An Algorithmic And Computational Approach To Local
Computations

Abstract : In this thesis, we study the algorithmic aspects of local computations in the area of
distributed algorithms. We focus our attention on two special domains. These are network synchro-
nization and execution control. We present new results concerning the synchronization of networks
under the assumption that processes are aware of some network properties. The results presented
here make use, amongst others, of randomization and of the SSP protocol introduced by Y. Shi, B.
Szymanski and N. Prywest.

On the other hand, we take advantage of graph reduction algorithms to present an algorithmically
solution for recognizing graph properties by local computations. To this end, we introduce the
notion of handy reduction systems and prove, specially, that all properties on graphs of bounded
treewidth, definable in the monadic second order logic, can be recognized by local computations.
We also demonstrate that any handy reduction systems corresponds to a labeled graph recognizer
with structural knowledge and, with the help of special kind of graphs morphisms : coverings, we
derive necessary conditions for the size-recognizability of a graph property characterized by a handy
reduction systems.

At the end, we introduce the programming language for implementing local computations (Li-
dia). This language is built on a two levels transition system and on the logic £ used to describe
the preconditions of each transition system. We exploit results from the finite model theory to prove
the descriptive power of L and to show that any algorithm encoded by local computations can be
implemented in Lidia.

Discipline : Computer-Science

Keywords : Distributed systems, graph reduction algorithms, formal languages, infinite logics.

Aspects Algorithmiques et Implémentation des Calculs Locaux

Résumé : Dans cette thése nous nous intéressons aux aspects algorithmiques des calculs locaux
dans les domaines de la synchronisation et du contréle de ’exécution. Nous introduisons, entre autre,
deux synchroniseurs dont I'un se base sur 'utilisation de ’algorithme de Y. Shi, B. Szymanski et
N. Prywest et l'autre sur ’application des marches aléatoires dans les graphes.

Ensuite, nous utilisons le concept des réductions de graphes pour présenter un algorithme capable
de reconnaitre des propriétés de graphes a l’aide des calculs locaux. Cette étude introduit la notion
de systémes de réduction pratiques (handy reduction systems) qui nous permet de démontrer que
toutes les propriétés de graphes de largeur arborescente bornée, définissable en logique monadique
du second ordre, peuvent étre reconnues par les calculs locaux. Nous établissons un lien directe entre
les systémes de réduction pratiques et le concept de reconnaisseurs de graphes avec connaissance
structurelle (labeled graph recognizers). Ce lien nous permet de donner les conditions nécessaires
pour qu’une propriété caractérisée par un systéme de réduction pratique soit reconnue au moyen
de calculs locaux. Enfin, nous introduisons le langage de programmation des calculs locaux (Lidia).
Ce langage est basé sur un systéme de transition & deux niveaux ol les préconditions de chaque
transition sont exprimées par la logique £} . En se servant des propriétés descriptives de L}, nous
établissons la complétude du langage Lidia.

Discipline : Informatique

Mots-Clefs : Systémes distribués, synchroniseurs, réduction de graphes, langages formels, logique.

LaBRI,
Université Bordeaux 1,

351 cours de la Libération,
33405 Talence Cedex (FRANCE).

2005 AN ALGORITHMIC AND COMPUTATIONAL APPROACH TO LOCAL COMPUTATIONS. Rodrigue Bertrand OSSAMY

N° d’ordre : 3067

THESE

PRESENTEE A

L’UNIVERSITE BORDEAUX 1

ECOLE DOCTORALE DE MATHEMATIQUES ET
D’ INFORMATIQUE

Par Rodrigue Bertrand OSSAMY

POUR OBTENIR LE GRADE DE

DOCTEUR

SPECIALITE : INFORMATIQUE

An Algorithmic and Computational Approach to Local Computations

Soutenue le : 01 Décembre 2005

Aprés avis des rapporteurs :
Annegret HABEL ... Professeur
Wieslaw ZIELONKA Professeur

Devant la commission d’examen composée de :
Yves METIVIER ... Professeur Directeur de thése
Mohamed MOSBAH Professeur Examinateur
Vincent VILLAIN ... Professeur Président
Wieslaw ZIELONKA Professeur Rapporteur

- 2005 -

Remerciements

A journey is easier when you travel together. Interdependence is certainly more valuable
than independence. This thesis is the result of three years of work whereby I have been
accompanied and supported by many people. It is a pleasant aspect that I have now the
opportunity to express my gratitude for all of them.

Mes remerciements s’adressent en premier leiu & mes deux directeurs de theése : Yves
Meétivier et Mohamed Mosbah. Ils ont été présents tout au long de ces années. Je leur suis
particuliérement reconnaissant d’avoir eu confiance en moi en acceptant de me guider dans
mes recherches. Qu’ils trouvent ici toute ’expression de ma reconnaissance.

Je tiens a remercier chaleureusement Wieslaw Zielonka et Annegret Habel pour m’avoir
fait I’honneur de lire attentivement mon mémoire. Leurs commentaires sur ce mémoire ont
été tres enrichissants. Je tiens a exprimer ma gratitude pour l'intérét qu’ils ont porté a
I’égard de mon travail.

Je remercie Vincent Villain d’avoir accepté de présider mon jury.

Je remercie Annegret Habel ainsi que toute son équipe de recherche pour 'acceuil qu'ils
m’ont reservé lors de ma visite & Oldenburg (R. F. A.). La forme et 'organisation générale
de ce mémoire sont en grande partie dues aux différentes remarques issues de nos entretiens.
Ce fut un réel plaisir de travailler avec Annegret. Je suis heureux de pouvoir lui exprimer ici
toute ma gratitude.

Les discussions avec Bruno Courcelles et Philippe Duchon, qui ne s’en souviendra peut étre
pas, m’ont apporté énormément de réponses dans les diverses thématiques abordées tout au
long de ma thése. Merci d’avoir pris le temps de m’apporter cette aide précieuse.

Je tiens également & remercier :

e Monsieur LEPO dont I'indéfectible soutien et les multiples conseils m’ont permis de
mener & bien ce projet de recherche. Merci d’avoir toujours été 1a pour moi, d’avoir cru
en moi méme lorsque cela n’était pas évident.

e Matsy et tous mes enfants, dont ’exhaustive énumération donnerait certainement lieu
a un nouveau mémoire. Merci pour votre patience.

e Tous les membres du projet ViSiDiA: Afif, Bilel, Hamid et Jérémie.

Pierre Hanna, Rui Chen, Pascal Grange, Fabrice et tous les membres de ’équipe de foot
de 'AFoDiB. L’esprit de «gagne» de cette équipe me manquera.

David Renault, Pascal Ochem, Nicolas Bonichon et Michael Montassier pour avoir
généralement pris le temps de partager leur expérience avec moi. Un grand merci a
Nicolas dont le tapis de souris m’a permis de rédiger cette thése. Merci aussi & David
dont les connaissances en LaTeX sont «infiniesy.

Aziz, Nader et Ben Mammar avec lesquels j’ai eu des discussions «extra recherches» tres
passionnantes.

Marcien Mackaya, Michael Adelaide et Mouba Joan qui sont vraiment des types biens.
Merci pour l'aide que vous m’avez apportée durant ces années. Les rires de Marcien et
Mickael et surtout les remarques perfides de Joan ont généralement eu pour conséquence
d’enlever un peu de tension & mon quotidien.

FOR YOU NOTHING SHOULD BE GOOD ENOUGH

RIEN NE SERA ASSEZ CONVENABLE POUR VOUS

EINMAL MEHR MOECHTE ICH MICH BEI DIR BEDANKEN

TO FULFILL OUR DREAMS AND EXPECTATIONS THAT IS WHAT WE HAVE TO

ZEIT IS MANGELHAFT ABER DER TAG WIRD KOMMEN

Merci!

Aspects algorithmiques et implémentation des calculs locaux

Résumé: Dans le modéle des calculs locaux, un systéme distribué est représenté par un
graphe étiqueté dont les sommets correspondent aux processeurs et les arétes aux liens de
communication. Un algorithme distribué est alors décrit par un systéme de régles de transi-
tion local ou 'étiquette suivante d’un sommet est fonction de son étiquette actuelle et de celles
de ses voisins. Les réétiquetages opérant sur des voisinages disjoints peuvent se dérouler en
paralléle, de maniére synchrone ou asynchrone. Dans cette thése nous nous intéressons aux as-
pects algorithmiques des calculs locaux dans les domaines de la synchronisation d’algorithmes
et du controle de I’exécution. Dans un premier temps nous proposons différents protocoles de
synchronisation qui ont besoin, pour certains, d’avoir une connaissance structurelle du graphe
(diametre, nombre de processeurs, etc...). Nous introduisons, entre autre, deux synchroniseurs
dont 'un se base sur l'utilisation de l’algorithme SSP de Y. Shi, B. Szymanski et N. Prywest
et I'autre sur "application des marches aléatoires dans les graphes.

Ensuite, nous utilisons le concept des réductions de graphes pour présenter un algorithme
capable de reconnaitre des propriétés de graphes & l'aide des calculs locaux. Cette étude
introduit la notion de systémes de réduction pratiques (handy reduction systems) qui nous
permet de démontrer que toutes les propriétés de graphes de largeur arborescente bornée,
définissable en logique monadique du second ordre, peuvent étre reconnues par les calculs
locaux. Nous établissons un lien directe entre les systémes de réduction pratiques et le concept
de reconnaisseurs de graphes avec connaissance structurelle (labeled graph recognizers). Ce
lien nous permet de donner les conditions nécessaires pour qu’une propriété caractérisée par
un systéme de réduction pratique soit reconnue au moyen de calculs locaux.

Enfin, nous introduisons le langage de programmation des calculs locaux (Lidia). Ce
langage est basé sur un systéme de transition & deux niveaux oul les préconditions de chaque
transition sont exprimées par la logique £ . En se servant des propriétés descriptives de L,
nous établissons la complétude du langage Lidia.

Mots-clés: Systémes distribués, synchroniseurs, réduction de graphes, reconaisseur de
graphes, election locale, langages de programmation, logiques infinies, théorie des modéles,
snapshots

Discipline: Informatique

LaBRI,

Université Bordeaux 1,

351, cours de la libération

33405 Talence Cedex (FRANCE)

An Algorithmic and computational approach to local computa-
tions

Abstract : Local computations in graphs have been proved to be a powerful model for
encoding distributed algorithms, for proving their correctness and for understanding their
power. In this representation, a network is represented as a connected undirected graph where
vertices denote processes and edges denote communication links. Within this framework, an
algorithm is encoded by means of local relabellings. Labels attached to vertices and edges are
modified locally, that is on a subgraph of fixed radius k& of the input graph. In this thesis,
we study the algorithmic aspects of local computations in the area of distributed algorithms.
We focus our attention on two special domains. These are network synchronization and
execution control. We present new results concerning the synchronization of networks under
the assumption that processes are aware of some network properties. The results presented
here make use, amongst others, of randomization and of the SSP protocol introduced by Y.
Shi, B. Szymanski and N. Prywest.

On the other hand, we take advantage of graph reduction algorithms to present an algo-
rithmically solution for recognizing graph properties by local computations. To this end, we
introduce the notion of handy reduction systems and prove, specially, that all properties on
graphs of bounded treewidth, definable in the monadic second order logic, can be recognized
by local computations. We also demonstrate that any handy reduction systems corresponds
to a labeled graph recognizer with structural knowledge and, with the help of special kind of
graphs morphisms: coverings, we derive necessary conditions for the size-recognizability of a
graph property characterized by a handy reduction systems.

At the end, we introduce the programming language for implementing local computations
(Lidia). This language is built on a two levels transition system and on the logic £ used to
describe the preconditions of each transition system. We exploit results from the finite model
theory to prove the descriptive power of L} and to show that any algorithm encoded by local
computations can be implemented in Lidia.

Keywords: Distributed systems, synchronizers, graph reduction algorithms, graph recogniz-
ers, local election, distributed languages, infinite and counting logics, model theory, snapshots
based algorithms

Discipline: Computer Science

LaBRI,

Université Bordeaux 1,

351, cours de la libération

33405 Talence Cedex (FRANCE)

Contents

Introduction

1 Preliminaries

1.1

1.2

1.3

Graphs Properties L
1.1.1 Undirected Graphs L
1.1.2 Graphs and Logics L
1.1.3 Contractions and Minors L
1.1.4 Treewidth and Pathwidth
Randomized Algorithms and Random Walks
1.2.1 Randomized Algorithms
122 Random Walks L
Labeled Graphs and Coverings
1.3.1 Labeled Graphs
1.3.2 Coverings o o e
1.3.3 Quasi-coverings

2 Local Computations and Graph Relabeling Systems

2.1
2.2

2.3

24
2.5

The Computation Model
Graph Relabeling Systems oo
2.2.1 Graph Relabeling Systems with Priorities
2.2.2 Graph Relabeling Systems with Forbidden Contexts
Local Computations
2.3.1 Distributed Computations of Local Computations
2.3.2 Proof Techniques
2.3.3 Notations e
Local Computations and Coverings

Local Computations and Quasi-Coverings

10
11
13
13
14
15
15
16
17

Part I Synchronizers in the Local Computations Framework 29

3 Synchronizing Distributed Algorithms 31
3.1 The Synchronizers L e 31
3.2 Synchronizer Properties L L 32
3.3 A Synchronizer Protocol Based on the SSP Algorithm 34

3.3.1 The SSP Algorithm 34
3.3.2 The SSP Synchronizer L 35
3.4 Randomized Synchronization Algorithm (RS Algorithm) 37
3.4.1 Correctness of the Algorithm 40
3.5 Synchronization in Graphs with a Distinguished Vertex 42
3.6 Synchronization in Trees L 46
3.7 Building Synchronizers L L 51
3.7.1 Methodology to construct a synchronizer ol
3.7.2 A General Overview 52

Part II Algorithmic Recognition of Graphs Properties with Local Com-

putations 55
4 A Probabilistic Algorithm for Local Elections 57
4.1 The k-local Election Problem 57
4.2 Randomized Local Elections L o o o8
4.3 Distributed Computation of a Rooted Tree of Minimal Paths 99
4.4 Solving the k-Local Election Problem 63
4.4.1 An Experimental Algorithm for Anonymous Networks 66

4.4.2 Collisions Detection oL 68

4.5 Concluding Remarks L Lo 68

5 Recognition of Graph Properties with Local Computations 71
5.1 Reduction Systems L 71
5.2 Encoding Reduction Rules in a Distributed System 75
5.2.1 Encoding the Reduction Rules 75

5.2.2 Distributed Computations of Reduction Rules 79

5.3 Distributed Computations of Decision Problems 81
5.3.1 Increasing the degree of parallelism 83

5.3.2 Applications: Decision Problems for Graphs of Bounded Treewidth . . . 86

5.3.3 Labeled graphs recognizable by local computations 88

5.4 Unfolding Reduction Rules
5.4.1 Constructive Reduction Algorithms

9.5

Concluding Remarks

6 Checking Properties in Distributed Systems

6.1
6.2
6.3

6.4

Introduction

Properties Description and Computation Sequences
A Virtual Time Based Algorithm
6.3.1 Computing Global States
6.3.2 The Merging Procedure L.

