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Background: UNAIDS models use data from the International epidemiology Databases
to Evaluate AIDS (IeDEA) collaboration in setting assumptions about mortality rates after
antiretroviral treatment (ART) initiation. This study aims to update these assumptions
with new data, to quantify the extent of regional variation in ART mortality and to assess
trends in ART mortality.

Methods: Adult ART patients from Africa, Asia and the Americas were included if they had a
known date of ART initiation during 2001–2017 and a baseline CD4þ cell count. In cohorts
that reliedonlyonpassive follow-up (nopatient tracingor linkage tovital registrationsystems),
mortality outcomes were imputed in patients lost to follow-up based on a meta-analysis of
tracing study data. Poisson regression models were fitted to the mortality data.

Results: 464 048 ART patients were included. In multivariable analysis, mortality rates
were lowest in Asia and highest in Africa, with no significant differences between
African regions. Adjusted mortality rates varied significantly between programmes
within regions. Mortality rates in the first 12 months after ART initiation were signifi-
cantly higher during 2001–2006 than during 2010–2014, although the difference was
more substantial in Asia and the Americas [adjusted incidence rate ratio (aIRR) 1.43,
95% CI: 1.22–1.66] than in Africa (aIRR 1.07, 95% CI: 1.04–1.11).
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Conclusion: There is substantial variation in ART mortality between and within regions,
even after controlling for differences in mortality by age, sex, baseline CD4 category and
calendar period. ART mortality rates have declined substantially over time, although
declines have been slower in Africa.

Copyright � 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction

Antiretroviral treatment (ART) is estimated to have
reduced the number of AIDS deaths globally by 6.6
million in the period up to 2013 [1], and in many of the
countries most severely affected by the HIV epidemic,
ART has had a profound demographic impact [2,3].
However, HIV case surveillance and vital registration
systems are often weak or absent in the most severely
affected countries, necessitating mathematical models to
estimate AIDS mortality and the impact of ART. The
Joint United Nations Programme on HIV/AIDS
(UNAIDS) supports the development and application
of the Spectrum tool for this purpose [4]; this tool is also
widely used to estimate other HIV indicators and to
evaluate the impact and cost-effectiveness of different
interventions [5].

AIDS mortality estimates produced by Spectrum and
other mathematical models depend on assumptions about
mortality rates after ART initiation. UNAIDS has
previously relied on the International epidemiology
Databases to Evaluate AIDS (IeDEA) Collaboration to
provide estimates of mortality of patients receiving ART
in different regions to parameterize the Spectrum model
[6,7]. Previous IeDEA analyses to estimate Spectrum
parameters incorporated mortality data from patients
starting ART in the pre-2011 [7] and 2009–2014 [6]
periods. These analyses were limited in their ability to
estimate mortality of patients starting ARTat higher CD4
cell counts, as such patients only became eligible for ART
in low-income and middle-income countries after the
WHO recommended universal ART eligibility in 2015
[8]. The analyses conducted for UNAIDS have also not
assessed whether there have been temporal changes in
ART mortality (after controlling for differences in
baseline CD4 cell count and ART duration), although
some studies suggest that ART mortality rates have
declined significantly [9–11]. A further concern is that
previous analyses applied multiplicative ‘correction
factors’ to observed mortality rates to correct for
under-ascertainment of mortality in patients lost to
follow-up (LTFU), but these correction factors might not
have adequately reflected heterogeneity in ascertainment
of mortality across settings, as they were based only on
data from South Africa and Kenya.

This study aims to update adult ART mortality estimates
for the Spectrum model, incorporating more recent
IeDEA data (up to 2017) and advancing the mortality
estimation methods. This study also aims to assess trends
in adult ART mortality, to quantify mortality levels since
introduction of universal ART eligibility, to evaluate the
extent of inter-regional variation in mortality, and to
assess whether inter-regional differences are explained by
known predictors of mortality.

Methods

IeDEA is an international collaboration of ART pro-
grammes, divided into seven regions: Asia-Pacific; Central
America, South America and the Caribbean (hereafter
‘Latin America’); North America; Central Africa; East
Africa; Southern Africa and West Africa [12,13].
Participating programmes are embedded in routine care
services, with frequencies of scheduled clinic visits varying
across programmes, in line with local guidelines. Each
region has an independent data centre that pools, de-
identifies and analyses the data. Each programme
participating in this study obtained ethical approval from
relevant local institutions to collect and share patient data;
in addition, each regional data centre obtained ethical
approval to collate and analyse the de-identified data.

