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Abstract

Background

Studies using health administrative databases (HAD) may lead to biased results since infor-

mation on potential confounders is often missing. Methods that integrate confounder data

from cohort studies, such as multivariate imputation by chained equations (MICE) and two-

stage calibration (TSC), aim to reduce confounding bias. We provide new insights into their

behavior under different deviations from representativeness of the cohort.

Methods

We conducted an extensive simulation study to assess the performance of these two

methods under different deviations from representativeness of the cohort. We illustrate

these approaches by studying the association between benzodiazepine use and frac-

tures in the elderly using the general sample of French health insurance beneficiaries

(EGB) as main database and two French cohorts (Paquid and 3C) as validation

samples.

Results

When the cohort was representative from the same population as the HAD, the two methods

are unbiased. TSC was more efficient and faster but its variance could be slightly underesti-

mated when confounders were non-Gaussian. If the cohort was a subsample of the HAD

(internal validation) with the probability of the subject being included in the cohort depending

on both exposure and outcome, MICE was unbiased while TSC was biased. The two meth-

ods appeared biased when the inclusion probability in the cohort depended on unobserved

confounders.
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Santé, INDS) (website: http://www.indsante.fr/).

The authors cannot share the data from EGB

underlying this study because publicly sharing EGB

data is forbidden by law according to The French

national data protection agency (Commission

Nationale de l’Informatique et des LIbertés, CNIL);

regulatory decisions AT/CPZ/SVT/JB/DP/

CR05222O of June 14, 2005 and DP/CR071761 of

http://orcid.org/0000-0002-5471-2615
https://doi.org/10.1371/journal.pone.0211118
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211118&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1371/journal.pone.0211118
https://doi.org/10.1371/journal.pone.0211118
http://creativecommons.org/licenses/by/4.0/
http://www.indsante.fr/


Conclusion

When choosing the most appropriate method, epidemiologists should consider the origin of

the cohort (internal or external validation) as well as the (anticipated or observed) selection

biases of the validation sample.

Introduction

Health administrative databases (HAD) are a valuable source of data for studying the associa-

tion between treatment and disease outcome [1–4]. In France, the national inter-regime infor-

mation system on health insurance (SNIIRAM) database covers the entire French population

(65 million inhabitants) [2–4]. This database includes demographic (age, gender, city of resi-

dence) and out-hospital reimbursement (drug dispensing and long-term diseases). A 1/97th

random permanent sample of SNIIRAM, the general sample of French health insurance bene-

ficiaries (Echantillon Généraliste des Bénéficiaires, EGB), which is representative of the

national population of health insurance beneficiaries, was composed in 2005 to allow a 20-year

follow-up. These administrative databases are readily available for epidemiological research.

The large number of patients without loss of follow-up allows for sufficient powering of stud-

ies. Furthermore, the information is plentiful, comprehensive and detailed, without any exclu-

sions [2–4].

Administrative databases are not without limitations. Information on potential confound-

ers is often missing and recent reviews have described current strategies to control for unmea-

sured confounding in HAD [5–7]. Sensitivity analyses [8–10] have been helpful in the past to

adjust for bias due to unmeasured confounders, but they are limited because they cannot con-

trol for multiple unmeasured confounding variables. Occasionally, detailed confounding

information missing from the HAD (main sample) can be procured from a validation sample

that may be a subsample of the HAD (internal validation sample) or another cohort assumed

to be representative of the same population (external validation sample). Methods have been

developed to incorporate information from the validation sample in the analysis of HAD to

reduce confounding bias. Three of these methods are based on the propensity score [11]. Two-

stage calibration (TSC) [12] and propensity score calibration (PSC) [13] aim to adjust for the

propensity score instead of individual confounders and consider the propensity score com-

puted only with the observed confounders (crude propensity score) as a measure with error of

the propensity score including all the confounders (precise propensity score). McCandless and

colleagues [14] summarized unobserved confounders in a summary score built using the pro-

pensity score methodology and proposed a Bayesian approach (BayesPS) to adjust for this

missing score. Multivariate imputation by chained equations (MICE) seeks to adjust directly

for the unobserved confounders [15]. MICE has proved to be an effective technique in control-

