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Abstract 

 

This paper analyses if the generation of new knowledge benefits from the combination of 

similar or dissimilar pieces of existing technologies, in terms of their technological 

content (related versus unrelated variety), for the case of European regions. Specifically, 

it analyses the relevance of variety in the case of local knowledge as well as in the case 

of the knowledge coming from other regions. At the local level, it shows that, while 

related variety is conducive to regional innovation, unrelated variety does play a role too 

when it comes to radical innovations. Conversely, it also shows that external knowledge 

flows have a higher impact, the higher the similarity between these flows and the extant 

local knowledge base.      
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1. INTRODUCTION 

 

It is now an established fact in the literature that the combination and recombination of 

previously unconnected ideas lead to new knowledge production, subsequent 

technological innovations, and ensuing economic growth and well-being (Aghion and 

Howitt, 1992; Jones, 1995; Weitzman, 1998). Following a well-settled tradition in 

evolutionary economic geography, this paper argues that not all types of formerly existing 

knowledge are equally and successfully combined, and the results of such processes 

depend on the kind of knowledge put in contact in terms of their technological content – 

that is to say, the degree of knowledge relatedness (Boschma et al., 2009). 

  

The innovation and economic geography literatures have long tried to understand whether 

firms located in agglomerations mainly learn from other local firms in the same industry 

or from other local firms in a range of other industries (Glaeser et al., 1992). The former 

dates back to Marshall's (1920) contributions on the benefits arising from spatial 

concentration. The latter relates to Jane Jacobs’ contributions on cities, externalities and 

innovation (Jacobs, 1969; see also Glaeser et al., 1992). From her work we learn that a 

diversified economy brings benefits to local firms because it generates new knowledge 

and innovation steaming from the cross-fertilization of ideas across different industries. 

Following Frenken et al. (2007) and a large number of studies after them, we argue that 

Jacob’s concept of diversification needs to be more thoroughly elaborated, by 

differentiating between diversification of related industries and diversification of 

unrelated industries – or related versus unrelated variety. Regions hosting related 

industries, with different but connected knowledge bases, can engage in recombinant 



innovation. On the contrary, the combination of unrelated technologies is more difficult 

to succeed into the production of new ideas. 

 

An issue that has been generally under-investigated by this particular literature is the role 

played by knowledge linkages across the space in introducing variety into regions. While 

most of the related literature is usually silent on the role of linkages across regions, thus 

implicitly assuming that innovation production draws mainly from geographically 

localized knowledge sources (Audretsch and Feldman, 2004), some scholars have 

recently posited that, at some point, co-located agents may start to combine and 

recombine local knowledge that eventually becomes redundant and less valuable. As a 

result, processes of negative lock-in may begin to occur (Boschma, 2005; David, 1993). 

Conversely, firms looking for external sources of knowledge may find that the knowledge 

they require is available beyond the boundaries of the region where the firm is located 

(Bergman and Maier, 2009; Bathelt et al., 2004). In the ongoing age of globalization 

characterized by predominantly open economies, it is naïve to assume that agents in 

regions source their knowledge inputs only from their immediate vicinity. In this scenario, 

this paper argues that not only being connected to the outside world matters, but also the 

degree of diversity between the external knowledge that is brought into the region and the 

existing knowledge base is important (Boschma et al., 2014).  

 

In order to fill this gap, the paper estimates a knowledge production function (KPF) for 

the case of European regions, trying to ascertain what type of knowledge recombination 

– related or unrelated – is more conducive to regional innovation. Different from previous 

studies, the paper takes into account the geographical breadth of such knowledge. That 

is, it does not only analyze the relevance of local variety, but also how the external-to-



the-region knowledge flows fits into the local knowledge base. While adding the external 

dimension is crucial, this concern has been generally neglected by the related variety 

literature, and contributions introducing a “more geographical wisdom in the study of 

regional diversification” are still scarce  (Boschma, 2016; Content and Frenken, 2016). 

Only Boschma and Iammarino (2009), for Italian regional growth, and Tavassoli and 

Carbonara (2014), for Swedish regional innovation, have concluded that it is not enough 

being connected to the outside world, but different, yet related, connections provide real 

learning opportunities and boost economic outcomes.  

 

As a second objective, this study incorporates the idea that the combination of related 

technologies is not always a necessary condition for regional diversification, as unrelated 

diversification may occur too. The paper uses regional innovation as outcome variable, 

which allows us regressing not only innovation quantity, but also innovation quality (i.e., 

breakthrough innovations) on related variety, unrelated variety and connectedness with 

other regions.1 This allows us to test whether breakthrough innovations draw more on 

unrelated and distant pieces of knowledge, as ideas with high impact tend to stem from 

knowledge cross-fertilization and the combination of unrelated technologies (Fleming, 

2001; Saviotti and Frenken, 2008). Again, very few systematic evidence exists in this 

respect, being Tavassoli and Carbonara (2014) and Castaldi et al. (2015) the exceptions, 

for the case of, respectively, Swedish regions and US states. 

 

In sum, this paper draws on these ideas and studies the relevance of the degree of 

relatedness among previous existing pieces of knowledge for the generation of new ideas, 

while differentiating between relatedness in the local technological structure of regions 



(related vs unrelated variety) and relatedness between the internal knowledge base and 

the extra-regional sources of knowledge.   

 

Using regional innovation intensity as outcome variable – patents per capita, contrary to 

large part of the related literature, which focuses on economic growth or employment, is 

an important departure from the majority of studies, for several reasons: first, while most 

studies conclude that related variety facilitates knowledge spillovers, which are 

conducive to innovation, this specific relationship is barely tested, but rather, implicitly 

assumed to exist in the link between the regional structure of employment or exports with 

economic growth. However, recent studies suggest that growth effects of related variety 

may be specific to knowledge-intensive industries only (Content and Frenken, 2016). In 

consequence, we focus here solely on innovation production and on patent intensive 

sectors. Moreover, we compute variety indexes using the technological classification 

provided in patent documents. In particular, we exploit technology information using the 

International Patent Classification (IPC) codes contained in patent applications to the 

European Patent Office (EPO) to build the diversity indexes, establishing a more direct 

link between regional diversification and its underlying technological nature. Second, and 

more importantly, our study is one of the few investigating cross-regional linkages and 

related variety, for which trade data has mostly been used to depict linkages across regions 

(Boschma and Iammarino, 2009; Tavassoli and Carbonara, 2014). Our focus on 

innovative sectors allows us using citations to patents as a cleaner and more direct 

measure of knowledge flows across the space. Patent citations directly point to the prior 

knowledge to which the current innovations draw upon, and therefore represent a good 

proxy for cross-regional linkages and knowledge flows (Jaffe and Trajtenberg, 1999; 

Schoenmakers and Duysters, 2010). Finally, using innovation as outcome variable allows 



us exploiting heterogeneity in patent quality and its relationship with related and unrelated 

diversification, as mentioned earlier.  