The analysis included adults (aged 15 years and older)
who started ART between 2001 and 2017 and were
ART-naı̈ve at enrolment (or who had a date of first ART
initiation if not ART-naı̈ve), and who had a recorded
CD4 cell count in the six months prior to starting ARTor
two weeks after starting ART. ART was defined as a
combination of at least three antiretroviral drugs.
Consistent with previous UNAIDS analyses [6,7], we
defined baseline CD4 cell count as the CD4 cell count
closest to the time of ART initiation and we defined
patients as LTFU if their last visit date was more than six
months prior to the database closure without any record
of other outcomes (death or transfer). To estimate
parameters in the Spectrum model, we used the same
covariate categories as the Spectrum model: baseline
CD4 cell count was categorized as 0–49, 50–99, 100–
199, 200–249, 250–349, 350–499 or �500 cells/ml;
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time since ART initiation (‘duration’) was categorized as
0–5 months, 6–11 months or �12 months; and age was
categorized as 15–24, 25–34, 35–44 or �45 years. We
conducted sensitivity analyses to assess the effect of
including patients with missing baseline CD4 values,
using multiple imputation to assign baseline CD4 cell
counts [14], and to assess the effect of modelling age
effects using restricted cubic splines rather than a
categorical approach [15]. Except in the case of sub-
Saharan Africa (discussed below), follow-up time was
defined from the date of ART start (or date of enrolment
if later) to the date of death or the last date that the patient
was known to be alive. The resulting mortality estimates
are referred to as ‘ART mortality rates’ although some
patients might not have been on ART at the time
of death.

Because most patients starting ART at higher CD4 cell
counts prior to 2015 were doing so because they met
clinical rather than immunological ART eligibility
criteria, and because such patients are not representative
of asymptomatic individuals with higher CD4 cell counts,
we excluded individuals who qualified for ART based
solely on clinical criteria. In the Latin American and
North American programmes, as well as in some Asian
programmes, this meant excluding patients who had a
clinical diagnosis of AIDS prior to starting ART, if they
started ART with a CD4 cell count above the CD4
eligibility threshold that applied at the time. In the sub-
Saharan African programmes and some Asian pro-
grammes, in which the recording of baseline clinical
stage was incomplete, patients were excluded if their
baseline CD4 cell count was above the CD4 eligibility
threshold at the time of starting ART (on the assumption
that they qualified for ART based only on clinical
eligibility criteria). Details of the eligibility criteria that
applied in each country in each year were obtained from
previous reviews of ART eligibility criteria [16–19] and
from consultation with local experts; full details are
provided in Supplementary Table S1, http://links.lww.-
com/QAD/B527. A sensitivity analysis was conducted to
assess the effect of not applying these exclusion criteria.

Programmes differed in their approach to ascertaining
mortality. In the South African programmes and most
North and Latin American programmes, patient records
were regularly linked to vital registration systems, which
were judged to have high completeness [20–22]. In some
North and Latin American programmes, and most Asian
programmes, attempts were made to contact patients who
missed visits, either by telephone or by home visits (‘active
follow-up’) [9,23,24], and this was also judged to yield
reasonably accurate estimates of mortality. However, in
most sub-Saharan African programmes, mortality was
ascertained passively (no active follow-up or linkage to
vital registration systems), and the high proportion of
patients LTFU suggested substantial unrecorded mortality
[25]. To address this problem, we used an imputation

model to simulate mortality outcomes in the six months
after LTFU in sub-Saharan African programmes (exclud-
ing South Africa) [26]. Suppose Ti is the time to death (in
days after the last visit) for patient i who is classified LTFU.
We assume Ti is Weibull-distributed with parameters li

and f, where li¼ xib (xi representing the covariate
information for individual i and b representing the
covariate effects on the mortality rate). We chose the
Weibull distribution over the more flexible generalized
gamma distribution as the Weibull distribution is easier to
invert, which is important for simulation purposes. We
estimated the f and b coefficients by fitting the Weibull
model to mortality data from an individual patient data
meta-analysis of studies that traced LTFU patients in
African ART programmes [27], augmented by more
recent data from a large Zambian tracing study [28]. For
each individual who was LTFU, we sampled a value ti
from the Weibull distribution for Ti. If ti was 180 days or
more, follow-up was censored at the last visit dateþ 180
days; otherwise the date of death was set to the last visit
dateþ ti. For each LTFU patient, we simulated five
outcomes, thus generating five datasets for the sub-
Saharan African cohorts that we combined using Rubin’s
rules [14]. We limited the simulation of mortality
outcomes to the first six months after last contact due
to the limited numbers of deaths at longer tracing
durations and the resulting uncertainty in the extrapola-
tion of the Weibull hazard to longer durations.

Consistent with previous UNAIDS analyses [6,7], we
used Poisson regression models to estimate average
mortality rates for each covariate category in Spectrum.
We fitted separate regression models for the first
12 months after ART initiation and for durations more
than 12 months after ART initiation, to account for non-
proportional hazards. We also ran separate regression
models for the African and non-African regions, due to
differences between generalized and concentrated HIV
epidemic settings in both overall levels of mortality as well
as sociodemographic determinants of mortality. We
included region-specific effects in each model, and used
random effect models (with random intercepts) to
account for variation across programmes within each
region. The ratio of mortality at the 90th percentile of
random effects to that at the 10th percentile of random
effects was calculated to demonstrate the extent of inter-
programme variation in mortality within regions,
assuming that random effects were normally distributed
[29]. We treated South Africa as a separate ‘region’
because of the difference in mortality ascertainment in
this country (relative to the rest of sub-Saharan Africa)
and because of the large number of ART patients in this
country. The West and Central African regions were
combined due to the small numbers of patients in Central
Africa, but in a sensitivity analysis we included separate
effects for Central Africa. All statistical analyses were
performed using STATA 15.1 (StataCorp, College
Station, TX, USA).
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In the Spectrum model, IeDEA estimates of all-cause
mortality in ART patients were converted into estimates
of HIV-related mortality by subtracting United Nations
Population Division estimates of non-HIV mortality in
each region [30] (more detail is provided in Supplemen-
tary material Section 2, http://links.lww.com/QAD/
B527). In the results that follow, we present only the
IeDEA estimates of all-cause mortality.

