
An Object-Oriented Representation of Pitch-
Classes, Intervals, Scales and Chords

François Pachet,
LAFORIA - Institut Blaise Pascal, Boite 169,
4, Place Jussieu, 75252 Paris Cedex 05, France

E-mail : pachet@laforia.ibp.fr

Abstract
The MusES system is intended to provide an explicit representation of musical knowledge
involved in tonal music chord sequences analysis. We describe in this paper the first layer of
the system, which provides an operational representation of pitch classes and their algebra,
as well as standard calculus on scales, intervals and chords. The proposed representation
takes enharmonic spelling into account, i.e differentiates between equivalent pitch-classes
(e.g. C# and Db). This first layer is intended to provide a solid foundation for musical
symbolic knowledge-based systems. As such, it provides an ontology to describe the basic units
of harmony. This first layer of the MusES system may also be used as a pedagogical example
for those wishing to apply object-oriented techniques to musical knowledge representation. A
document describing the system in full details is available on request.

Résumé
Le système MusES a comme objectif de représenter les connaissances musicales nécessaires à
l'analyse harmonique de séquences d'accords en musique tonale. Nous décrivons ici la première
couche du système qui propose une représentation opérationnelle des notes et de leur algèbre,
ainsi que des intervalles, gammes et accords. Cette représentation a comme particularité de
prendre en compte les problèmes d'enharmonie, i.e. de différencier les notes équivalentes
comme Do# et Réb. Cette première couche est utilisée pour l'étude de mécanismes d'analyse
harmonique et peut être considérée comme une ontologie des concepts de base de l'harmonie. Le
but de ce document est aussi de proposer un exemple non trivial d'application de Smalltalk-80
à l'usage des musiciens désirant se lancer dans la programmation par objets. Un document plus
détaillé sur le système est disponible sur demande.

Mots-clés
Programmation par objets, représentation de connaissances, analyse harmonique

1. Introduction

Musical Analysis is an ideal field for testing knowledge representation techniques. It
involves complex knowledge which is well documented, and many examples are available.
Lots of research have been devoted to complex harmonic problems, such as performing
complete harmonic analyses of tonal pieces or extracting deep structures in jazz chord
sequences.
We focus here on a remarkably simple problem, which, to our knowledge, has yet never been
fully addressed. The problem is simply to provide a "good" representation of the algebra of
pitch classes, including the notion of "enharmonic spelling", which is so vital to tonal
harmony, and a representation of intervals, scales and chords to serve as a foundation for
implementing various types of harmonic analysis mechanisms. This problem may be
considered trivial compared with more complex problems such as computing Shenkerian
analysis of Debussy's pieces, but it has always been solved in ad hoc ways (usually in Lisp),
using idiosyncratic representation techniques. For instance, [Winograd 93] emphasises the
importance of taking enharmonic spelling into account, but proposes an ad hoc representation

of chords as (Lisp) dotted lists. Similarily, [Steedman 84] proposes a solution for performing
harmonic analysis of chords sequences but, considers all the entities (chords, intervals or
notes) as Prolog-like constants and is interested only in higher level properties of sequences
deduced from the mere ordering of their elements.

Our goal here is not only to write a program that solves the problems mentioned above, but
also to explicitly represent the underlying mechanisms of pitch-class calculus. This
representation is claimed to be natural, and the mechanisms that implement the operations
on pitch classes are considered isomorphic to human operations. Pushing this idea to its limit
(which we occasionally find ourselves doing), the system described here may be considered as
a substitute for a first-year text-book of introduction to the basics of harmony. Indeed, many
of the mysteries of music notation are explicitly solved here simply because the basic entities
and mechanisms of music notation are given an operational status.

We will first spend some time on defining precisely the algebra of alterations in pitch-classes
and interval computations (parts 2, 3, 4). These parts are important because they are the
foundation of all the system, but they are not the most thrilling. Parts 5 and 6 deal with
computations on scales, chords, and scale-tone chords, and should be much more exciting to the
reader. Finally we show how the system can be easily extended, e.g. to take into account
exotic tonalities.

2. Algebra of pitch classes

We are interested in representing pitch classes, i.e. octave-independent notes and their
relations. For example, pitch class C refers to the set of all possible C's (C1, C2 and so on,
hence the name pitch-class). In order to avoid confusion - because the word class is very
polysemic - we will use the word note to refer to pitch classes. This convention is also needed
in our context, since we will be speaking of "classes" (in the sense of object-oriented
programming) of such notes, and want to avoid talking about pitch class classes.
For example, note C will actually refer to pitch class C, i.e. the set of all Cs (modulo 12). We
will not consider actual notes, with actual pitch (such as Midi pitches in [1 .. 127]) in this
presentation. The extension of our theory to represent actual notes - which may be thought of
as "instances" of pitch classes - will be discussed in conclusion, and is rather straightforward
once the theory of pitch classes is correctly set.

