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Abstract

The PrandtlPlane (PrP) aircraft wing-box least-weight design is presented in this

work. This design problem is formulated as a constrained non-linear programming prob-

lem (CNLPP), by integrating static, buckling, fatigue and manufacturability requirements,

under different loading conditions. The solution search is carried out by means of a suit-

able multi-scale optimisation (MSO) approach. The physical responses involved into the

CNLPP formulation are evaluated at the wing-box architecture level (macroscopic scale)

and at the stiffened panel level (component scale), as well. The scale transition is ensured

by means of a suitable global-local (GL) modelling approach, while the CNLPP is solved

by means of an in-house genetic algorithm. The effectiveness of the proposed approach is

tested on the PrP wing-box structure, but the presented strategy can be easily extended

to conventional aircraft wings.
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1. Introduction

The PrandtlPlane (PrP) configuration, shown in Fig. 1, is the engineering application

of the so-called ”Best Wing System”, introduced by L. Prandtl [1]: he theorised the

existence of a lifting system which, for given wingspan and generated lift, minimises the

induced drag. A rigorous mathematical proof of the Prandtl’s riddle has been provided

many years later [2].

Figure 1: PrandtlPlane PARSIFAL MS1 rendering

Although the literature about aerodynamics of the PrP configuration is quite rich,

there are few works focusing on the structural analysis, especially for the wing structure.

The only works on this topic consider a now-obsolete PrP configuration and low-fidelity

models [3–5]. Recently, a Finite Element (FE)-based approach for structural analysis of

the PrP wing architecture has been proposed in [6], but the analysis was still carried out

on an obsolete configuration of the wing. Moreover, a structural optimisation of the spars

of an ultra-light PrP seaplane has been recently presented in [7, 8]. Paradoxically, in

the literature there are more works about PrP aeroelasticity aspects (including non-linear

ones) [4, 9–13], than works focusing on general structural behaviour of the PrP.

The structural analysis of the PrP aircraft architecture presents many features which

make it quite challenging, if compared to a conventional aircraft. Unlike a conventional

aircraft architecture, the PrP fuselage and lifting system form an hyperstatic structure.
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Therefore, from a theoretical point of view, the structural problem should be faced as

a whole. On the contrary, for conventional aircraft, one may separate the fuselage from

the wing, the latter roughly considered as a ”cantilever beam”. This issue implies some

important consequences. Firstly, one cannot separately deal with the structural analysis of

the fuselage and the lifting system. Secondly, even if under some simplifying hypotheses it

is possible to separate the structural analysis of the lifting system from that of the fuselage,

the question about the complexity of the FE analysis still remains open. In this case, the

complexity of the FE analysis should be intended in terms of model size, i.e. number

of degrees of freedom (DOFs), compromise between accuracy and computational cost,

choice of the scales of the analysis, choice of the design variables, etc. In this background,

the need for suitable global-local (GL) modelling strategies, which may be a reasonable

compromise between results accuracy and reduced computational costs, coupled to an

efficient optimisation algorithm is of paramount importance.

Although [14] represents a recent exhaustive overview on methods for estimating lifting

systems mass, authors do not cite GL approaches. Indeed, the vast majority of studies

dealing with the structural analysis of (conventional) wing-box architectures for prelimi-

nary design purposes do not take into account GL approaches [15–17]. This is manly due

to the important computational effort required to perform scale transition between global

and local models which is often not compatible with the overall time required to perform

the optimisation process [18]. However, as far as the development of GL strategies for the

structural analysis of the lifting system of standard aircraft is concerned, some works can

be found in the literature.

In [19], authors develop a GL strategy dedicated to Damage Tolerance analyses (DTAs),

for conventional wings. Of course, DTAs needs a refined models of structural components

in order to simulate cracks grow. This represents a first example of the need of changing

structural scale in optimisation procedures. A more complete approach is presented in

[20]. The global model does not take into account stringers and spar-cap, since stiffened

panels are modelled as equivalent shells. Furthermore, only continuous variables are con-

sidered, which allow authors to use gradient-based techniques for the solution search. In

[21] a GL strategy for a high-speed wing is presented . The main issue is that local models

are re-mapped to rectangular plane stiffened plates, loosing geometry effects on instability
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failures. Furthermore, several constraints are evaluated using analytical formula. In [22],

the same authors extend the GL approach for the topology optimisation; nevertheless,

the aforementioned issues remain. More recently, [23] presents a GL framework for op-

timisation of curvilinear spars and ribs (SpaRibs). The problem formulation presents a

huge issue on computational cost: the framework needs hundreds of software licences and

hundreds of cores to find solutions in acceptable time. Finally, in [24], authors extend

the GL approach for a composite material simple wing, in the framework of the Carrera

Unified Formulation (CUF).

As it can be inferred from this literature survey, GL modelling strategies are quite

commonly used in the structural analysis of the wing-box structure of conventional aircraft.

However, such strategies are rarely coupled to optimisation methods due to three main

issues: (a) the high computational costs related to such an approach; (b) the lack of

pertinent criteria to identify the zones of interest (ZOIs) within the global FE model

(GFEM); (c) the lack of suitable modelling strategies to automatically build the local FE

models (LFEMs) by extracting pertinent information from the GFEM and by taking into

account for variable geometry and mesh.

In this scenario, a multi-scale optimisation (MSO) approach integrating an efficient

GL modelling strategy [25–27] to evaluate all the necessary structural responses (at each

pertinent scale) is applied to the PrP lifting system. The least-weight design of the PrP

wing-box is stated as a classical constrained non-linear programming problem (CNLPP).

The physical responses, evaluated by means of both GFEM and LFEMs, are integrated

into the CNLPP formulation as optimisation constraints. The exchange between GFEM

and LFEMs and the extraction of LFEMs from the GFEM are realised in a completely

automatic way, without the user’s intervention. The solution search for the CNLPP at

hand is carried out by means of the ERASMUS (EvolutionaRy Algorithm for optimiSation

of ModUlar Systems) algorithm developed by Montemurro [28], which is a special genetic

algorithm (GA) able to deal with CNLPPs characterised by a variable number of design

variables. This GA has been successfully used in other real-world engineering problems

[29–39].

