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Abstract

Background

De novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from

carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of

selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes

(T2D).

Methods and findings

Seventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Aus-

tralia, 1 from Taiwan; baseline years = 1970–1973 to 2006–2010) conducted harmonized

individual-level analyses of associations of DNL-related fatty acids with incident T2D. In

total, we evaluated 65,225 participants (mean ages = 52.3–75.5 years; % women = 20.4%–

62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year

follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9

with incident T2D was estimated, adjusted for demographic factors, socioeconomic charac-

teristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status,

and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-

weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative

risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of

fatty acid concentrations were 1.53 (1.41–1.66; p < 0.001) for 16:0, 1.40 (1.33–1.48; p <
0.001) for 16:1n-7, 1.14 (1.05–1.22; p = 0.001) for 18:0, and 1.16 (1.07–1.25; p < 0.001) for

18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%–73.1% for each fatty acid) but

not explained by lipid fractions and global geographical regions. Further adjusted for triglyc-

erides (and 16:0 when appropriate) to evaluate associations independent of overall DNL,

the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for

18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94–1.13). These findings had limita-

tions in potential reverse causation and residual confounding by imprecisely measured or

unmeasured factors.

Conclusions

Concentrations of fatty acids in the DNL were positively associated with T2D incidence. Our

findings support further work to investigate a possible role of DNL and individual fatty acids

in the development of T2D.
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Author summary

Why was this study done?

• De novo lipogenesis (DNL) is a metabolic pathway involved in the endogenous synthe-

sis of specific fatty acids, such as 16:0, 16:1n7, 18:0, and 18:1n9, and it is linked to the

pathophysiology of cardiometabolic diseases, including type 2 diabetes (T2D).

• Circulating or tissue concentrations of these fatty acids have been investigated for the

associations with T2D incidence in epidemiological research. However, published stud-

ies reported inconsistent associations inconsistently and were subject to publication

bias.

• Summary evidence is not available to date for the associations between these fatty acids

and T2D incidence. An integration of available cohort studies would increase statistical

power and allow assessment of generalizability, standardization of analytical strategies,

and evidence synthesis with the potential publication bias minimized.

What did the researchers do and find?

• As a part of the Fatty Acids and Outcomes Research Consortium (FORCE), we con-

ducted new individual-participant data analyses of 17 cohort studies of a total of 65,225

adults free of T2D at baseline, among whom 15,383 developed incident T2D over up to

20 years of follow-up.

• The cohort studies analyzed the associations between fatty acids (16:0, 16:1n7, 18:0, and

18:1n9) and the risk of developing T2D with standardized analytic strategy.

• In pooled analyses, each of the fatty acids was positively associated with a higher risk of

developing T2D. The associations were independent of major risk factors for T2D, such

as age, sex, race/ethnicity, socioeconomic characteristics, smoking status, physical activ-

ity, and obesity.

What do these findings mean?

• The findings provide the first summary evidence to date for the positive relationships of

concentrations of the DNL-related fatty acids with a risk of T2D, indicating the strong

relevance of DNL and its determinants to the development of T2D.

• These fatty acids potentially reflect the status of DNL activity, which may be stimulated

or suppressed by a combination of carbohydrate intake, alcohol intake, polyunsaturated

fatty acid intake, and other lifestyle and clinical factors. Therefore, the current findings

indicate the need for investigation into determinants and consequences of elevated con-

centrations of these fatty acids.

• Despite several advantages of our individual-level data analysis in this pooling project, the

results cannot establish whether elevated concentrations of these fatty acids caused the

development of T2D or whether underlying peripheral or hepatic insulin resistance, for

example, may elevate both the fatty acid concentrations and the risk of T2D independently.
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Introduction

De novo lipogenesis (DNL) is a metabolic pathway for the endogenous synthesis of triglycer-

ides and other lipids from dietary starch, sugar, and protein [1,2]. Palmitic acid (16:0) is the

major fatty acid product of DNL and can be elongated to stearic acid (18:0) and desaturated to

form palmitoleic acid (16:1n7) and from stearic acid to oleic acid (18:1n9). Tissue levels of

these fatty acids have been previously reported to show associations with insulin resistance

and to be higher among adults with type 2 diabetes (T2D) than healthy adults [3].

Experimental studies have supported causal detrimental effects of 16:0 on inflammatory

responses and pancreatic function, whereas protective effects of 16:1n7 and 18:1n9 on pancre-

atic function have been suggested [4–7]. In addition, greater DNL activity has been reported to

be driven by lifestyle habits such as excessive consumption of carbohydrates or alcohol and

lower physical activity [8–10], although the relative contributions of different lifestyle habits

influencing DNL remain undefined. Investigation into how fatty acids in the DNL pathway

relate to incident T2D may provide important etiological knowledge and stimulate future

work on modifiable risk factors and preventive treatments.

