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Abstract: Recent evidence suggests that a high glycemic load (GL) diet is a risk factor for dementia,
especially among apolipoprotein E ε4 allele (APOE4) carriers, while its association with cognitive
decline is poorly known. Here, we investigated the association of high-GL meals with cognitive
decline in older adults during a 12-year follow-up, according to their APOE4 carrier status. We used
random-effect models and data from 2539 elderly participants from the Three-City study who
completed a food frequency questionnaire (FFQ) to longitudinally assess the association of GL
with changes in different cognitive domains (verbal fluency, visual memory, attention, visual
motor processing speed, episodic memory). In APOE4 carriers, afternoon snack with high GL
was significantly associated with cognitive decline in visual memory, episodic memory, and global
cognition compared with APOE4 non-carriers. This study suggests a detrimental association between
a high-GL diet and cognitive decline. The promotion of a low GL diet as a target to prevent cognitive
decline in high-risk populations deserves more research.
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1. Introduction

In aging societies, cognitive health has become a major concern. Currently, there is no effective
pharmacological treatment for dementia and cognitive decline. Therefore, the identification of
modifiable risk factors that could delay or prevent cognitive decline has become a key public health
research axis [1]. Promisingly, some evidences suggest that cognitive function integrity may be
promoted by healthy diets and some nutritional factors [2]. Moreover, diet can interact with the
apolipoprotein E ε4 allele (APOE4) [3,4], the main genetic risk factor of dementia.

APOE4 carriers represent 14 to 15% of the general population and are quite stable [5,6].
They had three fold-increased risk of Alzheimer’s disease than APOE4 non-carriers [7] and represent
around 65% among Alzheimer’s disease patients [6,8]. ApoE is mostly involved in lipid transport,
cholesterol homeostasis and synaptic plasticity but also mitochondrial function and insulin signaling [9].
Specifically, APOE4 status may modulate the metabolic response to diet interventions [10]. Notably,
APOE4 carriers show early deficits in cerebral glucose metabolism [11,12], and recent findings strongly
suggest that APOE4 carriers are less sensitive to insulin [8,13]. A causal link between insulin metabolism
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and the pathogenesis of dementia has been suggested [14,15]. Thus, optimizing blood glucose and
insulin responses through nutritional interventions based on a low glycemic load (GL) diet could be
particularly relevant to prevent cognitive decline in these individuals.

In this context, our recent work highlighted that high-GL diet, which reflects an elevated intake of
refined carbohydrates, increases the risk of dementia in APOE4 carriers [16]. Yet, the impact of the diet
GL on long-term cognitive performance, especially in the different cognitive domains (verbal fluency,
visual memory, attention, visual motor processing speed, episodic memory), is poorly understood.
Only one longitudinal study found that the diet GL was significantly related to lower decline in
verbal ability [17], and no study tested the potential interaction with APOE4 status. Cognitive decline
precedes the onset of dementia but may also be a marker of brain aging. The use of cognitive tests
enables the identification of the different cognitive functions effectively associated with the GL diet
and which ones are the most affected.

Moreover, meals have a different nutritional composition that will not bring the same glycemic
response [18]. During meals, carbohydrates are rarely ingested alone, and their degradation and
absorption rates during digestion are modified by the other macronutrients (i.e., matrix effect).
The glycemic response will be more important after intake of a meal rich in refined carbohydrates,
and poor in fibers, fat, and proteins [19,20]. Thus, meals that are generally higher in refined
carbohydrates, such as breakfast and snacks, may induce a higher glycemic response and consequently
increase the risk of cognitive decline. However, the effect of the GL of the different meals on the
different cognitive domains has been rarely studied.

In the present study, we determined whether high-GL diet was associated with cognitive
changes in the different cognitive domains during a 12-year follow-up using data from a large
population-based prospective cohort study (the Three-City study). We evaluated the role of APOE4
status on the association between GL and cognitive changes, and the impact of the GL of each meal type
(daily, breakfast, lunch, afternoon snack, and dinner) on this association.

As we previously observed an interaction between GL and APOE4 only for the afternoon snack
(snack between lunch and dinner) [16], we hypothesized that, in APOE4 carriers, the afternoon -snack
GL might be associated with a greater decline in cognitive performance over time.