Here is a wish-list of what a good representation of notes (read pitch-class) should take into
account :

 -A note has a unique name. There are conceptually 35 different notes : 7 naturals, 7
flats, 7 sharps, 7 double sharps and 7 double flats. The unicity of notes is actually very
important. There is only one occurrence of each note (in our octave-independent context).
Practically, this means that, for example, the minor second of B (C) is physically the
same note as the minor seventh of D, and so on.

- There is a non trivial algebra for notes. The notes are linked to each other half-tone or
tone wise, and form a circular list. But some notes are pitch-equivalent, (e.g. A# and Bb
, or C##, D and Ebb). Although the ability to differentiate between equivalent notes
may not seem important at this point, it becomes a crucial point when doing harmonic
computations. There is a subtle difference between C# and Db which actually appears
only when scales come into play : for instance, the major scale built from C# contains no
C, whereas the major scale built from Db does contain a C. Stated differently, the
names of notes contain condensed harmonic information that are required by harmonic
analysis techniques. Our theory should be able to interpret this information.

- There is an non trivial algebra of alterations, which includes the following equations:

o b = b o # = identity.
For any x in (#, b, natural), x o natural = natural.

This algebra is non trivial because not everything is allowed, e.g. triple sharps.

- Notes are linked by the notion of interval, which, in a way, preserves this algebra.
For instance, the diminished fifth of C is not the same note as the augmented fourth of
C, but the two notes are equivalent.

- Certain intervals are forbidden for certain notes : for example, the diminished
seventh of Cb does not exist (it would be B bbb !).

- Certain scales do not exist, by virtue of the preceding remarks : G# major is impossible
(because it would contain a F## in its signature). The same holds for Db harmonic
minor, and so on.

Although it is certainly possible to write a global algorithm in any procedural language
(such as Pascal or Lisp) that takes all these cases into account, there is clearly here a better
solution. This solution is based in abstract data types, and consists in considering all these 35
notes as a collection of instances of various types, each type having its own structure and set of
operations. This approach not only yields a simple implementation, but also provides us with
a clear understanding of the operations on pitch classes.

3. Notes as abstract data types

The main idea underlying our representation paradigm is to model the world as a collection of
abstract data types, i.e. we do not separate operations on one hand and data structures on the
other, but rather try to define types (or classes in object-oriented programming) which gather
structures and operations. The theory of algebraic data types [Mahr 80] gives a formal
framework to represent abstract data types and the formal properties of relations. Abstract
data types and object-oriented programming are particularily well suited to represent
musical knowledge (Cf. for instance [Smaill&Wiggins 90] who use abstract data types to
represent "constituents" useful for analysis, or [Pope 91] who use Smalltalk for sound editing
and real-time algorithmic composition). As it turned out, the problem of representing notes
and their algebra is a prototypical example as it fits nicely in this formalism.

This approaches leads to us to considering the notes as follows :

- All (35) notes are not equal. Some operations are permitted on some notes and not on
others. There are 5 different types of notes : NaturalNotes, SharpNotes, FlatNotes,
DoubleFlatNotes and DoubleSharpNotes. It is interesting to distinguish different types of
notes because its gives a precise definition to alterations : the #, b , and natural, may then be
seen as polymorphic functional operations on types.
For example, the # operation maps the NaturalNotes to SharpNotes : A# is then seen as
the result of operation # to note A (instance of NaturalNote), which yields an instance of
SharpNote, i.e. :

sharp : NaturalNote -------> SharpNote

sharp(x) is written x#.

This operation is polymorphic because there are actually several distinct sharp operations,
depending on the type of the argument. An other # operation maps SharpNotes to
DoubleSharpNotes (e.g. A## = sharp (A#)), and an other one maps FlatNotes to
NaturalNotes (Ab # = sharp (Ab) = A), and DoubleFlatNotes to FlatNotes.

Some operations are common to all note types (e.g. the operation natural), other are specific
to one type of note (e.g. the operation followingPitch that links C to D, D to E and so on, is
valid only for natural notes) and other to a group of note types (e.g. the sharp operation is
valid for all note types except doubleSharpNotes).

Similarily, the natural operation is simply identity when applied to NaturalNotes (A
natural = A), but is quite different when applied to SharpNotes (A # natural = A) and still
different when applied to double SharpNotes (A ## natural = A). This polymorphism of the
natural operation is naturally captured by abstract data types.

3.1. From Abstract Data Types to Object-Oriented Programming

Although the theory of abstract data types sheds a new light on the algebra of pitch-class, it
does not allow us to write a completely operational specification of the mechanisms. We
could write out all the axioms of the algebra of pitch-classes and intervals but this is not
what we will do now. We will consider a variant/descendant of this formalism, namely
object-oriented programming and Smalltalk-80. Object-oriented programming is based on this
very idea of defining abstract entities that gather structure and operations in the context in
programming languages.
The vocabulary here is a little bit different : Types are called classes. Classes define structure
in terms of instance variables (or slots, attributes). Each class also has a set of methods,
which are the operations understood by its instances. Polymorphism in object-oriented
languages is naturally present, since several classes may have different methods having the
same name. An important feature of object-oriented programming is the inheritance
mechanism between classes, that allows factoring common structure and behavior (Cf. [Perrot
92]␣for a general introduction to object-oriented programming and representation).

