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Abstract

Aortic calcification is an important independent predictor of future cardiovascular events. We 

performed a genome-wide association meta-analysis to determine single nucleotide 

polymorphisms (SNPs) associated with the extent of abdominal (AAC, n = 9,417) or descending 

thoracic (TAC, n = 8,422) aortic calcification. Two genetic loci, HDAC9 and RAP1GAP, were 

associated with AAC at a genome-wide level (P < 5.0 × 10−8). No SNPs were associated with TAC 

at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle 

cells (HASMCs) promoted calcification and reduced contractility, while inhibition of HDAC9 in 

HASMCs inhibited calcification and enhanced cell contractility. In matrix Gla protein (MGP)-

deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% 

reduction in aortic calcification and improved survival. This translational genomic study identifies 

the first genetic risk locus associated with calcification of the abdominal aorta and describes a 

novel role for HDAC9 in the development of vascular calcification.

Editorial summary

Genome-wide analyses identify variants near HDAC9 associated with abdominal aortic 

calcification and other cardiovascular phenotypes. Functional work shows that HDAC9 promotes 

an osteogenic vascular smooth muscle cell phenotype, enhancing calcification and reducing 

contractility.
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Arterial wall calcification is a hallmark of atherosclerosis and serves as an important factor 

for cardiovascular (CV) risk assessment1,2. Although studies have identified the genetic 

underpinnings of coronary artery calcification3,4 and valvular calcification5, the genetic 

determinants of human aortic calcification remain unknown. As with coronary artery 

calcification, both abdominal aortic calcification and thoracic aortic calcification are strong 

independent predictors of CV-related events and death6–8. A meta-analysis of studies of the 

CVD risk conferred by AAC found that individuals with the highest, compared to the lowest, 

tertile of AAC had a relative risk of 1.92 for coronary events and of 1.56 for cerebrovascular 

events9. Higher levels of AAC were associated with a >75% increase in CV mortality10. 

Aortic calcification is also associated with aortic aneurysms11 as well as maladaptive cardiac 

responses, such as left ventricular hypertrophy and diastolic dysfunction, caused by arterial 

stiffening12–14.

Identifying the genetic determinants of abdominal and thoracic aortic calcification may help 

elucidate novel mechanisms underlying vascular disease. We therefore performed a genome-

wide association study (GWAS) meta-analysis of cohorts within the Cohorts for Heart and 

Aging Research in Genome Epidemiology (CHARGE) consortium15. Subsequent 

association analyses were performed in multi-ethnic cohorts to validate genome-wide 

significant findings.

Individuals of European ancestry from five different cohorts (Framingham Heart Study, 

FHS; Age, Gene-Environment Susceptibility-Reykjavik Study, AGES-RS; Multi-Ethnic 

Study of Atherosclerosis, MESA; Family Heart Study, FamHS; and Heinz Nixdorf Recall 

study, HNR) were included in the discovery analysis. Baseline characteristics of the 

participants in the discovery analysis are provided in Supplementary Table 1. Quantification 

of the degree of vascular calcification from computed tomography (CT) scans was available 

for the abdominal aorta in 9,417 participants and for the descending thoracic aorta in 8,422 

participants. The validation stage of the study used data obtained from non-European 

ancestry groups in MESA (African American, n = 343; Hispanic American, n = 496), 

FamHS (African American, n = 621), and the African American-Diabetes Heart Study (AA-

DHS, n = 750).

The genomic inflation factor (λ) in the discovery meta-analysis was small for both AAC (λ 
= 1.09) and TAC (λ = 1.00), suggesting that potential genotyping artifact, cryptic relatedness 

in the population, or systematic differences in allelic distributions due to population 

stratification did not cause significant bias16. The quantile-quantile plots for the AAC and 

TAC meta-analyses (Fig. 1a and Supplementary Fig. 1, respectively) demonstrated that the 

observed distribution of P values for both vascular phenotypes matched the expected 

distribution.

SNPs associated with AAC were identified in two genetic loci (Fig. 1a–c and Table 1), the 

first encoding histone deacetylase 9 (HDAC9, hg38 chr7:18,086,949–18,666,929) and the 

second encoding RAP1 GTPase activating protein (RAP1GAP, hg38 chr1:21,596,221–

21,669,306). SNPs associated at a genome-wide significance level with AAC in the HDAC9 
locus were rs57301765, rs2107595, rs28688791, rs2023936, rs2526620, and rs7798197 

(Table 1). SNPs associated with AAC in the RAP1GAP locus included rs4654975 and 
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rs3767120; two additional SNPs (rs10159452 and rs10157126) were just below the 

threshold for genome-wide significance (P = 5.8–5.9 × 10−8). All of the SNPs associated 

with AAC are located in non-coding regions of their respective gene loci. The minor allele at 

each SNP was associated with a greater degree of AAC (Table 1), and both the magnitude 

and direction of association were consistent across all discovery stage cohorts (one 

representative SNP from each locus is highlighted in Supplementary Table 2). Additional 

SNPs (n = 14) with suggestive evidence for association with AAC (P < 1 × 10−6) are listed 

in Supplementary Table 3.

