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Abstract

Introduction: There is increasing interest in plasma amyloid beta (Aβ) as an endophe-
notype of Alzheimer’s disease (AD). Identifying the genetic determinants of plasma Aβ
levels may elucidate important biological processes that determine plasma Aβ mea-

sures.

Methods: We included 12,369 non-demented participants from eight population-

based studies. Imputed genetic data and measured plasma Aβ1-40, Aβ1-42 levels and

Aβ1-42/Aβ1-40 ratio were used to perform genome-wide association studies, and

gene-based and pathway analyses. Significant variants and genes were followed up for

their association with brain positron emission tomography Aβ deposition and AD risk.

Results: Single-variant analysis identified associations with apolipoprotein E (APOE)

for Aβ1-42 and Aβ1-42/Aβ1-40 ratio, and BACE1 for Aβ1-40. Gene-based analysis of

Aβ1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There

was suggestive evidence for interaction between aBACE1 variant andAPOE ε4onbrain
Aβ deposition.
Discussion: Identification of variants near/in known major Aβ-processing genes

strengthens the relevance of plasma-Aβ levels as an endophenotype of AD.

KEYWORDS

Alzheimer’s disease, APOE, APP, BACE1, endophenotype, genetic epidemiology, genome‑wide
association study, plasma amyloid beta levels, plasma biomarkers, preclinical biomarkers, PSEN2

1 INTRODUCTION

Amyloid beta (Aβ) deposition is one of the hallmarks of Alzheimer’s dis-

ease (AD). Aβ peptides are the products of the catalytic processing of
the Aβ precursor protein (APP) by the β-secretase, BACE1, and the γ-
secretase complex.1 Aβpeptides are able to self-assemble in solubleAβ
oligomers but also in insoluble fibrils that can aggregate as plaques in

the brain parenchyma or in thewall of blood vessels where they consti-

tute defining hallmarks of AD2 and cerebral amyloid angiopathy (CAA),

which is seen in many patients.3 Aβ peptides are mainly produced not

only in the brain where APP and BACE1 are both highly expressed,1 but

also in circulating blood platelets,4 in the pancreas,5 and the kidneys.6

There is strong evidence pointing toward a central role of Aβ pep-
tides in the pathophysiology of AD.7 In the past decades, studies have

shown that a large variety of rare mutations in genes involved in Aβ
production, including APP, PSEN1, and PSEN2, lead to autosomal dom-

inant early-onset forms of AD and to lobar hemorrhage from cerebral

amyloid angiopathy.8 Moreover, apolipoprotein E (APOE) ε4, the major
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genetic risk factor for AD in the general population,9 has been impli-

cated in Aβ aggregation, deposition, and clearance, both in the brain

and in blood vessels.7,10 Although for a long time the Aβ pathway did
not emerge in our genome-wide association studies (GWAS) of AD,11

our most recent GWAS study highlighted the Aβ processing pathway
and APP catabolic process pathway in late-onset Alzheimer’s disease

(LOAD).12 Weandothers have also explored the genetics ofAβ through
GWAS on quantitative measures of Aβ peptides, in the cerebrospinal

fluid (CSF) or brain, through Pittsburgh Compound B (PiB) positron

emission tomography (PET) scan or autopsy.13–17 Combining the effect

of AD genetic loci in a genetic risk score shows that the combined AD

genes are statistically significantly related to CSF Aβ42.17

Although Aβ can be assessed in CSF and brain (PiB PET), these tests

are of limited use for clinical and epidemiological studies in the popu-

lation, either because of lower compliance (CSF) or higher costs (PiB

PET). The recent success of blood-based biomarkers (phosphorylated

tau [p-tau] and neurofilament light [NfL]) fueled our interest in Aβ
metabolism in blood. Unlike p-tau andNfL, Aβ peptides in the blood cir-
culation are not brain specific. Aβpeptides produced in the brain can be
degraded locally or transported into the CSF and the blood stream.18