ling bias due to unmeasured confounding [16–18]. Unlike the other methods, PSC does not

need the outcome variable to be measured in the validation data but relies on the additional

surrogacy assumption that measurement error is independent of the outcome variable, given

the precise propensity score and exposure [13]. BayesPS does not need the surrogacy assump-

tion but requires either the assumption that the observed confounders are independent of the

unobserved ones or a Gaussian linear model for the summary score given the observed con-

founders; this may be unrealistic for few categorical unmeasured confounders. Simulation

studies have shown that PSC is more biased and generally has larger variance than the other

three methods, while the performance of BayesPS is similar to that of MICE [12,14]. Several
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studies have demonstrated the utility of these methods in real applications [8,19–21] but have

highlighted the need for additional research on method diagnostics in practical situations to

decide which method to use.

The objective of the present study was to compare through simulations the performance of

these methods whose required assumptions are more compatible with our target application:

large-scale population-based observational HAD and validation cohorts with measures of the

outcome variable. Bias and robustness of MICE and TSC were assessed (1) when the validation

sample was representative of the same population as the HAD and under different departures

from representativeness of (2) the external and (3) the internal validation samples. Our param-

eter of interest was the log-odds ratio (log(OR)) for the effect of exposure conditional on all

the confounders (observed and unobserved).

To illustrate the advantages and limitations of these methods to account for unobserved

confounders in HAD, MICE and TSC were then applied to the general sample of EGB to study

the relationship between benzodiazepine (BZD) use and fractures in the elderly using two dif-

ferent cohorts, Paquid and Three-City (3C), as validation samples [22–24].

Materials and methods

Study population

Main sample. The main database was EGB [2]. The data consisted of 60,243 subjects of at

least 69 years of age in 2006 who were alive and had not dropped out of the EGB before 2009.

BZD users were defined as subjects who had at least one reimbursement for BZD between

October 1 and December 31, 2006. We identified 15,638 BZD users while the remaining

44,605 were considered as unexposed. The outcome of interest was fractures of all types arising

in the three years following the measure of exposure, that is, between January 1, 2007 and

December 31, 2009. Using information on hospital diagnoses, we found 3,260 subjects with at

least one fracture. The observed potential confounders were age, gender, exposure to antihy-

pertensive and non-BZD psychotropic medications.

Validation samples. The Paquid project, initiated in 1988, was designed to study the risk

factors of age-related health conditions [23]. The cohort includes 3,777 subjects of at least 65

years old, from two French departments. Subjects randomly selected from the electoral rolls

who agreed to participate were interviewed at their homes by trained neuropsychologists at

baseline and subsequently every two or three years. At each visit, information on fractures

since the last visit and drugs used at the time of the visit was collected. The validation sample

consisted of 1,342 subjects visited in the 5th (T5, in 1993–94) and 8th (T8, in 1996–97) follow-

up years with complete data regarding drugs used and confounding factors at T5 and fractures

at T8. This ensured that the validation sample was as close as possible to the EGB sample while

optimizing the sample size. At T5, information on potential confounders available in EGB

(age, gender, antihypertensive and non-BZD psychotropic drugs used) was collected as well as

information on potential confounders missing from EGB: body mass index (BMI), educational

level (primary school diploma denoted high education versus no diploma or no education

denoted low education) and depressive symptomatology measured by the Center for Epidemi-

ologic Studies Depression Scale (CESD) as a binary covariate (subjects were considered as

depressed if they obtained a score of more than 17 for males and 23 for females out of 60 on

the CESD scale).

The 3C study is a population-based longitudinal study of the relation between vascular dis-

eases and dementia including 9,294 participants aged 65 years and older at baseline in 1999

and living in three French cities (Bordeaux, Dijon and Montpellier) [24]. The validation sam-

ple for this analysis consisted of 2,231 subjects from Bordeaux and Montpellier visited in the
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4th (T4 in 2003–04) and 7th (T7 in 2006–07) years of follow-up. Exposure to medications and

confounders were collected at T4 and fractures at T7, as in Paquid.