6.3.3 Enumerating Strong Consistent Global States

6.3.4 Complexity Analysis

Concluding Remarks

Part III Implementing Local Computations
7 Implementing Local Computations: Lidia
7.1 Introduction L.
7.2 The Computation Model
7.3 Aninformal Overview
7.4 The Logic L% e
741 The Alphabet of £ 0000
7.4.2 The Semanticof L, oL oo
7.4.3 The Satisfaction Relation
7.5 Transition in Lidia Lo
7.5.1 Preconditions
752 Effectso
7.6 Data Typesin Lidia
7.7 Structure of a Lidia Program L.
7.8 Communication Level L
7.8.1 Basic Communication Instructions
7.8.2 Edge Labeling
7.8.3 Implementation of the Communication Level
7.9 Concluding Remarks oo

8 Computational Characteristics of LIDiA

97
97
98
100
101
104
104
107
107

109

111
111
112
114
116
116
117
118
118
118
119
119
120
125
126
127
128
129

131

8.1 Introduction oL 131

8.2 Descriptive Complexity of L5 132
8.2.1 Logic with Counting 132
822 Li Captures PTIME 134

8.3 Computational Completeness of LIDiA 136

8.4 Concluding Remarks o 137

Conclusion and Perspectives 139

List of Figures

S Ot s W N

BN

10
11
12
13
14
15
16
17
18

Contracting the edge e = {z,y} 10
Y2G=MX,so Xisaminorof Y 11
A graph G of treewidth two, and a tree decomposition T'D of width two of G. 12
The morphism 7 is a covering from G to H. 16
The preimages of a ball By of H build a collection of disjoint balls of G . . . 17
0:V(K) — V(H) is a quasi-covering of radius r. v : G — H represents the

associated covering. 18
Distributed computation of a spanning tree 25
Cycle Cr in the A-labeled subgraph. 45
Representation of the propagation phase 49
Decomposition of To 50
General method to construct a synchronizer. 52
Protocol I1 4 using the SSP method. 53
Example of @-operation for two graphs 74
Applying rule r to G yields G'. 75
Encoding basic reduction rules by local computations 7
Example: recognizing the property that a graph is a two colorable cycle. . . . 84
Distributed computation of the election algorithm in trees 125
A communication channel between p; and p; 0L 126

Introduction

Distributed Systems

A distributed system is a collection of individual computing devices (i.e. computers,
processors, processes) that are interconnected by a network allowing them to communicate
with each other. This very general definition covers a wide range of modern day computer
systems, ranging from a VLSI chip, to a tightly-coupled shared memory multiprocessor, to a
local-area cluster of workstations, to the Internet. Gerard Tel [Tel91] presents an overview of
general topics related to the field of distributed systems. For further information concerning
the simulation of distributed systems and their algorithmic approaches it is referred to the
works of Nancy Lynch [Lyn96] and Attiya et al. [AW9S§].

There are two major interprocess communication methods in the field of distributed com-
putations:

Communication by shared memory: Every two connected processes share a register on
which they can performed read and write operations.

Communication by message passing: Each process can exchange informations with its
neighbors. This is done by using the communication primitives send and receive that
respectively allow a process to mail messages to its neighbors and to read its incoming
mails.

The simplest, and certainly the oldest, example of a distributed system is an operating system
for a conventional sequential computer. In this case processes on the same hardware commu-
nicate using the same software, either by exchanging messages or through a common address
space. In order to time share a single CPU among multiple processes, as is done in most
contemporary operating systems, issues relating to the (virtual) concurrency of the processes
must be addressed. Many of the problems faced by an operating system also arise in other
distributed systems, such as mutual exclusion and deadlock detection and prevention.

Within the scope of this thesis we will deal, unless stated otherwise, with the communi-
cation model based on message passing. This model is composed of two modes of operation
depending on timing requirements. In fact, several different assumptions can be made about
the timing of events in the system, reflecting the different types of timing information that
might be used by algorithms. At one extreme, processes can be completely synchronous,
performing communication and computation in perfect lock-step synchrony. At the other ex-
treme, they can be completely asynchronous, taking steps at arbitrary speeds and in arbitrary

2 INTRODUCTION

orders. More generally, if no timing assumptions at all are made, the system is said asyn-
chronous. In a synchronous distributed system, the timing behavior is constrained by the
following assumptions [HT94]:

e there is a known finite upper bound for the message transmission delay, and

e there is a known finite upper bound for the time required by any process to execute a
step, and

e on every process, there is a local clock with a known finite upper bound for clock drift
with respect to real time.

Modeling of distributed algorithms

An algorithm executed in a distributed system is called a distributed algorithm. A
possible modeling of an asynchronous distributed algorithm consists in representing the
network as a connected undirected graph where vertices denote processes and edges denote
direct communication links. Labels attached to vertices and edges represent respectively
the states of processes and communication links. The labels attached to vertices could
also contain network informations such as processes identifiers, a distinguished process, the
number of processes, the diameter of the graph or its topology. Weights, marks for encoding
a spanning tree or the sense of direction are examples of labels attached to edges. Within
this model, the execution of a distributed algorithm is then subdivided in computation steps.
At each step, labels are modified locally, that is, on a subgraph of fixed radius k of the given
graph, according to certain rules depending on the subgraph only (local computations). The
relabeling is performed until no more transformation is possible, i.e., until a normal form is
obtained.

This framework will be used as the standard model throughout the rest of this work. It
has several interests:

e it gives an abstract model to think about some problems in the field of distributed
computing independently of the wide variety of models used to represent distributed
systems [LL90].

e as classical models in programming, it enables to build and to prove complex systems,
and so, to get them right,

e it is easier to understand and to explain problems, to obtain solutions or impossibility
results which remain true in weaker models,

e any positive solution in this model may guide the research of a solution in a weaker
model or be implemented in a weaker model using randomized algorithms,

e this model gives nice properties and examples using classical combinatorial material.

The formalism pictured by the above model is similar to the models addressed by P.
Rosensthiel or D. Angluin. In |[RFHT2| Rosensthiel et al. have introduced the concept of
intelligent graphs. In their model, a distributed network system is pictured by a graph, having

INTRODUCTION 3

maximal degree d, where each process is represented by a vertex acting as a finite automata.
All automata execute the same underlying algorithm. The next state of a process is computed
depending on its actual state and on the actual states of all its neighbors. Basically, this
model is synchronous in the sense that each computation step changes simultaneously the
states of each process. The model introduced by D. Angluin [Ang80] works on any type of
graphs. In this representation, a computation step consists, for two neighboring process, in
exchanging messages and computing their new states. This model is basically asynchronous.

Research domains in the area of distributed algorithms

Gerard Tel, in Topics in Distributed Algorithms [Tel91], has defined four major research
domains in the area of distributed algorithms:

Fault tolerance: This is the study of the behavior of a distributed system in presence of
processes failures. Generally, fault tolerance deals with the ability of a distributed
system to continue normal operation despite the presence of hardware or software faults.
A software fault occurs when a process does not break down, but executes a wrong
protocol.

Communication: The task of this domain is to improve the efficiency of data transmission
through the network. This includes the development of efficient routing algorithms in
the distributed environment.

Synchronization: The goal here is to design protocols that are able to transform algorithms
for the synchronous network model into algorithms for the fully asynchronous network
model.

Execution control: In this area, one try to solve problems such as the leader election in a
network or the termination detection that should allow processes to be aware of the end
of the distributed computation. The objective is to have a mean to monitor each step
of the execution of an asynchronous algorithm.

Topics of this thesis

In the range of this thesis, we focus our study on the last two domains. This is pri-
mary motivated by the importance of the synchronization paradigm in the study of
distributed algorithms. As a matter of fact, the asynchronous network model has so much
uncertainty (unknown number of processes, unknown network topology, independent inputs
at different locations, process nondeterminism, uncertain message delivery times,...) that it
is usually tedious to program directly in this environment. It is, therefore, desirable to have
simpler distributed models that can be programmed more easily and whose programs can be
translated into programs for the general asynchronous network.

Over and above, paying attention to the execution control of a distributed system is
strongly related to problems concerning the modeling of distributed algorithms and the proof of
their correctness. With respect to the modeling of distributed algorithms, we have introduced
a programming language, called Lidia (Language for implementing distributed algorithms), for
implementing algorithms encoded by means of local computations. The encoding of these

4 INTRODUCTION

algorithms uses a set of computation rules (relabeling rules) that can be executes concurrently
on disjoint parts of the network. Due to this concurrency, it can be tedious to show the cor-
rectness of the execution of such an algorithm. To do that, it is common to exhibit associated
inwariant properties. These properties generally allow to derive the correctness of the system.
Hence, we have enhanced the Lidia platform with an invariants-checker based tool that is able
to perform online or offline tests of the validity of given properties.

Another aspect of the domain of execution control we have considered is related to the
distributed detection of network properties. We have developed a methodology (based on
graph reduction rules) that, under certain conditions, says if a given network satisfies a given
property or not. The importance of this paradigm is a direct consequence of the lack of
global solutions in asynchronous distributed systems. That is, for a problem P, there could
exist different algorithms for solving P and each of these solutions can be related to a unique
networks class. As an instance, there exist two different algorithms for solving the election
problem on tree-shaped networks and on networks represented by complete graphs. Detecting
network properties is an important feature that permits to chose the adapted solution of a
given distributed problem.

In the followings, we present how the rest of the thesis is organized.

Chapter 1: Preliminaries

This chapter presents an overview of the basic theoretical material that is useful for the
understanding of the present work. First of all, we introduce the notion of graph and its related
concepts. Thereafter, we define the terms of labeled graphs and coverings and take advantage
of their characteristics to give a formal definition of the basics of local computations in graphs.

Part I: Synchronizers in the local computations framework

This part deals with the presentation of protocols which transform synchronous net-
work algorithms into asynchronous algorithms. These protocols, called synchronizers, are of
two types. The first one contains all synchronizers that work properly if and only if processes
have knowledge about some network properties such as the size or the diameter. The second
type includes the synchronizers that work faithfully without knowing anything about the
underlying network. We will show that this kind of synchronizers can not guarantee the
synchronization of two processes at distance at least 2 from each other. Nevertheless, we
will state a wide variety of protocols, of the first type, that ensure a synchronization in the
whole network. These synchronizers take advantage of various network properties and use
algorithmic features such as randomization, or the SSP algorithm presented by Szymanski
et al. [SSP85]. It will be stated that in tree-shaped networks, it is possible to construct a
synchronizer that does not need more network knowledge. The end of this chapter will be
devoted to the presentation of a new methodology that, given a synchronous algorithm and
a synchronizer, constructs the asynchronous algorithm that simulates the execution of the
synchronous network algorithm. All the protocols presented in this chapter are encoded by
local computations.

INTRODUCTION 5

Part II: Reduction based recognition of graphs properties
with local computations

In this part we turn our attention to the distributed recognition of graph properties
by local computations. We propose a solution based on the use of graph reduction algorithms
in the local computation environment. The basic idea of graph reduction algorithms is to
reduce the size of the input graph by an adequate set of graph transformation rules. Once
the graph is irreducible, it is checked if the so obtained graph belongs to a given class of
irreducible graphs. If this is the case, then it is deduced that the initial graph satisfies the
property characterized by the set of reduction rules and the set of irreducible graphs. This
part is covered by two chapters.

Chapter 4: A probabilistic algorithm for local election

A reduction rule consists in replacing a graph G through a graph G’ having a smaller size.
In a distributed environment we could face the case where parallel executions of reduction
rules occur on overlapping subgraphs. To go around this problem, we take advantage of
a k-local election algorithm to reach faithful reductions. To this end, we have developed
an algorithm that is able to solve the k-local election problem. It is known that there is
no Las Vegas algorithm for solving the k-local election problem for k£ > 3. For this reason
we use a probabilistic protocol based on the distributed computation of rooted trees of
minimal paths. The correctness of the election algorithm will be stated and we will in-
troduce some computational heuristics that increase the success rate of the election algorithm.

Chapter 5: Recognition of graph properties with local computations

One of the most important constraint in the field of local computations resides in the
fact that they never change the internal structure of the basic underlying graph. On account
of this, we present in this chapter a way to encode basic graph reduction rules (vertex
deletion, edge deletion, edge contraction and edge addition) in a distributed system with
respect to the requirements of the local computations framework. This leads to the concept
of handy reduction rule. Starting from this encoding system, we will present a methodology
to encode reduction algorithms in our distributed environment. As a direct consequence,
we will show that all properties of graphs of bounded treewidth definable in the monadic
second order logic can be decided in a distributed way and within the framework of local
computations. We will also state a straightforwards relationship between our encoding of
reduction algorithms and the concept of labeled graph recognizers initiated by Godard, Mé-
tivier and Muscholl [GMMO04]. At last we will present some improvements of handy reduction
rules that allow, for certain classes of graph problems, to simultaneously solve a graph deci-
sion problem and compute a solution in order to reinforce the answer of the decision problem.

Chapter 6: Checking properties in distributed systems

In the last chapter we present a distributed algorithm that checks the validity of given
invariants properties. The proposed algorithm takes advantage of an improved version of
vector clocks [Lam78| to perform a partial order of local snapshots. Starting from these
snapshots, the algorithm is able to generates all states through which the system has passed
during the computation. This algorithm represents a tool that allows to automatically check
the correctness of program executions in Lidia.

6 INTRODUCTION

Part III: Implementing local computations: Lidia

This part is devoted to the presentation of the programming language Lidia. This
language is based on a two-level transition system. The first level contains a number of
transition systems, that define the behavior of a single process. The second level transition
system consists of a single transition system that models the interactions among first-level
transition systems. Each transition system is defined in a precondition-effect style, where
the preconditions parts in Lidia are exclusively expressed in the logic £} . This logic is an
extension of the first order logic by means of counting terms, counting quantifiers and infinite
disjunctions and conjunctions.

Chapter 7: A language for implementing local computations

In this chapter we present the main concepts of Lidia. We focus our attention on the logic
L% and on the basic constructs that allow Lidia to fulfill the requirements of our computation
model. We will also point out the implementation of the communication level and show that
within this framework we can easily compute distributed algorithms encoded by means of
local computations.

Chapter 8: Computational characteristics of Lidia

The main topic of this chapter is to state a relationship between the logical definability in
L% and the computational power of Lidia. Using results of the finite model theory, we show
that if the rules preconditions of an algorithm encoded by local computations can be expressed
in L7, then this algorithm can be implemented in Lidia. We will first state the descriptive
complexity of £} and derive the main result of this chapter. That is, all algorithms encoded by
local computations and whose preconditions are evaluated in PTIME can be implemented in
Lidia. We will also prove that in presence of user defined functions, Lidia is able to implement
any kind of algorithms encoded in the local computations environment.

Chapter 1

Preliminaries

Contents
1.1 Graphs Properties v v v v v v v v v i i e e e i e e e 7
1.1.1 Undirected Graphso 7
1.1.2 Graphsand Logics L Lo 9
1.1.3 Contractions and Minors o 10
1.1.4 Treewidth and Pathwidth 11
1.2 Randomized Algorithms and Random Walks 13
1.2.1 Randomized Algorithms L. 13
1.2.2 Random Walks L 14
1.3 Labeled Graphs and Coverings « v v v v v v v v 0 o o 0 v v 15
1.3.1 Labeled Graphs o 15
1.3.2 Coverings e 16
1.3.3 Quasi-coverings o e 17

1.1 Graphs Properties

In this section we give an overview of the terminology that is used in this thesis. We assume
that the reader is familiar with graph theory and algorithms. More background information
can be found in e.g. Harary [Har69] for graph theory and Cormen, Leiserson and Rivest
[CLR69| for algorithms. Finally, we will presented our distributed computation model and
show how it can be encoded using graph relabeling systems.