However, Aβ peptides in the circulation can also be derived from blood

platelets, kidney, or pancreas. Although the brain-derived Aβ peptides
in the circulation cannot be distinguished from Aβ derived from blood

platelets, the kidneys, or the pancreas, a recent study using immuno-

precipitation coupled with mass spectrometry to measure plasma

Aβ1-40/Aβ1-42 and APP/Aβ1-42 ratios was able to accurately predict

individual brain Aβ-positive or -negative status.19 Also, studies assess-
ing Aβ1-40 and Aβ1-42 using immunoassays show that these can pre-

dict Aβ status in the brain as assessed by PiB PET20 and that changes in

the blood and plasma occur simultaneously.21

Earlier, we have also shown that plasma Aβ concentrations are

prospectively associated with the risk of developing AD in the

future.22–25 Despite the fact that we have used less sensitive tech-

niques to measure plasma Aβ levels, we found modest but signifi-

cant correlation with amyloid burden in the CSF and in the brain.26,27

Whereas Aβ levels may or may not prove to be an effective blood

biomarker panel for predicting AD risk in patients with cognitive

impairments, the association with future AD suggests Aβ could be an

endophenotype, that is, a quantitative biological trait that is an inter-

mediate between one ormore disease genes (e.g., APOE, APP, PSEN, or

other AD genes) and the disease of interest, AD. Endophenotypes can

be associated to different diseases, for example, the endophenotype

blood pressure is associated to brain, heart, kidney, and dementia and

is relevant for early prevention. For instance, endophenotypes played a

key role in developing prevention for cardiovascular disease, targeting

intermediate endophenotypes such as cholesterol, glucose, and blood

pressure. Building upon our findings that plasma Aβ concentrations

are associated with developing AD in the future,22–25 a question that

remains to be answered is whether plasma Aβ levels are driven by the
genes implicated in AD.

To answer this question, we conducted a GWAS, hypothesizing that

if we find that AD genes primarily determine plasma Aβ levels, it is

likely that plasma Aβ is an endophenotype for AD. Alternatively, if we

find that plasmaAβ is primarily associated to genes implicated in blood

platelet function, or kidney or pancreas pathology, the findings argue

against the hypothesis that Aβ in blood is an endophenotype for AD.

We previously conducted aGWASmeta-analysis of plasmaAβ levels in
3528 non-demented participants, but failed to find genome-wide sig-

nificant associations,28 indicating a lack of power related to the mea-

surement or the sample size. At present, the more sensitive measures

are not yet available in large samples with genome-wide genetic data.

We therefore aimed to increase the studied sample size of our previous

work. The present study is aGWASmeta-analysis of plasmaAβ levels in
more than 12,000 individuals aiming to elucidate processes that deter-

mine plasma Aβ.

2 METHODS

2.1 Study populations

We included data from 12,369 European-descent participants from

eight studies, the Framingham Heart Study (FHS; n = 6735), the Rot-

terdam study (RS, n = 1958), the Three City Study (3C; n = 1954), the

Atherosclerosis Risk in Communities Study (ARIC; n= 830), theWash-

ington Heights-Inwood Community Aging Project (WHICAP; n= 193),

the Epidemiological Prevention Study of Zoetermeer (EPOZ; n= 397),

the Alzheimer’s Disease Neuroimaging Initiative (ADNI; n = 173), and

the Erasmus Rucphen Family Study (ERF; n = 129). In each study, we

excluded participants with prevalent dementia at the time of blood

sampling used for plasma Aβ assessment (see Materials and Methods

1 in supporting information for a detailed description of each study).

2.2 Plasma Aβ assessment

Each study used different protocols for blood sampling, plasma extrac-

tion, and storage and plasma Aβ assessment that have been detailed

in previous publications.22,23,25,29–31 In the FHS, RS, and 3C studies,

plasmaAβ levelsweremeasured at different times because of cost con-

siderations. Various assays were used to quantify plasma Aβ1-40 and

Aβ1-42 levels (seeMaterials andMethods 2 in supporting information

for a detailed description of the protocols used in each study and Table

S1 in supporting information for baseline characteristics of the study

populations).

2.3 Genotyping

Each study used different genotyping platforms as previously

published.11 After applying pre-imputation variant and sample filters,

genotypes were imputed using the 1000 Genomes phase 1 version

3 (all ethnicities) imputation panel and various imputation pipelines

(see Methods 3 in supporting information). APOE genotyping was

performed as part of protocols specific to each study (see Methods 4

in supporting information).
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional (e.g., PubMed) sources and meeting

abstracts and presentations. Genome-wide association

studies have not yet identified variants associated with

plasma amyloid beta (Aβ)1-40, Aβ1-42 levels and Aβ1-
42/Aβ1-40 ratio, probably due to limited sample sizes.