Ethics statement

INSERM, as a health research institute, has been authorized to use the EGB database by the

French data protection authority (Commission Nationale de l’Informatique et des Libertés,

CNIL), provided that the researcher follows specific training with certification, as the first and

fifth authors (Bernard Silenou, Antoine Pariente) have obtained.

The Ethics Committee of Kremlin-Bicêtre University Hospital and Bordeaux University

Hospital respectively approved study protocols for the 3C and Paquid cohorts, and each partic-

ipant signed a written informed consent. All data were fully anonymized.

Adjustment methods for unobserved confounders

Let Y be the binary outcome and X the binary exposure variable. Let C be the vector of con-

founders measured in both the main and the validation data and U the vector of confounders

measured only in the validation data.

Two-stage calibration. The crude propensity score is defined as the probability of being

exposed given observed confounders C (PSC = P(X = 1|C)) and the precise propensity score as

the probability of being exposed given confounders C and U (PSP = P(X = 1|C,U)) [13,25]. PSC
and PSP are estimated by logistic regression in the pooled (main+validation) and validation

data, respectively.

Lin and Chen [12] defined two models for the outcome adjusting either for PSC or PSP

logit½PðY ¼ 1jX;CÞ� ¼ dþ gX þ yf ðPSCÞ ð1Þ

logit½PðY ¼ 1jX;C;UÞ� ¼ aþ bX þ φgðPSPÞ ð2Þ

where f and g are identity or suitable transformation functions, e.g. spline functions. TSC aims

to estimate β in the pooled sample (�b) from b̂ and ĝ estimated in the validation sample, and �g

estimated in the pooled sample using [12]

�b ¼ b̂ �
l

n
ĝ � �gð Þ

and var �b
� �
¼ var b̂

� �
� l2

n
where λ is the covariance between b̂ and ðĝ � �gÞ and ν is the vari-

ance of ðĝ � �gÞ; λ and ν are estimated by the sandwich estimator as detailed in the web appen-

dix of [12]. Like PSC and BayesPS, TSC requires that the propensity score models are well

specified and that the validation sample is representative of the main sample. More precisely, ĝ

and �g are assumed to be unbiased estimates of γ and b̂ is assumed to be an unbiased estimate

of β. We will see later that departures from representativeness that do not invalidate the above

assumptions are permitted (for instance, different marginal distributions of either C, X or Y).

On the other hand, TSC does not need assumption regarding the relationship between PSC
and PSP.

Multiple imputation. Unobserved confounders in the main sample can be considered as

missing data in the pooled sample, and multiple imputation such as MICE may be used to

adjust for these unobserved confounders [15]. However, in this context where the proportion

of missing observations for U is vast, it is recommended to increase the number of imputations

[26]. The multiple imputation approach requires the missing-at-random assumption, i.e. that

the observation probability for U, which is the probability of belonging to the validation cohort
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in this context, does not depend on U. Moreover, parametric assumptions are needed for

imputation models. We used logistic regression as an imputation model for binary variables

and predictive mean matching, which is a robust method for non-Gaussian variables, for

quantitative variables [27]. All variables were included in each imputation model to preserve

the correlation structure in the data.

Simulation study

We compared the performances of the methods when the external validation sample is repre-

sentative of the same population as the main sample and under different departures from rep-

resentativeness. The validation data were considered to be representative when the

multivariate distribution of all the variables (Y, X, C, U) in the validation sample is identical to

that of the main sample. We considered two observed (C = (C1, C2)) and two unobserved (U =

(U1, U2)) confounders. The binary exposure (X) and the binary outcome (Y) were generated

using the following logistic models:

logitðPðX ¼ 1jC;UÞÞ ¼ l0 þ l1C1 þ l2C2 þ l3U1 þ l4U2 ð3Þ

logitðPðY ¼ 1jX;C;UÞÞ ¼ b0 þ bX þ b1C1 þ b2C2 þ b3U1 þ b4U2 ð4Þ

All the data were generated under the assumption of no exposure effect (β = 0), thus avoid-

ing the issue of non-collapsibility of the OR [28]. Thus, a difference in parameter estimates of

β with or without conditioning on unmeasured confounders U1 and U2 would solely be due to

the confounding bias of these unmeasured confounders.