1.1.1 Undirected Graphs

Definition 1.1 A simple undirected graph G is a pair (V, E), where V is a set of vertices,
and E is a set of edges. Fach edge is an unordered pair of distinct vertices u and v, denoted
by {u,v}. The sets of vertices and edges of a graph G are respectively denoted by V(G) and
E(G). A multigraph G is a pair (V, E), where V is a set of vertices, and E is a multiset of
edges. A graph is either a simple graph or a multigraph. The cardinality of V(G) is usually
denoted by n, the cardinality of E(G) by m.

8 CHAPTER 1. PRELIMINARIES

In this chapter, the term graph refers to both simple graphs and multigraphs. In the remaining
chapters of the thesis, unless stated otherwise, we use the term graph for simple connected
undirected graph. In some cases, we use directed graphs (either simple of multigraphs): in a
directed graph, each edge is an ordered pair of vertices, and an edge from vertex w to v is
denoted (u,v).

Let G = (V, E) be a graph. For any edge e = {u,v} € E, u and v are called the end points
of e, and e is called an edge between w and v, or connecting u and v. Two vertices u,v € F
are adjacent (or neighbors) if there is an edge {u,v} € E. If two vertices v and v are adjacent,
we also say that u is a neighbor of v, and vice versa. A vertex v € V and an edge e € E are
called incident if e = {u, v} for some u € V. The degree of a vertex v in G is the number of
edges that are incident with v, and is denoted by deg(v).

Definition 1.2 A graph G’ is a subgraph of a graph G if V(G') C V(G) and E(G') C E(G).
If G' is a subgraph of G, then G is called s supergraph of G'. A graph G’ is the subgraph of G
induced by W, where W C V(Q), if V(G') =W and E(G') = {{u,v} € E | u,v € W}. We
also say G' is an induced subgraph of G. For any W C V(Q), the subgraph induced by W is
denoted by GIW]. A graph G1 = (V1, E1) is a spanning subgraph of G = (V, E) if V1 spans all
vertices of G, i.e., Vi = V.

A walk W in a graph G is an alternating sequence (v1,e1,v2, €2, ..., €y, Vpt1) of vertices and
edges (p > 0), starting and ending with a vertex, such that for each i, v; € V, and e¢; € F, and
e; = {vi,vi+1}. The walk W is also called a walk from v; to vp41. Vertices vy and v,y are
called the end points of the walk, all other vertices are inner vertices. We also called v; the
first vertex and v, the last vertex of the walk. The length of a walk is the number of edges
in the walk. We say a walk W' goes through a vertex v if v = v; for some @ with 1 <i <p+1,
and W avoids v if W does not go through v.

Definition 1.3 A path in a graph G is a walk in which all vertices are distinct (and hence all
edges are distinct). A cycle C in G is a walk in which all edges are distinct, and all vertices
are distinct, except for the first and the last vertex, which are equal.

A walk, path or cycle H in a graph can also be seen as a subgraph of GG, and we denote the
set of vertices in H by V(H), and the set of edges by F(H).

Definition 1.4 The distance between two vertices v and w in G is the length of a shortest
path from v to w in G. The diameter of a graph G, denoted A(G), is the greatest distance
between any two vertices of G.

Two vertices are connected in a graph G if there is a path between them. A graph G is
connected if every pair of vertices of G is connected. A (connected) component C of G is a
maximal connected subgraph of G, i.e., C is a subgraph of G which is connected, and there
is no subgraph of G which properly contains C' and is also connected. An edge e = {u,v} is
said to be pendant if deg(u) = 1.

Definition 1.5 A tree is a simple connected graph without cycles. A forest is a simple graph
without cycles, i.e., a graph is a forest if and only if each of its connected components is a
tree. Note that in a tree, there is a unique path between each pair of vertices. A spanning tree
of a graph G is a tree that spans all the vertices of G. A spanning forest of a graph G is a
forest that spans all the vertices of G.

1.1. GRAPHS PROPERTIES 9

A rooted tree is a tree T' with a distinguished vertex r € V(T') called the root of T. In a rooted
tree T', the descendants of a vertex v € V(T') are the vertices of which the path to the root
goes through v. The children of v are the descendants of v which have distance one to v. If v
is not the root, then the parent of v is the unique vertex of which v is a child. The leaves of
a rooted tree are the vertices without children. The vertices which are not leaves are called
internal vertices. The depth of a rooted tree T'is the maximum distance of any vertex in 7" to
the root. The level of a vertex v in a rooted tree T" equals the depth of 7" minus the distance
of v to the root. Hence the root has level d, where d is the depth, and the vertices on level
zero are leaves which have distance d to the root.

Definition 1.6 A complete graph or clique is a simple graph in which every two vertices are
adjacent. The complete graph on k vertices, denoted by Ky, is also called a k-clique. A clique
i a graph G is a subgraph of G which is a clique. The mazimum clique size of a graph G is
the mazimum number of vertices of any clique in G.

Definition 1.7 The neighborhood of a vertez v in G = (V, E) is the set of all vertices which
are neighbors of u. This set is denoted by Ng(u) = {v € V | {u,v} € E}. Obviously,
|INg(uw)| = deg(u). Ig(u) will stand for the set of all the edges incident to the vertez u.

Definition 1.8 For two vertices u,v € V(G), d(u,v) represents the distance between u and
v in G. Moreover, we denote by Bg(v, k) the ball of radius k with center v, that is the graph
with vertices set V,, = {vg € V|d(v,v9) < k} and edges set {e = (up,vo)|ug,vo € Vuo}. If k=1
we usually use Bg(v) instead of Bg(v,1).

Definition 1.9 Two graphs G; = (V1, E1) and Gy = (Va, E3) are said to be isomorphic if
there are bijections f : Vi — Vo and g : £y — Fo such that for each v € Vi and e € E1, v is
incident with e in Gy if and only if f(v) is incident with g(e) in Go. The pair (f,g) is called
an isomorphism from G1 to Gs.

If G; and G2 are simple graphs, then it suffices to give the bijection between the vertices of
G1 and G, i.e., G1 and G are isomorphic if there is a bijection f : Vi — V5 such that for
each u,v € Vq,{u,v} € Ej if and only if {f(u), f(v)} € Es. For simple graphs, we also say
that f is an isomorphism from G7 to Gs.

Definition 1.10 A homomorphism between graphs G = (V(G),E(G)) and H =
(V(H),E(H)) is a mapping v: V(G) — V(H) such that if {u,v} € E(G) then {y(u),v(v)} €

E(H). If vy is bijective and v~ is a homomorphism, then v is an isomorphism.

1.1.2 Graphs and Logics

A graph can also be considered as a logical structure of a certain type. Hence, properties of
graphs can be written in first-order logic or in second-order logic. It turns out that monadic
second-order logic, where quantifications over sets of vertices and sets of edges are used, is
a reasonably powerful logical language in which many usual graph properties can be written
and for which one can obtain decidability results [Cou90b|. These decidability results do not
hold for second-order logic, where quantifications over binary relations can also be used. The
goal of this section is to give present a simple presentation of the monadic second-order logic
of graphs (MSOL).

10 CHAPTER 1. PRELIMINARIES

Monadic Second-order Logic. MSOL for graphs G = (V, E) consists of a language in
which predicates can be built with

e the logic connectives A, V, =, =, < (with their usual meanings),

e individual variables which may be vertex variables (with domain V'), edge variables
(with domain E), vertex set variables (with domain P(V'), the power set of V'), and
edge set variables (with domain P(FE)), the existence and universal quantifiers ranging
over variables (3 and V, respectively), and

e the following binary relations:

— v € W, where v is a vertex variable and W a vertex set variable,

— e € F', where e is an edge variable and F' an edge set variable,

— “v and w are adjacent in G”, where v and w are vertex variables,

— “vis incident with e in G”, where v is a vertex variable, and e an edge variable,

— equality for variables.

Definition 1.11 (MS-definable) Graph properties that can be defined by an MSOL predi-
cate are called MS-definable graph properties.

1.1.3 Contractions and Minors

Let e = (x,y) be an edge of a graph G = (V, E). By G/e we denote the graph obtained
from G by contracting the edge e into a new vertex v., which becomes adjacent to all the
former neighbors of z and of y. Formally, G/e is a graph (V', E’) with vertex set V' :=
(V —{z,y} U{ve} and edge set E' := {{v,w} € El{v,w} Nn{z,y} = O} U {{ve, w}|{z,w} €
E—eVv{y,w} € E—e} (see Figure 1). More generally, if X is another graph and {V, |z € V(X)}

—_—
G Gle

Figure 1: Contracting the edge e = {z, y}

is a partition of V' into connected subsets such that, for any two vertices x,y € X, there is
a Vp —V, edge in G if and only if {z,y} € E(X), we call G an MX and write G = MX.
The sets V, are the branch sets of this MX. Intuitively, we obtain X from G by contracting
every branch set to a single vertex and deleting any parallel edges or loops that may arise. In
infinite graphs, branch sets are allowed to be infinite.

If V, =U CV is one of the branch sets above and every other branch set consists just of
a single vertex, we also write G/U for the graph X and vy for the vertex x € X to which U

1.1. GRAPHS PROPERTIES 11

contracts, and think of the rest of X as an induced subgraph of G. The contraction of a single
edge {u,u'} defined earlier can then be viewed as the special case of U := {u,u'}. Figure 2
shows the branch sets contraction of a graph G.

Y

Figure 2: Y 2 G = MX, so X is a minor of Y/

Proposition 1.1 G is an MX if and only if X can be obtained from G by a series of edge
contractions, i.e., if and only if there are graphs Gy,...,Gn and edges e; € G; such that
Go=G, G, =X, and G; +1=G;/e; for alli <n.

Proof. The proof of this proposition can be done by a simpler induction on k = |G| — |X|. O

Definition 1.12 If G = MX is a subgraph of another graph Y, we call X a minor of Y and
write X XY

Remark 1.1 Every subgraph of a graph is also its minor; in particular, every graph is its
own minor. By Proposition 1.1, any minor of a graph can be obtained from it by first deleting
some wvertices and edges, and then contracting some further edges. Conversely, any graph
obtained from another by repeated deletions and contractions (in any order), is its minor: this
18 clear for one deletion or contraction, and follows for several from the transitivity of the
manor relation (Proposition 1.1).

1.1.4 Treewidth and Pathwidth

In this section, we give some background information on the treewidth of a graph. The notion
of treewidth was introduced by Robertson and Seymour [RS83, RS86].

Definition 1.13 (Tree decomposition and Treewidth) . Let G = (V| E) be a graph. A
tree decomposition TD of G is a pair (T, X), where T = (I, F) is a tree, and X = {X;|i € I}
15 a family of subsets of V', one for each vertex of T, such that

o Uie/Xi =V,
e for each edge {v,w} € E, there is ani € I withv € X; and w € X;, and

o for alli,j,k €I, if j is on the path from i to k in T', then X; N X}, C X;.

12 CHAPTER 1. PRELIMINARIES

Figure 3: A graph G of treewidth two, and a tree decomposition T'D of width two of G.

The treewidth or width of a tree decomposition ((I,F),{X;|i € I}) is max;er|X;| — 1.The
treewidth of a graph G, denoted tw(G), is the minimum width over all possible tree decompo-
sitions of G.

The vertices of a tree in a tree decomposition are usually called nodes to avoid confusion with
the vertices of a graph. If a vertex v or the end points of an edge e are contained in X; for
some node ¢ of a tree decomposition, we also say node i contains v or e. An example of a
graph of treewidth two and a tree decomposition of width two of the graph is given in Figure
3. A tree decomposition is usually depicted as a tree in which each node i contains the vertices
of Xz

Definition 1.14 (Path Decomposition and Pathwidth) . A path decomposition PD of
a graph G is a tree decomposition (T, X) of G in which the tree T is a path (i.e. the nodes
of T have degree at most two). The pathwidth of a graph G is the minimum width over all
possible path decompositions of the graph, and is denoted by pw(G).

Let k be a positive integer. Graphs of treewidth at most k are also called partial k-trees (as
they are exactly the subgraphs of k-trees, see e.g. Kloks [Klo94] for definitions and proofs).
In the literature, many other notions have been defined which turned out to be equivalent to
the notions of treewidth or pathwidth. Bodlaender [BAF96] gave a list of these notions. There
are also many classes of graphs which have a constant bound on the treewidth or pathwidth,
or which are closely related to classes of graphs of bounded treewidth or bounded pathwidth.
For example, the forest are exactly the simple graphs of treewidth at most one. Series-parallel
graphs have a treewidth at most two, k-outerplanar graphs have treewidth at most 3k — 1
[BAF96].

Now we give a number of well-known properties of tree and path decompositions and
of graphs of bounded treewidth or pathwidth. Most of these properties have already been
noted by many authors (see e.g. Robertson and Seymour [RS83, RS86|, Scheffler [Sch89| and
Bodlaender [BAF96]). We present some results in the area of tree and path decompositions
that are of interest.

Lemma 1.1 (Scheffler [Sch89], Bodlaender [BdF96])
Let G be a graph.

1.2. RANDOMIZED ALGORITHMS AND RANDOM WALKS 13

1. The treewidth (or pathwidth) of any subgraph of G is at most the treewidth (or pathwidth)
of G.

2. The treewidth of G is the mazimum treewidth over all components of G.
3. The pathwidth of G is the mazimum pathwidth over all components of G.

4. The treewidth of G is the mazimum treewidth over all blocks of G.

Lemma 1.2 ([vAdF97]) Let G be a graph and TD = (T, X) a tree decomposition of G.

1. Let u,v € V(G), and let i,j € I be such that v € X; and v € X;. Then each node on
the path from i to j in T contains a vertex of every path from u to v in G.

2. For each connected subgraph G’ of G, the nodes in T which contain a vertez of G' induce
a subtree of T.

A rooted binary tree decomposition of a graph G is a tree decomposition (7', X') of G in which
T is a rooted binary tree.

Lemma 1.3 ([vAdF97]) Let G be a graph. There is a rooted binary tree decomposition of
minimum width of G with O(n) nodes.

Lemma 1.4 ([vAdF97]) Let G = (V, E) be a simple graph, let k > 1 a natural number, and
suppose tw(G) = k. Then |E| < k|V|— 3(k +1).

Lemma 1.5 Let G be a graph and let H be a minor of G. Then tw(H) < tw(G) and
pw(H) < pw(G).

1.2 Randomized Algorithms and Random Walks

1.2.1 Randomized Algorithms

A randomized algorithm or probabilistic algorithm is an algorithm which is allowed to flip
a truly random coin. In common practice, this means that the machine implementing the
algorithm has access to a pseudo-random number generator. The algorithm typically uses
the random bits as an auxiliary input to guide its behavior, in the hope of achieving good
performance in the "average case". Formally, the algorithm’s performance will be a random
variable determined by the random bits, with (hopefully) good expected value; this expected
value is called the expected runtime. The "worst case" is typically so unlikely to occur that
it can be ignored.

Definition 1.15 (Las Vegas Algorithm) A Las Vegas algorithm is a randomized algorithm
which is correct; that 1s, it always produces the correct result. Thus, the used randomization
only influence the resources used by the algorithm. A simple example is randomized quicksort,
where the pivot 1s chosen randomly, but the result is always a sorted sequence.