2. Interpretation: Our findings identified two genome-wide

significant loci in apolipoprotein E (APOE) and BACE1

regions associated with plasma Aβ levels in 12,369

non‑demented subjects. A gene-based approach con-

firmed the association with APOE and BACE1 genes and

identified additional signals in APP, PSEN2, CCK, and

ZNF397 genes. We also showed a suggestive interaction

between the most significant BACE1 variant and APOE ε4
with Aβ deposition in the brain using positron emission

tomography imaging.

3. Futuredirections:Wepropose to further explore thebiol-

ogy underlying both circulating and brain amyloid levels

using larger,multiomic samples, newplasmabeta-amyloid

assays, and induced pluripotent stem cells–based meth-

ods.

2.4 Statistical analyses

2.4.1 Plasma Aβ levels

PlasmaAβ levels were expressed as pgmL-1. In each study and for each

Aβ dosage, we excluded values that were over or below four standard

deviations around the mean. To study the variations of plasma Aβ lev-
els in a consistent way across studies, we performed a ranked-based

inverse normal transformation of plasmaAβ levels in each study. If they
were significantly associatedwithplasmaAβ levels, this transformation

was performed after adjusting for batch effect and other technical arti-

facts.

2.4.2 Genome‑wide association studies

Each study performed GWAS of plasma Aβ1-40 and Aβ1-42 levels

and Aβ1-42/Aβ1-40 ratio using 1000 Genomes imputed data. Accord-

ing to the imputation pipelines used, genetic information was avail-

able either as allele dosages or genotype probabilities. In each study,

we excluded results from variants that had low imputation quality (r2

or info score < 0.3), variants with low frequency (minor allele fre-

quency< 0.005 orminor allele count< 7), and variants thatwere avail-

able in a small number of participants (n < 30). Association of genetic

variations with plasma Aβ levels were assessed in linear regression

models adjusted for sex and age at blood collection. If significantly

associated with plasma Aβ levels, principal components were added in

themodels to account for population structure.

2.4.3 Genome‑wide meta-analysis

Before meta-analysis, we applied a series of filters and quality check

that were previously published (see Figures S1 and S2 in sup-

porting information).32 We performed an inverse variance weighted

genome‑wide meta-analysis, accounting for genomic inflation factors

using the METAL software.33 Finally, we retained variants that had

been meta-analyzed at least in the three largest available populations

(FHS, RS, and 3C). Statistical significance was defined as a P-value

below 5×10–8. Signals with P-values between 1×10–5 and 5×10–8

were considered suggestive. Additional graphs and analyses were

done using R v3.6.1. To confirm the APOE signal we obtained in our

genome‑wide meta-analysis, we reran our analysis using genotyped

APOE ε4 and APOE ε2 status, adjusting for age and sex.

2.4.4 Gene-based and pathway analyses

We tested aggregated effects of single nucleotide polymorphisms

(SNPs) locatedwithin genesusing themulti-marker analysis of genomic

annotation (MAGMA) v1.07 tool.34 For each dosage, a total of 18,089

genes were tested, resulting in a significance threshold of 2.76×10–6.

Pathway analyses were also performedwithMAGMAv1.07.34 The fol-

lowing gene sets were used: GO (biological process, cellular compo-

nent andmolecular function, KEGG, Biocarta, and Reactome). Pathway

P-values were corrected for multiple testing using the false discovery

rate (FDR) method.

2.4.5 Expression quantitative trait loci (eQTL)
analysis

We looked at effect on gene expression of (1) genome-wide signifi-

cant variants and (2) variants with a P-value below 10–5 and belong-

ing to the same loci as the genome-wide significant variants. We used

the GTEx v8 dataset (https://gtexportal.org) and considered the fol-

lowing tissues: whole blood, kidney, pancreas, lymphoblastoid cell line,

and brain (amygdala, anterior cingulate cortex, caudate basal ganglia,

cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocam-

pus, hypothalamus, nucleus accumbens [basal ganglia], putamen basal

[basal ganglia], cervical spinal cord, substantia nigra).