2. Materials and Methods

2.1. Study Sample

Participants (n = 9294) were recruited from the Three-City (3C) cohort of community-dwelling
individuals, aged 65 years and over, from the electoral rolls of three French cities (Bordeaux, n = 2104;
Dijon, n = 4931; and Montpellier, n = 2259), enrolled between 1999 and 2001. A detailed description of
the 3C study has been provided elsewhere [21]. The Ethical Committee of the University Hospital of
Kremlin-Bicêtre (France) approved the 3C protocol (Project no. 99-28, June 1999), and all participants
signed an informed consent. Participants from the Bordeaux and Montpellier 3C centers had face-to-face
interviews with trained nurses and neuropsychologists at baseline, and at 2, 4, 7, 10, 12 and 15 years of
follow-up. Standardized questionnaires were used to collect data on socio-demographic, clinical and
lifestyle characteristics. A Food Frequency Questionnaire (FFQ) was administered to participants from
the Bordeaux and Montpellier 3C centers at the 2-year follow-up and 4-year follow-up visit, respectively
(Figure 1). Thus, the baseline of the present analyses was the 2-year follow-up visit for Bordeaux
and the 4-year follow-up visit for Montpellier. This subsample has been previously described [16].
Participants with prevalent dementia at the baseline of the present analyses were excluded (n = 174).
Participants with type 2 diabetes (defined as treated diabetes, fasting , and self-reported) at baseline
were excluded from the analyses (n = 341, 18% were APOE4 carriers) because they were at risk of
cognitive decline and followed a low GL diet (due to their treatment and diet changes). Finally,
the maximum sample for the main analyses included 2539 participants (Figure 2).
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Figure 1. Time frame of the three-city study. Neuropsychological evaluations and dementia diagnoses 
were made at each follow-up visit. Participants completed the FFQ at the 2-year follow-up visit 
(Bordeaux center) or at the 4-year follow-up visit (Montpellier center). BVRT, Benton Visual Retention 
Test; FCSRT, Free and Cued Selective Reminding Test; FFQ, Food Frequency Questionnaire; IST, 
Isaacs Set Test; MMSE, Mini Mental State Examination; TMT, Trail Making Test. 

 
Figure 2. Three-City study flow chart. 

2.2. Dietary Data 

Dietary data were collected using the 148-item FFQ. The FFQ was divided into breakfast, lunch, 
dinner, and snacks between meals, and was described elsewhere [16]. For each FFQ item (i.e., 
food/beverage categories), the GL was calculated as the product of the glycemic index (GI) and the 
amount of available carbohydrates in a standard serving size, divided by 100 [22]. Foods with low 
carbohydrate content (e.g., meat, fish, fats, vegetables) were assigned a null GL value. GI values and 
serving sizes were obtained from the International Table of Glycemic Index [23] and internet updates 
[24], using glucose as a reference. Then, the GL of each item was multiplied by the reported frequency 
of that item per week. Finally, the sum of this last value for all the items consumed during a meal 
gave the total GL for breakfast, lunch, afternoon snack (“goûter” in French, corresponding to a snack 
between lunch and dinner), and dinner. The sum of all GL gave the daily GL. Energy intakes (EI) 
were obtained from the Anses-Ciqual database [25]. The EI per serving of each item was multiplied 
by the reported frequency. Then, the sum of the EI for the items consumed during a meal gave the EI 
for breakfast, lunch, afternoon snack, and dinner. The sum of all EI gave the daily EI. 

2.3. Neuropsychological Evaluation and Dementia Diagnosis 

A battery of cognitive tests was administered by trained neuropsychologists with standard 
procedures at baseline and at each follow-up (2, 4, 7, 10, 12 and 15 years). The evaluation took place 

Figure 1. Time frame of the three-city study. Neuropsychological evaluations and dementia diagnoses
were made at each follow-up visit. Participants completed the FFQ at the 2-year follow-up visit (Bordeaux
center) or at the 4-year follow-up visit (Montpellier center). BVRT, Benton Visual Retention Test; FCSRT,
Free and Cued Selective Reminding Test; FFQ, Food Frequency Questionnaire; IST, Isaacs Set Test;
MMSE, Mini Mental State Examination; TMT, Trail Making Test.

Nutrients 2020, 11, x FOR PEER REVIEW 3 of 14 

 

 
Figure 1. Time frame of the three-city study. Neuropsychological evaluations and dementia diagnoses 
were made at each follow-up visit. Participants completed the FFQ at the 2-year follow-up visit 
(Bordeaux center) or at the 4-year follow-up visit (Montpellier center). BVRT, Benton Visual Retention 
Test; FCSRT, Free and Cued Selective Reminding Test; FFQ, Food Frequency Questionnaire; IST, 
Isaacs Set Test; MMSE, Mini Mental State Examination; TMT, Trail Making Test. 

 
Figure 2. Three-City study flow chart. 

2.2. Dietary Data 

Dietary data were collected using the 148-item FFQ. The FFQ was divided into breakfast, lunch, 
dinner, and snacks between meals, and was described elsewhere [16]. For each FFQ item (i.e., 
food/beverage categories), the GL was calculated as the product of the glycemic index (GI) and the 
amount of available carbohydrates in a standard serving size, divided by 100 [22]. Foods with low 
carbohydrate content (e.g., meat, fish, fats, vegetables) were assigned a null GL value. GI values and 
serving sizes were obtained from the International Table of Glycemic Index [23] and internet updates 
[24], using glucose as a reference. Then, the GL of each item was multiplied by the reported frequency 
of that item per week. Finally, the sum of this last value for all the items consumed during a meal 
gave the total GL for breakfast, lunch, afternoon snack (“goûter” in French, corresponding to a snack 
between lunch and dinner), and dinner. The sum of all GL gave the daily GL. Energy intakes (EI) 
were obtained from the Anses-Ciqual database [25]. The EI per serving of each item was multiplied 
by the reported frequency. Then, the sum of the EI for the items consumed during a meal gave the EI 
for breakfast, lunch, afternoon snack, and dinner. The sum of all EI gave the daily EI. 

