
Melodic Clustering: Motivic Analysis of Schumann’s Träumerei

Emilios Cambouropoulos and Gerhard Widmer

Austrian Research Institute for Artificial Intelligence
Schottengasse 3, A-1010 Vienna, Austria

{emilios, gerhard}@ai.univie.ac.at

Abstract

In this paper a formal model will be presented that attempts to organise melodic segments into ‘significant’
musical categories (e.g. motives). Given a segmentation of a melodic surface, the proposed model constructs an
appropriate representation for each segment in terms of a number of attributes (these reflect melodic and
rhythmic aspects of the segment at the surface and at various abstract levels) and then a clustering algorithm (the
Unscramble algorithm) is applied for the organisation of these segments into ‘meaningful’ categories. The
proposed clustering algorithm automatically determines an appropriate number of clusters and also the
characteristic (or defining) attributes of each category. As a test case this computational model has been used for
obtaining a motivic analysis of Schumann’s Träumerei.

Keywords:  motivic analysis, musical categories, similarity, clustering

1. Introduction

Making sense of a musical work means being
able to break it down into simpler components
and to make associations between them.
Musical analysis is geared towards providing
the ‘resolution of a musical structure into
relatively simpler constituent elements, and
the investigation of those elements within that
structure’ (Bent, 1980: 340).

Paradigmatic analysis (Nattiez 1975, 1990) is
an analytic methodology that aims at
providing a segmentation of a musical surface
and an organisation of the derived musical
segments into ‘significant’ musical categories
(or paradigms). This methodology relies
heavily on a notion of musical similarity and
aims at assisting a human analyst to explicate
his/her own similarity criteria for obtaining a
certain analysis.

In relation to the above, the current paper
addresses the following problem: given a
segmentation of a melodic surface, how can a
computational system be developed that can
arrive at a ‘plausible’ clustering of the given
segments and at the same time provide explicit
descriptions of each category/cluster?

In the problem description stated in the
previous paragraph, melodic segmentation is
taken to be a pre-requisite. This is a
simplification so that we can focus on the
categorisation problem. As has been shown
elsewhere (Cambouropoulos 1998)
segmentation is strongly associated with

similarity and categorisation, e.g. a ‘good’
categorisation of musical segments may suggest a
‘preferred’ segmentation that may actually
override local perceptual grouping indications.
The relation between segmentation and
categorisation is a very complex topic; a study of
this relation is currently in progress and some
results will appear in a forthcoming paper.

There has been a number of attempts to use
clustering techniques for organising melodic
segments into paradigms. A brief survey and
comparison of some existing formal models is
presented in (Anagnostopoulou et al., 1999).
Some difficulties of existing clustering
approaches for musical purposes will be
addressed later on in this text.

The main topics that will be discussed in this
paper are: representation of melodic segments,
pattern-processing techniques, clustering
techniques and intensional description of
emerging clusters. As a test case the proposed
computational model will used for obtaining a
motivic analysis of the melody of R. Schumann’s
Träumerei (this is the 7th piece from
Kinderszenen, op. 15).

2. Motivation

The construction of a sophisticated computational
system for organising melodic segments into
‘meaningful’ categories, apart from theoretical
interest for the domains of musical analysis and
musical cognition, provides a potentially very
useful tool for a number of applications such as



interactive composition and performance,
musical data indexing and retrieval,
expressive machine performance, and so on.
The main argument is that, the more
sophisticated musical computer applications
one envisages to develop, the more
‘understanding’ of musical structure a
computational system should have.

As the current study is undertaken within the
framework of a project titled ‘Artificial
Intelligence models of musical expression’ we
will elaborate on the usefulness of structural
analysis for the study of expressive features of
performance.

The aim of the project on musical expression
is to study expressive features of musical
performance (at this stage tempo and loudness
micro-variations) and to develop learning
algorithms that can induce general rules of
expressive music performance from examples
of real performances by human musicians.