2.4.6 Association analyses with Aβ brain
deposition

We related allelic variation at the SNP of interest with a standardmea-

sure of amyloid burden in the brain on PET imaging35 in 193 middle-

aged, dementia-free FHS participants36 (see Materials and Methods 5

https://gtexportal.org
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F IGURE 1 Association of frequent genetic variants with plasma amyloid beta (Aβ)1-42 in the apolipoprotein E locus

in supporting information for a detailed description of the protocols

used). As a pre-specified hypothesis, we examined this association sep-

arately for persons with at least one APOE ε4 allele and those without.

We report the odds ratio of having a positive amyloid scan associated

with having a single copy of the allele of interest, using additive genetic

models adjusted for age and sex.

2.4.7 Association with AD

For significant variants and genes, we checked for associationwith AD.

Summary statistics from the most recent genetic meta-analyses of AD

were used.12,37

3 RESULTS

3.1 Genome-wide significant variants associated
with plasma Aβ levels

After meta-analysis, we identified 21 variants reaching genome-wide

significance across two loci (Figures S3 to S8 in supporting informa-

tion).

The first locus was located on chromosome 19, in the APOE gene,

with significant associations with plasma Aβ1-42 levels and plasma

Aβ1-42/Aβ1-40 ratio (Figures 1 and 2). For both associations, the most

significant variant was rs429358 with P-values of 9.01×10–13 and

6.46×10–20 for Aβ1-42 levels and Aβ1-42/Aβ1-40 ratio, respectively

(Table 1). The minor allele of this variant, which denotes APOE ε4, was
associated with lower plasma Aβ1-42 levels (effect size= –0.167 stan-

dard deviations (SD); 95% confidence interval (CI) = [–0.212; –0.121])

and lower plasma Aβ1-42/Aβ1-40 ratio (effect size = –0.212 SD; 95%

CI= [–0.257; –0.121]; Table 1 andFigure S9 in supporting information).

We confirmed these associations using the directly genotypedAPOE ε4
status (Figure S10 in supporting information).

The second genome‑wide significant locus was an intronic variant

in the RNF214 gene. The function on RNF214 is largely unknown.

The gene is located on chromosome 11, near the BACE1 gene.

BACE1 encodes β-secretase and is involved in the initial, Aβ-producing
step of APP processing (Figure 3). For the most significant variant,

rs650585, the minor allele was associated with lower plasma Aβ1-
40 levels (effect size = –0.073 SD; 95% CI = [–0.099; –0.047]; P-

value = 2.56×10–8; Table 1 and Figure S9). This variant is in linkage

disequilibrium (LD; R2
= 0.75, 1000 Genomes phase 3) with a BACE1

synonymous variant, rs638405, whichwas also associatedwith plasma

Aβ1-40 levels (effect size = –0.071 SD, P‑value = 1.21×10–7). For
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F IGURE 2 Association of frequent genetic variants with plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio in the apolipoprotein E locus

TABLE 1 Association of top variants from genome-wide significant loci with plasma Aβ levels and amyloid-related traits

EAF Effect Standard Error P-value I2

rs650585 (chr11:117110740, T/C, intron; RNF214/BACE1)

Plasma

Aβ1-40 41.3% –0.073 0.013 2.56× 10–8 3.1%

Aβ1-42 41.3% –0.035 0.013 9.57× 10–3 27.8%

Aβ1-42/Aβ1-40 ratio 41.4% 0.033 0.013 1.39× 10–2 0.0%

AD riska 40.8% 0.033 0.015 2.30× 10–2 8.3%

rs429358 (chr19:45411941, C/T, missense; APOE)

Plasma

Aβ1-40 13.4% 0.023 0.023 3.11× 10–1 23.7%

Aβ1-42 13.4% –0.167 0.023 9.01× 10–13 32.3%

Aβ1-42/Aβ1-40 ratio 13.4% –0.212 0.023 6.46× 10–20 52.6%

AD riska 21.6% 1.20 0.019 .00× 10+00 72.1%

Abbreviations: Aβ, amyloid beta; AD: Alzheimer’s disease; EAF: effect allele frequency; SNP, single nucleotide polymorphism.

