
N° d'ordre : 2610

THÈSE
présentée à

L'UNIVERSITÉ BORDEAUX I

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

par SCHMITT Benjamin

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : Informatique

Modélisation d'hypervolumes constructifs
Constructive Hypervolume Modelling

Soutenue le : 13 Décembre 2002

Après avis de :

Mme M.P. Cani, Professeur, (INPG Grenoble, France) Rapporteurs
M . B. Juettler, Professeur (Université J. Kepler, Linz, Autriche)

Devant la commission d'examen formée de :

MM. Pascal Guitton Professeur Président
M . Christophe Schlick Professeur Rapporteur

MMe Marie-Paule Cani Professeur Examinateurs
M M . Laurent Grisoni Maître de Conférences

Bert Juettler Professeur
Alexander Pasko Professeur

- 2002 -

2

Contents

Introduction 7

1 Modelling point sets and their attributes 11
1.1 Introduction . 11
1.2 Enumerative and combinatorial representations 12

1.2.1 Enumeration using a mapping rule . 12
1.2.2 Grouping . 14
1.2.3 Cellular complexes . 16

1.3 Function representation . 16
1.3.1 Implicit surfaces . 17
1.3.2 Function representation . 18
1.3.3 Other constructive approaches . 19

1.4 Hybrid models . 22
1.4.1 Boundary representation and extensions 22
1.4.2 Hybrid volume . 25
1.4.3 Object model . 25
1.4.4 Constructive volume geometry . 25

1.5 Discussion . 26

2 Constructive hypervolume framework 27
2.1 Introduction . 27
2.2 Constructive hypervolume modelling . 28

2.2.1 Objects . 28
2.2.2 Operations . 29
2.2.3 Relations . 30
2.2.4 Constructive hypervolume model and its underlying representation 31

2.3 Case studies . 32
2.3.1 Heterogeneous material . 32
2.3.2 Modelling geological structure . 35
2.3.3 Adaptive mesh generation . 36

2.4 Implementation . 38
2.4.1 Language for hypervolume modelling . 38
2.4.2 HyperFun software tools . 39

3

4 CONTENTS

3 Constructive hypervolume texturing 41
3.1 Introduction . 41
3.2 Existing texturing techniques . 42
3.3 Constructive solid texturing approach . 43

3.3.1 Forestalling example . 43
3.3.2 Constructive solid texturing definition . 44
3.3.3 Complex object space partitions . 45
3.3.4 Operations on attributes . 46

3.4 Constructive solid texturing in higher dimension 51
3.4.1 Constructive time-dependent texturing . 51
3.4.2 Constructive texturing in multiple dimensions 52

3.5 Special attributes . 56
3.5.1 Bump mapping . 56
3.5.2 Speed-up attribute . 57

3.6 Conclusion . 58

4 Constructive hypervolume sculpting 59
4.1 Introduction . 59
4.2 Sculpting constructive hypervolumes . 60
4.3 Trivariate B-spline primitive . 61

4.3.1 Framework for the primitive . 61
4.3.2 Providing distance property . 62

4.4 Multiresolution approach for the trivariate B-spline primitive 66
4.4.1 Multiresolution analysis . 67
4.4.2 Multiresolution B-spline curve . 67
4.4.3 Modelling using a multiresolution B-spline primitive 69

4.5 Interactive Modelling . 70
4.5.1 Visualisation . 70
4.5.2 Constructive tree with B-spline primitives 72
4.5.3 Tools for modelling . 75
4.5.4 Geometry and attributes modelling . 76

4.6 Conclusion . 77

5 Deformations in the constructive hypervolume model 79
5.1 Introduction . 79
5.2 Simple deformations using space mapping . 80
5.3 Deformations using field functions . 82

5.3.1 Potential function . 82
5.3.2 B-spline based deformations . 84
5.3.3 Distance functions . 86

5.4 Shape driven deformation . 89
5.4.1 Framework for deformations . 89
5.4.2 Examples of deformations . 92
5.4.3 Using FRep tree for deformations . 94

CONTENTS 5

5.5 Using space mapping node in a FRep tree . 94
5.5.1 Deformations along a curve . 96
5.5.2 Complex examples . 97

5.6 Conclusion . 100

Conclusion 103

Appendix A: Examples of HyperFun models 105
Example 1: A textured sphere . 105
Example 2: Space partitions . 106
Example 3: Simple deformations . 107

6 CONTENTS

Introduction

This document deals with modelling point sets with attributes. We consider point sets in geo-
metric spaces (affine, Euclidean, etc.) of arbitrary dimension. A point set is a geometric model
of a real or abstract object under consideration. An attribute can be defined as a mathematical
model of an object property of arbitrary nature defined at any point of the point set. For exam-
ple, to model a mechanical part with varying internal material distribution one can introduce
a three-dimensional solid as a point set and a real-valued scalar function to represent material
density as an attribute. Application areas of such models include:

• Fabrication of objects with multiple materials and varying material distribution [KD97,
KBDH99];

• Physics based simulations for the analysis of physical fields distribution over the given
geometric areas [Nie00];

• Analysis of geological structures [Hou94];

• Medical examination and surgery simulation using computer tomography and other scan-
ning devices [HFP90];

• Analysis of molecules configuration [BPRS98];

• Computer graphics and visualisation of objects with varying colours and other optical
characteristics, amorphous and gaseous phenomena [KCY93].

In general, multidimensional point sets with an arbitrary number of attributes of different
mathematical nature (scalar, vector, tensor, etc.) can be introduced in various ways depending
on the application. Modelling techniques related to point sets with attributes span such areas
as solid modelling, heterogeneous objects modelling, scalar fields or implicit surface modelling,
and volume graphics. A brief survey of different modelling techniques related to point sets
with attributes is provided in the first chapter. Then, on the basis of this survey we formulate
requirements to a general model of hypervolumes (multidimensional point sets with multiple
attributes).

In the second chapter, a new model for modelling a point set with attributes, called con-
structive hypervolume, is proposed. A Point set and its attributes are represented independently
by real-valued functions model using vector functions, on the base of the function representa-
tion model. Each function can be associated with a tree structure and is evaluated by a tree

7

8 INTRODUCTION

traversing procedure. This reflects the constructive nature of the symmetric approach to mod-
elling geometry and the associated attributes. This model provides a rich system of primitives,
operations and relations for modelling both geometry and attributes. Application examples are
given, related to various areas such as heterogeneous object modelling, geological analysis and
physically based simulation. Special software tools have been developed, and we introduce the
HyperFun [Pro] language and its extension to the constructive hypervolume model at the end
of this second chapter.

Special attention is paid in the third chapter to the problem of texturing objects. An object
is considered as the point set and attributes are its photometric properties. The concept of
solid texturing [Pea85, Per85] is extended in two directions: constructive modelling of space
partition for texturing and modelling of multidimensional textured objects. This approach
provides a framework for modelling, texturing and visualisation of 3D solids, time-dependent
and multidimensional objects in a uniform manner. Furthermore, the proposed approach for
texturing is independent of the geometry representation. We provide examples of textured FRep,
BRep and voxel objects.

In the fourth chapter, we propose to define a volume sculpting scheme to model either an
object geometry or a space partition for an attribute. A trivariate B-spline function is used to
define a 3D object. While the first three coordinates are used to represent the spatial component
of the object to be sculpted, the fourth coordinate is used as a scalar, which corresponds to a
function value or a volume density. Thus, the shape can be manipulated by changing the scalar
control coefficients of the B-spline function. To control the behaviour of the B-spline function
outside its domain of definition and to provide the distance property, we apply a so-called
functional clipping. The obtained distance property, combined with the properties of the B-
spline object, allows us to use the resulting 3D solid as a leaf of a constructive modelling tree
and to apply to it operations defined in the FRep model. To facilitate the modelling process, a
multiresolution capability based on the wavelet transformation is also proposed. An interactive
modeller is then described. It combines both sculpting and constructive approaches. At any
time of the modelling process, one can either sculpt a part of an object while using a B-spline
primitive or add another part while combining its current model to some other primitive with
the use of set-theoretic. Visualisation of the polygonized object surface is done in real time.

The last chapter considers deformations in the proposed constructive hypervolume model.
Given an existing shape, a large variety of techniques exist to deform an object. Most of them
lead to the separation of the construction step from the deformation step while modelling. A
valuable approach would be to be able to model an object regardless of the technique being used,
i.e., to use either the constructive scheme or a deformation scheme in any order. To offer this
possibility, we propose to define point and shape driven deformations as a special node in the
constructive hypervolume model. The mathematical background for such definition is the inverse
mapping. Additional deformations can be achieved by moving arbitrary points in the coordinate
space and applying space mapping at any level of the constructive tree. The final constructive
object is defined by a single real-valued function evaluated by the tree traversing procedure.
This point-to-point based deformation is extended, and a framework for a general technique is
proposed to deform an object. One important feature is that this technique allows one to change
the topology of the initial object easily. From the pure geometrical point of view, when an object
is deformed using the proposed framework, similar visual results can be obtained with the only

INTRODUCTION 9

use of the constructive approach. However, in the constructive hypervolume model, not only
geometry is considered, but also attributes. In this chapter, we chose photometric attributes to
illustrate new features brought by the proposed approach.

10 INTRODUCTION

Chapter 1

Modelling point sets and their
attributes

1.1 Introduction

Research in modelling point sets with attributes has been developing in several interrelated
directions. From the general point of view, a point set can be thought as the geometric model
being used to define a given object. Without loss of generality, we use the term “attributes” to
point out different properties of an object, usually defined as a mathematical model.

In this chapter, we present a brief survey of some of the existing techniques. In the literature,
plenty of models cover the definition of a point set with attributes. To be convinced, one can
consider a simple textured surface and notice that it is a point set with attributes. In several
cases, attributes are mapped on the geometry of the point set. In the case of photometric
attributes, this is called texture mapping. In this survey, we will rather consider point sets with
attributes as a whole, i.e., attributes are defined for the point set without the use of an external
mapping.

To present the different models, we choose to follow a classification proposed by Shapiro
in [Sha01], where two basic representation schemes are used as main guidelines, i.e., the enu-
merative and combinatorial approaches, and the functional and constructive approaches. Other
representations either fall in one of these classes or are combinations of them. In the latter case,
such representation is called hybrid.

The enumerative and combinatorial approaches are widely used for representing an object.
An object is defined as a set of simple entities, called cells. Most popular cells are points, curves,
segments, triangular surface patches, cubic and tetrahedral elements. The first section presents
different ways to combine cells together, by enumeration using a mapping rule, by grouping
them together and by building cell complexes.

The functional approach uses real-valued functions to define a point set. Usually, a predicate
is used to define the point set, and can be expressed, for a given function F , and for every given
point p as F (X) ≥ 0. This approach covers the whole area of implicit modelling. In this
chapter, special attention is paid to this approach, and the FRep model, standing for function
representation, is presented in details. Indeed, for some reasons that will be explained in the

11

12 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

next chapters, the FRep model has very powerful features that naturally lead us to use it as
framework for our proposition of a new hypervolume model, i.e., a multidimensional point set
with multiple attributes.

The last section is dedicated to hybrid representations, which are a combination of different
representations. Several models fall in this category, in particular the boundary representa-
tion. Other interesting models that will be discussed are the Constructive Volume Geometry
representation [CT98], object model and the general object model [KBDH99].

At the end of every section or subsection, we propose to discuss the following aspects of the
different approaches: model of a point set, point set dimensionality, operations on point sets,
types of attributes, attribute model, and operations on attributes.

1.2 Enumerative and combinatorial representations

1.2.1 Enumeration using a mapping rule

An enumerative and combinatorial representation specifies the rules for generating points in the
set and no other points. A popular rule to define a point set is to use a parametric definition.
Points of a given space, called parametric space, are mapped to another using some mapping
rules or functions. Enumeration of the points is a matter of marching along a given interval
and applying the mapping rule. An interval can be defined as a unit segment, square, cube, or
hyper-rectangle depending on the dimension of the object. In this case, the object is defined as
a collection of 0D cells, i.e., points.

Mapping rules can be defined by classical parametric functions, such as Bézier, spline, and
other [Far90, FDFH95]. Those functions are based on an interpolation or approximation of values
given over a net of points, called control points. This approach, also known under the general
term free-form surfaces, is very popular and widely used in several CAD systems. Examples of
the concept of mapping a parameter space to the object space are given in Figs. 1.1(top) and
(middle), where respectively a curve and a solid are defined.

This representation based on parametric functions has severe limitations. Point membership
classification requires complex numerical procedures as one has to define explicitly the inverse
mapping. Furthermore, once an object is defined using some approximation functions, it can be
hardly combined with others using set-theoretic operations for instance.

Another representation using also parametric functions is the sweeping representation. An
initial shape, the generator, is moved along an arbitrary trajectory. Similarly, point coordinates
of the object are obtained while marching along a given set of intervals. Several kinds of
sweeps exist, such as rotational and translational (extrusion). An example is given in Fig.
1.1(bottom), where a 3D solid is defined by a rotational swept. A general model is proposed in
[Sny92], called generative model, where objects are defined by a sweeping in arbitrary dimension.
Several operators are proposed, such as summation, Cartesian product, branching, integration,
differentiation and other. This model can combine objects of different dimensions. For instance,
an animated teddy bear with fur was shown in [Sny92], where the fur was modelled as curves,
the bear as a surface, and the resulting object was time-dependent.

1.2. ENUMERATIVE AND COMBINATORIAL REPRESENTATIONS 13

Figure 1.1: Enumeration representation using parametric rules. From top to bottom, a 3D
curve, a 3D solid defined using an interpolation methods, and another 3D solid obtained by
sweeping. Objects are defined while marching along the parameter spaces.

14 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

1.2.2 Grouping

Grouping is one of the simplest representation schemes, and the enumeration consists of a
collection of homogeneous cells. A collection of cubic cells is an example of grouping, and the
corresponding representation is called voxels. Another examples of representation using this
scheme are polygon soup, union of overlapping spherical balls, ray representation and other
[MMZ94, EKL+91].

Considering the object space as a discrete space, each cell is defined as one of its small
subsets. If the entire space is discretised in a uniform manner, i.e., all the cells are strictly
identical, it results in a uniform grid. In this case, enumeration is called exhaustive. If cells have
different size, the enumeration is called adaptive. Finally, cells can be different, and correspond
to a non-uniform grid. Examples of exhaustive and adaptive enumeration are given in Fig. 1.2,
where the decomposition of a 2D solid is given. Figure 1.2a shows the resulting object, Fig. 1.2b
shows a binary matrix, where “0” indicates that the cell is empty, and “1” indicates the presence
of some material of the object. This is the exhaustive enumeration. Figures 1.2c and d show
respectively an adaptive representation and its corresponding hierarchical data structure. Each
square is recursively subdivided into four smaller squares when it intersects the initial object.
This adaptive decomposition is called a quadtree in 3D, and an octree in 3D. Another adaptive
representation that offers an efficient hierarchical structure is the binary space partition, where
the object space is divided into regions. With such structures, point membership classification
can be done in an efficient way.

Grouping cells are often used to define solids and volumes. A volume can be thought as
a subset of 3D space with an additional scalar value given to each of its point. If this scalar
value is interpreted as an additional point coordinate, the volume becomes a 4D ”height field”
or a hypersurface in 4D space. Scalar values can be given to the cells of a regular space grid
(voxel data) or to a non-regular grid. In the simplest case, only binary values “0” or “1” can
be assigned (see Fig. 1.2b). This binary voxel model is equivalent to the spatial occupancy
enumeration, which is a well-known representation of solids [Req80]. This allows to model only
homogeneous solids. This representation is well suited for mass properties calculations and other
solid modelling applications.

In volume graphics, this model is associated with voxelisation procedures [WK93] supporting
conversions of other models (presented below) to binary voxel data. As an extension of the
spatial occupancy enumeration, integer or real scalar values can be given for each cell of a
regular or a non-regular space grid of a heterogeneous volume model. Processing of scalar
values given at discrete scattered points requires some approximation procedure [Nie93]. The
scalar values can represent either the geometry of a point set (density field [UO91], distance
field [PT92, JC94, Jon96]) or its physical attributes [Nie93].

Operations on voxel models include Boolean operations and linear transformations [UO91],
transformations from one voxel data structure to another by manual 3D painting and carv-
ing [GH91, NF91, AS96], volume sculpting [WK95, Bae98, ATTY99, FCG00], metamorphosis
[Hug92, LGL95], and morphological operations [OF00]. Most of the operations change the scalar
values defining the object geometry. Operations on non-geometric attributes include approxi-
mation of scattered data [Nie93] and other specific operations.

1.2. ENUMERATIVE AND COMBINATORIAL REPRESENTATIONS 15

Figure 1.2: Spatial occupation enumeration. (a) Original 2D solid. (b) Binary representation,
defined as an exhaustive enumeration. (c) Quadtree. Adaptive enumeration of the object. (d)
Hierarchical data structure corresponding to the quadtree.

16 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

1.2.3 Cellular complexes

Cellular representation is also a combination of cells. The major difference grouping is that this
model includes relationship between cells and its neighbourhood. Without formalism, the first
polygonal models, such as wires, polygon quads and strips that were used in computer graphics
were simplicial complexes.

The main relations defined between elements of a cellular complex are incidence and adja-
cency. We can consider the relation “to be properly joined” between two cellular complexes (see
[FK97] for details on the conditions as they would require a heavy mathematic description, and
are out of the scope of this survey). Point membership, inclusion and intersection relations are
valid for the cellular representation, CRep for short. All operations defined for CRep can be
subdivided into three groups: analysis, synthesis and conversion. The first group includes opera-
tions for topological analysis such as determination of connectivity and orientability, evaluation
of the homology and homotopy groups, and others [FK97, Kar99]. The synthesis operations
include cell complexes’ generation procedures, geometric transformations, set-theoretic opera-
tions for properly joined complexes, various reconstructions of complexes (e.g., cell subdivision
or collapse, replacement of a subcomplex by another one with the same boundary, optimization
of complexes, transformation of a simplicial complex into a cellular one with the same carrier
[Kar99], etc.), selection of subcomplexes according to various restrictions (for example, bound-
ary or co-boundary of a cell, boundary of a complex, a common subcomplex for two properly
joined complexes, etc.) and topology transformation (e.g., slicing of h-genus surfaces or solids
[Kar99]). The third group involves procedures of conversions between other models and CRep
such as evaluation of functional representation for cellular complexes (see the discussion be-
low), polygonalisation of functionally defined objects [PPP88], and tetrahedrisation of 3D solids
[Loh97].

Cellular complexes representation is based on a reliable mathematical framework. From the
modelling point of view, to construct an object using a CRep scheme directly is far too difficult
and applications of such model is more dedicated to physical simulation, such as heat transfer,
material resistance calculation and other areas of finite element analysis. Several attributes can
be defined in the CRep model, but inside a given cell, they are constant. Another important
feature is that cellular complexes can be composed of cells of different dimension.

1.3 Function representation

Another approach than the enumeration scheme is to use a predicate A to define a set of points
S that can be evaluated for every point X:

S = {X|A(X) = true}(1.1)

Any real-valued function F , and the inequality F (X) ≥ 0 can be used as a valid predicate. In the
case of equality, and in a 3D Euclidean space, the surface of a solid is described, and is known in
the literature as an implicit surface. In the following, we first recall the main results and ideas of
this area and then present a more general representation, called function representation, FRep
for short, that spawns this concept.

1.3. FUNCTION REPRESENTATION 17

1.3.1 Implicit surfaces

Since the past two decades, a new modelling technique has appeared, based on the use of real-
valued functions. For 3D solids, a real-valued function is a function F , defined in the Euclidean
space E3, that maps every given points of E3 to a real value. Depending on the resulting value,
a classification can be made, as three closed subsets are defined:

• if F (X) < T , the point X is outside the object,

• if F (X) = T , the point X lies on the boundary of the object,

• if F (X) > T , the point X is inside the object.

The real value T is called threshold value. The function F can also be called a field function.
The equality F (X) = T defines a surface, called iso-surface. If T = 0, this surface can be also
called zero-set or zero-surface. For instance, one can define a sphere of radius R and centred at
the origin as follows:

F (X) = R2 − x2 − y2 − z2(1.2)

where X = (x, y, z) is a point of the Euclidean space E3.
In the literature, the iso-surfaces are also often called implicit surfaces1. Depending on the

nature of F , several terms are used to describe this representation. Historically, one of the
first formulation of the function F was proposed by Blinn [Bli82], based on a composition of
an exponential function with a distance function. Resulting surfaces are called equi-potential
implicit functions, and objects are often denoted as soft objects or blobby objects [WMW86].
Nishimura et al. [NHK+85] proposed later a similar technique, which is called metaballs. Several
other works followed to propose different definitions of the field function F , based on Blinn’s
initial work [MI87, Gas93, BS95]. Those techniques are generally point-based, i.e., to create
an object, different points, called sources, are specified in space, and the combination of their
respective field functions defines an object. Several works propose the definition of sources of
other natures, such as line-segments, arcs, triangles, and other [BS91, MS98]. Those extensions
lead to the techniques called skeleton-based or convolution based modelling.

Another technique is the algebraic method, where the function F is defined as a polynomial.
The example of the sphere given above falls into this category. When the polynomial is of degree
two, the set of generated objects is called quadric. It includes several shapes such as the sphere,
the ellipsoid, the cylinder, the torus, the hyperboloid, the cone, and other. The superquadratics
proposed in [Bar81] is an extension of the quadrics, where a rational polynomial is used. Another
formulation is proposed in [BS96], and the resulting shapes are called ratioquadrics.

1To avoid ambiguities, a short discussion is needed about the word “implicit”. Under no circumstances the
function F is an implicit function. Indeed, an implicit function cannot even define a sphere. The function
f(x, y) = z is called an explicit function of two variables, where z is a function of x and y. Then, the function
f(x, y, z) = 0 is called an implicit function of two variables. Here, z is also a function of x and y, but is defined
implicitly. This is not enough to define a sphere. The zero-set of an explicit function defined above is written as
F (x, y, z) = 0. It looks exactly the same, but has completely different meaning

18 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

1.3.2 Function representation

As one can see, a lot of researches are made in the field of shape modelling using real-valued
functions. One can also notice that there is no unifying framework, and each separate research
leads to a different terminology. Pasko et al. introduced in [PSAS93, PASS95] a general frame-
work and a unifying model for solid modelling using real-valued function, the so-called function
representation, FRep for short. 3D objects, but also time-dependent and objects of higher di-
mension are covered by the FRep model. Furthermore, the geometric domain of this model
in 3D space also includes solids with non-manifold boundaries and lower dimensional entities
(surfaces, curves, points).

FRep is formulated as an algebraic system including sets of objects M , operations Φ and
relations W on them, expressed as the triple (M, Φ,W).

Objects

The FRep of a geometric object M can be expressed as:

M : G = X|X = (x1, . . . , xn) ∈ En, F (X) ≥ 0(1.3)

where G is the point set that defines the object, X is a point of the Euclidean space En. G
is defined by the inequality F (X) ≥ 0, where F is a real-valued function (defined in En). The
function F is called defining function, and the above inequality the function representation of
the geometric object. The only restriction on F is to be at least C0 continuous.

If one wants to describe a straight line segment in a 2D space, the following equation can be
used:

F (X) = ax + by + c(1.4)

where X = (x, y). The inequality F ≥ 0 defines a halfplane. Then, −F 2(X) ≥ 0 defines the
line itself, where in fact the function −F 2 is never positive and only becomes zero on the line.
The line can be trimmed using some 2D solid to produce one or several segments.

For 3D objects, solids bounded by algebraic surfaces, skeleton-based implicit surfaces, and
convolution surfaces, as well as procedural objects (such as solid noise), and voxel objects can be
used as defining functions. In the case of a voxel object (discrete field), it should be converted
to a continuous real function, for example, by applying a trilinear or higher-order interpolation.

In general, the function F can be defined by an equation or by a ”black box“ procedure
converting point coordinates into the function value. This possibility allows one to divide the
set of objects M in two categories. The first one contains objects described by a specific instance
of an equation, and are usually called primitives. The second contains other complex objects,
obtained while combining primitives under the use of operations defined in Φ.

Operations

The set of geometric operations Φ defined in the FRep model can be expressed as:

Φi : M1 + M2 + . . . + Mn → M(1.5)

1.3. FUNCTION REPRESENTATION 19

where Φi is a n-ary operation. Many operations such as set-theoretic ones, blending, non-linear
deformations, metamorphosis, sweeping, hypertexturing, and others, have been formulated for
this representation in such a manner that they yield continuous real-valued functions as output
[PASS95, SP98], thus guaranteeing the closure property of the representation.

Let us consider for instance the basic set-theoretic operations. To insure a Ck continuity
and to provide an exact definition, R-functions originally introduced in [Rva63], and later in
[Sha88, Pas88, PSAS93, Sha94], are used. Nevertheless, in practical, the following definitions
are used (but still, are defined on the base of R-functions):

f1|f2 = f1 + f2 +
√

f2
1 + f2

2

f1&f2 = f1 + f2 −
√

f2
1 + f2

2

f1\f2 = f1&(−f2)

(1.6)

This definition of set-theoretic operations yields a C1 discontinuity, when both functions are
equal to zero. But still this definition is preferable than the one proposed in [Ric73a] :{

f1|f2 = max(f1, f2)
f1&f2 = min(f1, f2)

(1.7)

In this case, there is also a C1 discontinuity that occurs when both functions are equal.
Figure 1.3 is given as an illustration. An object is defined as an intersection between two

spheres, shown in green in Fig. 1.3a. A third sphere, yellow, is added to the object while using a
blending union operation. In Figs. 1.3b and c, different union operations are used for two initial
spheres, respectively a min function and a R-function. As one can see, in the first case, an edge
appears along the blend, corresponding to the set of points where the defining functions of the
two intersecting spheres are equal. In case of the R-function, no edge appeared, and the result
is smoother.