In a double experiment reported by G.Widmer
(1996) expression rules were induced from
real melodic performances a) at the note-level
and b) at the structural level (motivic and
phrase level). The results obtained indicated
that learning was significantly improved when
structural aspects of the melody were taken
into account. It was therefore strongly
suggested that musical structural information
is indispensable for the development of a
machine model of musical expression.

In a detailed study of expressive features in
Schumann’s Träumerei Bruno Repp (1992)
presents at the outset a primarily motivic
analysis of the melodic gestures of this piece
(see Figure 4). This analysis is an intuitive
analysis performed by a human and is used
throughout the main body of the paper for
studying the micro-timing variations of 28
different performances of Träumerei. Again,
metric and rhythmic structural information is
thought to be paramount for the study of
musical expression.

In this paper, we have used the melody of
Träumerei as a test case to study the proposed
clustering model. The segmentation provided
in Repp’s paper is taken as an input in the
current study. The machine-generated results
obtained herein will be compared to and tested

against the human analysis provided in Repp’s
study.

We believe that research on musical expression
can benefit from the development of more
sophisticated machine models of musical
structure but we hypothesise that the reverse may
also be true, namely that the study of musical
expression may provide cues to structural
analytic models in order to disambiguate complex
multi-faceted analytic results and to fine-tune all
sorts of parameters and preference rules in such
models. This will be a topic of future
investigations.

3. Representation of melodic segments

Let us suppose that at the lowest level of
representation each melodic segment is
represented as a string of notes. The question that
arises is whether this representation is sufficient
or whether further processing of the melodic
segments is necessary before presenting them as
input to a clustering algorithm.

The reply to the above question depends on what
notion of musical similarity one intends to
employ as a basis for pattern processing and
clustering. A more detailed discussion on this
topic can be found in (Cambouropoulos et al,
1999). Here, we will only present two main
strategies:

a) Two musical segments - represented as
vectors of notes or intervals - are construed as
being similar if they share at least a certain
number of their component elements (notes
or intervals); approximate pattern-matching
algorithms and the edit distance are
commonly used in this approach (e.g.
Rolland et al, 2000).

b) Two musical segments - represented as
vectors of a number of patterns for various
parameters at many levels of abstraction - are
construed as being similar if they share at
least a certain number of patterns at the
surface level or reductions of it; this strategy
requires more sophisticated representation of
musical segments; exact pattern-matching
techniques and the hamming distance can be
used in this approach.

Figure 1 illustrates these possibilities with a
simple melodic example. Of course, there can be
all sorts of variations or even combinations of the
above two main strategies.



Figure 1. These two melodic segments may be
construed as similar either because five of their

pitches and onsets match at the surface level
(approximate matching) or because they match
exactly at the reduced eighth-note metric level.

In this study a strategy very close to the
second approach given above has been
employed. For each melodic segment of
Träumerei the following pattern attributes are
computed (see example in Figure 2):

a. Surface level
• Pitch-intervals: exact (p_ex), scale-
steps (p_ss), step-leap (p_sl), step-
doublestep-leap (p_sdsl), doublestep-leap
(p_dsl), and contour (p_contour).
• Rhythm: exact durations (r_dur), inter-
onset interval (r_ioi), short-long (r_sl),
inter-onset interval ratios (r_ratio),
shorter-longer-equal (r_sel)

b. Quarter-note level plus notes on boundaries
of segments.
• Pitch-intervals: exact (p_ex), scale-steps
(p_ss), step-leap (p_sl), step-doublestep-
leap (p_sdsl), doublestep-leap (p_dsl).
• Rhythm: inter-onset interval (r_ioi),
short-long (r_sl)

c. Quarter-note level.
• Pitch-intervals: exact (p_ex), scale-
steps (p_ss), step-leap (p_sl), step-
doublestep-leap (p_sdsl)

Note: in r_sl, durations longer than a certain
value (in this instance a quarter) are
represented merely by ‘long’.