In this document, methods will be written with the following format :

! aClassName methodsFor: aProtocol!
aMethodName and its arguments
the text of the method.

Where aProtocol is simply a set of related methods for a particular class. The text of the
method is a set of expressions. Each expression is a message sent of the form: object
messageSelector arguments (Cf. [Goldberg&Robson 89]␣for further details about
Smalltalk). We will describe the main methods of the system, but not all of them. The reader
whishing to try the system out may obtain the Smalltalk source code by e-mail.

3.2. The hierarchy of notes

In order to represent notes according to these requirements, we define a hierarchy of classes as
follows. Each class has its set of instance variables and operations :

1. Note represents the root of all classes representing note. It is an abstract class and has no
instance variables.

2. NaturalNote represents natural notes. There are 7 instances of this class, representing the
7 natural notes (A, B, C, D, E, F, G). Natural notes form the core of the system :

-They have a name, (actually they have two names, to allow French terminology : A =
La, B = Si, etc...). The name is used for global access and printing.
- They are linked to each other according to the order (A, B, C, D, E, F, G). This is
represented by two instance variables : fo l lowing and preceding , that point
respectively to the following and preceding natural note,
- Moreover, in order to represent the various intervals between notes, we assign to each
natural note an arbitrary semiToneCount , so that, e.g. semiToneCount(A) = 1,
semiToneCount(B) = 3, .., semiToneCount(G) = 11. This semiToneCount is used for
interval computations (Cf. method alterate:toReach).
- Finally, there are two pointers towards the sharp and flat notes generated by the
natural notes. They represent the function sharp (resp. flat), which maps
NaturalNotes -> SharpNotes (resp. FlatNotes). These notes are instances of
SharpNote (resp. FlatNote) (Cf. below).

The structure of class NaturalNote is therefore :

Note subclass: #NaturalNote
instanceVariableNames: 'name nom semiToneCount following preceding sharp flat'

Class NaturalNote defines methods to access following, preceding, sharp and flat notes.
These 4 methods are simple accessing methods : their result is the value of the corresponding
note. These values are assigned once, at initialization time (Cf. initialization of notes). For
instance, the method sharp is defined as :

!NaturalNote methodsFor: 'accessing'!
sharp

^sharp

3. AlteredNote is the root of the classes representing altered (and doubly altered) notes. It
is an abstract class. It defines only one instance variable called natural pointing back to the
natural note it comes from. For instance, A#, A##, Ab , and Abb all have A as their natural.

4. Finally, there are 4 subclasses of AlteredNote for representing respectively sharp, flat,
doubleSharp and doubleFlat notes. These classes implement the methods sharp, flat and
double flat so as to respect the natural algebra of alterations. For instance, class FlatNote
implements the following sharp method :

!FlatNote methodsFor: 'accessing'!
sharp
"my sharp is simply my natural note"

^natural

Conversely, for sharp notes, the flat operation is defined as the natural operation :

!SharpNote methodsFor: 'accessing'!
flat
"my flat is simply my natural note"

^natural

For DoubleFlat, the sharp method will consist in delegating the message to the natural
note :

!DoubleFlatNote methodsFor: 'accessing'!
sharp
"x bb # = x b"

^natural flat

Method flat in DoubleSharpNote is similar.

Finally, we need to represent the functional link between a flat (resp. sharp) note and its
corresponding doubleFlat (resp. doubleSharp). This is realized by defining an instance
variable in class FlatNote pointing to the corresponding doubleFlat note (and idem for
sharp). Thus, the method flat is implemented as a simple access method for FlatNote (idem
for sharp in class SharpNote).

To conclude, here is the list of all the implementations of the flat method (the same
mechanism applies for the sharp operations) :

!NaturalNote methodsFor: 'alterations'!
flat

^flat

!FlatNote methodsFor: 'alterations'!
flat

^flat

!SharpNote methodsFor: 'alterations'!
flat

^natural

!DoubleSharpNote methodsFor: 'alterations'!
flat

^natural sharp

Note that the flat operation is intentionaly not defined for class DoubleFlatNote. The flat
message sent to a DoubleFlatNote will raise an error, which is conform to our philosophy.
Idem for method sharp in class DoubleSharpNote.