Results

846 418 adults started ART in 2001–2017, of whom we
excluded 271 959 (32%) due to missing baseline CD4
values, 12 541 (1%) due to missing or invalid outcome
dates, and 97 870 (12%) who qualified for ART solely on
clinical criteria. Our main analysis therefore included
464 048 ART patients, from 72 different IeDEA
programmes, the majority from sub-Saharan Africa
(408 131, 88%). Demographic characteristics differed
substantially across regions: the proportion of patients
who were female ranged from 16% in North America to
65% in West and Central Africa, while the proportion of
patients aged 45 years or older at the time of ART
initiation ranged between 17% in Southern Africa and
41% in North America (Table 1). Baseline immunological
status also differed substantially across regions, with the
percentage starting ART at a CD4 cell count <200 cells/
ml ranging between 33% in North America and 78% in

South Africa. In the North American cohort a substantial
fraction of patients (12%) acquired HIV following
needle sharing.

The imputation model of mortality after LTFU in African
tracing studies was based on 4751 adult patients for whom
a vital status could be established (characteristics of the
tracing studies and traced patients are included in
Supplementary Tables S10 and S11, http://links.lww.
com/QAD/B527, respectively). Of these, 77% were
from Southern Africa, 18% were from East Africa and
5% were from Central Africa. The results of the Weibull
regression model are shown in Table 2. Mortality risk
among patients LTFU was significantly associated with
older age, lower baseline CD4 cell count and shorter
ART duration, but the effects of year and sex were not
statistically significant. The Weibull shape parameter
was 0.60 (95% CI: 0.57–0.63), indicating a strong
negative relationship between time since LTFU and the
mortality rate. The imputation model estimated that
57% of all deaths on ART in sub-Saharan Africa
(excluding South Africa) occurred after LTFU, with this
proportion increasing from 41% in 2001–2006 to 48%
in 2007–2010, 58% in 2011–2014 and 77% in 2015–
2017.

Figure 1 shows the cumulative all-cause mortality
estimates, after imputing mortality outcomes for the
African cohorts in which there was no active follow-up or
vital registration linkage. In the non-African cohorts,
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Table 1. Patient characteristics at antiretroviral treatment initiation, 2001–2017.

Asia-Pacific Latin America North America East Africa
South Africa

(RSA)
Southern Africa
(excluding RSA)

West and
Central Africa

No. of patients 16 097 15 760 24 060 108 936 72 997 183 675 42 523
Sex

Male 11 376 (70.7%) 9404 (59.7%) 20 274 (84.3%) 41 138 (37.8%) 26 169 (35.9%) 73 794 (40.2%) 14 871 (35.0%)
Female 4721 (29.3%) 6356 (40.3%) 3786 (15.7%) 67 798 (62.2%) 46 828 (64.2%) 109 881 (59.8%) 27 652 (65.0%)

Age (years)
15–24 966 (6%) 1975 (12.5%) 2067 (8.6%) 10 995 (10.1%) 6227 (8.5%) 19 639 (10.7%) 2707 (6.4%)
25–34 5821 (36.2%) 5701 (36.2%) 5800 (24.1%) 40 135 (36.8%) 29 961 (41.0%) 73 007 (39.8%) 14 877 (35.0%)
35–44 5786 (35.9%) 4525 (28.7%) 6352 (26.4%) 35 740 (32.8%) 23 327 (32.0%) 59 721 (32.5%) 15 107 (35.5%)
45þ 3524 (21.9%) 3559 (22.6%) 9841 (40.9%) 22 066 (20.3%) 13 482 (18.5%) 31 308 (17.1%) 9832 (23.1%)

Period of ART start
2001–2007 4196 (26.1%) 2215 (14.1%) 5244 (21.8%) 24 310 (22.3%) 21 203 (29.1%) 23 874 (13%) 11 319 (26.6%)
2008–2010 4144 (25.7%) 4502 (28.6%) 8464 (35.2%) 22 806 (20.9%) 19 522 (26.8%) 46 920 (25.5%) 12 323 (29.0%)
2011–2013 4270 (26.5%) 5625 (35.7%) 8017 (33.3%) 36 006 (33.1%) 19 869 (27.2%) 54 477 (29.7%) 12 486 (29.4%)
2014–2017 3487 (21.7%) 3418 (21.7%) 2335 (9.7%) 25 814 (23.7%) 12 403 (17.0%) 58 404 (31.8%) 6395 (15.0%)