 

This paper makes use of a large sample of European regions (255 NUTS2 regions) 

belonging to 25 countries, which, to our knowledge, correspond to the largest coverage 

in Europe of studies of this kind. Moreover, the study utilizes data for several years, 

allowing us to introduce time and region fixed-effects (FE) to control for a large number 

of unobservables.  

 

The outline of the paper is as follows. Section 2 reviews the related literature. Section 3 

sets the empirical analysis and describes the data. We give the main results in section 4 

and finally section 5 concludes. 

  

2. LITERATURE REVIEW 

 

It is widely accepted in the literature that innovation is a process of accumulation and 

recombination of previously existing ideas (Weitzman, 1998). A key point is, however, 

if any potential combination of existing knowledge is equally successful, or only the 

connection of different, but related, pieces of knowledge is most effective  (Frenken et 

al., 2007). Besides, it is established that innovation production draws mainly from 

geographically localized knowledge sources (Audretsch and Feldman, 2004). However, 

scholars have also signalled that the combination of local knowledge may eventually 

become redundant (Arthur, 1989; David, 1985), leading firms to look for external sources 

of ideas. This section discusses theoretical and empirical contributions on the different 



role of related and unrelated variety on regional outcomes, both within the region (section 

2.1) and across geographical areas (section 2.2).  

 

2.1 Related and unrelated variety at the regional level 

 

Much research on the geography of innovation and regional development has addressed 

the question of whether specialization or diversity boosts local innovation. Proponents of 

the former argue that firms tend to learn from other firms in the same industry, and 

therefore specialization facilitates knowledge spillovers and subsequent growth. 

Meanwhile, advocates of the latter contend that diverse economies facilitate barters of 

different pieces of knowledge across industries, which are more prone to produce 

innovations and economic prosperity – despite implying higher communication costs 

between agents. The concept of diversity is complex and subtle, as first signalled by 

Frenken et al. (2007). These authors pose the central question of whether it is related or 

unrelated diversity which is most relevant for growth. Related diversity, or variety, 

facilitates local knowledge spillovers across industries at a lower cost. This is because the 

cognitive distance across these industries is not too large so that complementarities exist 

among them in terms of shared competences and capabilities, which enable effective 

connections as well as sharing knowledge and information. Conversely, unrelated variety 

may slow down the diffusion of ideas, given that they draw on very different and 

completely disconnected knowledge bases making it more uncertain and costly to engage 

in recombinant innovation, thereby hampering the production of new local innovation. 

 

Frenken’s et al (2007) pioneering study shows how related variety impacts regional 

economic growth in the Netherlands. Results are confirmed by studies in other countries: 



Bishop and Gripaios (2010) for Great Britain, Boschma and Iammarino (2009) and 

Quatraro (2010) for Italy, Hartog et al. (2012) for Finland and Boschma et al. (2012) for 

Spain. The role of unrelated variety is more controversial: whereas Bishop and Gripaios 

(2010) find that unrelated variety affects employment growth in a larger set of industries 

than related variety, Boschma et al. (2012) and Hartog et al. (2012) do not find any growth 

effect. Meanwhile, Frenken et al. (2007) find that unrelated variety dampens 

unemployment growth, which the authors interpret as evidence of unrelated industries 

spreading risks of potential negative shocks – known as the portfolio effect of variety.2 

 

Despite the emphasis put on earlier studies on related variety as knowledge spillovers 

facilitator, implicitly, these studies assume that variety and employment or economic 

growth are linked to each other via innovation. Little work has been done, however, on 

directly examining the impact of technological variety on innovation performance. To our 

knowledge, only Tavassoli and Carbonara (2014) and Castaldi et al. (2015) analyse the 

role of related and unrelated variety on regional innovation output, for the Swedish and 

the United States (US) cases, respectively. Their findings suggest that when it comes to 

variety of knowledge within regions or US states, unrelated variety does not affect 

regional innovation output in general, whereas the impact is robust and positive for related 

variety.3  

 

To reiterate, as Frenken et al. (2007) put it, related variety “improves the opportunities to 

interact, copy, modify, and recombine ideas, practices and technologies across industries 

giving rise to Jacobs externalities” (p. 59). Therefore, in search for recombination, agents 

focus mainly on the technological pieces in which they have prior experience (related 

variety), since this previous expertise allows them to understand better the nature of the 



new knowledge. As a consequence, when a region presents a diversity of related 

technologies, connections are more effectively established given that related technologies 

are more easily recombined. Therefore, we expect related variety to be crucial in the 

generation of regional innovation. 

 

In spite of the previous discussion, scholars have argued that truly important innovations 

may stem from the combination of previously unrelated technologies (Saviotti and 

Frenken, 2008). This is so because, when combining more different capabilities, despite 

implying higher costs and risks, it can result in the production of radical breakthroughs, 

i.e., innovation with a high technological and economic impact (R. Boschma, 2016). As 

Fleming (2001) puts it, knowledge producers that experiment with new and unusual 

components and combinations may arrive to less useful innovations on average, but with 

large variability, which results in turn in both failure and breakthrough inventions. If 

successful, unrelated pieces of knowledge become related in the form of a new invention 

that paves the way to future technological developments and further innovation, leading 

to “new operational principles, functionalities and applications” (Castaldi et al., 2015; p. 

770) . In consequence, we expect unrelated variety to be key in the generation of more 

radical innovations. 

 

2.2 Relatedness and extraregional linkages 

 

An important debate within the geography of innovation literature that has emerged 

recently is the role of external knowledge in the process of regional knowledge creation. 