2.3. Neuropsychological Evaluation and Dementia Diagnosis 

A battery of cognitive tests was administered by trained neuropsychologists with standard 
procedures at baseline and at each follow-up (2, 4, 7, 10, 12 and 15 years). The evaluation took place 

Figure 2. Three-City study flow chart.

2.2. Dietary Data

Dietary data were collected using the 148-item FFQ. The FFQ was divided into breakfast,
lunch, dinner, and snacks between meals, and was described elsewhere [16]. For each FFQ item
(i.e., food/beverage categories), the GL was calculated as the product of the glycemic index (GI) and
the amount of available carbohydrates in a standard serving size, divided by 100 [22]. Foods with
low carbohydrate content (e.g., meat, fish, fats, vegetables) were assigned a null GL value. GI values
and serving sizes were obtained from the International Table of Glycemic Index [23] and internet
updates [24], using glucose as a reference. Then, the GL of each item was multiplied by the reported
frequency of that item per week. Finally, the sum of this last value for all the items consumed during a
meal gave the total GL for breakfast, lunch, afternoon snack (“goûter” in French, corresponding to a
snack between lunch and dinner), and dinner. The sum of all GL gave the daily GL. Energy intakes (EI)
were obtained from the Anses-Ciqual database [25]. The EI per serving of each item was multiplied by
the reported frequency. Then, the sum of the EI for the items consumed during a meal gave the EI for
breakfast, lunch, afternoon snack, and dinner. The sum of all EI gave the daily EI.

2.3. Neuropsychological Evaluation and Dementia Diagnosis

A battery of cognitive tests was administered by trained neuropsychologists with standard procedures
at baseline and at each follow-up (2, 4, 7, 10, 12 and 15 years). The evaluation took place at any time of
the day, depending on the time of participants’ enrollment. Cognitive tests evaluated different cognitive
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domains (Figure 1). The Isaacs Set Test (IST) [26] measures verbal fluency: participants had 30 s to
generate as many words as possible within a given semantic category (animals, colors, fruits and cities).
The Benton Visual Retention Test (BVRT) [27] evaluates immediate visual memory. The scores range
from 0 to 15. The Trail Making Test, forms A and B (TMTA and TMTB) [28], evaluates attention
and visual motor processing speed. TMTB also assesses executive functions. The score is the task
execution time (time in seconds). Thus, a higher score corresponds to a lower cognitive performance.
The French version [29] of the Free and Cued Selective Reminding Test (FCSRT) [30] evaluates verbal
episodic memory [31]. Free and cued recalls are repeated three times, and the delayed recall phase
is performed 20 min later. Given the non-normal distribution of the “total immediate recall score”
and the “total delayed recall score”, only the “free immediate recall score” (FIRS, sum of the number of
words retrieved at the three free recall trials) and the “free delayed recall score” (FDRS, number of
words retrieved at the delayed free recall trial) were used. Finally, the widely used Mini Mental State
Examination (MMSE) [32] was used as an index of global cognitive performance. The score ranges
from 0 to 30.

All cognitive tests were administered at baseline and at each follow-up, except the TMT that was
not proposed at the 2-year follow-up visit, and the FCSRT that was administered only at the 7-, 10-, 12-
and 15-year follow-up visit. For each cognitive test, participants with at least two measures during
the follow-up where included in the analyses. Finally, because of sparse missing data, the analyses
involved, in APOE4 non-carriers and APOE4 carriers respectively: 1815 and 401 participants for IST,
1794 and 401 for BVRT, 1612 and 348 for TMTA, 1593 and 348 for TMTB, 1351 and 278 for FIRS, 1348 and
275 for FDRS, 1831 and 409 for MMSE.

To identify prevalent and incident dementia cases, according to their neuropsychological test
scores, participants with suspected dementia, at baseline and at each follow-up, were examined by a
neurologist. Then, an independent committee of neurologists evaluated all potential cases of dementia
to obtain a consensus on the diagnosis and etiology based on the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition [33].

2.4. Covariates

Apolipoprotein E genotyping was described elsewhere [34]. APOE4 carriers had at least one
ε4 allele. Education level was defined as no school, primary school, high school, or graduated level.
Body mass index (BMI) was calculated as weight (kg)/height2 (m). Hypertension was defined by
systolic blood pressure≥ 140 mmHg, or diastolic blood pressure≥ 90 mmHg, or use of antihypertensive
drugs [35]. History of stroke was established using standardized questions. Cardiovascular history
included history of myocardial infarction, coronary surgery, coronary angioplasty, and arterial surgery
of the legs for arteritis. Hypercholesterolemia was defined as total cholesterol ≥ 6.2 mmol.L−1.
Depressive symptomatology was evaluated with the Center for Epidemiological Studies-Depression
(CES-D) scale [36] using the recommended French cut-off scores of 17 and 23 for clinically relevant
depressive symptom burden in older men and women, respectively [37]. Smoking status (never, past,
or current) was also investigated. The Mediterranean-like diet score was used to control for diet quality,
as previously described [16]. Physical activity was defined as none, or low/regular [38].