The formulations of other operations can be found in [PASS95]. Let us mention that because
of the closure property, the proposed operations allow to define functions of complex objects
using a constructive approach. Starting from simple ones (primitive) and applying a sequence
of constructive operations to them, a tree is built as a special data structure with primitives in
its leaves and operations in its nodes. This leads to one of the main distinctive characteristics
of the FRep model, which is the real-valued function defining the object is evaluated at the
given point by a procedure traversing a tree structure. An example of tree is given in Fig.
1.4. Several primitives are used, corresponding to the functions f1 to f6, and combined using
the set-theoretic operations, defined in eq. 1.6. The resulting function F is also a real-valued
function, and is defined as:

F = (((f1\f2)|(f3\f4))|f5)\f6(1.8)

1.3.3 Other constructive approaches

Historically, FRep was not the first representation that uses real-valued functions to define
primitives for a constructive tree. Indeed, the first constructive approach was formulated in the
CSG model, standing for Constructive Solid Geometry. Widely used in computer graphics, the

20 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

Figure 1.3: Union operation. (a) The object is composed of three spheres, combined using a
blending union and a set-theoretic intersection operation. (b) The intersection is defined using
a min/max function. A discontinuity along the material added by the blend appears. (c) Set-
theoretic intersection operation defined using an R-function; the edge due to the discontinuity
disappeared.

Figure 1.4: Example of constructive tree in the FRep model. Leaves of the tree contains primi-
tives, defined as real-valued functions, f1 to f6. The resulting object is also a real valued function
F . Its expression is given in eq. 1.8.

1.3. FUNCTION REPRESENTATION 21

CSG representation uses predicates and Boolean set operations in its tree structure. Primitives
can be defined as a halfspace, box, cone and other simple shapes. The major requirements are:

• every available primitive has to be closed regular

• operations have to be regularised

Two pseudo procedures to evaluate a primitive, respectively a sphere and a box, can be defined
according to the following algorithms (in C-style):

Sphere
Boolean isInside(float x, float y, float z) {

return (r*r < x*x+y*y+z*z);
}
Cube
Boolean isInside(float x, float y, float z) {

return ((x<left) & (x>right) & (y<top) & (y>bottom) &
(z<front) & (z>back));

}

where r and left,right, top, bottom, front and back are parameters defining the location of the
primitive in space. Regular set-theoretic operations, union ∩, intersection ∪, difference \ and
inverse − are the main available nodes in a CSG tree. The Bool algebra is used while applying
a tree traversing procedure to determine whether or not a point belongs to the set.

The set of available primitives can be extended to other objects, for instance to implicit
surfaces as in [Bow95], but the set of available nodes can hardly be extended, due to the re-
quirement imposed by the regularity condition. CSG representation has a multidimensional
extension, proposed in [WB96]. Attributes can also be defined in the CSG model. An advanced
modelling system, Svlis [Bow95], is based on an extension of CSG where one can assign a fixed
index of material to each primitive of a constructive tree. While traversing the constructive tree
to determine the geometry, a material index is also determined, while using regularised Boolean
set-theoretic operations for geometry and special corresponding operations for attribute indices.

Another constructive approach is proposed in [WGG99], and is called BlobTree. All the prim-
itives are skeleton-based primitives, and are defined as a composition of a distance function with
a potential function [WMW86]. Classical set-theoretic operations are defined using min/max
functions, but can be extended easily to R-functions. The FRep model includes the BlobTree
as a subset. An advanced set of operations on photometric attributes for the BlobTree is pro-
posed in [TW99]. While building the constructive tree of an object, textures can be assigned
to each primitive. Union and blending operations that are applied to the geometric primitives
are also applied to the attributes, resulting in smooth transitions. Attributes and geometry are
deeply connected. As it will be discussed at the end of this chapter, this connection is somewhat
controversial.

22 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

1.4 Hybrid models

1.4.1 Boundary representation and extensions

A solid described using the boundary representation (BRep) is based on the description of the
surface, subdivided into cells of different dimensions. Vertices are defined as 0D cells, edges as
1D cells, and faces as 2D cells. Result of such combination is then embedded in a 3D space.
Relationship between each cell of same dimension but also of different dimension is explicitly
defined, and corresponding graphs can be retrieved from this.

Object

BRep can be presented as a combination of different approaches, enumerative, combinatorial
and implicit. Indeed, vertices are enumerated, as well as the connections between edges and
faces. The solid is defined implicitly by its boundary. The term “implicit” may be misleading.
In this case, it refers to the fact that the point set X is implicitly defined by all the points that
satisfied the following predicate:

X = {p|p ∈ set bounded by δX}(1.9)

δX has to guarantee that it separates the Euclidean space E3 in exactly two subsets, one is
the bounded interior of X, the other the unbounded exterior space. The boundary δX can
be defined using any representation, implicit, constructive, parametric or combinatorial. The
validity conditions on the boundary can be expressed as follows:

• to be a valid cell complex (disjoint cells satisfying the frontier condition)

• to be homogeneously 2D

• every edge shared incident on an even number of faces

• to be orientable

This representation scheme is the most widely used in CAD systems. The major advantage
of such representation is the information it provides on the topology of the object. The planar
graphs defining vertices/edges or edges/faces relationship can be deduced from the representa-
tion. Figure 1.5 is given as illustration. A cube is described using BRep. The original object
is shown in Fig. 1.5a, its corresponding set of faces in Fig. 1.5b, its set of edges in Fig. 1.5c,
and its set of vertices in Fig. 1.5d. An example of a planar graph is shown in Fig. 1.5e, and
illustrates the relationship between faces and vertices. Exhibition of other relations can be also
made using other graphs, as for instance, a faces/edges or edges/vertices relationship.

Operations

To construct a solid using a boundary representation, different operators are available. For every
modelling step, the validity of the object is verified using the Euler formula, defined as follows:

V − E + F = 2(S − H) + R(1.10)

1.4. HYBRID MODELS 23

where V is the number of vertices, E the number of edges, F the number of faces, S the number
of disjoint components, H the number of holes in the solid, and R the number of cavity in a
face.

This equation 1.10 has to be verified for every time step in the modelling process. A finite set
of operations are proposed, known as the Euler operators, where one can add/remove vertices
and edges under some conditions. A dozen of operators are available. A more detailed description
and can be found in [Man88]. Basic operators are shown in the following table:

M Make
K Kill
S Shell
H Hole
R Ring
F Face
V Vertex
E Edge

The operators M and K and respectively the construction and the destruction operators. By
combining them together, advanced operators can be obtained. For instance, when one applies
the operator MEV , it creates an edge and a vertex, or the operator KEF destroys an edge and
a face.

Extensions

In most of the CAD systems, BRep and CSG representations are combined together, taking
advantages of each model. A tree structure is still used, where primitives are defined either as
CSG solids, or solids defined by their boundary. While building a constructive tree (in a CSG
style), boundary elements are added to insure the validity of the model.

This hybrid representation has several advantages, such as the possibility to build a model
easily using a constructive approach, the simplification of the evaluation of the volume for further
numerical simulations, the possibility to add constraints for mechanical engineering, and other.
Nevertheless, this representation has also several drawbacks. To store such representation is
expensive, to maintain the validity of both models is a difficult task, and operations that were
fast for one model or the other become more complex due to the evaluation mechanism needed
to retrieve the desired information.

Another hybrid model, combining the BRep and CSG models are proposed in [KD97], where
a solution for defining heterogeneous solids, composed of multiple materials, is proposed. A 3D
solid is subdivided into components made of unique materials. A non-manifold BRep scheme is
used to model such objects. Each component is homogeneous inside and has an assigned index
of material. Regularised set-theoretic operations are applied to the solid components. Corre-
sponding operations on material indices are introduced on the basis of the resulting material
selection for each pair of materials and for each set-theoretic operation.

24 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

Figure 1.5: Boundary representation. (a) The initial object, a cube. (b) List of faces. (c) List
of edges. (d) List of vertices. (e) Example of a planar graph describing the relationship between
vertices and faces.

1.4. HYBRID MODELS 25

1.4.2 Hybrid volume

Hybrid volumes are modelled using a combination of FRep and discrete field volumes [AKPS00].
The object is represented by a tree structure with functional and voxel primitives. The tree can
have nodes representing functional, voxel, or hybrid operations. The basic feature of a hybrid
operation is the absence of any explicit conversion between two representations on the level of
the object specification and in the tree structure. Depending on the types of the arguments and
the result, such function can invoke the conversion procedures with subsequent call to the voxel
or FRep libraries’ functions. The hybrid model can represent the geometry or a non-geometric
attribute.

1.4.3 Object model

A general object model [KBDH99] includes all the characteristics and attributes of an object.
Geometry is considered as the most fundamental attribute of an object. All other attributes
are described as a function of geometry. A 3D point set is represented by its decomposition
(atlas) into a finite set of closed 3-cells. Each 3-cell is a compact connected 3-manifold. The
authors proposed to use BRep scheme to model individual cells and the entire point set. Each
point of the point set is mapped to its corresponding attribute, which can be a vector or a
tensor. The model of attributes is a collection of functions mapping the object geometry to
several attributes. The general object model combining the point set and attributes models is
represented by a trivial fibber bundle, where the attributes are strictly attached to geometry as
sections of the bundle. This is a generalisation of the multi-material solid model [KD97] discussed
above (in the subsection “Extensions” of the BRep presentation). Affine transformations and
regularised set-theoretic operations can be applied to point sets. Basic operations on attributes
include vector sum and product with scalar, union, intersection and complement specialised for
specific attributes (abstraction of the material combining operation [KD97]).

1.4.4 Constructive volume geometry

In Constructive Volume Geometry (CVG) [CT98, CT00] a spatial object is defined as a tuple
of scalar fields defined in 3D space :

o = (O,A1, . . . , An)(1.11)

where O defines the opacity of the object, and the Ai different photometric attributes, such as
colour, ambient, diffuse, and specular reflection parameters.

A special attention is paid to the opacity field, O : E3 → [0, 1], that determines the visibility
of every given points in E3. In other words, the opacity defines implicitly the “visible geometry”
of an object. While substituting the interval [0, 1] to the Boolean domain B = {0, 1}, one
can easily use the set-theoretic operations of the CSG representation. Other operations on
attributes, O and Ai, are also proposed, such as blend, arbitrary selection and other. In the
general definition (e.q. 1.11), scalar fields are used, but discrete fields can also be included in the
model using some interpolation procedure. The model is presented as an algebra of 3D static
spatial objects.

26 CHAPTER 1. MODELLING POINT SETS AND THEIR ATTRIBUTES

1.5 Discussion

Historically, separate treatment of geometry and attributes was introduced in computer graphics
for rendering textured surfaces. Voxel arrays in volume graphics can be considered as attribute
models with the default geometry represented by a bounding box. A subset of the bounding
box geometry can be defined by introducing some constraints on the attribute values. For,
example, an iso-surface is defined inside the bounding box as a surface of a constant value of
some attributes. The next step of models development was to combine geometric and attribute
representations in a single model. In solid modelling, this was done for multi-material solids
[KD97] with the material indices assigned to different geometric regions. Then, this approach was
generalised in the object model [KBDH99] covering arbitrary geometry and multiple attributes of
different mathematical types (scalars, vectors, tensors) defined at each point. Only 3D geometry
is considered in the object model with the boundary representation being the primary geometric
model. The object model does not include voxel arrays or scalar fields for modelling geometry.

In volume modelling, CVG [CT98, CT00] was one of the first model, with the general object
model [KBDH99], that combines geometry and attributes in a systematic manner. The CVG
model is presented as an algebra of spatial objects with operations available for both geometry
and attributes. The model allows for utilising voxel arrays and continuous scalar fields. The
purpose of the opacity field in the model is to “implicitly define the visible geometry of an
object”. This idea is somewhat controversial and needs additional discussion. There are scalar
fields directly connected to the object’s geometry, for example, density and distance fields. In
reality, the shape of an object does not necessarily predefine its photometric characteristics and
vice versa. We believe it is important that a point set and its visual and physical characteristics
are represented independently. Using opacity to define the geometry limits application of this
approach to graphics and visualisation. Probably, taking this into account, a possibility was
reserved in the CVG model to include an additional scalar field to explicitly specify geometry.

A quite limited set of geometric operations was developed for implicit surfaces and later
adapted in CVG. For example, it is well known that using min/max functions for set-theoretic
operations causes problems in further transformations of the model due to C1 discontinuity of
the resulting function (see Fig. 1.3). Further blending, offsetting, or metamorphosis can result
in unnecessary creases, edges, and tearing of such an object.

Only 3D static objects are considered in the object model and CVG. No time-dependent
or multidimensional objects are included in these models. However, multidimensional models
do have potential to be exploited. Constructive modelling of higher dimensional objects using
scalar fields and an extended set of geometric operations is discussed in the next chapter.

Note also that the object model introduced in the area of solid modelling is oriented towards
the mechanical design and rapid prototyping applications. On the other hand, CVG has its origin
in volume graphics and is mainly aimed to providing more flexible object and scene definitions
in volume rendering. These two areas look like two separate worlds now, and the motivation of
our work is to introduce a universal model that being supported by appropriate techniques and
tools can be suitable for above mentioned and other applications.

Chapter 2

Constructive hypervolume
framework

2.1 Introduction

Based on the different existing models presented in the previous chapter, we can specify a general
model of point sets with attributes.

Three important requirements can be expressed as follows:

• independent representation of the point set and its attributes;

• uniform treatment of point set geometry, photometric, physical and other attributes of
arbitrary nature;

• coverage of time-dependent and other multidimensional point sets.

First, the independence of a point set and its attributes is a natural requirement. As a
trivial example, let us consider a red apple. The point set is the apple, and the red colour is
an attribute. It is obviously clear that the colour attribute does not define the geometry (other
objects than an apple are red), and the geometry does not define the attribute (look at a green
apple to be convinced of). Another example, less trivial, is the Invisible Man [Wel97]. The
whole space, and in particular the body of the Invisible Man, are fully transparent. The opacity
does not define here the geometry of the point set. Then, one can state that all attributes have
to be independent of the point set geometry.

Second, the point set and its attributes should be treated uniformly. Indeed, when one
applies some operations to a point set, the same operation has to be also applied to attributes if
they are considered assigned to specific points of the object. For instance, if a twist is performed
on a simple box with a checker-board texture pattern, it clearly appears that the whole object
is deformed, i.e., the texture follows the geometry deformation.

In this chapter, we introduce and discuss a general model of constructive hypervolumes satis-
fying the requirements listed above. This model is an “instance” or a particular implementation
of the general object model [KBDH99] extended to the multidimensional case and it is based
on combining the advantages of FRep [PASS95] and hybrid volumes [AKPS00]. This model

27

28 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

also conforms with, and further develops the volume model [Nie00] and the constructive volume
geometry model [CT00].

The ability to model both geometry and attributes using real-valued functions is a promising
solution. The use of scalar fields allows for defining everywhere in space both point set and
attributes exactly, and is a good alternative for instance to the problem of constant attributes
inside of a cell in the BRep or CRep models. The FRep model also provides an extendable
set of primitives, operations and relations that allow, through a constructive approach, further
treatment of the point set with attributes.

Finally, let us emphasise the dual nature of FRep: an FRep function can be considered not
only as defining a solid (or an implicit surface), but also as a scalar field defining an attribute, and
can be used to model amorphous or gaseous phenomena as well as their physical properties. Note
that in the latter case the constructive approach can be applied to modelling attributes rather
than to geometry. In the case of using FRep to model solids, attributes can be assigned only to
the entire point set and no operations on attributes are provided. The dimension independent
formulation of FRep allows the modeller to treat animated and other multidimensional objects
in the uniform manner.

In the next section, we give a formal definition of a general definition of constructive hyper-
volumes1. We propose then to use this new model in different case studies related to different
areas, such as modelling heterogeneous objects, a visualisation of geological layers and to a phys-
ical simulation. A short description of the language used to define FRep object is presented,
i.e., the HyperFun language [Pro], and its extension to the proposed model is discussed.

2.2 Constructive hypervolume modelling

Extending the FRep formal model introduced in [PASS95], let us describe a general hypervolume
model as a triple (O, Φ,W), where O is a set of hypervolume objects, Φ is a set of hypervolume
operations, and W is a set of relations for the set of objects. Mathematically, the triple can be
treated as an algebraic system.

2.2.1 Objects

A hypervolume object can be expressed as a tuple, o = (G, A1, . . . , Ak), where G is a multi-
dimensional point set and Ai is an attribute. In 3D, a point set G can be defined using any
existing representational schemes for solids: BRep, CSG, spatial partitioning, generative models,
ray implementation, and others (see previous chapter). In the multidimensional case, one can
apply multidimensional extensions of CSG or BRep [WB96, GMR99], or originally multidimen-
sional models such as the generative model [Sny92] and the FRep [PASS95]. Here we introduce
a specific ”FRep” representation of the hypervolume object that can be expressed as:

o = (G,A1, . . . , Ak) : (F (X), S1(X), . . . , Sk(X))(2.1)

where :

• X = (x1, . . . , xn) is a point in n-dimensional Euclidian space En,
1This work has been published in [PASS02]

2.2. CONSTRUCTIVE HYPERVOLUME MODELLING 29

• F : X → � is a real-valued defining function of point coordinates to represent point sets
G. Therefore, F is at least a C0 continuous function, which is positive inside the point
set, negative outside, and has a zero value on its boundary.

• Si : X → � is a real-valued scalar function corresponding to an attribute Ai that is not
necessarily continuous.

2.2.2 Operations

The set of operations {Φi} includes operations of the type:

Φi : O1 + O2 + . . . + Om → O(2.2)

where m is a number of operands of an operation. The result of an operation of this sort is also
a hypervolume object of the set O, which insures the closure property. Accordingly, to create
a complex hypervolume object, a sequence of operations can be applied over initially defined
objects. An algebraic expression (”term“) representing the composition of such a sequence of
operations can be recursively defined in BNF as:

t ::= o|Φ(t, . . . , t),(2.3)

where t is a term, o - an object, and Φ is an m-ary operation.
Let the object oi be defined as:

oi = (Gi, Ai1 , . . . , Aik) : (F (X), Si1(X), . . . , Sik(X))(2.4)

Then, for a general unary operation, the object o2 can be derived from the initial object o1

(note, that the objects can in principle have a different number of attributes):

o2 = (G2, A21 , . . . , A2k
) = Φ1(o1) = Φ1(G1, A11 , . . . , A1m)(2.5)

which, at a functional level, corresponds to a composition of the functions on scalar fields:

(F2, S21 , . . . , S2k
) = (Ψ(X, F1, S11 , . . . , S1m),

Ω1(X,F1, S11 , . . . , S1m),
...

Ωk(X, F1, S11 , . . . , S1m))

(2.6)

where Ψ is a function giving a new geometric point set and Ωj is a function giving a new
attribute. Note, that these functions Ψ and Ωj have the following features:

• they are pointwise in the context of space En;

• they can explicitly be dependable on X, thus allowing for defining both the objects’ ge-
ometry and attributes through transformations of a coordinate space;

30 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

• they are (m + 2)-ary in a general case which allows us to deal with models where the
objects’ geometry can influence the objects’ attributes and vice versa, thus providing a
powerful and flexible framework. Of course, in a particularly frequent case the new object’s
geometry cannot depend on the initial object’s attributes; the same is true of the regarding
functions Ωj ;

• Ψ must be at least C0 continuous and thus complies with FRep defining function;

• Ωj can be discontinuous.

Similarly, one can build a framework for binary hypervolume operations. If o1 and o2 are
initial objects, and o3 is a new object, we have (note that these three objects can in principle
have a different number of attributes!):

o3 = (G3, A31 , . . . , A3k
) = Φ2(o1, o2) = Φ2(G1, G2, A11 , . . . A1l

, A21 , . . . , A2m)(2.7)

which at a functional level corresponds to a composition of the functions on scalar fields:

(F3, S31 , . . . , S3k
) = (Ψ(X, F1, S11 , . . . , S1l

, F2, S21 , . . . , S2m),
Ω1(X, F1, S11 , . . . , S1l

, F2, S21 , . . . , S2m),
...

Ωk(X, F1, S11 , . . . , S1l
, F2, S2l

, . . . , S2m)).

(2.8)

The general n-ary operation Ωn(o1, o2, . . . , on) can similarly be built and functions Ψ and {Ωj}
are supposed to have the features described above for unary operations.

2.2.3 Relations

Relations are defined over hypervolume objects {oj} and, possibly, some objects of another
nature (numbers, points, etc.) {qk}. They are generally represented in the form of n-valued
predicates over functions representing hypervolume objects and other objects by using relations
over real numbers and logical expressions.

The set of relations W includes such relations as :

wi(O1, . . . , Om, Q1, . . . , Qk) : Γ(F1, S11 , . . . , S1l1
, Fm, Sm1 , . . . , Smlm

, Q
′
1, . . . , Q

′
k),(2.9)

where Q
′
i is a function representing a non-hypervolume object Qi, Γ is a predicate.

The examples of binary relations over point sets G, such as inclusion, point membership and
intersection can be found in [PASS95].

The basic point membership relation can be formulated for a point with attributes:

Pa = (X, a1, . . . , a2)(2.10)

and the hypervolume object:

o = (G,A1, . . . , Ak) : (F (X), S1(X), . . . , Sk(X)),(2.11)

2.2. CONSTRUCTIVE HYPERVOLUME MODELLING 31

using a three-valued predicate:

Γ3(Pa, o) =

0, F (X) < 0 or ∃j : Sj(X) �= aj

1, F (X) = 0 and Sj(X) = aj , j = l, k
2, F (X) > 0 and ∀j = l, k : Sj(X) = aj

(2.12)

This means that the point with attributes belongs to the hypervolume object, if it is an internal
or boundary point of the point set, and its attributes are equal to the object attributes. This can
help to answer such queries as “Is this point of the object red? ”. The answer will be positive, if
the point belongs to the object and its red colour attribute is equal to the same attribute of the
object. This example shows that the attributes equality condition is not always necessary. For
example, the positive answer to the above query could be generated in the case of any non-zero
value of the red colour attribute. More sophisticated versions of the predicate can be introduced
using specific conditions for the attributes.

2.2.4 Constructive hypervolume model and its underlying representation

We call the introduced representation a constructive hypervolume model to emphasise the under-
lying constructive process while modelling functionally based multidimensional point sets with
attributes. As it was described in [PASS95], formally specified in [PSAS93], and recalled in the
previous chapter, the main distinctive feature of FRep is that the real-valued function F defin-
ing the point set is associated with a tree structure that serves as its underlying representation.
The function F is evaluated at the given point by a procedure traversing the tree structure with
primitives in the leaves and operations in the nodes of the tree.

As to the constructive hypervolume model, its underlying representation can be defined
in a similar way by introducing a set of tree structures. Along with the tree corresponding
to a function F defining the point set, there are constructive trees associated with functions
{Sj} defining attributes and reflecting the construction logic of the attribute definition. Two
main types of elements of the set O are considered: basic hypervolume objects (primitives)
and complex hypervolume objects. A hypervolume primitive is a specific instance of a function
chosen from a finite set of possible types. Primitives can be either predefined (and stored in
the library) or introduced on the fly. A complex hypervolume object is the result of operations
on primitives. The tree structure with hypervolume primitives in the leaves and hypervolume
operations in the nodes of the tree provides the computational scheme for complex hypervolume
objects. Some nodes, including root nodes corresponding to the whole complex object, can refer
to the hypervolume relations.

The function Sj is evaluated at the given point by a tree traversing procedure. Thus, sym-
metry in treating the point set and its attributes can be achieved in accordance with the con-
structive nature of the definition and the underlying representation. A formal description for the
traversing procedure for the FRep constructive tree [PSAS93] is easily adapted to hypervolume
constructive trees.

The constructive tree is similar to one used in CSG, and is created during the object con-
struction process. In contrast to classical CSG, the sets of primitives and operations are not
fixed and can easily be extended without redesigning the modelling system, and all operations

32 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

are applicable on any level of the tree. As to the geometric constituent, solids bounded by alge-
braic surfaces, skeleton-based implicit surfaces and convolution surfaces, as well as procedural
objects (such as solid noise), swept, and discrete field objects can be used as primitives. Let
us mention in particular that the framework is general enough to embrace multidimensional
discrete field (voxel) objects represented as ”hybrid volumes“ [AKPS00] that can also be treated
as primitives.

Many operations that have been formulated for FRep in such a manner that they in turn
yield continuous real-valued functions as their output [PASS95, SP98] can be generalised to
produce more specific hypervolume operations. Of course, there can be introduced a much
more application-specific operations over attributes that can hardly be sensibly applied to the
geometry.

2.3 Case studies

In the previous section, we defined a new mathematical model for point sets with attributes.
Herein, we consider different applications of the proposed model. First, our interest will be
turned towards the definition of simple heterogeneous objects, then to a geological example, and
finally show how it can be applied to a physical simulation and to an adaptive mesh generation
2.

In order to visualise a constructive hypervolume object, we choose to map the attribute to
different colours. Taking into account that this mapping, and thus the texturing process, requires
often non-trivial mathematical skills and specialist knowledge, the next chapter is dedicated to
its study.

2.3.1 Heterogeneous material

Heterogeneous objects are omnipresent around us. We consider two simple examples here that
are a direct application of the proposed constructive hypervolume model.

Composite materials are widely used in the industry. They are composed of several elemen-
tary elements, whose association provides properties that each single element does not have.
Usually, such materials can be decomposed in two parts, the matrix and the reinforcement
material. The reinforcement material confers the skeleton to the composite material, and the
matrix the envelope. In Fig. 2.1, we propose an example of composite material, and focus on a
single attribute A, the material density. There are two steps in making this model: description
of the geometry and description of the attribute. The geometry, i.e., the matrix, is defined as
a cylinder F (X) shown in Fig. 2.1a. The reinforcement material is defined as microspheres,
corresponding to a function Fs that defines their location in space. It is defined as a FRep tree
with several spheres in the leaves and set-theoretic unions in the nodes. A constant density
corresponds to each material.

To visualise the resulting object, the density value is mapped to a greyscale colour. Then,
for every given point X, a first tree traversing procedure is processed on the geometrical tree

2This work has been published in [AKK+02], and realised in collaboration with the different authors. The
example is made by E. Kartasheva.

2.3. CASE STUDIES 33

Figure 2.1: Density of a composite material using greyscale. (a) The cylinder corresponds to
the matrix, with a constant density. This is the geometrical tree. (b) Reinforcement material
composed of microspheres with constant density. (c) Visualisation of the density of the composite
material.