An alternative definition of a Las Vegas algorithm includes the restriction that the average-case
running-time must be finite.

14 CHAPTER 1. PRELIMINARIES

1.2.2 Random Walks

Let G be a connected graph on n vertices, and let v be a fixed vertex of G. A random walk
on G, beginning at v, is a stochastic process whose state at any time t is given by a vertex of
G; at time 0 it is at vertex v, and if at time ¢ it is at vertex u, then at time ¢ + 1 it will be
at one of the neighbors of u, each neighbor having been chosen with equal probability. The
random walk thus constitutes a Markov chain, with state transition probability p,, = 0 if v

is not adjacent to u and p,, = ﬁ if v is adjacent to v and u has degree d(u).

When dealing with randomness some probability space (2,.4,P) is usually involved. In
our case, we define) to be the sample space, A the set of all possible events and P is some
probability measure on 2. In this work we assume further, that the state space is always finite,
S = V. The function P : § x § — R with

P(u,v) = P[X1 = v|Xo = ul

is called the transition function; its values P(u,v) are called the (conditional) transition prob-
abilities from u to v.

Definition 1.16 A probability distribution w satisfying

m = @P this means that,
w(v) = Z m(u)P(u,v) for allv € S.
u€eS

is called a stationary distribution of the Markov chain { X }ren. With P representing the
probability transition matriz whose entries are all non negative and whose rows sum to 1. We
denote by Pr the transition probability with respect to the distribution .

Definition 1.17 [Cha99] We say that a Markov chain { X} }ren is reversible with respect to
the probability distribution w, if
PW[XO = Up, ...,Xm = um] = 'PW[X() = U, ...,Xm = UO]
for every m € N and every ug, ..., un, € S.
J. Chang [Cha99]| gave a simple condition for reversibility that we now state as a proposition.

For a complete proof of this proposition the manuscript of Wilhelm Huisinga [Hui03| can be
recommended.

Proposition 1.2 Let { X} }ren denote some Markov chain with transition matriz P, and let
7w denote some probability distribution. Then the Markov chain is reversible with respect to ,
if and only if the relation

m(w)P(u,v) = w(v)P(v,u)

holds for every u,v € S. In either case, w is a stationary distribution of { Xy ren-

Definition 1.18 Let u and v be two states. We say that v is accessible from w if it s
possible (with positive probability) for the chain ever to visit state v if the chain starts in state
w, or in other words,

P{ | J{Xn = v} Xo =u} >0,

n=0

1.3. LABELED GRAPHS AND COVERINGS 15

o We say u communicates with v if v is accessible from u and w is accessible from v.

o We say that the Markov chain is irreducible if all pairs of states communicate.

Theorem 1.1 [Cha99] Every irreducible Markov chain with finite state space admits a unique
stationary distribution that is positive everywhere.

Definition 1.19 The period D(u) of some state u € S is, by definition,
D(u) = ged{k > 1: P[X}, = u| X = u] = P*(u,u) > 0},

with the convention D(u) = oo, if there is no k > 1 with P > 0. If D(u) = 1, then the state
u 18 called aperiodic.

Definition 1.20 [Hui03] An irreducible Markov chain { Xy }ren is aperiodic, if there exists
at least one state u € S such that P(u,u) > 0.

Theorem 1.2 (Basic Limit Theorem) [Sen80, Cha99, Hui03] Let {Xy}ren be an irre-
ducible, aperiodic Markov chain having a stationary distribution w. Then for all initial distri-
butions m,

lim P, {X, =i} =x(i) foralli € S.

Theorem 1.2 states that for large n, the Markov chain X,, at time n is approximately dis-
tributed like 7, and moreover it is approximately independent of its history, in particular of
X,—1 and Xy. Thus the distribution of X,, for n >> 0 is almost the same, namely 7, re-
gardless of whether the Markov chain started at Xg = u or Xg = v for some initial states
u,v € S.

1.3 Labeled Graphs and Coverings

1.3.1 Labeled Graphs

In this thesis we will consider graphs whose vertices are labeled with labels from a recursive
set L. A graph labeled over L will be denoted by (G, \), where G = (V(G), E(G)) is a graph
and \: V(G) — L is the vertex labeling function. The graph G is called the underlying graph
and the mapping A is a labeling of G. Labeled graphs will be designated by bold letters like
G, H,... If G is a labeled graph, then G denotes the underlying graph.

The class of labeled graphs over some fixed alphabet L will be denoted by G (G if there
is no ambiguity). Let (G, \) and (G', \) be two labeled graphs. Then (G, \) is a subgraph of
(G', \), denoted by (G, \) C (G',), if G is a subgraph of G’ and X is the restriction of the
labeling X' to V(G) U E(G).

Definition 1.21 A mapping v: V(G) — V(G') is a homomorphism from (G,)\) to (G', \)
if v is a graph homomorphism from G to G’ which preserves the labeling, i.e., such that
N(y(v)) = A(v) holds for every v € V(G).

16 CHAPTER 1. PRELIMINARIES

1.3.2 Coverings

The notion of Covering is known from algebraic topology [Mas91]. Coverings have been
used for simulation [BL86] and for proving impossibility results on distributed computing
[Ang80, FLMS86|.

Definition 1.22 (Covering) We say that a graph G is a covering of a graph H via vy if v is a
surjective homomorphism from G onto H such that for every vertex v of V(G) the restriction
of v to Bg(v) is a bijection onto By (v(v)).

Naturally, coverings of labeled graphs are just coverings of underlying graphs preserving the
labeling.

Definition 1.23 (Proper Covering) A graph G is a proper covering of a graph H wvia v if
G is a covering of H via v and G and H are not isomorphic.

Definition 1.24 (Covering-Minimal) A graph G is called covering-minimal if there is no
graph H such that G is a proper covering of H via a morphism ~. That is, every covering
from G to some H 1is a bijection.

Figure 4: The morphism ~ is a covering from G to H.

Lemma 1.6 (|[Rei32]) Suppose that G is a covering of H via . Let T be a subgraph of H.
If T is a tree then y~Y(T) is a set of disjoint trees, each isomorphic to T.

By considering simple paths between two vertices, the previous lemma implies:

Lemma 1.7 Suppose that G s a covering of H via a morphism ~. There exists an integer q
such that for every vertezx v € V(H), |y~ *(v)| = q.

1.3. LABELED GRAPHS AND COVERINGS 17

The integer ¢ in the previous lemma is called the number of sheets of the covering. We also
refer to v as a g-sheeted covering. If ¢ =1, then G and H are isomorphic.

Example 1.1 A simple example of 2-sheeted covering is given in Figure 4. The image of each
vertezr of G is given by the corresponding Roman letter. Furthermore, we note that the image
of each vertex is also given by its position on the H pattern.

Figure 5 depicts the results of the following lemma.

Lemma 1.8 Let G be a covering of H via v and let v1,vy € V(G) be such that vi # vy and
v(v1) = y(v2). Then we have Bg(v1) N Bg(va) = O.

Figure 5: The preimages of a ball By of H build a collection of disjoint balls of G

1.3.3 Quasi-coverings

Quasi-coverings have been introduced in [MMW97]| to obtain impossibility proofs for local
detection of global termination. These are applications that, partially, behave like coverings.
The idea behind this notion is to enable the simulation of local computations on a given graph
in a restricted area of a larger graph, such that the simulation can lead to false conclusion. The
restricted area where we can perform the simulation will shrink while the number of simulated
steps increases.

Definition 1.25 Let K, H be two graphs and let ¢ be a partial function on V(K) that assigns
to each element of a subset of V(K) exactly one element of V(H). Then K is a quasi-
covering of H of size r if there exists a finite or infinite covering G of H wvia -y, vertices

18 CHAPTER 1. PRELIMINARIES

zk € V(K), zg € V(G), and an integer r > 0 such that:

1. Bxk(zk,r) is isomorphic via ¢ to Bg(zg,T),
2. |\V(Bk(zk,1))| > s,
3. the domain of definition of 0 contains Bk (zx,r)), and

4. 0 =y oy when restricted to V(Bk(zx,1)).

The basic ideas of Definition 1.25 are represented in Figure 6.

Figure 6: § : V(K) — V(H) is a quasi-covering of radius r. 7 : G — H represents the associated
covering.

Chapter 2

Local Computations and Graph
Relabeling Systems

Contents
2.1 The Computation Model o 000, 19
2.2 Graph Relabeling Systems v v v v v v v v v v 20
2.2.1 Graph Relabeling Systems with Priorities 21
2.2.2 Graph Relabeling Systems with Forbidden Contexts 21
2.3 Local Computations 0 i e 22
2.3.1 Distributed Computations of Local Computations 23
2.3.2 Proof Techniques 24
2.3.3 Notations 25
2.4 Local Computations and Coverings 26
2.5 Local Computations and Quasi-Coverings « « « v v v ¢« « . & 27

In this chapter we give formal definitions of the concepts of graph relabeling systems
and local computations. For a better understanding of these concepts we refer to the works
of Bauderon et al. [BMMS02] and Litovsky et al. [LMS99].

2.1 The Computation Model

Graph relabeling systems and, more generally, local computations in graphs are models which
provide general tools for encoding distributed algorithms, for proving their correctness and for
understanding their power [LMS99|. Standard considerations on distributed algorithms are
presented in [AW98, Bar96, Lav95, Lyn96, Tel00].

We consider a network of processors with arbitrary topology. It is represented as a con-
nected, undirected graph where vertices denote processors, and edges denote direct commu-
nication links. An algorithm is encoded by means of local relabellings. Labels attached to

19

20 CHAPTER 2. LocAL COMPUTATIONS AND GRAPH RELABELING SYSTEMS

vertices and edges are modified locally, that is on a subgraph of fixed radius k (k € N) of the
given graph, according to certain rules depending on the subgraph only (local computations).
The relabeling is performed until no more transformation is possible. The corresponding
configuration is said to be in normal form. Two sequential relabeling steps are said to be
independent if they are applied on disjoint subgraphs. In this case they may be applied in any
order or even concurrently.

Related Models. Among models related to the model described above there are local com-
putation systems as defined by Rosenstiehl et al. [RFH72|, Angluin [Ang80], Yamashita and
Kameda [KY96] and Boldi and Vigna [BV99|. In |[RFH72| a synchronous model is considered,
where vertices represent (identical) deterministic finite automata. The basic computation
step is to compute the next state of each processor according to its state and the states of its
neighbors. In [Ang80| an asynchronous model is considered within which a basic computation
step stands for the fact that two adjacent vertices exchange their labels and then compute
new ones. In [KY96] another asynchronous model is studied where a basic computation step
means that a processor either changes its state and sends a message or it receives a message.
In [BV99], networks are directed graphs colored on their arcs; each processor changes its state
depending on its previous state and on the states of its in-neighbors. Activation of processors
may be synchronous, asynchronous or interleaved.

2.2 Graph Relabeling Systems

Definition 2.1 A (graph) relabeling rule is a triple R = (Gr,Ar,\) such that (Gr, Ag)
and (Gr, N) are two labeled graphs. The labeled graph (Gr,Ar) is the left-hand side and the
labeled graph (GRr,Ny) is the right-hand side of R.

Definition 2.2 A graph relabeling system (GRS for short) is a triple R = (L, I, P) where L
1s a set of labels, I a subset of L called the set of initial labels and P a finite set of relabeling
rules.

The intuitive notion of computation step will then correspond to the notion of relabeling
step:

Definition 2.3 An R—relabeling step is a 5-tuple (G, \, R, o, ') such that R is a relabeling
rule in P and ¢ is both an occurrence of (Gr,Ar) in (G, \) and an occurrence of (Gr, Ng) in
(G, \N).

Intuitively speaking, the labeling A\’ of G is obtained from A\ by modifying all the labels of
the elements of p(Gg, Ar) according to the labeling A. Such a relabeling step will be denoted
by (G,\) — R (G, XN).

The notion of computation then corresponds to the notion of relabeling sequence:
Definition 2.4 A R-—relabeling sequence is a tuple (G,\o,Ro,00,A1,R1,91,\2,---, An—1,

Ry—1, on—1,\n) such that for every i, 0 < i <mn, (G, \;, Ri, i, \i+1) is a R—relabeling step.
The ezistence of such a relabeling sequence will be denoted by (G, \g) —75% (G, \n).

2.2. GRAPH RELABELING SYSTEMS 21

The computation stops when the graph is labeled in such a way that no relabeling rule
can be applied:

Definition 2.5 A labeled graph (G,) is said to be R—irreducible if there exists no occurrence
of (Gr,AR) in (G, \) for every relabeling rule R in P.

For every labeled graph G in Gr we denote by Irredgr(G) the set of all R—irreducible
labeled graphs G’ such that G —7%, G’. Intuitively speaking, the set Irredg(G) contains all
the final labellings that can be obtained from an [—labeled graph G by applying relabeling
rules in P and may be viewed as the set of all the possible results of the computation encoded
by the system R.

2.2.1 Graph Relabeling Systems with Priorities

The first mechanism we will consider is obtained by introducing some priority relation on the
set of relabeling rules. It is obtained by introducing some priority relation, denoted >, on
the set of relabeling rules. A relabeling rule R is applied if there exists no occurrence of a
relabeling rule R’ with R’ > R which intersects R (i.e. R and R’ are applied on subgraphs
having vertices in common).

Definition 2.6 A graph relabeling system with priorities (PGRS for short) is a 4-tuple R =
(L,I,P,>) such that (L,I,P) is a graph relabeling system and > is a partial order defined on
the set P, called the priority relation.

An R—relabeling step is then defined as a 5-tuple (G, \, R, p, \') such that R is a relabeling
rule in P, ¢ is both an occurrence of (Gr,Ar) in (G,\) and an occurrence of (Gr,) in
(G, XN') and there exists no occurrence ¢ of a relabeling rule R’ in P with R' > R such that

©(GRr) and o(Gr) intersect in G (that is V(p(GRr)) NV (p(Gr)) = 0).

The notion of relabeling sequence is defined as previously.

2.2.2 Graph Relabeling Systems with Forbidden Contexts

The idea developed here is to prevent the application of a relabeling rule whenever the cor-
responding occurrence is “included” in some special configuration, called a context. More
formally, we have:

Definition 2.7 Let (G, \) be a labeled graph. A context of (G, \) is a triple (H, p, 1) such
that (H,) is a labeled graph and v an occurrence of (G, \) in (H,).

Definition 2.8 A relabeling rule with forbidden contexts is a 4-tuple
R = (GRr,Ar, Ny, Fr) such that (Ggr,Ar, Ng) is a relabeling rule and Fg is a finite set of
contexts of (GRr, AR).

Definition 2.9 A graph relabeling system with forbidden contexts (FCGRS for short) is a
triple R = (L, 1, P) defined as a GRS except that the set P is a set of relabeling rules with
forbidden contexts.

22 CHAPTER 2. LocAL COMPUTATIONS AND GRAPH RELABELING SYSTEMS

A relabeling rule with forbidden contexts may be applied on some occurrence if and only
if this occurrence is not “included” in an occurrence of some of its forbidden contexts. More
formally:

Definition 2.10 An R—relabeling step is a 5-tuple (G, \, R, ¢, \') such that R is a relabeling
rule with forbidden contexts in P, ¢ is both an occurrence of (Gr,Ar) in (G,\) and an
occurrence of (Gr,Ng) in (G,X), and for every context (H;, j1;,;) of (Gr,Ar), there is no
occurrence @; of (H;, ;) in (G, \) such that ©;(v;(Gr,Ar)) = ¢(GRr, AR).