No SNPs were found to be associated with TAC at a genome-wide level of significance. 

There was evidence for borderline significance (P = 8.6 × 10−8) for one SNP on 

chromosome 9 (rs58674255) in the vacuolar protein sorting 13 homolog A (VPS13A) locus 

(Table 1 and Supplementary Fig. 1). Additional SNPs (n = 22) with suggestive evidence for 

association (P < 1 × 10−6) are listed in Supplementary Table 4.

SNPs that were associated with AAC in the discovery analysis were tested for association in 

independent validation cohorts. All six SNPs in the HDAC9 locus were significantly 

associated with AAC in an independent replication sample from MESA consisting of 

Hispanic Americans (n = 496, all P < 1.9 × 10−4), and exhibited the same direction of 

association as the discovery cohorts (Table 2). Of these six SNPs, rs2107595 demonstrated 

the strongest association with a Z score of 4.7 (P = 2.8 × 10−6). The two SNPs in the 

RAP1GAP locus were not associated with AAC in the MESA Hispanic-American cohort 

(Table 2).

There was a modest association between rs2107595 and AAC in African Americans from 

the FamHS (n = 621, Z = 2.5, P = 0.01), with a direction of association consistent with the 

discovery analysis. However, no significant association between SNPs from the HDAC9 
locus and AAC was observed in the MESA African-American cohort (n = 343) or the AA-

DHS (n = 631), or in a meta-analysis combining these three cohorts (Z = 1.41, P = 0.12; 

Supplementary Table 5). There was no association between SNPs in the RAP1GAP locus 

and AAC in the African-American cohorts, although there was limited power to detect an 

association given the small sample sizes of the populations.

To assess whether the genetic determinants of AAC are similar to that of calcification in 

other vascular beds and for cardiovascular disease, we determined whether the SNPs 

associated with AAC were also associated with TAC (n = 8,422), coronary artery 

calcification (in the CHARGE Consortium, n = 9,992)3, carotid artery plaque (in the 

CHARGE Subclinical Atherosclerosis consortium, n = 40,574, unpublished data), and 

clinically apparent coronary heart disease (in the CardiogramPlusC4D Consortium, n = 

193,189)17. All six SNPs in the HDAC9 locus met the genome-wide level of significance for 

association with myocardial infarction, with the strongest association for rs2107595 (P = 8.1 

× 10−11, Supplementary Table 6). rs57301765 was nominally associated with TAC (P = 

0.047), while rs2107595 was associated with coronary artery calcification (P = 0.039). 

Similar to the findings from a previous analysis within the CHARGE consortium of genetic 

association with carotid artery plaque using HapMap (n = 25,179, P = 1.8 × 10−3)18, all six 

SNPs in the HDAC9 locus were associated with the presence of carotid artery plaque in a 
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larger sample size using 1000G imputation19, with the strongest association for rs2107595 

(P = 7.8 × 10−4, Supplementary Table 6). We therefore conclude that SNPs in the HDAC9 
locus may also be associated with vascular disease in the thoracic aorta, coronary arteries, 

and carotid arteries. Previous GWAS have found associations between HDAC9 and large 

vessel ischemic stroke and myocardial infarction17,20,21. Interestingly, other SNPs 

previously known to be associated with stroke, myocardial infarction, or coronary artery 

disease at the genome-wide level22 had significantly weaker associations with AAC (P > 

10−3, Supplementary Table 7) compared to the SNPs in the HDAC9 locus, further 

implicating HDAC9 specifically in the development of abdominal aortic calcification. 

Splicing quantitative trait loci (sQTL) analyses indicated that some minor alleles in the 

HDAC9 locus that are associated with increased AAC are also associated with increased 

expression of certain splicing transcripts of HDAC9 (Supplementary Note).