2.5. Statistical Analyses

2.5.1. Main Analyses

Linear random-effect models were used to evaluate the association between GL and cognitive score
changes over the 12-year follow-up. We used the lme function from the nlme R package with random
intercept and slope (time), and unstructured covariance structure. Normal distributions of cognitive
scores were checked with histograms. To normalize distributions, TMT scores were transformed using
the natural logarithm function. The linearity assumption between cognitive score and GL was assessed
by testing the loglikehood difference between two models: one model with GL tertiles as continuous
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variable and one model with GL tertiles as categorical variable. As the relationship between GL and
cognitive scores was nonlinear, cut-offs were chosen a priori according to tertiles. The GL categories
were defined as low, middle and high tertile. For daily GL, the cut-offs were: <93, 93 to <119 and ≥119
per day. For breakfast GL, the cut-offs were: <19, 19 to 28, ≥28 per day. For lunch GL, the cut-offs were:
<29, 29 to 36, ≥36 per day. For afternoon snack, the cut-offs were: null value, 0 to 10, ≥10 per day.
For dinner, the cut-offs were: <28, 28 to 36, ≥36 per day.

The β coefficient for the GL tertiles represents the association of GL with each baseline mean
cognitive score. The β coefficient for the GL tertile × time interaction represents the association of GL
with the cognitive score changes over time, expressed as a score change per year. For MMSE, BVRT,
IST and FCSRT, a negative β coefficient indicates a decrease in the cognitive change slope. For TMT,
a negative β coefficient indicates an increase in the cognitive change slope.

These models were adjusted for potential confounding factors (based on literature data) including
time, center, age, sex, education level, APOE4, EI, BMI, hypertension, cardiovascular history, stroke
history, hypercholesterolemia, CES-D score, smoking status, Mediterranean-like diet, and physical
activity. For each confounding factor, the interaction with time was tested and was added it to the
models when significant (i.e., center × time, age × time, sex × time, and education level × time).

To test the APOE4 effect on the relationship between GL and cognitive performance, an interaction
term with APOE4 status was added to the GL tertile and GL tertile x time in each model. In that case,
the β coefficient for the GL tertile × time × APOE4 interaction represents the additive effect of APOE4
status to the main effect (i.e., the β coefficient for the GL tertile × time alone) on the cognitive score
changes over time, expressed as a score change per year.

As some models showed a significant GL tertile × time × APOE4 interaction, analyses were
stratified by APOE4 status (i.e., APOE4 non-carriers and APOE4 carriers).

2.5.2. Sensitivity Analyses

In sensitivity analyses, the same analyses were repeated after excluding individuals with incident
dementia (n = 337).

2.5.3. Imputation of Missing Values

Data on physical activity were missing for 14%, on Mediterranean-like diet for 7%, and on
hypercholesterolemia for 3% of the main study sample. Incomplete variables were imputed by multiple
imputation using the mice R package [39], as previously described [16].

All statistical analyses were carried out with the R 3.4.3 software [40].

3. Results

3.1. Population Characteristics

Table 1 describes the demographic and clinical characteristics of the 2539 participants selected for
this study and grouped according to their daily GL tertile (low, middle and high). The participants’
mean age at the time of FFQ completion (i.e., baseline) was 76 years ± 4.9. The high daily GL
group was characterized by a lower percentage of women, older age, higher level of physical activity,
higher Mediterranean-like diet score, higher EI, lower BMI, and lower percentage of participants
with hypertension. Participants from the Montpellier center were more numerous in the high daily
GL tertile.

Participants consuming afternoon snack were more likely to be women. They had a higher energy
intake but they also tended to practice more often physical activity, had a better Mediterranean diet
score and had a slightly lower BMI (Table S1).
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Table 1. Description of the study population (n = 2539).

Characteristics
Mean (SD) or n (%)

Daily Glycemic Load Tertiles

Low
(<93)

n = 846

Middle
(93 to <119)

n = 845

High
(≥119)

n = 848
p Value 1

Montpellier center 342 (40.4) 390 (46.2) 527 (62.1) <0.0001
Age (years) 75.9 (4.8) 75.5 (4.8) 76.4 (4.9) 0.038

Women 572 (67.6) 512 (60.6) 515 (60.7) 0.003
Education level 0.19

No school 231 (27.3) 216 (25.6) 208 (24.5)
Primary school 237 (28) 265 (31.4) 224 (26.4)

High school 192 (22.7) 183 (21.7) 210 (24.8)
Graduated 185 (21.9) 178 (21.1) 204 (24.1)