The paper is structured as follows. In Section 2 the design problem is presented

together with the main hypotheses and the determination of the most relevant loading
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conditions. Section 3 is dedicated to the mathematical formulation of the problem: op-

timisation variables are introduced and constraints discussed. Some details about the

numerical strategy are also presented. Section 4 presents the adopted GL modelling strat-

egy by putting the accent on the details for automatically identifying and extracting the

ZOI. Section 5 discusses the numerical results, whilst Section 6 ends the paper with some

meaningful conclusions and perspectives.

2. Least-weight design of a PrandtlPlane wing-box: problem description

The PrP lifting system considered in this work is the result of a preliminary aerody-

namic study presented in [40, 41]. The PrP lifting system can be ideally split into three

(semi-)wings: the front wing (FW), the rear wing (RW) and the vertical wing (VW), as

shown in Fig. 2. In the same picture, the global Body reference frame TB(CG;XB, YB, ZB),

centred at the aircraft center of mass (CG), is illustrated.

Figure 2: PrP aircraft rendering

Due to the symmetry of the structure with respect to the aircraft longitudinal plane

XB − ZB, the structural analysis is limited to the left-side part.

2.1. Geometry and material

In this study, the PrP wing-box architecture is optimised in the framework of the

preliminary design phase of the aeronautic industry. During this phase, several loading

conditions are considered to properly design the main components of the structure in

order to respect certification specifications [42]. Such load cases (LCs) result from the

combination of basic loading conditions (BLCs) of different nature, e.g. flight loads due to
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symmetrical and asymmetrical manoeuvres or to gusts, ground loads, pressurisation, etc.

In this work, only a sub-set of these LCs is considered, as explained in Section 2.3.

For each wing of the PrP configuration, the external geometry is assigned in terms

of the leading edge (LE) coordinates of three fundamentals sections, i.e. root, kink and

tip, as well as the chord length at each of the three locations. The geometrical features

affecting the out-plane shape of the wing, i.e. dihedral and twist angles, are also taken

into account. All of the aforementioned quantities, which are summarised in Table 1, are

known at the three sections (only two for the VW, which does not present a kink section),

and linearly vary between them.

For the sake of simplicity, a polynomial interpolation of the dorsal and ventral edges of

the supercritical aerofoil F15− 11, illustrated in Fig. 3 and taken from [43], is considered.

A polynomial of degree five constitutes a good approximation of the actual profile. This

profile is used to describe the shape of the wing sections parallel to the free-stream direc-

tion. As for the wing-box, its position, in chord percent, is fixed apriori. According to

Figure 3: Aerofoil F15-11

[43], a span-wise linear behaviour of both front and rear spars, for each wing, is adopted.

The position of spars, with respect to the considered wing planform, is shown in Fig. 4

and reported in Tab. 2.

Regarding the modelling of the structural components, the following simplifications

are introduced:

1. only major structural components are modelled (i.e. skin, stringers, ribs and spars);

2. the interfaces between the structural components are perfect (i.e. the perfect bonding

condition applies);

3. connection zones and opening/cut-out are neglected and not considered into the

preliminary design phase.
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Figure 4: Planform of the PrP lifting system, with wing-box position

Table 1: Wing geometry

LE coordinates Chord Twist angle
[mm] [mm] [deg]

Front Wing

Root (0, 0, 2350) 7287 3.05
Kink (1932, 200, 4661) 5350 3.9
Tip (12820, 810, 17500) 1949 1.5

Rear Wing

Root (26138, 7926, 0) 5295 3.7
Kink (23955, 7926, 5400) 4276 2.99
Tip (19064, 7926, 17500) 1991 1.4

Vertical Wing

Root (13623, 1310, 18000) 1852 1.5
Tip (18261, 7426, 18000) 1922 1.4

Table 2: Wing-box position (reported in chord percent, refer to the planform of Fig. 4)

Root Kink Tip

Front Wing 11% 15% 25%
57% 70% 75%

Rear Wing 15% 15% 15%
70% 70% 70%

Vertical Wing 20% - 20%
80% - 77%

For both FW and RW, ribs are parallel to the free stream direction between root and

kink sections, whilst they are perpendicular, respectively, to the rear and front spar be-

tween kink and tip sections (see Figs. 5 and 8). For the VW, ribs are perpendicular to

both front and rear spars. However, in order to ensure a gradual change in the orientation

between root-kink and kink-tip sectors, some transition ribs at intermediate angles are
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Figure 5: Ribs orientation (detail of the FW architecture)

introduced, as illustrated in Figs. 5 and 8. Inasmuch as the goal of the proposed method-

ology is the preliminary optimisation of the PrP wing-box architecture, a simplified rib

geometry is considered, as shown in Fig. 6, with a constant thickness equal to 4 mm, as

often done in the literature [44–46]. Stringers have a T-shaped cross-section, while spar

Figure 6: Rib simplified geometry (FW root section)

caps have a L-shaped cross-section, as illustrated in Fig. 7. Their geometric parameters

represent some of the variables of the PrP wing-box least-weight design problem and will

be discussed in Section 3.1. It is noteworthy that both GFEM and LFEM, presented in

Section 4, do not take into account for explicit modelling of shear tie, stringer-tie and

tear-strap. In particular, in the LFEM these features are implicitly modelled by means of

suitable interface elements, as discussed in Section 4.2.