Further research is necessary to establish a
plausible and quite general set of levels of
abstraction and reduction. The above set gives
gradually less prominence to the more abstract
reduction levels and gives a slight preference
to parameters related to pitch as it takes into
account fewer attributes for gradually more
abstract reduction levels and for rhythmic
aspects of the melody. The initial set of
attributes can be modified by the clustering
algorithm - in terms of altering attribute
weights - so that more important attribute-
values for the specific context of the given
piece may be highlighted (see next section).

Near-exact matching is an additional
technique incorporated in the current
proposal. Limited approximate matching is
employed in the following manner: two
pattern attributes match if they are identical or

if they contain a common ‘significant’ sub-
pattern (this of course includes the case where
one of the two is a sub-pattern of the other). The
notion of a ‘significant’ sub-pattern is controlled
by a parameter that defines the relation of the size
of the sub-pattern to the two patterns (e.g. sub-
pattern should be at least 70% of the size of each
pattern). A sub-pattern may consist only of
contiguous elements from the given super-
pattern. Exact matching techniques can be used
for determining near-exact matches.

Melodic surface

p_ex: 1 - 4 - 3 - 5 - 0
p_ss: 1 - 2 - 2 - 3 - 0
p_sl: step - leap - leap - leap- 0
p_sdsl: step - dstep- dstep- leap- 0
p_dsl: dstep- dstep- dstep- leap- 0
p_contour: U - U - U - U - 0

r_dur: 1/8- 1/8  - 1/8  - 1/8  - 1/8 - 1/2
r_ioi: 1/8- 1/8  - 1/8  - 1/8  - 1/8  - 1/2
r_sl: 1/8- 1/8  - 1/8  - 1/8  - 1/8  -  long
r_ratio: 1 - 1 - 1 - 1 - 4
r_sel: equal- equal- equal- equal- longer

Notes on quarter beats and on boundaries (reduction)

p_ex: 1 - 7 - 5
p_ss: 1 - 4 - 3
p_sl: step - leap - leap
p_sdsl step leap leap
p_dsl: dstep - leap - leap

r_ioi: 1/8  - 1/4 - 1/4 - 1/2
r_sl: 1/8  - 1/4 - 1/4 - long

Notes on quarter beats (reduction)

p_ex: 7 - 5
p_ss: 4 - 3
p_sl: leap - leap
p_sdsl leap leap

Figure 2  Attribute-values for one melodic segment
(surface and reductions); each row of alphanumeric
symbols constitutes a single attribute-value, i.e. this

melodic pattern is represented by a vector of 22
attribute-values – see text for the description of

abbreviations.

A very simple example of near-exact matching is
presented in Figure 3. This kind of partial



matching is valuable in that it allows the use
of a smaller set of pattern attributes (e.g. the
two patterns in Figure 3 could actually be
matched exactly at a high enough reduction
level such as the 2/4 metric level). It may be,
however, problematic as it incorporates in the
representation itself a degree of similarity
before any distance metrics are applied by the
clustering algorithm.

Figure 3  These two melodic segments (from
Träumerei) share common sub-patterns for both the
pitch and rhythm profiles (actually the first is a sub-
pattern of the second) - that is, their attribute-values

for both pitch and rhythm are near-exact.

At the current stage, the computational system
requires as input the melodic surface and a
selected segmentation, and then it
automatically generates the segment attribute-
value vectors to be used by the clustering
technique.

4. The Unscramble clustering algorithm

In this section a brief description will be given
of the Unscramble clustering algorithm that
has been developed primarily for dealing with
clustering problems in the musical domain
(Cambouropoulos and Smaill, 1997).