The acetylation and deacetylation of histones serves as a key determinant of chromatin 

structure and gene transcription and allow for the coupling of extracellular signals with 

genomic architecture23. Histone deacetylases remove acetyl groups from histones and 

consist of a superfamily of eleven enzymes that are further subdivided into four families 

(HDAC class I, IIa, IIb, and IV)24. HDAC9 belongs to the class IIa HDAC family25. To 

examine the role of HDAC9 in vascular calcification, human aortic smooth muscle cells 

(HASMCs) were treated with calcifying media in the presence or absence of TMP269, a 

class IIa HDAC inhibitor26. Compared to HASMCs incubated in normal tissue culture 

medium, HASMCs treated with calcifying medium for 10 days exhibited a >2-fold increase 

in mRNA levels of RUNX2, a master regulator of osteogenic phenotype switch in vascular 

SMCs (Fig. 2a)27. Treatment of HASMCs with TMP269 prevented induction of RUNX2 
expression in response to calcifying medium, and TMP269-treated HASMCs incubated in 

calcifying medium had reduced calcification (Fig. 2a,b). Because TMP269 inhibits all of the 

members in the HDAC class IIa family, we next sought to determine whether specific 

knockdown of HDAC9 mRNA levels with siRNA (siHDAC9) was sufficient to inhibit 

RUNX2 gene induction and in vitro calcification of HASMCs incubated in calcifying media. 

Compared to the effects of control siRNA (siCTRL), siHDAC9 decreased HDAC9 mRNA 

levels by >75%, decreased RUNX2 expression by >50% (Fig. 3a,b), and reduced the in vitro 
calcification of HASMCs treated with calcifying medium (Fig. 3c).

The observation that inhibition of HDAC9 activity reduces RUNX2 expression implicates 

HDAC9 in the development of an osteogenic vascular SMC phenotype, which is associated 

with reduced contractility and increased proliferation28. Therefore, we hypothesized that 

inhibition of HDAC9 gene expression would increase contractility and reduce proliferation 

of vascular SMCs. Treatment of HASMCs with siHDAC9 increased contractility by ~30% 

(P = 0.009) as measured using a cell-embedded collagen gel contraction assay (Fig. 3d)29. 

Furthermore, HASMCs treated for 2 days with siHDAC9 exhibited a ~60% reduction in 

proliferation (Fig. 3e). These results indicate that inhibition of HDAC9 expression favors an 

increased contractile and decreased proliferative vascular smooth muscle cell phenotype.

To determine whether increased expression of HDAC9 promotes an osteogenic vascular 

SMC phenotype, we treated HASMCs with an adenoviral vector expressing HDAC9. 

Treatment of HASMCs with the HDAC9 adenovirus resulted in a 75% increase in RUNX2 
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mRNA after 8 days of treatment (Fig. 3f) and resulted in increased calcification (Fig. 3g). 

Furthermore, treatment of HASMCs with HDAC9 adenovirus reduced contractility (Fig. 

3h). Taken together, these results indicate that increased HDAC9 expression promotes a 

vascular SMC osteogenic phenotype and calcification, and inhibition or decreased levels of 

HDAC9 reduces RUNX2 gene expression and decreases the calcification of HASMCs.

We used a mouse model of vascular calcification caused by matrix Gla protein (MGP) 

deficiency30 to investigate the role of HDAC9 in vascular calcification in vivo, as detailed in 

the Supplementary Note. Compared to Mgp−/− Hdac9+/+ mice, Mgp−/− Hdac9−/− mice 

exhibited a ~50% reduction in aortic Runx2 mRNA levels (P = 0.024) associated with 

reduced disruption of elastin fibers, a ~40% reduction in aortic calcification as assessed by 

near-infrared fluorescent imaging (P = 0.027), and improved survival (Fig. 4a–g and 

Supplementary Fig. 2). Furthermore, primary aortic SMCs isolated from Hdac9−/− mice had 

reduced expression of osteogenic markers and were protected from calcification 

(Supplementary Fig. 3). These results identify HDAC9 as an important contributor to the 

development of vascular calcification in vivo.

In summary, we performed a GWAS with over 9,400 participants and identified a novel 

genetic locus associated with abdominal aortic calcification, a strong and independent 

predictor of cardiovascular disease events. Multiple SNPs in the HDAC9 locus were 

associated with AAC. The association between SNPs in the HDAC9 locus and AAC was 

validated in an independent cohort of Hispanic Americans. These SNPs in the HDAC9 locus 

were associated with other forms of calcification, including thoracic aortic and coronary 

artery calcification. Reducing the expression of HDAC9 or inhibiting its activity prevented 

the in vitro calcification of HASMCs. Furthermore, vascular calcification was significantly 

reduced and survival improved in Mgp−/− mice deficient in HDAC9.