Notes: For plasma measures, “Effect” represents the mean variation of the standardized variable (i.e., transformed so that mean = 0 and standard devia-

tion = 1). In each block, the rsID of the top SNP is followed by its GRCh37 position, effect/non-effect alleles, functional category and closest genes. aresults

obtained fromKunkle et al.12
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F IGURE 3 Association of frequent genetic variants with plasma amyloid beta (Aβ)1-40 in the BACE1 locus

plasma Aβ1-40 levels, eQTL analysis showed an effect of variants

belonging to loci significantly associated with plasma Aβ levels mainly

on the expressionofCEP164 andBACE1 in blood, andon the expression

ofCEP164 in several brain regions (Table S2 in supporting information).

No effect on RNF214 expression was found. For plasma Aβ1-42 levels

andAβ1-42/Aβ1-40 ratio,weonly observed aneffect on the expression
ofNECTIN2.

3.2 Gene and pathway-based analyses of plasma
Aβ levels

Next, we performed gene-based tests (Table 2, Figures S6-S8). We

again observed the APOE, RNF214, and BACE1 genes (P = 3.87×10–13,

P = 2.33×10–7, and P = 3.2×10–9, respectively), for which we had

identified genome-wide significant single variant associations. In addi-

tion to these genes, four genes showed gene-wide significant signals

(P < 2.76×10–6). We found that the APP and PSEN2 genes were asso-

ciated with plasma Aβ1-40 levels (P = 1.67×10–7 and P = 2.63×10–6,

respectively). Interestingly, at the SNP level, there were two peaks

reaching suggestive evidence for associationwith Aβ1-40 levels in APP
gene (Figure S11 in supporting information), probably explaining its

strong association at the gene level. The two other genes were CCK,

associated with plasma Aβ1-40 levels (P = 2.63×10–6), and ZNF397,

associatedwith plasmaAβ1-42/1-40 ratio (P= 2.27×10–6). The formal

pathway analyses did not yield any significant results (Tables S3-S5 in

supporting information).

3.3 Association of the BACE1 locus with PET Aβ
deposition

We tested the association of the top hit rs650585 from the BACE1

locus (see above) with Aβ deposition in the brain from subsets of the

FHS population.We found an association of rs650585with an increase

of deposition of Aβ in FHS-Gen3 only among APOE ε4–positive individ-
uals (P= 0.02; Table S6 in supporting information).

3.4 Variants associated with plasma amyloid
associate with the risk of AD

The APOE ɛ4 allele is known to be associated with a higher risk of

AD.38 We did not find significant evidence for association between the
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TABLE 2 Associations of variants aggregated according to genes with plasma Aβ levels

Gene symbol Chromosome Start position Stop position N. SNPs P-value

Plasma Aβ1-40

PSEN2 1 227,057,885 227,083,806 84 2.63× 10–6

CCK 3 42,299,317 42,307,699 20 2.63× 10–6

RNF214 11 117,103,341 117,157,161 143 2.33× 10–7

BACE1 11 117,156,402 117,186,975 70 3.20× 10–9

APP 21 27,252,861 27,543,446 787 1.67× 10–7

Plasma Aβ1-42

APOE 19 45,409,011 45,412,650 2 3.14× 10–10

APOC1 19 45,417,504 45,422,606 3 2.52× 10–9

Plasma Aβ1-42/Aβ1-40 ratio

ZNF397 18 32,820,994 32,847,097 48 2.27× 10–6

APOE 19 45,409,011 45,412,650 2 3.87× 10–13

APOC1 19 45,417,504 45,422,606 3 6.79× 10–13

Start and stop positions are given according to GRCh37. Gene-wide significance level is computed for 18,089 genes, i.e., 2.76× 10–6.

Abbreviations: Aβ, amyloid beta; SNP, single nucleotide polymorphism.

protect variant for AD, APOE ε2, and circulating Aβ peptides lev-

els (Figure S10). A significant association of APP gene with AD

(P= 8.42 × 10–7) was reported.37 Interestingly, one of the two peaks in

APP suggestively associated with Aβ1-40 levels (Figure S11) was also

associated with AD, whereas the second peak was not (Figure S12 in

supporting information).37 Nominal significant associations of RNF214

(P = 4.8 × 10–5) and BACE1 (P= 1.1 × 10–3) with AD were reported

while PSEN2was close to nominal association (P= 5.1× 10–2).37

4 DISCUSSION

To uncover the genes that determine plasma Aβ levels, we performed

a GWAS of plasma Aβ in 12,369 non‑demented subjects. Although we

did not use recently developed high sensitivity assays, we found that

plasma Aβ levels are determined by variants in and near the major AD

genes:APOE,BACE1, PSEN2, andAPP. The proteins these genes encode

for are known to be involved in Aβ processing. A novel finding is that

the variants near the BACE1 gene were found to be associated with

Aβ in the brain as measured by PET imaging and these variants were

also found to be associatedwith the risk of AD.We also identified addi-

tional signals for new genes implicated in Aβ levels in blood, CCK and

ZNF397.