The Unscramble algorithm is a clustering
algorithm which, given a set of objects and an
initial set of properties, generates a range of
plausible clusterings for a given context.
During this dynamically evolving process the
initial set of properties is adjusted so that a
satisfactory description is generated. There is
no need to determine in advance an initial
number of clusters nor is there a need to reach
a strictly well-formed (e.g. non-overlapping)
categorisation. At each cycle of the process
weights are calculated for each property
according to how characteristic each property
is for the emergent clusters. This algorithm is
based on a working definition of similarity
and category that inextricably binds the two
together.

4.1 A Working Formal Definition of
Similarity and Categorisation

Let T be a set of entities and P the union of all
the sets of properties that are pertinent for the
description of each entity. If d(x,y) is the distance
between two entities x and y, and h is a distance
threshold we define similarity sh(x,y) as follows:

1 iff d(x,y) ≤ h (similar objects)
sh(x,y) {

0 iff d(x,y) > h (dissimilar objects)
(I)

In other words, two entities are similar if the
distance between them is smaller than a given
threshold and dissimilar if the distance is larger
than this threshold.

The above definition of similarity is brought into
a close relation with a notion of category. That
is, within a given set of entities T, for a set of
properties P and a distance threshold h, a
category Ck is a maximal set:

Ck={x1,x2,...xn/xi∈ T} with the property:
∀ i,j ∈ {1,2,...n}, sh(xi,xj)=1 (II)

In other words, a category Ck consists of a
maximal set of entities that are pairwise similar
to each other for a given threshold h.

A category, thus, is inextricably bound to the
notion of similarity; all the members of a
category are necessarily similar and a maximal
set of similar entities defines a category.

As the similarity function sh is not transitive, the
resulting categories need not be disjoint (i.e.
equivalence classes). In other words, overlap
between categories is permitted.

The distance threshold may take values in the
range of 0≤h≤dmax where the distance dmax is
defined as the maximum distance observed
between all the pairs of entities in T. For h=0
every object in T is a monadic category; for
h=dmax all the objects in T define a single
category.

4.2 The Unscramble algorithm

The above definitions of similarity and category
can be restated in the terminology of graph
theory as follows: objects are represented by
vertices in an undirected graph, similarity
between similar objects is represented by edges,
and categories are defined as maximal cliques (a
maximal clique is a maximal fully connected
sub-graph). We will use this terminology below



for the description of the Unscramble
clustering algorithm.

It should also be noted that in the context of
this paper ‘properties’ are taken to mean
‘binary features’ that correspond to a
particular ‘attribute-value’ pair.

4.2.1 Algorithm input

The input to the Unscramble algorithm is a
set of N objects each described by an m-
dimensional property vector (e.g. object x:
[p1,p2,...pm]  and object y: [q1,q2,...qm]) . Each
property has a corresponding initial weight
wp=1. The distance between two objects is
given by the following function (based on the
Hamming distance):
                  m
d(x,y)= Σwpi

·wqi
·δ(pi,qi)  (III)

                  i=1

where: δ(pi,qi) = 0  if  pi=qi

δ(pi,qi) = 1  if  pi≠qi

4.2.2 The algorithm

The algorithm proceeds in cycles; in each
cycle, firstly, all the possible thresholds are
calculated, then for each threshold an
undirected graph is constructed (edges
connect similar objects), then for each graph
maximal cliques are enumerated, then for
each clustering a ‘goodness’ value is
computed and finally the clustering with the
highest ‘goodness’ value is selected and new
weights for all the properties are computed. A
more detailed description is given below:

Step 1. All the possible threshold values h are
calculated. The number of thresholds l is
equal to the number of possible distances
between the N objects of set T; lmax = N·(N-
1)/2 - it often is smaller as some entities are
equidistant.
Step 2. For each of these thresholds, all the
similar objects are computed according to
definition (I) and (III) and an undirected
graph for each threshold is created where
edges connect similar objects.
Step 3. All the maximal cliques (II) are
computed for each of these graphs, resulting
in l different clusterings.
Step 4. For each of the l clusterings a
‘goodness’ value is calculated according to
function (IVa,b).
Step 5. The clustering that rates highest
according to the ‘goodness’ function is

selected and new weights are calculated
according to function (V).
Step 6. The algorithm is repeated from step 1 for
the new weights.
Step 7. The algorithm terminates when the newly
calculated ‘goodness’ value is less or equal to the
value that resulted during the immediately
preceding run.