The material behaviour for each structural element constituting the PrP wing-box

is assumed to be linear elastic homogeneous isotropic. Two alloys have been used: an

AA2024-type for shell-like components (i.e. skin, ribs and spar web) and an AA7075-type

for stiffener-like components (i.e. stringers and spar caps). The elastic properties for both
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(a) Stringer and skin

(b) Spar and spar caps

Figure 7: Stringer-skin assembly and spar geometry.

alloys are resumed in Tab. 3. Figure 8 gives an overview of the resulting PrP wing-box

Table 3: Material properties

Material Young’s Poisson’s Density Yielding Ultimate
modulus ratio stress stress

AA2024 72.4 [GPa] 0.33 2780 [Kgm−3] 290 [MPa] 434 [MPa]
AA7075 71.0 [GPa] 0.33 2810 [Kgm−3] 450 [MPa] 500 [MPa]

geometry.

2.2. Design criteria

Three main families of design criteria can be identified for aeronautic structures, i.e.

criteria related to: (a) static loads, (b) fatigue loads and (c) aeroelasticity phenomena.

As far as static loads are concerned, certification specifications [42] identify two types

of loading conditions: limit loads (LLs) and ultimate loads (ULs). LLs are the maximum

loads expected in service that the structure must be able to support without detrimental

permanent deformations. ULs are equal to limit loads multiplied by a prescribed safety

factor (usually 1.5). The structure must withstand ULs without failure for at least 3

seconds. For instance, for civil aircraft, LLs in symmetrical manoeuvres occur at load
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(a) Top view

(b) External lateral view

Figure 8: Overview of the PrP wing-box architecture

factors (the ratio of the aerodynamic force component normal to the longitudinal axis

of the aeroplane to its weight, measured in the TB reference frame, as shown in Fig. 2)

nz = 2.5 and nz = 1. This study focuses on this class of design criteria.

Regarding fatigue loads, the design of the structure should be performed in such a

way that “catastrophic failure due to fatigue, manufacturing defects, environmental de-

terioration, or accidental damage, must be avoided throughout the operational life of the

aeroplane” [42]. To achieve this goal, two approaches are possible. On the one hand, in

the framework of the durability approach, a component should be designed to last the

whole operational life. On the other hand, according to the damage tolerance approach,

a potential damage in the structure should not become critical before the next planned

inspection. In this work, only a fatigue design criterion in the context of the durability

approach is employed in terms of an equivalent static check (more details are given in the

followings).
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Finally, no aeroelastic criteria are considered.

The following set of design criteria (DCs) is integrated in the formulation of the multi-

scale optimisation problem.

• DC1: The global stiffness of the structure must be greater than a predefined reference

value.

• DC2: The average equivalent stress in skin, stringers and spars, multiplied by a

safety factor FS = 1.5 (see CS 25.303 [42]), must not exceed the yielding stress of

the material under LLs.

• DC3: The average equivalent stress in skin, stringers and spars should not exceed

the ultimate strength of the material when ULs are considered.

• DC4: No buckling must occur in the stiffened panels when ULs are applied (no-

buckling design approach).

• DC5: No critical fatigue failure must occur when a suitable Ground-Air-Ground

(GAG) load spectrum is applied.

• DC6: Only manufacturable solutions should be considered.

DC1 is expressed in terms of maximum tip displacement of the lifting system in the flight

envelope. DC2 and DC3 are expressed in terms of the average equivalent stress in order to

neglect the effects of local stress concentrations that could affect the solution, because of

the limited degree of accuracy of the FE models used during the preliminary design phase.

Indeed, these criteria are rigorously checked (by means of refined 3D FE models) during

the subsequent detailed design phase. DC4 is expressed in terms of no-buckling condition

for the most critical stiffened panels identified into the lifting system by means of suitable

criteria (discussed in Section 4.2). Of course, the evaluation of the first buckling load of

each stiffened panel is done through LFEMs (see Section 4.2).

DC5 is expressed by means of the so-called detail fatigue rating (DFR) method [47]:

σalt =
0.47DFR (σm0 − σavg)

σm0 − 0.53DFR
S5−logN
w , (1)
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where DFR is a parameter depending on the geometry and it corresponds to a fatigue

life of 105 cycles based on a reliability level of 0.95 for a particular structural component.

Under the hypothesis that the recommended DFR of a structural detail is independent of

the aircraft class, in this study its value have been set to DFR = 138 MPa. σm0 and Sw

are properties depending upon the considered material (σm0 = 310 MPa and Sw = 2 for

an aluminium alloy [48]), whilst σalt is the equivalent stress amplitude of the load cycle

which causes failure of the structural element at N cycles, σavg is the average stress of the

load cycle. Using a target life of 75000 flights [49], and the load spectrum of a commercial

A320 reported in [50], the cumulative damage can be evaluated by the well-known Miner

formula [51].

DC6 is expressed in terms of minimum thickness and relative geometrical proportions of

components, as discussed in Section 3.1.

2.3. Load cases

Aerodynamic loads are derived from an in-house algorithm, developed at University

of Pisa [52, 53]. This algorithm, called AEROSTATE (AERodynamic Optimisation with

STAtic stability and Trim Evaluator), is based on the AVL (Athena Lattice Vortex) method

[54] as a solver, and it has been used for the preliminary study for the reference config-

uration definition, together with medium and high fidelity corrections. For more details,

the reader is addressed to [41, 55, 56]. The resulting lift distribution is interpolated and

decomposed into a set of point forces and moments (applied to the ribs of each wing) to

obtain a statically-equivalent system of forces. The aerodynamic loads are evaluated for

a Mach number of 0.79, altitude of 11000 m, adopting the Standard Atmosphere model,

in cruise condition. These loads define the fundamental BLC used in this study which

is denoted as BLC1g. It is noteworthy that the loads resulting from AEROSTATE code

are trimmed with respect to an estimate of aircraft weight and center of gravity position,

performed in the algorithm (the resulting configuration is stable in the longitudinal plane

from flight mechanics point of view)[41, 55, 56].

For the sake of simplicity, five LCs have been considered. The first one (LC1) cor-

responds to a load factor nz = 2.5 (pull-up manoeuvre), whilst the second one (LC2) is

characterised by nz = −1 (push-down manoeuvre), according to the flight envelope for
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civil transport aircraft. Furthermore, third (LC3) and fourth (LC4) loading conditions

correspond to nz = 3.75 and nz = −1.5, respectively. The lift distribution for all the

previous cases is obtained by a simple scaling of the BLC1g which has been calculated for

nz = 1. The fifth loading condition (LC5) is devoted to fatigue strength calculation and it

is obtained through a suitable scaling of BLC1g by applying the spectrum of load factors

taken from [50].