Individual studies have examined the associations between circulating DNL-related fatty

acids and incident T2D, showing mixed associations [11–18]. For instance, higher concentra-

tions of 16:0 were associated with a higher incidence of T2D in several studies but not in others

[14,18]. Similarly inconsistent findings were observed for 16:1n7, 18:0, and 18:1n9. To our

knowledge, no prior studies have comprehensively brought together available evidence relat-

ing these fatty acids to incidence of T2D or investigated potential factors underlying the het-

erogeneous findings. Varied findings to date could reflect unstable results from some relatively

small-scale studies (e.g., N cases < 200 in many cohorts), different lipid fractions evaluated

across studies, and differences in demographics and analytic approaches. Also, there is little

evidence whether the fatty acids in the DNL pathway may have a pathophysiological role inde-

pendent of the overall DNL activity or triglycerides, one of the end products of the DNL.

Therefore, to better characterize the prospective associations of fatty acids in the DNL pathway

with incidence of T2D, we conducted de novo pooled individual-level analysis using harmo-

nized methods across 17 studies in the global Fatty Acids and Outcomes Research Consortium

(FORCE).

Methods

Cohorts and study variables

FORCE was initially formed from the Cohorts for Heart and Aging Research in Genomic Epi-

demiology consortium. FORCE is an ongoing consortium project to study relationships of

fatty acid biomarkers with health outcomes (http://force.nutrition.tufts.edu/) [19–21]. The

current project included 17 prospective studies (cohorts and nested case-control or case-

cohort studies). These studies agreed to participate after confirming the inclusion criteria met:

recruitment of adults aged 18 years or over and without prevalent diabetes at the time of fatty

acid assessment; available data of circulating or adipose 16:0, 16:1n7, 18:0, and 18:1n9; and

ascertainment of incident T2D (S1 Text). Other cohorts participated in FORCE for other proj-

ects [19–21] but did not contribute to this study because incident T2D were not ascertained.

All cohorts had obtained approval from each institutional review board and written informed

consent from participants. This study is reported as per the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) guideline (S1 Checklist).

A standardized analysis protocol was developed, approved by the FORCE investigators, and

provided to each participating cohort (S2 Text). The protocol prespecified the inclusion
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criteria mentioned above, as well as the exposures (DNL-related fatty acids), standardized

covariates, effect modifiers, incident T2D, and statistical methods. Following this protocol we

developed centrally, each cohort performed new individual-participant data analysis. Cohort-

specific results were recorded in a standardized electronic form and centrally compiled and

meta-analyzed. The data underlying the results presented in the study are available for

researchers who meet criteria of each participating cohort.

S1 Text includes information on participating cohorts, study participants, and methods for

fatty acid measurement and ascertainment of incident T2D. Briefly, each cohort isolated fatty acid

molecules from one or more lipid compartments including erythrocyte phospholipids, plasma

phospholipids, plasma cholesteryl esters, plasma triglycerides, total plasma or serum, or adipose

tissue. Then, in vivo fatty acid concentrations were measured with gas chromatography. Concen-

trations of each fatty acid were quantified as a percent of total fatty acids in the lipid fraction.

Incident T2D was ascertained on the basis of one or more criteria including fasting glucose

�7.0 mmol/L; glucose 11.1 mmol/L from 2-hour oral glucose tolerance test; new use of oral

antidiabetic medication; or concentration of HbA1c� 6.5% (S1 Text). The Melbourne Collab-

orative Cohort Study (MCCS) [14] and Alpha Omega Cohort (AOC) [22] ascertained incident

T2D based on self-reported physician diagnosis, use of antidiabetic medication, or both. The

EPIC-InterAct Study ascertained incident T2D by adjudicating self-reported T2D diagnosis or

verifying diagnosis in disease registries [17].

Statistical analysis in individual studies

Individual-participant data analyses were prespecified and documented in the protocol, with

the primary exposure variables being 16:0, 16:1n7, 18:0, and 18:1n9. We examined Pearson

correlation coefficients between these fatty acids within each lipid fraction. To assess associa-

tions of interest, Cox proportional hazard regression was modeled to time-to-event data, with

sampling weights applied in EPIC-InterAct with a case-cohort design [17]. Each cohort calcu-

lated follow-up time from time of fatty acid measurement to either date of incident T2D, death

from any cause, or loss to follow-up, or censoring at end of follow-up, whichever available and

occurred first. In the 2 cohorts (AOC and MCCS) without individuals’ person-time data

[14,22], logistic regression was used as the most efficient approach to obtaining estimates of

interest from the 2 cohorts. The fatty acid variables were evaluated as a continuous linear vari-

able in a unit of the study-specific interquintile range (the difference between the midpoints of

the top and bottom quintiles) and, in a separate model, as categorical indicator variables (quin-

tile categories, with the lowest quintile as the reference). We used an interquintile range and

quintile categories in continuous and categorical approaches, respectively, because two

approaches allowed estimation of the associations over the same exposure range and improve-

ment of comparability between the two approaches.

