”
transition is observed on thick samples. Such a sharp porosity gradient (from nonporous transparent
areas to porous opaque areas within the same sample) would reveal a lower limit of pore size at around
50 nm in a batch classical process in “mild conditions”.
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