It is noteworthy that the proposed strategy allows the user to provide as many load

conditions as needed. Moreover, the five considered LCs are commonly used in the pre-

liminary design of civil aircraft wing-box structures at the boundary of the flight envelope

[46, 57].

Table 4 summarises the LCs together with the relative DCs.

Table 4: Load cases definition and associated design criterion

LC BLC1g factor DC

1 2.5 1,2,6
2 -1 1,2,6
3 3.75 3,4,6
4 -1.5 3,4,6
5 variable for each cycle,

taken from [50]
5

3. Mathematical formulation of the optimisation problem

3.1. Design variables

Only geometrical design variables have been considered in this study. They can be

grouped with respect to the component they are referred to. Moreover, these variables are

related to the components of each wing, i.e. FW, RW and VW.

Firstly, the design variables related to the components of the VW are not independent

and are obtained as the average of their counterparts for both FW and RW. Secondly, for

each wing, different design variables are affected to the components located in the dorsal

and ventral region of the wing. The description of the geometric design variables is given

in the followings, component by component.
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Stringers and skin

For each wing, stringers and skin have different size for dorsal and ventral regions. In

particular, as shown in Fig. 7, the generic stringer has a T-shaped cross-section and two

variables are needed, at each location along the wing span, to fully describe its geometry,

i.e.

tjb (y) , wij
b (y) , i = top, bot, j = FW,RW. (2)

In the above equation, y is the Cartesian coordinate defined along the wing span, tib is the

thickness, whilst wij is the flange width. Conversely, the skin needs only one geometric

variable, i.e. the thickness, to be characterised:

tijs (y) , i = top, bot, j = FW,RW. (3)

A further variable, characterising the skin-stringers assembly, is the stringer pitch, which

can be different between dorsal and ventral regions, i.e.

pij , i = top, bot, j = FW,RW. (4)

Spars and spars caps

As illustrated in Fig. 7, the spar geometry is relatively simple, and it is composed

of a web and two spar caps with a L-shaped cross-section. In particular, the geometric

parameters of the spar caps are not independent and are related to those of the stringers

as follows:

wj
spc(y) =

wtopj(y) + wbotj(y)

2
,

tjspc(y) =
ttopjb (y) + tbotjb (y)

2
,

j = FW,RW,

(5)

where wj
spc(y) and tjspc(y) are the width and the thickness of the spar cap flanges at a

given location y along the wing span, for each wing, see Fig. 7. As it can been inferred
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from the above relationships, each quantity is evaluated as the average of the respective

counterpart of the stringers. Regarding the spar web, its thickness varies along the wing-

span as follows:

tjweb (y) , j = FW,RW. (6)

Ribs

As discussed in Section 2.1, a simplified rib geometry is considered in this work, as

shown in Fig. 6, with a constant thickness equal to 4 mm. Of course, the rib in-plane

shape is scaled according to its position and orientation along the wing span. Since the

geometric variables of the ribs are kept constant, as usually done in the literature [44–46]

during the preliminary design phase, only the pitch between adjacent ribs (for each wing)

is included among the design variables, i.e.

pjr , j = FW,RW. (7)

Among the aforementioned design variables, those varying along the wing span abscissa

can be expressed as:

ξij(y) = ξij(yroot) +
ξij(yroot)(α

j − 1)

ytip − yroot
(y − yroot),

i = top, bot, j = FW,RW,

(8)

with

αj =















αj
s , if ξij(y) = tijs (y), tjweb(y),

αj
b if ξij(y) = wij

b (y), tjb(y), wj
spc(y), tjspc(y),

i = top, bot, j = FW,RW.

(9)

In the above equation, αj
s and αj

b are further design variables defining the linear scaling

of the relative geometric variables along the wing span. As it can be easily inferred from

Eq. (8), the generic geometric design variable of each component linearly varies along
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the wing span. Therefore, the independent design variables are the geometric parameters

characterising the structural elements at the root section (for each wing) and the scaling

parameters. Accordingly, all the independent design variables can be collected into the

vector of design variables ξ as follows:

ξT =
{

αj
s , α

j
b, t

ij
s (yroot), t

j
b(yroot), w

ij
b (yroot), t

j
web(yroot), p

j
r , pij

}

,

i = top, bot, j = FW,RW.

(10)

The design variables together with their lower and upper bounds are summarised in

Tab. 5 (i = top, bot, j = FW,RW).

Table 5: Lower and upper bounds of the design variables

Variable Description Lower bound Upper bound Sampling

αj
s [−] Scaling param-

eter
0.1 1 0.01

αj
b [−] Scaling param-

eter
0.1 1 0.01

tijs (yroot) [mm] Skin thickness
(root)

1.3 15 0.1

tjb(yroot) [mm] Stringers thick-
ness (root)

1.3 15 0.1

wij
b (yroot) [mm] Stringers flange

length (root)
32 70 1

tjweb(yroot)
[mm]

Spar web thick-
ness (root)

1.3 15 0.1

pjr [mm] Ribs pitch 300 600 50
pij [mm] Stringers pitch 100 140 10

3.2. Objective and constraint functions

The goal of the MSO strategy is the minimisation of the total mass of the PrP wing-

box architecture which represents the objective function Φ (ξ) for the problem at hand,

i.e.

Φ (ξ) = 2

Ne
∑

e=1

Ve (ξ) ρe, (11)

where Ve (ξ) and ρe are the volume and the density of the e-th element, whilst Ne is the

total number of elements composing the GFEM of the left wing (due to the symmetry
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with respect to the aircraft longitudinal plane).