The comparison between the expressive power of PGRSs and FCGRSs, together with some
other types of GRSs, has been done in [LMS95|. In particular, it has been proved that PGRSs
and FCGRSs are equivalent: for every PGRS (resp. FCGRS) there exists a FCGRS (resp.
PGRS) achieving the same computation.

2.3 Local Computations

Graph relabeling systems, as introduced in the previous section, are in fact an illustration
of a more general mechanism called local computations. Local computations as considered
here can be described in the following general framework. For simplicity we consider local
computations on labeled balls of radius 1, although the definitions are similar for balls of
radius k for a constant k.

Labels are modified locally, that is, on a subgraph of fixed radius k of the given graph,
according to certain rules depending on the subgraph only. The relabeling is performed until
no more transformation is possible, i.e., until a normal form is obtained.

In this part we give formal definitions of local computations. Intuitively, local computations
are characterized by applications of rules such that: an application of a rule to a ball depends
exclusively on the labels appearing in the ball and changes only these labels.

Definition 2.11 A graph rewriting relation is a binary relation R C G x Gr, closed under
1somorphism. The transitive closure of R is denoted R*.

An R—rewriting chain is a sequence Gi,Ga,..., G, such that for every i, 1 < i < n,
G; R Gjt1. A sequence of length 1 is called a R—rewriting step (a step for short).

By “closed under isomorphism” we mean that if G ~ G and G R G/, then there exists a
labeled graph G/ such that Gy R G} and G| ~ G'.

Definition 2.12 Let R C G, X G, be a graph rewriting relation.

1. R is a relabeling relation if whenever two labeled graphs are in relation then their under-
lying graphs are equal (not only isomorphic):

GRH — G=H.

When R is a relabeling relation we will speak about R—relabeling chains (resp. step)
instead of R—rewriting chains (resp. step).

2.3. LocAL COMPUTATIONS 23

2. A relabeling relation R is local if whenever (G,\) R (G, \), the labellings X\ and X' only

differ on some ball of radius 1 :
Jv e V(G) such that ¥V x ¢ V(Bg(v,1)) U E(Bg(v,1)), Ax) = N(z).
We say that the step changes labels in Bg(v,1).

3. An R—normal form of G € Gr, is a labeled graph G’ such that
G R* G/, and G' R G” holds for no G in Gr. We say that R is noetherian if for every
graph G in G, there exists no infinite R—relabeling chain starting from G. Thus, if a
relabeling relation R is noetherian, then every labeled graph has an R—mnormal form.

Roughly speaking, a relabeling relation R is locally generated if the knowledge of its
restriction on centered balls suffices to completely determine R. In other words, the relabeling
of a ball does not depend on the rest of the graph:

Definition 2.13 Let R be a relabeling relation. The relation R is locally generated if for every
labeled graphs (G, \), (G,X), (H,n), (H,n') and every vertices v € V(G), w € V(H) such
that the balls Bg(v,1) and By (w, 1) are isomorphic via ¢: V(Bg(v,1)) — V(Bg(w, 1)) and
o(v) = w, the following three conditions:

1.V z € V(Bg(v,1)) UE(Bg(v, 1)), M) =n(e(x)) and X (z) = n'(¢(x)),
2.V x ¢ V(Ba(v, 1)) U E(Bg(v, 1)), Az) = N(x),
8.V x ¢ V(Br(w,1)) UE(Bg(w,1)), n(x) =n(z),

imply that (G, \) R (G, N) if and only if (H,n) R (H,1).

Finally, local computations are the computations defined by a relation locally generated.

2.3.1 Distributed Computations of Local Computations

The notion of relabeling sequence corresponds to a notion of sequential computation. Let
us also note that a locally generated relabeling relation allows parallel rewritings, since non-
overlapping balls may be relabeled independently. Thus we can define a distributed way of
computing by saying that two consecutive relabeling steps concerning non-overlapping balls
may be applied in any order. We say that such relabeling steps commute and they may
be applied concurrently. More generally, every two relabeling sequences such that the latter
one may be obtained from the former one by a succession of such commutations lead to the
same resulting labeled graph. Hence, our notion of relabeling sequence may be regarded as
a serialization [Maz87| of some distributed computation. This model is clearly asynchronous:
several relabeling steps may be done at the same time but we do not require that all of them
have to be performed. In the sequel we will essentially deal with sequential relabeling sequences
but the reader should keep in mind that such sequences may be done in a distributed way.

24 CHAPTER 2. LocAL COMPUTATIONS AND GRAPH RELABELING SYSTEMS

2.3.2 Proof Techniques

Graph relabeling systems provide a formal model for expressing distributed algorithms. The
aim of this section is to show that this model is suitable for studying and proving properties
of distributed algorithms.

Definition 2.14 A graph relabeling system R is noetherian if there is no infinite R-relabeling
sequence starting from a graph with initial labels in L.

From the above definition it can be deduced that, if a distributed algorithm is encoded by a
noetherian graph relabeling system then this algorithm always terminates. In order to prove
that a given system is noetherian we generally use the following technique.

Let (S,<) be a partially ordered set with no infinite decreasing chain. That is, every
decreasing chain x1 > x9 > -+ >z, > ... in S is finite.

Definition 2.15 We say that < is a noetherian order compatible with R if there exists a
mapping f from G to S such that for every R-relabeling step (G, A\, R, ¢, \') we have f(G,\) >
f(GN).

It is not difficult to see that if such an order exists then the system R is noetherian: since
there is no infinite decreasing chain in S, there cannot exist any infinite R-relabeling sequence.

In order to prove the correctness of a graph relabeling system, that is the correctness of
an algorithm encoded by such a system, it is useful to exhibit

i) some invariant properties associated wi e system (by invariant property, we mean here

)) .ant 14 iated with th t by i iant t h
some property of the graph labeling that is satisfied by the initial labeling and that is
preserved by the application of every relabeling rule).

(i) some properties of irreducible graphs. These properties generally allow to derive the
correctness of the system.

We illustrate these techniques by considering the following simple graph relabeling system
Ri1={L1,Z1,P}. We define £1 = {N,A,0,1}, Z; = {N, A,0} and P = {R} where R is the
relabeling rule defined below. We assume that initially all edges have label 0, a unique vertex
is labeled A and all other vertices are N-labeled.

A N A A
R: o2 o — — o

At each step of the computation, an A-labeled vertex w may activate any of its neutral
neighbors, say v. In that case, u keeps its label, v becomes A-labeled and the edge {u,v}
becomes 1-labeled. Hence, several vertices may be active at the same time. Concurrent steps
will be allowed provided that two such steps involve distinct vertices. The computation stops
as soon as all the vertices have been activated. Thereafter, the spanning tree is given by all
the 1-labeled edges. Figure 7 describes a sample computation using this algorithm. According
to the previous discussion, the reader should keep in mind that some of the relabeling steps
may be applied concurrently.

Termination: Let f be the mapping from G, to the set of natural integers N which associates
with each £i-labeled graph the number of its N-labeled vertices. Observing that this number

2.3. LocAL COMPUTATIONS 25

1 0 i 0 jl 1
1 1 1
— AG—OA —> AS\—OA —> AS\—MOA
0| 1 0| 1 0| 1
1 1
Ne—L oA AS—O A AO—O A

Figure 7: Distributed computation of a spanning tree

strictly decreases when we apply the relabeling rule R; we get that (N,>) is a noetherian
order compatible with the system R;. Thus R is a noetherian system.

Correctness: Let G be a Li-labeled graph and P;, P» be the following properties:

P; : Every 1-labeled edge is incident with two A-labeled vertices,

P : The subgraph of G made of the 1-labeled edges and the A-labeled vertices has no cycle.

Every Z;-labeled graph satisfies P; and P, since it has no 1-labeled edge. Moreover, these two
properties are clearly preserved when we apply the rule R;. Thus, P, and P, are invariant
with respect to R;.

Let now G be any Zj-labeled graph having at least one A-labeled vertex and G’ be a
labeled graph in Irredgr,(G). Considering the relabeling rule Ry, G’ cannot have any N-
labeled vertex. From property P», we get that the subgraph of G’ induced by the 1-labeled
edges has no cycle. If G has exactly one A-labeled vertex we thus obtain a spanning tree
of G. If G has more than one A-labeled vertex we obtain a spanning forest having as many
components as the number of these initially A-labeled vertices.

The complexity of a distributed algorithm encoded by a graph relabeling system can also
be studied by using classical techniques from rewriting theory. The space complexity is well-
captured by the number of labels that are used, and the (sequential) time complexity by the
length of a relabeling sequence. The degree of parallelism may also be measured by considering
the ratio between the length of a parallel relabeling sequence and the length of a sequential
relabeling sequence. Of course, this ratio strongly depends on the specific topology of the
graph under consideration.

2.3.3 Notations

We explain the convention under which we will describe graph relabeling systems through out
the rest of this thesis. If the number of rules is finite then we will describe all rules by their
preconditions and relabellings. We will also describe a family of rules by a generic rule scheme
(“meta-rule”). In this case, we will consider a generic star-graph of generic center vy and of
generic set of vertices B(vg, 1). If A(v) is the label of v in the precondition, then X (v) will be

26 CHAPTER 2. LocAL COMPUTATIONS AND GRAPH RELABELING SYSTEMS

its label in the relabeling. We will omit in the description labels that are not modified by the
rule. This means that if A(v) is a label such that X' (v) is not explicitly described in the rule
for a given v, then N (v) = A(v). The same definitions also hold for the relabeling of edges.
The following relabeling rule depicts the above described rule R used for the computation of
a spanning tree in a connected anonymous graph G.

R1: Find and Mark

Precondition :

— AMuo) = A,

— Jv € B(vg, 1)(v # vg AA(v) =N A A(wvg,v)) = 0.
Relabeling :

— MN(vg,v) :=1,

- N(v) = A.

2.4 Local Computations and Coverings

We now present the fundamental result connecting coverings and locally generated relabeling
relations. Its states that whenever G is a covering of H, then every local computation in H
can be lifted to a local computation in G, which is compatible with the covering relation.

Lemma 2.1 (Lifting Lemma) Let R be a locally generated relabeling relation and let G be
a covering of H via . Moreover, let HR* H'. Then there exists a labeled graph G’ such that

e GR*G' and
e G’ is a covering of H'.

Proof. It suffices to show the claim for the case HR H’. Suppose that the relabeling step
changes the labels of the ball By (v), for some vertex v € V(H). We may apply this relabeling
step to each of the disjoint labeled balls of v~ (Bg(v)), since they are isomorphic to By (v).
This yields the labeled graph G’ which satisfies the claim. This result is depicted in the
following commutative diagram:

G G’

R*

Covering Covering

H/
R*

2.5. LocAaL COMPUTATIONS AND QUASI-COVERINGS 27

2.5 Local Computations and Quasi-Coverings

In contrast with the situation described in Section 2.4, we use quasi-coverings to depict con-
figurations where only relabeling chains of bounded length can be simulated.

Lemma 2.2 (Quasi-Lifting Lemma) Let R be a locally generated relabeling relation and
let G be a quasi-covering of H of radius r via . Moreover, let HRH'; Then there exists G’
such that

e GR*G' and

e G’ is a quasi-covering of radius v — 2 of H'.

Proof. Let Gy be the associated covering, z be the center of the ball of radius r» and ¢
be defined as introduced in Definition 1.25. Suppose now that the relabeling step HR H’
applies rule Ry and modifies labels in the ball By (v), for some vertex v € V(H). Ry can
also be applied to all the balls 6~ 1(Bpy(v)) yielding Gj and §. It applied also to the balls
7~ Y(Bm(v)) that are included in Bg(z,7), since they are also isomorphic to Bg(v). We get G/
and ' satisfying the quasi-covering properties with radius r — 2: consider w in Bg(z,r — 2):
since any ball containing w is included in Bg(z,r), w and /(w) have the same label. This
result is depicted in the following commutative diagram:

G G’

R*

quasi-coyvering quasi-coyering
of radius r of radius r— 2

H/

R*

O
We illustrate the use of the covering concepts in the local computations framework by consid-
ering the election problem in asynchronous distributed systems.

The Election Problem. The election problem is one of the paradigms of the theory of dis-
tributed computing [Tel00|. Considering a network of processors we say that a given processor
p has been elected when the network is in some global state such that the processor p knows
that it is the elected processor and all other processors know that they are not. Using our
terminology, it means that we get a labeling of the graph in which a unique vertex has some
distinguished label.

This problem may be considered under various assumptions [Tel00]: the network may be
directed or not, the network may be anonymous (all vertices have the same initial label) or
not (every two distinct vertices have distinct initial labels), all vertices, or some of them, may
have some specific knowledge on the network or not. This knowledge concerns, for instance,
the diameter of the network, the total number of vertices or simply an upper bound of these
parameters. A general impossibility result which summarize previous results has been obtained
in [GMMO00]. We say that v knows the topology of G if v’s label encodes the incidence matrix
of a graph G’ ~ G, but no information enables v to know which vertex of G’ corresponds to v.

28 CHAPTER 2. LocAL COMPUTATIONS AND GRAPH RELABELING SYSTEMS

Let G be a graph which is not covering-minimal and let H be such that G is a proper covering
of H via the morphism ~. A subgraph K of G is free modulo ~y if v~!(7(K)) is a disjoint union
of graphs isomorphic to K. We say that a labeling A is y—lifted if

Y(z) =v(y) = A=) = A(y) .

We say that an algorithm operates on subgraphs from a given set S if every relabeling step is
performed only on subgraphs of the given graph, which belong to S. Using coverings Godard
et al. [GMMOO0| have proved the next proposition.

Proposition 2.1 Let G be a graph which is not covering-minimal and let v be a covering
from G onto some graph H £ G. Then there is no election algorithm for G which operates on
subgraphs free modulo -y, even if the topology of G is known by each vertex of G.

In [Maz97|, Mazurkiewicz gives an election algorithm for the family of graphs which are
minimal for the covering relation when we know the size; a characterization of families of graphs
for which there exists an election algorithm has been obtained in [GM02]. This characterization
relies on the following theorem.

Theorem 2.1 Let G be a class of connected labeled graphs. There exists an election algorithm
for G if and only if elements of G are minimal for the covering relation and VG € G Jhg >0
such that G has not quasi-coverings of size greater than hg in §G.

Many other works have been performed in order to get a better characterization of several
distributed computation models. Yamashita and Kameda [YK96], Boldi et al. [BCG96b] and
Chalopin et al. [CM04, CMZ04]| characterize families of graphs in which election is possible
under different models of distributed computations. All these works took advantage of the
covering concepts or of other mathematical notions such as symmetricity or fibration, that are
closely related to coverings.

First Part

Synchronizers in the Local Computations
Framework

network synchronization consists in taking measures to define a structure which

allows to control the computation steps of different processes. In this sequel, we

are specially interested in structures that enable to divide the computation of an

asynchronous distributed system in rounds such that there exists a small upper
bound (generally 1) on the round difference between any two processes in the whole network.
Once a network synchronization has been reached, it is possible to run any synchronous
distributed algorithm in the so constructed distributed framework.