Baseline CD4þ cell count (cells/ml)
0–49 4106 (25.5%) 2889 (18.3%) 2852 (11.9%) 22 565 (20.7%) 15 603 (21.4%) 23 927 (13.0%) 9817 (23.1%)
50–99 2844 (17.7%) 2016 (12.8%) 1665 (6.9%) 17 504 (16.1%) 13 196 (18.1%) 28 720 (15.6%) 7562 (17.8%)
100–199 4623 (28.7%) 3431 (21.8%) 3407 (14.2%) 35 500 (32.6%) 28 292 (38.8%) 61 059 (33.2%) 15 303 (36.0%)
200–249 1070 (6.7%) 1474 (9.4%) 2068 (8.6%) 7177 (6.6%) 4306 (5.9%) 17 244 (9.4%) 3137 (7.4%)
250–349 2190 (13.6%) 3069 (19.5%) 4701 (19.5%) 15 796 (14.5%) 8231 (11.3%) 32 622 (17.8%) 5495 (12.9%)
350–499 984 (6.1%) 1700 (10.8%) 4657 (19.4%) 8398 (7.7%) 2436 (3.3%) 15 637 (8.5%) 865 (2.0%)
500þ 280 (1.7%) 1181 (7.5%) 4710 (19.6%) 1996 (1.8%) 933 (1.3%) 4466 (2.4%) 344 (0.8%)

Mode of infection
Needle sharing 452 (2.8%) 22 (0.1%) 2946 (12.2%) – – – –
Other 15 645 (97.2%) 15 738 (99.9%) 21 114 (87.8%) – – – –

ART, antiretroviral treatment; RSA, Republic of South Africa.
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mortality rates appeared relatively low in North America
at shorter ART durations, but at longer durations
cumulative mortality rates were higher than those in
Latin America and Asia-Pacific. Cumulative mortality
rates were consistently higher in the sub-Saharan African
cohorts, with mortality rates in the African region being

lowest in South Africa and highest in West and
Central Africa.

In the multivariable analysis, mortality differences
between regions remained significant (Table 3). Mortality
in Latin America was roughly double that in Asia-Pacific,
and although mortality in North America was not
significantly different from that in Asia-Pacific during the
first 12 months of ART, it was more consistent with that
observed in Latin America at longer ART durations.
Mortality rates did not differ significantly between
African regions in the multivariable analysis, although
in a sensitivity analysis in which Central and West Africa
were considered separately, mortality appeared signifi-
cantly lower in Central Africa than in the other African
regions, during the first 12 months of ART (Table S12,
http://links.lww.com/QAD/B527). There was sub-
stantial variation in mortality between programmes
within each region. In the non-African regions, after
controlling for region effects and other predictors,
the mortality rate at the 90th percentile of random
effects was 5.1 times that at the 10th percentile
(exp(0.64� 2� 1.28), where 1.28 is the 90th percentile
of the standard normal distribution). Heterogeneity was
lower in the African cohorts, with the 90–10th
percentile ratio being 2.9 in the first 12 months of
ART and 3.2 at longer ART durations.

Mortality rates in the first 12 months after ART initiation
appeared to decline over time in the non-African cohorts,
but changed relatively little in the African cohorts (Table
3). However, there was more substantial evidence of
declines in mortality over time at longer durations, both
in the African and non-African cohorts, with mortality
rates in the 2015–2017 period being half of those in the
2001–2006 period in both analyses. Because this
reduction may be due to residual confounding (with
follow-up in more recent periods representing longer
ART durations than follow-up in the 2001–2006

Global mortality variations in antiretroviral treatment patients Johnson et al. S287

Table 2. Imputation model: predictors of mortality in first 6 months
after loss to follow-up.

aHR (95% CI)

Sex
Male 1.00
Female 1.05 (0.93–1.19)

Age at ART initiation (years)
15–24 1.00
25–34 1.23 (0.96–1.57)
35–44 1.53 (1.19–1.96)
45þ 1.91 (1.48–2.48)

Time since ART initiation at LTFU (months)
0–5 1.00
6–11 0.51 (0.43–0.60)
12–23 0.36 (0.29–0.43)
24–35 0.39 (0.29–0.52)
36þ 0.34 (0.24–0.49)

CD4þ cell count at ART initiation (cells/ml)
0–49 1.00
50–99 0.71 (0.61–0.84)
100–199 0.47 (0.40–0.55)
200–249 0.39 (0.31–0.49)
250–349 0.35 (0.28–0.44)
350–499 0.33 (0.23–0.46)
500þ 0.22 (0.14–0.35)

Per year after 2000 (at ART initiation) 0.97 (0.91–1.02)

Parameter (95% CI)

Weibull scale parameter 0.054
Weibull shape parameter (f) 0.60 (0.57–0.63)

The model was fitted to data from 4751 adult patients traced after
LTFU, in whom a vital status could be established. The model
controlled for differences in mortality rates between programmes
(results not shown). The Weibull scale parameter is calculated as
the average of the coefficients across all programmes. ART, antiretro-
viral treatment; CI, confidence interval; LTFU, lost to follow-up.