Covariates for statistical adjustment were prespecified, including their categorization (e.g.,

continuous, quintiles, etc.). Each participating study prespecified the use of some study-spe-

cific covariates (e.g., the number of categories for education status), depending on availability.

The primary model included field site, age, sex, race/ethnicity, occupation, education, smoking

status, physical activity, alcohol consumption, prevalent hypertension (self-reported or

treated), prevalent dyslipidemia (self-reported or treated), prevalent heart disease, and self-

reported health status. The second model further adjusted for adiposity measures (body mass

index [BMI] and waist circumference). For the mechanistic investigation, the third model fur-

ther adjusted for circulating 16:0 (for analysis of 16:1n7, 18:0, and 18:1n9) and triglycerides to

assess whether associations of 16:1n7, 18:0, and 18:1n9 with incident T2D would be indepen-

dent of 16:0 and triglycerides and for analysis of 16:0, of triglycerides.
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We assessed study-specific measures of interaction by age, sex, BMI, and race/ethnicity

using the second model that adjusted for potential confounders including the adiposity mea-

sures. Each fatty acid, these prespecified potential effect modifiers, and their relevant cross-

product terms and variance-covariance measures were analyzed to evaluate the potential inter-

action within each cohort.

Pooled analyses

Study-specific regression coefficients, either log hazard ratios or log odds ratios, and standard

errors were meta-analyzed with an inverse-variance weighted method to estimate summary

relative risks (RRs) and confidence intervals (CIs). Heterogeneity in results between studies

was quantified as I2 [23]. A few cohorts included fatty acid measures in more than one lipid

fraction. To avoid double-counting estimates from such cohorts, we prespecified primary use

of estimates of phospholipid (plasma or erythrocyte) fatty acids. These lipid fractions were

most commonly used among participating cohorts and generally reflect longer-term exposure

than the other compartments except for adipose tissue [24]. In secondary analyses, estimates

in each different lipid fraction were also meta-analyzed separately, using each available cohort

with measurements in that lipid fraction.

To test interactions by age, sex, BMI, and race/ethnicity, cohort-specific coefficients of

cross-product terms were meta-analyzed. Because we considered the tests for interactions as

exploratory, we applied correction for multiple testing as αtwo-tailed = 0.0031 (0.05/4 fatty acids/

4 potential effect modifiers). If an interaction was statistically significant, stratum-specific asso-

ciations were estimated by using regression coefficients and variance-covariance matrices and

then pooled using meta-analysis. We fitted meta-regression models and stratified meta-analy-

ses to investigate potential sources of heterogeneity due to study-specific characteristics. Fac-

tors examined included lipid fraction, geographical region (Europe/Australia, United States,

Asia), and prevalence of dyslipidemia. To further explore sources of heterogeneity, we evalu-

ated the following factors post hoc: prevalence of hypertension, mean triglyceride concentra-

tions, fasting status, availability of time-to-event data, and mean years of follow-up. As a

sensitivity analysis, we conducted random-effects meta-analysis and meta-analysis after con-

verting odds ratios to risk ratios in AOC and MCCS [25]. Meta-analyses were performed using

Stata 14.2 (StataCorp, College Station, Texas) with αtwo-tailed = 0.05, unless specified otherwise.

Results

Population characteristics

Among 17 participating cohorts, mean age ranged from 52.3 to 76.0 years (Table 1). Three

cohorts recruited men only, two cohorts recruited women only, and the others recruited both

(%women = 20.4%–62.3%). Study-specific mean BMIs ranged from 25.2 to 28.4 kg/m2, except

for the Chin-Shan Community Cardiovascular Cohort Study (CCCC) in Taiwan (mean

BMI = 23.2 kg/m2). Most studies recruited participants of European descent predominantly.

Participants of non-European descent were recruited in the Multi-Ethnic Study of Atheroscle-

rosis (MESA; 71.6% nonwhite), the Women’s Health Initiative Memory Study (WHIMS;

11.6% nonwhite), the Cardiovascular Health Study (CHS; 11.0% nonwhite), and the CCCC

(100% East Asian).