F (X). When F (x) ≥ 0, another tree traversing procedure is processed on Fs(X) to determine
the density value. In the case where Fs(X) is positive, the resulting density is the density of
the microspheres, otherwise, the density of the cylinder is returned. The resulting composite
material is shown in Fig 2.1c.

The second example shows another heterogeneous object, where a sheathed electric cable is
considered. The sheath is made of plastic and three different cables are embedded inside. One
of them has the same orientation as the sheath, and the two other round it up. Each cable is
composed of a gainer made by different plastics too, and inside of copper. The three cables are
then surrounded with a twisted pair, made by another material. We propose to model this object
with the proposed model. The geometry is defined as a single cylinder, using a function Fgeom,
and the attributes a represented by a material index vector. The constructive hypervolume
object is defined as:

o = (Fgeom, A)(2.13)

One needs then to define the spatial occupation of each material. Different constructive trees are
built for this purpose, i.e., three for the different kind of plastics corresponding to the material
indices A1, A2 and A3, one for the copper index A4, and one for the material of the twisted pair,
corresponding to the index A5. The material of the embedding sheath is the default attribute,
and does not require an additional tree. Figure 2.2 shows these trees.

In Fig. 2.2a, the tree corresponding to the index A1 is shown. It is used to define the area
where the plastic surrounding the central cable is located. The visual representation of the tree
is shown on the right side of the tree, and is defined as an intersection of a cylinder Co1with
another of smaller diameter Ci1 . Figure 2.2b shows the tree for the index A2 with a front and
a side view of its representation. It is similar to the tree for A1, with an additional twisting
operation. Corresponding cylinders are Co2 and Co3 . The tree for the index A3 is not shown as
it is similar to the one for A2, simply mirrored along an axis. The tree for the copper index A4

34 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

∩

∩

∪

∪

Figure 2.2: An electric cable with metallic wire. The geometry is defined as a cylinder. Con-
structive trees to determine the location of each material, corresponding to the indices A1 to A5

are shown respectively in (a) to (d). Each material is mapped to a colour. The heterogeneous
object is shown in (e), with a cut according to a quadrant (left), and a top view (right).

2.3. CASE STUDIES 35

Figure 2.3: Geological structure. A geometric model (left) without attributes, (right) with
attributes.

is shown in Fig. 2.2c, and defined as a union of the three cylinders (of smaller radii) Ci1 , Ci2 and
Ci3 . The last index A5 for the twisted pair is partially illustrated by Fig. 2.2d, and is defined
as a union of several rotated blocks.

In order to visualise the different components of the cable, each attribute is mapped to a
colour vector. The copper attribute is mapped to a yellow colour, each plastic attribute around
the copper is mapped to red, blue, or a cyan colour, and the twisted pair material is mapped
to light grey colour. The default attribute for the sheath is mapped to dark grey. Then, to
determine the colour at the given point, when Fgeom ≥ 0, the tree traversing procedures are
applied to each attribute tree. Note that this definition is possible as long as for a given point
X, it does not belong to more than one attribute tree. Similar to the reality, a point can
not belong to more than one attribute tree, i.e., single material, either plastic or metal in this
example, is assigned to each point. Figure 2.2e shows different views of the cable. On the right
side a top view, and on the left side, a side view of model, where a quadrant has been removed
for the visualisation purposes.

2.3.2 Modelling geological structure

Heterogeneous objects in geo-sciences usually consist of multiple layers of different materials with
cavities, wells, and other irregularities. We present here a simplified example of a functional
model of such a geological object. The basic geometric model shown in Fig. 2.3(left) is described
by a single function Fgeom(X) ≥ 0, where X is a vector of 3D point coordinates :

Fgeom = (Frelief&Fbbox&(−Fcavity)&(Fcut)) |Fwell(2.14)

Frelief defines a solid bounded by the top curvilinear surface and the bottom plane, Fbbox is a
function defining a bounding box for the model, Fcavity is a model of cavities made using an
algebraic sum between the functions of an ellipsoid and solid noise, Fcut serves for producing a
zigzag cut of the full object, and Fwell represents a gas well modelled as union of two cylinders and
a toroidal segment. The symbol & stands for the R-function defining set-theoretic intersection
between two functionally defined solids, and | stands for set-theoretic union.

36 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

Figure 2.4: Adaptive mesh generation for heat transfer simulation. (Left) Distribution of the
mesh density attribute values. (Right) Adaptive mesh.

For the model of the ”relief“ solid, we used the following expression:

Frelief = (frelief (x, y) − z)&z(2.15)

where z = frelief (x, y) defines the top curvilinear surface of the object, and z value of the bottom
plane is zero.

The five material layers shown in Fig. 2.3(right) using different colours are presented in the
attribute model by the space partition different from the basic geometric model. For the i-th
layer, the defining function is

Fi = (fi+1(x, y) − z)&(−fi(x, y) + z)(2.16)

where i = 1 . . . 4, f5 = frelief , and z = fi(x, y) defines the top surface of the layer. In the simplest
case of the homogeneous material distribution inside the layer, the single material attribute can
be defined as

A =

{
Mi Fgeom ≥ 0, Fi ≥ 0
θ Fgeom < 0

(2.17)

where Mi is a material index, and θ stands for the undefined value. The priority to the material
index on the surfaces separating the layers is given by the procedure of scanning the indices for
checking the condition Fi ≥ 0. The complete functional hypervolume model is defined as o =
(Fgeom, A). In fact, the visual appearance of the layers in Fig. 2.3 is achieved not by attaching
surface textures, but is automatically obtained by volume rendering of the hypervolume with
the set of attributes assigned to each point instead of the material index (more details about
the textures can be found in the next chapter).

2.3.3 Adaptive mesh generation

We present here examples concerning adaptive mesh generation to illustrate the treatment of
attributes other than material distributions. From the theoretical point of view, the presented
application is based on the conversion between a functionally defined 2D object with an attribute

2.3. CASE STUDIES 37

to a triangular mesh. The next step is made to a one dimension higher problem, where the object
attribute and the resulting mesh becomes time-dependent.

Unstructured grids have found widespread use in computational physics, visualisation, and
data interpolation. An accurate numerical solution requires the domain being discretised suf-
ficiently to describe the geometry and physics of the problem. The geometrical compatibility
can be achieved by automatic mesh refinement in regions of high curvatures of the boundary
surface or contour. The physical compatibility dictates a close correlation between the size and
shape of mesh cells and the behaviour of the solution that is sought. A varying density of mesh
elements can be used to model complex problems with high accuracy. The appropriate element
size distribution may be prescribed by the user if he has knowledge of the physical situation a
priori. But it is often the case that the detailed information is not available prior to the numeri-
cal simulation. In these cases, the element size distribution is provided by a mesh size prediction
algorithm in the adaptive analysis procedure. The information about the desired element size
and shape is used by mesh generation algorithms.

It may be necessary to describe an appropriate element size not only on the boundary but
also in some spatial regions inside the domain (e.g., heat-source, oblique shock in supersonic
flow, etc.). One of the techniques commonly used for these purposes is based on so-called
sources [Loh97]. The element size for a location X in the domain is given as a function of the
closest distance to source ρ(X). Typically, a small element size is desired close to the source,
and a large element size is more preferable far from it. Moreover, the element size should be,
in many cases, constant (and small) in the vicinity ρ < ρ0 of the source. Power, exponential or
polynomial functions of ρ [Loh97] are usually used to specify the proper element size. Given a
set of m sources, the minimum element size computed for each of them is taken whenever an
element is to be generated. For moving bodies (solid, liquid, gaseous), the points defining the
relevant sources may be synchronised in their movement with the movement of the respective
body. This allows for high quality remeshing for non-stationary problems.

Let us consider the application of hypervolumes with a functional model of attributes for the
description of mesh elements density. We assume that an attribute S(X) is defined everywhere
in the space �n and an arbitrary value Sj = S(Xj) is interpreted as the desired mesh element
size at the point Xi. Geometry of the sources is specified by FRep. Then, we can use a value of
the function describing the source at a point X as a measure of the closest distance from X to
the source, ρ(X) = ρ(F (X)). For example, the shape of a point-source may have the following
functional definition: F (x) = a − |X − X0| ≥ 0 , where X0 is the center of the source, a is its
radius, |X − X0| is the distance between the points X and X0. Here, we use normalized F (X)
so ρ(X) = F (X). An analogous functional description can be created for sources of different
shapes. The element size attribute Ai generated by the ith source is defined in the following
way:

MAi = (�, Si)(2.18)

where Si is a function defined as :

Si : E2 → �
Si(X) =

{
hmin if Fi(X) ≥ 0
min(hmax, Fi(X)×(ki−1)+hmin

ki
) if Fi(X) < 0

(2.19)

38 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

This formula provides the geometrical progression law of the increasing element size. Here
hmin, and hmax are the minimal and maximal admissible sizes of the elements and ki is the
coefficient of the progression (ki ≥ 1), Fi(X) is the functional description of the ith source. The
overall element size distribution attribute A depending on all m sources is calculated as follows:

MA = (�, S)(2.20)

where S is defined as :

S : E2 → �
S(X) = min(S1(X), S2(X), . . . , Sm(X))

(2.21)

with X ∈ �2. Figure 2.4 illustrates the example concerning the heat transfer problem. In this
example, it is necessary to generate an adaptive mesh in the two-dimensional object, described
by FRep as follows:

F (X) = Fb&(−Fo1(X))&(−Fo2(X))(2.22)

where Fb describes the rectangle, Fo1 and Fo2 define left and right holes, and the symbol & stands
for the R-function defining set-theoretic intersection (see previous subsection). Taking into
account the problem’s conditions, we have introduced five mesh density sources (one of the point
and four of the segment types) which coincided with the heat sources. The sources’ locations
are shown in Fig. 2.4(left) with colour distribution visualizing the corresponding distribution
of the element size attribute values. The element size attribute was used for automatic mesh
generation based on the advancing front technique. The final mesh is shown in Fig. 2.4(right).

2.4 Implementation

The case studies section has shown that several applications of the proposed constructive hyper-
volume model can be found. Depending on the nature of the attributes, different applications
are used. Therefore, one needs to define a language that enables the definition of attributes
in an abstract manner, regardless of its nature, and can then be plugged in a more specific
application.

For different reasons that will be explained below, we propose to use the HyperFun language
[ACF+99]. A general presentation of HyperFun is given, introducing the different features of
the language, as well as its extension to the constructive hypervolume model. A small tutorial
and examples of HyperFun are given in the Appendix.

2.4.1 Language for hypervolume modelling

HyperFun [ACF+99] has been developed as a high-level specialized language for the parameter-
ized description of functionally based multidimensional geometric models. While being minimal-
ist and suitable for easy mastering, it supports all main notions of FRep. The current version of
the language that is publicly available [Pro] only allows for the description of geometry. Here,
we introduce a new version that allows us deal with the constructive hypervolume model of any
degree of generality.

2.4. IMPLEMENTATION 39

A model in the HyperFun language can contain the specification of several hypervolume
objects parameterized by input arrays of point coordinates xi and numerical parameters ai

whose values are to be passed from outside the object. Each object is defined by a function
describing its geometry (the function’s name coincides with the object’s name) accompanied, if
necessary, by a set of scalar functions si representing its attributes. Note the following feature
that allows for increasing flexibility while dealing with attributes: values of scalar functions si

can not only be defined and calculated within the HyperFun object definition but can be passed
from the outside the object to be modified within the program describing the object definition.

The functions defined in HyperFun are actually a symbolic embodiment of the corresponding
trees whose structure reflects constructive logic of building both the object’s geometry and its
attributes. Not only primitives (that can be library functions and local variables defined by
algebraic expressions with an appropriate semantic), but other objects can also be the leaves of
the tree. At the language level, this means that references to objects that have already been
specified can be present in functional expressions. The functions describing geometry and at-
tributes can be built in a step by step manner using assignment statements with introducing local
variables and arrays. Conditional selection (’if-then-else’) and iterative (’while-loop’) structures
are also available. Functional expressions are built using conventional arithmetic and relational
operators by utilising standard mathematical functions (’exp’, ’log’, ’sqrt’, ’sin’, ’cos’, etc.). The
distinctive feature of HyperFun is the support of fundamental set-theoretic operations by special
built-in operators with the reserved symbols (’|’ - union, ’&’ - intersection, ’\’- subtraction, ’-’ -
negation, ’@’ - Cartesian product).

In principle, the language is self-contained and allows users to build objects from scratch
without using any pre-defined primitives. However, its expressive power is increased by the
availability of the system ”FRep library” that is easily extendable and can be adapted to a par-
ticular application domain and can even be customised for needs of a particular user. The current
FRep library version in general use contains the most common primitives and transformations
of a quite broad spectrum.

Thus, there are functions implementing conventional CSG primitives (block, sphere, cylinder,
cone, torus) as well as their more general counterparts (ellipsoid, superellipsoid, elliptic cylinder,
elliptic cone). Another group of the library primitives implements popular implicits: blobby
object [Bli82], soft object [WMW86], metaballs [NHK+85]), and convolution objects [MS98] with
skeletons of different types (points, line segments, arcs, triangles, curve, and mesh). Primitives
derived from parametric functions (Bézier objects [SPS99]) have also been included into the
library. As to the transformations, one can mention rotation, scaling, translation, twisting,
stretching, tapering, blending union/intersection as well as some more general operations such
as non-linear space mapping driven by arbitrary control points.

2.4.2 HyperFun software tools

Application software deals with HyperFun models through using either a built-in interpreter
or HyperFun-to-C/HyperFun-to-Java compilers and utilities of the HyperFun API. The latter
way concerned with intermediate generation of C/Java code insures more efficient function
evaluation but is much more demanding for developers of application software in a multi-platform
environment. All case studies presented in this paper have been developed with a help of software

40 CHAPTER 2. CONSTRUCTIVE HYPERVOLUME FRAMEWORK

tools with a built-in interpreter.
The HyperFun interpreter has been implemented as a small set of functions in ANSI C. It is

quite easy to integrate them into the application software since the developer needs to deal with
only two C-functions. The ’Parse’ function performs syntax analysis in accordance with the
language grammar and semantic rules. For each object described in the HyperFun program, the
function generates an internal representation that is actually a collection of the tree structures
optimised for subsequent efficient evaluation. If there are any errors in the program, the function
outputs a list containing the location and details of each error found.

Another interpreter function (’Calc’) is called every time when there is a need to evaluate the
function at a given point in the modelling space and for the given external numerical parameters.
Externally defined values for attribute scalar functions can be passed too. The object’s internal
representation serves as an input parameter for ’Calc’ function that returns both the value of
the ”geometric” function and a set of values for ”attribute“ scalar functions - all evaluated at
the given point.

The formal specification of the internal representation and of the function evaluation proce-
dure was given in [PSAS93]. Note, that the function ’Parse’ is invoked just once while processing
the HyperFun program; in a way, the internal representation can be treated as ”byte-code” and
can serve as a protocol for data exchange between system components. In fact, these two
procedures constitute an application programming interface (API) that is easy to use.

Software tools for HyperFun creation and processing are being developed in an open source
project manner by an international team of developers. Some of them are currently available
for free download at the Web site [Pro]: HyperFun Polygoniser for the surface mesh generation
with VRML output and HyperFun plug-in to POVRay [Pov] and Vlib [Win], which makes it
possible to generate high quality photorealistic images on an ordinary PC. A plug-in for Maya
[May] is also under development.

Conceptually, we strive to separate the modelling in multidimensional space with abstract
coordinate variables x1, . . . , xn from the subsequent interpretation of the model in ”real world”
terms (that can be, in particular, a visualisation). The concept of multimedia types [ACF+99] is
exploited here. A special mapping with giving each coordinate an interpretation has been. For
instance, ’x’, ’y’, ’z’ types can correspond to Cartesian coordinates; ’t’ - to ”dynamic” coordinate
representing continuous values that can be linearly or non-linearly mapped onto physical time;
’u’ and ’v’ - to 2D ”spreadsheet” coordinates, etc. -(the corresponding example will be given in
the next chapter).

HyperFun tools have special features allowing users to implement this mapping procedure.
By introducing a set of scalar functions for representing object attributes, one can propose a
similar methodology. This means that within a HyperFun program, the object’s attributes are
considered as abstract real-valued functions; as to their actual meaning, it can be determined
later - by an appropriate application program. Such a technology allows us to introduce ”generic”
objects with subsequent generation of their different instances. For example, the same attribute
can be treated (without any change in the HyperFun program) as colour, or as transparency,
or as density, or as temperature, depending on circumstances and available application software
features. Moreover, it is possible to assign simultaneously a few multimedia types to the same
attribute. However, if the user considers it appropriate, it is possible to fix the attribute’s
meaning as early as on the modelling stage.

Chapter 3

Constructive hypervolume texturing

3.1 Introduction

In the previous chapter, we proposed a new mathematical framework for modelling point sets
with attributes. Simple examples of heterogeneous objects were given, as well as applications
of the proposed model in various areas, namely in geology and physics. We briefly mentioned
that in order to visualise the resulting objects, one has to define an additional mapping, from
the attribute value to, for instance, a colour space.

In this chapter, we will focus on the colour attributes, and, in a more general way, photo-
metric attributes1. The abstract attributes Ai define the photometric properties of an object,
namely the texture properties. Here, the term ”texture“ is used in accordance with the following
definition: anything that is evaluated at a point using only information local to that point is a
texture [Gla95].

The examples of this chapter are modelled using the HyperFun language, and rendered using
different tools, namely the HyperFun polygonaliser [Pro, PPP88], PovRay [Pov], and Vlib [Win].
The first one polygonises the iso-surface of an object and uses hardware rendering, the second
one is a direct surface rendering, and the third one is a direct volume rendering. Depending on
the tool being used, the attributes Ai correspond to different shading parameters such as colour,
transparency, ambient, diffuse, and specular reflection, and the reflectance property.

After recalling in the next section the existing texturing techniques in general, we define a
new technique for texturing objects, based on the constructive hypervolume framework. The
proposed method consists in defining a space partition using constructive trees. In each subset,
different attributes are defined. Several examples are given to illustrate the proposed approach
while describing it. Then, descriptions of some particularities of the trees for the attributes are
given. Extensions to objects of higher dimension (4D (time-dependent) and 6D cases) are also
considered. The last section deals with two specific attributes that require a special interest
as they can not be defined as photometric or shading parameters: the first one corresponds to
bump mapping, and the second is used to speed up the rendering process.

1This work has been published in [SPAS01]

41

42 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

3.2 Existing texturing techniques

Several texturing techniques exist in computer graphics to embellish geometric objects. Tex-
turing is usually decomposed into two steps, known as the texture pattern definition and the
texture application, or mapping. To create a pattern, one can either scan a picture (or even
hand-paint it) or use a function to generate it automatically. Several methods exist to create
such functions; some of them are based on Fourier synthesis [BN76], or on a fractal subdivision
[HB84]. In the book [Ea98], a complete description of different methods of making such functions
can be found. Very realistic textures can be obtained, because they take into account the fact
that many natural materials are non-homogenous, and may have complex internal structures.
This set of methods is called Procedural Pattern Generation.

Once the pattern is defined, one has to think about how to apply it to a surface. The texture
mapping introduced in [Cat74] was the first solution proposed allowing applying some 2D colour
patterns (digital images or procedural function) to a parametric surface. Many other works in
this area followed and extended the application of a colour to some other shading parameters
[BN76], or to the modification of the surface properties such as the normal vector perturbations,
i.e., bump mapping [Bli78]. Various texture mapping techniques exist, like spherical, cylindrical,
or Gaussian mapping, and can usually be described as mapping �3 to �2. Surfaces to be
textured was first restricted to parametric one, and then extended to implicit surfaces [Ped85,
SS96], to skeleton-based models [TW99], both with a special parameterisation process, or even
a completely different approach, such as the one in [PRA00], for instance, where the idea is to
cover an arbitrary surface using overlapping copies of a texture patch, and to define some local
parameterisations (”lapped texture“).

The previously exposed texture mapping is widely used, but this solution requires a param-
eterisation of the objects surface, which is often a non-trivial problem, and encounters some
problems, like distortions. A powerful approach is proposed in [NC99], where a local parame-
terisation of the objects surface is proposed, and avoids several problems of traditional texture
mapping. Other texturing methods exist, like cellular texturing, which is applicable to any kind
of surfaces, but is restricted to a certain kind of texture. Another solution for texturing implic-
itly surface is defined in [ZGVdF97], where the gradient field of the implicit surface is used to
define a particle system and then an appropriate mapping.

An alternative is the concept of solid texturing initially introduced in [Pea85, Per85]. The
method defines procedurally a texture pattern in the object 3D-space, with the help of functions
called solid texture functions. Given a point (x, y, z) on the surface of the object, the shading
values are defined as Ti(u, v, w), where the coordinate space is mapped to the shading space
using a simple identity mapping. The main advantage of this method is that it does not require
anymore extra complex steps for parameterisation. Another valuable property of this method
is that it can be applied to any kind of surfaces, and, in particular, to more arbitrarily complex
ones. Indeed, solid texturing can be thought as the definition of space where a procedural
texture is defined everywhere. But the way to define the space partition is arbitrary, and does
not rely on a solid framework. There is another method to define a space partition with a more
robust structure, but only applicable to implicit surfaces. BlobTree [WGG99] is a hierarchical
tree structure with implicit surface primitives as leaves and operations (blending, warping, and
Booleans) as nodes. A special attribute node can be placed anywhere in any non-terminal

3.3. CONSTRUCTIVE SOLID TEXTURING APPROACH 43

position, and values specified by this node will be the default attributes for nodes lower in the
hierarchy. Another attribute node deeper in the down this tree will override the more shallow
one. Such a scheme supposes a fixed discipline of assigning attributes to the entire implicit
surface rather than particular space points.

In this chapter, we introduce a texturing process applicable to surfaces, 3D solids, animated
and other multidimensional objects. In some sense, the proposed method extends the solid
texturing method, but in our case, we use a special constructive tree for each shading attribute
to define the space partition.

3.3 Constructive solid texturing approach

Within this section, we define a new texturing approach by applying constructive hypervolume
modelling in the 3D case. Attributes are considered as the photometric properties of an object.
Our approach can be considered as an extension of the solid texture concept, introduced in the
previous section, and we call it constructive solid texturing.

When applying solid texturing to an object, one has to create a partition of the object
space, where each subset contains different material property. The constructive solid texturing
approach proposes a robust method for creating such a space partition, which involves additional
trees for the attributes. Those trees are called in the following indifferently either constructive
texturing trees or constructive attribute trees.

An introductory example is first given followed by the general formulation of constructive
solid texturing, and then some specific features of the constructive texturing tree are described.

3.3.1 Forestalling example

We propose in this subsection to apply a simple texture pattern to a constructive hypervolume
object, where its geometry is shown in Fig. 3.1a. The point set is defined as F (X) ≥ 0, where
F (X) is real-valued function, in which an ellipsoid, a torus and a soft object are used for the
leaves, and the union operations stand in the nodes. Attributes are the colour of this object,
equivalent to a simple red and blue 3D checker-board pattern. To define such pattern, one can
use a constructive tree composed of blocks in the leaves and set-theoretic unions in the nodes,
shown in Fig. 3.1b. Let us call this tree FA. To define the colour at the given point, one can
state that if the point belongs to a block, then its corresponding colour is red, and otherwise
blue. It is equivalent to say that a partition of the object space has been done while defining
this tree. Figure 3.1c shows the initial object placed inside the obtained space partition and the
resulting textured object is shown in Fig. 3.1d.

To visualise the object, the following scheme is followed. A tree traversing procedure first
evaluates F using the constructive tree that defines the geometry. If F is greater or equal to
zero, then another tree traversing procedure is evaluates FA to determine which colour is defined
at this point, and the result is either red if FA ≥ 0, or blue otherwise.

A special attention has to be paid when one says “the colour of this point is red”. In
this example, when the tree traversing is applied to the constructive texturing FA, the colour
attribute can be defined in two different manners. Either it corresponds to an index, that will
be used later to define the appropriate colour, or it implicitly defines a set of three attributes

44 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

Figure 3.1: Constructive solid texturing. Forestalling example of space partition using a con-
structive texturing tree: (a) FRep model to be textured; (b) Space partition; (c) Initial object
placed in the texture space; (d) Result of texturing. (e) The same FRep model textured using
another space partition.

corresponding to an RGB colour vector. In the first case, it means that the same constructive
texturing tree is defined for the three colour attributes, and in the second case, three trees are
defined for each component of the colour, and thus requires three tree traversing procedures to
evaluate the colour of a given point. Figure 3.1e illustrates this case, where different trees for
each attribute are introduced.

3.3.2 Constructive solid texturing definition

We propose to define a robust method for creating a space partition into several subsets, where
different photometric attributes are defined for each subset. A subset is defined as a solid object
and has to provide for each point an answer to the question: “Is this point inside or outside
the subset?” In the affirmative case, the corresponding solid texture function is applied. One
powerful solution for point membership classification against a 3D solid is to use the FRep model.
The name we propose for this texturing method is constructive solid texturing, to emphasise the
constructive approach inducted by the FRep model.

The constructive texturing tree has somewhat different meaning if one compares it with a
FRep constructive tree. In both cases, they are used to evaluate a real-valued function obtained
by a tree traversing procedure. In the case of FRep solid modelling, this function defines point
membership and has to be continuous. The constructive texturing tree is used in a different
way. If the defining function of the space partitioning solid is positive at the given point (i.e.,
the point belongs to this solid), then, one can evaluate an attribute function. Thus, we add
the operator “if” as a node to the constructive texturing tree, as “jumps” between colours are
allowed (consider a simple checker-board pattern for instance to be convinced).

While considering a constructive hypervolume object, the geometry of the object can be
defined in different manners. In the previous example, it was defined as a real-valued function.
The application of the proposed texturing method can be also applied to other types of repre-
sentations. For instance, if the object is defined as a polygonal mesh, then the tree traversing
procedure of the function defining the geometry is replaced. For each given vertex of the object,

3.3. CONSTRUCTIVE SOLID TEXTURING APPROACH 45

tree traversing procedures are applied only to the constructive texturing trees of attributes. The
same modification in the texturing process can be done for BRep, voxel and other models of
object geometry.