Previous GWAS found an association between HDAC9 and large vessel ischemic stroke, 

myocardial infarction, and increased pulse pressure17,20,21,31. There is also a strong clinical 

link between aortic calcification and these indicators of cardiovascular disease7,32,33. Our 

identification of HDAC9 as an activator of vascular calcification therefore offers a potential 

unifying molecular mechanism for the associations of HDAC9 with stroke, myocardial 

infarction, and pulse pressure. Vascular calcification is characterized by the phenotypic 

transition of vascular smooth muscle cells to osteoblast-like cells that deposit calcium 

phosphate in the extracellular space28,34,35. RUNX2 is a master regulator of this osteogenic 

phenotypic change36,37, which is marked by an increase in vascular smooth muscle cell 

proliferation and reduced cell contractility38. In this study, inhibition of HDAC9 in 

HASMCs prevented calcification induced by calcifying medium. In addition, inhibition of 

HDAC9 reduced RUNX2 expression, decreased cell proliferation, and increased cell 

contractility. Conversely, adenoviral-mediated expression of HDAC9 in HASMCs promoted 

osteogenic phenotype switch and calcification. The results of these functional assays 

underscore an important role for HDAC9 in altering the phenotypic state of vascular smooth 

muscle cells. Further investigation is warranted to determine whether HDAC9 contributes to 

the pathogenesis of a wide range of vascular smooth muscle cell-associated diseases, 

including hypertension, arterial stiffness, and aneurysmal disease21,39 in addition to 
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coronary artery disease and stroke. There are potential limitations to our study, as described 

in the Supplementary Note.

In conclusion, in this translational genomic study, we identified a novel association between 

variants in the HDAC9 locus and AAC. Functional studies implicate HDAC9 as an 

important determinant of vascular smooth muscle cell phenotype and calcification. 

Deficiency of HDAC9 significantly decreased vascular calcification in a mouse model. This 

study is the first to identify a genetic risk locus associated with calcification of the 

abdominal aorta and describes a novel role for HDAC9 in the development of vascular 

calcification. Our findings highlight HDAC9 as a potential target of therapy for vascular 

calcific disease.

Methods

Study design

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium is an ongoing investigator-driven collaboration among several large, population-

based cohort studies that have genome-wide genotype data in addition to comprehensive 

individual phenotyping for a variety of endpoints. Details of this collaboration have been 

described previously5,15. We employed a two-stage analysis to first discover and then 

validate the association of genetic loci with the extent of abdominal aortic calcification 

(AAC) and thoracic aortic calcification (TAC). The initial discovery meta-analysis included 

genome-wide association study (GWAS) data from five large population-based cohorts 

including the Framingham Heart Study (FHS), the Age, Gene-Environment Susceptibility-

Reykjavik Study (AGES-RS), the Multi-Ethnic Study of Atherosclerosis (MESA), the 

Family Heart Study (FamHS), and the Heinz Nixdorf Recall (HNR) study. Discovery cohort 

participants were of White European ancestry and had undergone genotyping and computed 

tomography (CT) scanning to assess the presence of, and to quantify, AAC and TAC.

In stage 2, significant findings from this initial meta-analysis were tested in additional multi-

ethnic cohorts, including African American and Hispanic American participants from 

MESA, the FamHS, and the African-American Diabetes Heart Study (AA-DHS).

All cohorts obtained approval from their institutional review board to perform the study and 

individual participant informed consent was obtained. Further details about the discovery 

and validation cohorts are described in the Supplementary Note.

Assessment of aortic calcium

A similar methodology for assessing aortic calcium was used in each of the cohorts, 

according to established standards. Calcium strongly attenuates x-rays, appears bright on CT 

scans, and is readily differentiated from surrounding tissue. Using standard Agatston 

methodology40, a threshold of ≥3 contiguous pixels of ≥130 Hounsfield units brightness was 

used to define calcium in FHS, MESA, FamHS, and AA-DHS, and ≥4 pixels was required in 

HNR. A volume-based approach to calcium measurement was used in AGES-RS and a 

calcium mass score was used in AA-DHS. Agatston score, volumetric assessment, and mass 

score of calcium are widely used and are highly correlated with one another2,41. While 
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individual cohorts used different scanner types, ranging from EBCT to 8-slice MDCT, the 

equivalency of various scanner types and protocols for the detection and quantification of 

calcium has been demonstrated previously42–44. Additionally, all sites used calcium 

phantoms to enhance quality control during image acquisition and analysis.

Statistical analyses

Discovery and replication analyses—For the discovery stage (stage 1), the association 

between each SNP and the extent of AAC and TAC was analyzed in each individual cohort 

independently, using linear regression with adjustments for age, sex, and ancestry (if 

necessary). Both AAC and TAC were analyzed as continuous variables using the log 

transformation of (calcium score + 1). GEE was used in the FHS analyses to account for 

familial correlations. While the FHS, AGES-RS, MESA, and FamHS cohorts provided data 

for AAC, the FHS, AGES-RS, MESA, and HNR cohorts provided data for TAC 

(Supplementary Table 1).

Individual study results were combined using fixed effects meta-analysis as implemented in 

the METAL software45. Given the unequal number of cases and controls in each study, we 

utilized the effective sample size as the weighting scheme. This weighting approach also 

provides the flexibility to allow for different β-coefficients and standard errors from 

individual studies that utilize different measurement units, such as the volumetric scoring in 

AGES-RS compared to the Agatston score in the other discovery cohorts. Heterogeneity 

analysis was also performed with no evidence of heterogeneity found between studies. 