In this part, we will first present the notion of network synchronizer and state the most
important properties that are inherent to any network synchronizer. Thereafter, we will depict
the example of a simple synchronizer that does not need any knowledge on the underlying
network and ensures for any process a synchronization at distance at most 1.

Throughout the rest of this part, we will point out various synchronization protocols
encoded by local computations. These are :

e Synchronizer based on the algorithm from Shi et al. [SSP85] (Section 3.3).
e Randomized synchronization (Section 3.4).
e Synchronization in networks with distinguished process (Section 3.5).

e Synchronization in tree shaped networks (Section 3.6).

In the last section, we will introduce a general methodology that enables the construction of
synchronizers in fully asynchronous distributed systems. This methodology will be backed up
by an example showing a synchronizer using the SSP procedure. All the results of this part
appear in the Proceeding of the Second International Conference on Graph Transformations
[MMOS04].

30

Chapter 3

Synchronizing Distributed Algorithms

Contents
3.1 The Synchronizers « v v v v v v v v v vttt v o v v oo oo o 31
3.2 Synchronizer Properties v v v vt v v v vt 32
3.3 A Synchronizer Protocol Based on the SSP Algorithm 34
3.3.1 The SSP Algorithm 34
3.3.2 The SSP Synchronizer L. 35
3.4 Randomized Synchronization Algorithm (RS Algorithm) 37
3.4.1 Correctness of the Algorithm 40
3.5 Synchronization in Graphs with a Distinguished Vertex 42
3.6 Synchronization in Trees v v v v v v v v v o v v v v 0o 46
3.7 Building Synchronizers 00000, 51
3.7.1 Methodology to construct a synchronizer 51
3.7.2 A General Overview 52

3.1 The Synchronizers

Distributed algorithms are studied under various models. One fundamental criterion is syn-
chronous or asynchronous [AW98, CM88, Lyn96, Tel00].

In the synchronous model, we assume that there is a global clock and that the operations
of components take place simultaneously: at each clock tick an action takes place on each
process. This is an ideal timing model and this is not what happens in most distributed
systems.

In fact, synchronization in networks may be viewed as a control structure which enables
to control relative steps of different processes; it may be illustrated by the following examples:

1. the processors execute actions in lock-steps called pulses or rounds. In a pulse, a process
p executes the following sequence of discrete steps:

(a) p sends a message,

31

32 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

(b) p receives some messages

(¢) p performs local computations;

2. another assumption is that computation events of pulse p appear after computation
events of pulse p — 1 and all messages sent in pulse p are delivered before computations
events of pulse p + 1;

3. if each process is equipped with a counter for local computations, we may assume that
the difference between two counters is at most 1; and more generally, for a given non
negative integer £ we may assume that the difference between any two counters is at
most k.

4. some algorithms need some synchronization barriers applied to a group of processes, it
means that all group members are blocked until all processes of the group have reached
this barrier.

In the asynchronous model there is no global clock, separate components take steps at
arbitrary relative speeds. It is assumed that messages are delivered, processes perform local
computations and send messages, but no assumption is made about how long it may take.

There exists also intermediate models like models assuming the knowledge of bounds on
the relative speeds of processors or links.

In this chapter we present several methods for the simulation of synchrony on asynchronous
distributed systems by means of local computations. These methods try to reduce the variation
of pulses between the processes of the network. Synchronizations have been already used in
the context of local computations in [BCGT96a, RFH72, KY96]| they enable, for example, the
computation of the view (the local knowledge) of a vertex.

Concepts of a synchronizer. A synchronous distributed system is organized as a sequence
of pulses: in a pulse each processor performs a local computation. In an asynchronous system
the speed of processors can vary, there is no bounded delay between consecutive steps of
a processor. A synchronizer is a mechanism that transforms an algorithm for synchronous
systems into an algorithm for asynchronous systems.

As the non-determinism in synchronous systems is weaker, in general, algorithms for syn-
chronous systems are easier to design and to analyze than those for asynchronous networks.
In asynchronous systems, it is difficult to deal with the absence of global synchronization of
processes. Consequently, it is useful to have a general method to transform an algorithm for
synchronous networks into an algorithm for asynchronous networks. Therefore, it becomes
possible to design a synchronous algorithm, test it and analyze it and then use the standard
method to implement it on an asynchronous network. A synchronizer operates by generating
a sequence of local clock pulses at each processor. An introduction and the main results about
synchronizers may be found in [AW98, CM88, Lyn96, Pel00, Tel00].

3.2 Synchronizer Properties

Throughout the rest of this chapter, several distributed synchronization protocols will be
presented as well was the proofs related to their correctness.

3.2. SYNCHRONIZER PROPERTIES 33

In this framework, the operations of processes take place in a sequence of discrete steps
called pulses: we represent a pulse by a counter, then we associate to each process a pulse
number which is initialized to 0 or 1. At each step, a process goes from pulse ¢ to pulse i + 1.

All of these protocols involve synchronizing the system at every synchronous round. This
is necessary because the protocols are designed to work for arbitrary synchronous algorithms.
All the synchronizers we will build are “global”, in the sense that they involve synchronization
among arbitrary vertices in the whole network. To preserve this “global” synchronization,
each synchronizer has to satisfy some properties. The essential property we seek to preserve
in translating a generic synchronous algorithm Ay into an asynchronous algorithm A, is that
the pulse difference between two arbitrary vertices is at most 1. In order to ensure the overall
and anytime satisfaction of this property, we begin by requiring pulse compatibility in the
network. This means that a vertex can only increase its pulse, when it is sure that there
is no vertex in the network that is still in a lower pulse. This is guaranteed by the validity
of Property 2. Furthermore, we strengthen our synchronization assumption by forcing pulse
convergence at any time. By pulse convergence we mean the fact that all the vertices of a
network have simultaneously to be in pulse 7 before any vertex starts the pulse 7 + 1. Pulse
convergence is stated as Property 1. Thus, the correctness of Property 3 is directly deduced
from the pulse compatibility and the pulse convergence properties.

Property 1 (Convergence) Let (w > 0) be the mazimum pulse that has been reached so
far. After a finite number of steps T > 0, all the vertices of G are in the same pulse .

Property 2 (Pulse compatibility) A vertex u in G changes its pulse p(u) only when there
is no vertex v in G such that v # u and p(v) < p(u).

Property 3 (Speed Limitation) At any time t, the pulse difference between two vertices v
and u of a network G is at most 1.

Definition 3.1 (Correctness) A synchronizer is correct if the convergence, pulse compati-
bility and the speed limitation properties are satisfied.

A simple Synchronizer. We recall here the synchronization as presented and used in
[RFHT72]. On each vertex v of a graph there is a counter p(v), the initial value of p(v) is 0. At
each step the value of the counter p(vg) depends on the value of the counters of the neighbors
of vy more precisely if p(vg) = i and if for each neighbor v of vy p(v) =i or p(v) =i+ 1 then
v is considered as safe and the new value of p(vg) is i + 1.

R1: The synchronization rule

Precondition :

— p(vo) =1,

— Yv € B(vg,1) p(v) =i or p(v) =i+ 1.
Relabeling :

— p(vg) =i+ 1.

34 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

Proposition 3.1 For all vertices v1 and v
[p(v1) — p(v2)] < d(v1,v2).

Proof. According to rule R1, this proposition can be shown by a simple induction on the
distance between vertices O

Remark 3.1 This synchronization does not need any knowledge on the graph, in particular
on its size.

This synchronization is equivalent to the synchronization described in the introduction
where processors execute actions in lock-steps called pulse (or round): in a pulse a process
sends a message, receives some messages and performs a local computation.

In fact, to implement this synchronization, a counter modulo 3 is sufficient: each process
needs to compare the value of its counter to the value of each neighbor. More precisely, for each
process vy and for each neighbor v of vg we determine if : p(vg) = p(v) — 1, or p(vy) = p(v),
or p(vg) = p(v) + 1. Finally, the synchronization may encoded by:

R’1 : The synchronization rule

Precondition :

- p(UO) == i7
— Vv € B(vg,1) p(v) =i mod 3 or p(v) = (i + 1) mod 3.

Relabeling :
— p(vg) := (i + 1) mod 3.

The a synchronizer [Tel00] is similar to the synchronizer presented in this section. In fact,
the precondition of rule R’1 expresses that the vertex vg is safe. In contrast to the o synchro-
nizer, a vertex vy generates the next pulse as soon as it is safe. It does not wait until all its
neighbors become safe. This synchronizer does not guarantee the pulse compatibility and the
Convergence properties. Thus, it does not satisfy Property 3. It is therefore not appropriated
to perform a “global” synchronization in a network. The next section will be devoted to the
presentation of synchronizers that are able to preserve a “global” synchronization at every
pulse.

3.3 A Synchronizer Protocol Based on the SSP Algorithm

3.3.1 The SSP Algorithm

We describe in our framework the algorithm by Szymanski, Shi and Prywes (the SSP algorithm
for short) and then the synchronizer.

We consider a distributed algorithm which terminates when all processes reach their local
termination conditions. Each process is able to determine only its own termination condition.
The SSP algorithm detects an instant in which the entire computation is achieved.

3.3. A SYNCHRONIZER PROTOCOL BASED ON THE SSP ALGORITHM 35

Let G be a graph such that a boolean predicate P(v) and an integer a(v) is associated with
each vertex v in G. Initially P(v) is false, the local termination condition is not reached, and
a(v) is equal to —1. Transformations of the value of a(v) are defined by the following rules.

Each local computation acts on the integer a(vg) associated to the vertex vg; the new value
of a(vp) depends on values associated to vertices of B(vg,1). More precisely, let vy be a vertex
and let {vy,...,vq} the set of vertices adjacent to vp.

e If P(vg) = false then a(vg) = —1;

o if P(vy) = true then a(vg) =1+ Min{a(v;) |0 <k < d}.
We consider the following assumption: for each vertex v the value of P(v) eventually becomes
true and remains true for ever. We will use the following notation.

Definition 3.2 (Associated relabeling chain) Let (G;)o<; be a relabeling chain associated
to SSP’s algorithm. We denote by a;(v) (resp. P;(v)) the integer (resp. the boolean) associated
to the vertex v of G;.

Proposition 3.2 ([SSP85]) Let (G;)o<i<n be a relabeling chain associated to SSP’s algo-
rithm; let v be a vertex of G, we suppose that h = a;(v) > 0. Then :

Vwe V(G) d(v,w) <h=a;(w)>0.

Let PY be a global predicate that is satisfies if and only if P(v) is true for all vertices v of the
graph G. From the above property we deduce that a vertex v can detect the validity of P if
it has knowledge of one of the following network parameters:

1. The size n of the graph G
2. An upper bound m of the size n
3. The diameter A(G) of the graph G

4. An upper bound of the diameter A(G)

3.3.2 The SSP Synchronizer

In this subsection we introduce a new synchronization protocol. This protocol is based on the
SSP algorithm.

Let u be a vertex, the integer p(u) denotes the value of the pulse associated to the
vertex u. In our assumption, a vertex v satisfies the stable properties, if there is no vertex
u € Bg(v,1) such that p(u) # p(v). Before giving a formal description of this algorithm, we
have to explain the way it works.

Let G be a graph with diameter D = A(G). To each vertex v of G, we associate two
integers p(v) and a(v), where p(v) denotes the pulse and a(v) denotes the SSP value for the
vertex v. Initially, p(v) and a(v) are respectively set to 1 and 0.

36 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

A vertex v can start the next pulse (p(v) = p(v) + 1) and its counter a(v) is reset to 0
when it detects that the value of the pulse of all the vertices is equal to p(v). Now, we give a
formal description of the above arguments.

Consider a labeling function A, where A : V' — [1..00] x [0..D]. Initially all vertices are labeled
(1,0). The graph relabeling system is Ry = (L1, 11, P1) defined by Ly = {[1..00] x [0..D]},
I = {(1,0)}, P = {R1,R2} where R1 and R2 are the relabeling rules described below.
Consider a vertex vy, the SSP synchronization is defined by:

R1 : The observation rule

Precondition :

— Alwo) = (p(vo), a(vo)),

— a(v) < D,

— Vo € B(v, 1) p(v) = p(vo),

— a(vy) = Min{a(v) | v € B(vg, 1) and p(v) = p(vo)}.
Relabeling :

— N(vo) := (p(vo), alvo) + 1)

R2 : The changing phase rule

Precondition :

— AMwo) = (p(vo), D).
Relabeling :

— N(vo) == (p(vo) + 1,0).

We denote by p;(v) (resp. a;(v)) the pulse (resp. the integer) associated to the vertex v
of GZ

For the correctness of this algorithm we state some invariants.

Fact 3.1
Pit1(v) > pi(v).

Fact 3.2 If piy1(v) = pi(v) + 1 then a;(v) = D.
Lemma 3.1 If p;(v) = 7 and a;(v) = h then:
Vw e V(G) dv,w) <h= p_p(w)>m.

Proof. We show the lemma by induction on . If ¢ = 0 the property is obvious.

First we assume that p;+1(v) = p;(v) = 7 and a;41(v) = a;(v) = h. By the inductive
hypothesis: d(v,w) < h = p;_p(w) > w. From Fact 3.1, p;_p+1(w) > pi—p(w) > w. Thus
p(i-i—l)—h(w) > .

3.4. RANDOMIZED SYNCHRONIZATION ALGORITHM (RS ALGORITHM) 37

Now we assume that p;+1(v) = p;(v) = 7 and a;41(v) = a;(v) + 1 = h. If d(v,w) < h =
a;(v) + 1 then let u be such that d(v,u) =1 and d(u,w) = a;(v) = h — 1.

We have a;41(v) = a;(v)+1 = pi(u) > pi(v) > 7 and a;(u) > h—1 (by the precondition
of the observation rule). By the inductive hypothesis applied to the vertex u, p;_(,—1)(w) > 7
and finally p(;41y—p(w) > 7.

The last case is p;4+1(v) = p;(v) + 1, necessary a;+1(v) = 0 and this achieves the proof. O
From this lemma and Fact 3.1, it follows:

Corollary 3.1 Ifp;(v) =7 and a;(v) =h then d(v,w) < h = p;(w) > 7.
Lemma 3.2 If p;(v) =7 and p;(w) =7 + 1 then Yu € V(G) (pi(u) =7 or p;(u) =7+ 1).

Proof. Let j be such that p;(w) = 7 and p;y1(w) = 7+ 1, by the precondition of the phase
rule and the previous corollary:

Vu e V(G) pj(u) > .

For the same reasons, as p;(v) = 7, there does not exist u such that p;(u) > = + 1. O

Theorem 3.1 (Correctness) The synchronization protocol obtained by using the graph re-
labeling system Ry is correct.

Proof. The proof of this theorem can easily be deduced from Lemma 3.1 and Lemma 3.1 O

Remark 3.2 A similar correct synchronization protocol can be obtained in the same way,
using an upper bound of the diameter, the size n = |V (QG)| of the graph or an upper bound of
the size of the graph.

3.4 Randomized Synchronization Algorithm (RS Algorithm)

We present a randomized synchronization algorithm. The main idea of this algorithm is based
on the use of random walks in a network. Initially, each vertex (processor) gets a token. At
each step, a vertex that has a token passes it randomly to one of its neighbors. When more
than one token meet at one vertex, they merge to one token. In a connected undirected graph,
with high probability, all tokens will merge to one token and the vertex, that gets it, starts
the next synchronization pulse.