The BACE1 region encompasses several genes (PCSK7, RNF214,

BACE1,CEP164) and aBACE1 anti-sense long non-coding RNA (BACE1-

AS). Although the top variant in the GWAS is located in an intron of

RNF214, the gene-based and eQTL analyses suggest BACE1 is likely

the causal gene in the region. The fact that β-secretase activity of

BACE1 is necessary for Aβ peptide production makes it highly likely

that BACE1 or a local regulation of BACE1 explainsmost likely the asso-

ciation of the region to plasma Aβ levels. We also found gene-wide

significant associations with plasma Aβ1-40 levels in APP and PSEN2,

two major actors of Aβmetabolism. The APP gene is a key driver of its

ownmetabolism in blood and PSEN2 is a key player of the γ-secretases,
which process the APP C99 fragment into Aβ peptides.1 The top vari-

ants at the PSEN2 and BACE1 loci were also nominally significantly

associated with Aβ1-42 levels in the same direction as Aβ1-40 levels,

which is in agreementwith the finding that PSEN2 and BACE1 activities

indifferently produce Aβ40 and Aβ42 peptides. Conversely, the APOE

ε4 allele had the strongest association with Aβ1-42 levels but was not

even nominally associated with Aβ1-40. This suggests that the APOE

ɛ4 isoform is not involved early in the process of Aβ peptide produc-

tion but rather in more downstream events, such as Aβ aggregation

or clearance. These results might also illustrate the greater propensity

of Aβ1-42 peptides to aggregate compared to Aβ1-40, and the influ-

ence of APOE isoforms in the regulation of this aggregation process.10

Interestingly, associations of APOE ε2 with plasma Aβ levels were not
significant and effect sizes were very small. Contrary to APOE ε4, the
effect of APOE ε2 on amyloid markers has been much less well stud-

ied and research has been focused on specific brain regions.39 Alterna-

tively, other, Aβ‑independent, mechanisms such as vascular pathology

may explain the lower risk of AD observed in APOE ε2 carriers.40

As to the novel genes identified, CCK and ZNF397, to date these

have not been associated with Aβ peptides in the circulation such as

blood platelets, kidney, or pancreas pathology. The CCK gene is located

in a region that was reported in a GWAS of neurofibrillary tangles but

not Aβ.16 CCK or cholecystokinin is a neuropeptide that is widely dis-

tributed in the brain and highly expressed in brain regions like the hip-

pocampus. Sulfated cholecystokinin-8 may modulate neuronal activity

in the brain41 but its function in the brain is far from clear. The pro-

tein is located in axons, dendrites, and the neuronal cell body and is

involved in gastrin signaling and insulin secretion but also in neuron
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migration. CCK regulates pancreatic enzyme secretion and gastroin-

testinal motility, and acts as a satiety signal. CCK is released simultane-

ously from intestinal cells and neurons in response to a meal and thus

maybe implicated in themetabolic effects seen in andoutside the brain

including weight loss. The diseases associated with CCK include chole-

cystitis and biliary dyskinesia, the latter being of interest in light of the

finding that bile acids have been found to be associated to the risk of

AD and brain pathology.42 The other novel locus, the ZNF397 gene,

encodes a protein with a N-terminal SCAN domain, and the longer iso-

form contains nine C2H2-type zinc finger repeats in the C-terminal

domain. The protein localizes to centromeres during interphase and

early prophase, and different isoforms can repress or activate tran-

scription in transfection studies. Interestingly, the SNP rs509477, sug-

gestively associated with CSF Aβ1-42 in a small association study,43 is

located in an enhancer of ZNF397 (Genecards: GH18J034976), acting

in the hippocampusmiddle, anterior caudate, and cingulate gyrus brain

regions.44 Although this SNP was not associated with any Aβ levels or
ratio in our study, our findings do support the hypothesis that ZNF397

plays a role in Aβmetabolism.