Study-specific results were genomic control corrected, and SNPs with minor allele 

frequency <0.01 or an imputation ratio <0.3 were excluded prior to meta-analysis. Meta-

analysis results were filtered to ensure that ≥2 cohorts contributed to the statistics for each 

SNP. For additional quality assessment, quantile-quantile (Q-Q) plots of the distribution of 

observed versus predicted p-values were created as were Manhattan plots of the SNP P-

values of association relative to the SNP chromosomal location (Fig. 1a and Supplementary 

Fig. 1). To limit the number of false-positive associations given the large number of analyzed 

SNPs, the threshold for statistical genome-wide significance for individual SNP results in 

the discovery analysis was defined a priori as P < 5.0 × 10−8, as is standard for GWAS. 

SNPs with P < 1.0 × 10−6 are also reported as these may generate hypotheses for future 

studies (Supplementary Tables 2 and 3).

Assessment of SNPs for validation study—In the validation stage, the SNPs that met 

genome-wide significance in the discovery analysis were tested in additional cohorts, 

including a multi-ethnic population from MESA, FamHS, and the AA-DHS. As eight SNPs 

were tested for the validation phase, statistical significance was defined using the 

conservative Bonferroni correction as P < 0.05/8 = 0.0062, with a consistent direction of 

association.

Splicing quantitative trait loci (sQTL) analyses—The sQTL analyses were 

conducted using two expression datasets available in the Framingham Heart Study (FHS). 

Firstly, we analyzed 5,257 FHS participants with both 1000G-imputed SNP data and whole 

blood Affymetrix Exon Array expression data by following the same analytic pipeline, as 

Malhotra et al. Page 8

Nat Genet. Author manuscript; available in PMC 2020 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously described46. Secondly, using whole blood RNA-sequencing data available for 183 

FHS participants, we applied Altrans (Ongen et al. doi: http://dx.doi.org/10.1101/014126) to 

identify significant associations between Ensembl transcripts and SNPs.

Functional and in vivo studies

Animals—This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

Housing and all procedures involving mice described in this study were specifically 

approved by the Institutional Animal Care and Use Committees of Massachusetts General 

Hospital (Subcommittee on Research Animal Care, protocol #2008N000169). Mgp+/− mice 

were generated by G. Karsenty and colleagues30. Hdac9−/− mice were generated by E. Olson 

and colleagues47. To investigate the role of HDAC9 in vascular calcification in MGP-

deficient mice, Mgp+/− mice were mated with Hdac9−/− mice to generate Mgp−/− Hdac9−/− 

mice. Animals were maintained on a standard diet. Survival studies were performed and the 

Kaplan-Meier statistic with log-rank testing was used to compare survival of mice.

Calcification of HASMCs—HASMCs were obtained from Cell Applications (#355–75a). 

To induce calcification in HASMCs, cells were treated with DMEM supplemented with 10% 

fetal bovine serum, 10 mM β-glycerophosphate disodium, 50 μg/mL L-ascorbic acid, and 10 

nM dexamethasone, as previously described48. To assess the effects of HDAC9 inhibition on 

calcification, cells were treated with either 100 nM TMP269 (Selleckchem, Cat No. S7324) 

or vehicle (DMSO) control. Media and treatment were replenished every 24 hours for 7–10 

days. Either RNA was isolated from cells to assess mRNA levels (see below) or the cells 

were fixed in 10% formalin and incubated with Alizarin Red or von Kossa stain to detect 

calcification. For Alizarin Red staining, cells were treated with a 2% Alizarin Red solution 

(pH 4.1–4.3) for 20 minutes, followed by multiple washes with distilled water. For von 

Kossa staining, cells were incubated in 5% silver nitrate solution and exposed to a 100 Watt 

bulb for 1–2 hours. Removal of unreacted silver was performed by subsequent treatment 

with 5% sodium thiosulfate. Cells were then washed with distilled water.

siRNA-mediated knockdown and adenovirus-mediated expression of HDAC9
—siRNA directed against HDAC9 (siHDAC9) and scrambled control siRNA (siCTRL) were 

obtained from Dharmacon (SMARTpool, Thermo Scientific). HASMCs were transfected 

with siRNA using Lipofectamine RNAiMAX reagent, as described by the manufacturer 

(Life Technologies).