Fig. 1. Cumulative mortality hazard, by region. Sub-Saharan African results are obtained by imputing mortality outcomes in
patients who were lost to follow-up.
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period), a sensitivity analysis was conducted in which
additional duration categories were included in the model
(12–23 months, 24–35 months and�36 months). In this
sensitivity analysis, the decline in mortality over time
remained significant, but was not as substantial as in the
main analysis, and in the African regions mortality
appeared to be higher only in the 2001–2006 period
(Fig. 2). The ratio of the mortality rate at 24–35 months
to that at 12–23 months was 0.85 (95% CI: 0.75–0.96) in
the non-African regions and 0.78 (95% CI: 0.75–0.81) in
the African regions, whereas the ratio of the mortality rate
at least 36 months to that at 12–23 months was 0.78 (95%
CI: 0.70–0.87) in the non-African regions and 0.62 (95%
CI: 0.60–0.64) in the African regions (Table S13, http://
links.lww.com/QAD/B527).

The effect of baseline CD4 cell count on mortality was
more significant during the first 12 months after ART

initiation than at longer ART durations, and mortality
risks decreased as baseline CD4 cell counts increased
(Table 3). However, in the sensitivity analysis in which
patients were not excluded if their CD4 cell count was
above the ART eligibility threshold at the time of ART
initiation, the incidence rate ratios were in most cases
closer to 1, suggesting a weaker negative relationship
between baseline CD4 cell count and mortality at higher
CD4 cell counts (Table 4). Results did not change
substantially when CD4 cells counts were imputed for
those individuals with missing baseline CD4 values,
although in African cohorts the imputed CD4 cell counts
appeared less strongly predictive of mortality during the
first 12 months after ART initiation (Tables S15 and S16,
http://links.lww.com/QAD/B527). Results also
remained largely unchanged when alternative models
of the age effect were considered (Tables S17 and S18,
http://links.lww.com/QAD/B527), and when ART
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Table 3. Multivariable analysis of mortality after antiretroviral treatment initiation.

Asia and Americas Sub-Saharan Africa

1st 12 Months >12 Months 1st 12 Months >12 Months

Sexa

Male 1.00 1.00 1.00 1.00
Female 0.86 (0.76–0.97) 0.96 (0.85–1.08) 0.81 (0.79–0.83) 0.73 (0.71–0.76)

Age group (years)a

15–24 1.00 1.00 1.00 1.00
25–34 1.22 (0.93–1.61) 1.04 (0.69–1.57) 0.98 (0.92–1.03) 0.78 (0.72–0.84)
35–44 1.39 (1.06–1.82) 1.09 (0.72–1.63) 0.99 (0.94–1.04) 0.69 (0.64–0.74)
45þ 2.17 (1.66–2.84) 1.94 (1.30–2.90) 1.21 (1.13–1.29) 0.82 (0.76–0.88)

Follow-up perioda

2001–2006 1.43 (1.22–1.66) 1.68 (1.23–2.28) 1.07 (1.04–1.11) 2.05 (1.84–2.28)
2007–2010 1.20 (1.07–1.36) 1.26 (1.13–1.40) 1.03 (1.00–1.06) 1.22 (1.18–1.27)
2011–2014 1.00 1.00 1.00 1.00
2015–2017 1.01 (0.81–1.25) 0.84 (0.71–0.98) 1.00 (0.94–1.05) 0.91 (0.88–0.94)

Baseline CD4þ cell count (cells/ml)a

0–49 1.00 1.00 1.00 1.00
50–99 0.71 (0.62–0.80) 1.03 (0.90–1.18) 0.58 (0.56–0.60) 0.78 (0.74–0.82)
100–199 0.36 (0.31–0.41) 0.71 (0.63–0.81) 0.34 (0.33–0.34) 0.55 (0.53–0.57)
200–249 0.22 (0.18–0.29) 0.59 (0.49–0.72) 0.23 (0.22–0.25) 0.48 (0.44–0.52)
250–349 0.16 (0.13–0.19) 0.39 (0.33–0.47) 0.18 (0.17–0.19) 0.41 (0.39–0.44)
350–499 0.16 (0.12–0.20) 0.39 (0.31–0.49) 0.16 (0.14–0.19) 0.42 (0.36–0.49)
500þ 0.10 (0.07–0.15) 0.33 (0.25–0.43) 0.13 (0.10–0.17) 0.24 (0.08–0.77)