According to the general description of the constructive solid texturing given above, we
propose to formally define it, in a specific “FRep context, as follows. Given a constructive
hypervolume object o = (G,A1, . . . , An) : (F (X), S1(X), . . . , Sn(X)), given a partition of the
object space for each attribute, defined as a set of n defining functions Fi, and given two sets
of default attribute values θ0 and θ1, the ith attribute is evaluated according to the following
procedure :

Ai :

Si(X) if F (X) ≥ 0 and Fi(X) ≥ 0
θ1i(X) if F (X) ≥ 0 and Fi(X) < 0
θ0i(X) if F (X) < 0 and Fi(X) < 0

(3.1)

where Si can be any real-valued function, such as a constant function, a noisy function, or, a
more complex procedural function such as the ones proposed in [Pea85, Per85] or in the book
[Ea98]. The existence of the two sets of default attributes θ11 and θ12 are justified as follows.
Given an object, one defines a partition of the object using different FRep trees. When a point
belongs to the object, nothing prevents from the case where for this point, all the defining
functions of the attribute space partition are negative. The first default set of values θ1 is then
defined. Another set of default values θ0 needs to be also defined. This second set is deeply
connected with the rendering engine used to visualise the object. Indeed, if the volume rendering
engine Vlib is used, the definition of the constructive hypervolume has to be expressed in such
a manner that it fits to the CVG model definition. As it was explained in the survey section
of the Chapter 1, in CVG, the geometry of an object is defined by its opacity field. To fulfil
this requirement, an attribute of the constructive hypervolume object is then dedicated to this.
For a given point, when it belongs to the point set, any value can be given. When this point
is outside the point set, the opacity attribute is then set to full transparency. This condition is
sufficient to express a constructive hypervolume object in the CVG model.

3.3.3 Complex object space partitions

In this subsection, we provide more complex examples illustrating the application of the proposed
texturing techniques. Photometric attributes, and not only RGB colours, are evaluated for each
given point according to the given definition.

Complex space partitioning can be obtained using a constructive FRep tree, as it is shown
in Fig. 3.4 and in Fig. 3.5. Figure 3.2 shows the simplified constructive geometric and texturing
trees for the example of Fig. 3.4. As one can see, the geometry is rather simple; the main
used primitive is an ellipsoid, and a tapering operation is applied at the top level of the tree
(Fig. 3.2(Left)). The attribute tree is more complex. Nodes of the geometrical tree (marked in
blue) are combined with some other primitives. For instance, a union operation is applied to
the bottom ellipsoid and to four spheres, as shown in Fig. 3.3. The point set defined by the
ellipsoid is divided into two sub-point sets; points that belong only to the set defined by the
ellipsoid, and points that belong to both sets defined by the ellipsoid and the union of spheres.
Then, different shading parameters are applied to each sub-point set. The colours in Fig. 3.4
are mainly based on Perlin’s solid noise. A mosaic pattern is applied to the bowl, using a set

46 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

of block primitives. Each block is combined with solid noise, based on the Gardner’s function,
using an algebraic sum. Then, some attributes are assigned to each noisy block. Finally, an
additional partition is defined as a union between the water and a fish (Bézier volume), each
with its own attributes. Because the space partition for texturing is defined with a constructive
tree, we call this method constructive solid texturing.

More complex space partitions can be obtained using the FRep constructive tree as it is
shown in Fig. 3.5. The initial object in Fig. 3.5b is also an FRep object (a model of the
real sculpture “Naked” by Russian artist I. Seleznev shown in Fig. 3.5a) mainly composed of
blending unions between convolution surfaces. The space partition has been defined by the
union of four swept spirals (Fig. 3.5c). Different shading parameters are assigned to each spiral.

The usage of FRep trees for modelling and texturing is illustrated in Fig. 3.6. The presented
objects have been defined using several different primitives. The texturing tree used for the left
object is the same as the geometric one, and is mainly composed of unions of ellipsoids and
B-spline primitives with different shading parameters assigned to each primitive. To define the
texturing tree for the right object, some parts from the geometrical tree were used, such as tori,
blocks, and cones, but it also contains parts of another origin. For instance, the nails on the
box are defined as a set of cylinders regularly placed on the box, and are only defined in the
texturing tree.

3.3.4 Operations on attributes

This subsection gives a general overview of possible operations on attributes. As it will be
shown, a unified framework is very difficult to define, and additional research would be certainly
required to explore all the different possibilities.

When one builds a constructive tree to model a geometric solid, the use of set-theoretic
and other operations such as blending is needed. If one considers only the geometry of the
object, the result is unambiguous. But, if one is considers the attributes of the object, the
use and the result of such operations need further discussions. Let us consider a simple solid,
defined as the union of three horizontal blocks and three vertical blocks as shown in Fig. 3.7.
A single definition of the union is used for the geometric FRep model, but several definitions
are possible for the attributes. In Fig. 3.7, different textures are applied to each block (simple
colour for the block 1; fully opaque checker-board pattern for the block 2, with noisy colours for
the blocks, and grey colour for the space between them; semi-transparent checker-board pattern
for the block 3; textures based on trigonometric functions for the blocks A and C; texture of the
block B is defined using a union of the block and different ellipsoids, where the block’s initial
texture is semi-transparent, and the ellipsoids are completely opaque). Then, nine different
union operations are defined for the attributes. Namely, the union A1 gives priority to the
texture of the block 1, 2C is the sum of two RGBA vectors, and 3C is composed of the green
and blue components from the block C texture and the opacity and the red component from
the block 3 texture. Other unions are defined in a similar way, which illustrates the variety of
available operations.

In the proposed definition of procedure for the attribute evaluation, we introduced the ”if“
statement. In some case, one may prefer to obtain a blending of attributes between the partitions,
rather than jumps. Then, the following technique can be applied. Any defining function F of a

3.3. CONSTRUCTIVE SOLID TEXTURING APPROACH 47

∩ Intersection Union∪

Primitive or simple sub-tree

Solid Noise
(Gardner)

Fish_Attributes

Tapering

Water

Bowl

∪

4 Spheres

Base

∪

∪
∪

∪

Fish
(Bézier Volume)

Blocks

+

∪

Algebraic Sum+

Node’s nameOperation

Blending Union∪b

Fish_Geometry

Tapering

∪

∩

Bottom
(ellipsoid)

Cut
(block)

base

∪

water ∩

z-(height+
sine functions)

b

Body
(ellipsoid)

Hole
(ellipsoid)

bowl ∩

b

Figure 3.2: Constructive trees of Fig. 3.4. (Left) Geometrical tree. (Right) Texturing tree,
composed of internal nodes of the geometrical tree, and of some other primitives. Different
attributes are set to each node.

Figure 3.3: Visual representation of a part of the
constructive texturing tree of Fig. 3.2. The ge-
ometrical object (an ellipsoid) is green. The at-
tributes tree is defined as a union of four spheres
(red) and of the ellipsoid used for the geometry.
One set of attributes is defined for points of the
ellipsoid inside the spheres, and another set for
outside.

Figure 3.4: Example of constructive solid
texturing. The geometrical model is de-
fined as a blending union of an ellipsoid and
a sphere. The water, the fish, and the dif-
ferent mosaic patterns are defined using a
tree composed of spheres, Bézier volume,
blocks and solid noise. Details of the tree
can be found in Fig. 3.2

48 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

Figure 3.5: Constructive solid texturing: (a) Original sculpture (photo); (b) 3D FRep model of
the sculpture; (c) Constructive 3D solid representing the space partitioning for texturing; (d)
Textured shape.

Figure 3.6: Application of the constructive solid texturing to FRep objects, using 13 different
shading parameters: (left) The tree used for the space partition is similar to the constructive
tree for the object’s geometry; (right) Texturing and geometric trees are different.

3.3. CONSTRUCTIVE SOLID TEXTURING APPROACH 49

1 2 3

A

B

C

Figure 3.7: Examples of different union operations. Six different blocks, and nine different
unions. For instance, the union A1 gives priority to the attributes of the block 1; the attributes
of the union A2 are defined as the difference of the attributes of blocks A and 2, and as the sum
of attributes for the union A3.

FRep object can be mapped to the interval [0, 1] using the following function:

F̃ =
1
2

(
1 +

F√
p + F 2

)
(3.2)

where the parameter p controls the fall of the function. Let us consider an attribute Ai, defined
by a function Si, and evaluated when its corresponding partition Fi is greater or equal to zero.
Let us also consider a default attribute function θ(X). Then, the resulting attribute A generated
by the blend can be defined as:

A = F̃i(X) × Si(X) + (1 − F̃theta(X)) × θ(X)(3.3)

Figure 3.8 shows an example of application of this formula. The geometric object is a block, and
the space partition for attributes includes two torii, F1 and F2. The default attribute is an RGB
colour vector defined according to some noise function, and the attribute for the torii is a red
and blue checker-board pattern. To calculate the functions F̃1 and F̃2, two different values for
the parameter p have been used, respectively 0.1 for the torus at the bottom of Fig. 3.8 (right),
and 5 for the top one. Depending on the value of p, the result of the blending operations for
the attributes is different. When p is small, no blend occurs and as p increases, as the blend is
significant. The resulting colour is a combination of the torus colour attributes and the default
attributes, i.e., outside the torii. As one can see, the “green noisy texture pattern of the block
appears in the blue area defined by the torus.

This definition for the blend is global, i.e., applied to the whole partition. Other definitions
can be found while considering existing blending functions, such as the one proposed in [Ric73b,
PS94, MK85] for global blends, and [PPIK02] for bounded blends.

50 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

Figure 3.8: Blending of attributes. A block object, shown from different points of view, is
textured. Different parameters for mapping the defining functions S1 and S2 of the space
partition to S̃1 and S̃2 are used, to illustrate their influence in the blending of attributes.

Figure 3.9: Blending operation between two cubes. (a) Blending is applied to the three com-
ponents of the RGB colour vector. (b) Blending is applied to the Hue component of an HLS
colour vector. (c) Blending function is also applied to the opacity attribute.

3.4. CONSTRUCTIVE SOLID TEXTURING IN HIGHER DIMENSION 51

In the proposed example, the colours were defined in the RGB space. It appears that the
number of different definitions increases if one considers another colour space, such as HLS, HSV,
XYZ, La*b* and others. Figure 3.9 illustrates this consideration, where a geometric blending
union operation is applied to two blocks. Another blending function has also been used for the
colour attributes. Let the colour of one of the blocks be bright green, and the colour of another
be bright red. Obviously, the most expected resulting colour of the blended material should
be bright yellow. It is apparent that colour mixing in the RGB colour space does not produce
the expected colour. In Fig. 3.9a, the resulting colour in the RGB space is a dark yellow. In
fact, because the brightness component is not explicitly defined in the RGB colour space, it is
difficult to obtain bright colours by colour mixing. Thus, we have to change from one colour
space to another, HLS in this example, and it then becomes easier to obtain only bright colours.
In Fig. 3.9b, a blending operation has been applied only to the Hue component, whereas the
Lightness and Saturation components remain the same. The obtained result is a bright colour
for the entire solid including the blocks and the added material. In Fig. 3.9c, we add an opacity
component. The red cube is transparent, and the green one is completely opaque. The same
blending function is applied, and as one can see there is a smooth transition of attributes from
one object to another.

The proposed examples are presented here just to demonstrate on the diversity of available
ways to define the resulting texture. They lead to the important fact that a unique solution
does not exist, and, from the user’s point of view, a tool using the union of textures should allow
enough freedom in selecting its definition. Examples were produced using the HyperFun lan-
guage. In the Appendix, some HyperFun models are presented to show some of the possibilities
offered by this language.

3.4 Constructive solid texturing in higher dimension

3.4.1 Constructive time-dependent texturing

There is a long-standing interest in time-dependent texturing. It was addressed in the concept
of the ”shade tree” model [Coo84] and later used in a scene-graph based rendering environment
[Ups90]. The extension of our method to time-dependent texturing is straightforward and is
described below.

When one creates a 4D model, e.g., with time as an additional coordinate, the hypervolume
model functions (F, S1, S2, . . . , Sk) can be expressed as F (X) and Si(X) with X = (x, y, z, t).
The geometric and attribute constructive trees are defined using the FRep-related techniques.
The similarity with the way these trees are created is significant for our framework. It implies
that each transformation that occurs in the geometric tree can also occur and is supported in
the attribute tree.

Figure 3.10 presents an example. The initial object (Fig. 3.10a) includes different textures
based (from top to bottom respectively) on trigonometric functions, gradient function along an
axis, and a hand-defined pattern function (similar to the checker-board). Different deformations
are applied to this object. The problem with the standard definition of solid textures is that the
space partitioning is done during a separate step than the modelling one. The application of a
transformation of the object’s geometry may be difficult to apply to the space partition, simply

52 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

because they are defined in a different manner. In Fig. 3.10b, a twisting operation is applied.
The patterns follow the twist defined as time-dependent transformation. The same operation
is applied to, and supported by both constructive trees, the geometric and attributes ones.
Figure 3.10c shows a frame of the animation, where another transformation, namely tapering,
is applied. The angle of the twist is increasing in time until the given limit is reached, then
tapering is applied, where the scale is time-dependent. While these operations are applied, both
the textures and the space partition change. As it can be seen in Fig. 3.10c, some of the grid
stripes at the bottom of the textured model become yellow according to a sine function with a
time-dependent period. At the same time interval, the texture based on trigonometric functions
also changes according to some other time-dependent mappings. The important advantage of
constructive solid texturing is that the space partition can also change in time. As it can be
seen in Fig. 3.10d, two blocks (one with a blue colour pattern, and the other with a yellow)
were added at the corners of the original model to influence only the constructive solid texturing
tree at a certain time step. Transformations of the FRep object geometry also occur in the
constructive texturing tree, and the visual result is the transformation of all texture patterns.

Another example is given in Fig. 3.11 to illustrate the possibility to create time-dependent
space partition and to texture both the interior and the surface of the object. The geometric
object here is a volumetric head. We applied a voxel-to-function conversion in order to use
this head as a FRep object. The separation of space is modelled as an algebraic sum of two
functions, one defining a planar halfspace and another one defining Gardner’s solid noise. This
sum results in the deformation of the planar halfspace and in the generation of many separate
components near its boundary, thus simulating an amorphous or a liquid substance. The planar
boundary of the halfspace is translated along the x-axis during some time interval. Figure 3.11a
corresponds to the initial step, where the texture for the voxel head is defined as a combination
of different values of green colour and transparency, and Fig. 3.11d corresponds to the last step,
where a simple grey colour applied to the entire object. Figure 3.11b shows the middle step in
the animation. In one half space, the green texture is applied, and in the other half space, the
grey texture. Figure 3.11c shows the space partition, where only one side of the head is shown.
As one can see, a complex time-dependent space partition can be obtained.

So, the two previous examples show that arbitrary time-dependent transformations can be
applied to both geometry and attributes, either in the uniform manner or in completely different
ways.

3.4.2 Constructive texturing in multiple dimensions

Multidimensional models are conventional in mathematics, natural sciences and data min-
ing. Here, we illustrate an application of our approach to scientific visualization. As an
example, we propose to construct a visual representation of a function of six variables f =
f(x1, x2, x3, x4, x5, x6). This function was first introduced to illustrate unstable states in plasma
physics. Assigning a zero value to the function defines a star-shaped iso-surface as an elemen-
tary object in the cells of the animated spreadsheet (Fig. 3.12) as illustrated in Fig. 3.13. The
elementary shape illustrates function dependence on three variables x[1], x[2], and x[3]. Changes
of iso-surfaces along rows and columns of the spreadsheet illustrate function dependence on x[5]
and x[6]. Changes of the entire spreadsheet in time show how the function depends on x[4].

3.4. CONSTRUCTIVE SOLID TEXTURING IN HIGHER DIMENSION 53

(a) (b) (c) (d)

Figure 3.10: Time-dependent texture. (a) The original patterned model.(b) Twist operation
applied to both constructive trees, geometric and texturing one. (c and d) Time-dependent
twisting, tapering and texture pattern.

(a) (b) (c) (d)

Figure 3.11: Time-dependent space partition and texturing. A plane geometrically deformed by
solid noise is translated from left to right (from (a) to (d)): (b) Middle frame of the animation.
(c) The same time step as (b) with only one half of the head is shown to illustrate the complex
space partition inside the head.

54 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

�

t

�� ��

��

�

�

���

x

y

z

�

�
u

v

Next Cell (Column)

Next Cell (Row)

Next Spreadsheet

Figure 3.12: Animated spreadsheet concept: a spreadsheet has (u, v) coordinates. Each (u, v)
pair corresponds to a cell containing a 3D object with (x, y, z) coordinates. Spreadsheet changes
in time with the t coordinate.

Formally, the following types are assigned to the geometric coordinates:

x[1] → x

x[2] → y

x[3] → z

x[4] → t

x[5] → u

x[6] → v

(3.4)

where t is a dynamic variable corresponding to physical time, u and v are spreadsheet coordi-
nates. Three time steps of the animated spreadsheet are shown in Fig. 3.12.

We used this function as a basis to show that the way the constructive solid texturing method
was defined is independent of the model’s dimensionality. Figure 3.13 shows colouring of the
shapes for three different time steps. The red component is a function of x[1], x[4] and x[5], the
green depends on x[6]. The space partition has been done with the use of union of the star shape
and a torus. The radius of the torus is time-dependent, and it grows in time. A transparency
value has been assigned to it. The result shows that the use of a multidimensional object for
constructive texturing tree becomes meaningful, and the visualisation of the dependence between
variables becomes easier and more graphical.

3.4. CONSTRUCTIVE SOLID TEXTURING IN HIGHER DIMENSION 55

Figure 3.13: Animated spreadsheet of a constructive hypervolume 6D point set with 13 photo-
metric attributes : three frames of animation for three time steps t = 0, 1, 2.

56 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

Figure 3.14: Bump attribute. From left to right. The geometric object is defined using
Chebichevs polynomial of degree 6. The space partition is equivalent to the four quadrants.
Different bump mapping are defined, with no blending and then with blending of attributes.
The most right pictures shows that different bump mapping can be defined in arbitrary space
partition.

3.5 Special attributes

This section considers two non-photometric attributes that have deep connections with textur-
ing and visual enhancement of an object. A space partition is still used to define real-valued
attributes. In the first subsection, the real value is used to apply a bump mapping on the surface
of the object. The second subsection proposes to use a special attribute in an adaptive rendering
context.

3.5.1 Bump mapping

The bump mapping [Bli78] is a visual “trick” enabling a surface to appear either bumpy or
wrinkly. In contrast with the displacement mapping [Coo84] where the object’s surface is effec-
tively deformed, the bump mapping alters the normal of the surface according to some pertur-
bation functions. While rendering the object, this change in the normal orientation produces
a change in the local illumination model, and simulated details appear on the surface of the
object. The modified normal N ′ is defined as :

N ′ = N + D(3.5)

where N is the original, and D the perturbation vector. As a matter of fact, the normal defor-
mations are generated by the perturbation vector D. In [Bli78, Ea98], details of the calculation
of D as well as several examples are given.

It appears that the constructive approach to define space partitions can be applied in this
case. A perturbation function defining the bumps corresponds to each partition. Figure 3.14
gives some examples of bump mapping. In the left and middle pictures, the geometry is based
on Chebychevs polynomial of degree 6. The space partition consists of the four regions defined

3.5. SPECIAL ATTRIBUTES 57

as (x ≥ 0, y ≥ 0), (x < 0, y > 0), (x > 0, y < 0) and (x < 0, y < 0) (i.e., the four quadrants
for short). The same normal perturbation is defined in the first and last quadrant. A brick and
a quilted perturbation are defined in the remaining quadrants. On the left side, no blending
operation is defined, and as one can see the perturbation “jumps” from one quadrant to another,
and in the middle, a smooth blending has been applied, according to eq. 3.3. The right picture
shows another example, where the object is a block. The space partition is composed of a sphere,
a torus, and the object shown in Fig. 3.14right. A different normal perturbation is assigned to
each primitive.

3.5.2 Speed-up attribute

Herein, we will consider a special attribute that has a meaning only at the rendering stage, and
allows for an important speed-up while rendering constructive hypervolumes based on FRep.

The “brute force” ray-tracing algorithm throws ray in the scene and strives to find an intersec-
tion with an object. When the object is functionally defined, the intersection point coordinates
satisfy the equation F (X) = 0, where F is the defining function of the object. To find this
intersection, the ray is regularly sampled along the path. It can be written as:

X = u + vt(3.6)

where u is the starting point of the ray, and v is the direction of the ray, and t is the sampling
step.

We define here a simple method that uses directly FRep property to increase the speed of
the rendering process. We suppose that a FRep object, its corresponding bounding box, as well
as the user-defined accuracy are given.

The problem is to find t such as F (u + vt) = 0. A large variety of optimisation methods
exist to find in a quicker manner the solution of this equation. But all the proposed methods
are dedicated to some specific cases, and can not be applied in general. It results that often a
constant sampling step is used to ray-trace such an object.

Herein, we propose to use one attribute of a constructive hypervolume object to help the
ray-tracing process. In some sense, it is an extension of the existing methods based on bounding
volumes used while rendering implicit surfaces [JW88, WT90]. Let us consider that the aim is
to visualise the iso-surface I0 of an object, defined as F = 0, and consider another iso-surface
Ik, defined as F = k < 0. The space can be then subdivided in three regions. For a given point
X, one can state the following:

1. if F (X) ≤ k, then the point X is “far” from the iso-surface I0,

2. if k < F (X) < 0, then the point X is “close” to the iso-surface I0,

3. if F (X) ≥ 0, then the point X is on the iso-surface I0, or inside the object.

For each sample of a ray, the function F is evaluated, and thus the attribute function value.
Then, instead of considering a constant sampling step, one can define two sampling values
according to the above remarks. In the first case, a greater sampling value will be used, and in
the second and third case, a smaller one.

58 CHAPTER 3. CONSTRUCTIVE HYPERVOLUME TEXTURING

This method provides an important speed-up of the rendering process. Nevertheless, the
following problem arises: “How to select the proper Ik iso-surface? ”. As there are no constraints
on the function F , its behaviour is difficult to predict. An inelegant solution, but reasonable, is
to visualise first the object using faster rendering engines, such as a polygonalisation, or to ray-
trace it while using a single ray and a simple illumination model. Even a simple visualisation of
2D iso-contours is sometimes enough to find the appropriate iso-surface. We used this solution to
ray-trace a “noisy” sphere. Without this optimisation, it takes 60 seconds to render this object,
whereas with the use of the speed-up attribute, it takes 10 seconds (on a 450 Mhz processor).
Results are promising, and further investigations in rendering and visualisation of constructive
hypervolume objects are needed.

3.6 Conclusion

In this Chapter, we proposed to apply the constructive hypervolume model to texturing objects.
The point set is defined using different representations, such as FRep, BRep and voxels, and
the attributes are photometric attributes, such as colour, ambient, diffuse, specular, and other.
For every given attribute, we propose to define its value according to a space partition. Such
partitions are defined using the FRep model, and its underlying constructive approach. To
determine the attributes of a given point, the tree traversing procedures are applied. Examples
of objects of different dimensions are given.

This approach for texturing objects can be extended in various directions. Combining at-
tributes for instance is a non-trivial task, and a certain formalism may be needed. A promising
direction to follow is to use an approach similar to the one proposed by Schlick in [BGS94], where
some elementary nodes and meta-nodes are defined. Then, combining attributes would become a
combination of those nodes. Another extension of this method concerns time-dependent objects.
It would be very interesting to apply the constructive hypervolume model in physically-based
animation.

Chapter 4

Constructive hypervolume sculpting

4.1 Introduction

In the previous chapters, to model an object, only the constructive approach was considered.
Building a constructive tree to generate an object is usually a time-consuming and sometimes
difficult process. Usually, a complex shape contains both regular parts that can be easily decom-
posed into a set of primitives, and some other parts more difficult to decompose. An alternative
to the constructive approach is the free-form design. With this method, parts that can be
hardly decomposed in elementary elements are modelled directly, using a sculpting approach.
This approach can be divided in two main families. The first one consists, starting from a given
object, in deforming it until the desired shape is obtained. The next chapter is dedicated to
this technique. The second approach can be usually compared to a sculpting metaphor. An
object is sculpted while adding or removing some material at the desired location. The term
virtual sculpting was first introduced in [Par77], and several works and researches have been
conducted in this direction. A very good survey on the existing techniques can be found in
the PhD thesis [Fer02]. Several existing tools are dedicated to a surface manipulation only, i.e.,
polygonal [Par77, BL95] and parametric [FB88, GOP99].

In [GH91, WK95], an environment in which a 2D painting scheme is proposed to add or to
carve an existing object, and in [AS96, FCG00] a 3D interaction is proposed using a haptic device
to sculpt the object. Those methods use a discrete characteristic discrete function, resulting
into a 3D grid of uniform voxels, called voxmap, containing in each vertex a function value. The
major advantage is the constant time evaluation procedure, i.e., a trilinear interpolation, used
to visualise the object after a modification. Another approach of the sculpting metaphor using
real-valued functions has been proposed by Elber et al. [RE99] and by Schmitt et al. [SPS99].
In those works, the object is represented as a zero set of a trivariate B-spline [RE99] or trivariate
Bézier function [MPS96, SPS99].

A valuable approach would be to combine constructive modelling and volume sculpting,
because both approaches contain useful features. To combine these approaches, one has to
define a primitive that can be both sculpted and included in a constructive tree [SPS01]. To add
a new primitive to a FRep tree, one has to verify the function continuity property (at least C0

continuity of the defining function everywhere in the space). The characteristic functions used

59

60 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

in [GH91, WK95, AS96, FCG00] are C0 continuous as the representation is piecewise linear. In
the three first works, the grid resolution is fixed making difficult the sculpting process. In the
latter one, [FCG00], the sculpting process can be achieved at any level of resolution, and results
in a powerful tool.