Let Ω be the geometrical domain of the (semi) model of the PrP lifting system. Ac-

cording to Fig. 8, it can be split as: Ω = ΩFW ∪ΩRW ∪ΩVW, where each sub-set is related

to the corresponding wing. Furthermore, as stated above, the geometrical variables of the

VW depend upon those of both FW and RW, thus they are not included among the design

variables. It is noteworthy that the geometric set of each wing can be decomposed as

Ωj = Ωij
s ∪ Ωij

b ∪ Ωj
web ∪ Ωij

spc ∪ Ωj
r,

i = top, bot, j = FW,RW.
(12)

Therefore, the geometric domain of each wing is composed of external skin, stringers, spar

webs, spar caps (for both dorsal and ventral regions) and ribs.

Before illustrating the problem formulation, it is useful to introduce two further subsets.

Ωc−GFEM ⊂ Ωj is a subset of ΩFW ∪ ΩRW belonging to the GFEM which identifies the

checking zone, i.e. that zone where stresses get meaningful values to be considered within

the DCs. Conversely, Ωc−LFEM ⊂ Ωc−GFEM is a sub-region of the GFEM checking zone

used to build the LFEM representing the most critical stiffened panel (within FW and

RW).

Taking into account the previous notation, DC1 is formulated as follows [18]:

g1 := max
LC={1,2}

|δtip−FW|

b
− 0.15 ≤ 0, inΩFW, (13)

where b is the nominal semi-span, δtip−FW is the vertical displacement at the tip, conven-

tionally measured at the FW, under either LC1 or LC2.

DC2 is formulated by imposing that the Von-Mises equivalent stress in skin, stringers

and spars, within the checking zone of the GFEM Ωc−GFEM, must be lower than the

yielding stress of the material. For LC1 and LC2, skin must not reach the yielding stress

(considering a safety factor of 1.5), i.e.

g2 := max
LC={1,2}

σVM

σy 2024
−

1

1.5
≤ 0, in Ωij

s ∩ Ωc−GFEM,

i = top, bot, j = FW,RW.

(14)
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g3 := max
LC={1,2}

σVM

σy 7075
−

1

1.5
≤ 0, in Ωij

b ∩ Ωc−GFEM,

i = top, bot, j = FW,RW,

(15)

g4 := max
LC={1,2}

σVM

σy 7075
−

1

1.5
≤ 0, in Ωj

web ∩ Ωc−GFEM,

j = FW,RW,

(16)

where σVM is the Von-Mises equivalent stress and σy2024 and σy7075 are the yielding stresses

for AA2024 and AA7075, respectively, reported in Tab. 3.

As far as DC3 is concerned, it is formulated by imposing that the Von-Mises equivalent

stress must be lower than the ultimate stress of the material for skin, stringers and spars

within the checking zone of the GFEM:

g5 := max
LC={3,4}

σVM

σu 2024
− 1 ≤ 0, in Ωij

s ∩ Ωc−GFEM,

i = top, bot, j = FW,RW.

(17)

g6 := max
LC={3,4}

σVM

σu 7075
− 1 ≤ 0, in Ωij

b ∩ Ωc−GFEM,

i = top, bot, j = FW,RW,

(18)

g7 := max
LC={3,4}

σVM

σu 7075
− 1 ≤ 0, in Ωj

web ∩ Ωc−GFEM,

j = FW,RW,

(19)

where σu2024 and σu7075 are the ultimate stresses for AA2024 and AA7075, respectively,

as reported in Tab. 3.

Regarding DC4, it involves an eigenvalue buckling analysis performed on the most

critical stiffened panel extracted from the checking zone belonging to the GFEM, i.e. it is
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checked on Ωc−LFEM. It is expressed through the following inequality:

g8 := max
LC={3,4}

(

1−
λ

1.05

)

≤ 0, in Ωc−LFEM, (20)

where λ is the first buckling factor resulting from the LFEM.

DC5 is formulated as follows:

g9 := 7.5

p
∑

i=1

ni

Ni

−
1

4
≤ 0, (21)

where ni are the occurrences of the i-th out of p type of cyclic loads (defined as variations

of nz and characterised by average and amplitude stresses), whilst Ni is the number of

cycles to get failure evaluated by means of Eq. (1). Since the target life is 75000 flights

[49], and since the load spectrum in [50] contains 10066 flights, a correction factor equal

to 7.5 has been added.

Finally, DC6 is expressed by means of a set of explicit inequalities on the design

variables. Let tmin = 1.3 mm be the minimum admissible thickness; the skin thickness at

the tip section must be greater than or equal to tmin:

g10−13 := 1−
tijs (yroot)α

j
s

tmin
≤ 0, i = top, bot, j = FW,RW. (22)

Similar relationships apply for stringers and spar webs thickness at the tip section:

g14−15 := 1−
tjb(yroot)α

j
b

tmin
≤ 0, j = FW,RW, (23)

g16−17 := 1−
tjweb(yroot)α

j
s

tmin
≤ 0, j = FW,RW. (24)

The ratio of the stringer flange width (at the root section) to the stringer pitch must be

lower than 0.5, i.e.

g18−21 :=
wij
b (yroot)

pij
− 0.5 ≤ 0, i = top, bot, j = FW,RW. (25)
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The minimum width of the stringer flanges (at the tip section for both wings) must be

greater than or equal to wmin = 32 mm (this constraint is related to rivet joints).

g22−25 := 1−
wij
b (yroot)α

j
b

wmin
≤ 0, i = top, bot, j = FW,RW. (26)

Finally, stringers thickness must not be too much different from the skin thickness:

g26−29 := 0.8−
tjb(yroot)α

j
b

tijs (yroot)α
j
s

≤ 0, i = top, bot, j = FW,RW. (27)

Formally, the least-weight design problem of the PrP lifting system can be stated as a

classical CNLPP as follows:

minimize
ξ

Φ(ξ),

subject to gi(ξ,LC) ≤ 0, i = 1, . . . , 29,

lb ≤ ξ ≤ ub,

(28)

where lb and ub are, respectively, the lower and upper bound vectors (see Table 5).

