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Abstract. This paper develops a procedure for identifying multiregime
Periodic AutoRegressive (PAR) models. In each regime a possibly dif-
ferent PAR model is built, for which changes can be due to the seasonal
means, the autocorrelation structure or the variances. Number and lo-
cations of changepoints which subdivide the time span are detected by
means of Genetic Algorithms (GAs), that optimize an identification cri-
terion. The method is evaluated by means of simulation studies, and is
then employed to analyze shrimp fishery data.
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1 Introduction

This paper is concerned with seasonal time series which may display many
discontinuities, that can be specified by changepoints in time (or struc-
tural changes). As defined in [16] a changepoint is ”a time where the struc-
tural pattern of a time series first shifts”. In many cases, the changepoints
are located at known times and it is easy to take into account their effects.
When changepoints are located at unknown times and their features are
ignored, the time series estimation can be misleading [20]. In fact, an un-
detected changepoint can lead to: misinterpretation of the model, biased
estimates and less accurate forecasting [9]. Taking all these into account,
changepoint detection becomes a demanding job especially if its identifi-
cation is required soon after occurrence. In the past four decades several
techniques have employed for changepoint detection [4, 6, 27]. For a recent
review of changepoint analysis in time series see [1].
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Periodic time series models have been introduced because standard
seasonal autoregressive integrated moving average (SARIMA; [3]) cannot
be filtered to achieve second-order stationarity, and this is because the
correlation structure of these time series depends on the season [26]. [22]
also showed that seasonal differencing maintains the seasonal correlation
structure, whereas the periodic term is completely removed by seasonal
standardization or by spectral analysis. General overviews of periodic
models and their applications are presented in [10, 7].

We shall focus on time series recorded monthly which display peri-
odic dynamics and possible structural changes, which may imply the ex-
istence of several regimes in time. Changepoint detection procedures for
periodic series have been studied in [17], which focused on mean shifts. In
our proposal we allow also the whole model structure to switch at each
changepoint time, as far as periodic data usually display both seasonal
effects and various kind of discontinuities.

We propose a procedure based on Genetic Algorithms to detect change-
points and estimate resulting PAR models. These kind of methods are well
suited for complex global optimization, as they have been widely applied
to hardly tractable identification and estimation problems [25, 6]. The
procedure is based on an identification criterion, such as AIC (Akaike
Information Criterion), BIC (Bayesian Information Criterion) or MDL
(Minimum Description Length). The resulting method will also allow to
perform subset selection, as we allow intermediate parameters to be con-
strained to zero. This modification leads to gain in parsimony, and could
also contribute to improve forecasting ability of resulting models.

The article is organized as follows: Section 2 describes proposed method-
ology for model building; in order to illustrate the efficiency of the pro-
posed procedure some simulations are presented in Section 3; an applica-
tion to French Guiana shrimp fishery is included in Section 4; comments
close the paper in Section 5.

2 Methodology

2.1 Model description

We consider a periodic time series of period s, observed for N years and
possibly subdivided into M regimes in time. The multiregime PAR model
is specified as follows:

X(n−1)s+k = aj + bj [(n− 1)s+ k] + Y(n−1)s+k, (1)
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where j = 1, ...,M is the index of regimes, k = 1, ..., s is the index of
periods, aj and bj are trend parameters, which may vary with the regime,
and µj

k are the seasonal means. X(n−1)s+k is referred to the observation
in season k of year n (n = 1, ..., N), while Y(n−1)s+k follows a PAR given
by:

Y(n−1)s+k =

p∑

i=1

φj
i (k)Y(n−1)s+k−i + ǫ(n−1)s+k, (2)

where i = 1, . . . , p denotes the lag, φj
i (k), i = 1, ..., p indicate the autore-

gressive parameters of regime j and season k. As far as our identification
procedure will allow to identify subset models, the autoregressive pa-
rameters can be constrained to zero, in order to get more parsimonious
models. The error process is a periodic white noise with E(ǫ(n−1)s+k) = 0
and var(ǫ(n−1)s+k) = σ2

j (k), so that also the residual variances are allowed
to change in each regime and season. We shall assume that each regime
is periodic stationary with period s [18].

The regimes are specified by M − 1 changepoint years τ1, ..., τM−1,
defined in such a way that τj−1 and τj − 1 denote, respectively, the first
and the last year of regime j (j = 1, . . . ,M). We also assume that τ0 = 1
and τM = N +1. In order to ensure reasonable estimates, we require that
each regime contains at least a minimum number ω of years, therefore
τj ≥ τj−1+ ω for any regime j. For the sake of simplicity we assume that
the total number of observations T is a multiple of s (T = N × s).