Recombinant adenoviruses expressing either human wild-type HDAC9 (NM_058176) with a 

C-terminal Enhanced Green Fluorescent Protein (eGFP) tag or expressing eGFP alone were 

obtained from Vector Biolabs (human adenovirus type 5 [dE1/E3], promoter: 

cytomegalovirus, Catalog #1768, Malvern, PA). HASMCs were transduced with the 

adenovirus vectors in regular growth medium. After 24 hours, cells expressing eGFP were 

detected using fluorescent microscopy. RNA and protein levels were analyzed by qPCR and 

Western blot, respectively, 8 days after transduction.
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Proliferation assay—HASMCs were plated in a 96-well format and transfected with 

either siHDAC9 or siCtrl for 48 hours. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide)-based assay (ATCC #30–1010K) was used to assess cell 

proliferation. Briefly, 10 μL of the MTT reagent was added to each well, and the plate was 

incubated at 37 °C in a cell culture incubator in the dark for 3 hours, until a purple 

precipitate was visible inside the cells using standard light microscopy. Detergent reagent 

(100 μL) was then added to each well, and the plate was incubated at room temperature in 

the dark for 2 hours before measurement of absorbance at 570 nm.

Collagen matrix cell contraction assay—HASMC contraction was measured by the 

extent of deformation of collagen lattices, as previously described49. Cells were treated with 

siRNA for 24 hours prior to being embedded in collagen matrices, per manufacturer’s 

protocol (Cell Contraction Assay #CBA-201, Cell Biolabs, Inc). After 48 hours, the collagen 

lattice was released from the culture dish. Upon releasing the collagen lattice, the embedded 

cells are free to contract the deformable collagen lattice, resulting in a reduction of the 

lattice surface area. After detachment of the collagen gel lattice from the dish, changes in the 

gel surface area were quantified using Image J software.

Near-infrared imaging and quantification of aortic calcification—Age-matched 

wild-type, Mgp−/− Hdac9+/+, Mgp−/− Hdac9+/−, and Mgp−/− Hdac9−/− mice were injected 

via the tail vein with OsteoSense-680 (PerkinElmer, 5 μl/g each) 24 hours before euthanasia, 

as described previously50,51. Aortas were isolated and analyzed ex vivo by fluorescence 

reflectance imaging using an Odyssey Imaging System (LI-COR Biotechnology, Lincoln, 

NE) and software version 3.0.1652,53.

Aortic immunofluorescence and histology—Aortas were embedded and 

cryopreserved in optimal cutting-temperature medium (Sakura Tissue-Tek, Zoeterwoude, 

Netherlands), and 6-μm sections were prepared54. To detect HDAC9 in aortas, frozen tissue 

sections were fixed in cold 100% methanol and incubated with primary antibody (Abcam, 

#ab59718) specific for a 50-kDa isoform of HDAC9. To determine the association between 

HDAC9 expression and the expression of other HDACs as well as contractile and 

extracellular matrix degradation markers, sections were also treated with antibodies for 

HDAC4 and HDAC7 (Abcam, #ab12171 and ab50212, respectively), SM22α, MYH11 and 

MMP9 (Abcam: #ab14106, ab53219, and ab38898). The location of nuclei was identified by 

staining with 4’,6-diamidino-2-phenylindole (DAPI). Two-dimensional and white light 

images were analyzed using Image J software. Aortas were also fixed in formalin (10%) for 

24 hours prior to paraffinization and sectioning (6 μm). Staining with Verhoeff-Van Gieson 

(Thermo Scientific, MI, USA) was performed for assessment of elastin integrity.

Immunoblot techniques—HASMCs and aortas were homogenized in RIPA buffer 

containing protease and phosphatase inhibitors (Sigma). Lysates (20 μg/lane) were mixed 

with denaturing buffer (1× Laemmli loading buffer with 10% of β-mercaptoethanol) and 

analyzed by SDS–PAGE/Western. Rabbit polyclonal anti-HDAC9 antibodies were used to 

detect the 125-kDa isoform of human HDAC9 in HASMCs (Origene, TA318928). Rabbit 

polyclonal antibodies directed against the murine short isoform of HDAC9 (MITR) were 
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used to detect HDAC9 protein in mouse aortas (Abcam, #ab59718). Rabbit polyclonal 

antibodies directed against glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Cell 

Signaling #2118) were used to detect GAPDH protein. Blots were incubated with 

fluorescent-dye labeled anti-rabbit IgG IRDye 800CW (LI-COR, Lincoln, NE) and protein 

bands were imaged using a LI-COR Odyssey detection system (LI-COR, Lincoln, NE).