3.3. Numerical strategy

Problem (28) is a non-convex CNLPP. The total number of design variables is 22,

whilst the number of optimisation constraints is 29. For the resolution of problem (28)

the GA ERASMUS [28] coupled with both GFEM and LFEMs of the structure has been

utilised as optimisation tool to perform the solution search, according to the flowchart

illustrated in Fig. 9. The GA ERASMUS has already been successfully applied to solve

different kinds of engineering problems, see for example [29, 31–37, 58, 59].

For each individual, at each iteration, the numerical tool performs global and local

FE analyses to calculate the objective function and the optimisation constraints. In par-

ticular, ERASMUS generates an input file (INPUT ANSYS.TXT) containing the current

values of the design variables, i.e. the components of ξ. Then, ERASMUS invokes the

macro ANSYS.MAC, i.e. the main macro implemented in ANSYS R© Parametric Design

Language (APDL), which creates both GFEM and LFEMs. This macro invokes the exe-

cutable file PYTHONEVAL.EXE, which is responsible for the wings geometry description.
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In particular, the executable file contains several Python scripts which, starting from ξ

and the external frozen geometry of the wing, are able to find the 3D-coordinates of the

intersection points between skins and stiffeners. Moreover, the executable decomposes

the lift distribution into as many forces and moments as many are the ribs, for each

of the three wings. Finally, PYTHONEVAL.EXE returns to ANSYS.MAC the updated

values of variables pjr , pij : nominal pitch values are modified to ensure equidistant and

homogeneously-distributed ribs and stringers.

Figure 9: Numerical strategy

If no error occurs in the generation of the GFEM, as detailed in Section 4, for each

individual, at each generation, the APDL script performs global and local FE analyses

to calculate the objective function and the optimisation constraints. These quantities are

passed to the ERASMUS code through the WING OUT.TXT file.

If an error during the generation of the GFEM occurs (mostly related to the fail of

Boolean operations), the objective function and the constraint functions gi, i = 1, . . . , 9

cannot be computed (because the GFEM and LFEMs cannot be generated). In such a

case, they are opportunely penalised and passed to the output file WING OUT.TXT. All
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the details about the modelling strategy are given in Section 4.1.

The GA elaborates the results provided by the GFEM and the LFEMs in order to ex-

ecute the genetic operations and generate new individuals. These operations are repeated

until the GA meets the user-defined convergence criterion.

The generic individual of the GA ERASMUS represents a potential solution for the

problem at hand. The genotype of the individual for problem (28) is characterised by

only one chromosome composed of 22 genes, each one coding a component of the vector

of design variables ξ.

4. The global-local finite element modelling approach

As stated above, the FE models integrated in the optimisation process are based on

a GL modelling approach. In particular, two different models are created. The GFEM is

used to assess the macroscopic behaviour of each wing, whilst refined LFEMs are generated

to properly evaluate local responses of the most critical stiffened panels for each region of

both FW and RW.

Of course, LFEMs are created only at the critical ZOIs identified during the global

analysis, thus suitable criteria must be developed to accomplish this task. Both GFEM

and LFEMs are fully parametric and are built using the commercial FE code ANSYS R©.

4.1. The global finite element model

As stated in the previous Section, the geometry of each wing is generated by means of

the executable PYTHONEVAL.EXE. In particular, the executable returns a file contain-

ing the coordinates of the points at the intersection between skins and stiffeners. These

information are passed to the APDL script which builds the GFEM. An overview of the

GFEM is given in Fig. 8.

Skin, ribs and spar webs are modelled with 4-node SHELL181 elements (Reissner-

Mindlin kinematics), while stringers and spar caps are modelled with 2-node BEAM188

elements (Timoshenko’s beam model). Beam and shell elements are connected together by

node merging. To take into account for the actual position of the beam cross-section with

respect to the skin, a section offset is applied to beam elements. Shear-tie components are
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not modelled, but their mechanical effect (the transfer of shear load from ribs to skin) is

ensured by the direct connection between ribs and skin elements.

When generating the mesh of the whole wing-box, a correction must me introduced,

due to the stringers runout. In the GFEM, stringer runouts occur at ribs, as illustrated

in Fig. 10. Therefore, as shown in Fig. 11, there would be many 5-Lines clusters which

ANSYS R© is not able to fill-in with an Area, unless lines lie in the same plane. To

Figure 10: FW kink (particular) and stringers runout.

Figure 11: Runout 5-point face

overcome such an issue, the following correction is introduced. With reference to Fig. 11,

a plane passing through points 1, 2 and 3 is generated, and points 4 and 5 are forced to

lie in such a plane, by modifying their vertical coordinate. Of course, such an operation

does not modify significantly the geometry of the wing-box because the magnitude of the
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correction is of the order of tenths of millimetre.

The generation of the wing geometry through a dedicated Python routine, as discussed

in Section 3.3, is mainly due to the possibility of performing such a correction. Another

reason to generate the geometry externally from ANSYS R© is is related to the fail of

Boolean operations, which may occur for particular configurations. One can create the

net representing the intersection of skin with ribs and stringers through intersection of

the skin (Area component) with working planes (or other similar methods available in

ANSYS R©). However, this strategy reveals, often, unstable: the intersections may not be

created, depending on the internal tolerance values related to Boolean operations. As

a consequence, the geometry is not correctly generated, and this jeopardises the overall

optimisation run.

The element type (linear or quadratic) and the mesh size have been chosen after per-

forming a sensitivity analysis, not reported here for the sake of brevity. An automatic

check has been implemented to prevent the generation of highly distorted shell elements

with a threshold aspect ratio equal to three. The mesh of shell elements is composed

mainly of quadrangular elements. Of course, triangular elements may occur in the 5-node

areas where stringer runouts take place.

As shown in Fig. 8, fillets connecting FW and RW to VW are not explicitly modelled;

MPC184 (multi-point constraint) elements with “rigid beam” behaviour (master-slave ap-

proach) are used to link extremal ribs nodes with the central master node, as illustrated

in Fig. 12.