For our purpose, we have slightly modified the above described algorithm. The motivation
of this departure from the main idea is well grounded since it can be quite laborious for a
vertex, that has a token, to know that there is no other token in the whole network. In order
to avoid this kind of problem, we represent our tokens as natural numbers and the action of
merging tokens is now done by adding the numbers corresponding to these tokens. Moreover,
a vertex does not only pass one token to one of its neighbors. Rather, it first merges all the
tokens of its neighborhood to one and passes the resulting number to one of its neighbors.
At the beginning of each pulse, each vertex produces a new token with value 1. As soon as
we have one token left, we try (if possible) to broadcast this information through the whole

38 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

graph (rule R3). Thus, more than one vertex could start the next pulse. If a vertex u has a
token c(u) such that ¢(u) = |V, then w is allowed to start the next synchronization pulse. We
assume that each vertex knows the size of the network. A formal description of the algorithm
is done below.

Let G be a graph with n vertices. Consider a labeling function A\, where A : V' — [1..00] X
[0..n]. The first item of the label of a vertex u represents the pulse of u and the second
represents the minimum number of vertices that are in the same pulse as u. Initially, at least
one vertex is labeled (1,1) and the others are (0,0)-labeled. The graph relabeling system is
Ro = (La, I, Py) defined by Ly = {[1..00] x [0..n]}, I = {{(1,1)}}, P, = {R1, R2, R3, R4}
where R1, R2, R3 and R4 are the relabeling rules listed below. Let vg be a vertex, the
randomized synchronization algorithm (RS algorithm in the sequel) is described as follow.

R1: The convergence rule

Precondition :

— AMwo) = (p(vo), c(vo)),

- C(UO) < |V’a

— v € B(vo, 1) p(v) = p(vo) + 1.
Relabeling :

— X(vo) := (p(vo), [V).

In the convergence rule, each vertex vy sets the value of its token c(vg) to |V| as soon as
there exists one vertex v € Bg(vp, 1) that is in a greater pulse than p(vp).

R2 : The phase rule

Precondition :
— Avo) = (p(vo), c(vo)),
= c(vo) = [V].
Relabeling :

— M(vg) := (p(vo) + 1,1).

In the phase rule, each vertex vy that has a token c(vg) such that c¢(vg) = |V increases
its pulse number and sets the value of its token to 1.

R3 : The propagation rule

Precondition :

— AMwo) = (p(vo), c(vo)),

- C(UO) < |V’a

— Jv € B(vg, 1) ¢(v) = |V| and p(v) = p(vo).
Relabeling :

— X(vo) := (p(vo), [V])-

3.4. RANDOMIZED SYNCHRONIZATION ALGORITHM (RS ALGORITHM) 39

In the propagation rule, a vertex v in the neighborhood of vg is in the same pulse p(vp)
and c(v) = |V| then the token of vy is set to |V|. This rule has only the final aim to
broadcast the token information c(v) = |V]|.

R4 : The collecting rule

Precondition :

— AMwo) = (p(vo), c(vo)),

= c(vo) < [V Ac(vg) >0,

— Vv € B(vo, 1) p(v) = p(vo).
Relabeling :

— wp := choose at random v € B(vg, 1)(v # vo),
— Yo € B(vg, 1)(v # v9) N (v) := (p(v),0),

= 8= eBwo,1)),

— M(wp) = (p(wy), S).

In the collecting rule, each vertex in the neighborhood of vy is in the same pulse p(vg).
If vy has a token of value c¢(vg) < |V, then the sum of all the tokens in Bg(vg,1) is
computed and the resulting token is send to one neighbor wq of vg. Note that the choice
of wp is done randomly. The tokens of all the vertices v € Bg(vg, 1) such that v # wy
are set to 0.

We now turn our attention to the correctness of the described algorithm. Therefore, we
first state some useful properties that will help us to show the validity of our synchronization
assumption. One has also to notice that a vertex that does not have a token gets a pseudo-
token with value 0. Let (G;)o<; be a relabeling chain associated to a run of the RS Algorithm.
We denote by p;(v) (resp. ¢;(v)) the pulse (resp. the integer) associated to the vertex v of G;.
We assume that initially exactly one vertex of Gy is labeled (1,1) and all the other vertices
are labeled (0,0). As from now, we are going to pay attention to the validity of the properties
of our algorithm.

First we have the two following facts.

Fact 3.3
Yoe V(G) Vi pi+1(v) > pi(v).

Yo e V(G) Vi pir1(v) = pi(v) + 1= ¢i(v) = |V].
Lemma 3.3 Let w be a pulse, we have:

1. If there exists vg such that 0 < ¢;(vo) < |V| and pi(vo) = 7 then:

Z ci(v) = Card{v | p;(v) = 7}.
{vlpi(v)=m}

40 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

2. If there does not exist vy such that 0 < ¢;(vg) < |V| and p;(vo) = 7 then:
Vv such that p;(v) =m either c¢;(v)=0 or ¢(v)=|V].

Furthermore if for all v such that p;(v) = m we have c¢;(v) = 0 then there exists w such
that p;(w) = m+ 1.

3. (v, w such that p;(v) = pi(w) + 1) = (c;(w) =0 or ¢;(w) = |V]).

4. if v, w such that p;(v) = pi(w) + 1 then

Z ci(u) = Card{u | pj(u) = p;(v)}.
{ulpi(u)=pi(v)}

5. If there exists a vertex v such that ¢;(v) = |V| then for all vertex u we have: p;(u) > p;(v).

Vu,v |pi(u) —pi(v)| < 1.

Proof. The proof is by induction on i. We assume that all the properties are true at step i
and then we examine what happens according to the relabeling rule which is applied. O

For the validity of our synchronization assumption we have to show that each vertex of G
has enough knowledge of the whole graph to decide, if necessary, to change its pulse. This
knowledge can only be achieved if we are able to ensure that after a finite time, and with high
probability, there is only one token left in the whole network. We are now going to undertake
the task of demonstrating that one can make this probability as close to 1 as desired.

3.4.1 Correctness of the Algorithm

To state the correctness of the RS Algorithm, we introduce some well-known topics related to
the use of random walks and Markov chains [Bre99| in graphs. The idea is to represent the
successive moves of any token as a random walk.

Consider the random walk due to successive applications of the fourth rule of our ran-
domized algorithm. This random walk also constitutes a Markov chain with the transition
probability

1 .
P(u’fu):{ W : UEBG(U,l)

0 : otherwise

Now we intend to show that the so defined Markov chain {Y}}ren satisfies the conditions of
the Basic Limit Theorem (see Theorem 1.2). To this end we have to show that {Yj}xen is
irreducible, aperiodic and that we have a stationary distribution 7. Because of the fact that
the graph G is connected and undirected, it is quite simply to show that {Yj }ken is irreducible.
From Claim 1.20 we can deduce that our Markov chain is also aperiodic, since for all vertices
u € V we have P(u,u) > 0. The non trivial part of this proof is to show the existence of
a stationary distribution m. For this purpose we can take advantage of Proposition 1.2 and
state the following claim.

3.4. RANDOMIZED SYNCHRONIZATION ALGORITHM (RS ALGORITHM) 41

Claim 3.1 {Yi}ren is reversible with respect to

d(u)+1

™) = SE

Proof. To see the validity of the above claim, we have to check two cases: Let u,v € V be
two vertices from G.

o if v ¢ Bg(u,1) then w(u)P(u,v) = w(v)P(v,u) = 0.
o if v € Bg(u,1) then

d(u) +1 1 1

m(u)P(u,v) = QB[+ [V]dw) +1 2[E[+|V]

m(v)P(v,u)

The value of 7(u)P(u,v) is independent of u. Thus {Yj}ren is reversible and Theorem 1.1
allows us to concede that 7 is the unique stationary distribution of the Markov chain. O

Now it is clear that the Basic limit Theorem is applicable to our defined Markov chain.
Thus, we have that in the limit, the probability of being at any particular vertex is proportional
to its degree, regardless of the structure of G. This remarkable fact is the key to the proof of
the next Lemma.

Lemma 3.4 After a probably finite number of steps, there is at least one vertex u in G that
satisfies c(u) = |V|.

Proof. It clearly suffices to consider the case where the system begins with just two tokens.
These tokens perform two distinct random walks in G and produce two Markov chains that
start from two different vertices. According to the Basic limit Theorem, the probability, from
these tokens to merge, will be very close to 1 when they reach their common stationary
distribution 7. In fact, it is like (for a graph with six vertices) repeated rolls of two dice
(simultaneously) with the expectation of having two identical faces. Thus, it is clear that, in
the limit, the merging probability becomes closer to 1.

Furthermore, Coppersmith, Tetali and Winkler [CTW93| have obtained a polynomial
upper bound for the meeting time of two random walks on a graph G. They have shown
that in the worst case, two random walks meet after an expected number of moves M with

4.3

Lemma 3.5 The RS algorithm satisfies the conditions of Property 1 (Convergence).

Proof. For the proof of Lemma 3.5 we first assume that after a finite number of computation
steps, there is at least one vertex u in G that satisfies ¢(u) = |V|. The validity of this fact is
a direct consequence of Lemma 3.4.

Let u be any vertex that satisfies p(u) = 7. Only the application of rule R2 can increment
the pulse of vertex u. This means that c(u) = |V| and that all the other vertices of G have
sent their tokens for the pulse 7. Thus, all the vertices of G are in the same pulse .

Let now v be a vertex of G such that p(v) < w. The rules R1 and R2 are applicable on
v until p(v) = 7. But as soon as the value of p(v) reaches m, only the rule R2 is able to

42 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

increment p(v). Therefore, all the vertices of G must have sent their tokens for the pulse 7.
Thus, all the vertices of G are also in the pulse 7. O

We now go further in our demonstration and prove the validity of Property 2 concerning
the pulse compatibility of the RS Algorithm.

Lemma 3.6 The RS algorithm satisfies the conditions of Property 2 (Pulse compatibility).

Proof.

A vertex w can only changes its pulse if it applies one of the rules R1 and R2. Further on,
the use of R1 ensures that there exists a vertex v # u with p(v) = p(u) + 1. Due to the initial
configuration and to Property 1 we can claim that Property 2 is satisfied. The use of R2
combined with Property 3 of Lemma 3.3 also asserts the claim of this lemma. O

From Lemma 3.5 and Property 2 we can immediately deduce the correctness of Property
3 (Speed limitation).

3.5 Synchronization in Graphs with a Distinguished Vertex

In this section, a new synchronization protocol is introduced. The approach of the new
methodology is based on two well-known paradigms in distributed computations. While the
first one is the computation of a spanning tree in a graph, the election in anonymous trees
represents the second one. The algorithms for the election and for the computation of a
spanning tree use local computation techniques with graph relabeling systems to solve both
problems with optimality.

The new protocol works in two steps. In the first step, a spanning tree 7' is computed in
a given graph G. The goal of the second step is then to elect a vertex in 7' that will start
the next pulse of our synchronization protocol. Thereafter, the algorithm enters a new cycle
by executing a new computation of a spanning tree in (G. There are no restrictions about
the way we carry the both steps out. This means that while the tree T is constructed, the
election algorithm can be simultaneously performed. Before going on with the presentation of
the protocol, let us first give some definitions and formalize the above description in terms of
graph relabeling systems.

Definition 3.3
The label of each vertex is represented by a two tuple (S,i) where S € {N, A} and i € N.

o A wverter v is N-labeled if the first item of its label is N.
o A vertex v is A-labeled if the first item of its label is A.
o An edge e is i-labeled if its label is i.

o A pendant vertex v is a vertex that has exactly one N-labeled neighbor.

3.5. SYNCHRONIZATION IN GRAPHS WITH A DISTINGUISHED VERTEX 43

o A subgraph G; is called N-labeled (respectively A-labeled) if all its vertices are N-
labeled (respectively A-labeled).

Let now G be a graph with a distinguished vertex wu. Initially all edges are O-labeled,
a vertex u is labeled (A,1), and excepted wu, all the vertices are labeled (N,0). The
corresponding graph relabeling system is given by: Rs = (Ls, I3, P3) where the components
L3, I3 and P5 are defined as follows:
Ly ={{A,N} x [0..00)U{0,1}}, Is = {{(A,1),(N,0)} U{0}}, and P; = {R1, R2, R3} where
R1, R2 and R3 are the relabeling rules described by Procedure 3.1.

Procedure 3.1 (Protocol for graphs with a distinguished vertex)

R1 : Tree computation rule

Precondition :
— Avo) = (label(vo), p(vo)),
— label(vg) = N,
— Jv € B(vy, 1) p(v) > p(vy),label(v) = A,

Relabeling :
— N(vo) := (4,p(vo) + 1),
— XN(vg,v) = 1.

R2 : Leaf elimination rule

Precondition :

Avo) = (label(vg), p(vp)),

label(vg) = A,

- dve B(U07 1) label(v) = A; p(U) :p(UO)v)\('U(),’U) = 15
— Yw € B(vg,1)/v p(w) = p(vg), A(vo, w) =0,

Relabeling :
— N(vo) := (N, p(vo)),
— XN(vp,v) =0.

R3 : Tree election rule

Precondition :

— Mwg) = (label(vy), p(vo)),

— label(vg) = A,

— Yv € B(vg, 1) p(v) = p(vg), label(v) = N,
Relabeling :

— MN(vg) := (A, p(vg) + 1).

44 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

Rule R1 generates a spanning tree T" that only contains A-labeled vertices and 1-labeled edges,
while rules R2 and R3 perform the election algorithm in 7.

Let now G(V, E,\) be a connected labeled graph such that a distinguished vertex v is
labeled (A, 1) and all other vertices are labeled (N,0). At the beginning, all the edges are
labeled 0. Let G'(V, E, X') be a graph such that: G(V, E, \) % G'(V,E,X).

3
We are going to present some invariants that are satisfied by the graph G'(V, E,\'). These
invariants are given in form of five lemma whose proofs should simplify the comprehension of
the results we will state later. The rest of this section will be dedicated to the correctness of
the above presented synchronization methodology.

Lemma 3.7 There exists at least one A-labeled vertex in G.

Proof. The validity of this property depends entirely on rule R2. As a matter of fact, rule
R2 ensures that a A-labeled vertex v can only change its label, when there is exactly one
A-labeled vertex wu in its neighborhood, such that v and u are incident to the same 1-labeled
edge. Furthermore, rule R3 ensures that if a A-labeled vertex v has only N-labeled vertices
in its neighborhood, then v continues to be A-labeled until the next pulse is started. Thus,
at any time, there is at least one A-labeled vertex in the network. O

Lemma 3.8 All edges incident to a (N,i)-labeled vertez are 0-labeled.

Proof. We assume that v is any N-labeled vertex. Further, let S be the set of N-labeled
vertices u such that v and u are incident to the same 1-labeled edge. The precondition of rule
R2 ensures that v can not have a A-labeled vertex u such that v and u are incident to the
same 1-labeled edge. Thus, for the validity of this invariant we only have to show that the set
S is empty.