2.2 Model building

The identification of our multiregime PAR model consists in the choice of
changepoints M−1, the changepoint times τ1, . . . , τM−1 and the specifica-
tion of subset models (we shall assume the same maximum autoregressive
order p for all models). The discrete search space is prohibitively large,
so we shall base the procedure on GAs [11].

They are a nature-inspired optimization method, often employed when
it is required to find an optimal solution from a prohibitively large discrete
set. In GAs metaphor, the search strategy is based on the evolution of
a population of individuals, coded in binary vectors named chromosomes
to suitably represent the problem solutions, towards populations which
are better able to adapt to the environment. The goodness of individuals
in such populations is called fitness, and it is related to the objective
function of the problem at hand. At each iteration (named generation in
the GA terminology) the evolution takes place by means of three main
operators: the selection, which chooses the individuals that will generate
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the offspring; the crossover, that allows pairs of individuals to combine,
producing possibly better solutions; mutation, which simulates the rare
random changes happening in nature, and facilitates the exploration of
the search space. Lastly, the elitist strategy ensures that the best solution
is always retained in each generation of the algorithm (for an account on
GA operators and strategies see [8]). The flow of generations generally
stops when a prefixed criterion is met, for example the reaching of a fixed
number of generations.

We shall optimize a fitness function based on an identification cri-
terion, such as AIC, BIC, Hannan-Quinn, that combine a measure of
goodness of fit and a penalization on the number of parameters. In par-
ticular, we will consider a criterion inspired by the Normalized Akaike’s
Information Criterion (NAIC), introduced in [24] for threshold models:

g = [

M∑

j=1

s∑

k=1

nj,k log(σ̂
2
j (k)) + IC

M∑

j=1

s∑

k=1

Pj,k]/T, (3)

where σ̂2
j (k) is the model residual variance of series in regime j and season

k, nj,k and Pj,k are, respectively, sample size and number of parameters
of regime j and season k, IC is the penalization term. The choice of
IC specifies the magnitude of penalization on number of parameters: for
example a value equal to 2 resembles the structure of an AIC, while
IC = ln(N) leads to the analogous to BIC criterion. The final fitness f
will be a scaled exponential transformation of g: f = exp(−g/β), where
β is a problem dependent constant. This is a quite common procedure in
GAs [8, 13] as it allows to control the shape of fitness function without
changing the solutions ranking.

The fitness evaluation step is carried out conditioning on the model
structure of a generic solution, and the model parameters are estimated
consequently. These latter are the trend intercepts and slopes aj and
bj , the seasonal means µj

k
, the autoregressive parameters φj

i (k) and the
residual variances σ2

j (k), for all j = 1, . . . ,M ; k = 1, . . . , s; i = 1, . . . , p.
These parameters are estimated by Ordinary Least Squares, except for
the autoregressive ones, which must account also for the subset selection
constraints.

With respect to the model structure, we shall adopt the following
strategy in our GA: the generic chromosome will binary encode only the
regime structure [M − 1, τ1, ..., τM−1]. Conditioning on such structure,
all the possible 2p subset autoregressive models will be enumerated and
evaluated in the fitness evaluation step, and only the best will be retained.
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This is an exact strategy with respect to the subset selection, and it is
computationally feasible only if the maximum autoregressive order p is
small.

The chromosome encoding works as follows: the first two or three bits
(depending on the maximum number of regimes allowed) give the number
of changepoints M − 1 ; subsequent bit intervals, whose length is custom
fixed, produce changepoint times τ1, ..., τM−1. This part of encoding must
ensure the constraints on minimum number of years per regime ω. We
shall adopt a procedure introduced in [2] for multiregime nonlinear models
identification, which allows each chromosome to be legal (the constraints
on minimum regime length ω always hold), so there is no computational
time wasted on evaluating infeasible solutions.

3 Simulation studies

To illustrate the efficiency of the proposed procedure, we use a set of one
thousand simulated series and apply our method to each series. The series
will contain a century (N = 100) of monthly data (s = 12). We consider
the following options for the objective function, in order to study the sen-
sitivity of penalization: values of IC equal to 2 and ln(N), which resemble
a generalization of AIC and BIC criteria, and also IC = 3, successfully
adopted in [2] for the identification of nonstationary nonlinear models by
GAs. Concerning the choices on GA implementation, we employed a pop-
ulation of 50 solutions and used operators of tournament selection, bit-flip
mutation (rate 0.1) and parameterized uniform crossover (rate 0.7). As
far as GA as stochastic methods, namely each GA run may lead to a
different results, we shall report the correct number of changepoints iden-
tification rate, and also the mean and standard deviation of changepoint
locations.