Indeed, the widely accepted assumption that agents usually source their innovations from 

their immediate vicinity might have limited our understanding of the ways in which 



knowledge flows across the space and the way in which innovations are generated (Coe 

and Bunnell, 2003). Thus, it has been highlighted the increasing importance of agents’ 

needs to access extra-local knowledge pools to overcome potential situations of regional 

‘lock-in’ (Boschma, 2005; Camagni, 1991; Grabher, 1993; David, 1993). Even local 

unrelated activities may become related when they are successfully combined, eventually 

becoming redundant too (Boschma, 2016; Desrochers and Leppälä, 2011). Thus, recent 

empirical works have extensively documented the influence of extra-local knowledge 

sources on firms’ and regions’ innovative performance and knowledge acquisition 

(Owen-Smith and Powell, 2004; Moreno et al., 2005; Gittelman, 2007; Gertler and 

Levitte, 2005; Rosenkopf and Almeida, 2003; Zhou and Li, 2012; Bottazzi and Peri, 2003; 

Miguelez and Moreno, 2013). 

 

Yet, not only being connected to the outside world matters, but also the degree of 

relatedness between the external knowledge that is brought into the region and the 

existing knowledge base (Boschma et al., 2014). While the external dimension is crucial 

to understand regional growth, it has been generally neglected by the related variety 

literature (Boschma, 2016; Content and Frenken, 2016), with only few exceptions 

(Boschma and Iammarino, 2009; Tavassoli and Carbonara, 2014). This paper argues that 

in the ongoing globalized world characterized by predominantly open economies, it is 

naïve to assume that agents in regions source their knowledge inputs only from their local 

environment. Regions lacking certain capabilities could still diversify if they leverage 

knowledge inputs coming from external sources and allow the different unrelated sectors 

to find their way to interact with related sectors located beyond their regional borders.  

 



The scarce extant empirical evidence on the role of relatedness of extra-regional 

knowledge flows has approached the issue using regional trade data –either imports or 

exports (Boschma and Iammarino, 2009, for Italian regional employment growth; and 

Tavassoli and Carbonara, 2014, for Swedish regional innovation). Their findings suggest 

that it is not enough being connected to the outside world, but different, yet related, 

connections provide real learning opportunities and boost economic outcomes.4 When the 

external knowledge basically integrates prior art from the same technologies from within 

the region, it can be easily absorbed but the new knowledge will not add much to the 

existing local one. On the contrary, when the external knowledge brings technologies 

different from the local ones, it will be more difficult to understand but once it is 

integrated, the chances that they lead to successful outcomes are higher. All in all, in 

analogy to section 2.1, we expect extraregional knowledge inflows to be most effective 

when they are different, but related, to the local knowledge base. 

 

3. EMPIRICAL ANALYSIS 

 

3.1 Empirical model  

 

We test our hypotheses under a KPF framework at the regional level. Our point of 

departure is the simplest specification of this model: 

 

),,( ititit ZRDfY   (1) 

 

where Y  is the innovative output of a given region, which depends on regional R&D 

expenditures (RD) as well as Z , a number of time-variant controls that account for 



specific features of the region i at time t. Among them, we include measures of variety 

and relatedness, as explained in the following subsections. Note that regional differences 

in size are accounted for by dividing the dependent and explanatory variables by total 

population. All in all, the following model is suggested: 

 

,·lnln ittiititit ZRDpcYpc    (2) 

 

where  itYpcln  is the log-transformation of the annual number of patent applications per 

million inhabitants in region i and year t, itRDpcln  is the log-transformation of R&D 

expenditures per capita in region i and year t,  and Z are a number of focal variables – as 

explained below – and controls. For the latter, we include a proxy for human capital, 

measured as the share of human resources devoted to science and technology (HRST), as 

well as two variables accounting for differences in the economic structure of regions: the 

share of manufacturing employment (ShareInd), and the share of employment in high-

technology manufacturing and knowledge-intensive, high-technology services (High-

tech Empl). In addition, iδ  and tδ  stand for, respectively, regional FE and time FE. In 

order to consider deviations from the theory, a well-behaved error term is also introduced,

it .  

 

Our empirical model (the regional KPF) draws mainly from a large number of 

contributions in regional science and innovation economics trying to understand the role 

played by regional innovative efforts (R&D) and the technological structure of regions 

on regional innovative output. We are aware that our reduced-form model does not 

account for all possible determinants of regional innovation intensity. Thus, several 



studies have extended the regional KPF to include a larger number of potential non-

technology determinants of regional innovation outputs. For instance, one interesting 

avenue of research is the role of institutions and social capital on innovation, and more 

importantly, how they influence regional variety’s role in fostering regional innovation 

(see Boschma, 2016, for a claim to do research in this direction). However, this lies 

beyond the primary focus of the present analysis. Yet, contrary to still the large majority 

of empirical studies using the regional KPF, we control for region FEs, and therefore 

account for all time-invariant features of regions that may influence the regional 

production of innovations (with institutions or social capital variables, which evolve 

slowly over time, being partially controlled for through these FEs).  

 

3.2 Related and unrelated variety 

 

We start our analysis with a simple model that does not account for the influence of non-

local capabilities – which will be introduced progressively (see section 3.3). Our first 

inquiry concerns the impact of knowledge diversification on regional patenting activity. 

In line with previous papers, as a proxy for diversified knowledge we measure variety as 

well as related and unrelated variety with entropy measures  (Frenken et al., 2007). We 

borrow from Castaldi et al. (2015) the use of the technological classification of patents in 

order to construct the measures of regional knowledge variety. Our entropy indicators are 

computed using information retrieved from applications to the EPO. In particular, we use 

the IPC system, which provides a hierarchical system of codes for the classification of 

patents according to the different areas of technology to which they pertain – directly 

assigned by the patent office, the EPO in this case. These codes are grouped into eight 

sections, which are the highest level of hierarchy of the classification. Each section is 



divided into three-digit classes and four-digit subclasses. The current version of the IPC 

classification contains 635 technological subclasses.5 Scholars have reorganized these 

technological subclasses in meaningful fields and broad fields of technology, similar to 

the grouping of products or economic activities into sectors (such as the Standard 

International Trade Classification used in trade or International Standard Industrial 

Classification of All Economic Activities). The aim of this grouping is to allow time and 

cross-country comparisons of innovation activities, and it is based on minimizing 

technological heterogeneity within technology fields and broad fields. Here we use the 

classification built by Schmoch (2008), which grouped subclasses into 35 technology 

fields (35-field), which are further grouped into 5 broad fields (5-field), namely: Electrical 

engineering, Instruments, Chemistry, Mechanical engineering, and Other fields.6 

 

Using the IPC codes and Schmoch's (2008) classification of technological fields, the 

variety variable measures the degree of knowledge diversification through the 

computation of an entropy measure at the four-digit level (subclasses), where pj is the 

share of the four-digit sector j:  

   

𝑉𝑎𝑟𝑖𝑒𝑡𝑦 =∑𝑝𝑗𝑙𝑜𝑔2

𝐽

𝑗=1

(
1

𝑝𝑗
) 

(3) 

 

The value of this index will be higher in regions characterized by a high diversified 

sectoral composition in its knowledge base.  