In [RE99], the sculpting area depends on the space where the parametric function is defined,
i.e., it is restricted within the boundary of the parameter space of the trivariate B-spline function.
Therefore, such definition makes it difficult to use the sculpted object in another context, and
especially to use it as a constructive primitive. A similar approach has been proposed for
trivariate Bézier functions in [MPS96, SPS99] and extended to B-spline functions in [SKPS00,
SPS01]. The main difference is in the mathematical framework. The same parametric function
is used to define a solid as a point set with non-negative function values. A so-called functional
clipping is employed so that the function gets negative outside the parameter space. This insures
the function to take positive values only where the sculptor chooses to create some material.

We propose in this chapter to model geometry and attributes of the heterogeneous object
using a combination of sculpting and constructive modelling based on solid primitives defined
by trivariate B-splines. We propose to combine sculpting of the trivariate B-spline primitives
with FRep constructive modelling. Sculpting of the B-spline primitives [SKPS00, SPS01] is
improved by a multiresolution scheme and real-time visualisation. Complex shapes modelled in
this way can be then combined with traditional primitives using different high-level operations
like blending or twisting.

4.2 Sculpting constructive hypervolumes

The concept of extended space mapping introduced in [SP98] is used as the underlying frame-
work for modelling B-spline primitives and complex heterogeneous objects. A space mapping
establishes a one-to-one correspondence between points of a given space and, if applied to one
point set in the space, it changes this set to a different one. A mapping can be defined by the
functional dependence between the new and old coordinates of points. A formal definition of
the extended space mapping can be found in [SP98]. It generalises both space mapping and
function mapping (i.e., manipulations done on the defining function values) by considering an
extended space with geometric coordinates and the additional functional coordinate.

Let us discuss the example given in Fig. 4.1. The intention is to model a 1D point set with
attributes, i.e., a segment along the x-axis. Let f be a real-valued function of one variable such
as ξ = f(x). The inequality f(x) ≥ 0 defines a segment. At the same time, a curve is defined in
the (x, ξ) plane. This plane is called an extended space, because it has a geometric coordinate
and an additional function coordinate. Fig. 4.1a shows such a curve and its corresponding
segment at some given step. The function f(x) is drawn in black, and its corresponding point
set in red. Different transformations can then be achieved, and are called under the general
term extended space mapping. For instance, if a translation is applied to the curve, the extended
space is mapped onto itself, and thus defines an extended space mapping. As said, extended
space mapping combines two main families of mapping, namely the function mapping and the
space mapping. The first one gather transformations that occur at the function level (see Fig.
4.1b), and the second at the coordinate level (see Fig. 4.1c).

4.3. TRIVARIATE B-SPLINE PRIMITIVE 61

ξ ξ ξ ξ

Figure 4.1: Extended space mapping. (a) 1D point set (red) is defined by a curve ξ = f(x),
and the projection of its positive part onto the x-axis. (b) Modification using function mapping
(the function f is modified).(c) Modification using space mapping (the x coordinate is scaled
non-linearly) (d) Heterogeneous object with attribute functions added to the model. To each
function Si corresponds a component of an RGB colour. For each point belonging to the 1D
solid, i.e., f(x) ≥ 0, the three functions Si(x) are evaluated, and a RGB colour is then defined.

In a similar way, extended space mappings can be used for attribute functions, as Fig.
4.1d shows, where attributes consist of red, green and blue colour values. The function Si(x)
defined in the extended space corresponds to an attribute Ai. In this example, the function
corresponding to the blue attribute is similar to the function used to define the point set, and
the functions for the red and green attributes are arbitrarily defined. One can notice that the
shown white part of the segment is obtained as the intersection of the red and green partition.

As a point set and the space partitions are defined in a similar way, it naturally comes that
they can be modelled in a uniform manner. The sculpting paradigm we propose can thus be
used for both of them. Then, in the remaining part of this chapter, we use the term object to
identify without any difference either the geometry of the point set or its attributes.

To model an object using a B-spline function, only the function mapping is needed, as it will
be shown in the next sections. In the next chapter, the space mapping will be used to define
deformations of functionally defined objects.

4.3 Trivariate B-spline primitive

4.3.1 Framework for the primitive

To create objects, we propose to use a sculpting scheme close to the one proposed in [RE99,
SKPS00], where uniform cubic trivariate B-spline functions are used. The basic definition of
the B-spline is similar, but as it will be shown in the next subsections, additional properties are
required in order to be able to provide a new primitive for a FRep constructive tree.

62 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Let the defining function f be a trivariate cubic uniform B-spline function defined in a
parametric space by a set of l × m × n scalar coefficients λijk, called control coefficients or
control points:

f(u, v, w) =
l∑

i=0

m∑
j=0

n∑
k=0

Ni(u)Nj(v)Nk(w)λijk(4.1)

where N(t) are the cubic B-spline basis functions [Far90] (or blending functions) defined over a
uniform knot vector, and u, v and w belong to the parametric space [0, 1].

The control points λijk are regularly placed in the space to insure that along each axis the
following equalities are verified (using the property of the cubic B-spline basis functions) :

fx(u, v, w) = u
fy(u, v, w) = v
fz(u, v, w) = w

(4.2)

The tensor product used for the B-spline definition will be applied only to the ξ coordinate of
each control point. The resulting 3D point set will be defined as :

G = {(x, y, z)/f ξ(x, y, z) ≥ 0}(4.3)

One can recall the example given in Fig. 4.1, and consider the curve S in the extended space
as a traditional B-spline curve. Then, to model a 1D object, one has to use a B-spline curve
defined by a set of 2D control points. By analogy, to model a 3D object, the use of 4D control
points is required. While the first three coordinates are used to locate a control point in the
space (i.e., the usual xyz coordinates), the fourth coordinate ξ contains the scalar coefficient.
By changing this value, different shapes can be obtained, and thus different function mappings
are defined. To visualise the object, we polygonise the iso-surface defined as f(x, y, z) = 0 using
an algorithm based on hyperbolic arcs [PASS95]. More details about our implementation can
be found in the following sections.

4.3.2 Providing distance property

Motivation

The proposed definition allows one to model complex free-form objects, but they cannot yet
be combined with other primitives using FRep. Indeed, if the B-spline primitive is used alone,
the behaviour of the defining function outside the parametric domain does not matter. The
space coordinates can be easily mapped to the parametric one. But as the aim is to use the
new primitive in a FRep constructive tree, it has to respect the FRep definition, that is to be
positive only in the domain of interest, and negative everywhere else. As trivariate B-spline
objects are parametrically defined, one has to insure that outside the domain of interest, the
function remains not only negative, but also decreasing. To be convinced of the importance of
both properties, one can first consider for instance a blending union, such as the one defined in
[PASS95]:

blend(f, g) = f + g +
√

f2 + g2 + disp(f, g)(4.4)

4.3. TRIVARIATE B-SPLINE PRIMITIVE 63

where f and g are two functions and disp(f, g) is the function of the added material:

disp(f, g) =
a1

1 +
(

f
a2

)2
+

(
g
a3

)2(4.5)

The parameters a1, a2 and a3 correspond respectively to the material added symmetrically to
f, g, and asymmetrically to f and to g. If the aim to apply a blending union of two B-spline
primitives, corresponding to the functions f an g, it is clear that if they remain constant outside
the parametric space, the result of the blending operation will not be the one expected. Indeed,
below a given value (depending on a1, a2 and a3), the blending operation is similar to a union
operation, and above this value, the resulting function will be positive for every given points.

no material will be added, and above this value, the added material will fill the whole
parametric space.

Functional clipping definition

To insure that the B-spline primitive remains negative and decreasing outside the parametric
space, we use the functional clipping defined in [SPS99]. We can force the trivariate B-spline
function, or more generally any functions, to become negative outside a certain domain, i.e., the
parametric space in our case. This space can be considered as a unit cube with the use of some
simple scaling operations. Then, the B-spline function has to be negative outside this cube.

The functional clipping is defined as follows. Let & be the intersection operation defined
with the R-function as:

f(x) & g(x) = f(x) + g(x) −
√

f2(x) + g2(x)(4.6)

and let ω be the defining function of the unit strip of one variable:

ω(t) = t(1 − t)(4.7)

The defining function of the unit cube can be expressed as follows:

Ω(u, v, w) = ω(u) & ω(v) & ω(w),(4.8)

The inequality Ω(u, v, w) ≥ 0 defines a closed subset, which corresponds to the parametric space.
The functional clipping can now be defined as the intersection of this subset with the trivari-

ate B-spline function :

Fclip(u, v, w) = F (u, v, w) & Ω(u, v, w),(4.9)

The application of the functional clipping insures that outside the parameter space, i.e., the unit
cube, the trivariate B-spline function will remain negative. Furthermore, the functional clipping
provides a distance property of the trivariate B-spline function outside the domain, but does
not change the solid primitive.

64 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Initialization and functional clipping application

Under some circumstances, the function value of the B-spline can remain constant between the
iso-surface and the boundary of the parametric space. As required in the motivation subsection,
the first step is to force the function to be decreasing inside the parametric space. A simple
solution is to initialise the ξ value of the control points with real values, according to a Gaussian-
type function, where the highest negative values are set on the boundary of the grid of control
points, and values increase until zero as the control points are getting closer to the centre of the
grid. To insure that the modelling process will not be affected by this initialisation, the real
values used for initialisation are small enough.

The next step is to force the B-spline function to be negative outside the parametric space
by applying the proposed functional clipping. If it is applied exactly on the boundary of the
parametric space, it can produce C0 discontinuities. This is due to the definition of the B-spline
basis functions, where the first and last basis functions (i.e., N0 and Nk in eq. 4.1, where k is
the number of control points) drop to zero on the boundary and remain constant outside the
parametric space.

Figure 4.2 is given as illustration of the problem, in the 1D case. A cubic B-spline curve (in
blue) is used to define a 1D solid (in red). The parametric space is defined between the first and
the last control point. In Fig 4.2(top), no functional clipping is applied, and the B-spline function
remains equal to zero outside the parametric space. In Fig 4.2(middle), the proposed functional
clipping is applied exactly on the boundary. As one can see, a discontinuity is generated on
one side of the parametric space. One solution is to a ghost point at each side of the control
point set, shown in green in Fig 4.2(bottom). A new parametric space corresponds to this new
B-spline curve, which can be called augmented parametric space. Then, instead of applying
the functional clipping exactly on the boundary of this new space, it is applied inside, on the
boundary of the previous one, and as one can see, no discontinuity is generated.

The extension to the 3D case is straightforward. A grid of l × m × n is extended to a grid
of (1 + l + 1)× (1 + m + 1)× (1 + n + 1) control points. The functional clipping is then applied
in the sub-space of the augmented parametric space defined between the control points λ111

and λ(l+1)(m+1)(n+1) of the new B-spline function. As the control points are regularly placed,
their exact locations are easy to calculate. Figure 4.3 shows an example in the 3D case. The
model, Fig 4.3a, is defined by a FRep constructive tree. The primitives in the leaves are two
spheres and a trivariate cubic B-spline function (central star-shape). In the nodes of the tree,
different operations are used to combine these primitives. A blending union operation is applied
between the spline and a sphere, and the resulting object is then combined with a second sphere
with a union operation. Figure 4.3b is a zoom on one of the boundary of the parametric space,
and illustrates the problem generated by the discontinuity: some materials generated by the
blending union have appeared on the boundary, exactly where the B-spline function drops to
zero. Figure 4.3c shows the result after adding the ghost points.

4.3. TRIVARIATE B-SPLINE PRIMITIVE 65

ξ

ξ

ξ

Figure 4.2: Discontinuity generated by the functional clipping, 1D case. A set of 2D control
points (grey spheres), and its corresponding cubic B-spline curve (in blue), are used to define
a 1D solid (red segments). (Top) Outside the parametric space, the function remains equal to
zero. (Middle) Application of the functional clipping on the boundary of the parametric space.
A discontinuity appears. (Bottom) After adding two ghost points (green spheres), and applying
the functional clipping on the correct region, i.e., equal to the previous parametric space, the
discontinuity disappears.

66 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Figure 4.3: Discontinuity generated by the functional clipping, 3D case. (a) An FRep object
composed of two spheres and a B-spline primitive (star shape) combined using the union (right)
and the blending union (left) operations. (b) While applying a blending union between a B-
spline primitive and a sphere, an undesirable part appears.(c) After adding the ghost points,
the discontinuity disappears.

4.4 Multiresolution approach for the trivariate B-spline primi-
tive

Herein, an approach is proposed to facilitate modelling using the cubic B-spline primitive. While
such a primitive is defined using a set of control points, we propose to use multiresolution
analysis based on cubic B-spline wavelets. The aim of the multiresolution scheme is to provide
a possibility to change the number of control points of the spline during modelling in order to
achieve local or global modifications. Methods to increase the number of them can be easily
found in books on splines [Far90]. Nevertheless, decreasing the number of control points requires
a different approach. Indeed, if one starts to model an object using a certain set of control points,
and then in order to apply a global modification, decreases the number of them, he/she should be
able to obtain a new set of control points similar to the original one, which includes the original
state and the global modification. The main guideline is the preservation of the information
contained in the set of control points.

A method for non-uniform B-spline functions was proposed in [EG01]. In the case of a curve
(defined in the Euclidean space, and not in the extended space), to decrease the number of control
points, about half of them are removed, and the resulting curve is then defined by the best least
squares approximation for the original curve. ”Details” are defined by the difference between
the original curve and its approximation. The main drawback of this method is the critical need
for large amount of memory. Storing details requires the same memory size as storing the curve
itself. This memory requirement becomes especially significant when one considers a B-spline
function defined with a set of, for instance, 256 × 256 × 256 control points.

This problem can be solved while using a multiresolution analysis based on the wavelet
transform. Indeed, the inherent properties of this transformation provide a powerful solution
to increase or decrease the number of control points, with constant memory size. In the first

MULTIRESOLUTION APPROACH 67

subsection, we provide a short overview of the mathematical framework of a multiresolution
analysis, its application to a B-spline curve and surface, and then extend it in order to apply it
to the trivariate B-spline primitive. Examples of modelling using the proposed multiresolution
scheme are then given.

4.4.1 Multiresolution analysis

A multiresolution analysis of L2(�) is a sequence of nested spaces V i, such that the union of all
the V i is dense in L2(�). For each V i, we define a column matrix of basis functions:

Φi(u) =

ϕi
1(u)
...

ϕi
mi

(u)

(4.10)

where the set {ϕi
k}k=1..mi is a basis of V i. Functions ϕi

k are called scaling functions. As V i are
nested spaces, there exists a matrix P i such as:

Φi = P iΦi+1(4.11)

Under such conditions, the scaling functions are said to be refinable. The detail spaces W i are
defined as complements of V i in V i+1:

V i ⊕ W i = V i+1(4.12)

Each space W i can be viewed as the space containing the information needed to reconstruct a
function f i+1 in V i+1 from its projection f i on V i. For each W i, we define a column matrix of
basis functions:

Ψi(u) =

ψi
1(u)
...

ψi
mi+1−mi

(u)

(4.13)

where the set {ψi
k}k=1..mi+1−mi

is a basis of W i. Functions ψi
k are called detail functions or

wavelets. As W i ⊂ V i+1, there also exists a matrix Qi such as:

Ψi = QiΦi+i(4.14)

4.4.2 Multiresolution B-spline curve

One possible application of the multiresolution analysis is to define a multiresolution curve. Let
us consider fn as a B-spline curve, where Λn is a vector of kn control points, which can be
written as:

Λn =

λn
1

λn
2
...

λn
kn

(4.15)

68 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

When uniform, cubic B-spline blending functions are good candidates for a multiresolution
analysis, as they respect important requirements, such as finite support, refinability and other.
A complete study for curves and cubic B-spline surfaces can be found in [DSS95] and a full
study of multiresolution in general in the thesis [Gri99].

Furthermore, as it was shown in [DSS95], the cubic B-spline blending functions, in the case
they are uniform, fit to the definition and to the requirements of the scaling functions (finite
support, refinable). Thus, in the remaining of this subsection, the basis Φj will be defined as a
set of cubic B-spline blending functions.

As it was introduced at the beginning of this section, the aim of a wavelet transform in the
multiresolution analysis is:

1. to find an approximation Λn−1 of Λn using a lower number of components kn−1. We can
say that a concept of resolution corresponds to each n. For instance, if one considers two
representations of a function fn, f j and f i, with i < j < n, the number of components
of the vector Λi corresponding to f i is lower than the one used for f j . Thus, one can say
that f i is a coarse representation of fn, and also that f j contains more details than f i

and is a finer representation of fn.

2. to store some information in order to be able to reconstruct the vector Λn from Λn−1.
Those stored data are usually called details.

Practically, one needs to calculate different matrices of constants in order to be able to change
the considered vector space. In other words, one can consider those changes as increasing or
decreasing the number of control points. In matrix notation, the above points can be expressed
as:

Λn−1 = AnΛn(4.16)

where An is a kn−1 × kn matrix, and

Dn−1 = BnΛn(4.17)

Since the matrix Λn contains kn components and Λn−1 contains kn−1 components, then to
reconstruct Λn from Λn−1 and Dn−1, Dn−1 has to be a vector composed of kn−kn−1 components.
Thus, the matrix Bn is a (kn − kn−1) × kn matrix. The calculation of Λn−1 and Dn−1 is called
the decomposition step, and the matrices An and Bn are usually called analysis filters.

Once Λn is decomposed into Λn−1 and Dn−1, one should also be able to reconstruct Λn

from Λn−1 and Dn−1. Thus, two other matrices are needed, and this reconstruction step will be
expressed as:

Λn = PnΛn−1 + QnDn−1(4.18)

The matrices Pn and Qn are called synthesis filters. Details on the calculation of A,B and P, Q
can be found in [DSS95].

The extension to the case of a cubic B-spline surface [DSS95] is straightforward. To build a
two dimensional wavelet basis, one has to consider all the tensor products of the one dimensional
basis. Thus, the basis for the scaling functions is:

φφ(x, y) := φ(x)φ(y)(4.19)

MULTIRESOLUTION APPROACH 69

Similarly, the wavelet functions are given as follows:

φψ(x, y) := φ(x)ψ(y)
ψφ(x, y) := ψ(x)φ(y)
ψψ(x, y) := ψ(x)ψ(y)

(4.20)

For the decomposition step, the explicit calculation corresponding to eq. 4.19 using matrices is:

Λn−1 = An(AnΛn)t(4.21)

4.4.3 Modelling using a multiresolution B-spline primitive

The application of the wavelet transform to the proposed trivariate B-spline primitive is straight-
forward. The only requirement is that the control points have to be regularly placed along each
axis. This is insured by the inherent properties of the B-spline basis functions, and the calculated
analysis and synthesis filters. Indeed, each control point is located along a local maximum of a
blending B-spline function. The application of either a decomposition or a reconstruction step
produces another set of control points, also located along the maximum of their corresponding
blending function. Then, one can first calculate the position of each control point along the axis
using only the level of details j, and then apply the wavelet transform considering only the ξ
coordinates as the component of Λj .

The extension to the 3D case, i.e., a 4D B-spline function, is then achieved in a similar way
as above with the following basis for the scaling functions:

φφφ(x, y, z) := φ(x)φ(y)φ(z)(4.22)

and for the wavelets functions, the seven other tensor products are given as:

φφψ(x, y, z) := φ(x)φ(y)ψ(z)
φψφ(x, y, z) := φ(x)ψ(y)φ(z)
φψψ(x, y, z) := φ(x)ψ(y)ψ(z)
ψφφ(x, y, z) := ψ(x)φ(y)φ(z)
ψψφ(x, y, z) := ψ(x)ψ(y)φ(z)
ψφψ(x, y, z) := ψ(x)φ(y)ψ(z)
ψψψ(x, y, z) := ψ(x)ψ(y)ψ(z)

(4.23)

Using this multiresolution analysis while modelling allows one to switch from one set of control
points to another. The main benefit of the use of wavelets is the preservation of the details, as
shown in the two following examples.

Figure 4.4 shows different steps of modelling a ”monster“ using the wavelets transform. First,
the cubic trivariate B-spline function is defined by a grid of 5× 5× 5 control points (Fig. 4.4a),
corresponding to the set V 1. For better understanding, we choose to show only a cross-section
of the model. Then, a single refinement (synthesis step) is applied to generate the set V 2; as it
can be seen, the shape does not change (Fig. 4.4b). Some scalar values are then changed in the
set V 2 to generate Fig. 4.4c. The same two steps (synthesis and edition steps) are then done in
space V 3 (Fig. 4.4d). Now, let us consider that the ”ears” of the monster are too close to the

70 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

a b c

d e f

g

Figure 4.4: Different steps (from a to f) of the modelling process of a ”monster” using multires-
olution. The final single trivariate B-spline primitive is shown on the right.

arms. By applying a wavelets transform (analysis step) and editing the coefficients at level V 2,
one can change the positions of the ears (Fig. 4.4e). If the ears are moved far enough from the
arms in V 2, when going back to V 3, the arms are exactly recovered (Fig. 4.4f). The monster is
now complete, with the correct position for the ears and the arms, Fig. 4.4g shows the result in
3D.

Another example is shown in Fig. 4.5. Figure 4.5a shows the first step of modelling an object
(teapot-like shape), where the semi-transparent object is a zero-value iso-surface of the trivariate
B-spline function defined by a set of 7 × 7 × 7 control points. Fig. 4.5b shows the next step,
where the number of control points has been increased to 19×19×19. In this figure, finer parts
have been added. Now, let us suppose that one wants to make some global modifications to this
model, for instance, to create a cavity inside the object. Then, as it is shown in Fig. 4.5c, we
can decrease the number of control points, and change the scalar value of few control points. If
one wants to apply the same modification with the previous set of control points, he/she would
have to change several points, and the expected result, a sphere-shaped cavity, would be difficult
to obtain. Figure 4.5d shows the final result, with the previously created cavity modified at a
finer level.

4.5 Interactive Modelling

4.5.1 Visualisation

We have implemented an interactive modeller on the base of the proposed primitive. Interactive
rates are obtained as the B-spline functions are evaluated in constant time, due to the local
support of the basis functions. It implies that when one changes the scalar value of a given
point, the amount of updates is constant. Interactive rates are above 25 frames per second. As
it is noticed in [FCG00], this system is limited by the number of primitives. As matter of fact, to
combine several primitives together during the modelling increases the depth of the constructive
tree, and results in an increasing complexity of the resulting function. Nevertheless, interactive

4.5. INTERACTIVE MODELLING 71

(a) (b)

(c) (d)

Figure 4.5: Application of the wavelet transform. A teapot-like object is modelled using a single
cubic B-spline primitive.(a) Low level of details. The number of control points is 7 × 7 × 7.
Increasing number of control points between (a) and (b). Details are modelled in (b), i.e., using
19 × 19 × 19 control points. The number of control points decreases in (c), where a cavity is
created. This modification can be considered as global. In (d), the level of details is the same
as in (b), all details, (e.g. the handle), are recovered without loss of any information, and local
modifications of the cavity are made.

72 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

rates are maintained as long as one uses less than 15 primitives on a Pentium 450Mhz processor
(and less than 35 on an 800 MHz processor).

To visualise the object, we polygonise the iso-surface defined as F (x, y, z) = 0, where F is a
function evaluated using the constructive tree. Many different algorithms have been proposed
for this task. We choose the polygonalisation algorithm based on hyperbolic arcs proposed in
[PPP88]. As in the classical Marching Cube algorithm [LC87], an exhaustive enumeration of the
3D grid cells is applied, but instead of using a look-up table to generate the polygons belonging
to a given cell, this algorithm uses the trilinear interpolation inside the cell combined with the
bilinear interpolation on the cell faces, and resolves topological ambiguities using hyperbolic
arcs. The strength of the algorithm is that the polygonal model it generates is topologically
correct without unexpected holes. In our implementation, with the use of this algorithm, the
polygonal surface is updated in real-time, which leads to an interactive modelling tool.

The major weakness of trivariate B-spline functions is that modelling a complex shape with a
lot of details requires a huge number of control coefficients to deal with. Note that this problem
also exists when manipulating classical polygonal meshes as well as usual B-spline patches,
and it has been widely studied in that context. One ubiquitous solution - initially proposed
by Parent in 1977 [Par77] - is to hide the underlying control parameters (that may be mesh
vertices, B-spline control coefficients, or whatever) and show only high-level sculpting tools to
the user. More precisely, each tool is defined as a filter that is applied to a whole set of control
parameters. This paradigm has been applied to zero-set surfaces defined by trivariate scalar
functions in [RE99]. The resulting method is very powerful but may encounter problems in
some cases. For instance, to model a teapot as shown in Fig. 4.5, the easiest way is to create
first a body without cavities, and then to create the cavities by removing the matter. If one
considers only the surface of the object, it may be difficult to create this cavity, because one
cannot access the inside part of the object.

Contrarily, we choose to keep direct access to individual control coefficients for modelling an
object with the trivariate B-spline primitive. To model a shape using a cubic B-spline function,
one can use a 3D cursor to select a position in the set of control points (coloured in yellow in
Fig. 4.6). As one can see in Fig. 4.6, the polygonised iso-surface lies inside the cube, where its
front faces are culled. The back faces are coloured according the function value of the B-spline.
A ”heat“ colour scheme is employed, where the blue gradient (“cold”) corresponds to negative
function values, and the red gradient (“hot”) corresponds to positive values. Green colours
mean that the function values are around zero. The aim of this colour scheme is not to provide
the exact function value, but rather an approximation to help the user to navigate in the set of
control points.

4.5.2 Constructive tree with B-spline primitives

If one uses exclusively the trivariate cubic B-spline primitives to construct a complex object,
a comparison with a hierarchical refinement of B-spline patches is needed [FB88]. The latter
method consists in building a hierarchical tree of surfaces. Starting from a root surface, sub-
surfaces, called overlays, are locally defined. Each overlay can also be refined with new sub-
surfaces of finer resolution, to generate a tree of surfaces, where the resolution of each overlay
is depends on the depth of the tree. This approach was applied to trivariate B-spline functions

4.5. INTERACTIVE MODELLING 73

ξ > 0

ξ = 0

ξ < 0

Figure 4.6: Snapshot of the user interface. (Left) The iso-surface is polygonised in real-time
while modifying the scalar coefficients of the trivariate cubic B-spline function using the 3D
cursor. To help the navigation, each face of the bounding cube is coloured according to a colour
scale (Right) and to the function values, depending on the location of the cursor.

in [RE99]. The principle is to use an octree to sculpt a model at different levels of detail. This
feature is very useful. For example, to model a teapot, the body can be modelled first, and
then, in a finer resolution, the spout, the handle, and the lid. To obtain the whole model, a sum
between sub-volumes is applied during the tree traversing process. To preserve Ck continuity,
the first k and the last k rows and columns of scalar coefficients are set to zero.