Our analysis shows associations of plasma Aβ levels mainly with

genes that have been previously identified as involved in AD (APOE,

APP, PSEN2), and other genes that are nominally associated to AD and

are expressed in the brain. According to the hypothesis outlined in the

introduction, it is likely that plasma Aβ is an endophenotype for AD.

Although we cannot prove the origin, our findings suggest also that

Aβ peptides measured in the blood circulation for a large part origi-

nate from the brain rather than from the pancreas or the kidney. This

hypothesis is in line with recent observations showing correlation of

Aβ levels in blood with its levels in CSF as well as with its deposition in
brain as assessed by PET imaging.19,45

Plasma Aβ has been long considered a poor predictive biomarker

of AD risk, partially due to lack of precision and reproducibility in

the assays that were available. A previous meta-analysis reported that

plasma Aβ levels were not useful to make a clinical diagnosis of AD.46

However, as assays improved, several of the large cohorts participating

in the present study have reported that low plasma Aβ42 and Aβ42/40
ratio levels were modestly associated with risk of development of AD

after several years of follow-up,22–25 suggesting that they are valid

endophenotypes of at least one biological process underlying AD risk.

The results of the present study are consistent with the hypothesis

that Aβ in blood reflects some aspects of brain AD pathophysiology

and this view is strengthened by our present observation that APOE

ε4 is both associated with low plasma Aβ42 and Aβ42/40 ratio and

high AD risk. Some of studies have also reported that this association

remained significant after adjusting for APOE ε4.25 Hence, plasma Aβ
levels could prove useful as a biomarker of amyloid metabolism path-

ways in the brain and could be an accessible marker of target engage-

ment for preventive interventions focused on this pathway. In this light

there are intriguing reports that hemodialysis or peritoneal dialysis are

able to lower Aβ not only in the blood, but also in the brain.47,48 Fur-

ther, the association we observed between variants near BACE1 and

plasma Aβ40 is also of interest in the light of the recent (disappointing)
trials testing BACE inhibitors. Measuring Aβ40 in blood might help us

understand the overall failure of these trials or identify responsive sub-

groups if we examined genetic variation among trial participants and

the lack of association of these variants with AD risk could be further

investigated.49

Our study has several strengths. First, it is, to date, the largest study

of circulating amyloid peptides. This enabled us to identify biological

factors underlying peripheral Aβ metabolism and the overlap of the

genetic signals with those underlying brain pathology and AD risk, sug-

gesting blood levels of Aβ may have clinical utility. Second, this study

was conducted in non-demented participants and therefore is relevant

for the study of early amyloid pathophysiological processes. Third, we

carefully normalized the plasma Aβ data before running GWAS, thus

taking into account some of the heterogeneity that has been described

when using plasma Aβ levels.
Our study also has limitations. The state of current knowledge

makes it difficult to ascertain if there is a causal role of plasma Aβ on
the brain’s accrual of amyloid and further experimental research in this

area is needed. Second, the assays used in this study non-selectively

measuredAβ concentrations and could not distinguishmonomers from

oligomers of Aβ, whether free or protein-bound. Therefore, our inter-
pretationof thepresent resultsmight differ fromother studies inwhich

assays selectively measured monomers or oligomers of Aβ.50 Future

studies with the novel assays that allowmeasurements of each form of

Aβwill facilitate interpretation with regard to the balance between Aβ
production, aggregation, and clearance. Thus, although our approach

explores brain neurobiology through the study of plasma levels, the

imperfect instrument used to determine this plasma endophenotype

and the higher inter-assay variability requires further research of Aβ
biomarkers in blood using state-of-the-art technology.

In summary, our results indicate that genetic determinants of

plasma Aβ40 and Aβ42 levels are close to genes known to be cen-

tral actors in APP metabolism in AD. Increasing the statistical power

of plasma Aβ analyses may potentially lead to the identification of

currently unknown players in Aβ metabolism; novel hypotheses; and,

hopefully, new preventive or therapeutic targets against AD. In the

future, the role of these genetic variants also needs to be explored fur-

ther in AD animal models.
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