 



We break down this measure in two different indicators. Following Frenken et al. (2007), 

if all four-digit subclasses j fall under a 35-field technology Sg, where g=1,…, G, it is 

possible to derive the 35-field shares, Pg, by summing the four-digit shares pj 

 

𝑃𝑔 = ∑ 𝑝𝑗
𝑗∈𝑆𝑔

 

 

(4) 

Related variety is then measured by the weighted sum of the entropy at the four-digit 

within each 35-field technology: 

𝑅𝑉 = ∑𝑃𝑔𝐻𝑔

𝐺

𝑔=1

 

 

(5) 

 

where: 

 

𝐻𝑔 = ∑
𝑝𝑗

𝑃𝑔
𝑙𝑜𝑔2

𝑗∈𝑆𝑔

(
1

𝑝𝑗 𝑃𝑔⁄
) 

(6) 

 

Equation (6) measures the diversity of a region’s portfolio at the most fine disaggregation. 

Thus, it assumes that sectors that belong to the same 35-field technology are 

technologically related to each other and, as a consequence, can learn from each other 

through knowledge spillovers.  

 

Unrelated variety is proxied by the entropy of the 5-field distribution. Formally, being K 

the total number of 5-field sectors (k=1,…, K), the unrelated variety index is given by 



   

𝑈𝑉 =∑𝑝𝑘𝑙𝑜𝑔2

𝐾

𝑘=1

(
1

𝑝𝑘
) 

(7) 

 

Thus, equation (7) measures the extent to which a region is diversified in very different 

types of activities. This measure assumes that technologies that do not share the same 

broad field (5-field) are unrelated to each other. Theoretically, high levels of this variable 

are associated to less knowledge spillovers.  

 

The indices of related and unrelated variety are not opposites. One region can have both 

a high related variety (diversified into many specific subclasses in each field) and a high 

unrelated variety (diversified into unrelated broad 5-field technologies). In fact, they tend 

to correlate positively (Frenken et al., 2007; Boschma et al., 2012), although it is not 

always the case. In addition, given the decomposable nature of the entropy measure, 

variety calculated at different digit levels can be included in a regression analysis without 

necessarily generating collinearity.  

 

Following with the empirical model sketched above, we include now the indices proxying 

for related and unrelated variety in the Z  vector including controls that account for 

specific features of the region,  

 

),( ititit UVRVgZ  , (8) 

 

which once inserted into the main equation yields to: 

 



ittiitit

ititititit

UVRV

techEmplHighShareIndHRSTRDpcYpc













1211

1212111·lnln
 (9) 

 

Note that we introduce the subscript t-1 to all explanatory variables in order to indicate 

that they have been time lagged one period to lessen endogeneity concerns due to system 

feedbacks. Section 3.4 includes further details regarding the construction of all the 

variables used in the present analysis.  

 

3.3 Relatedness and external interactions 

 

Here we extend our baseline model to account for the role of non-local knowledge sources 

in the process of regional knowledge creation. Although some studies, at the level of 

European regions, have consistently shown the importance of cross-regional interactions 

to the process of regional innovation (Maggioni and Uberti, 2009; Ponds et al., 2010), 

little attention has been paid to which kind of external interactions may be more 

beneficial. We conjecture that, even if new variety may enter a region thanks to the 

interactions with other regions – in the form of, e.g. trade linkages, FDI, research 

collaboration or labour mobility, extra-regional knowledge flows should be related, but 

not too similar, to the technological base of a region in order to positively impact the 

region’s outcomes.  

 

We directly look at the actual knowledge flows through the use of patent citations as a 

proxy for these flows. Patent citations point directly to prior art on which the patent is 

based (Trajtenberg, 1990) and, consequently, represent a “paper trail” worthwhile for the 

analysis of knowledge diffusion (Jaffe et al., 1993). Since Jaffe’s et al. pioneering paper, 



patent citations have been considered to be useful to depict knowledge linkages between 

inventions, inventors and applicants along time, geographical space and technological 

fields, among other dimensions (Hall et al., 2005; Jaffe and Trajtenberg, 1999; 

Schoenmakers and Duysters, 2010). In our case, since patents record the residence of the 

inventors, they are an exceptional source for studying knowledge flows across regions.  

 

To build our variables, we use citations made by inventors resident in the focal region to 

EPO applications of inventors living outside the region. In particular, we look at backward 

citations listed in patents produced in a given region and collect the cited patents 

(alongside their technology codes) with all inventors living outside the region. Even 

though the use of patent citations does not come without limitations – e.g., some citations 

are added by the examiner, and not the applicant (Alcacer and Gittelman, 2006), they 

have been widely used in innovation economics as a proxy for knowledge flows 

(Criscuolo and Verspagen, 2008; Jaffe et al., 1993; Jaffe and Trajtenberg, 1999). 

Moreover, as citations relate cited patents with citing ones, they include detailed 

descriptions of technological characteristics and classification into technical domains 

(Popp et al., 2011) allowing the computation of the necessary indexes. 

 

We use an indicator of RELATEDNESS to account for knowledge inflows that are 

related, but are not the same, to the actual knowledge base of the region. This indicator is 

built in a similar fashion to Boschma and Iammarino (2009): 

 

𝑅𝐸𝐿𝐴𝑇𝐸𝐷𝑁𝐸𝑆𝑆 =∑𝐶𝐼𝑇4
𝑀(𝑗)

𝑗

𝑃𝐴𝑇4(𝑗) 

 

(10) 



where 𝐶𝐼𝑇4
𝑀(𝑗) is the entropy measure obtained with data for extra-regional backward 

citations in four-digit technologies (subclasses) other than j, but within the same 35-field 

technology, and 𝑃𝐴𝑇4(𝑗) is the relative size of the four-digit patent technology j in the 

total regional patenting. The idea is that for each four-digit patent technology in a region 

(e.g., technology C07G), we measure the entropy of the citations to patents from the other 

four-digit subclasses (e.g., C07K, C12M, C12N, C12P, C12Q, C12R, and C12S) 

pertaining to the same 35-field sector (e.g., the biotechnology field), excluding the focal 

four-digit subclass itself (i.e., subclass C07G). 