MMSE (IQR) 28 (27-29) 28 (27-29) 28 (27–29) 0.805
APOE4 carriers 142 (16.8) 156 (18.5) 144 (17) 0.539

BMI (kg/m2) 26.1 (4.1) 25.6 (3.9) 24.8 (3.4) <0.0001
Hypertension 521 (61.6) 487 (57.6) 465 (54.8) 0.017

Cardiovascular history 90 (10.6) 82 (9.7) 77 (9.1) 0.555
Stroke history 37 (4.4) 25 (3) 39 (4.6) 0.173

Hypercholesterolemia 464 (54.8) 475 (56.2) 452 (53.3) 0.486
Depressive symptomatology 2 74 (8.7) 56 (6.6) 70 (8.3) 0.238
Tobacco use (current or past) 337 (39.8) 310 (36.7) 300 (35.4) 0.15

Mediterranean-like diet 4.3 (1.6) 5 (1.6) 5.5 (1.5) <0.0001
Physical activity 251 (29.7) 274 (32.4) 317 (37.4) 0.002

Energy intake (kJ/day) 3553.2 (698.8) 4694.5 (656.2) 6379.4 (1476.5) <0.0001
1 Chi-square test for categorical variables, ANOVA or Kruskal–Wallis test for continuous variables. 2 evaluated with
the Center for Epidemiological Studies-Depression scale. APOE4, Apolipoprotein E ε4 allele; BMI, Body Mass Index;
IQR Interquartile range; MMSE, Mini Mental State Examination; SD, standard deviation.

3.2. Main Analyses

The GL tertile × time × APOE4 interaction was not significant for daily GL, lunch GL, and dinner
GL (Table S2). The interaction high breakfast GL x time x APOE4 was associated with reduced BVRT,
the interaction middle breakfast GL × time × APOE4 was associated with reduced MMSE. As expected,
the interaction afternoon snack GL × time × APOE4 was significant. The interaction high afternoon
snack GL × time × APOE4 was associated with decreased of cognitive score through time regarding
IST, TMTA, FIRS, and MMSE.

3.2.1. Association between GL and Cognitive Changes in APOE4 Non-Carriers (12-Year Follow-up)

In APOE4 non-carriers (Table 2), the middle daily GL tertile was significantly associated with
better TMTA performance over time (−0.30 s per year). Likewise, the middle and high-GL tertiles
for lunch were associated with improved TMT performance over time. The GL high tertile for lunch
was associated with lower baseline scores for IST, BVRT, and TMTA. Breakfast, afternoon snack and
dinner GL did not seem to be related to cognitive changes. However, the high-GL tertile for dinner
was associated with a lower baseline TMT scores compared with the low tertile (i.e., the reference)
(−3.43 s for TMTA and −7.76 s for TMTB).

3.2.2. Association between Glycemic Load and Cognitive Changes in APOE4 Carriers (12-Year
Follow-up)

In APOE4 carriers (Table 3), the middle GL tertile for breakfast was associated with decreasing
MMSE scores (−0.14 points per year). The afternoon snack GL was associated with cognitive decline,
particularly between middle tertile and BVRT score (−0.07 points per year), high tertile and FDRS score
(−0.18 points per year), and high tertile and MMSE score (−0.16 points per year).
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Table 2. Associations of glycemic load with cognitive changes in APOE4 non-carriers (12-year follow-up).

Glycemic Load
IST

n = 1815
BVRT

n = 1794
log(TMTA)

n = 1612
log(TMTB)

n = 1593
FIRS

n = 1351
FDRS

n = 1348
MMSE

n = 1831

β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)

Daily

Middle −0.159 (0.654) −0.1 (0.12) 0.003 (0.026) 0.01 (0.029) 0.649 (0.654) 0.304 (0.285) −0.096 (0.119)
High −0.103 (0.82) −0.129 (0.146) 0.023 (0.032) −0.004 (0.035) 0.944 (0.757) 0.411 (0.326) 0.03 (0.147)

Middle × time 0.102 (0.056) 0.008 (0.012) −0.006 * (0.003) −0.003 (0.003) 0.015 (0.075) 0.003 (0.034) 0.022 (0.024)

High × time 0.086 (0.055) 0.01 (0.012) −0.004 (0.003) −0.001 (0.003) 0.045 (0.073) 0.007 (0.033) −0.015 (0.024)

Breakfast

Middle 0.608 (0.579) 0.073 (0.109) -0.033 (0.024) −0.031 (0.026) −0.965 (0.604) 0.136 (0.267) 0.058 (0.105)
High 0.136 (0.67) 0.033 (0.122) 0.015 (0.027) −0.036 (0.029) −0.31 (0.644) 0.026 (0.28) 0.07 (0.121)

Middle × time 0.031 (0.057) −0.005 (0.012) 0 (0.003) 0.002 (0.003) 0.136 (0.076) −0.014 (0.035) 0.023 (0.024)

High × time 0.08 (0.054) 0.015 (0.012) −0.003 (0.003) 0 (0.003) 0.09 (0.071) 0.01 (0.032) 0.023 (0.023)