4.2.3 Additional fundamentals

The following definitions are also necessary for
the algorithm:

4.2.3.1 ‘Goodness’ of clustering

As the Unscramble algorithm (section 4.2.1)
generates a large number of clusterings (one for
each possible similarity threshold) it is necessary
to define some measure of ‘goodness’ for each
clustering so as to select the best. Two such
measures have been considered:

a. Overlap Function
One simple criterion for selecting preferred
clusterings is a measure for the degree by which
clusters overlap. The less overlapping between
clusters the better. An overlap function OL could
be defined as:

          k
OL = 1 – N / Σni      where: (IVa)

        i=1
k = number of clusters
N = number of objects in T
ni = number of objects in cluster Ci

The problem with such a measure is that in the
extreme cases where each object is a cluster of
itself and where all the objects form a single
category overlapping is necessarily zero. It is
thus necessary either to set ad hoc limits for
minimum and maximum allowed number of
clusters or to multiply the overlapping value by a
function that has values close to 1 for a preferred
range of number of clusters and values close to
zero for the extremes of either too many or only
one cluster. This ad hoc parametric bias is
avoided in the next measure.

b. Category Utility
Category Utility (Gluck & Corter, 1985; Fisher,
1986) is a measure that rates the homogeneity of
a clustering. Given a universe of entities T, a set
of (binary) properties P={p1,...,pm} describing the
entities, and a grouping of entities in T into k
clusters C={c1,...,ck}, category utility is defined
as:

  k                    m                        m

ΣP(ci) ·[ΣP(pj/ci)2 - ΣP(pj)2]



 i=1                  j=1                          j=1CU({c1,...,ck}) =
                            k

where:
(IVb)

P(ci) is the probability of an entity belonging
to cluster ci,

P(pj) is the probability that an entity has
property pj, and

P(pj/ci) is the conditional probability of pj,
given cluster ci.

Probabilities are estimated by relative
frequencies.

CU favours categorisations with high
uniformity (in terms of properties) within
individual clusters (‘intra-class similarity’)
and strong differences between clusters
(‘inter-class dissimilarity’).

Another way of interpreting this is that
category utility measures the prediction
potential of a categorisation: it favours
clusterings where it is easy to predict the
properties of an entity, given that one knows
which cluster it belongs to, and vice versa.
The main advantages of this measure are its
firm grounding in statistics, its intuitive
semantics, and the fact that it does not depend
on any parameters.

Both of these ‘goodness’ functions have been
applied and compared in the example in
section 5 (see also Appendices I and II).

4.2.3.2 Weighting function.

When a clustering is selected, then the initial
weights of properties can be altered in
relation to their ‘diagnosticity’, i.e. properties
that are unique to members of one category
are given higher weights whereas properties
that are shared by members of one category
and its complement are attenuated. A
function that calculates the weight of a single
property p could be:

w = m/n-m’/(N-n)    where: (V)

m = number of objects in category Ck that
possess property p

m’ = number of objects not in category Ck that
possess property p (i.e. objects in T-Ck)

n =  number of objects in Ck
N = number of objects in T

The weights of each property calculated for
each category can then be averaged and
normalised for a given clustering. The whole

process may be repeated for the new set of
weighted properties until the terminating
conditions of Unscramble are met.