 

In order to complement the analysis, and again in line with Boschma and Iammarino 

(2009), we also use an index to determine the similarity between the external knowledge 

entering a region and its existing knowledge base (SIMILARITY). In our case it is 

computed as the sum of the products of the absolute sizes of the four-digit subclass patents 

(PAT4(j)), as a proxy of the knowledge stock in a region, and the four-digit subclass extra-

regional patents the former have cited (CIT4(j)):  

 

𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 = 𝑙𝑜𝑔∑𝑃𝐴𝑇4(𝑗)

𝑗

𝐶𝐼𝑇4(𝑗) (11) 

 

This measure gets a maximum when the region is specialized in just one technology and 

this technology coincides with the extra-regional patents cited. The lowest values are 

obtained when the more diverse the region is in its patent portfolio as well as in the extra-

regional patents it cites, and at the same time the less similar both profiles are. When a 

region gets knowledge from other regions, but such knowledge comes from the same 

technologies that are present in the region, the knowledge base of the economy will be 



able to absorb it but it will not add much to the existing knowledge. Therefore, we expect 

SIMILARITY to have little or null effect on regional innovation.  

 

With these two indices (RELATEDNESS and SIMILARITY) we aim to measure how 

close the knowledge that flows into a region is to the current regional knowledge stock of 

a given region, in order to infer the role of such relatedness in the creation of new 

knowledge. 

 

3.4 Data  

 

We use a sample of 255 NUTS2 European regions of 25 countries – EU-27 (except 

Cyprus and Malta, as well as Denmark and Greece, for which we have very little 

information at the NUTS2 level) plus Norway and Switzerland, to estimate a regional 

KPF from 1999 to 2007. Our dependent variable, innovation output, is measured by patent 

applications, a variable widely used in the literature to proxy innovation outcomes. As 

widely documented, this proxy presents serious caveats since not all inventions are 

patented, nor do they all have the same economic impact, as they are not all commercially 

exploitable (Griliches, 1991). In spite of these shortcomings, patent data have been 

considered useful for proxying inventiveness as they present minimal standards of 

novelty, originality and potential profits, and as such are a good proxy for economically 

profitable ideas (Bottazzi and Peri, 2003). We retrieve patent data at the regional level 

from the OECD REGPAT database  – July 2013 edition (Maraut et al., 2008). When 

patents have been produced by inventors resident in different NUTS2, they have been 

fractionally assigned to the different regions, according to the number of inventors out of 

all inventors listed in a patent living there – fractional counting. 



 

We slightly modify our dependent variable in order to account not only for the quantity 

of patents produced, but also for their quality – as explained in previous sections. As 

largely argued in the related literature, the number of forward citations received 

presumably conveys information about the relevance of patents, thus providing a way of 

assessing the enormous heterogeneity in the value of patents (Hall et al., 2005). This 

extreme is confirmed by several studies that have found strong correlations between the 

number of forward citations received and the economic value of patents (Trajtenberg, 

1990; Harhoff et al., 1999; Lanjouw and Schankerman, 2004). We therefore use citations 

as an imperfect, but widely used, proxy for patent quality and weight the number of 

patents by the number of citations the patent has received in subsequent patent 

documents.7  

 

As for the explanatory variables, R&D expenditures data (both private and public 

expenditures in regions) were collected from Eurostat and some National Statistical 

Offices. Data to measure ShareInd and High-tech Empl were collected also from Eurostat. 

As for the level of human capital of regions, which likely determines the regions’ capacity 

to transform technological inputs into outputs, we use the variable HRST, which, 

according to Eurostat, include all tertiary educated workers employed in science and 

technology occupations (over all workers in the region).8 

 

As mentioned above, variety indexes are constructed using the information of IPC codes 

listed in patent documents (again from the OECD REGPAT database – July 2013 edition). 

Again, based on the available data, there are 635 four-digit patent classes, 35 

technological fields and 5 broad fields. Knowledge flows are proxied through patent 



citations as explained in section 3.3. We use unit-record data retrieved from EPO patents 

to construct the patent citation variables (OECD Citations database, July 2013 edition; 

see Webb et al., 2005). All the patent data used to build the focal explanatory variables 

are retrieved for moving time windows of five years. 

 

Table 1 provides summary statistics of the variables used in the present analysis whereas 

the correlation matrix of explanatory variables is given in Table A.2 of the online 

appendix.9 We observe high correlations between some variables, although most of them 

do not jointly appear in the same regressions. For the remaining, table A.5 of the online 

appendix shows additional regressions in which we remove some of the problematic 

variables, to ensure that our results and conclusions hold.  

 

[Insert Table 1 about here] 

 

Further, figure A.1 in the online appendix depicts the distribution of our variables 

(dependent and explanatory) in maps – as averages of the whole period. Interestingly, 

even if some of these variables seem to follow the same concentration pattern in core 

regions of Europe, some others seem to be more spread across the space.  

 

4. RESULTS 

 

4.1 Local variety and innovation 

 

We estimate an unbalanced panel model of 9 periods (1999-2007). Table 2 provides the 

two-way FE estimates for the regional KPF model, including all the controls listed in 



section 3. Columns (i) to (iii) use as dependent variable the logarithmic transformation of 

the number of patents per million inhabitants.  

 

[Insert Table 2 about here] 

 

In all the cases, the Hausman test rejects the null hypothesis that individual effects are 

uncorrelated with the independent variables, so the FE model is preferred to the expense 

of the random-effects – results available on request. In general, the KPF holds in the 

European regional case for the period under consideration. The elasticity of patents with 

respect to R&D expenditures presents significant values (0.13-0.22), which is in line with 

the value obtained in the literature (Jaffe, 1989; Bottazzi and Peri, 2003).  