The simulation proceeded by generating a population of nP = 21,000 subjects. In scenarios

1 and 2, we focused on external validation samples, while in scenario 3, we generated an inter-

nal validation sample. For scenarios 1 and 2, a representative main sample (nM = 10,000) was

randomly drawn from the population while the validation sample (nV = 1,000) was extracted

from the remaining 11,000 subjects. In scenario 1 the validation sample was representative of

the population, while in scenario 2 it was not. The variable U in the main data was considered

as missing. For scenario 1, two series of simulations were run by varying the distribution of the

confounders:

Scenario 1.a: Confounders U and C were generated from a standard normal distribution.

Scenario 1.b: Confounders U and C were generated from non-Gaussian distributions

roughly mimicking the distributions of the sex (C1), age (C2), CESD (U1) and education (U2)

variables in the Paquid cohort. C1 and U2 were binary while C2 and U1 followed truncated log

normal distributions. Additional simulations were performed with five unobserved confound-

ers for scenarios 1.a and 1.b (for 1.b U3 was binary, U4 was truncated log-normal and U5 was

Gaussian).

Scenario 2: The population was generated as in scenario 1.a and non-representative valida-

tion samples were selected to investigate the sensitivity of each method to various selection

biases. The probability of inclusion in the validation sample was a function of either X, Y, C or

C � Y (in Scenario 2.a), where � represents an interaction effect between two variables, X + Y
or X�Y (in Scenario 2.b), or U, U � X or U � Y (in Scenario 2.c). Scenarios 2.a and 2.b corre-

spond to missing-at-random mechanisms, hence MICE is expected to be robust, while for sce-

nario 2.c, data are missing not at random and MICE is expected to fail. TSC requires that the

association between Y and X given C alone and given C and U be identical in the validation

and the main sample. This assumption was violated in scenarios 2.b and 2.c.

Scenario 3: We performed an additional set of simulations with a non-representative inter-

nal validation sample with inclusion probability depending on X � Y (similar to scenario 2b).
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Fig 1 shows the flowchart of the data generation procedure by scenario. For each scenario,

we generated 500 data sets. Parameter values for data generation are specified in S1 File. We

compared estimates of the log(OR) for the exposure X obtained from MICE with 10 imputa-

tions, TSC with either identity function (TSC) or natural cubic spline using 2 knots (TSC_SP)

for f and g in models (1) and (2), logistic regression on the main data adjusting for (U,C)

(UC_MAIN) or for C only (C_MAIN), on the pooled data adjusting for (U,C) (UC_POOL) or

for C only (C_POOL) and on the validation data adjusting for (U,C) (UC_VAL).

The bias (with respect to the target parameter β = 0) was computed as the mean of the

estimates
�̂
b over the 500 replicates. The efficiency of the various estimates was compared

through the cross-replications standard error (empirical standard error, ESEðb̂Þ). For each

data set (k = 1,. . .,500), the 95% confidence interval of the estimate was computed as b̂k �

1:96 ASEðb̂kÞ where ASEðb̂kÞ is the estimated asymptotic standard error of the considered

estimate on sample k. The coverage rate of the confidence interval was computed as the pro-

portion of times this CI included the true value 0 over the 500 replicates. A coverage rate will

be close to the nominal value of 95% means if (i) the bias for the parameter estimate b̂ is negli-

gible compared to its variance and (ii) the variance of b̂ is correctly estimated. With 500 repli-

cates, the coverage rate is significantly different from 95.0 when it is outside 93.1–96.9. Finally

the mean square error (MSE) was computed as MSE ¼
P500

k¼1
ðb � b̂kÞ

2
=500; the MSE allows a

global comparison of the estimators since it is the sum of their square bias and their variance.

Analyses were performed with R version 3.2.3.

Fig 1. Flowchart of the data generation procedure by scenario for internal and external validation samples. MAR and MNAR correspond to

missing-at-random and missing-not-at-random mechanisms, respectively.

https://doi.org/10.1371/journal.pone.0211118.g001
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Results

Simulation

Figs 2–6 summarize the main simulation results through the mean estimates ± ESE and the

coverage rates of the 95% confidence interval based on the asymptotic standard error esti-

mated on each data set. S1–S5Tables display detailed simulation results including mean

asymptotic standard error, empirical standard error, mean square error and mean computa-

tion time.