Model 1: 1 changepoint with no trend Our first simulation model consists
of 1 changepoint located at the end of the 60-th year (τ1 = 61). For the
second regime, we consider that the variances are four times smaller than
for the first regime. We consider the same autoregressive structure in both
regimes and an order equal to one for the PAR model.

We apply our method to the realization in Figure 1. Table 1 reports
empirical frequency distribution of the estimated changepoints. We see
that BIC (IC = lnN) has the best percentage rate (100%) of correct iden-
tification. The IC = 3 has a correct rate of identification of 73%; 19.5% of
runs estimate 2 changepoints and 6.2% of runs estimate 3 changepoints.
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Fig. 1: A realization from the process in Model 1. The vertical dash line
indicates the true changepoint location at the end of the 60-th year.

The AIC criterion seems to overestimate the number of changepoints as
84.4% of runs estimates 4 changepoints or more.

Number of IC=lnN IC=3 IC=2
changepoints % mean se % mean se % mean se

0

1 100 60.97 0.68 73.0 60.96 0.59 0.1 24 0

2 19.5
50.40
70.34

15.29
9.05 4.3

48.76
69.86

16.43
9.62

3 6.2

50.90
67.11
81.73

14.50
9.88
8.18

11.3

48.27
65.18
79.92

17.45
12.12
9.73

≥ 4 1.3 84.4

Table 1: Summary of the estimated changepoints for the Model 1. The
true number of changepoints is 1.

As for where the changepoints are estimated, the mean and the standard-
error of the estimated locations are also reported in Table 1. The proposed
procedure performs very well in locating the changepoints for our method
combined with BIC.

Model 2: 2 changepoints with different trends

In the second simulation experiment we consider a model with two
changes in trend parameters at times τ1 = 31 and τ2 = 61. We use a PAR
model of order 1 for each regime with same parameters from one regime
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to other. For illustrative purposes, Figure 2 shows a typical realization of
the model defined above.
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Fig. 2: A realization from the process of Model 2. The vertical dash line
indicates the true changepoint locations at the end of 30-th and 60-th
year.

For our method combined with BIC criterion, the selected number
of changepoints is generally equal to 2, while only for 80 of the 1000
analyzed series 3 changepoints were selected and in 15 cases a the number
of changepoints greater or equal to 4 was chosen. The IC = 2 and IC =
3 criteria seem to overestimate the number of changepoints. Lastly, in
order to evaluate the changepoints location, we report the mean and the
standard-error for estimated locations in Table 2.

Number of IC=lnN IC=3 IC=2
changepoints % mean se % mean se % mean se

0

1 0.01 32.00 0.00

2 90.4
30.94
60.97

1.48
0.45 38.1

30.86
60.99

1.43
0.14 1.4

31.00
61.00

1.17
0

3 8.0

27.51
51.05
71.40

6.33
12.58
10.42

22.7

28.07
50.19
70.01

6.23
11.95
9.96

4.1

25.58
44.51
65.68

7.64
12.07
8.45

≥ 4 1.5 26.6 94.5

Table 2: Summary of the estimated changepoints for the Model 2. The
true number of changepoints is 2.
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4 Data analysis

We illustrate the main findings by analyzing the shrimp French Guiana
fishery, a case study that has been accounted in [23]. Two shrimp species
are mainly exploited in this fishery, the brown and the pink shrimps
(respectively, Farfantepenaeus subtilis and Farfantepenaeus brasiliensis).
The F. subtilis represents more than 85% of shrimp landings. We denoted
by C the total catch of this shrimp in tons for the whole French Guiana
fleet. This catch C is the product of the catchability coefficient q, the
fishing effort measured by the number of days at sea E and the abundance
of the fish population B. Based on the Schaeffer relation C = qEB, the
catch-per-unit-effort (CPUE) is equal to the ratio C/E. CPUE is the
catch extracted from one unit of fishing effort. We use the data collected
by IFREMER (French institute of research for the exploitation of the sea)
on C and E between January 1989 to December 2014 to get the CPUE.
The data are represented in Figure 3.

1989 1995 2002 2009 2015

month
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100
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300

400

500

600

700

800

C
P

U
E

Fig. 3: Plot of monthly average of catch per unit effort between 1989 and
2014.