4.2.4. Complexity issues and merits of
Unscramble

The enumeration of maximal cliques in an
undirected graph is known to be an NP-complete
problem; an extended overview of algorithms for
maximum and maximal clique finding algorithms
is presented in (Bomze et al, 1999). However, for
small graphs this need not be a serious problem.
Most musical categorisation tasks would involve
tens or maybe a few hundreds of musical
segments rather than thousands. It is also
possible to consider using a semi-incremental
version of the algorithm whereby objects are
clustered in small chunks rather than all at once
(this option is considered for further research).

An additional problem is that in each cycle of
Unscramble all maximal cliques have to be
computed for all the graphs that correspond to
each threshold (maximum number of thresholds:
lmax = N·(N-1)/2 where N = number of objects) -
i.e. the maximal clique enumeration algorithm
has to be applied ~N2 times in the worst case! A
solution to this problem has been given by
E.Bomze and his colleagues (at the department
of Statistics, University of Vienna) that is based
on the observation that this problem is equivalent
to finding all the maximal cliques in a single
gradually evolving graph. According to this
description of the problem edges are added one-
by-one in an empty graph of N vertices until a
fully connected graph is reached (or the reverse);
each newly added edge is examined as to how it
modifies the previously determined cliques. This
evolving clique finding algorithm provides an
efficient solution to the aforementioned problem.

The most useful characteristics of the
Unscramble algorithm - depending on the task at
hand - are the following:
• there is no need to define in advance a number

of categories
• the prominence of properties is discovered by

the algorithm
• categories may overlap.

Some examples of the usefulness of such
clustering characteristics will be presented in the
musical test case in the next section.

5. Motivic analysis of Träumerei



A detailed melodic and rhythmic analysis of
R.Schumann’s Träumerei is presented in
(Repp, 1992).  In this study we limit ourselves
strictly to the soprano voice ignoring melodic
gestures that appear in other voices. The
soprano part of Träumerei, along with the
segmentation provided by Repp, is depicted in
Figure 4.

Table 1 presents the clustering of melodic
segments that is used in Repp’s study and
Tables 2 and 3 present the clustering produced
by the proposed computational system. The
tables in this section are taken to be schematic
representations of the score in Figure 4. In the
bold outlined tables, rows correspond
graphically to staffs in Figure 4; vertical lines
correspond to segmentation points in staffs;
table entries correspond to melodic segments;
alphabet symbols correspond to names of
melodic clusters. The first column, outside the
bold part of the tables, indicates the structure
at the level of melodic periods, i.e. 8-bar
sections, as proposed by Repp; the second
column indicates the phrase structure, i.e. 4-
bar sections.

In this experiment, the Unscramble algorithm
has been applied on the melodic segments in
Figure 4; each segment is represented by
attributes of equal initial weight at the surface
level and reductions of it for various pitch and
rhythmic parameters as described in section 3.
The number of relevant clusters is computed
by the algorithm – there’s no need to
predefine the number of clusters. Both of the
‘goodness’ functions described in section
4.2.3.1 have been used yielding in this case
the same results (see appendices I and II).

When the attributes for each segment are
calculated  employing only  exact  matching
then the results given in Table 2 are obtained.
The main two clusters (a and b) emerge
successfully along with clusters e and f;
cluster c is selected because its members share
an identical rhythmic pattern of 4 eighth-notes
which is characteristic of the category. This
clustering captures some of the main strong
melodic categories that are given in Repp’s
analysis but over-emphasises the rhythmic
aspects of cluster c and also totally misses
some other important categories (see empty
table entries).

A1 a b c d e
A B1 a b f g

B2 a b f g
B B3 a b f g

A1 a b c d e
A’ A2 a b c d e h

Table 1  Organisation of Träumerei’s melodic
segments according to Repp (1992).

A1 a b c c e
A B1 a b

B2 a b f
B B3 a b f

A1 a b c c e
A’ A2 a b c c

Table 2  Machine organisation of Träumerei’s
melodic segments when exact matching is employed at
the surface level and at reduced levels (empty entries

signify monadic categories).