The concentrations of the selected fatty acids in the DNL pathway varied by lipid compart-

ment (Fig 1). Concentrations of 16:0 ranged from 15% to 35% of total fatty acids in most lipid

compartments except for cholesteryl esters (10% to 13%). Concentrations of 16:1n7 were less

than 1.0% when measured in phospholipids (plasma or red blood cell membrane) and 1.0% to

9.0% when measured in the other compartments. In phospholipids, average concentrations of
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18:0 were 11.0% to 16.3% and consistently higher than those of 18:1n9. In other lipid compart-

ments, conversely, concentrations of 18:0 were much lower than those of 18:1n9.

Correlations between fatty acids also varied by lipid compartment (S1 Table). For example,

in phospholipids, 16:0 positively correlated with 16:1n7 (weighted-average r = 0.47) and

18:1n9 (r = 0.23) but negatively with 18:0 (r = −0.63). By contrast, in cholesteryl ester, triglycer-

ides, and adipose tissue, the correlation between 16:0 and 18:0 was positive (r = 0.39, 0.39, and

0.53, respectively).

Prospective associations with incident T2D

In pooled analyses for each of the 4 fatty acids evaluating a total of 65,225 participants and 15,383

incident T2D cases, significant positive associations were identified, whether before (S1 Fig) or

after adjustment (Fig 2) for adiposity measures. For example, RRs (95% CI) per the cohort-specific

midpoints of the top and bottom quintiles for 16:0 were 1.63 (1.50–1.76) and 1.53 (1.41–1.66)

with and without adjustment for adiposity, respectively (p< 0.001 for each). For 16:1n7, 18:0, and

18:1n9, similar or weaker significantly positive associations were observed.

Table 1. Baseline characteristics of 17 studies of the pooling analysis of fatty acids on DNL pathway and incident T2D: FORCEa.

Study Country Study

design

Baseline

year(s)

Follow-up

years, median

N adults (N
cases)

Age,

mean y

Sex, %

women

BMI, mean

kg/m2
Triglycerides,

mmol/L

Biomarker

fraction

CHS United States Cohort 1992 10.6 3,179 (284) 75.1 61.5 26.4 1.57 PL

MESA United States Cohort 2000–2002 9.3 2,252 (309) 61.0 53.9 27.6 1.49 PL

IRAS United States Cohort 1992–1997 5.3 719 (146) 55.1 55.8 28.4 1.53 Total plasma

FHS United States Cohort 2005–2008 5.8 2,209 (98) 64.4 57.2 27.8 1.26 RBC PL

WHIMS United States Cohort 1996 11.0 6,510 (502) 70.1 100 28.1 1.56 RBC PL

NHS United States Cohort 1990 16.9 1,760 (177) 60.4 100 25.3 N/A RBC PL, total

plasma

HPFS United States Cohort 1994 11.1 1,519 (112) 64.1 0 25.8 N/A RBC PL, total

plasma

EPIC-InterActb 8 European

countries

Case

cohort

1993–1997 12.3 27,296

(12,132)

52.3 62.3 26.0 1.35 PL

AGESR Iceland Cohort 2002–2006 5.2 753 (28) 75.5 59.5 27.0 1.14 PL

Three C France Cohort 1999–2000 8.0 565 (39) 76.0 64.3 25.0 1.28 RBC PL

AOC Netherlands Cohort 2002–2006 2.5 1,741 (201) 68.9 20.4 27.4 1.83 RBC PL, CE

ULSAM Sweden Cohort 1970–1973 21.4 2009 (396) 54.4 0 25.2 1.77 Adipose tissue

PIVUS Sweden Cohort 2001–2004 10.0 879 (67) 72.5 51.0 26.7 1.24 PL, CE

KIHD Finland Cohort 1998–2001 10.3 1,543 (205) 62.7 52.7 27.6 1.23 Total serum

METSIM Finland Cohort 2006–2010 5.5 1,302 (71) 57.3 0 26.4 1.35 PL, CE, TG

MCCS Australia Case

cohort

1990–1994 4.0 6,151 (490) 56.3 53.9 27.0 1.27 PL

CCCC Taiwan Cohort 1992–1993 6.0 1,838 (128) 58.7 40.0 23.2 1.29 Total plasma

aBaseline characteristics at the time of fatty acid biomarker measurement
bThe EPIC-InterAct Study provided pooled estimates from across 8 European countries: Denmark, France, Germany, Italy, the Netherlands Spain, Sweden, and the

United Kingdom.