3.3. Equivalence of pitches

Last, we introduce a method for testing the equivalence of pitches. This method, called
pitchEquals: tests the semiToneCount, and allows to represent the equivalence of certain
notes. This method is implemented as follows :

!Note methodsFor: 'testing'!
pitchEquals: aNote

^self semiToneCount = aNote semiToneCount

To implement method semiToneCount, we will once again use polymorphism. The method is
defined as follows in the 5 classes :

!NaturalNote methodsFor: 'access'!
semiToneCount
"a simple acess method"

^semiToneCount

!FlatNote methodsFor: 'access'!
semiToneCount

^natural semiToneCount - 1

!SharpNote methodsFor: 'access'!
semiToneCount

^natural semiToneCount + 1

!DoubleSharpNote methodsFor: 'access'!
semiToneCount

^natural semiToneCount + 2

!DoubleFlatNote methodsFor: 'access'!
semiToneCount

^natural semiToneCount - 2

Now all the note classes have been defined, and the algebra of pitch is correctly represented.
The note classes form the following inheritance tree (instance variables are between
parenthesis, and inheritance is represented by indentation) :

Object ()
Note ()

NaturalNote (name following preceding sharp flat semiToneCount)
AlteredNote (natural)

SharpNote (sharp)
FlatNote (flat)
DoubleFlatNote ()
DoubleSharpNote ()

Figure 1 represents the class hierarchy as well as the instances A, B, A#, A##, Ab, and Abb,
and their relationships.

Note

NaturalNote AlteredNote

SharpNote FlatNoteDblSharpNote

DblFlatNote

A

B A#
Ab

A##

sharp flat

(natural)

natural

sharp

(following

preceding

sharp ...)

sharp
following

flat

= instance of

= subclass of

Abb
flat

Figure 1. Relationships between several notes.

3.4. Note creation and initialization

Once these classes are defined, we define an initialization method as a class method for
Note. This method will create the 35 instances of notes and link them according the instance
variables defined above. Since notes are unique, we want to have a global access to them.
This global access is realized by 7 class variables (A to G) which point to the corresponding
natural notes created during the initialization phase. A set of special methods are written to
access these natural notes by messages such as A, B, C (or do, re, mi). Altered notes are then
accessed by sending appropriate alteration messages to natural notes.

Here is a micro session that illustrates note access1.

Note C -> C
Note C sharp -> C#
Note C sharp sharp flat -> C#
Note C flat flat flat -> error: 'flat' not understood by class DoubleFlatNote
Note C sharp pitchEquals: Note D flat -> true

4. Intervals

Now that notes and the algebra of alterations are correctly defined, interval computation is
easy to add (and more interesting !). The same kind of requirements that hold for notes hold
for intervals, namely the possibility of differentiating synonymous intervals. For instance,
we want to be able to distinguish the diminished fifth of C (which is Gb) from its augmented
fourth (which is F#, a pitch-equivalent of Gb).
There are a number of things one can do with intervals, which are :

- computing the top or bottom lacking extremity of an interval, given a note (e.g. what
is the major third of C, or what is the note whose major third is C),

1 Note that the instance of SharpNote that represents C# is accessed by sending the message
sharp to the note C, but prints itself as C#.

- computing an interval given two notes. For example, we want to be able to answer the
question : what is the interval between C and F# ? (the answer here is an augmented
fourth) ,
- performing some computations on intervals themselves, such as :

adding intervals (e.g. a major third + a perfect fifth = a major seventh)
computing reverse intervals (the reverse of an augmented fourth is a diminished

fifth).

In order to do so, we must have an explicit representation of intervals, that supports those
operations. The class Interval is defined with the following structure :

a type, which indicates how many notes should be enumerated. The type is represented
by an integer (e.g., 2 for a second, 3 for a third, and so forth),
a number of semiTones, that represents its actual width (also an integer).

These two informations are sufficient to actually compute the real name of the interval. For
instance, a major third interval is represented by an instance of Interval whose type is 3 (for
'third'), and whose semiTones is 5. This is represented by the printing method of class
Interval, that prints an interval according to the human (mysterious) terminology, that
allows perfect fifths ou fourths, but major and minor thirds .

4.1. Computing interval extremities

In order to compute the note forming a given interval with a given note, we will follow the
human algorithm which says that computing an interval consists in the following steps : (we
will take the example of computing the diminished fifth of Cb) :

1. getting to the natural note. In our example, Cb yields C.
2. enumerating as many steps as the interval says. Here, a diminished fifth is a fifth,
so we will enumerate five notes, starting from C : C, D, E, F, G. We get a G.
3. Adding one or two # or b to the resulting note (here G) to yield the right number of
half-tones. In our example, we want a diminished fifth, which is 6 half-tones. From Cb
to G there are 8 half tones, so we send the message flat flat to the result, eventually
getting Gbb.

Here is the corresponding method, which computes the diminished fifth of a note. It is
defined in the root class of notes (Note).