A1 a b c d e
A B1 a b

B2 a b f g
B B3 a b f g

A1 a b c d e
A’ A2 a b c d d d,e

Table 3  Machine organisation of Träumerei’s
melodic segments when near-exact matching is

employed at the surface level and at reduced levels.

When near-exact matching is introduced then the
results given in Table 3 are obtained. In this case,
there are some additional clusters: cluster c is
now the same as the one in Table 1; cluster d
includes the last two segments of the melody and
also overlaps on the last segment with cluster e;
cluster g is also discovered; there are only two
segments which remain monadic.

Some comments regarding the differences with
Repp’s melodic/rhythmic organisation of this
melody will now be presented. Firstly, Repp
chooses to group the second-to-last melodic
segment with ‘similar’ segments in cluster e
although this segment is identical – at least in
regard to the melodic/rhythmic properties that are
examined in this study - to segments in cluster d;
we conjecture that this choice is taken by Repp
because of top-down considerations – for
instance



Figure 4  The soprano part of Schumann’s Träumerei, along with segmentation provided by B. Repp (1992)

phrases 1, 5 and 6 may be seen a being overall
‘parallel’ (A1, A2, A1) so their last parts are
also considered as being similar. The
Unscramble algorithm looks only at the
selected internal attributes of segments so
places this segment in cluster d. Secondly, in
Repp’s analysis the last segment is regarded
as an independent monadic cluster h whereas
Unscramble places it with clusters d and e.
Thirdly, Unscramble fails to group the two
‘left-over’ segments (see empty entries in
table 3) with clusters f and g respectively (a
more sophisticated representation could
capture the similarity for cluster f – however,
it seems that for cluster g higher-level
considerations of similarity at the phrase-level
may be necessary).  Overall the two analyses
are quite similar; one may even claim that

Unscramble yields some new ‘intuitions’ about the
melodic/rhythmic organisation of this melodic part
such as the overlap of the two clusters on the last
segment of the piece or the grouping of the second-
to-last segment with members of cluster d.

The Unscramble algorithm not only clusters
melodic segments but also highlights their
characteristic or defining properties. The weighting
function described in section 4.2.3.2 reinforces
‘diagnostic’ properties for discovered clusters and
attenuates properties that are less characteristic. For
instance, members of cluster b share the same
defining step-leap pitch attribute-value (‘step-leap-
leap-leap-equal’) at the surface level (common to
all members of this cluster and shared by no
members of other clusters) and thus this attribute-
value is a defining attribute (weight=1); this cluster
is also characterised by the doublestep-leap



attribute-value ‘dstep-dstep-dstep-leap-equal’
which is shared by all members except the
third instance (‘dstep-dstep-dstep-dstep-
equal’) and receives a strong weight w=0.83; a
similar description for rhythm is given by
Unscramble. As another example,
Unscramble finds that members of cluster c
share the same pattern attribute for the
doublestep-leap representation (the first two
instances are sub-patterns of the last); they
also share the same rhythmic pattern but this
receives a much lower weight as this pattern is
also shared by members of cluster d.

Such a weighting mechanism can be used
effectively for the description of clusters in
terms of defining and characteristic attributes,
which in turn can be used for further melodic
pattern prediction tasks (not as yet fully
investigated).

Conclusion

In this paper a formal model that  organises
melodic segments into ‘significant’ musical
categories was presented. Given a
segmentation of a melodic surface, the
proposed model constructs an appropriate
representation for each segment in terms of a
number of properties (these reflect melodic
and rhythmic aspects of the segment at the
surface and at various abstract levels) and,
then, the Unscramble algorithm organises
these segments into ‘meaningful’ categories.
The Unscramble clustering algorithm
automatically determines an appropriate
number of clusters, allowing some
overlapping between clusters and also
highlights the characteristic or defining
attributes of each category.