Abbreviations: AGESR: Age, Genes, Environment Susceptibility Study (Reykjavik); AOC, Alpha Omega Cohort; CCCC, Chin-Shan Community Cardiovascular Cohort

Study; CE, cholesteryl esters; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; FORCE, Fatty Acids and Outcomes Research Consortium; HPFS,

Health Professionals’ Follow-up Study; KIHD, Kuopio Ischaemic Heart Disease; MCCS, Melbourne Collaborative Cohort Study; MESA, Multi-Ethnic Study of

Atherosclerosis; METSIM, Metabolic Syndrome in Men Study; NHS, Nurses’ Health Study; PIVUS, Prospective Investigation of the Vasculature in Uppsala Seniors; PL,

phospholipids; RBC, red blood cells; TG, triglycerides; Three C, Three City Study; ULSAM, Uppsala Longitudinal Study of Adult Men; WHIMS, Women’s Health

Initiative Memory Study

https://doi.org/10.1371/journal.pmed.1003102.t001
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Further adjusting for triglycerides, the association of 16:0 was modestly attenuated, with RR

(95% CI) of 1.36 (1.24–1.50; p< 0.001; S2 Fig). After adjustment for triglycerides and 16:0,

associations of 16:1n7 and 18:0 with T2D incidence were attenuated but still evident with RRs

(95% CI) of 1.17 (1.11–1.24; p< 0.001) and 1.16 (1.06–1.27; p = 0.001), respectively, whereas

the association of 18:1n9 with T2D risk was attenuated to the null (RR = 1.03, 95% CI 0.94–

1.13, p = 0.40). Findings were similar when each fatty acid was evaluated categorically (Fig 3).

Heterogeneity was seen in these pooled analyses, with I2 ranging from 52.1% to 73.1% (Fig

2). The between-study heterogeneity was not associated with the global region or lipid fraction

(S2 Table, S3–S6 Figs for 16:0, 16:1n7, 18:0, and 18:1n9, respectively). Among post hoc meta-

Fig 1. Proportions of fatty acids in the DNL pathway. Plots represent median (diamond) and the range of 10th to 90th percentiles (horizontal bar). See Table 1 for

cohort names. CE, cholesteryl ester; DNL, de novo lipogenesis; PL, phospholipid; RBC, red blood cell; US, United States.

https://doi.org/10.1371/journal.pmed.1003102.g001
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Fig 2. Associations of fatty acids in the DNL pathway with the risk of developing T2D. RRs and 95% CIs are presented in the scale per study-specific range

from the midpoints of the first and fifth quintile groups (i.e., 10th to 90th percentiles): dots from individual studies and diamonds as summary estimates meta-
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regression analyses, average follow-up years explained heterogeneity of the association of

16:1n7 with T2D risk (S2 Table). I2 estimates were 52.1% and 36.8% before and after control-

ling for follow-up years in meta-regression, respectively. Further stratification of cohorts into

those with<10 years and those with�10 years of mean follow-up showed RRs (95% CI) of

1.64 (1.43–1.87) and 1.33 (1.25–1.41), respectively. Significant interactions were also not iden-

tified by age, sex, race, or BMI, except for sex and 18:1n9 (p = 0.002; S7 Fig). In exploratory

meta-analysis including cohorts with both sexes and cohorts recruiting only men or women,

sex-specific RRs (95% CI) for 18:1n9 were 1.17 (1.05–1.30; p = 0.005) for men and 1.10 (0.98–

1.24; p = 0.10) for women.

Discussion

In this pooling project using harmonized, de novo individual-participant analyses from 17

prospective cohorts across 12 countries, biomarker concentrations of 16:0, 16:1n7, 18:0, and

18:1n9 were associated with higher risk of T2D. Associations appeared strongest for the

16-carbon saturated and monounsaturated fatty acids, followed by the 18-carbon fatty acids,

and were independent of measures of adiposity. The relationships appeared partly confounded

or mediated by circulating levels of blood triglycerides, a marker of DNL, although indepen-

dent associations with T2D remained evident for 16:0, 16:1n7, and 18:0. Statistical heterogene-

ity between cohorts was largely not explained by age, sex, lipid compartment, or world region.