Figure 12: Connection between FW and VW

Aerodynamic forces and moments are applied to a reference node which, for the sake
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of simplicity, is created at the centroid of each rib; the master node is then linked to the

boundary nodes of each rib via RBE3 elements, as shown in Fig. 13. Since AEROSTATE-

Figure 13: Force and moment application to ribs

AVL gives as an output the position of the pressure center, for each of the strips in which

the lifting surface is subdivided, transport moments can be easily evaluated.

As far as BCs of the GFEM are concerned, the 6 DOFs of the nodes lying at the root

rib of both FW and RW are null. A typical frontal deformed shape of the PrP wing, for

the two considered vertical load factors, is qualitatively illustrated in Fig. 14. It can be

appreciated the tendency to invert curvature (invert sign of bending stresses) in proximity

of tips [3].

(a) nz = 2.5 (b) nz = −1

Figure 14: Deformed shapes (frontal view)

After solving the GFEM for each LC, the checking zone, i.e. the Ωc−GFEM set, is

created. When creating Ωc−GFEM, two bays close to the root section, two bays close

to the connection to the VW, and two bays surrounding the kink rib are disregarded.

Furthermore, the two closest areas to the front and rear spar caps are not included for

each bay; similarly, bays having less then five stringers are not considered. As an example,

Fig. 15 shows the checking zone for the dorsal skin of the FW. Of course, the checking zone

for stringers and spar webs is generated in a similar way. The union of all these checking
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Figure 15: Reading set for FW dorsal skin

zones constitutes the set Ωc−GFEM.

Results provided by the GFEM are used for the evaluation of the objective function

and all the constraint functions except that related to buckling requirement, i.e. g8 of Eq.

(20).

4.2. The local finite element model

LFEMs are generated in order to evaluate structural phenomena which typically appear

at a smaller scale with respect to the GFEM one. In this work, the LFEMs are used to

assess the first buckling load of the most critical stiffened panel Ωc−LFEM, as discussed in

Section 3.

The automatic generation of LFEMs is anything but trivial, and it is characterised by

two issues which can be described through the following questions:

• How can one automatically identify the most critical stiffened panels, i.e. the ZOIs,

within the check zone of the GFEM?

• How can one automatically generate a refined FE model (i.e. the LFEM) integrating

the neighbourhood of the ZOI and able to describe both primary and secondary

buckling modes? In particular, this algorithm must be position-agnostic: the ZOIs

can be situated anywhere in Ωc−GFEM.

Instead of creating a LFEM for each ZOI of each wing, for every LC, in this study only

one LFEM is created for the most critical ZOI and for the most critical LC. The user can

define apriori the number of stringers to be included in the LFEM. For this study, this

number has been set equal to five, as shown in Fig. 16. The LFEM considers the portion
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Figure 16: Typical LFEM with 5 stringers (view and dimensions)

of Ωij
s ∪Ωij

b enclosed by two subsequent ribs; extinction zones of length
pij

2
are considered

on each side of the stiffened panel to mitigate edge effects due to the application of BCs.

The structural components are entirely modelled by using SHELL181 (Reissner-Mindlin

kinematics) elements. A dedicated meshing algorithm ensures the presence of at least

eight elements in the portion of skin among two consecutive stringers, and element ratio

is set as closest to the unitary value as possible.

Stringer flanges are tied to the skin via constraint equations at their interface nodes.

MPC184 are used to this purpose, as shown in Fig. 17. Dirichlet-type BCs are interpolated

Figure 17: LFEM particular

from the GFEM, for the most critic LC, and applied to the nodes of the skin located at

x = 0 and x = L (according to the frame of Fig. 16), as illustrated in Fig. 17. The load
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transfer from skin edges (where BCs are applied) to stringer edges (located at the same

value of the x coordinate) makes use of RBE3 elements, assuming as master the overlying

node of the skin, as clearly shown in Fig. 17.

Linear buckling analysis is performed on the LFEM, and the resulting first positive

eigenvalue λ(ξ) is used for the evaluation of constraint g8 of Eq. (20).

4.3. Criteria to identify the zones of interest

To keep computational times as low as possible, specific criteria have been implemented

in the presented MSO strategy, in order to reduce the number of LFEMs. As stated

beforehand, only one LFEM is created, for the most critical area in Ωc−GFEM, for the

most critical LC.

To automatically identify the ZOI, an approximated buckling factor is evaluated for

each skin panel delimited by two consecutive ribs and two consecutive stringers. The

approximation is based on an analytical formula for simply-supported rectangular plates

(having, in the considered case, dimensions pjr and pij), undergoing constant membrane

loads per unit width N s
11 and N s

22 (positive if tensile), where axis x1 is stringer-wise,

whilst axis x2 is normal to x1 and to the panel medium-plane outward normal. In order

to consider the presence of stringers, the normal force per unit length along x1 axis is

evaluated as:

N11 := N s
11 +

P 11
b

pij
, (29)

where P 11
b is the resultant (averaged) force of the two stringers delimiting the generic

plate.

The approximation of the buckling factor, for isotropic material, reads (see [60–62] for

the mathematical derivation):

λ := min
m,n
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, (30)

where D is the bending stiffness of the plate having thickness equal to tijs +
Aij

b

pij
, Young’s

modulus and Poisson’s ratio equal to the average of those reported in Tab. 3. Aij
b is the
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averaged cross-section area of stringers delimiting the plate. Eq. (30) is meaningful only

for plates where N11 and/or N22 are negative (compressive).

Finally, the most critical plate is identified by the Area ID number where

min
LCs

(λ) , with λ ≥ 0 occurs (i.e. the minimum value of λ for each skin panel among

all the considered LCs). A dedicated algorithm generates the neighbourhood of such an

area: the result is the LFEM, as shown in Fig. 16.

5. Results

The parameters of the GA ERASMUS, used to solve problem (28), are listed in Tab.