Fig 2 and S1 Table display the results for the estimates of the effect of exposure when the

validation data are representative of the same population as the main sample (scenario 1). The

estimate adjusted only for C from the main sample (C_MAIN) highlights the bias due to the

unmeasured confounders. The adjusted estimate from the validation sample (UC_VAL) is

unbiased but has a larger standard error owing to the small sample size. All the correction

methods are unbiased with a coverage rate of the CI close to 95%, and the two TSC estimators

appear to be the most efficient since their ESE are the smallest. This is confirmed by comparing

Fig 2. Simulation results with a representative external validation sample (scenario 1); coverage rate of 95% confidence interval (grey dot with black

margin) and mean estimated log-odds ratio for the exposure effect (black dot) ± empirical standard error: (A) two unobserved Gaussian confounders, (B)

five unobserved Gaussian confounders, (C) two unobserved non-Gaussian confounders, (D) five unobserved non-Gaussian confounders. The grey dotted line

corresponds to the nominal value of the coverage rate of the 95% confidence interval. The black dotted line is the true value of β (0).

https://doi.org/10.1371/journal.pone.0211118.g002
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the MSE which is the sum of the bias and variance: TSC and TSC_SP have the smallest MSE in

S1 Table. However, Fig 2C and 2D show a slight under-coverage of the CI for TSC when the

confounders are non-Gaussian (86.6% and 87.4% instead of 95%). This is explained by the

slight underestimation of the standard error (ASE compared to ESE in case 1.b in S1 Table)

because the variance of estimated parameters from the propensity score model is neglected

[29]. By using the true parameter value for the propensity score model instead of the estimates

obtained on the validation sample, this underestimation disappears (results not shown). When

additional spline parameters are estimated in TSC_SP, the impact of the variance of the pro-

pensity score model is negligible and the coverage rate of the CI remains correct. In scenario 1,

we also compared MICE using either 10 or 100 imputations. Results in S1 Table show negligi-

ble differences between 10 and 100 imputations in term of bias and efficiency but a 10-fold

increase in computation time. For the other scenarios, MICE was thus computed using 10

imputations only. The TSC approaches requires the least computation time: less than 0.1sec-

onds per sample for 5 unobserved confounders versus 30 or 40 seconds for MICE with 10

imputations depending on the imputation methods (predictive mean matching takes more

time than logistic regression).

Fig 3. Simulation results when the inclusion probability in the external validation sample (notated P) depends only on X, Y, C or C�Y (scenario 2.a);

coverage rate of 95% confidence interval (grey dot with black margin) and mean estimated log-odds ratio for the exposure effect (black dot) ± empirical

standard error: (A) logit(P) = −2.7+log(4)X, (B) logit(P) = −2.7+log(4)Y, (C) logit(P) = −2.7+log(4)C2, (D) logit(P) = −2.5+log(2)C1+log(2)Y+log(4)C1
�Y. The

grey dotted line corresponds to the nominal value of the coverage rate of the 95% confidence interval. The black dotted line is the true value of β (0).

https://doi.org/10.1371/journal.pone.0211118.g003
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When the inclusion probability in the validation sample depends only on X, Y, C or C�Y,

the associations between X and Y given C alone and given C and U are identical in the main

and the validation samples and U is missing at random. Thus, both TSC and MICE remain

unbiased with a coverage rate close to the nominal value (scenario 2.a, Fig 3, S2 Table).

When the inclusion probability in the external validation sample depends on X and Y, TSC

and MICE lead to significant bias (scenario 2.b, Fig 4 and S3 Table). When the dependence on

X and Y is moderate (OR = 2, Fig 4A), the bias has negligible impact on the coverage rate of

the 95% CI; but the bias increases with the strength of the dependence (OR = 4, Fig 4B) and

more dramatically when the inclusion probability depends on an interaction X�Y (Fig 4C and