These novel findings across 17 global cohorts suggest that the pathophysiological process of

developing T2D is linked to activity of the DNL pathway and/or these circulating fatty acids.

analyzed. The sizes of the squares of point estimates represent relative contributions of each cohort to each summary estimate (% weight). Each cohort-specific

association was assessed with multivariable-adjusted regression controlling for field site (if appropriate), sex, age, race/ethnicity, socioeconomic characteristics

(education, occupation), smoking status, alcohol consumption, physical activity, family history of diabetes, dyslipidaemia, hypertension, menopausal status

(women), prevalent coronary heart disease, BMI, and waist circumference. Results remained similar in the other models (S1 Fig and S2 Fig), except for 18:1n9,

which showed no significant result in the most adjusted model (p = 0.69, S2 Fig). CE, cholesteryl esters; CI, confidence interval; DNL, de novo lipogenesis; PL,

phospholipids; RR, relative risk; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003102.g002

Fig 3. Associations of fatty acids in the DNL pathway with the incidence of T2D. Cohort-specific measures of associations across the quintile groups were pooled

with inverse-variance-weighted meta-analysis. In each cohort, 3 different models were fitted: the first, adjusting for study field (if available), sex, age, smoking status,

alcohol consumption, socioeconomic status, physical activity, dyslipidaemia, hypertension, and menopausal status (only for women); the second, adjusting for BMI and

waist circumference; and the third, adjusting for triglycerides and 16:0 (for 16:1n7, 18:0 and 18:1n9) as the main products of DNL. A trend across quintiles of each fatty

acid was tested with meta-analysis of cohort-specific regression coefficients of an ordinal variable of each fatty acid. The association with an asterisk showed p< 0.001

except for the second results for 18:0 (p = 0.0158) and for 18:1n9 (p = 0.0162). BMI, body mass index; DNL, de novo lipogenesis; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003102.g003
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Experimental evidence provides biological plausibility to support these findings; 16:0, the

major product of DNL, appears to exert a direct toxic effect on pancreatic cells, activating

membrane-bound toll-like receptor 4 and promoting pro-inflammatory responses [26], lead-

ing to impaired insulin secretion capacity [4–6]. In cells expressing insulin receptors, 16:0-cer-

amides attenuate insulin sensitivity by antagonizing the insulin-receptor signaling cascade and

impairing endoplasmic reticulum function [27]. DNL also elevate levels of diacylglycerols,

which inhibit insulin signaling and impair insulin sensitivity in skeletal muscle [28]. These

mechanistic effects support our current findings of a robust positive association between in

vivo 16:0 concentrations and incidence of T2D.

16:1n7 positively correlated with 16:0, and mutual adjustment partly but not fully attenu-

ated the association between 16:1n7 and T2D. In rodents, blocking the expression of stearoyl-

coenzyme A desaturase 1 gene (SCD), a rate-limiting enzyme for synthesis of 16:1n7 from

16:0, protected against insulin resistance [29]. Our results support the need for future mecha-

nistic investigations of whether 16:1n7 and 16:0 as well as hepatic DNL and SCD activity have

overlapping or partly independent roles in the pathogenesis of T2D.

The major modifiable factors that influence circulating levels of 18:0 and 18:1n9 are not

well characterized. Lipid compartment-specific analyses of these fatty acids in total plasma/

serum versus phospholipids suggested potentially varying associations with T2D, although the

availability of cohorts to confirm such heterogeneity was limited. Further work is needed to

clarify the determinants, roles, and effects on metabolic risk of 18:0 and 18:1n9 in different lipid

fractions, including the potential relevance of DNL versus dietary intakes of these fatty acids.

A number of lifestyle and dietary factors may regulate DNL. Consumption of starch and

sugars high in glycemic load are likely to promote DNL by increasing insulin and/or activating

the carbohydrate-response pathway in the liver [1,8,9,30–32]. Certain dietary factors, such as

coffee and omega-6 polyunsaturated fat, appear to suppress DNL [8,32–35] and are associated

with lower incidence of T2D [20,36–38]. Other modifiable factors that may influence DNL

include sleeping behavior and meal frequency [39]. Dietary intakes of saturated and monoun-

saturated fatty acids directly influence 16:0, 16:1n7, 18:0, and 18:1n9 [38,40,41], but it remains

unclear whether these effects are similar or even smaller than the influence of endogenous syn-

thesis and metabolism in long-term settings [42–44]. For example, limited evidence from

Swedish cohorts suggests the negative or null association of carbohydrate intake with concen-

trations of DNL-related fatty acids in adipose tissue and phospholipids and highlight a role of

saturated fat or alcohol as determining DNL fatty acids [45,46]. Further research should

address this uncertainty of dietary carbohydrates and saturated fat in terms of each impact on

circulating concentrations of DNL-related fatty acids, genetic activity of SCD, and also the

accumulation of hepatic fat [35,41]. Further overall mechanistic evidence is crucial to help

interpret the current dietary evidence: in contrast to our observed associations based on in

vivo circulating biomarkers, dietary monounsaturated fat improves several markers of glu-

cose-insulin homeostasis in randomized feeding trials, but dietary saturated fat has neutral

effects compared with dietary carbohydrates [47].