Time since ART starta

0–5 Months 1.00 – 1.00 –
6–11 Months 0.43 (0.39–0.48) – 0.43 (0.42–0.44) –

Injecting drug use historya 1.56 (1.28–1.90) 1.67 (1.43–1.95) – –
Regiona

Asia-Pacific 1.00 1.00 – –
Latin America 1.98 (1.10–3.57) 2.18 (1.23–3.83) – –
North Americab 0.75 (0.46–1.23) 2.52 (1.58–4.01) – –
East Africa – – 1.00 1.00
South Africa – – 0.85 (0.55–1.32) 0.97 (0.61–1.54)
Southern Africa (excl. RSA) – – 1.09 (0.70–1.68) 1.34 (0.84–2.15)
West and Central Africa – – 0.97 (0.67–1.40) 1.28 (0.87–1.89)

Baseline mortalityc 4.5 (2.9–6.8) 0.5 (0.3–0.9) 33.1 (24.0–45.6) 4.9 (3.5–6.9)
SD of random effects 0.64 (0.48–0.86) 0.60 (0.44–0.84) 0.42 (0.31–0.51) 0.45 (0.33–0.54)

ART, antiretroviral treatment; RSA, Republic of South Africa; SD, standard deviation.
aIncidence rate ratio (adjusted) with 95% confidence interval in brackets.
bEstimates for North America in the first year of ART could be underestimated, as patients must have two HIV visits within 12 months to be enrolled
in the cohort.
cPer 100 person-years, in individuals with baseline covariate pattern (males aged 15–24 followed up in the 2011–2014 period, with baseline CD4þ

cell count <50 cells/ml).
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eligibility criteria were controlled for (Tables S19 and
S20, http://links.lww.com/QAD/B527).

Discussion

The current study shows evidence of substantial variation
in mortality in treated HIV-positive adults, both across
global regions and within regions. Consistent with
previous studies of intercohort variation in mortality
[29,31], we show that this variation cannot be explained
only in terms of factors such as differences in baseline

CD4 cell count, injecting drug use or completeness of
mortality ascertainment, although differences observed
between sub-Saharan African regions (Fig. 1b) ceased to
be significant in the multivariable analysis. Possible
explanations for residual variation in mortality include
differences across programmes in the socioeconomic
profiles of their patient populations, differences in facility
type (e.g. in some settings tertiary centres may tend to
treat sicker patients [32]), differences across regions in
ART monitoring strategies (with virological monitoring
generally yielding better mortality outcomes than clinical
or immunological monitoring alone [33,34]), differences
in the effectiveness and tolerability of the locally
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Fig. 2. Effect of calendar period on mortality rates more than 12 months after antiretroviral treatment initiation, before and after
controlling for differences in mortality by duration.

Table 4. Effects of baseline CD4R cell count (cells/ml) on mortality before and after excluding patients who did not meet antiretroviral treatment
eligibility criteria at the time of antiretroviral treatment initiationa.

Asia and Americas Sub-Saharan Africa

Before exclusions After exclusions Before exclusions After exclusions

Effect of baseline CD4þ cell count (cells/ml) on mortality in 1st 12 months
0–49 1.00 1.00 1.00 1.00
50–99 0.70 (0.62–0.80) 0.71 (0.62–0.80) 0.58 (0.56–0.60) 0.58 (0.56–0.60)
100–199 0.36 (0.31–0.41) 0.36 (0.31–0.41) 0.34 (0.33–0.35) 0.34 (0.33–0.34)
200–249 0.25 (0.20–0.30) 0.22 (0.18–0.29) 0.25 (0.24–0.26) 0.23 (0.22–0.25)
250–349 0.16 (0.13–0.19) 0.16 (0.13–0.19) 0.21 (0.20–0.22) 0.18 (0.17–0.19)
350–499 0.16 (0.13–0.20) 0.16 (0.12–0.20) 0.21 (0.20–0.22) 0.16 (0.14–0.19)
500þ 0.15 (0.11–0.19) 0.10 (0.07–0.15) 0.17 (0.16–0.19) 0.13 (0.10–0.17)

Effect of baseline CD4þ cell count (cells/ml) on mortality after 1st 12 months
0–49 1.00 1.00 1.00 1.00
50–99 1.03 (0.90–1.18) 1.03 (0.90–1.18) 0.78 (0.75–0.81) 0.78 (0.74–0.82)
100–199 0.72 (0.63–0.82) 0.71 (0.63–0.81) 0.55 (0.53–0.56) 0.55 (0.53–0.57)
200–249 0.62 (0.52–0.73) 0.59 (0.49–0.72) 0.45 (0.43–0.48) 0.48 (0.44–0.52)
250–349 0.42 (0.36–0.50) 0.39 (0.33–0.47) 0.43 (0.41–0.45) 0.41 (0.39–0.44)
350–499 0.43 (0.36–0.53) 0.39 (0.31–0.49) 0.44 (0.41–0.48) 0.42 (0.36–0.49)
500þ 0.45 (0.37–0.56) 0.33 (0.25–0.43) 0.36 (0.33–0.40) 0.24 (0.08–0.77)

ART, antiretroviral treatment.
aIn Asia and the Americas, ART eligibility was assessed based on clinical and immunological criteria, depending on the published ART eligibility
criteria for the country in the relevant year. In sub-Saharan Africa, ART eligibility was assessed based only on immunological criteria, due to
incomplete recording of clinical stage. The results in the ‘After exclusions’ analysis are the same as those shown in Table 3.
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recommended drug regimens, differences in levels of
antiretroviral drug resistance [35,36] and differences in
resources for patient tracking and the diagnosis and
management of comorbidities.