6; selection is performed by the roulette-wheel operator. Optimisation constraints are

Table 6: GA ERASMUS parameters

Parameter Description Value

npop N. of populations 1
nind N. of individuals 220
nmax
gen Max. n. of generations 100

pcross Crossover probability 0.85
pmut Mutation probability 1/nind

handled via Automatic Dynamic Penalisation (ADP) method [63]. The whole optimisa-

tion process requires a computational time of approximately 11 days when four cores of

a machine with an Intel Xeon E5-2697v2 processor (2.7-3.5 GHz) are dedicated to the

ANSYS R© solver.

The history of the best solution, for each generation, is reported in Fig. 18. As it can

been inferred from this figure, the best individual (and, thus, all the individuals within

the two populations) is infeasible because at least one constraint is not satisfied. However,

thanks to the ADP method, the GA is able to find a feasible solution after only 4 iterations

and to converge towards a pseudo-optimal solution after 80 generations. The objective

function value does not substantially decrease after 80 iterations. The values of design

variables for the optimised wing-box configuration are reported in Tab. 7, whilst objective

function and most significant constraints values are resumed in Tab. 8.

As shown in Tab. 7, with respect to Tab. 5, some variables lie on the upper bound of

the corresponding range; in particular, the rib pitches assume the largest possible values.

Furthermore, the optimised solution is characterised by a value of parameter αj
s near to
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Figure 18: Convergence history

Table 7: Optimisation variables values for the optimal individual

Variable FW RW
top bot top bot

αj
s [−] 0.12 0.21

αj
b [−] 0.66 0.72

tijs (yroot) [mm] 13.1 12.4 11.1 7.9

tjb(yroot) [mm] 6.5 9.2

wij
b (yroot) [mm] 59 68 45 50

tjweb(yroot) [mm] 10.9 14.4

pjr [mm] 600 600
pij [mm] 155 155 170 160

Table 8: Objective function and constraints values for the optimal individual

Function Value

Φ Kg 11920

g1 −0.303
g2 −0.001
g3 −0.247
g4 −0.034
g5 −0.331
g6 −0.359
g7 −0.452
g8 −0.291
g9 −0.057
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the lower bound, which means that quantities which scale span-wise with these parameters

tend to be as tapered as possible.

It is noteworthy that stringers geometrical dimensions and pitches are almost similar

between dorsal and ventral side of both FW and RW. This fact can be justified as follows:

for a PrP lifting system, there exist changes in bending curvature in proximity of the

wing tips, as shown in Fig. 14. For a given LC, it means that there is no more a single

side withstanding tension loads, whilst the other subjected to compression ones, as in

conventional wings. This fact implies that both dorsal and ventral regions of each wing

must be checked for buckling and static failures, and that both compressive and tension

loading conditions are of paramount importance for each region of the structure. The

choice of a non-rigid link between FW-VW and RW-VW may alleviate this tendency.

As far as constraints and the final wing-box mass are concerned, Tab. 8 shows that

the solution lies on the boundary of static requirements g2, g4 and g9. Buckling is not an

active constraint in the optimal solution. This can be explained with the aforementioned

fact that the change of curvature in the deformed wing does not give rise to a dramatic

compressed zone in proximity of root sections, as expected for conventional wings.

Although a different PrP geometry, in [3] authors obtain a structural mass of 22034

Kg for a MTOW of 230000 Kg (9.58% of MTOW), for a formulation of problem (28)

similar (though simpler) to the one considered in this paper. It must be stressed that the

optimised solution obtained in the present study has been searched by means of a more

rigorous multi-scale approach, if compared to the problem formulation in [3]. Furthermore,

considering additional mass due to systems and other non-structural components, the mass

of the complete lifting system, in percentage of MTOW, is close to that of a conventional

aircraft. Hence, one may conclude the optimised configuration presented in this paper is

likely to be aligned to this trend.

6. Conclusions

A multi-scale optimisation strategy for designing the PrandtlPlane lifting system ar-

chitecture, by integrating a dedicated global-local modelling approach, has been presented

in this work.
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The problem has been formulated as a CNLPP, involving constraints of different na-

ture. The formulation of the numerous design requirements needs the assessment of the

structure response, at each pertinent scale, under various load cases. To this purpose,

fully-parametric scripts have been developed to build global and local FE models in a

commercial FE software. The LFEM is automatically generated only for the most critical

ZOI, which is identified by means of a suitable criterion, during the GFEM post-processing

phase. The solution search has been performed via the GA ERASMUS developed at the

I2M laboratory in Bordeaux.

Both the problem formulation and the MSO strategy avoid the introduction of sim-

plifying hypotheses, which may dramatically affect the design space, so preventing the

possibility to find a true global optimum solution. Moreover, by employing a global-local

FE modelling approach, more accurate and trustworthy results are obtained, with respect

to those found by means of simplified models. Finally, the whole process is fully-automated

and does not need the user intervention.

The effectiveness of the proposed MSO strategy is proven on a meaningful design case:

the structural optimisation of a metallic wing-box of a PrP aircraft. However, the strategy

can be easily extended to conventional wing-boxes. The optimised configuration for the

presented design case seems to be realistic: results are in agreement with the up-to-date

knowledge of PrP aircraft.

As far as perspectives of this work are concerned, the formulation of the problem will

be enhanced by taking into account the compliance of the fuselage, for a more realistic

design. A preliminary research action is conducted in this sense and aims at developing

suitable (i.e. optimised) superelements integrating the fuselage stiffness. In this case, a

two-way MSO approach should be realised on both wing and fuselage of the PrandtlPlane

in order to obtain a true optimal configuration.

Moreover, research is ongoing in order to extend the MSO strategy to the case of

structures made of composite materials, in particular considering blending constraints. Of

course, in this case, the design problem formulation must integrate requirements perti-

nent to composite solutions, e.g. suitable failure criteria at each scale (lamina-level and

constitutive phases-level), delamination criteria, manufacturing requirements, etc.
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