This condition is enough to preserve the continuity of the resulting function during the
overlay addition process, but the sum operation may lead to unexpected results. Figure 4.7
shows a simple example in the case of a 1D object. The first step is to model two segments AB
and CD with a single B-spline curve (Fig. 4.7a). Then, we make a refinement in order to add
another segment between two initial segments. This is achieved by adding an overlay (a B-spline
curve as well) as shown in Fig. 4.7b. As it can be observed, at the extremities of the sub-curve,
the continuity is preserved, and it reaches smoothly the main curve. The result of the algebraic
sum between those two functions is a 1D object composed of three parts, AB, CD, and EF
(Fig. 4.7c). Now, suppose that we want to translate the added part EF . As it can be seen in
Fig. 4.7e, if one applies a simple sum, this part disappears, and one has to change the overlay
value and by the way to return to the modelling process to change the scalar coefficients of the
control points. On the other hand, one can consider this overlay as a separate function defining
the additional segment EF (Fig. 4.7b), and thus use it as a simple primitive for a FRep tree.
After combining two primitives by a union operation defined below (Fig. 4.7d), the result is
similar to the sum operation. But now, when the second primitive (segment EF) is translated,
the expected result is obtained (Fig. 4.7f).

74 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Figure 4.8 illustrates this situation in the 3D case, where a teapot body and its handle are
modelled using two B-spline primitives. In Fig. 4.8a, the algebraic sum operation is used. An
equivalent visual result can be obtained with a union operation. After this modelling step, one
wishes to translate the handle towards the body. The difference between the sum and the union
operations appears. As it can be seen in Fig. 4.8b, unexpected results are obtained for the
algebraic sum, whereas for the union operation (Fig. 4.8c), the expected result is obtained.

ξ ξ

Figure 4.7: Difference between the algebraic sum and the union operation between two functions,
in the case of a 1D object.

Figure 4.8: Difference between the algebraic sum and the union operation in 3D case. (a) The
entire model is made of two trivariate B-spline primitives. The sum and the union operations
give the same result. (b) The handle-like object is translated towards the body part: because of
the translation, unexpected results are obtained for the algebraic sum. (c) The sum is replaced
with the union operation. The expected result is obtained.

4.5. INTERACTIVE MODELLING 75

Figure 4.9: Different tools are proposed for modelling using trivariate B-spline functions. (Left
and Middle) : Default tools. Note that a tool can be used in two ways: to add (upper image)
or to remove (lower image) material. (Right): Example of a user defined tools.

4.5.3 Tools for modelling

Different tools are proposed to modify either a single control point of the B-spline or a set of
them. Figure 4.9 shows different available tools. This set can be extended easily as the user can
select a set of control points at any stage of the modelling process (similar to the copy and paste
operation). However, to support the real-time polygonalisation, the size of the tool is limited to
11 × 11 × 11 control points. When using a tool, one can either modify the scalar coefficients of
the current B-spline primitive, or add a new B-spline primitive to the current tree. Figure 4.10
illustrates this functionality. The initial object is a single B-spline primitive which looks at this
stage like a sphere, and the selected tool has a cross-like shape. The tool is defined as a set of
control points with positive and negative scalar values. On the left side of the initial shape, the
tool is directly applied to the control coefficients of the current B-spline primitive. The original
shape is deformed according to the scalar values at the control points of the tool. On the right
side, those scalar values are not applied directly, but a new cubic B-spline primitive is created,
corresponding to the tool, and is added with the union operation to the current constructive
tree.

To facilitate the modelling process, with the use of the same interface, some other opera-
tions are available, such as combining simple primitives with set-theoretic operations and affine
transformations.

76 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Figure 4.10: Example of the direct use of a tool and addition of another B-spline primitive to
the constructive tree. The cross-like shape tool is defined as a set of control points containing
both positive and negative scalar values. On the left, the tool is directly applied to the current
object and deforms its shape; on the right, a new primitive is added, and the result is a simple
union of the initial shape and the tool shape.

4.5.4 Geometry and attributes modelling

The same user interface can be used for modelling attributes of heterogeneous objects. Another
example is given in Fig. 4.11, using the opacity as an attribute. The object is a light-bulb where
the geometry is defined using only B-spline primitives. Twisting operations where applied to the
mouthpiece and to the filament, which are two different B-spline primitives. The space partition
for the attributes is simple, as the constructive geometric tree coincides with the attributes one.

In the case of the geometric model other than FRep, the only difference is that a geometric
model should be imported first, as Fig. 4.12 shows. In this example, a standard B-rep object (the
polygonal ”Stanford Bunny”) has been loaded, and different space partitions were modelled using
the B-spline modeller. In this example, several cubic B-spline primitives were used to create space
partitions for photometric attributes (colours and other shading parameters). While modelling,
simple colours are used as in Fig. 4.12(left) to show which partition a vertex belongs to. One can
then export the object to POVRay [Pov] or other formats for rendering. For each vertex defined
in the B-rep model, a tree traversing procedure is processed, and depending on the partition the
vertex belongs to, a texture index is defined.

Figure 4.13 illustrates the application of the proposed methods to a voxel model. The final
result is shown on the right side, and the left side shows the space partition used for texturing
the object. The geometric tree is rather simple and is composed of a union of an ellipsoid
and a voxel object (the well-known ”Siemens Head”). The main task was to create the space
partition. In this example, the space partition constructive tree is composed of several primitives
and operations. Namely, the mask-shape was defined using the proposed B-spline primitive, as
well as the ring around it, combined with a solid noise using an algebraic sum. Several twisting
operations were also applied to the torii inside the ring. We considered attributes as a tuple
of shading parameters defining the colour and the opacity of the object, but also the ambient,
diffuse, specular, and reflective coefficients.

After the modelling process is finished, the object with FRep geometry can be saved as a

4.6. CONCLUSION 77

Figure 4.11: Complex heterogeneous object modelled using only trivariate B-spline primitives.
(Left) Complete model of a light-bulb; (Right) Zoom on the filament of the light-bulb.

HyperFun script to be used later by other components of the HyperFun software environment
[Pro]. HyperFun is a high level language supporting exchange of FRep and hypervolume models.
The proposed trivariate B-spline primitive has been included in the FRep library of HyperFun.
A HyperFun script can also be used to save both space partitions for attributes and geometric
model.

4.6 Conclusion

A hypervolume is a model of a heterogeneous object. It is considered as a multidimensional
point set with multiple attributes. Attributes represent different properties of real or abstract
objects and processes. In this chapter, the function representation is used as the basic model
for representing a point set geometry and its attributes. We presented a modelling approach
for hypervolumes that mixes two usual modelling paradigms, namely interactive sculpting and
constructive modelling. The sculpting environment allows one to define either geometry of an
object, or space partitions for attributes in a similar manner.

To model heterogeneous objects, a new primitive for the FRep tree is proposed on the base
of the uniform trivariate B-spline function. To facilitate the modelling process, a multiresolution
scheme based on the wavelets transform is applied. To visualise the object, its surface is poly-
gonised and visualized at the interactive rate. The space partition obtained in the modelling
process can be applied to define attributes for objects of arbitrary geometry such as BRep or
voxel models.

78 CHAPTER 4. CONSTRUCTIVE HYPERVOLUME SCULPTING

Figure 4.12: Interactive modelling, application to a BRep object. (Left) The GUI used to
texture the object. Several B-spline primitives are used to define the space partition. (Right)
The corresponding textured BRep object, using a surface ray-tracing engine.

Figure 4.13: Application to a voxel model. (Left) The space partition used to texture the object.
(Right) The corresponding voxel model, rendered using a volume rendering engine.

Chapter 5

Deformations in the constructive
hypervolume model

5.1 Introduction

In the previous Chapter, we considered the constructive approach to model different objects and
proposed a new primitive that mimics the sculpting metaphor, where one can add or remove
material to an object. We propose in this Chapter to model objects using another approach
that is, starting from an existing object, to deform it until the desired shape is obtained.

One of the first deformation scheme, called warping, was proposed in [Par77]. Given a
polygonal surface, a vertex is selected, and moved towards the outside of the object. Neigh-
bour vertices of the mesh are then displaced according to a distribution function depending on
their distance to the displaced vertex. However, this method can not be used to define global
deformations.

Another technique, called FFD [SP86], which stands for Free-Form Deformation, embeds
the object to be deformed into a rectangular volume defined using a control point lattice. Then,
while moving the control points, the embedding volume and the embedded object are deformed.
Several extensions have followed, namely EFFD for Extended Free-From Deformation [Coq90],
where the embedding volume is replaced by some more complex one, or the RFFD (Rational
Free-Form Deformation), where another degree of freedom is provided while adding a weight
factor to the control points of the lattice. One of the last extensions of the FFD model is
presented in [MJ96], where a subdivision volume is used to embed the object.

Several other deformation techniques exist. For instance, instead of embedding the object
into a volume, an axis can be defined in the object. Then, as one deforms the axis, the object
deformation follows. The axis can be a broken line [Par77, LCJ94], a Bézier curve [CR94] or
even a Bézier surface [Mik96]. Other approaches to deformation include the ”simple constrained
deformation“ using ellipsoids Scodef [BB91, BR94, Bec94], and its extension with generalised
metaballs [JLP98], the ”implicit free-form deformation“ IFFD [Cre98], and the ”Wires“ model
[SF98].

Control of 2D image deformation using feature shapes (points, segments) was described
in [BN92]. Similar approaches were proposed independently for controlling 3D deformations

79

80 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

[SPKS95, RM95] and 3D metamorphosis of homogeneous volumes [LGL95].
Nevertheless, most of the mentioned above techniques can not be directly used in the con-

structive approach. Indeed, most of them are applicable only to a discrete structure (e.g.,
polygonal mesh, control mesh of a spline, etc.), as they are defined using a forward mapping.
Even if some deformation tools deform the whole space using a function from �3 → �3, such as
in [Cre98, Bec94], they are also applied to a discrete structure.

In the previous Chapter, we described how to model an object while using a B-spline prim-
itive. The constructive approach and the volume sculpting approach were combined using the
unifying FRep model. In this Chapter, we propose to define a new node for the FRep tree for
deformations. One important goal is to provide the possibility for the user to model an object
without the traditional separation between the constructive approach, the sculpting process,
and the deformation steps. Usually, the modelling scheme is as follows: first, one models an
object in some way, and then uses deformation tools to obtain the desired shape. As most of
the existing tools for deformations are using forward mapping, once the object is deformed, one
can hardly return to the modelling step, and combine the existing object with some other.

In order to be able to switch from the modelling step to the deformation step whenever it
is needed, one solution is to define the deformation using inverse mapping, and thus to provide
a new node for the FRep tree. To calculate the inverse mapping from the forward mapping of
the previous work is a very difficult operation, and is even sometimes impossible. A preferable
solution is to define a new node from the scratch. Of course, several similarities can be found
with the previous works, and we used general ideas to define this new node. But one has to keep
in mind that the definition we propose is based on inverse mapping, and thus, even if the visual
result of the deformation is close to existing deformations, the underlying idea is different.

Deformation nodes already exist in the FRep tree. One can easily twist, taper or stretch
an object along an axis. These deformations are based on the work presented in [Bar84], and
known as axial-based deformations 1, but the set of available deformations is quite limited. In
[SPKS95], deformations were defined using point-controlled space mapping, but it had a too
global character due to the interpolation with radial-basis functions. A general framework for
deformations in the FRep model has been proposed in [SP98], using the extended space mapping
introduced in the previous Chapter.

Here, we propose in the following to define new deformation tools to deform an object,
either locally or globally. In the first section, we present the underlying idea of the proposed
deformation scheme, and then different extensions are defined. To illustrate our approach, we
provide several examples. We choose to consider photometric properties (i.e., colour textures) for
the attributes of the constructive hypervolume. As it will be shown, one of the main properties
of the proposed deformation is that it can occur in several constructive trees, the geometric one
and the attribute one.

5.2 Simple deformations using space mapping

In this section, we introduce the underlying idea of the deformation using space mapping. Let
us first consider a simple translation. Let f be a defining function of some geometric object,

1This name has been already used in [Par77, LCJ94] and other, but the tools are different.

5.2. SIMPLE DEFORMATIONS USING SPACE MAPPING 81

and T a translation vector defined as (dx, dy). Then, given a defining function f of a 2D object
(Fig. 5.1a), the inverse mapping for this transformation is defined as:

T : f(x, y) → f(x − dx, y − dy)(5.1)

This operation is globally applied to the entire object as dx, dy are constants (Fig. 5.1b). Now,
let us define the deformation by non-linear space mapping. Consider the same 2D object and
the displacement of a point A towards a point A′. To define a local deformation centred in the
point A, one has to respect the two following requirements:

• (dx, dy) have maximum values at A′.

• (dx, dy) drop uniformly to zero when (x, y) is far from A′.

To satisfy these requirements, dx and dy have to become two bell-shaped functions. We
propose to use the following functions for dx(x, y) and dy(x, y):

ifγ ≤ 1
dx(x, y) = e−γ2 × (xA′ − xA)
dy(x, y) = e−γ2 × (yA′ − yA)

else
dx = 0
dy = 0

(5.2)

where:

γ2 =
(x − xA′)2 + (y − yA′)2

r2
(5.3)

As it can be observed, the displacement is maximum when the considered point is placed at
A′ (Fig. 5.1(c)). We explicitly set the displacement to zero when γ is greater than one. This
insures a localised deformation that depends on the size of “bell” of the curve. Note that the
point A is arbitrarily selected, and thus, a space mapping can be defined for any given point in
the space. The function γ(x) is similar to the Euclidean distance function.

The parameter r is a real value given by the user, and it defines the area of influence of
the space mapping, (and thus the shape of the ”bell”). Figure 5.2 shows the deformations
corresponding to different values of r in the 3D case. As it can be seen, different levels of
deformation, local or global, can be obtained. The base shape is an ellipsoid. Each row in the
figure represents a different value of the r parameter. The first column represents the effect of
the displacement of a single control point inside the object, and the second column represents
the displacement of the control point outside the object.

In Fig. 5.3(left), the geometry is defined as a single semi-transparent yellow sphere. The
additional space partition for the attributes is defined as a union of four smaller spheres. The
attributes of these four spheres of the space partition are constructed as successive fully opaque
red and green layers. Then, two space mappings are defined in order to deform the object
(shown by red arrows). Located along the vertical axis and inside the geometrical sphere, two
control points of the non-linear space mapping are moved vertically towards the outside of the
object (red arrows). In the case of the upper point, the defined space mapping is applied both

82 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

to the geometry and to the space partition for the attributes. As one can see, the two upper
spheres are also deformed, and the red and green colour strips follow the deformation. We
choose deliberately to apply the deformation only to the two upper spheres. No space mapping
was applied to the two lower spheres, and they remain unchanged, whereas the bottom of the
geometrical sphere has been deformed.

5.3 Deformations using field functions

In the previous section, we provided a definition of deformations using space mappings. This
definition can be extended in various directions. Recalling eq. 5.2, one can reformulate the space
mapping as follows: {

X ′ = X − ∆(X)
∆(X) = f ◦ γ(X) × (A′ − A)

(5.4)

where X is an input point of the Euclidean space, X ′ is its image after applying the inverse
mapping, A and A′ are the source and the target points of the deformation.

This definition looks exactly the same as the basic formulation of blobby objects proposed
in [Bli82], where f is a potential function, and γ a distance function. Two different directions
can be then followed to extend the definition of the space mapping. Either one can change the
potential function f or the distance function γ. The next two subsections consider the potential
function. The discussion supposes that the distance function γ has been already chosen. The
definition given in eq. 5.3 was used to produce the majority of the examples.

5.3.1 Potential function

Several authors studied the definition and the behaviour of potential functions [Bli82, NHK+85,
Gas93]. These functions can be divided in two main families. The first one has an infinite
support [Bli82, KAW91] and thus takes non-zero values everywhere in the space. In the case of
deformations, this family of potential function requires some arbitrary conditions to avoid small
unwanted deformations (see eq. 5.2 for instance, where we set explicitly the deformation to zero
for a given value). The other family of potential function has a finite support, and fits well to
the locality requirement of deformation.

In the following, we first recall some results of previous works on potential functions, based on
the survey and conclusions proposed in [BS95]. Historically, one of the first potential functions
with a finite support was proposed in [NHK+85], and known as metaballs based on quadratic
polynomials.

f(γ) =

4
3 − 4γ2 if 0 ≤ d < 1

3
2(1 − γ)2 if 1

3 ≤ d < 1
0 otherwise

(5.5)

Other formulations for the locally supported functions were then proposed in [WMW86] and
[MI87]. Plots of eq. 5.5 and the two mentioned formulations are shown in Fig.5.4a. The set of
available shapes are quite limited as the functions only depend on the chosen distance.

Another formulation was proposed first in [Gas93], where the parameter p is introduced to
control the behaviour of the potential function (such a parameter is often called hardness factor

5.3. DEFORMATIONS USING FIELD FUNCTIONS 83

Figure 5.1: Simple example of space mapping. (a) The iso-contour of a 2D object is defined
in the xy plane. (b) Deformation of the object using a linear space mapping, i.e., a constant
translation vector T . (c) Deformation of the object using a non linear space mapping.

Figure 5.2: Influence of the pa-
rameter r in the definition of
the space mapping. An ellipsoid
is deformed using space mapping
with one control point displaced
towards the inside of the object
(left column) and outside (right
column) with three different val-
ues of the parameter r.

Figure 5.3: Deformation of a constructive hypervolume.
The geometry of the object is defined as a semitranspar-
ent yellow sphere. Inside, a space partition is defined as
a union of four smaller spheres. Non-linear space map-
pings are defined while moving two points (red dots and
arrows). In the upper part, the space partition follows the
deformation; in the bottom it is independent.

84 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

in the literature):

f(γ) =

1
4(2 + p − 2pγ) if 0 ≤ d < 1

2
(−2 + p + 8γ − 2pγ)(1 − γ)2 if 1

2 ≤ d < 1
0 otherwise

(5.6)

This potential function offers a good hardness control, but depending on the value of the hardness
factor, it can become negative (i.e., when p is too large). Figure 5.4b shows the plot of this
function with different values for p.

Another potential function was proposed in [KAW91] with an unbounded hardness factor:

f(γ) =

{
1
2 + 1

2
arctan(p−2pγ)

arctanp if 0 ≤ d < 1
2

0 otherwise
(5.7)

A very similar result in the function behaviour can be obtained while using the potential function
presented in [BS95], as one can see in Figs. 5.4b and c, where both potential functions are plotted.
The main advantage of the latter one is that it offers a lower computational cost as it is based
on a piecewise rational polynomial, and not on a arctan function. Furthermore, this function
uses a squared distance, and avoids the use of the additional square root:

f(γ) =

1 − (3γ2)2

p+(4.5−4p)γ2 if 0.25 ≤ d < 1
(1−γ2)2

0.75−p+(1.5+4p)γ2 if 0 ≤ d < 0.25
0 otherwise

(5.8)

The use of the hardness factor is intuitive, and the application of this function as a deformation
tool is straightforward as Fig. 5.5 shows, where a block is deformed using the above potential
function. For a similar displacement along the vertical axis, different hardness factors have been
used. The distance function used for this example is similar to the one defined in eq. 5.3. More
details on the distance functions can be found in the next section.

5.3.2 B-spline based deformations

The set of deformations generated by the potential function proposed in [BS95] may not offer a
sufficient variety. Thus, we propose here to use another distance function based on a parametric
curve [NN94, KAW91, BS95]. We choose the cubic B-spline functions for illustrations. Any other
interpolation function can also be used. As it was previously mentioned, the main requirement
to a potential function is to drop to zero given a certain radius of influence.

Let us consider a B-spline function of one variable f(t) , defined by a set of n control points
{Pi} as follows:

f(t) =
n−1∑
i=0

Ni(t)Pi(5.9)

where Ni is an ith B-spline basis function, and t belongs to the parametric space [0, 1]. Our
interest is turned towards the function value of the spline, and thus we insure that fx(t) = t.
Furthermore, we also assume that outside this domain, the B-Spline function remains equal to

5.3. DEFORMATIONS USING FIELD FUNCTIONS 85

Figure 5.4: Plots of different potential functions. (a) First introduced functions, without hard-
ness factor, corresponding to eqs. 5.5 and later formulations. (b,c,d) Potential functions with
different hardness factors, corresponding respectively to eqs. 5.6, 5.7 and 5.8.

Figure 5.5: Deformation of a block by space mapping using the potential function 5.8. Five
different deformations using the same displacement in the vertical direction with five different
hardness factors.

86 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

zero (see previous chapter for more detailed explanations on B-spline). In the following, the
B-spline function will be used as a potential function, and the distance function will define the
parameter t, i.e., t = γ2(X).

Let us consider two points A and A′, as respectively the source and the target point, and a
distance function (eq. 5.3 for instance). Then, for every given point X, one can evaluate the
distance between X and A′, γ(X). When X is placed at A′, γ(x) is equal to zero, the B-spline
function is equal to f(0), i.e., equal to the scalar value of the control point P0. When X is
far from A′ and the distance γ(x) increases, as it was stated in the definition of the B-spline
function, this function will drop to zero when the distance function is greater than 1.

To define deformations using the B-spline potential function is simple. An additional step
is required as one needs to model the shape of the B-spline function, i.e., to change the scalar
coefficient of the control points . In the following, this shape will be called profile. Once this
profile is defined, the application of the space mapping is straightforward. Let us consider the
example given in Fig. 5.6. The aim is to deform a block object using the proposed method
based on B-spline. The first step where the B-spline function is defined is shown in Fig. 5.6a.
The control points are shown in grey, and the B-spline curve in blue. The maximal displacement
corresponds to the first control P0. To insure that the B-spline function will be equal to zero
when t is equal to 1, two control points have been added, shown in green (in a more general
context, one can add k control points in order to obtain a Ck continuity). Figures 5.6b and c show
the result of the use of this B-spline function to deform the initial object. Greyscales represent
the area of influence centred at the target point. As one can see, the deformation follows the
B-spline profile and is symmetric where the target point is the centre of the symmetry.

Previously, we formulated the requirements that the displacement has to be maximal for the
target point and to drop uniformly to zero as the given point is far from the target point. This
statement is still exact, but may be too restrictive in the case of the deformation based on the
B-spline function. Consider, for instance, Fig. 5.7a, where a profile has been designed. In this
example, the greatest scalar value of the control points in not assigned to P0, but to some other
points. Furthermore, negative scalar values have been assigned to some of them. The result,
shown in Figs. 5.6b and c, is still intuitive and follows the profile of the B-spline function. So
we can reformulate the requirements of the deformation in this case as:

• the deformation should be centred along the displacement vector defined by AA′, where
A is the source point and A′ the target point;

• the displacement should reach zero at some given distance with no restriction of the mono-
tone decreasing.

5.3.3 Distance functions

Once the potential function is chosen, (eq. 5.8 is a good candidate), one can use different
distance functions. Indeed, as the potential function is a function of one variable, it depends
only on the distance value, and even if different values for the hardness factor produce different
deformations, the set of available deformations is quite limited. Recalling eq. 5.2, the definition

5.3. DEFORMATIONS USING FIELD FUNCTIONS 87

ξ

Figure 5.6: Block deformed using a B-spline based potential function. (a) Profile of the B-spline
function. (b),(c) The same source point has been used, with two different target points along
the y-axis.

ξ

Figure 5.7: Block deformed using a B-spline based potential function. (a) Profile of the B-spline
function. (b),(c) Different views of the deformed object.

88 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

of the distance function γ was in the 3D case:

γ =
(x − xA′)2 + (y − yA′)2 + (z − zA′)2

r2
(5.10)

where A′ is the target point, and r is the radius of influence. This distance function is the
traditional Euclidean distance function, also known as the spherical distance. Figure 5.8 shows
in greyscale the area of influence around the target point. Black colour corresponds to γ = 0,
and white colour to γ ≥ 1. Due to the definition of the distance, it is clear that the deformation
is symmetric along each axis. Furthermore, the displacement of the source and the target point
is limited, depending on the radius of influence r. In Fig. 5.8a, the distance between the source
and the target point is lower than r; the deformed part remains connected to the object. When
the point is moved too far from the source, a disconnected part appears. This case is illustrated
in Fig. 5.8b.

A simple solution to insure that no disconnected part will appear is to normalise the definition
of γ depending on each axis, and thus change its definition from a spherical distance function
to an ellipsoidal distance function:

γ =
1

(rx)2
(x − xA′)2

1 + (xA′ − xA)2
+

1
(ry)2

(y − yA′)2

1 + (yA′ − yA)2
+

1
(rz)2

(z − zA′)2

1 + (zA′ − zA)2
(5.11)

where rx, ry and rz are three parameters which define the area of influence along each axis, and
can be called radii of influence. Figure 5.8c shows the result while applying this new definition
of gamma. The same displacement of the target point has been used for both Figs. 5.8b and c,
without changing the radii of influence.

For clarity reason, let us introduce the following notations. Given a point X, a source point
A, a target point A′, and three radii of influence, the corresponding normalization X̃ of X is
defined for each coordinate Xi of X as follows:

X̃i =

√
(Xi − A′

i)2

r2
i (1 + (A′

i − Ai)2)
(5.12)

One natural solution extension is to use the generalisation of the Euclidean distance function,
known as the Dn distance:

γ(X̃) = (|x̃|n + |ỹ|n + |z̃|n)
1
n(5.13)

This extension offers only one additional degree of freedom. Furthermore, if one uses the
potential function defined in eq. 5.8, the behaviour of the deformation depending on either the
hardness factor or the power n of the distance function is redundant. A more intriguing solution
is to use superquadric distance functions.