 

With respect to the variety index, results indicate that the variety in knowledge stocks of 

regions is indeed positively and significantly related to regions’ innovation output, similar 

to the results for the role of variety on employment and productivity (Boschma and 

Iammarino, 2009). Interestingly, once variety is split into related and unrelated, only 

related variety is significant. This result indicates that the higher the number of related 

technologies in a region, the larger the knowledge spillovers and, as a consequence, the 

more the learning opportunities across them (Frenken et al., 2007). That is, learning 

opportunities generated by a variety of technologies within the region are relevant when 

such technologies are related, which ultimately will generate more knowledge 

externalities across them. Meanwhile, if the knowledge flows across technologies are far 

away from each other (unrelated variety), it will be more difficult to assemble them and 

produce new ideas and innovation. 

 



Columns (iv) and (v) of Table 2 look at patent quality, as explained in section 3. All our 

results and conclusions with respect to columns (ii) and (iii) hold, except for the case of 

unrelated variety, that increases considerably its point estimate and becomes now highly 

significant. It seems therefore that when the combination of unrelated technologies is 

attained, not only general innovation is obtained (as suggested by the positive and 

significant parameter for related variety) but also knowledge of presumably high value 

and economic impact can be achieved, which accords with our expectations. 

 

Overall, our results are qualitatively comparable to recent studies that have looked at 

related variety and innovation in regions – i.e., Castaldi et al. (2015) and Tavassoli and 

Carbonara (2014), even though we do not share with them neither the regions analyzed 

(US states and Swedish functional regions, respectively) nor their estimation method 

(negative binomial models).10 For comparison purposes, table A.3 in the online appendix 

presents negative binomial estimates of our preferred models. This implies taking the 

number of patents as dependent variable instead of the number of patents per capita, and 

then having R&D as a regressor and not R&D per capita. We also add population as a 

control to account for size effects (in columns (iii) to (vi)). Results are comparable to our 

OLS estimates – although Castaldi et al. (2015) do not find evidence of a positive effect 

of related variety on breakthrough innovations, as we do. Columns (v) and (vi) present 

random effects estimations to make our paper fully comparable to Tavassoli and 

Carbonara (2014). As expected, some of the coefficients become larger, making them 

closer to the ones found by the mentioned authors.11 

 

Next, as argued in the introductory and theory sections, it is critical to account for extra-

local knowledge sources on regions’ innovative performance, as well as the degree of 



relatedness between the external knowledge that is brought into the region and the 

existing knowledge base (Boschma et al., 2014). This issue is important from a 

methodological viewpoint too, as estimates in earlier regressions could be biased if the 

external dimension is not accounted for. We discuss this in turn. 

 

4.2 Technological relatedness and external linkages 

 

This section looks at the role of external-to-the-region inflows of knowledge. To do so, 

we introduce a variable accounting for external flows of knowledge which are different, 

but related, to the local knowledge base (RELATEDNESS), using data on patent citations 

to build it. For completeness, we also build a variable proxying for the amount of 

incoming knowledge flows that remain within the same technology (SIMILARITY).  

 

Table 3 shows the results when the RELATEDNESS and the SIMILARITY indices are 

included to explicitly consider to what extent the knowledge that flows from other regions 

is related to the knowledge stock of the host region. The remaining explanatory variables 

are those of Table 2. Reassuringly, as observed in column (i), the majority of coefficients 

do not change to a large extent, which indicates that the omission of the external 

dimension in Table 2 was not biasing our results concerning the role of related and 

unrelated variety.  

 

From Table 3, column (i), we also learn that, contrary to our initial assumptions, 

RELATEDNESS does not significantly correlate with regional innovation. Thus, it seems 

that knowledge inflows that are different, but related, to the local knowledge base, do not 

create useful interconnections that can end up producing any significant innovation 



outcome. In turn, and against our expectations, the higher the SIMILARITY between the 

technological composition of the local knowledge and that of the cross-regional 

knowledge flows, the higher the impact on the regions’ innovative output. In other words, 

if the knowledge that flows into a region comes from technologies in which the region 

already patents, there seems to be plenty of opportunities for using such knowledge in a 

creative way. As in Boschma et al. (2009), we interpret these results as evidence that the 

knowledge coming from other regions already convey a certain degree of novelty as 

compared to the local knowledge base, which is not embodied in the technological 

classification used in the present paper.  

 

[Insert Table 3 about here] 

 

Interestingly, when the patents are weighted by their quality (column ii), the coefficient 

accompanying the RELATEDNESS index increases considerably and becomes 

statistically significant, suggesting that an extra-regional knowledge that is 

complementary, but not similar, to the existing knowledge base in the region will 

particularly boost interactive learning that can bring out breakthrough innovations. We 

conclude, therefore, that in order to generate average innovations, it is necessary to have 

a certain level of technological similarity so as to have the opportunity to learn and absorb 

across technologies coming from different regions. Whereas for the generation of more 

radical innovations, related, but not the same, incoming knowledge flows are also critical.  

 

4.3 Robustness analysis 

 



Several robustness analyses are presented in the online appendix. In table A.4 we test the 

theoretical statements discussed earlier through the use of a more general dependent 

variable on regional economic performance, such as the annual growth rate of GDP per 

capita. Despite the fact that GDP growth does not reflect a direct measure of innovation, 

its use avoids potential criticisms derived from the use of patent data to build both the 

dependent and independent variables, as we did in previous sections. Data on regional 

GDP per capita is retrieved from Eurostat, and the dependent variable is computed as the 

log of the ratio between per capita GDP at time t1 and per capita GDP at t0. Moreover, 

regressions include the log of per capita GDP at t0 as an additional control, as done in 

much of the growth literature.  

 

Results reported in columns (i) and (ii) concerning related and unrelated variety are in 

line with much of the related literature for specific countries (Frenken et al., 2007, for the 

Netherlands; Boschma and Iammarino, 2009, for Italy; Bishop and Gripaios, 2010, for 

Great Britain; Quatraro, 2010, for Italy; Hartog et al., 2012, for Finland and Boschma et 

al., 2012, for Spain) even if in our regressions, variety indicators are computed using 

technology fields from patent applications, instead of employment by economic activities. 

The results reported show the significant impact of variety, both in related and unrelated 

technologies. This evidence supports the hypothesis that economic growth benefits from 

diversification in technologies too. Note that in previous tables we found that unrelated 

variety only impacts innovation if weighted by their value using forward citations – 

breakthrough innovations. Interestingly, both related and unrelated variety strongly 

influence regional economic growth, which we attribute to the strong link between 

economic growth and breakthrough innovations, as witnessed by the recent report of the 

World Intellectual Property Organization (Wipo, 2015). Results concerning incoming 



knowledge flows and regional economic growth (column (iii)) are also consistent with 

the previous results presented in Table 3.  