Our analysis has several strengths. We collaboratively pooled new, standardized participant-

level analyses across multiple cohorts in various global regions, improving a statistical power

from a large number of studies. Our consortium approach should be robust against the poten-

tial publication bias. The standardized approaches to defining the populations, exposures, out-

comes, and multivariable-adjusted analyses minimized bias and heterogeneity by method.

Our study also has limitations. The diagnosis of T2D could be missed or misclassified in

some participants. However, most cohorts operated regular study visits and measurements

needed for T2D ascertainment, reducing potential measurement error in the outcome ascer-

tainment, free from bias due to health consciousness leading to T2D screening. Additionally,
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any outcome misclassification would occur at random across fatty acid measures. As another

limitation, we cannot rule out reverse causation that unmeasured diabetes pathophysiology may

result in dysregulation of lipolysis, elevate DNL-related fatty acids, and further elevate incident

T2D via separate causal pathways. The 16:1n7-T2D association significantly varied by follow-up

duration, and this finding could be by chance or regression dilution but may indicate the possi-

bility of reverse causation. This finding only for 16:1n7 may also have reflected a unique role of

SCD in the development of T2D. The limitation, nonetheless, indicates the importance of the

DNL pathway as a strong noncausal indicator, a causal determinant of T2D risk, or both.

We analyzed fatty acid concentrations and study covariates measured at baseline only.

Those measurement errors, temporary variations over time, and unmeasured confounding

factors, such as dietary correlates with carbohydrates, fat, and alcohol, could potentially bias

our findings in either direction. Of note, the exposure duration represented with a single fatty

acid measurement is unclear and likely to vary by laboratory, tissue, fraction type, and cohort

settings. A single measure may reflect approximately 3 to 4 weeks of a habitual diet, e.g.,

according to published kinetic studies on essential fatty acids [24,48]. A 6-month high-carbo-

hydrate diet resulted in higher DNL-related fatty acids concentrations in phospholipids than a

6-month high-fat diet [9]. Isotope-labeling studies related fatty acids to hepatic DNL activity

and showed variable responses of specific fatty acids to a diet [49]. However, those observa-

tions tend to have been limited in size (e.g., approximately 20 adults in detailed assessments)

and represent an acute dietary effect on hepatic DNL (a single meal to a few days), not repre-

senting a long-term effect or fatty acids exchanged between circulating lipids and cells [49,50].

Additionally, measures of the DNL-related fatty acids were reproducible over years (correla-

tion coefficients = 0.3–0.7 over 5–18 years) in population-based cohorts [51,52]. Therefore,

while temporality of the DNL activity is not clear with our exposure assessment, the DNL-

related fatty acids we evaluated are likely to have reflected a “usual” or habitual lifestyle and

metabolic status over years.

Statistical between-study heterogeneity was evident but not explained by measured charac-

teristics except for the associations of 16:1n7 with T2D risk systematically varying by follow-up

years. A limited number of cohorts investigated certain lipid compartments such as triglycer-

ides and adipose tissue, and laboratory settings were not standardized between cohorts. In

addition, some of the observed heterogeneity in this current study could reflect variation in

lifestyle factors across the 17 studies. We did not identify significant heterogeneity by race/eth-

nicity, but the number of participants of non-European descent was relatively limited. The

inclusion of only a few cohorts of non-European descent and unknown sources of heterogene-

ity of the observed associations limit the generalizability of our findings. To better understand

the generalizability of our findings and to understand sources of heterogeneity, research in dif-

ferent populations with varying dietary practices is required.

In summary, the current FORCE consortium study including 17 prospective cohorts identi-

fied significant associations of higher concentrations of fatty acids related to DNL, especially

16-carbon fatty acids, in relation to incidence of T2D. These findings highlight the potential

importance of DNL and these individual fatty acids in the development of T2D, and the need

for further investigations on how lifestyle behavioral factors and potential interventions may

influence levels of these fatty acids and DNL.
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46. Alsharari ZD, Leander K, Sjögren P, Carlsson A, Cederholm T, de Faire U, et al. Association between

carbohydrate intake and fatty acids in the de novo lipogenic pathway in serum phospholipids and adi-

pose tissue in a population of Swedish men. Eur J Nutr. 2019 https://doi.org/10.1007/s00394-019-

02058-6 PMID: 31350637

47. Imamura F, Micha R, Wu JHY, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of Saturated Fat,

Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Sys-

tematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016; 13(7):

e1002087. https://doi.org/10.1371/journal.pmed.1002087 PMID: 27434027

48. Skeaff CM, Hodson L, McKenzie JE. Dietary-Induced Changes in Fatty Acid Composition of Human

Plasma, Platelet, and Erythrocyte Lipids Follow a Similar Time Course. J Nutr. 2006; 136(3):565–9.