If one considers eqs. 5.10 and 5.11, the analogy with the defining function of respectively
a sphere and an ellipsoid is straightforward. Then, it naturally comes that one can use the
definition of a superellipsoid for γ. The defining function of a superellipsoid is:

F (x, y, z) = 1 −

(x − x0)

2
n2

a
+

(y − y0)
2

n2

b

n2
n1

− (z − z0)
2

n1

c
(5.14)

5.4. SHAPE DRIVEN DEFORMATION 89

where (x0, y0, z0) is the centre of the superellipsoid, and (a, b, c) its half axis. The parameters
(n1, n2) control the shape. To simplify, one can say that n1 defines the ”sharpness“ in z-direction,
and n2 in xy-direction. When (n1, n2) are close to 0, a “block” shape is obtained, and when
(n1, n2) >> 0 the result is more similar to a “star” shape.

The use of the definition of the superellipsoid (or supertoroid to provide a C2 continuity) is
straightforward. The target point corresponds to the centre, and the length of the displacements
along each axis corresponds to the radii. Then, using the previously introduced notation, the
definition of γ becomes:

γ(X) =
(

x̃
2

n2 + ỹ
2

n2

)n2
n1 − z̃

2
n1(5.15)

This definition allows a new set of deformations. Figure 5.9 plots different γ(x̃, 0, 0), where
γ is a superellipsoid function, with different values of (n1, n2).

The direct application is shown in Fig. 5.10. A forest of superellipsoids deforming an
ellipsoid is shown, with different values for (n1, n2). Note that the texture pattern follows the
deformations, as the same deformations also occur in the attribute trees.

5.4 Shape driven deformation

In the previous section, we defined an inverse mapping for point to point based deformations,
where a source point was moved towards a target point. This case is the simplest, and we propose
to use it as a framework for the following extensions. First, we will define a general deformation
technique, and then go through examples and case studies exploring this new deformation.

5.4.1 Framework for deformations

The extension of a point to point based deformation to an area based deformation can be
decomposed into two basics steps. Given a source point A and a target point A′, one can
deduce:

1. an area of influence height AA′ (such as a cone, a block, an ellipsoid . . .).

2. an area where every given points in the space will be projected onto. This area will be
called the projection area (such as a line segment, a plane, and other . . .).

Figure 5.11 is illustrates the above statements in 2D. The initial state is shown in Fig. 5.11a,
where a part of a surface is shown, as well as the source and target points. Figure 5.11b shows the
area of influence and the projection area, a plane in this case, and Fig. 5.11c shows the expected
result. As one can see, the result is very similar to a point to point based deformation, but as it
will be shown in the following, the use of such extension allows one to obtain deformations that
can be hardly obtained with only point to point deformations.

Without loss of generality, the area of influence is defined using a FRep defining function,
which will be called Z(X) in the following. To insure that the corresponding function value is
in the interval [0, 1], we use the following mapping:

Z̃(X) =
1
2

(
1 +

Z(X)√
(ϑ + Z2(X)

)
(5.16)

90 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

Figure 5.8: Distance function. A point is moved towards the outside of the object, along an
axis. The grey area shows the influence around the target point. Black colour corresponds to a
distance equal to 0, and white to distances greater or equal to 1. (a) Spherical distance. The
displacement is small; the displaced material is still linked to the object. (b) Spherical distance.
The target point is moved too far from the object. (c) Ellipsoidal distance. Area of influence
now depends on the distance of the given point to the source point and to the target point.

Figure 5.9: Plots of the displacement function based on the superellipsoid defining function
F (x, 0, 0), with different values for (n1, n2), respectively (1.1), (5, 1) and (50, 1).

Figure 5.10: Ellipsoid deformed using the superellipsoidal distance function. Nine target points
have been used.

5.4. SHAPE DRIVEN DEFORMATION 91

Figure 5.11: Rectangle surface based deformation. Extension steps. Given a source point A and
a target point A′, one can deduce the area of influence (box) and the plane orthogonal to AA′

and containing A′.

The Z function and the mapping function are very important, and have an important influence
on the shape of the deformation. Before going further in the study of those functions, we propose
first to define the general framework for the deformation and then present two examples. The
subsection 5.4.3 is dedicated to them.

We propose to follow the scheme described below to define a general deformation. The
following data a regiven:

1. a source point A,

2. a target point A′,

3. a point X of the Euclidean space

4. an area of projection, and H the projection of X onto this area,

5. an area of influence Z,

6. a potential function f (eq. 5.8),

7. a distance function γ (eq. 5.11).

The inverse mapping for the point X is defined as:{
X ′ = X − ∆(X)
∆(X) = f ◦ γ(X)Z̃(X)(H − A)

(5.17)

If one considers only the point to point based deformations, the analogy is straightforward.
Source and target points are clearly identified, the projection area is reduced to A′. The area of
influence Z can be omitted in this case.

To illustrate the proposed steps to define an inverse mapping, we propose first to consider
a simple example, and then some more complex case studies, where deformations are combined
in a FRep tree.

92 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

5.4.2 Examples of deformations

In this subsection, we will show how to define an inverse space mapping when the source is a
point, and the target area is isomorphe to a rectangle, as illustrated in Fig. 5.11. The next
example will consider the case when the target area is a segment.

Given a source point A and a target point A′, one can define a cone of height AA′, and
a plane orthogonal to AA′ and containing A′. The radius of the cone specifies the size of the
deformation. By analogy with the general framework of the previous subsection, the defining
function of the cone corresponds to the function Z. For each given point X, one can calculate its
projection H onto the plane. In this example, we choose a projection similar to the perspective
one, where the vanishing point is A, and H is defined as the intersection of the line AX and
the plane. The distance function is then calculated depending on H (and not A′ as previously).
The use of the area of influence takes now its full meaning. Indeed, if Z is not included in the
definition of the inverse mapping, an infinite deformation occurs. Figure 5.12a shows the result
of such deformation. The object to be deformed is an ellipsoid. The source point A coincides
with its centre, and the displacement of the target point A′ is along the vertical axis, z. The
area for the projection is defined as the xy plane, translated along the z axis of AA′. The result
is an infinite deformation. It naturally comes that to cut the unwanted part of the deformation,
one has to define the area of influence Z. Different results can be obtained depending on the
choice of Z. Figure 5.12b illustrates the previous explanations, as we choose a cone with axis
AA′ for the area of influence, and in Fig. 5.12c, we choose to replace the cone by a block.

Instead of considering a plane as the projection area, one can also consider a line segment.
In the example shown in Fig. 5.13, the initial configuration for the source and target points is
identical to the previous example of Fig. 5.12. The difference comes from the projection area and
from the influence area. The projection area is defined as a line segment, and we choose to use a
parallel projection to map each point X on it. The area of influence is defined as a convolution
triangle. In Fig. 5.13a, one can see the initial state, where the object to be deformed is an
ellipsoid, the source and the target points are positioned, as well as the line for the projection,
and the triangle for the area of influence. Figure 5.13b shows the projection of three different
points of the space X1, X2, and X3. The three new ellipsoids in the figure correspond to the
distance function (as usual, the internal part of the ellipsoid represents distances to centre below
or equal to 1). The point X1 is mapped onto the projection line, parallel to AA′. Its image is
H1, but as X1 is located outside the area of influence, the function Z̃(X1) is equal to zero and
X1 will be mapped onto itself. The second point X2 is mapped onto the line, and its image H2

corresponds to the centre of the ellipsoidal distance function γ. As γ(X2) is lower than 1, and
as X2 lies inside the area of influence, the point X2 is mapped to some other location (close
to A to be more precise). The third point X3 emphasises the importance of the choice of the
projection. In this case, the projection is parallel. The point X3 lies inside the area of influence.
Its image generates an ellipsoidal distance field, but as one can see, the value γ(X3) is greater
than one. Thus, the corresponding potential value f(γ(x3)) is equal to zero, and the point X3

will be finally mapped onto itself. Figure 5.13c shows the resulting deformed object.

5.4. SHAPE DRIVEN DEFORMATION 93

Figure 5.12: Shape driven deformation of an ellipsoid. Effect of applying the area of influence.
The area of projection is a plane. (a) No area of influence is defined, resulting in an infinite
deformation. (b),(c) The area of influence is defined respectively using a cone and a block
function.

Figure 5.13: Shape driven deformation of an ellipsoid. Influence of the projection. The area of
projection is a straight line. (a) Initial configuration. (b) Parallel projection of some points. (c)
Resulting deformation.

94 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

5.4.3 Using FRep tree for deformations

In this subsection, our interest is turned towards the function Z defining the area of influence,
and its corresponding mapping, recalled here:

Z̃(X) =
1
2

(
1 +

Z(X)√
(ϑ + Z2(X)

)
(5.18)

The variable ϑ is an important feature in the behaviour of the deformation. In some sense,
it can be compared to the hardness factor of the potential functions (eq. 5.8). Figure 5.14 shows
a deformation of an ellipsoid with different values of ϑ. The Z function is defined as a simple
block, where the vertical axis is the displacement vector. As one can see, as ϑ is small, as the
resulting deformation is close to the area of influence with less blend, and as it gets bigger, as
the deformation is smoother and blends more with the initial object.

Until now, the function Z defined a simple block, or a cone, and in the proposed examples,
the area of influence was always aligned along an axis. Extension to arbitrary orientations is
straightforward. Considering the displacement vector AA′, one can apply a set of two inverse
rotations and a translation to obtain the desired orientation and location. Furthermore, as the
area of influence is defined as a FRep object, all the set of available operations and primitives can
be combined to define it. These possibilities extend considerably the set of possible deformations.
In the following, several examples are given to illustrate some of the offered possibilities.

Figure 5.15 shows a deformed ellipsoid, but in this case, the FRep constructive tree for Z
is defined as an intersection of the block and a torus. Therefore, the deformation that can
be achieved looks like a torus. To emphasise the result of the parameter ϑ, three different
deformations are shown, with different values for ϑ. One important feature is that one can
change the topology of the initial object using the proposed deformation method. None of the
existing method based on forward mapping can handle this problem.

In the next example, Fig. 5.16, the area of influence is defined as a block composed with
a tapering operation. From left to right, one can see the initial deformation, the deformation
tapered along one axis, and then along both axes.

Despite of the topology change, the result is also interesting if one considers the attributes
of the object, i.e., the texture in this case. In the torus example and for a given ϑ, the result is
similar to a union of the initial object and a torus. However, one can notice that the texture is
stretched along the deformation.

5.5 Using space mapping node in a FRep tree

One of the major advantages of defining a deformation as an inverse mapping is that it can
be used as a new node in a FRep tree. For any given object, one can deform it using several
deformations, and then use the resulting object as a new primitive for another tree. When
modelling an object, the deformation node can be used at any level of the modelling stage.
Several deformation nodes can be combined together. Figure 5.17 is given as a forestalling
example. An ellipsoid is deformed using 4 deformations and is then combined with a cylinder
and another ellipsoid using the set-theoretic intersection. A straightforward application is to
deform an object along a curve while applying successive deformations.

5.5. USING SPACE MAPPING NODE IN A FREP TREE 95

Figure 5.14: Influence of the ϑ parameter in the Z̃ function. From left to right, ϑ < 1, ϑ = 1
and ϑ > 1.

Figure 5.15: Changing the area of influence and ϑ. The Z function is defined as a FRep tree
composed of an intersection of a block and a torus. The parameter varies in a similar way as in
eq. 5.14.

Figure 5.16: Changing the area of influence. The Z function is defined as a FRep tree composed
of a tapering operation and a block primitive. From left to right, the first figure shows the initial
deformation, then a tapering operation along one axis, and then along two axes.

96 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

Figure 5.17: Space mapping as a new node in a FRep tree. Several deformations are applied
to an ellipsoid and are then combined within a complex object using a FRep tree (intersection
operation with a cylinder and another ellipsoid).

5.5.1 Deformations along a curve

There are different possible solutions to define a deformation along an arbitrary curve. In
the following, we will consider that the curve is sampled, resulting into a set of connected
segments, i.e., a broken line. One solution is to consider the set of segments as primitives for
a convolution surface which can be then directly used in the definition of the area of influence
Z. Each convolution segment is combined with another using the set-theoretic union operation.
A bounding box can be deduced from this set of segments, as well as a displacement vector.
Figure 5.18 is given as an example, where an ellipsoid is deformed along a broken line. Figure
5.18a shows the initial configuration, and the result when one uses convolution surface to deform
the object is shown in Fig. 5.18b. This solution suffers from two main drawbacks. The first
one is the behaviour of the attributes. Indeed, the texture does not follow the deformation, but
is rather stretched along the displacement vector. In some cases, one may prefer to obtain a
texture deformation that follows the broken line. Another limitation of the use of convolution
surface is its computational cost. Indeed, if the input curve for the deformation is smoother
than the one proposed in the example, i.e., based on a B-spline, to sample it sufficiently and
to calculate all the corresponding convolution surfaces is too computationally expensive. One
preferable solution is to apply a stack of deformations along the samples of the curve, i.e., a set
of successive deformation nodes in the tree. They are defined using only a potential function
and a distance function; the area influence is not used in this case. In the example of Fig. 5.18c,
the result is deformation that follows smoothly the input curve, and as one can see, the texture
pattern follows the path of the deformation.

Another reason to sample a curve rather than using a convolution surface is that it can
handle the case where the curve intersects several times the object to be deformed. Consider
for instance that one wants to deform an ellipsoid using a spiral curve as shown in Fig. 5.19.
As one can see, the spiral intersects several time the ellipsoid. Figure 5.19a shows a vertical cut
of the ellipsoid, where the spiral is shown in red, and Fig. 5.19b shows the whole object. The

5.5. USING SPACE MAPPING NODE IN A FREP TREE 97

Figure 5.18: Deformation along a broken line. (a) The object to be deformed and the input
broken line. (b) Deformation using the area of influence, where the broken line is used to define a
convolution line. Texture is stretched along the displacement vector AA. (c) Set of deformations.
Each segment of the broken line is considered as a single deformation. The texture is stretched
along each deformation, and thus follows the broken line.

Figure 5.19: Self intersecting deformations. An ellipsoid is deformed using a spiral curve. Several
intersections between the original shape and the deformation occur. Right picture shows the
inside of the deformed object.

result is natural as the object follows the deformation. Here and there of the spiral, holes are
created as the neighbouring points are also displaced. The resulting shape is similar to a shell.

5.5.2 Complex examples

Figure 5.20 provides an example where a single sphere is transformed using several different
space mappings. Some parts are deformed using single control points, such as the nose, the
eyes, the bumps on the top of the head, and the mouth. The straight horns at the bottom of
the head are modelled using two deformations. The horns at the top of the head are modelled
by sampling two B-spline curves. As one can see, deformations in arbitrary directions can be
obtained.

Figure 5.21 shows the combination of a deformed object with another primitive. The central
object is a sphere deformed by several space mappings. It is also deformed by a twisting

98 CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

Figure 5.20: Example of the deformation using space mapping. Eyes, nose, mouth, bumps and
bottom horns result from point to point based deformations, and top horns are obtained as sets
of deformations along a sampled curve.

operation. As one can see, the shape driven deformations also follow the twist. A torus is added
to this object using the union operation. We choose deliberately to apply only one deformation
to the torus, identical to one of the deformations applied to the ellipsoid. The corresponding
FRep tree is shown in Fig. 5.21(left).

Figure 5.22 is given to show that the deformation scheme we propose can be also used to
carve object, and even if most of the examples show major deformation of an object, subtle
details can be also defined. On the left part, an object has been carved (according to two
parametric functions of Lissajous). On the right, an additional deformation has been applied.
As one can see, the carved details also follow the deformation.

The last example is a vase, shown in Fig. 5.23. To model this object, we combined the
constructive approach with the sculpting and deforming steps. First, the body was created
using a B-spline object, and then its top was deformed. The next step was to combine it with
an ellipsoid. Once both parts were combined, other deformations are achieved along two curves,
such as they get close to the body. The final step was to create the handles of the vase. If the
deformation step was the last one as it is usually the case, it may be difficult to find the correct
location for the handles, but as we built the tree node by node, regardless of the nature of the
operation, this task was easy.

5.5. USING SPACE MAPPING NODE IN A FREP TREE 99

∪

Figure 5.21: Example of the deformation using space mapping. A sphere is deformed, and
combined with a torus. The tree shows the successive deformations, where the first one is
applied to both sphere and torus primitives. A twisting operation is applied to the deformed
sphere.

Figure 5.22: Deformation as a carving tool. (Left) A block is carved according to a path defined
along a curve. (Right) An additional global deformation is then added, and the carving follows
it.

100CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

Figure 5.23: Example of the shape-driven deformation. Constructive modelling, volume sculpt-
ing and deformations steps were performed in arbitrary order while designing the object.

5.6 Conclusion

In this chapter, we proposed different techniques for deforming constructive hypervolumes on
the base of the FRep model. A first set of deformations is point based, as arbitrary points in
the space are moved to arbitrary positions. Traditional field functions are then used to define
the deformation. The second technique consists in moving arbitrary points too, but an area
of influence for the deformation is defined, as well as a target area. A large number of new
deformations can be obtained with this method, and it becomes possible to change easily the
topology of the initial shape.

These techniques can be easily applied to traditional implicit objects. Nevertheless, the most
intriguing results are achieved while using the constructive hypervolume model. Indeed, if the
proposed deformations are applied only to the geometry of the object, similar visual results
can be obtained with traditional set-theoretic and blending operations. The justification of the
proposed work takes its full meaning when both attributes and geometry are considered. If the
deformation node is included in the geometric and attribute trees, the deformation of geometry
is followed by the corresponding deformation of attributes. The complex examples that have
been given show that the texture intuitively follows the deformation of the objects geometry.

We choose to define the deformations as a new node in the FRep model. This brings the
important feature that it becomes possible to combine several modelling approaches to define

5.6. CONCLUSION 101

objects. The first one was the constructive approach, inherent property of the FRep model,
the second one was volume sculpting while using a node based on trivariate B-spline and Bézier
functions. In this chapter, we proposed a different technique of deforming existing object with the
use of different control shapes (points, segments, curves, surfaces, and solids), and corresponding
field functions.

102CHAPTER 5. DEFORMATIONS IN THE CONSTRUCTIVE HYPERVOLUME MODEL

Conclusion

In this document, we introduced a general hypervolume model as a framework. The model
includes the following components: hypervolume objects, operations, and relations. A hypervol-
ume object is considered as a multidimensional point set with multiple attributes. Attributes
represent different properties of real objects and processes such as material, photometric prop-
erties (colour, transparency, diffuse and specular reflections, etc.), physical properties (density,
temperature, etc.), and other properties of an arbitrary nature. The function representation
(FRep) is used as the basic model for point set geometry, and attributes are modelled inde-
pendently using real-valued scalar functions of several variables. Geometry and attributes are
modelled in a step-by-step manner using elementary primitives, operations and relations. This is
reflected in the underlying representation in the form of the constructive tree. Each real-valued
function defining geometry or an attribute is evaluated at the given point by a procedure travers-
ing the constructive tree structure with primitives in the leaves, and operations and relations in
the nodes of the tree.

By applying this general model to texturing, we extended the well-known concept of solid tex-
turing in two directions: constructive modelling of space partitions for texturing and modelling
of multidimensional textured objects. We discussed some operations specific for constructive
solid texturing. The proposed approach allows for modelling, texturing and visualization of 3D
solids, time-dependent and multidimensional objects in a completely uniform manner. The con-
cept of constructive hypervolume textures is independent of the geometry representation. We
provided examples of textured FRep and BRep objects as illustrations.

To model heterogeneous objects, we propose a new primitive and a new node for the FRep
tree. Close to the volume sculpting metaphor, the proposed primitive, based on a trivariate B-
Spline function, mimics the process of clay-sculpting. While modelling an object, one can freely
add or remove material at the desired location. A multiresolution scheme based on a wavelet
transform is also proposed to facilitate the modelling process. To provide sculpting at any level
of the constructive tree, a general deformation node based on space mapping is proposed, where
one can move arbitrary points to arbitrary positions to define the deformation.

A first set of deformations is point based, as arbitrary points in the space are moved to arbi-
trary positions. Traditional field functions are then used to define the deformation. The second
technique consists in moving arbitrary points too, but an area of influence for the deformation
is defined, as well as a target area. A large number of new deformations can be obtained with
this method, and it becomes possible to change easily the topology of the initial shape.

The constructive hypervolume model can be extended in various directions. Similarly to
the hybrid volume model, constructive hypervolumes can also accommodate 3D and higher

103

104 CONCLUSION

dimensional voxel arrays to represent geometry or attributes of different (not only photomet-
ric!) nature using appropriate interpolation procedures. Incorporating and experiments with
multidimensional voxel arrays in this new framework, applications of volume rendering as well
as multiple-material rapid prototyping of modelled objects will be the subjects of our future
research.

Another important research direction is the multidimensionality. A constructive hypervol-
ume covers heterogeneous multidimensional objects. In this document, heterogeneous is in the
sense of material and attributes. An interesting approach would be to consider an approach to
modelling heterogeneous objects as multidimensional point sets with multiple attributes, i.e.,
consider real or abstract heterogeneous objects that have internal structure with non-uniform
distribution of material and other attributes of an arbitrary nature and elements of different di-
mension. Multidimensional point sets with a fixed dimensionality and with multiple attributes
can be quite effectively modelled by the constructive hypervolume model based on real-valued
functions. The requirement of dimensional heterogeneity naturally brings the idea of adding
a kind of cellular representation to the model. Moreover, different applications such as CAD
or finite-element analysis require an explicit representation of mixed-dimensional objects along
with the functional one. On the base of the constructive hypervolume model, another model,
called new hybrid cellular-functional model has been proposed in [AKK+02], and introduces the
first step towards a general heterogeneous model. Our future work will try to extend those
models.

Appendix A
Examples of HyperFun models

Example 1: A textured sphere

In this appendix, we provide some HyperFun examples. While the first example is defined using
the previous version of the language, the others use the extended version of HyperFun supporting
the constructive hypervolume model. Let us first consider a simple example of the HyperFun
language that defines a sphere.

my_model(x[3],a[1]){
array center[3];
center=[0,0,0];
my_model=hfSphere(x,center,5);
}

The first line defines the name of the defining function, my model, and is followed by two
arrays. The first one, x, corresponds to the point coordinate, and the second one is used to pass
additional parameters to the function (for multidimensional objects for instance). The second
line declares an array called center, the third line initialises it, and the fourth line calls a built-in
function defined in the HyperFun library, hfSphere, which corresponds to the defining function
of a sphere. The conversion of the sphere example to the extended version of HyperFun leads
to the HyperFun code given in Fig. 5.24.

In this simple example, an additional array s is added in the declaration of the function. It
contains the attributes. In a rendering context, we use 13 different attributes. The following table
shows the correspondence between the components of this array and the shading parameters.
Note that the two coefficients s[4] and s[5] define the opacity. While the first one defines
the amount of light filtered by the object, the second defines the amount of non-filtered light
transmitted in the object.

The visual result of this example is shown in Fig. 5.24. The geometry of the object is a
sphere. The texture is defined everywhere in the space using trigonometric functions. Any other
functions can be easily used using the HyperFun language (conditional selection and iterative
structures are available in the HyperFun language).

105

106 HF Example2

Figure 5.24: A simple sphere textured using trigonometric functions.

s[1] Red component of an RGB colour
s[2] Green component of an RGB colour
s[3] Blue component of an RGB colour
s[4] Filter component
s[5] Transmittance
s[6] Red component of the ambient coefficient
s[7] Green component of the ambient coefficient
s[8] Blue component of the ambient coefficient
s[9] Diffuse coefficient
s[10] Specular coefficient
s[11] Red component of the reflectance coefficient
s[12] Green component of the reflectance coefficient
s[13] Blue component of the reflectance coefficient

Example 2: Space Partitions

The next examples show how to define a space partition of the object space. The geometry is
defined using the following polynomial:

3 + 8(x4 + y4 + z4) = 8(x2 + y2 + z2)(5.19)

The corresponding object is an algebraic surface, called chmutov surface in the literature,
based on Chebyshevs polynomials of degree six, and is shown in Fig.5.25a. Let us define a simple
space partition of the object space, with the use of three spheres. Figure 5.25b shows the initial
object placed inside the space partition, and Fig. 5.25c shows the resulting object. To produce
this example, the HyperFun code of Fig. 5.25 was used.

The next example shown in Fig. 5.26 is the famous washing-rag model, with a complex
space partition. One can notice the use of the function hfA Union, which is used to determine
the colour of a given point when it belongs to more than one partition. The semantic of the
function is :

HF Example3 107

tmp=hfA_Union(f1,f2,out,in1,in2,index);

where:

• (f1,f2) are the function values of two partitions for a given point,

• (out) is the output array containing the resulting attribute values,

• (in1,in2) are the input arrays containing the attributes of the two space partitions,

• (index) is an index used to choose between predefined union operations, such as min/max
functions, sum/difference operations and others.

Example 3: Deformations

This last set of examples is given to show how the proposed deformation can be defined in the
HyperFun language. Figures 5.27 and 5.28 show a point based deformation, and its correspond-
ing HyperFun model. The sample source and target points are used. In the first Fig. 5.27, a
simple deformation using an exponential potential function is used, combined with an ellipsoidal
distance function. Two different results are shown, one where the texture pattern follows the
deformation, and another independent of the deformation. The texture pattern is based on
Perlins noise function. Then, if one wants to see a texture that follows the deformation, the call
to this function uses the point coordinate that has been modified; otherwise, the original point
coordinate is used.

The example given in Fig. 5.28 shows how to change the orientation of the deformation.
The sample displacement vector has been used as in Fig. 5.27, the distance function is now
superellipsoidal based. We choose to map the displacement vector on the z axis, in order to
obtain a deformation oriented arbitrary (compare the result of Fig. 5.27). Then, after calculating
different angles, a set of rotations is sequentially applied to obtain the desired orientation. As
one can see, the HyperFun language is rich enough to define complex functions.

108 HF Example3

--definition of chmutov
--polynomial

--chebichev surface

--default attribute values

--Noise for texture, based on Perlin’s noise function

--definition of the RGb colour vector

--definition of the space partition : 3 disjoint spheres

the colour inside this sphere is a permutation of the default colour

--The colour inside the second sphere is the max of some given value with the
--default colour values (based on a noisy function)

--The colour inside the sphere is a blend of a constant yellow colour with
--the default colour.
--yellow colour

--mapping of the function value of the sphere in the interval [0,1]

Figure 5.25: Chebyshev algebraic surface of sixth order defined using a HyperFun model. (a)
The object geometry. (b) Initial object placed in the space partition defined of three spheres.
(c) Resulting textured object.