Lunch

Middle −1.312 * (0.6) −0.07 (0.114) 0.027 (0.025) 0.067 (0.027) 0.292 (0.627) −0.279 (0.274) 0.017 (0.11)
High −1.904 ** (0.732) −0.324 * (0.133) 0.074 * (0.029) 0.066 (0.032) 0.124 (0.687) −0.1 (0.297) −0.054 (0.132)

Middle × time 0.021 (0.057) −0.008 (0.012) −0.001 (0.003) −0.008 ** (0.003) −0.055 (0.077) 0.026 (0.035) −0.021 (0.024)

High × time 0.102 (0.054) 0.011 (0.012) −0.006 * (0.003) −0.006 * (0.003) 0.064 (0.072) 0.025 (0.033) −0.012 (0.023)

Afternoon
snack

Middle −2.125 (5.936) −0.552 (0.964) −0.003 (0.216) −0.07 (0.225) −2.922 (4.169) −0.029 (1.732) −0.328 (1.035)
High −2.924 (5.978) −0.61 (0.972) 0.019 (0.217) −0.047 (0.227) −3.165 (4.205) 0.16 (1.747) −0.44 (1.043)

Middle × time −0.054 (0.054) −0.006 (0.012) −0.002 (0.003) −0.002 (0.003) 0.026 (0.072) −0.016 (0.033) −0.016 (0.023)

High × time 0.038 (0.056) −0.006 (0.012) −0.002 (0.003) 0.001 (0.003) 0.106 (0.074) 0.001 (0.034) −0.035 (0.024)

Dinner

Middle 0.565 (0.601) −0.065 (0.113) 0.033 (0.025) 0.054 (0.027) −0.056 (0.616) −0.19 (0.269) −0.178 (0.109)
High 0.194 (0.778) −0.204 (0.138) 0.064 * (0.03) 0.072 * (0.033) 0.212 (0.71) −0.03 (0.305) −0.066 (0.139)

Middle × time 0.027 (0.056) 0.017 (0.012) 0.002 (0.003) 0.002 (0.003) 0.046 (0.075) 0.039 (0.034) 0.045 (0.024)

High × time −0.015 (0.053) 0.019 (0.012) −0.003 (0.003) −0.001 (0.003) −0.02 (0.071) 0.015 (0.032) 0.001 (0.023)

Linear random-effect models adjusted for time, center, age, sex, education level (and their interaction with time), energy intake, BMI, hypertension, cardiovascular history, stroke history,
hypercholesterolemia, CES-D score, smoking status, Mediterranean-like diet score, and physical activity. Results showing a trend (p < 0.07) and significant results (* p < 0.05; ** p < 0.01)
are in bold. APOE4, Apolipoprotein E ε4 allele; BVRT, Benton Visual Retention Test; FIRS, Free Immediate Recall Score; FDRS, Free Delayed Recall Score; IST, Isaacs Set Test; MMSE,
Mini Mental State Examination; SE, standard error; TMT, Trail Making Test.
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Table 3. Associations of glycemic load with cognitive change in APOE4 carriers (12-year follow-up).

Glycemic Load
IST

n = 401
BVRT

n = 401
log(TMTA)

n = 348
log(TMTB)

n = 348
FIRS

n = 278
FDRS

n = 275
MMSE
n = 409

β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)

Daily

Middle −0.719 (1.402) −0.049 (0.259) 0.04 (0.059) −0.024 (0.065) −0.018 (1.58) −0.037 (0.706) 0.183 (0.266)
High −1.476 (1.741) 0.115 (0.316) 0.034 (0.071) −0.034 (0.077) 0.428 (1.811) 0.747 (0.799) 0.141 (0.332)

Middle × time 0.086 (0.134) −0.009 (0.033) 0.002 (0.006) −0.002 (0.007) −0.033 (0.2) 0.03 (0.093) −0.013 (0.062)

High × time 0.042 (0.131) −0.031 (0.032) 0.007 (0.006) 0.001 (0.006) −0.167 (0.196) −0.103 (0.09) −0.028 (0.062)

Breakfast

Middle −1.571 (1.237) −0.055 (0.234) 0.037 (0.054) −0.022 (0.058) −0.771 (1.475) −0.649 (0.654) 0.088 (0.238)
High −1.647 (1.444) −0.201 (0.267) 0.065 (0.059) −0.06 (0.064) 0.192 (1.534) −0.133 (0.677) 0.165 (0.279)

Middle × time −0.11 (0.134) −0.041 (0.034) 0.003 (0.007) 0.002 (0.007) −0.095 (0.2) −0.007 (0.092) −0.143 * (0.061)

High × time 0.018 (0.126) −0.053 (0.031) 0.002 (0.006) 0.004 (0.006) −0.269 (0.18) −0.076 (0.083) −0.051 (0.057)