Preparation of mouse aortic vascular smooth muscle cells—Vascular smooth 

muscle cells (VSMCs) were isolated from aortas of Hdac9−/− mice and wild-type littermate 

controls, as previously described48,55. Aortas were digested with Type 2 collagenase (175 

U/mL, Worthington) and elastase (1.25 U/mL, Sigma) for 30 minutes, and the adventitial 

layer was removed. Aortas were further digested with collagenase and elastase for 60 

minutes, and cells were plated and maintained in Dulbecco’s Minimum Essential Medium 

(DMEM, Invitrogen) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 100 

units/ml of penicillin, and 100 μg/ml of streptomycin at 37°C with 5% CO2. VSMC lineage 

was confirmed by immunocytochemistry using an antibody directed against α-smooth 

muscle actin (SMA, Sigma). Experiments with VSMCs were performed using cells that 

were passaged between 2–8 times.

Measurement of gene expression by quantitative RT-PCR—Total RNA from 

aortas and cultured cells was extracted by the phenol/guanidinium method56. Reverse 

transcription was performed using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA, USA). A Mastercycler ep Realplex (Eppendorf, 

Hamburg, Germany) was used for real-time amplification and quantification of transcripts. 

Relative expression of target transcripts was normalized to levels of 18S ribosomal RNA, 

determined using the relative CT method. Taqman® gene expression assays were used to 

quantify mRNA levels encoding RUNX2, HDAC9, TNAP and COL3A1.

Statistical analysis—Statistical analysis was performed using Graph Pad Prism 5.0 

(GraphPad Software, La Jolla, CA) and Stata 13.0 (StataCorp LLC). The Shapiro-Wilk test 

was used to determine the normality of each continuous variable, and all such variables were 

found to be normally distributed. Data are reported as mean ± s.e.m., unless otherwise 

indicated. Two group comparisons of continuous variables were performed using the two-

tailed Student t test. For more than 2 group comparisons of continuous variables, two-tailed 

one-way analysis of variance (ANOVA) with Sidak post-hoc testing was employed. All in 
vitro experiments were performed at least in duplicate. The Kaplan-Meier statistic with log-

rank testing was used to compare survival of Mgp−/− Hdac9−/− mice and Mgp−/− Hdac9+/+ 

mice. A two-tailed P < 0.05 was considered to indicate statistical significance.

Reporting summary

Further information on research design is available in the Nature Research Life Sciences 

Reporting Summary linked to this article.

Data availability

The summary statistics for the cohorts used in the meta-analysis and validation have been 

placed in dbGaP (accession phs000930), as per the policy of the CHARGE consortium57. 
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The remaining data that support the findings of this study are available from the 

corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Polymorphisms in the HDAC9 and RAP1GAP loci are associated with abdominal 
aortic calcification.
a, Manhattan (left) and Quantile-Quantile (right) plots for the association of abdominal 

aortic calcification with ~9 million SNPs in the GWAS meta-analysis of 9,417 participants. 

The hashed line indicates the genome-wide threshold for significance (P < 5 × 10−8). b, 

Regional SNP association map of the HDAC9 genetic region on chromosome 7 observed in 

the GWAS meta-analysis, centered around the lead SNP rs57301765. c, Regional association 

map of the RAP1GAP genetic region on chromosome 1, centered around the lead SNP 

rs4654975.
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Figure 2 |. Inhibition of class IIa HDAC activity prevents osteogenic phenotype switch and 
calcification of cultured vascular smooth muscle cells.
HASMCs were grown in normal or osteogenic media (see Methods) in the presence or 

absence of TMP269 (100 nM) for either 6 or 10 days and harvested for gene expression 

analysis and calcification assessment, respectively. a, Treatment with calcification media 

increased RUNX2 mRNA levels (an important regulator of osteogenic phenotype switch) in 

HASMCs >2-fold. However, treatment with the HDAC inhibitor TMP269 prevented this 

increase in RUNX2 expression (n = 5 biologically independent samples for each group). 
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Statistical comparisons were made using a two-tailed one-way ANOVA with Sidak’s test for 

multiple comparisons. Mean ± s.e.m. is depicted. b, Treatment of HASMCs with 

calcification media for 10 days resulted in calcification, as evidenced by Alizarin Red and 

von Kossa staining. Calcification of HASMCs was inhibited by TMP269. Two independent 

experiments were performed with representative images shown. Scale bar, 1 cm.
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Figure 3 |. Vascular smooth muscle cell calcification, RUNX2 expression, proliferation, and 
contractility are affected by changes in HDAC9 expression.
a-c, Treatment of HASMCs (n = 6 biologically independent samples in each group) grown 

in osteogenic media with siHDAC9 (resulting in >75% knockdown of HDAC9 mRNA) (a) 

reduced RUNX2 mRNA levels by >50% (b) and prevented calcification, as evidenced by 

decreased Alizarin Red and von Kossa staining (c). In a and b, statistical comparisons were 

made using a two-tailed one-way ANOVA with Sidak’s test for multiple comparisons. In c, 

three independent experiments were performed with representative images shown. d, 
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Reduced HDAC9 expression in HASMCs grown in collagen discs (right panel) resulted in a 