HF Example3 109

--Declaration part skipped...

-- superellipsoid by formula

-- torus by library function

-- soft object

-- final model as set-theoretic union

--Definition af the constructive texturing tree.
--SuperEllispoid

--A smaller ellipsoid is defined inside the
superEllisoid

--Gradient along the y-axis for the opacity

--Union operation. "cell" is an array containing the resulting attributes

--Torus
--Definition of the mosaic
--checker-board patterns plus Gardner’s noise; size of the blocks and space
--inbetween

--color of the space and of the block (Perlin's noise).

--Definition of the pattern. Resulting color in the ct array

--Additionnal space partition

--Colour of the sphere is the same as for the torus,
--only opacity has changed.

--Union of the spheres and the torus.

--Creation of a new space partition
--A smaller red torus inside.

--Final colour for the torus.

--(….skip the soft object…). The result is copied to the « s » array
--Red attribute : Gradient along the y axis for all the tree
--except for the smaller superellipsoid and the smaller torus

Figure 5.26: Complex space partitioning for texturing defined with a HyperFun model.

110 HF Example3

--source and target points

--Radii of influence

--Ellipsoidal distance function

--Potential function

--Displacement

--Original shape

--Texture pattern

Figure 5.27: Simple point based deformation, using an ellipsoidal distance function and an
exponential potential function. A simple parameter decides whether the texture pattern follows
the deformation or not.

HF Example3 111

--Source and target points

--Size of the displacement

--temporary point coordinate

--Displacement Vector

--rotation : Mapping of V[3] onto x[3]

--rotation of the temporary point coordinate xt

--Superellipsoidal distance function. Rotation of the corresponding superellipsoid

--Potential function

--Displacement

--Original shape

--Attributes

Figure 5.28: Point based deformation. A superellipsoidal distance function is used. To obtain
an arbitrary oriented deformation, a set of rotations is applied.

112 HF Example3

Bibliography

[ACF+99] V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A. Pasko, and V. Savchenko.
Hyperfun project: a framework for collaborative multidimensional f-rep modelling.
Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Workshop, J. Hughes and
C. Schlick (Eds.), pages 55–69, September 1999.

[AKK+02] V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, and B. Schmitt. Cellular-functionnal
modelling of heterogeneous objects. Solid Modeling and Applications’02, K. Lee and
M. Patrikalakis (Eds.), pages 192–203, September 2002.

[AKPS00] V. Adzhiev, M. Kazakov, A. Pasko, and V. Savchenko. Hybrid system architecture
for volume modelling. Computers And Graphics, Pergamon Press, 24(1):67–78,
2000.

[AS96] R. Avila and L. Sobierajski. A haptic interaction method for volume visualization.
IEEE Visualization ’96, Yagel R. and Nielson G. (Eds.), IEEE Computer Society
Press, pages 197–204, 1996.

[ATTY99] H. Arata, Y. Takai, N. Takai, and T. Yamamoto. Free-form shape modelling by
3d cellular automata. Modelling International ’99, IEEE Computer Society Press,
pages 242–247, 1999.

[Bae98] J. Baerentzen. Octree-based volume sculpting. IEEE Visualization ’98, Late break-
ing hot topics proceedings, page 1998, 1998.

[Bar81] A.H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer
Graphics and Applications, 1(1):11–23, 1981.

[Bar84] A.H. Barr. Global and local deformations of solid primitives. Proceedings of SIG-
GRAPH ’84, Computer Graphics, 18(3):21–30, 1984.

[BB91] P. Borrel and D. Bechmann. Deformations of n-dimensional objects. Internat. J.
Comput. Geom. App., 1(4):427–453, 1991.

[Bec94] D. Bechmann. Space deformation models survey. Computer and Graphics,
18(4):571–586, 1994.

113

114 BIBLIOGRAPHY

[BGS94] C. Blanc, P. Guitton, and C. Schlick. A methodology for description of geometri-
cal deformations. Pacific Graphics’94 Proceedings, Beijing, China, pages XX–XX,
August 1994.

[BL95] J.R. Bill and S. Lodha. Sculpting polygonal models using virtual tools. Graphics
Interface’95, Morgan Kaufmann Publihsers, pages 272–278, 1995.

[Bli78] J. Blinn. Simulation of wrinkled surfaces. Computer graphics, SIGGRAPH’78,
12(3):286–292, 1978.

[Bli82] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235–256, 1982.

[BN76] J. Blinn and M.E. Newell. Texture and reflection in computer generated images.
Communications of ACM, 10(19):542–547, 1976.

[BN92] T. Beier and S. Neely. Feature-based image metamorphosis. SIGGRAPH’92 Pro-
ceedings, ACM Press, pages 35–42, 1992.

[Bow95] A. Bowyer. Svlis: Introduction and user manual. Information Geometers, UK, 128
p., 1995.

[BPRS98] C. Bajaj, V. Pascucci, G. Rabbiolo, and D. Schikore. Hypervolume visualization:
a challenge in simplicity. IEEE Symposium on Volume Visualization, ACM SIG-
GRAPH, pages 95–102, 1998.

[BR94] P. Borrel and A. Rappoport. Simple constrained deformations for geometric mod-
eling and interactive design. ACM Transactions on Graphics, 13(2):137–155, 1994.

[BS91] J. Bloomenthal and K. Shoemake. Convolution surfaces. SIGGRAPH’91 Proceed-
ings, 25(4):251–256, 1991.

[BS95] C. Blanc and C. Schlick. Extended field functions ofr soft objects. Implicit Surfaces
’95, Eurographics/ACM SIGGRAPH Workshop, pages 21–32, 1995.

[BS96] C. Blanc and C. Schlick. Ratioquadrics: an alternative model for superquadrics.
The visual computer, 12, 1996.

[Cat74] E. Catmull. A subdivision algorithm for computer display of curved surfaces. PhD
thesis, Department of Computer Science, University of Utah, December 1974.

[Coo84] R. Cook. Shade trees. Computer Graphics, (SIGGRAPH’84 Proceedings),
18(3):223–232, 1984.

[Coq90] S. Coquillart. Extended free-form deformation : A sculpting tool for 3d geometric
modelling. Computer Graphics, (SIGGRAPH’90 Proceedings, 24(4):187–193, 1990.

[CR94] Y.K. Chang and A.P. Rockwood. A generalised de casteljau approach to 3d free-
form deformation. SIGGRAPH’94 proceedings, pages 257–260, 1994.

BIBLIOGRAPHY 115

[Cre98] B. Crespin. Modélisation et déformation de forme libre à base de surfaces splines
équipotentielles. PhD thesis, Bordeaux University I, 1998.

[CT98] M. Chen and J. Tucker. Constructive volume geometry. Technical Report CS-TR-
98-19, University of Wales Swansea, UK, page 36, 1998.

[CT00] M. Chen and J. Tucker. Constructive volume geometry. Computer Graphics Forum,
19(4):281–293, 2000.

[DSS95] T.D. DeRose, E.J. Stollnitz, and D.H. Salesin. Wavelets for computer graphics : A
primer, part 2. Computer Graphics and Applications, pages 75–85, Jully 1995.

[Ea98] D. Ebert and al. Texturing and modelling: a procedural approach. AP Professional,
San Diego, 1998.

[EG01] G. Elbert and C. Gostman. Multiresolution Control for Nonuniform B-Spline Curve
editing. CRC-HP Israel Science Center, 2001.

[EKL+91] J. Ellis, G. Kedem, T. Lyerly, D. Thielman, R. Marisa, J. Menon, and H. Voel-
ckerand. Tehray casting engine and ray representations. Proceedings of Symposium
on solid modeling foundations and CAD/CAM applications, ACM press, pages 255–
267, 1991.

[Far90] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide. Second Edition, Academic Press, 1990.

[FB88] R.D. Forsey and R.H. Bartels. Hierarchical bspline refinement. Computer Graphics,
22(4):205–211, 1988.

[FCG00] E. Ferley, M.-P. Cani, and J.-D. Gascuel. Practical volumetric sculpting. Visual
Computer, 16(8):469–480, 2000.

[FDFH95] J.D. Foly, A. Van Dam, S.K. Feiner, and J.F. Hugues. Computer Graphics: Prin-
ciples and Practices. Second Edition, ADDISON-WESLY, ISBN: 0-201-84840-6,
1995.

[Fer02] E. Ferley. Sculpture virtuelle. PhD Thesis, iMAGIS-GRAVIR laboratory, Grenoble,
France, 2002.

[FK97] A.T. Fomenko and T.L. Kunii. Topological modeling for visualization. Springer-
Verlag, Tokyo and Heidelbrg, 1997.

[Gas93] M.P. Gascuel. An implicit formulation for precise contact modeling between flexible
solids. Computer Graphics, 27(4):313–320, 1993.

[GH91] T. Galyean and J. Hughes. Sculpting: an interactive volumetric modelling tech-
nique. SIGGRAPH ’91, Computer Graphics Proceedings, 25(4):267–274, 1991.

[Gla95] A.S. Glassner. Principles of Digital Image Synthesis. Morgan Kauffmann, USA,
1995.

116 BIBLIOGRAPHY

[GMR99] A. Gomes, A. Middleditch, and C. Reade. A mathematical model for boundary
representations of n-dimensional geometric objects. Fifth Symposium on Solid Mod-
elling and Applications, W. Bronsvoort and D. Anderson (Eds.), ACM Press, pages
270–277, 1999.

[GOP99] C. Gonzales-Ochoa and J. Peters. Localized-hierarchy surface spline (less). ACM
Symposium on Interactive 3D Graphics, ISBN 1-584-13-0821, pages 7–16, April
1999.

[Gri99] L. Grisoni. Elements de multiresolution en modelisation geometrique (elements of
multiresolution in geometric modeling). PhD thesis, LaBRI, Bordeaux I University,
December 1999.

[HB84] S. Haruyama and B.A. Barsky. Using stochastic modelling for texture generation.
IEEE Computer Graphics and Applications, 4(3):7–19, 1984.

[HFP90] K.H. Hohne, H. Fuchs, and S. Pizer. 3d imaging in medicine: Algorithms, systems,
applications. NATO Advanced Science Institutes Series, Series F, Computer and
Systems Science, 60, 1990.

[Hou94] S. Houlding. 3d geoscience modelling - computer techniques for geological charac-
terization. SIGGRAPH ’91, Computer Graphics Proceedings, 1994.

[Hug92] J. Hughes. Scheduled fourier volume morphing. SIGGRAPH ’92, Computer Graph-
ics, 1992.

[JC94] M. Jones and M. Chen. A new approach to the construction of surfaces from contour
data. Computer Graphics Forum, 13(3), 1994.

[JLP98] X. Jin, Y.F. Li, and Q. Peng. General constrainde deformations based on generalized
metaballs. Proceedings of Pacific Graphics’98, pages 115–124, 1998.

[Jon96] M. Jones. The production of volume data from triangular meshes using voxelization.
Computer Graphics Forum, 15(5), 1996.

[JW88] D. Jevans and B. Wyvill. Ray tracing implicit surfaces. Technical report 88/292/04,
University of Calgary, 1988.

[Kar99] E. Kartasheva. Reduction of h-genus polyhedrons topology. International Journal
of Shape Modeling, 2(5), 1999.

[KAW91] Z. Kasic-Alesic and B. Wyvill. Controlled blending of procedural implicit surfaces.
Graphics Interface’91, pages 236–245, 1991.

[KBDH99] V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling.
Computer-Aided Design, 31(9):541–546, 1999.

[KCY93] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. IEEE Computer, 26(7),
1993.

BIBLIOGRAPHY 117

[KD97] V. Kumar and D. Dutta. An approach to modeling multi-material objects. Fourth
Symposium on Solid Modeling and Applications, ACM SIGGRAPH, pages 336–345,
1997.

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes : A high resolution 3d surface
construction algorithm. Computer Graphics, Siggraph, 21(4):163–196, july 1987.

[LCJ94] F. Lazarus, S. Coquillart, and P. Jancène. Axial deformations: an intuitive defor-
mation technique. Computer Aided Design, 26(8):607–613, 1994.

[LGL95] A. Lerios, C.D. Garfinkle, and M. Levoy. Feature-based volume metamorphosis.
SIGGRAPH’95, Computer Graphics Proceedings, pages 449–456, 1995.

[Loh97] R. Lohner. Automatic unstructured grid generators. Finite Elements in Analysis
and Design, 25:11–134, 1997.

[Man88] M. Mantyla. An introduction to solid modeling. Computer Sciences Press, College
Park, MD, 1988.

[May] Maya. Alias-WaveFont. http::// www.aliaswavefront.com/.

[MI87] S. Murakami and H. Ichihara. On a 3d display method by metaball technique.
Electronics communications, v70D(8):1607–1615, 1987.

[Mik96] M. Mikita. 3d free-form deformation: Basic and extended algorithms. 12th Spring
Conference on Computer Graphics, W. Purgathofer editors, Comenius University,
Bratisalava, pages 183–191, 1996.

[MJ96] R. MacCracken and K.I. Joy. Free-form deformation with lattices of arbitrary topol-
ogy. SIGGRAPH’96 Proceedings, pages 181–188, 1996.

[MK85] A. Middleditch and Sears K. Blend surfaces for set-theoretic volume modeling
systems. Computer Graphics, SIGGRAPH’95, 19(3):161–170, 1985.

[MMZ94] J. P. Menon, R. Marisa, and J. Zagajac. More powerful solid modelling through ray
representations. IEEE Computer Graphics and Applications, 14(3):22–35, 1994.

[MPS96] K. Miura, A. Pasko, and V. Savchenko. Parametric patches and volumes in the
functional representation of geometric solids, set-theoretic solid modeling: Tech-
niques and applications. Proceedings CSG 96 (Winchester, UK, 17-19 April 1996),
Information Geometers, UK, pages 217–231, 1996.

[MS98] J. McCormack and A. Sherstyuk. Creating and rendering convolution surfaces.
Computer Graphics Forum, 17(2):113–120, 1998.

[NC99] F. Neyret and M.P. Cani. Pattern-based texturing revisited. In SIGGRAPH 99
Conference Proceedings, pages 235–242. ACM SIGGRAPH, Addison Wesley, August
1999.

118 BIBLIOGRAPHY

[NF91] D. Ney and E. Fishman. Editing tools for 3d medical imaging. IEEE Computer
Graphics and Applications, 11(6):63–71, 1991.

[NHK+85] H. Nishimura., M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and K. Omura. Object
modelling by distributed function and a method of image generation. Transactions
of IECE of Japan, J68-D(4):718–728, 1985. (in Japanese).

[Nie93] G. Nielson. Scattered data modelling. IEEE Computer Graphics and Applications,
13(1):60–70, 1993.

[Nie00] G. Nielson. Volume modelling. Volume Graphics, M. Chen, A. Kaufman, R. Yagel
(Eds.), Springer-Verlag, pages 29–48, 2000.

[NN94] T. Nishita and E. Nakamae. A method for displaying metaballs by using bezier
clipping. Computer Graphics Forum, 13(3):271–280, 1994.

[OF00] N. Ozawa and I. Fujishiro. A morphological approach to volume synthesis of weath-
ered stones. Volume Graphics, M. Chen, A. Kaufman, R. Yagel (Eds.), Springer-
Verlag, pages 367–378, 2000.

[Par77] R. Parent. A system for sculpting 3d data. Computer Graphics, 11(8):138–147,
1977.

[Pas88] A. Pasko. Conceptual and instrumental tools for direct method of multidimensional
geometric problems solving with a computer. PhD thesis, Moscow Engineering
Physics Institute, Moscow, 1988.

[PASS95] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representation in geo-
metric modelling: concept, implementation and applications. The Visual Computer,
11(8):429–446, 1995.

[PASS02] A. Pasko, V. Adzhiev, B. Schmitt, and C. Schlick. Constructive hypervolume mod-
elling. Graphical Models, Special issue on volume modeling, 63:413–442, 2002.

[Pea85] D.R. Peachey. Solid texturing of complex surfaces. SIGGRAPH ’85, Computer
Graphics, USA, ACM Press, 19(3):279–286, 1985.

[Ped85] H. Pedersen. Decorating implicit surfaces. SIGGRAPH’95, , Annual Conference
Series, ACM Press, USA, pages 291–300, 1985.

[Per85] K. Perlin. An image synthesizer. Computer Graphics, ACM Press, USA, 19(3):287–
296, 1985.

[Pov] PovRay. the Persistance of Vision. http::// www.povray.org/.

[PPIK02] G. Pasko, A. Pasko, M. Ikeda, and T. Kunii. Bounded blending operations. Shape
modeling international, IEEE Computer Society, Banff, Canada, pages 95–103, May
2002.

BIBLIOGRAPHY 119

[PPP88] A. Pasko, V.V. Pilyugin, and V.V. Pokrovskiy. Geometric modelling in the analysis
of trivariate functions. Computers and Graphics, 12(3/4):457–465, 1988.

[Pro] HyperFun Project. Language and Software for FRep Modelling,
http:://www.hyperfun.org.

[PS94] A. Pasko and V. Savchenko. Blending operations for the functionally based con-
structive geometry, Set-theoretic solid modeling: technique and applications. CSG’94
conference proceedings, Information geometers, Winchester, UK, 1994.

[PSAS93] A. Pasko, V. Savchenko, V. Adzhiev, and A. Sourin. Multidimensional geometric
modelling and visualization based on the function representation of objects. Technical
Report 93-1-008, 1993.

[PT92] B. Payne and A. Toga. Distance field manipulation of surface models. IEEE Com-
puter Graphics and Applications, 12(1):65–71, 1992.

[RE99] A. Raviv and G. Elber. Three dimensional freeform sculpting via zero sets of scalar
trivariate functions. Technical Report CIS9903, 1999.

[Req80] A. Requicha. Representations for rigid solids: theory, methods, and systems. ACM
Computing Surveys, 12(4):437–464, 1980.

[Ric73a] A. Ricci. A constructive geometry for computer graphics. The computer journal,
16(2):157–160, 1973.

[Ric73b] A. Ricci. A constructive geometry for computer graphics. The Computer Journal,
16(2):157–160, 1973.

[RM95] D. Ruprecht and H. Mueller. Spatial free form deformation with scattered data ¿
interpolation methods. Computers and Graphics, 19(1):63–71, 1995.

[Rva63] V.L. Rvachev. On the analytical description of some geometric objects. Reports of
Ukrainian Academy of Sciences, 153(4):765–767, 1963.

[SF98] K. Singh and E. Fiume. Wires: A geometric deformation technique. SIGGRAPH’98,
pages 405–414, 1998.

[Sha88] V. Shapiro. Theory of r-funtions and applications: a primer. TR CPA88-3, Cornell
University, 1988.

[Sha94] V. Shapiro. Real functions for representation of rigid solids. Computer Aided Geo-
metric design, 11(2):153–175, 1994.

[Sha01] V. Shapiro. Solid modeling. Handbook of Computer Aided Geometric Design, Else-
vier Science Publishers (to be published, 2001.

[SKPS00] B. Schmitt, M. Kazakov, A. Pasko, and V. Savchenko. Volume sculpting with 4d
spline volumes. CISST’2000, 2:475–483, September 2000.

120 BIBLIOGRAPHY

[Sny92] J. Snyder. Generative Modelling for Computer Graphics and CAD. Academic Press,
1992.

[SP86] T.W. Sederberg and S.R. Parry. Free-form deformations of solid geometric models.
Computer Graphics (SIGGRAPH’86 proceedings), 20(4):151–160, 1986.

[SP98] V. Savchenko and A. Pasko. Transformation of functionnaly defined shapes by
exented space mapping. The Visual Computer, 14(5/6):257–270, 1998.

[SPAS01] B. Schmitt, A. Pasko, V. Adzhiev, and C. Schlick. Constructive texturing based
on hypervolume modeling. The Journal of Visualization and Computer Animation,
12:297–310, 2001.

[SPKS95] V. Savchenko, A. Pasko, T. Kunii, and A. Savchenko. Feature based sculpting of
functionally defined 3d geometric objects. Multimedia Modeling. Towards Informa-
tion Superhighway, T.S.Chua, H.K.Pung and T.L.Kunii (Eds.), World Scientific,
Singapore, pages 341–348, 1995.

[SPS99] B. Schmitt, A. Pasko, and V. Savchenko. Extended space mapping with bézier
patches and volumes. Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Work-
shop, J. Hughes and C. Schlick (Eds.), pages 25–31, September 1999.

[SPS01] B. Schmitt, A. Pasko, and C. Schlick. Constructive modelling of frep solids using
spline volumes. Sixth ACM Symposium on Solid Modeling and Applications, D.
Anderson, K. Lee (Eds.), ACM Press, pages 321–322, 2001.

[SS96] J.P. Smets-Solanes. Vector field based texture mapping of animated implicit objects.
Computer Graphics Forum, 15(3):289–300, 1996.

[TW99] M. Tigges and B. Wyvill. A field interpolated texture mapping algorithm for skele-
tal implicit surfaces. Computer Graphics International, CGI’99, IEEE Computer
Society, pages 25–33, 1999.

[UO91] K. Udupa and D. Odhner. Fast visualization, manipulation, and analysis of binary
volumetric objects. IEEE Computer Graphics and Applications, 11(6):53–62, 1991.

[Ups90] S. Upstill. The Renderman Companion. Addison-Wesley, 1990.

[WB96] K. Wise and A. Bowyer. Using csg models in many dimensions to map where
things can and cannot go. CSG 96 Set-theoretic Solid Modelling: Techniques and
Applications, Information Geometers, UK, pages 359–376, 1996.

[Wel97] H.G. Wells. The Invisible Man. original ISBN 1-58734-078-X, 1897.

[WGG99] B. Wyvill, E. Galin, and A. Guy. The blobtree. warping, blending and boolean
operations in an implicit surface modelling system. Computer Graphics Forum,
18(2):149–158, 1999.

[Win] A.S. Winter. The vlib Web Site. http://vg.swan.ac.uk/vlib/.

BIBLIOGRAPHY 121

[WK93] S. Wang and A. Kaufman. Volume sampled voxelization of geometric primitives.
IEEE Symposium on Volume Visualization, Los Alamos, pages 78–84, 1993.

[WK95] S. Wang and A. Kaufman. Volume sculpting. Symposium on Interactive 3D Graph-
ics, ACM Press, pages 151–156, 1995.

[WMW86] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The
Visual Computer, 2(4):227–234, 1986.

[WT90] G. Wyvill and A. Trotman. Ray tracing soft objects. New trends in computer
graphics, Proceedings of CG International’90, pages 467–476, 1990.

[ZGVdF97] R. Zonenschein, J. Gomes, L. Velho, and L. Henrique de Figueiredo. Texturing
implicit surfaces with particle systems. Visual Proceedingsn SIGGRAPH’97, pages
172–184, 1997.

	Cover
	Contents
	Introduction
	Chapter 1 Modelling point sets and their attributes
	1.1 Introduction
	1.2 Enumerative and combinatorial representations
	1.2.1 Enumeration using a mapping rule
	1.2.2 Grouping
	1.2.3 Cellular complexes

	1.3 Function representation
	1.3.1 Implicit surfaces
	1.3.2 Function representation
	1.3.3 Other constructive approaches

	1.4 Hybrid models
	1.4.1 Boundary representation and extensions
	1.4.2 Hybrid volume
	1.4.3 Object model
	1.4.4 Constructive volume geometry

	1.5 Discussion

	Chapter 2 Constructive hypervolume framework
	2.1 Introduction
	2.2 Constructive hypervolume modelling
	2.2.1 Objects
	2.2.2 Operations
	2.2.3 Relations
	2.2.4 Constructive hypervolume model and its underlying representation

	2.3 Case studies
	2.3.1 Heterogeneous material
	2.3.2 Modelling geological structure
	2.3.3 Adaptive mesh generation

	2.4 Implementation
	2.4.1 Language for hypervolume modelling
	2.4.2 HyperFun software tools

	Chapter 3 Constructive hypervolume texturing
	3.1 Introduction
	3.2 Existing texturing techniques
	3.3 Constructive solid texturing approach
	3.3.1 Forestalling example
	3.3.2 Constructive solid texturing definition
	3.3.3 Complex object space partitions
	3.3.4 Operations on attributes

	3.4 Constructive solid texturing in higher dimension
	3.4.1 Constructive time-dependent texturing
	3.4.2 Constructive texturing in multiple dimensions

	3.5 Special attributes
	3.5.1 Bump mapping
	3.5.2 Speed-up attribute

	3.6 Conclusion

	Chapter 4 Constructive hypervolume sculpting
	4.1 Introduction
	4.2 Sculpting constructive hypervolumes
	4.3 Trivariate B-spline primitive
	4.3.1 Framework for the primitive
	4.3.2 Providing distance property

	4.4 Multiresolution approach for the trivariate B-spline primitive
	4.4.1 Multiresolution analysis
	4.4.2 Multiresolution B-spline curve
	4.4.3 Modelling using a multiresolution B-spline primitive

	4.5 Interactive Modelling
	4.5.1 Visualisation
	4.5.2 Constructive tree with B-spline primitives
	4.5.3 Tools for modelling
	4.5.4 Geometry and attributes modelling

	4.6 Conclusion

	Chapter 5 Deformations in the constructive hypervolume model
	5.1 Introduction
	5.2 Simple deformations using space mapping
	5.3 Deformations using field functions
	5.3.1 Potential function
	5.3.2 B-spline based deformations
	5.3.3 Distance functions

	5.4 Shape driven deformation
	5.4.1 Framework for deformations
	5.4.2 Examples of deformations
	5.4.3 Using FRep tree for deformations

	5.5 Using space mapping node in a FRep tree
	5.5.1 Deformations along a curve
	5.5.2 Complex examples

	5.6 Conclusion

	Conclusion
	Appendix A Examples of HyperFun models
	Example 1: A textured sphere
	Example 2: Space Partitions
	Example 3: Deformations

	Bibliography