4D) leading to a major undercoverage of the CI. These bad results were expected for TSC since

the selection makes the association between Y and X different between the validation and the

main sample (as shown by the bias in UC_VAL). However, bias in MICE estimates may appear

surprising because the missing data are at random (MAR). To explain this result, we must

emphasize that the objective of the correction methods is to estimate the adjusted association

between X and Y in the population of which the pooled sample is representative. When a non-

Fig 4. Simulation results when the inclusion probability in the external validation sample (notated P) depends on X + Y or X�Y (scenario 2.b); coverage

rate of 95% confidence interval (grey dot with black margin) and mean estimated log-odds ratio for the exposure effect (black dot) ± empirical standard

error: (A) logit(P) = -2.6+log(2)X+log(2)Y, (B) logit(P) = -3.2+log(4)X+log(4)Y, (C) logit(P) = -2.7+log(2)X+log(2)Y+log(2)X�Y, (D) logit(P) = -2.5+log(2)X
+log(2)Y-log(2)X�Y. The grey dotted line corresponds to the nominal value of the coverage rate of the 95% confidence interval. The black dotted line is the true

value of β (0).

https://doi.org/10.1371/journal.pone.0211118.g004
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representative external validation sample is used, the pooled and main samples do not reflect

the same population and the association between X and Y may be different in the two popula-

tions. Indeed, in Fig 4 and S3 Table, UC_MAIN and UC_POOL are different and we can see

that MICE estimate is close to UC_POOL. On the other hand, when an internal validation

sample is used (i.e. the validation sample is a subsample of the main HAD), the pooled and

main samples are identical even if the validation sample is not representative. In scenario 3, we

generated a non-representative internal validation sample where the inclusion probability

depended on X�Y and we checked that MICE was unbiased with nominal coverage rate while

TSC was still biased (Fig 5 and S4 Table).

Finally, all the correction methods fail when the inclusion probability in the validation sam-

ple depends on U (scenario 2.c, Fig 6, S5 Table), and especially when it depends on X�U or

Y�U (Fig 6C and 6D). The imputation method fails because the confounders are not missing at

random, while TSC fails because the confounding effect of U is different in the validation and

Fig 5. Simulation results with a non-representative internal validation sample where the inclusion probability (notated P) depended on X�Y (scenario

3); coverage rate of 95% confidence interval (grey dot with black margin) and estimated log-odds ratio for the exposure effect (black dot) ± empirical

standard error: (A) logit(P) = −2.7+log2X+log2Y+log2X�Y, (B) logit(P) = −2.5+log2X+log2Y−log2X�Y, (C) logit(P) = −2.8+log2X+log2Y+log4X�Y, (D) logit

(P) = −2.4+log2X+log2Y−log4X�Y. The grey dotted line corresponds to the nominal value of the coverage rate of the 95% confidence interval. The black dotted

line is the true value of β (0).

https://doi.org/10.1371/journal.pone.0211118.g005
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the main sample. Note however that, adjusting on U, the parameter estimate in the validation

sample is unbiased (UC_VAL) with this scenario (thus UC_POOL is also unbiased).

Application

Table 1 presents the distribution of all the variables in the main and validation samples. BZD

users tended to be less educated and more depressed, suggesting that these factors could be

confounders. We observed some differences in the distributions of BZD users (X), fractures

(Y) and educational levels (U) between the three samples.

MICE and TSC were applied to estimate the log(OR) of the association between exposure

to BZD and fractures adjusted for the observed confounders C (age, gender, anti-hypertensive

and non-BZD psychotropic) and unobserved confounders U (BMI, CESD and education). As

a comparison, we also estimated the log(OR) adjusted for C in EGB (C_MAIN) and for (U, C)

in the validation sample (UC_VAL). Results are displayed in Table 2. Without adjusting for U
in EGB, BZD users had a higher risk of fractures (log(OR) = 0.36, 95% CI: 0.28, 0.44). By

adjusting for BMI, education and CESD in the Paquid cohort, the regression parameter

Fig 6. Simulation results when the inclusion probability in the external validation sample (notated P) depends on U1; coverage rate of 95% confidence

interval (grey dot with black margin) and mean estimated log-odds ratio for the exposure effect (black dot) ± empirical standard error: (A) logit(P) = -2.2