The unusually high estimates of mortality in sub-Saharan
Africa (Figure 1 and Table 3) could be attributed to a
number of factors. Tuberculosis accounts for almost half
of all deaths in HIV-positive individuals in Africa [37], but
is markedly less prevalent in high-income settings. Poor
access to cotrimoxazole and isoniazid prophylaxis in
resource-limited settings could also contribute to excess
mortality associated with tuberculosis and other HIV-
related diseases [38]. Non-HIV mortality, which accounts
for much mortality in ART patients, is also substantially
higher in the sub-Saharan African region than in other
regions [30].

The unusual mortality pattern in North America (lower
than in other concentrated epidemic settings at early ART
durations, but higher at later durations) is consistent with
previous inter-regional comparisons [31,39], and could
be partly because patients are only included in the North
American database if they have at least two visits in the
year of enrolment [40], implying a selection bias due to
the exclusion of individuals who die or transfer care
before their second visit. The higher rates of mortality in
North American patients compared with Asian patients,
at longer ART durations, is consistent with a recent
analysis that found significantly lower viral suppression in
North American patients compared with Asian patients
[41]. This may be due to the nature of the American
healthcare system, with patients frequently transferring
between public and private care, and the resulting
instability in care contributing to higher long-term
mortality [42]. The North American patients are also
older on average than those in other regions, although
controlling for age in different ways does not appear to
change the relative difference between North America
and other regions (Tables S17 and S18, http://
links.lww.com/QAD/B527).

Even within regions, substantial variation in mortality is
observed, with the ratio of the adjusted mortality at the
90th percentile of random effects to that at the 10th
percentile being roughly 5 in concentrated epidemic
settings and roughly 3 in sub-Saharan African settings.
The slightly lower heterogeneity in the sub-Saharan
African regions is probably due to the same model being
used to impute mortality outcomes across all cohorts,
which may lead to the true extent of the heterogeneity
being understated. It is important that mathematical
models of the impact of ART reflect the uncertainty
regarding the ART mortality rates that apply locally.
Ideally models should be calibrated to local mortality data
to reduce this uncertainty [3,43], but when such data are
not available and these IeDEA estimates are used,
confidence intervals around model outputs should reflect

the standard deviations of the random effects terms
estimated here. Future analyses should aim to reduce the
variation of these random effects, for example by
regressing on country GDP per capita and on rates of
viral suppression, factors that are likely to account for
much of the variation in mortality within regions.

This study suggests that mortality rates in ART patients
have declined over time in Asia and the Americas, even
after controlling for improvements in baseline character-
istics and changes in treatment duration. This is consistent
with declines previously observed in concentrated
epidemic settings [9–11]. However, in sub-Saharan
African cohorts the reductions in mortality over time
are only noticeable when considering follow-up more
than 12 months after ART initiation, and when
considering a more detailed model of duration effects,
even these declines appear questionable after 2006
(Fig. 2b). South African data, which are based on more
robust mortality ascertainment, also suggest little or no
decline in treated mortality over time [44,45]. Declines in
mortality might be expected, given innovations in service
delivery (such as adherence clubs [46]), the introduction
of newer drugs that are better tolerated and more effective
in suppressing HIV [47], and the increasing use of fixed-
dose combination ART [48]. Declines may also be due to
improvements in baseline clinical stage, which we did not
control for in this analysis because the information was
missing in many cohorts, and because the Spectrum
model (in common with most other mathematical
models [49]) does not include a separate stratification
by clinical stage. The absence of a strong decline in
mortality in African cohorts may be related to declining
visit frequencies [50], or increasing rates of treatment
interruption [51], which may have offset the expected
gains from therapeutic improvements. It is also possible
that the relatively rapid growth in drug resistance in East
and Southern Africa [35] and the relatively high
prevalence of tenofovir drug resistance in sub-Saharan
Africa [36] may be part of the reason why mortality in
sub-Saharan Africa has not declined to the same extent as
in other regions. Alternatively, the slow mortality decline
may be due to the parameterization of the imputation
model, which suggested only a modest decline over time
in mortality in LTFU patients (Table 2), in contrast to the
significant reduction in the original meta-analysis on
which the imputation model was based [27]. Further
research is required to determine the reasons for the
relatively modest declines in treated mortality rates in the
sub-Saharan African region.