Lunch

Middle −0.772 (1.27) 0.006 (0.242) 0.114 * (0.055) −0.005 (0.06) 1.738 (1.521) 0.325 (0.683) 0.032 (0.246)
High −0.202 (1.58) 0.219 (0.293) 0.085 (0.065) −0.066 (0.07) 0.545 (1.674) −0.452 (0.76) −0.162 (0.302)

Middle × time 0.038 (0.132) 0.021 (0.033) −0.01 (0.006) −0.001 (0.006) −0.09 (0.195) −0.007 (0.089) 0.039 (0.06)

High × time 0.011 (0.131) −0.024 (0.032) −0.006 (0.006) 0.002 (0.006) −0.082 (0.188) −0.055 (0.087) −0.024 (0.06)

Afternoon snack

Middle 15.27 (8.8) 0.896 (1.499) −0.032 (0.322) 0.082 (0.345) −0.888 (6.569) −1.579 (2.938) −2.218 (1.747)
High 14.429 (8.908) 0.421 (1.524) 0.071 (0.326) 0.277 (0.349) 0.386 (6.723) −1.213 (3.01) −2.522 (1.77)

Middle × time −0.069 (0.133) −0.071 * (0.033) 0.004 (0.006) 0.005 (0.007) 0.081 (0.198) −0.005 (0.091) −0.04 (0.06)

High × time −0.183 (0.129) −0.04 (0.032) 0.011 (0.006) 0.002 (0.006) −0.343 (0.188) −0.175 * (0.087) −0.158 ** (0.059)

Dinner

Middle 0.962 (1.343) −0.012 (0.255) −0.026 (0.058) −0.051 (0.063) 1.418 (1.589) 0.351 (0.711) −0.002 (0.255)
High 2.361 (1.765) 0.281 (0.31) −0.011 (0.071) −0.058 (0.077) 0.943 (1.81) −0.116 (0.805) −0.184 (0.32)

Middle × time −0.067 (0.139) −0.031 (0.035) 0.006 (0.007) 0.006 (0.007) −0.141 (0.204) −0.054 (0.094) −0.034 (0.063)

High × time 0.029 (0.128) −0.02 (0.032) 0.005 (0.006) −0.004 (0.006) −0.129 (0.193) −0.033 (0.087) 0.012 (0.058)

Linear random-effect models adjusted for time, center, age, sex, education level (and their interaction with time), energy intake, BMI, hypertension, cardiovascular history, stroke history,
hypercholesterolemia, CES-D score, smoking status, Mediterranean-like diet score, and physical activity. Results showing a trend (p < 0.07) and significant results (* p < 0.05; ** p < 0.01)
are in bold. APOE4, Apolipoprotein E ε4 allele; BVRT, Benton Visual Retention Test; FIRS, Free Immediate Recall Score; FDRS, Free Delayed Recall Score; IST, Isaacs Set Test; MMSE,
Mini Mental State Examination; SE, standard error; TMT, Trail Making Test.
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3.3. Sensitivity Analyses

Participants who developed dementia during the 12-year follow-up (n = 337) were older
(78.1 vs. 75.6 years; p < 0.0001, Table S3) at the time of FFQ completion than those who remained free
from dementia. Participants with incident dementia were more likely to be women and to be APOE4
carriers. At baseline, they had lower MMSE and Mediterranean-like diet scores. In sensitivity analyses
that evaluated the association between GL tertiles and cognitive performance by excluding participants
with incident dementia (Tables S4 and S5), the afternoon snack GL × time × APOE4 interaction was no
longer significant.

In APOE4 non-carriers, the results of the sensitivity analyses were qualitatively comparable to
those of the main analyses, except for the association between lunch GL tertile and baseline IST score
that was no longer significant. In APOE4 carriers, no association remained significant.

Taken together, these results suggest that in APOE4 carriers, the afternoon snack GL is associated
with cognitive decline, but not in the sample without participants with incident dementia.

4. Discussion

Our results suggest that high afternoon snack GL is associated with cognitive decline in visual
memory (BVRT), episodic memory (FCSRT) and global cognition (MMSE) in APOE4 carriers during a
12-year follow-up.

To our knowledge, no study has reported the effect of the GL of different meals on the long-term
cognitive performance. Cross-sectional studies showed that high-GL diet is related to poorer cognitive
performance. Specifically, three epidemiological studies found that high-GL diet is associated with
lower global cognition [41–43], and two with poorer episodic memory [42,44]. One longitudinal study
showed that a high-GL diet is associated with reduced verbal ability [17]. The 1946 British birth cohort
study also found that higher GI diet at the age of 53 years was associated with lower episodic memory
and processing speed at the age of 69 years, although these associations did not remain significant after
adjustment for education and cognitive abilities at the age of 15 years [45]. In the Chinese Longitudinal
Health Longevity Survey, consumption of sugar “almost every day” was associated with a 17% increase
in the risk of cognitive impairment during the 15-year follow-up [46].