+log(2)U1, (B) logit(P) = -2.7+log(4)U1, (C) logit(P) = -2.3+log(2)U1+log(2)X�U1, (D) logit(P) = -2.5+log(2)U1+log(2)Y�U1. The grey dotted line corresponds

to the nominal value of the coverage rate of the 95% confidence interval. The black dotted line is the true value of β (0).

https://doi.org/10.1371/journal.pone.0211118.g006
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dropped by approximately half (0.17, [-0.25, 0.59]), while it was null in 3C. The three correc-

tion methods using Paquid as validation sample highlighted an association between BZD and

fractures in the pooled sample, with log(OR) close to the adjusted estimate in the validation

sample but with smaller variance. These results were consistent with the simulation results. On

the other hand, although the estimated adjusted log(OR) was null in 3C (UC_VAL), estima-

tions obtained with the correction methods were very close to the estimate adjusted only for C
in EGB.

To explain these differential results, we estimated two logistic regressions to identify factors

associated with inclusion in 3C or Paquid, respectively, versus EGB. The occurrence of frac-

tures and exposure to BZD were both associated with inclusion in Paquid (OR = 1.79, p<0.001

and OR = 1.31, p<0.001, respectively) but their interaction was not significant (OR = 0.83,

p = 0.35). According to our simulations (Fig 4A), the bias of adjustment methods in this case

should be negligible. On the other hand, the interaction between the occurrence of fractures

Table 1. Description of study population in main (EGB, n = 60,243, 2006–2009) and validation samples (Paquid, n = 1,342, 1993–1997; 3C, n = 2,231, 2003–2007)

in France.

Baseline variables EGB Paquid 3C

No-BZD BZD No-BZD BZD No-BZD BZD

n (%) 44,605

(74)

15,638

(26)

907

(68)

435

(32)

1,727

(77)

504

(23)

Age in y, mean (SD) 78.1

(7.2)

78.1

(6.4)

77.9

(5.7)

78.1

(5.2)

76.6

(4.8)

77.8

(5.1)

Fractures % 4 8 8 11 10 12

Female % 57 73 51 77 59 75

Anti-hypertensive % 47 72 58 70 61 61

Other psychotropics % 8 32 10 29 9 29

High education % 77 68 94 90

CESD % 5 18 7 16

BMI in kg/m2, mean (SD) 25.0 (3.7) 24.4 (3.8) 25.5 (3.8) 25.3 (4.7)

Abbreviations: BMI, body mass index; BZD, exposure to benzodiazepine; CESD, Center for Epidemiologic Studies Depression Scale.

https://doi.org/10.1371/journal.pone.0211118.t001

Table 2. Estimates of exposure effect (log-odds ratio) of association between BZD and fractures; EGB database

(n = 60,243, 2006–2009) and Paquid (n = 1,342, 1993–1997) and 3C (n = 2,231, 2003–2007) cohorts in France.

Methods log(OR) SE 95% CI

C_MAIN 0.36 0.04 0.28, 0.44

EGB and Paquid

UC_VAL 0.17 0.21 -0.25, 0.59

TSC 0.20 0.05 0.11, 0.29

TSC_SP 0.23 0.04 0.14, 0.31

MICE 0.25 0.07 0.12, 0.38

EGB and 3C

UC_VAL 0.00 0.17 -0.33, 0.33

TSC 0.32 0.02 0.28, 0.37

TSC_SP 0.34 0.02 0.30, 0.37

MICE 0.32 0.04 0.24, 0.40

Abbreviations: CI, confidence interval; OR, odds ratio; SE, standard error. MICE was implemented with 100

imputations. TSC_SP was implemented with 5 knots.

https://doi.org/10.1371/journal.pone.0211118.t002
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and exposure to BZD was significant in the logistic regression for inclusion in 3C versus EGB

(OR = 0.64, p = 0.007). This means that 3C sample is not representative of the EGB population

with respect to the association between BZD and fractures. This sample is an urban and highly

educated sample where the causes of fractures or the BZD use pattern may be different from

the overall French population. This corresponds to a situation where the correction methods

are highly biased (Fig 4C and 4D).