!Note methodsFor: 'intervals'!
diminishedFifth

^Interval diminishedFifth topIfBottomIs: self

The main method is topIfBottomIs: , which is defined in class Interval as follows :

!Interval methodsFor: 'computing'!
topIfBottomIs: aNote

"yields the note making the interval self with aNote"
^aNote alterate: (aNote nthFollowing: type - 1) toReach: semiTones

This method of class Interval uses two methods defined in class Note : nthFollowing:
and alterate:toReach:. Method nthFollowing: simply yields the nth following note,
in the natural ordering :

!Note methodsFor: 'intervals'!
nthFollowing: i

| result|
result := self natural.

i timesRepeat: [result := result following].
^result

Now the main method is actually the method alterate:toReach:, which takes two
arguments : a naturalNote n, and a number of semiTones s. The method sends the right number
of sharp or flat messages to the natural note to reach an interval with s semiTones.
It is important here to note that this method may be sent to any type of note. The action to
perform depends on the type of the note so we actually define 5 such methods.
The first one deals with natural notes. The computation is based on the difference between
semiToneCounts of its extremities. Depending on this difference, the messages sharp and flat
are sent to the note passed in parameter.

!NaturalNote methodsFor: 'intervals'!
alterate: note toReach: s

| delta |
delta := (self semiTonesWithNaturalNote: note) - s.
delta = 0 ifTrue: [^note].
delta = 1 ifTrue: [^note flat].
delta = -1 ifTrue: [^note sharp].
delta = 2 ifTrue: [^note flat flat].
delta = -2 ifTrue: [^note sharp sharp].
^self error: 'illegal interval'

The method semiTonesWithNaturalNote: is defined simply as a difference of
semiToneCounts mod 12 :

!NaturalNote methodsFor: 'intervals'!
semiTonesWithNaturalNote: aNote

^aNote semiToneCount - semiToneCount \\ 12

Now what happens to non natural notes ? The answer is simple. For SharpNotes for instance,
the computation consists in delegating the result to the corresponding natural note, and then
sending a sharp message to the result, as follows :

!SharpNote methodsFor: 'intervals'!
alterate: note toReach: s

^(natural alterate: note toReach: s) sharp

Similarily, the same mechanism holds for Flat, DoubleFlat and DoubleSharp notes.

The dual problem, i.e. finding the "bottom" of an interval, given its top, is now easily defined
as follows, by using the "reverse" of an interval :

!Interval methodsFor: 'computing'!
bottomIfTopIs: aNote

"yields the note from which aNote yields interval self"
^self reverse topIfBottomIs: aNote!

4.2. Computations on intervals

The reverse of an interval is trivially defined by computing the complement to 9 for type, and
to 12 for semiTones :

!Interval methodsFor: 'reverse'!
reverse

^self class type: (9 - type) semiTones: (12 - semiTones)

Here is a micro-session that exemplifies interval computations :

Note C flatFifth - > Gb
Note C augmentedFourth - > F#
Note C majorThird majorThird - > G#
Note C flat minorSeventh - > Bbb
Note C flat diminishedSeventh -> error: illegal interval

Interval diminishedFifth bottomIfTopIs: (Note F sharp) -> C
Interval diminishedFifth bottomIfTopIs: (Note G flat) -> Dbb

Interval majorThird reverse -> minor sixth
Interval perfectFifth + Interval majorSecond -> majorSixth

(Note C diminishedFifth) pitchEquals: (Note F minorSecond) -> true

4.3. Computing intervals from its extremities

Finally, computing an interval from two notes is simple, and implemented by only one method
in class Note :

!Note methodsFor: 'intervals'!
intervalWith: aNote

| b b2 type |
type := 1.
b := self natural.
b2 := aNote natural.
[b2 = b] whileFalse: [b := b following. type := type + 1].
^Interval type: type semiTones: (self numberOfSemiTonesWith: aNote)

The method numberOfSemiTonesWith: is implemented as follows in class Note, by cutting
the job in three pieces :

!Note methodsFor: 'intervals'!
numberOfSemiTonesWith: aNote

^self semiTonesWithNatural +
(self natural semiTonesWithNaturalNote: aNote natural) -
aNote semiTonesWithNatural

The methods semiTonesWithNatural and semiTonesWithNatural: are implemented
respectively in each subclass to yield the correct result, once again using polymorphism. This
method may be used as follows :

Note C intervalWith: Note F sharp - > augmented fourth
Note C sharp intervalWith: Note G - > diminished fifth

(Note C intervalWith: Note G) =
(Note D sharp intervalWith: Note A sharp) - > true

5. Scales

Let us now proceed with much more exciting matter : scales and chords. Strangely, these are
extremely simple to represent, once the foundation is set (and solid!). Here are some of the
things we want to do with scales, in the context of harmonic amalysis :

- Find all the scales that contains n given notes,
- Find the signatures of scales (number of sharps and flats),

- Find the notes a of scale,
- Know that certain scales are forbidden,
- Generate scale-tone chords from a scale.

5.1. Definition and creation of scales

We actually have all we need to represent scales : a scale is an ordered list of intervals,
starting on a given root note. The class Scale is defined with the following instance
variables :

a root that points to the root note,
a list of notes of the scale2. This list of notes may be deduced from the root and type as
we will see.