Regarding the effect of APOE4 status on the diet GL with cognitive performance interaction,
Gardener and collaborators reported that high-GL diet is associated with lower episodic memory in
APOE4 non-carriers and with lower attention capacity in APOE4 carriers [47]. Hanson and collaborators
also found a differential effect of a meal with high GI on cognition according to APOE4 carrier and
cognitive status (normal cognition vs. cognitive impairment) [48]. Specifically, when switching from
the high-GI meal to the low-GI meal, the delayed memory composite score was better in APOE4
carriers with normal cognition than in APOE4 non-carriers. In addition, APOE4 carriers with cognitive
impairment had a better executive function composite score than APOE4 non-carriers with normal
cognition, when switching from the high-GI meal to the low-GI meal.

Here, we found that the interaction between afternoon snack GL and APOE4 was associated
with cognitive decline, suggesting an underlying dementia-specific mechanism between APOE4 and
carbohydrate metabolism. Our findings are consistent with our previous work showing that the
afternoon snack GL and APOE4 interaction is associated with dementia risk [16]. They also highlight
that high afternoon snack GL might contribute to dementia development by affecting specific cognitive
domains (visual memory and episodic memory) in APOE4 carriers.

The relationship between afternoon snack GL and cognitive decline among APOE4 carriers could
be explained by a biological mechanism. First, the afternoon snack is the meal with the highest GL
foods and the breakfast is the second one [16]. The more a meal has a high GL the more will be the spike
of glycemia and insulinemia. Thus, a chronic exposure to high-GL diet, like snacking, could promote
the development of insulin resistance and impaired glucoregulation [49,50], trough oxidation stress and
inflammation [51,52]. In addition, it has been demonstrated that APOE4 carriers have poor brain glucose
metabolism [11,12], and tend to be insulin resistant [8,9]. Indeed, in animal models, ApoE4 impairs
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insulin signaling [13]. This hypothesis is supported by several epidemiological studies [14,49,53,54].
For examples, in older adults with poor glucoregulation, GL was inversely associated with global
cognitive function and figural memory [53]. In the Framingham Heart Study, elevated glycemia in
midlife was associated with more severe Alzheimer’s disease pathology in APOE4 carriers [54].

Conversely, we found that the daily GL middle tertile was associated with better attention and
visual motor processing speed (TMTA) over time, and that the middle and high lunch GL tertiles
were associated with better executive function (TMT) over time. One interventional study showed
that dietary carbohydrates could increase cognitive performance in healthy elderly subjects with poor
memory or poor β cell function, independently of glucoregulation [55]. Lunch is the main meal of
the day and the lunch GL was strongly correlated with the overall daily GL (r = 0.64; p < 0.0001).
In France, the most frequent components of lunch are vegetable and legumes (i.e., fibers) and, meat that
have a null GL value, dairy products that have a relatively low GL value, and bread and cereals [10].
Although bread and cereals have a quite high GL, they are rarely ingested alone in the context of a meal.
The ingestion of cereals with fat and fiber decreases the glycemic response [19,20]. Thus, a healthy
meal composed of vegetables, fruits and some cereals could be beneficial for the cognitive performance.
Indeed, it has been largely demonstrated that the Mediterranean diet is a protective factor against
cognitive decline [2]. Moreover, lunch, dinner, and the daily GL are highly correlated with EI. Thus,
the beneficial effects of high GL on cognitive performance could be explained by the maintenance of an
adequate EI needed for good health in the elderly.

Our current study presents some limitations. First, we cannot exclude the possibility that the
absence of significant associations between the APOE4 × afternoon snack GL interaction and cognitive
decline in the sensitivity analysis without participants with incident dementia is due to lack of statistical
power. Indeed, by excluding participants who developed dementia (13%), 18% of APOE4 carriers
were removed from the sample (Table S3). Second, our GL estimations relied on a FFQ that is less
detailed than other dietary assessments. However, GL estimations from the FFQ were previously
validated by 24-h dietary recalls [16]. Third, as the dietary assessment was carried out only at baseline,
we cannot exclude that participants may have changed their diet during the follow-up. The major
strength of our study is the large sample size and the longitudinal design with repeated cognitive
assessments over time that allowed monitoring the cognitive decline kinetics. In addition, the cognitive
assessments covered large cognitive domains: verbal fluency, visual memory, attention, visual motor
processing speed, episodic memory, and global cognition.

In this prospective study, high afternoon snack GL was associated with cognitive decline in
APOE4 carriers. These results must be now replicated. Nevertheless, they might help to develop
intervention strategies with the aim of delaying or preventing cognitive decline. Our study also invites to
better consider in future studies the role of the interaction between APOE4 and refined carbohydrate-rich
diet on cognition.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/12/3619/s1,
Table S1. Comparison of the characteristics of participants according to afternoon snack glycemic load, Table S2.
Associations of glycemic load with cognitive changes during the 12-year follow-up, Table S3. Comparison of
the characteristics of participants with and without incident dementia during the 12-year follow-up, Table S4.
Associations of glycemic load with cognitive changes (12-year follow-up) in APOE4 non-carriers without incident
dementia, Table S5. Associations of glycemic load with cognitive changes (12-year follow-up) in APOE4 carriers
without incident dementia.
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