Discussion

Claims data are increasingly used for epidemiological research, but results may be biased since

information on confounders is missing. A key approach to this problem is to include con-

founder data from cohort studies in the same population. Strategies to control for unmeasured

confounding in HAD have been the subject of recent surveys [5–7]. The surveys provide gen-

eral recommendations on the choice of the strategy depending, for example, on the study

design or the existence or not of a validation sample. However, to our knowledge, no study to

date has provided recommendations on how to choose methods that include confounder data

from cohort studies in the event of a lack of representativeness of the cohort and depending on

the nature of the cohort (internal or external).

Our findings show that estimates from TSC and MICE are unbiased when the validation

sample is representative of the population covered by the HAD. Multiple imputation works

well in this framework despite the very high rate of missing information on confounders, even

in cases where the unobserved confounders have nonstandard distributions, thanks to the

robustness of imputation by predictive mean matching [27]. Nevertheless, MICE requires

more computation time—an issue to consider when dealing with very large HAD—and is less

efficient than TSC. When unobserved confounders have nonstandard distributions, variances

may be slightly underestimated with TSC, but TSC_SP is more robust. A way to avoid this

issue could be to apply TSC, adjusting directly on C and U instead of the propensity scores.

All methods are robust to non-representativeness except when the validation and main

samples differ in the distribution of unobserved confounders or the distributions of both the

outcome and the exposure. In the former case, which is untestable in practice, all methods are

biased while in the latter, MICE provides an unbiased estimate in the pooled sample. Interest-

ingly, the latter assumption can be evaluated in practice, as was illustrated in the BZD-fracture

study.

We focused mainly on external validation samples because this is the most frequent situa-

tion when existing cohorts are used as validation samples. Owing to differences in time peri-

ods, selection procedures and participation rates, such cohorts are not expected to be

completely representative of the population targeted by the HAD. This motivated the investi-

gation of the impact of departures from representativeness. However, some nationwide HAD

are almost exhaustive, so existing cohorts in the country may be considered as internal valida-

tion samples if a linkage between the databases is possible. A clear advantage of internal valida-

tion is that the measure of the exposure, outcome and observed confounders are common in

both samples. In this context, the robustness of MICE is useful when the validation and main

samples differ according to the distributions of both the outcome and exposure.

The analysis of the relationship between BZD and fractures using EGB data illustrates how

these methods may be applied and, to some extent, how their validity may be evaluated in real

data analyses. While this is not the best design for this study because it may suffer from a sur-

vival bias, the analysis confirms that elderly users of BZD have an elevated risk of experiencing

a fracture compared to unexposed subjects after controlling for confounders including BMI,

education and CESD. The measures of exposure to drugs and outcome differed between the
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validation and main samples. In Paquid and 3C, drug use was self-reported, but these measures

can be considered reliable as the interviewer checked medication containers. They include

over-the-counter drugs that are not collected in EGB, which records drug delivery from phar-

macies based on prescriptions. However, antihypertensives, BZD and most non-BZD psycho-

tropics cannot be bought in France without a prescription. Moreover, fractures in EGB are

based on clinical diagnosis in hospitals, while fractures in the previous 3-year period were self-

reported in the validation sample. Memory bias and diagnosis error are possible but probably

low for a traumatic event such as a fracture.

Two important points should be made about this study. First, we compared estimates of the

effect of exposure adjusting either for individual confounders or for propensity scores. How-

ever, we checked both in the simulation study and in the application that the differences

between these estimates were negligible (results not shown). Second, in general, OR is a non-

collapsible measure [29], meaning that conditional and marginal ORs may be different even

without a confounding effect. In the application, the differences between ORs adjusted for U
and C and adjusted only for C may be due to both a confounding effect and non-collapsibility.

Nevertheless, the simulations were conducted under the assumption of no exposure effect,

where the OR is collapsible.

In conclusion, TSC and MICE can efficiently reduce confounding bias from unobserved

confounders in large-scale studies when a validation sample with complete information on

confounders is available. The origin (internal or external) of the validation sample as well as

the anticipated or observed selection biases must be considered when choosing the most

appropriate method. Future work could aim at improving variance estimates in TSC by

accounting for the estimation of propensity score [29], or at correcting for selection bias in the

validation sample through weighting approaches.
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