Now there are different types of scale : major scales, harmonic minor scales, melodic minor
scales3. The type of the scale could be represented by yet an other instance variable. But
there is a better solution that allows us to benefit, once more, from the advantages of
polymorphism. This solution consists in creating subclasses of Scale to represent the various
possible types. In this scheme, the class Scale is an abstract class, i.e. does not have any
instance, but serves as a root for subclasses, which will implement the actual definitions
(here, the series of intervals) of particular types of scales.

Here is how it works. The main creation method is defined as follows, with one argument :
the root of the scale. This creation method is also in charge of computing the list of notes and
testing the validity of the scale.

!Scale class methodsFor: 'creation'!
root: aNote

|s|
s := self new root: aNote; computeNotes.
^s isValid ifTrue: [s] ifFalse: [self error: 'invalid scale']

Now the 2 important methods are computeNotes and isValid, and are defined as follows :

!Scale methodsFor: 'computing notes'!
computeNotes
"intervalList depends on the type of the scale. It is defined in each subclass of Scale"

notes := self intervalList collect: [:s | root perform: s]!4

The actual interval list is defined in each particular subclass of Scale. This is the only
method needed to define a subclass of Scale. For instance, here are the definition of Major,
HarmonicMinor and MelodicMinor scales by their intervalList definition :

!MajorScale methodsFor: 'interval list'!
intervalList

^#(yourself second majorThird fourth fifth majorSixth majorSeventh)

!HarmonicMinorScale methodsFor: 'interval list'!
intervalList

^#(yourself second minorThird fourth fifth minorSixth majorSeventh)

2 At this point, we do not consider the problem of finding the scale corresponding to a set of
notes, as this is handled by successive layers of the system.
3 These 3 types of scales are sufficient to describe most of standard be-bop Jazz music, but new
ones could be added to cope with exotic tonalities such as the ones founded in some Jazz-Rock
tunes (Cf. § on genericity)). These scales are also called synthetic modes in some literature.
4 Note the "smart" use of perform: to compute the intervals using the interval computation
methods.

!MelodicMinorScale methodsFor: 'interval list'!
intervalList

^#(yourself second minorThird fourth fifth majorSixth majorSeventh)

The validation test consists in checking the absence of any double altered note. The creation
of scales is defined as follows in class Note by sending the a creation message to the
corresponding Scale class with self as the root parameter :

!Note methodsFor: 'scales'!
majorScale

^MajorScale root: self

Here is a micro-session for scales :

Note A flat majorScale -> Ab major
Note A flat majorScale notes -> (Ab Bb C Db Eb F G)
Note C harmonicMinorScale notes -> (C D Eb F G Ab B)
Note G sharp majorScale -> error: 'invalid scale'

6. Chords

6.1. Definition and creation of chords

Let us proceed with the core of harmonic analysis : chords. We propose here a representation
of chords that is based on the representation of notes, intervals and scales defined above,
which allows to make various computations such as :

- finding the name of a chord given a set of notes,
- finding the set of notes given a chord name,
- finding all the possible harmonic analysis of a chord, in various scales.

Chords are represented by a class with two main instance variables : a root, which is a note,
and a structure, which is a list of symbols. Chords may be created by sending a message to
the root, with the structure as argument, or by sending a message to class Chord with the
complete string as argument, such as :

Note C sharp chordFromString: 'min' -> C# min
Note D chordFromString: '' -> D

Chord newFromString: 'A min 7 9' -> A min 7 9

6.2. Creating the structure from the list of notes

One of the problems with chords is to find a stable and consensual terminology. Here, this
problem is trivially represented by a method that takes successively each note, compares it
to the root, and deduce the corresponding piece of structure. We do not include this method for
reason of space.

6.3. Creating the list of notes from the structure

The reverse problem consists in finding the list of notes given a particular structure. To
garanty a unique and non ambiguous terminology we systematically format chords using the

two preceding methods. Since the problem of chord identification would necessitate a whole
report, so the corresponding methods are not described here (teh interested reader may obtain
the full report with all the details on this aspect).

(Chord newFromString: 'C min dim5 aug9') notes -> (C Eb Gb Bb D#)

6.4. Computing chords from scales

An extremely important and interesting feature of scales is their ability to generate the so-
called scale-tone chords. In a way, the whole mechanic of harmonic analysis is based on this
principle (in the other way round, Cf. below).
Generating chords from a scale is an operation that takes two arguments : a number of
polyphony p, and an interval i. The generation of chords consists simply in building (7) sets of
notes. Each set of notes (a chord) is built by taking successively each note of the scale, and
iteratively (p times) getting its i th following note. The classical case is when i = 3, and the
chords are built by successive thirds. The method that implements this latter case is
generateChordsPoly:, which only needs the polyphony parameter :

Here is a micro-session that generates chords :

Note C majorScale generateChordsPoly: 7 - >

OrderedCollection (C maj7 9 11 13, D min 7 9 11 13, E min 7 dim9 11 13, F maj7 9
aug11 13, G 7 9 11 13, A min 7 9 11 dim13, B min dim5 11 dim13)

Note D harmonicMinorScale generateChordPoly: 3 - >
OrderedCollection (D min, E min flat5, F aug5, G min, A, Bb, C# min flat5)

6.5. Computing possible analysis

Now that we know how to generate scale-tone chords from a given scale, we are, of course,
also interested in the reverse operation, which is the at the heart of harmonic analysis :
knowing, for a given chord, what analysis it can "support", i.e. what are the scales from
which is may be generated, and, for each of these possible scale, what is the degree of the
chord.