 

Reassuringly, we have shown that our results are not driven by mechanical correlation 

between dependent and independent variables, given that the use of an alternative 

measure not directly retrieved from patent documents, such as per capita GDP growth, 

does support our key findings. 

 

Finally, as commented in the data section with respect to the high correlation between 

R&D expenditures and some of our focal variables, we turn now to analyse the robustness 

of our results to potential collinearity problems. In Table A5 of the online appendix, we 

observe that after eliminating R&D expenditures from our models, the results are virtually 

unchanged. The same is true when the related and unrelated variety variables are 

supressed from the equations (columns (iv) and (v)). This corroborates that potential 

collinearity problems do not exert any influence in the obtained results on the impact of 

variety and external relatedness on regional knowledge production.  

 

 

5. CONCLUSION 

 

This paper has investigated the role of variety on regional innovation, for a sample of 255 

NUTS2 European regions of 25 countries, from 1999 to 2007. In particular, it has looked 

at the differential role played by various degrees of relatedness, across different spatial 

scales, on regional patenting and on citations-weighted regional patenting.  

 



According to our results, diversity of knowledge, or variety, is critical for regional 

innovation. However, only knowledge flowing from different but related technologies 

(related variety) will generate new knowledge that incrementally constructs on 

established cognitive structures across related technologies – in line with the vast majority 

of previous studies. Notwithstanding these results, an interesting conclusion arises from 

our empirical approach when the patenting activity is weighted by the quality of such 

patents through the forward citations received – as an attempt to give more importance to 

breakthrough innovations. In this case, the more diversified across unrelated technologies 

is a region, the higher is the output in terms of high-quality innovations. Thus, evidence 

supports the idea that general innovation benefits from diversification in related 

technologies whereas more radical innovation also benefits from variety in unrelated 

technologies. 

 

In addition, since knowledge can also be brought into a region from “outside”, we assess 

whether the degree of relatedness between incoming knowledge and the local knowledge 

base influences regional innovation performance. As it is usually done in the related 

literature, knowledge flows are proxied through the use of backward patent citations. Our 

results show that extra-regional incoming knowledge flows have a higher impact, the 

higher the similarity between these knowledge flows and the extant local knowledge base, 

which goes somewhat against our initial expectations. While this is true for the generation 

of average innovations, again differences emerge when accounting for the impact of the 

innovations produced: for radical innovations, the technological contents of the extra-

regional linkages do not necessarily need to be very similar to the local technological 

base, but a certain degree of relatedness seems to be sufficient. This degree of relatedness 

assures certain cognitive proximity between agents located at a geographical distance, 



while at the same time brings in the necessary variety to offer the building blocks for 

technological revolutions.  

 

Regional diversification and relatedness are hot-button issues nowadays, not only for 

academics, but also for policymakers. These concepts have become especially relevant 

recently, as many European regions are still being hit by the economic crisis, which 

requires promoting new industries and economic activities (Boschma and Gianelle, 

2013). These academic concepts go hand in hand with the Smart Specialization Strategy 

policy. Smart Specialization aims to focus policy support to key industries and economic 

activities already building in current national and regional strengths, thus avoiding to pick 

sectors that do not match the actual and potential technological capabilities of regions  

(Boschma and Gianelle, 2013). The concept of relatedness is thus the appropriate 

academic tool for smart specialization policies, advocating for the promotion of economic 

activities related, but different, to the actual technological structure of regions (McCann 

and Ortega-Argilés, 2013). Notably, our results on the positive effects of unrelated variety 

as well as the role of similar versus related knowledge inflows from outside the region 

have important policy implications in the framework of EU’s smart specialization 

strategy, and must be accounted for. 

 

Future research should thoroughly look at the effect of regional unrelated variety on 

breakthrough innovations. On the one hand, it could be interesting to analyse if 

breakthrough innovations – i.e., those at the upper-tail of the citations distribution – in a 

region actually combine technology classes that are unrelated, defined through co-

occurrence analysis (see Boschma et al., 2015, as an example of this type of analysis), but 

present in the region concerned. On the other hand, it is plausible to think that the impact 



of technological unrelated variety on the generation of breakthrough innovations can be 

stronger in the long run since the combination and recombination of previously unrelated 

technologies may imply some time to be fulfilled. Thus, it would be interesting to analyse 

the time profile of the impact of related and unrelated variety on the probability to produce 

breakthroughs. 
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Table 1. Summary statistics 

Variable Obs. Mean Std.Dev Min. Max. 

PAT pc 2,219 111.84 131.52 0 1,017.78 

Weighted PAT pc 2,219 264.42 324.30 0 2,575.42 

Variety 2,219 5.85 1.50 0 7.78 

Related Variety 2,219 1.78 0.77 0 3.20 

Unrelated Variety 2,219 1.96 0.35 0 2.31 

Similarity 2,219 6.33 3.36 0 13.68 

Relatedness 2,219 0.03 0.03 0 0.43 

R&Dpc 2,219 0.40 0.41 0.00 2.88 

HRST 2,219 14.12 4.73 3.90 34.40 

ShareInd 2,219 19.21 6.74 5.21 38.55 

High-tech Empl. 2,219 4.26 1.80 0.70 12.80 

GDP pc 1,827 21,253.04 8,802.56 3,400 84,600 
Note: Variables in this table are expressed without taking the logarithmic transformation. 