~30% increase in contraction (left panel, n = 6 biologically independent samples in each 

group). e, Treatment of HASMCs with 20 nM siHDAC9 resulted in a 60% reduction in 

proliferation (n = 6 biologically independent samples in each group). f, Adenoviral 

expression of the 125-kDa isoform of HDAC9 fused to GFP in HASMCs was associated 

with a 75% increase in RUNX2 mRNA levels, when cells were harvested 8 days after viral 

transduction (n = 12 biologically independent samples in each group). Increased expression 

of HDAC9 was confirmed by Western blot (lower panel) using antibodies directed against 

HDAC9 and GAPDH (for a loading control). A full scan of the blot is in Supplementary 

Figure 4a. g, As shown by Alizarin Red staining, increased HDAC9 expression resulted in 

augmented calcification in HASMCs. Two independent experiments were performed with 

representative images shown. h, Increased HDAC9 expression also caused a 34% decrease 

(left panel, n = 6 biologically independent samples in each group) in contraction of 

HASMCs grown in collagen discs (right panel). In d-f and h, statistical comparisons were 

made using a two-tailed Student t test. Mean ± s.e.m. is depicted in all plots. For c and g, 

scale bar is 1 cm. For d and h, scale bar is 0.5 cm.
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Figure 4 |. HDAC9 deficiency protects against the development of vascular calcification and 
aortic elastin disruption and improves survival in Mgp−/− mice.
a, Longitudinal sections of aortas stained with Verhoeff-Van Gieson (VVG) are depicted, 

showing elastin fiber integrity in the aortas of wild-type, Mgp−/− Hdac9+/+, Mgp−/− 

Hdac9+/−, and Mgp−/− Hdac9−/− mice. The disruption of elastin fiber integrity seen with 

MGP deficiency was improved with HDAC9 deficiency. b, Longitudinal sections of aortas 

isolated from 14-day-old wild-type, Mgp−/− Hdac9+/+, Mgp−/− Hdac9+/−, and Mgp−/− 

Hdac9−/− mice were stained for HDAC9 (red), SM22α (green, a contractile protein), and 
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DNA (blue, DAPI). Increased levels of HDAC9 protein were seen in Mgp−/− Hdac9+/+ 

aortas, and to an intermediate degree in Mgp−/− Hdac9+/− aortas, relative to wild-type aortas. 

HDAC9 localized primarily to nuclei. Increased HDAC9 expression was associated with 

reduced SM22α expression. In a and b, three independent replicates in each group were 

assessed with representative images shown. c, Western blot of proteins isolated from aortas 

of wild-type, Mgp−/− Hdac9+/+, and Mgp−/− Hdac9+/− mice (n = 2 mice in each group) 

confirmed increased levels of the 50-kDa isoform of HDAC9 protein in Mgp−/− Hdac9+/+ 

mice and to a lesser extent in Mgp−/− Hdac9+/− mice compared to wild-type mice. Statistical 

comparison was made using a two-tailed one-way ANOVA with Sidak’s test. A full scan of 

the blot is shown in Supplementary Figure 4b. d, Aortic calcification, as assessed by 

OsteoSense near-infrared imaging (left panel), was reduced by ~40–50% (right panel) in 21-

day-old mice that were deficient in both MGP and HDAC9 (Mgp−/− Hdac9−/−, n = 8) 

compared to Mgp−/− Hdac9+/+ mice (n = 11) and Mgp−/− Hdac9+/− (n = 7) mice. No aortic 

calcification was observed in wild-type mice (n = 7). Scale bar is 1 mm. e, Mgp−/− Hdac9+/+ 

mice (n = 14) had increased aortic Runx2 mRNA levels compared to wild-type mice (n = 7, 

P < 0.0001). Compared to Mgp−/− Hdac9+/+ mice, Mgp−/− Hdac9−/− mice (n = 9) had a 

~50% reduction in aortic Runx2 mRNA levels (P = 0.024). f, Immunofluorescence with an 

antibody directed against MMP9 demonstrated a >60% reduction of MMP9 expression in 

aortic sections from HDAC9-deficient Mgp−/− mice when compared to Mgp−/− Hdac9+/+ 

and Mgp−/− Hdac9+/− mice (n = 3 mice in each group). DAPI (dark blue) was used as a 

nuclear stain. In d-f, statistical comparisons were made using a two-tailed one-way ANOVA 

with Sidak’s test for multiple comparisons. g, Improved Kaplan-Meier survival was 

observed in Mgp−/− Hdac9−/− mice (n = 8) compared to Mgp−/− Hdac9+/+ mice (n = 10, two-

sided log-rank P = 0.0018). For a, b, and f, scale bar is 50 μm. Mean ± s.e.m. is depicted in 

all plots.
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