Let us first represent explicitly the notion of HarmonicAnalysis , with a trivial
representation by two instance variables :

Object subclass: #HarmonicAnalysis
instanceVariableNames: 'scale degree'

HarmonicAnalysis defines a printing method to print itself between brackets {}, and with
roman literals. Now the method that computes all possible analysis for a given chord is
naturally defined in class Chord by adding all the possible analysis in a given scale (i.e. a
subclass of Scale), for all possible scales :

!Chord methodsFor: 'computing tonalities'!
possibleTonalites

| result|
result := OrderedCollection new.
Scale allSubclasses do:

[:aScaleClass| result addAll: self possibleTonalitiesInScaleClass: aScaleClass].
^result

possibleTonalitesInScaleClass: aScaleClass

| ana scale chords possibleTonalities|
self format.
possibleTonalities := OrderedCollection new.
scale := aScaleClass root: Note C.
chords := scale generateChordsPoly: notes size.
chords do: [:c | (c matchWith: self) ifTrue:

[ana := Analysis new degree: (scale degreeOfChord: c).
ana scale: (aScaleClass root:

(self root transposeOf: (aScaleClass root intervalWith: scale root))).
possibleTonalities add: ana]].

^possibleTonalities

Here is the corresponding micro-session :

(Chord new fromString: 'C maj') possibleTonalities - >
 OrderedCollection (

{IV of G MelodicMinor} {V of F MelodicMinor} {I of C Major}
{IV of G Major} {V of F Major} {V of F HarmonicMinor}
{VI of E HarmonicMinor})

(Chord new fromString: 'D min 7 dim5') possibleTonalities - >
OrderedCollection (

{IV of F MelodicMinor} {VII of Eb MelodicMinor}
{VII of Eb Major} {II of C HarmonicMinor})

6.6. Genericity and Reusability

One of the main advantages of our approach, besides the clarification it brings to the overall
algebra of alterations, intervals and scales, is the fact that all the mechanisms may be
extended very easily, mainly by subclassing. For instance, our representation of scales makes
it straightforward to add new types of scales, using inheritance. Introducing a new type of
scale consists simply in creating a new subclass of Scale, and defining its interval list. The
new class is then ready to use.

For instance, we can define the HungarianMinor scale as a subclass of class Scale and the
following method :

!HungarianMinor methodsFor: 'interval list'!
intervalList

"example : (C D Eb F# G Ab B)"
^#(yourself second minorThird augmentedFourth fifth minorSixth majorSeventh)

We can then right away use all the preceding methods without any modification. For
instance, we can compute the new (exotic) set of possible chords generated by this scale as :

(HungarianMinor root: Note C) generateChordPoly: 4 - >
OrderedCollection (C min maj7, D dim5 7, Eb aug5 maj7, F# dim5 dim7, G maj7,
Abmaj7, B min dim7)

Of course, we will be also able to use this scale for performing exotic analysis, in the
successive layers, at a minimal cost ! Here are for example, the possible analysis of a chord,
in this new tonality :

(Chord new fromString: 'C maj') possibleTonalities - >
 OrderedCollection (
{V of F HungarianMinor} {VI of E HungarianMinor}
{IV of G MelodicMinor} {V of F MelodicMinor}

{I of C Major} {IV of G Major}
{V of F Major} {V of F HarmonicMinor}
{VI of E HarmonicMinor})

(Chord new fromString: 'D min') possibleTonalitiesIn: HungarianMinor ->
OrderedCollection ({I of D HungarianMinor } {VII of Eb HungarianMinor })

As John McLaughlin (one of the inventor of Jazz-rock, who, among other things, introduced
sophisticated and hard-to-analyse harmonic progressions in Jazz) writes in the foreword of
[Mahavishnu 76] : "... one can find so much hidden within [synthetic modes], particularily in
the extraction of their scale-tone chords". Well, the extraction and study of these exotic
scale-tone chords and their interactions is now a child's play :

!NeapolitanMinor methodsFor: 'interval list'!
intervalList

"example : (C Db Eb F G Ab B)"
^#(yourself minorSecond minorThird perfectFourth fifth minorSixth majorSeventh)

!DoubleHarmonic methodsFor: 'interval list'!
intervalList

"example : (C Db E F G Ab B)"
^#(yourself minorSecond majorThird fourth fifth minorSixth majorSeventh)

... and so on : McLaughlin gives 16 synthetic modes, which can be all represented similarily.
We can now have the full possible analysis for any chord in any scale, and study them by
appropriate queries to MusES.