 

  



Table 2. Related/unrelated variety and regional innovation 

 (i) (ii) (iii) (iv) (v) 

 Patents pc Patents pc Patents pc Quality-

weighted 

Quality-

weighted 

      

ln(R&D pc) 0.223*** 0.163*** 0.172*** 0.144* 0.160** 

 (0.0598) (0.0536) (0.0558) (0.0770) (0.0778) 

HRST 0.0159** 0.00868 0.00845 0.00881 0.00875 

 (0.00689) (0.00677) (0.00649) (0.00833) (0.00814) 

Variety  0.105***  0.160***  

  (0.0306)  (0.0369)  

Rel. variety   0.229***  0.267*** 

   (0.0647)  (0.0777) 

Unrel. variety   0.0919  0.227*** 

   (0.0693)  (0.0814) 

ShareInd  0.0421*** 0.0434*** 0.0635*** 0.0630*** 

  (0.00925) (0.00855) (0.0114) (0.0109) 

High-tech Empl.  0.0322*** 0.0315*** 0.0405*** 0.0417*** 

  (0.0116) (0.0115) (0.0152) (0.0154) 

Constant 3.934*** 2.316*** 2.332*** 2.443*** 2.490*** 

 (0.147) (0.282) (0.292) (0.369) (0.372) 

      
Observations 2,219 2,219 2,219 2,219 2,219 

Number of regions 255 255 255 255 255 

Region FE yes yes yes yes yes 

Time FE yes yes yes yes yes 

Overall-R2  0.733 0.603 0.627 0.444 0.472 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 3. Relatedness and external linkages 

 (i) (ii) 

 Patents pc Quality-

weighted 

   

ln(R&D pc) 0.140*** 0.128* 

 (0.0536) (0.0764) 

HRST 0.00560 0.00553 

 (0.00584) (0.00741) 

Rel. variety 0.183*** 0.218*** 

 (0.0619) (0.0765) 

Unrel. variety 0.0937 0.230*** 

 (0.0652) (0.0771) 

Relatedness 0.489 0.941** 

 (0.348) (0.418) 

Similarity 0.0705*** 0.0743*** 

 (0.0150) (0.0182) 

ShareInd 0.0383*** 0.0575*** 

 (0.00804) (0.0108) 

High-tech Empl. 0.0247** 0.0343** 

 (0.0108) (0.0147) 

Constant 2.075*** 2.220*** 

 (0.270) (0.349) 

   

Observations 2,219 2,219 

Number of regions 255 255 

Region FE yes yes 

Time FE yes yes 

Overall -R2  0.748 0.610 
Notes: Robust standard errors in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1.  

 

 

 

1 This paper uses interchangeably breakthrough innovations, radical breakthroughs or radical innovations. 

They all try to convey the idea that not all inventions have the same technological and economic impact, 

and therefore this innovation quality heterogeneity needs to be taken into account. In the empirical part of 

this study, this heterogeneity is accounted for by weighting the number of patents produced in regions by 

the forward citations each of them receives. 
2 A complementary perspective is offered by the branching literature – after Hidalgo et al. (2007) at the 

country level, which looks at whether variety enhances regional diversification – that is to say, renewal and 

broadening of an economy’s industrial base (Xiao et al., 2016). Indeed, as Frenken and Boschma (2007) 

suggest, regions tend to diversify into economic activities related to the existing portfolio of local industries. 

Therefore, this idea of regional branching into related manufacturing industries is especially useful for 

understanding how new economic growth paths may be linked to preexisting industrial structures in a 

region (Tanner, 2014). Evidence on how regions diversify over time is now large too and include the case 

of Swedish regions (Neffke et al., 2011), Spanish regions (Boschma et al., 2013) and US metropolitan areas 

(Boschma et al., 2015; Essletzbichler, 2015; Kogler et al., 2013) yet showing at the same time that the 

process of technological transition is relatively slow (Rigby, 2015).  
3 Other studies have also looked at the role of variety on patents (Kogler et al., 2013; Rigby, 2015; Tanner, 

2016), scientific publications (Boschma et al., 2014) or new firm formation (Guo et al., 2015; Colombelli, 

2016). 
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4 Recent case-study work has called attention to the relevance of external linkages for creating knowledge 

diversification. For instance, Binz et al. (2014) look at the membrane bioreactor technology and show that 

networks transcending national borders are of great importance for innovation processes – and therefore 

deserve more attention in theoretical and empirical work. More systematic evidence is presented in Neffke 

et al. (2014), who argue that the unrelated diversification needed for structural change is mostly created via 

non-local firms and entrepreneurs, according to the evidence they obtain using Swedish matched employer-

employee data. 
5 Subclasses are further divided into groups and subgroups, so each IPC code can contain up to 10 digits. 
6 See the online appendix for the list of the 35 fields and the 5 broad fields. 
7 To compute this variable, we simply multiply the patents by the number of forward citations they received, 

and add up by region and year. In order to avoid eliminating a patent in case it has not received any forward 

citation, what we do is multiplying the number of patents by the number of citations plus 1, that is, Patents 

* (Citations+1).  
8 We have experimented with alternative measures of human capital, such as the share of tertiary educated 

inhabitants (data from Eurostat), but the coefficient associated to this variable tends to be smaller and 

largely not significant. Results are available on request. This result confirms the intuition that only those 

more directly involved in knowledge and innovation activities are likely to determine the regions’ capacity 

to innovate. 
9 In the empirical analyses, because of the existence of zero patents in some cases, a small constant, 1, is 

added before the logarithmic transformation. 
10 Tavassoli and Carbonara (2014) estimate a panel negative binomial model employing data for the 81 

Swedish functional regions (local labour market) over the period 2002-2007 and provide robust evidence 

that related variety of knowledge plays a superior role than unrelated variety. Castaldi et al (2015), using 

patent data for US states in the period 1977–1999, provide evidence that innovation in general benefits from 

diversification in related technologies whereas states with higher unrelated variety would outperform states 

with lower unrelated variety in producing breakthrough innovations. 
11 Our empirical model (the regional knowledge production function) draws mainly from a large number of 

contributions in regional science and innovation economics trying to understand the role played by regional 

innovative efforts (R&D) and the technological structure of regions on regional innovative output. Other 

approaches have extended the regional KPF to include a large number of potential non-technology 

determinants of regional innovation outputs. We face a trade-off here, between accuracy of our empirical 

model (we want all the potential controls to be there) and completeness (we want to analyse a large number 

of regions and years). For instance, one interesting hypothesis to test would be the role of institutions and 

social capital on innovation, and more importantly, how they influence regional variety’s role in fostering 

regional innovation (see Boschma, 2016, for a claim to do research in this direction). However, institutions 

and social capital variables are usually available for fewer regions, or at NUTS1 level, or for short periods 

of time (normally, they are not available on a yearly basis). Given that this is not the primary focus of our 

analysis, we have chosen to go for a large sample of regions and years to the expense of not adding these 

type of variables. Yet, contrary to still the large majority of empirical studies using the regional KPF, we 

control for region fixed-effects, and therefore account for all time-invariant features of regions that may 

influence the regional production of innovations (with institutions or social capital variables, which evolve 

slowly over time, being partially controlled for through these fixed effects). 