As a test case, this computational model was
used for obtaining a melodic and rhythmic
analysis of the soprano-part of Schumann’s
Träumerei. This machine-generated analysis
was compared with an analysis performed by
a human music analyst; it was shown that the
proposed model is capable of producing an
‘acceptable’ analysis that has a significant
amount of resemblance to the human analysis

Acknowledgements

This research is part of the project Y99-INF,
sponsored by the Austrian Federal Ministry of

Education, Science, and Culture in the form of a START
Research Prize. The Austrian Research Institute for
Artificial Intelligence is supported by the Austrian
Federal Ministry of Education, Science, and Culture.

References
Anagnostopoulou, C., Hörnel, D. and Höthker, K. (1999)
Investigating the Influence of Representations and
Algorithms in Music Classification. In Proceedings of
the AISB’99 Convention (Artificial Intelligence and
Simulation of Behaviour), Edinburgh, U.K.

Bent, I.D. (1980) Analysis. In The New Grove
Dictionary of Music and Musicians, Vol.1. Macmillan,
London.

Bomze, I.M., Budinich, M., Pardalos, P.M. and Pelillo,
M. (1999) The Maximum Clique Problem. In
Handbook of Combinatorial Optimisation, D.-Z. Du
and P.M. Pardalos (Eds.), Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Cambouropoulos, E. (1998) Musical Parallelism and
Melodic Segmentation. In Proceedings of the XII
Colloquium of Musical Informatics, Gorizia, Italy.

Cambouropoulos, E., Crawford, T. and Iliopoulos, C.S.
(1999) Pattern Processing in Melodic Sequences:
Challenges, Caveats and Prospects. In Proceedings of
the AISB’99 Convention (Artificial Intelligence and
Simulation of Behaviour), Edinburgh, U.K.

Cambouropoulos, E. and Smaill, A. (1997) Similarity
and Categorisation Inextricably Bound Together: The
Unscramble Machine Learning Algorithm. In
Proceedings of the Interdisciplinary Workshop on
Similarity and Categorisation, University of Edinburgh,
Edinburgh.

Fisher, D.H. (1986) Knowledge Acquisition via
Incremental Conceptual Clustering. Machine Learning
2(2):139-172.

Gluck, M.A., and Corter, J.E. (1985) Information,
Uncertainty, and the Utility of Categories. In
Proceedings of the Seventh Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum
Associates, Irvine (Ca).

Nattiez, J-J. (1990) Music and Discourse: Towards a
Semiology of Music. Princeton University Press,
Princeton.

Nattiez, J-J. (1975) Fondements d’une Sémiologie de la
Musique. Union Générale d'Editions, Paris.

Repp, B. (1992) Diversity and commonality in music
performance: An analysis of timing microstructure in
Schumann’s Träumerei. Journal of the Acoustical
Society of America, 92(5): 2546-2568.

Rolland, P.Y., and Ganascia, J.G. (2000) Musical Pattern
Extraction and Similarity Assessment. In Readings in
Music and Artificial Intelligence. E. Miranda. (ed.).
Harwood Academic Publishers (in press).

Widmer, G. (1996) Learning Expressive Performance:
The Structure-Level Approach. Journal of New Music
Research 25(2): 179-205.



Appendix I  Graphs of the clustering ‘goodness’ values that occur during the first cycle of the Unscramble
algorithm when applied to the melodic segments of Träumerei. The x-axis indicates threshold values (that

correspond to individual clusterings); the y-axis indicates ‘overlap’ and ‘category utility’ values. During the first
cycle, the two ‘goodness’ value functions select different clusterings (different peaks of the graphs).

Appendix II   Graphs of the clustering ‘goodness’ values that occur during the last cycle of the Unscramble
algorithm when applied to the melodic segments of Träumerei. The x-axis indicates threshold values; the y-axis
indicates ‘overlap’ and ‘category utility’ values. During the last cycle, the two ‘goodness’ value functions select

the same final clustering and have a very similar overall outlook (peaks at the same positions).