This analysis advances previous parameterizations of the
Spectrum model in a number of ways. In addition to
incorporating more recent data and assessing time trends
in ART mortality, this analysis adopts an innovative
approach to correcting for unascertained mortality after
LTFU, recognizing that the extent of the underascertain-
ment of mortality is likely to differ substantially across
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settings. The previous analysis applied the same correc-
tion factors in all regions, leading to assumed mortality
rates being roughly double those observed in IeDEA
cohorts [6]. In the present analysis, no correction factors
are applied in the North American, Latin American and
Asia-Pacific datasets, with the result that mortality rates
are substantially lower than estimated previously.
Although the use of an imputation model (in place of
correction factors) has not substantially changed the
overall levels of mortality in the African regions, the
major advantage of the imputation model is that
adjustments are applied at an individual level rather than
at an aggregated or cohort level, which makes it possible
to estimate the effects of covariates on mortality with
greater accuracy.

A further methodological innovation is that we have
excluded patients who started ART if they qualified for
ART based only on clinical criteria. Although this does
not materially change estimates of mortality in patients
with low baseline CD4þ cell counts (as such patients
qualify for ART regardless of their clinical stage), it does
lead to somewhat lower mortality rates in patients starting
ARTat higher CD4þ cell counts (Table 4) and thus more
substantial modelled benefits from early ART initiation.
This is consistent with evidence of the clinical benefits of
early ART in randomized controlled trials [52,53]. The
exclusion of individuals who qualified for ART based
only on clinical criteria is important as these individuals
are over-represented in high baseline CD4þ cell count
categories, particularly in countries that have only
recently moved to universal ART eligibility. These
individuals also have relatively high mortality rates,
making them unrepresentative of the general population
of patients starting ARTat higher CD4þ cell counts in the
era of universal ART eligibility.

This analysis has some limitations. Although most of the
programmes in the Asia-Pacific region relied on active
follow-up to ascertain outcomes, it is unclear how
consistently it was applied, with the result that there may
be some underestimation of mortality rates. However,
data from Thailand and Indonesia suggest that deaths after
LTFU account for a relatively small fraction of total deaths
in these settings [54,55], and other studies from North
America and Latin America have found only modest
differences in mortality between programmes that employ
active follow-up and those that rely on linkage to vital
registration systems [9,24]. Another limitation is that we
have pooled data across IeDEA regions rather than fitting
separate regression models for each region, which may
have led to some inter-regional differences in covariate
effects being obscured. Although initial attempts were
made to fit the regression models separately for each
region, this led in some cases to implausible point
estimates with extremely wide CIs, which were judged to
not be appropriate as inputs for Spectrum. A further
limitation is that we lack information on causes of death

in many IeDEA cohorts, and thus cannot assess the extent
to which inter-regional differences in all-cause mortality
might be driven by specific diseases such as tuberculosis,
or non-HIV-related causes. The Poisson regression
approach imposes an assumption of piecewise-constant
mortality rates, which may be appropriate for the purpose
of estimating parameters in the Spectrum model, but
which may lead to biased estimates of the effects of
covariates on mortality (as demonstrated in Figure 2,
which compares the effects of using shorter duration
intervals, and Tables S21 and S22, which compare the
effects of fitting more flexible Cox proportional hazards
models). Changes in mortality over the first 6 months of
ART are particularly dramatic [56], but the Spectrum
model requires a single parameter to represent average
mortality over this treatment duration. Similarly, our
analysis finds evidence that ART mortality continues to
decline for durations greater than 24 months on ART
(Table S13, http://links.lww.com/QAD/B527), but in
the primary analysis we estimated a single mortality rate
for more than 12 months after ART initiation, for
consistency with the current Spectrum model structure.

Further limitations relate to the large fraction of deaths
among persons LTFU that must be imputed in African
settings, and the limited and imperfect data to inform the
imputation model. The imputation model relied only on
data from traced patients whose vital status could be
established, but because a substantial proportion of LTFU
patients could not be traced [27], and because the
sampling of LTFU patients to be traced is not always
random, mortality estimates may be biased. Due to the
limited amount of tracing study data from outside
Southern Africa, it was not feasible to include region in
the imputation model, although this covariate was
included in the main analysis. This might have led to
some bias in Rubin’s variance estimates, as our analysis
and imputation models do not involve the same set of
independent variables [57,58]. Despite these limitations,
the estimate that 57% of all deaths were not recorded in
patient record systems is similar to an estimate of 65% in
South Africa, which was also found to increase over time,
from around 40% of deaths before 2006 to 66% in 2011–
2014 [20]. This increase over time in the fraction of deaths
that are unrecorded, both in our analysis and the South
African study, is a reflection of increasing LTFU in more
recent periods [59].

Estimates of AIDS mortality globally have been conten-
tious and have differed markedly across models [60,61].
The substantial heterogeneity in mortality rates shown in
our analysis, between and within regions, suggests that
more precise and accurate quantification of local ART
programme impact will require the reconciliation of
mortality data from research cohorts (such as presented in
the current analysis) and mortality data from vital
registration and case reporting systems. This analysis lays
the foundation for an evidence synthesis approach that
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appropriately weights different mortality data sources
when producing model estimates of AIDS mortality at a
country level. These estimates are critical for evaluating
the success of ART programmes and for identifying the
subpopulations most affected by AIDS mortality.
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