We will build various kind of PAR models using the BIC criterion, and
also evaluate the forecasting accuracy, a standard one-step-ahead proce-
dure, of resulting models by means of the measures Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) [12]. The first model considered in our analysis is a subset
PAR without changepoints (denoted by Model 1 in Table 3). We then es-
timated a PAR model with at least one changepoint: we impose an upper
bound for the order of the PAR models on each regime equal to one. To
avoid having too few observations in any regime we set a minimum span
of ω = 10 (Model 2 in Table 3).
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Years of changepoint RMSE MAE MAPE Fitness

Model 1 / 108.19 85.58 29.05 0.413

Model 2 2002 89.29 67.98 22.53 0.426

Model 3 1996,2002 89.29 67.98 22.53 0.429

Table 3: Results on evaluation criteria of the forecast errors for CPUE

Using our model we found one changepoint corresponding to 2002
(Figure 4).
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Fig. 4: Changepoint detected on years 2002 for CPUE

To ascertain the type of changes in the time series data due to change-
points, we calculate the 12 seasonal means and the 12 seasonal variation
for all years up until the first changepoint. From the changepoint onwards
we calculate the seasonal means or the seasonal standard deviations for
each period until a detection of a new changepoint. To note that the
model used by [17], designed to detect mean shifts, fails to identificate
the changepoint. This could be explained by important changes in vari-
ance and not so important changes in mean (Table 4).

The changepoint corresponding to 2002 could be linked to the com-
ments made in [15]: it reports a strong correlation between the Southern
Oscillation Index (SOI) and the fish recruitment between 2002 − 2009
(R2 = 0.81), and a lack of correlation between 1990− 2001 (R2 = 0.001).
The El Nin̄o and La Niña variables are captured through the SOI. The El
Niño yields a disruption of temperature in the tropical Pacific Ocean that
has important weather and climate consequences around the globe and are
associated with physical and biological changes in our oceans that affect
fish abundance and distribution. El Niño usually currents last for several
months, resulting in the reduction of nutrients and a corresponding dissi-
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Month percentage change percentage change
in mean in variance

Jan. 16.69 107.53
Feb. 41.14 -63.80
Mar. 32.43 365.05
Apr. 69.86 1028.67
May 54.39 270.73
June 71.16 96.70
July 69.15 251.81
Aug. 16.63 78.41
Sep. 2.55 180.97
Oct. 26.87 -9.12
Nov. 22.78 140.97
Dec. 54.87 171.18

Table 4: Percentage change in mean and variance before and after 2002
of CPUE

pation of fish stocks. The La Niña is opposite for this other phase of the
SOI, when sea surface temperatures in the central and eastern tropical
Pacific are unusually low and when the trade winds are very intense. The
sea surface temperature (SST) is a good indicator of global warming due
to greenhouse gases. A change in temperature could have an impact on
the movement of shrimp populations, on their rate of growth and/or mor-
tality ([21]). The recruit abundance as well as the stock biomass and the
fishing mortality were monthly performed by virtual population analysis
(VPA) calculations.

If we set the minimum span ω = 6 and we use our model combined
with BIC we found two changepoints corresponding to 1996 and 2002
(Figure 5). The evolution of CPUE shows an increase from 1990 to 1996,
followed by a decrease until 2002. The changepoint corresponding to 1996
could be linked to the evolution of biomass which has been decreasing
steadily over time since 1996 followed by an improvement between 2003
and 2005, but without affecting the overall trend of decline ([14]). Fishing
effort was concentrated in the shallow waters until 1995, for which the
biomass was highest. Moreover, the French Guiana marine fishing area
might be affected by changes in the SST since the latter significantly in-
creased between 1970 and 2004, with an accentuation of this phenomenon
since 1995 ([5]). These results, however, should be interpreted with cau-
tion as the number of observations is very important for good estimation
results.
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Fig. 5: Changepoint detected on years 1996 and 2002 for CPUE

5 Conclusions

The goal of our research was to develop a computational procedure for
building multiregime models in time series with a periodic behaviour.
Our procedure has been found effective both in simulation studies and
in analysis of time series related to catch per unit effort of shrimps in
French Guyana. The reasons for such changepoints are possibly due to
both human activities and climatic oscillations. It is hoped that the results
presented in this article will be useful in hydrology and finance, where
interest lies in detecting changes in the volatility of time series due to
changes in instrumentation and institutional changes, respectively.
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