https://doi.org/10.1093/jn/136.3.565 PMID: 16484525

49. Rosqvist F, McNeil CA, Pramfalk C, Parry SA, Low WS, Cornfield T, et al. Fasting hepatic de novo lipo-

genesis is not reliably assessed using circulating fatty acid markers. Am J Clin Nutr. 2019; 109(2):260–

8. https://doi.org/10.1093/ajcn/nqy304 PMID: 30721918

50. Diraison F, Pachiaudi C, Beylot M. Measuring lipogenesis and cholesterol synthesis in humans with

deuterated water: use of simple gas chromatographic/mass spectrometric techniques. J Mass Spec-

trometry. 1997; 32(1):81–6. https://doi.org/10.1002/(SICI)1096-9888(199701)32:1<81::AID-

JMS454>3.0.CO;2–2 PMID: 9008871

51. Lai HTM, de Oliveira Otto MC, Lee Y, Wu JHY, Song X, King IB, et al. Serial Plasma Phospholipid Fatty

Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardio-

vascular Diseases in the Cardiovascular Health Study. J Am Heart Assoc. 2019; 8(22). https://doi.org/

10.1161/JAHA.119.012881 PMID: 31711385

52. Zheng J-S, Imamura F, Sharp SJ, Koulman A, Griffin JL, Mulligan AA, et al. Changes in plasma phos-

pholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation

into Cancer and Nutrition-Norfolk Study. Am J Clin Nutr. 2019; 109(6):1527–34. https://doi.org/10.1093/

ajcn/nqz030 PMID: 30997506

PLOS MEDICINE Fatty acids in the de novo lipogenesis pathway and type 2 diabetes

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003102 June 12, 2020 17 / 17

https://doi.org/10.3945/ajcn.113.080317
https://doi.org/10.3945/ajcn.113.080317
http://www.ncbi.nlm.nih.gov/pubmed/25057154
https://doi.org/10.1371/journal.pmed.1002094
http://www.ncbi.nlm.nih.gov/pubmed/27434045
https://doi.org/10.1161/CIRCGENETICS.112.964619
https://doi.org/10.1161/CIRCGENETICS.112.964619
http://www.ncbi.nlm.nih.gov/pubmed/23362303
https://doi.org/10.1016/j.plipres.2008.03.003
https://doi.org/10.1016/j.plipres.2008.03.003
http://www.ncbi.nlm.nih.gov/pubmed/18435934
https://doi.org/10.1017/S0029665119000569
http://www.ncbi.nlm.nih.gov/pubmed/30942685
https://doi.org/10.3945/ajcn.117.153072
https://doi.org/10.3945/ajcn.117.153072
http://www.ncbi.nlm.nih.gov/pubmed/28446501
https://doi.org/10.1007/s11745-007-3132-7
http://www.ncbi.nlm.nih.gov/pubmed/18046594
https://doi.org/10.1016/j.plipres.2012.08.002
http://www.ncbi.nlm.nih.gov/pubmed/23000367
https://doi.org/10.1001/jamacardio.2016.2259
https://doi.org/10.1001/jamacardio.2016.2259
http://www.ncbi.nlm.nih.gov/pubmed/27541681
https://doi.org/10.1007/s00394-019-02058-6
https://doi.org/10.1007/s00394-019-02058-6
http://www.ncbi.nlm.nih.gov/pubmed/31350637
https://doi.org/10.1371/journal.pmed.1002087
http://www.ncbi.nlm.nih.gov/pubmed/27434027
https://doi.org/10.1093/jn/136.3.565
http://www.ncbi.nlm.nih.gov/pubmed/16484525
https://doi.org/10.1093/ajcn/nqy304
http://www.ncbi.nlm.nih.gov/pubmed/30721918
https://doi.org/10.1002/(SICI)1096-9888(199701)32:1<81::AID-JMS454>3.0.CO;22
https://doi.org/10.1002/(SICI)1096-9888(199701)32:1<81::AID-JMS454>3.0.CO;22
http://www.ncbi.nlm.nih.gov/pubmed/9008871
https://doi.org/10.1161/JAHA.119.012881
https://doi.org/10.1161/JAHA.119.012881
http://www.ncbi.nlm.nih.gov/pubmed/31711385
https://doi.org/10.1093/ajcn/nqz030
https://doi.org/10.1093/ajcn/nqz030
http://www.ncbi.nlm.nih.gov/pubmed/30997506
https://doi.org/10.1371/journal.pmed.1003102