7. Extending the system

7.1. Representing actual octave-dependent notes

As we said in the beginning, our theory only takes pitch-classes into account, and does not
differentiate several notes belonging to the same pitch class (octave-dependent notes). The
first idea that comes to mind to include these actual octave-dependent notes in our system is to
have our present notes (instances of the various subclasses of Note) become classes, in the
sense of OOP, so that one can make instances out of them ! For instance, we would like to say
that note C3 is an instance of pitch-class C. And of course pitch-class C would still be an
instance of class NaturalNote !
This procedure, which consists in raising all the classes and instances one step higher in the
instanciation tree is technically possible5, but raises an ontological problem : What do we
want to consider global vs volatile ?
Intuitively, we would like to say that pitch-classes are global objects, but that octave-
dependent notes are not. There are two arguments to support this claim : (1) Pitch classes are
not too many (35), compared to actual octave-dependent notes (35 * say, 8 octaves = 280 notes
!), and (2) there is no reason to decide a priori what are the limits in the octave
multiplication : 8 seems a good approximation, but then we will have the problem of deciding
what happens to the upper or lower bounds (would we authorize interval computations on
these bounds for instance ?). This lead us to consider a representation for octave-dependent
notes as instances, and pitch-classes as classes. Because of space limitation, we will not
discuss these technical details here.

5 But it is not trivial, since metaclasses are not really first-class objects in Smalltalk.
However, small extensions to Smalltalk allow the user to have complete control on
metaclasses (Cf. the ClassTalk system by [Cointe&Briot 89]).

7.2. Problems not solved

There are a couple of classical problems involving pitch class computation we did not deal
with yet, such as : computing the scale from a list of notes, or : given an incomplete list of notes
(of length < 7), compute the list of plausible scales. We hope that our presentation convinced
the reader that these extension are trivial to add to the existing system.

7.3. Representing non trivial reasoning

The system presented here achieves is goal, which is to represent the basic harmonic entities
necessary to perform sophisticated reasoning. The representation of this reasoning is the main
goal of the higher levels of the MusES system, and is described in subsequent documents. The
central idea of these extensions is to use a specialized forward-chaining, first-order inference
mechanism (NéOpus) with which all the reasonings involving the objects defined here are
represented. More on this can be found in [Pachet 91], the expertise is described in [Pachet 87]
but represented awkwardly, and a forthcoming report will present a version of the system as
an extension to the present architecture.

8. Conclusion

The first layer of the MusES system sets the foundations for the study of various harmonic
analysic mechanisms. The basic entites of harmony notes, intervals, scales and chords are
defined as by set of classes, having a structure and a behavior. Our approach is validated by
the "friendly" feel of the overall system and the almost physical presence of the musical
entities, that allow the user to think more naturally, and by the reusability of these entities,
and their capacity to support extensions.

9. References

[Cointe&Briot 89] Cointe P., Briot J.-P. Programming with ObjVlisp metaclasses in
Smalltalk-80, OOPSLA '89, New Orleans, USA.
[Ebcioglu 92] Ebcioglu K. An expert system for harmonizing chorales in the style of Bach. In
Understanding Music with A.I. AAAI Press/ MIT Press, 1992. Ed. by Balaban M., Ebcioglu K.,
Laske O.
[Goldberg&Robson 89] Goldberg A., Robson D. Smalltalk-80 : the language and its
implementation. Addison-Wesley 1989 (revised edition).
[MacLaughlin 76] J. McLaughlin. John McLaughlin and the Mahavishnu Orchestra. Warner-
Tamerlane publishing, Warner Bros. Publishing, New York,1976.
[Mahr 80] Mahr Ehrig. Fundamentals of Algebraic Specifications. Vol 1.
[Pachet 87] F. Pachet. Vers un système expert de suivi d'improvisation. Rapport de DEA
IARFA, IRCAM/Paris 6, September 1987.
[Pachet 91] F. Pachet. A meta-level architecture for analysing jazz chord sequences.
Proceedings of ICMC 91, Montréal.
[Perrot 92] J.-F. Perrot. Langages à objets, Programmation par Objets. Rapport LAFORIA n°
92/34. Novembre 1992.
[Pope 9] Pope Steven. The Well-Tempered Object. MIT Press, 1991.
[Smaill&Wiggins 90] Smaill Alan, Wiggins Geraint. Hierarchical music representation for
composition and analysis. In Colloque International "Musique et assistance informatique", pp.
261-279, Marseille, 3-6 oct. 1990.
[Steedman 84] Steedman M.J. A Generative Grammar for Jazz Chord Sequences. Music
Perception, Fall 1984, Vol. n° 2, N° 1, pp. 52-77.
[Winograd 93] T. Winograd. Linguistics and the Computer Analysis of Tonal Harmony. In
Machines Models of Music, Edited by S. M. Schwanauer and D.A. Levitt, MIT Press, 1993.