We assume further, that the set S is not empty. Let u be an element of S such that there
exists an edge e satisfying e = (v,u). Consider that at time ¢;, v was N-labeled and u was
A-labeled. This means that at time tg < t1, v and u were both A-labeled and that the edge
e was l-labeled. This means that the execution of rule R2 on v at time ¢ty was not allowed.
Vertex v can therefore not be N-labeled at time ¢;. This represents a contradiction to the
assumption we made above. O

Lemma 3.9 A N-labeled vertex v has no neighbor u such that p(u) < p(v).

Proof. Let v be a N-labeled vertex. All the edges incident to v are O-labeled (Lemma 3.8).
Let u be any neighbor of v. There are two interesting cases:

u is N-labeled: In this case, the execution of rule R2 (on w or on v) guarantees the fact that
p(v) = p(u).

u is A-labeled: This implies two possibilities:

e The execution of R2 on v guarantees that p(v) = p(u).

e A vertex w was elected (rule R3) and u was reached by the pulse propagation rule
R1. This means that p(v) + 1 = p(u).

3.5. SYNCHRONIZATION IN GRAPHS WITH A DISTINGUISHED VERTEX 45

Lemma 3.10 The subgraph G induced by all the A-labeled vertices is connected by all the
1-labeled edges and all the vertices of G are in the same pulse Py.

Proof. After the election phase (R3), there is exactly one A-labeled vertex in the neighbor-
hood of the elected vertex v. Rule R3 also guarantees that all the neighbors u of v are in the
same pulse Py = p(v) — 1. We can easily generalize this fact and state that all the N-labeled
vertices of the graph G are at this time in pulse p(v) — 1. This is deduced from successive
executions of R2. After each execution of R2, two A-labeled vertices are incident to the same
1-labeled edge. Rule R1 is the only possibility to generate 1-labeled edges. Furthermore, each
generated 1-labeled edge is incident to two A-labeled vertices. And because of Lemma 3.7,
we know that there is no N-labeled vertex incident to a 1-labeled edge. Thus, the subgraph
induced by all the A-labeled vertices is connected by all the 1-labeled vertices. Because of
R1, we can also deduce from the above arguments that all the A-labeled vertices are always
in the same pulse Pj. O

Lemma 3.11 The subgraph induced by all the 1-labeled edges is a tree.

Proof. Let Gr be the subgraph induced by all A-labeled vertices. Without loss of generality,
we assume that there are three vertices u,v and w that belong to Gr and form a 1-labeled
cycle Cr (see Figure 8). We further assume that at a time ¢,, u was A-labeled while v and
w were N-labeled. Thus, at t,, all the edges of Cr were 0-labeled (Lemma 3.7). In order
to change the label of the edges of Cr, rule R1 must, since t,, have been executed on u, v
and w. From the above argumentation, we deduce that u was N-labeled at time ¢,. This
represents a contradiction of the assumption we made about the label of w. O

U(Z’A) ! w(z,A)

Figure 8: Cycle Cr in the A-labeled subgraph.

Proposition 3.3 There exists a time tg > 0, where all the N-labeled vertices are in the same
pulse Py > 0.

Proof. Let v; be the elected vertex at the beginning of pulse i (p(v;) = i). Let t;_1 be the
time before the execution of rule R3 on v;. At this time, there is only one A-labeled vertex
left in the whole network (election principle), and all the N-labeled vertices are in the same
pulse p(v;) — 1 (see the proof of Lemma 3.10). Thus, tog = t;_1. O

46 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

Our attention is now turned to the validity of Property 1.

Lemma 3.12 Procedure 3.1 satisfies the conditions of Property 1.

Proof. Let tg and v; be defined as in the proof of Proposition 3.3. Let u # v; be the last
A-labeled vertex that became N-labeled. It is clear that w belongs to the neighborhood of
v;. Let t,, be the time when R2 was executed on u. We know that p(u) = p(v;) at time t,,.
Thus, all the N-labeled vertices of G were in pulse p(u) = p(v;) at time ¢,. This implies that
all the vertices of G were in pulse P, at this time. O

We go further in our demonstration and prove the validity of Property 2.

Lemma 3.13 Procedure 3.1 satisfies the conditions of Property 2.

Proof. There are only two possibilities for a vertex v to change its pulse. The first one is
by executing rule R3. This rule ensures that v is A-labeled. Due to Lemma 3.9 and Lemma
3.10, we know that the relation p(v) > Py yields. Where Py is the pulse of all the N-labeled
vertices of G.

The second possibility for a vertex v to change its pulse, is to execute R1. This rule is
always executed after a vertex u has started the pulse i + 1. At the beginning of this pulse,
all the N-labeled vertices are in pulse i (see Proposition 3.3). Because of Lemma 3.10, we
know that all the A-labeled vertices are in pulse i + 1 and that all the N-labeled vertices
are at least in pulse 7. Thus, v can take for sure that there is no vertex w in G such that

p(w) < p(v). O

Theorem 3.2 (Correctness) The synchronization protocol obtained by using the graph re-
labeling system Rs 1s correct.

Proof. From Lemma 3.12 and Lemma 3.13 we can immediately deduce the correctness of the
Property 3. O
Example: The [synchronizer [Tel00]| is a particular case of the synchronizer R. While in the
synchronizer R the root is not known in advance and is determined by an election algorithm,
the § synchronizer assumes a spanning tree with the same root. Before increasing the pulse,
the root waits for “tree safe” messages from its sons, which wait in their turn for “tree messages”
from their sons and so on. In other words, the root ensures that all vertices of the spanning
tree are safe before going to the next pulse.

3.6 Synchronization in Trees

All the synchronization protocols developed so far were dedicated to any type of graphs.
These protocols need adequate knowledge of some graph characteristics to be exact and
faultless. Now we introduce a new methodology devoted to trees. Although this methodology
is restricted to trees, it has the advantage that we do not need to have more knowledge about
the network size, the network diameter or the existence of a distinguished vertex.

The main idea of this protocol resides in the use of an election algorithm to decide which

3.6. SYNCHRONIZATION IN TREES 47

vertex should start the next pulse. The election algorithm [BMMS02] we used is the same
as the one introduced in Section 3.5. This algorithm solves the problem of the election in
anonymous trees using graph relabeling systems. At the beginning of the synchronization
protocol, all vertices are in the same pulse. Their labels have two items. The first one is
needed for the election algorithm and the second one represents the pulse number. We exploit
the election algorithm to choose a vertex u that starts the next pulse. Furthermore, all the
vertices v, that have a vertex w in their neighborhood such that p(w) > p(v), increase their
pulse. When a vertex increases its pulse, its election-label is set back to the initial value. A
formalized description of this synchronization protocol is given below.

Let T be a tree. Initially all vertices are labeled (IN,1). The graph relabeling system
is R4 = (L4,I4,P4) defined by L4 = {{L,N} X [100]}, I4 = {(N, 1)}, P4 = {Rl,RQ,R3}
where R1, R2 and R3 are the relabeling rules given in Procedure 3.2.

Procedure 3.2 (protocol for tree-shaped networks)

R1 : Leaf elimination rule

Precondition :

— AMwg) = (label(vy), p(vo)),
label(vg) = N,
— Jv € Br(vo, 1) label(v) = N, p(v) = p(vo),
Yw € BT(U07 1)/U p(w) = p(UO)’ la‘bel(w) =L,
Relabeling :

— MN(vg) := (L, p(vg)).

R2 : Tree election rule

Precondition :

— Avo) = (label(vo), p(vo)),

— label(vg) = N,

— Yv € Br(vo, 1) p(v) = p(vo), label(v) = L,
Relabeling :

— N(vo) := (N, p(vo) + 1).

R3 : The propagation rule

Precondition :

— Avo) = (label(vo), p(vo)),

— label(vg) = L,

— Jv € Br(vo, 1) p(v) > p(vg), label(v) = N,
Relabeling :

48 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

= X(vo) := (N, p(vo) + 1).

In order to prove the correctness of Procedure 3.2, we need to introduce some definitions that
should simplify the proofs we will state later.

Definition 3.4

A wvertex v is N-labeled if the second item of its label is N.

A wvertex v is L-labeled if the second item of its label is L.

A pendant vertex v is a vertex that has exactly one N-labeled neighbor.

A subgraph T; is called N-labeled (respectively L-labeled) if all its vertices are N -labeled
(respectively L-labeled).

Before trying to demonstrate the validity of these lemma, we first have to state some invariants
that will be helpful for the proofs we will started thereafter.

Let T(V, E,\) be a tree such that all its vertices are labeled (N, 1). Let T'(V, E, ') be a tree
such that: T(V, E, \) R—4> T(V,E,\).

The tree T'(V, E, \') satisfies the following properties:

Lemma 3.14 A L-labeled vertex v has at most one neighbor w such that p(w) > p(v) and w
15 N -labeled.

Proof. We first show that a L-labeled vertex has at most one N-labeled neighbor.

Let v be any L-labeled vertex. Only the rule R1 can generate a L-labeled vertex. After the
application of R1 on v, the precondition ensures that v has exactly one N-labeled vertex. Let
w be the N-labeled vertex that belongs to the neighborhood of v. If w is elected, then there
is no changes in the neighborhood of v. Otherwise, w will also become L-labeled. Thus, the
only possibility that could increase the amount of N-labeled vertices in the neighborhood of
v is the use of rule R3.

We can assume that the tree T' can be decomposed in two subtrees T7 and T5 such that T
is L-labeled and T, contains the elected vertex (see Figure 3.6). After a vertex of T has
been elected, successive applications of R3 (propagation phase) will first change the label of
w and v before transforming any vertex u of 77 in a N-labeled vertex. This means that the
maximal amount of N-labeled vertex in the neighborhood of a L-labeled vertex v is 1.

Let now v and w be defined as above. p(v) and p(w) are respectively the pulse of v and w.
At the beginning, R1 ensures that p(v) = p(w). From the above discussion, we derive that
v is only able to change its label (pulse) after p(w) has changed. Thus 0 < (p(w)—p(v)) < 1. O

Lemma 3.15 A L-labeled vertex v has no neighbor w such that w is N-labeled and
p(w) <p(v).

Proof. The validity of this property can be derived from Lemma 3.14. O

3.6. SYNCHRONIZATION IN TREES 49

v is L-labeled, w is N-labeled.
v w

C\

Figure 9: Representation of the propagation phase

Lemma 3.16 The subgraph induced by all N-labeled vertices is connected.

Proof. The aim of the used election algorithm is to “cut” the pendant vertices (rule R1).
Let now consider all L-labeled vertices as vertices that have been removed from 7. At the
beginning of the election phase, the pendant vertices are the leafs of 7.

Without loss of generality, let T} be a tree. It is a well-known fact that if we remove (or
add) some leafs of (to) T}, the resulting graph will still be a tree. Thus, applications of R1
(remove) and R3 (add) on T will generate a subtree 7" that is N-labeled. O

Lemma 3.17 All N-labeled vertices are in the same pulse Py .

Proof. Let T be the subtree induced by all N-labeled vertices. Let now consider the T
before and after the execution of R2. Previous to the execution of R2, there is one N-labeled
vertex v in Ty (election main principle). The execution of R2 increase the pulse of v. In the
propagation phase (rule R3), the pulse of all the new N-labeled vertices is set to p(v). Hence,
all the vertices of Ty are in the same pulse Py = p(v). O

Lemma 3.18 All the vertices of a L-labeled subtree T; are in the same pulse Pr,.

Proof. Let T be composed as described in Figure 10. The existence of the subtrees 7T; is
guaranteed by the fact that all the “cuts” of pendant vertices converge to the same N-labeled
vertex v that will be elected. Thus, if Tj is connected to a L-labeled vertex v;, then v; is the
root of the L-labeled subtree T;. Successive executions of rule R1 guarantee the fact that T;
is a connected set of vertices that are all in the same pulse Pr, = p(v;). We have to notice
that all the L-labeled vertices of T" are not always in the same pulse. O

The following lemma is also of prime importance for the comprehension and the validity of
our synchronization protocol.

Theorem 3.3 At a time tgy, all L-labeled vertices are in the same pulse Pr,.

Proof. At a specific time ¢, the election algorithm will use rule R2 on a vertex v. Thereafter,
v is elected. We now set ty = t. At time ?¢, the tree 7" is in the configuration defined in Figure
10. In this configuration Tp only contains one N-labeled vertex : v. Consider that the vertex

50 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

All T;(i = 1,2, 3) are L-labeled, Ty is N-labeled.

Figure 10: Decomposition of T

v has exactly three neighbors v1,ve and vs. Thus, we have the relation v] = v}, = v§ = v.

From the preconditions of rule R1, we deduce that p(v) = p(v1) = p(v2) = p(v3). Because of
Lemma 3.18, we know that all the vertices of the subtree 7; are in pulse p(v;). All L-labeled
vertices are then in the same pulse P, = p(v). Hence, at the time t¢, all the vertices of T" are
in pulse Pr. O
Now, we can turn our attention to the proofs of Property 1 and Property 2.

Lemma 3.19
Fact 1: Procedure 3.2 satisfies the conditions of Property 1.
Fact 2: Procedure 3.2 satisfies the conditions of Property 2.

Proof.

Fact 1: It is obvious to see that Property 1 is a corollary of Theorem 3.3.

Fact 2: Only the rules R2 and R3 are able to allow a vertex v to change its pulse. The
execution of R2 takes place under the terms of Theorem 3.3. Thus, all the vertices of T are
in the same pulse.

The rule R3 is always applied after the time ¢y, when rule R2 started a new pulse ¢ + 1.
Hence, all the N-labeled are in the same pulse Py = i + 1 (see Lemma 3.17) and Theorem
3.3 ensures that all L-labeled vertices are at least in pulse P;, = 4. This will suffice to state
the validity of Property 2. O

Theorem 3.4 (Corectness) The synchronization protocol obtained by using the graph rela-
beling system Ry 1s correct.

Proof. From Lemma 3.19 we can immediately deduce the correctness of the Property 3. O

3.7. BUILDING SYNCHRONIZERS 51

3.7 Building Synchronizers

The main goal of this section is to give a methodology, that should transform the protocols
introduced in previous sections in operative synchronizers. All the developed protocols assume
the existence of a pulse generator at each vertex of the network. This means, that a vertex
v has a pulse variable p(v), and it is supposed to generate a sequence of local clock pulses
by increasing the value of p(v) from time to time (i.e. p(v) = 0,1,2,...). These pulses are
supposed to simulate the ticks of the global clock in the synchronous setting. Obviously,
the use of these protocols as stand-alone applications will give nothing in an asynchronous
environment. For this reason, we introduce some definitions that should help us to ensure
some guarantee about the relationship between the pulse values at neighboring vertices at
various moments during the execution.

Definition 3.5 We denote by t(v,p) the physical time in which v has increased its pulse to
p. We say that v is at pulse p(v) = p(or at pulse p) during the time interval 7(v,p) =
[t(v,p), t(v,p +1)].

Since our network is fully asynchronous, we are not able to force all the vertices to maintain
the same pulse at all times. However, we know that it is possible to guarantee a weaker
form of compatibility between the pulses of neighboring vertices in the network. This form of
compatibility is stated in definition 3.6.

Definition 3.6 (Message pulse compatibility) If a vertex v sends an original message m
to a neighbor w during its pulse p(v) = p, then m is received at w during its pulse p(w) = p
as well.

3.7.1 Methodology to construct a synchronizer

To build a functioning synchronizer from each of our protocols, we have to change their
specifications such that, given an algorithm Ilg written for a synchronous network and a
protocol v, it should be possible to combine g on top of v to yield a protocol 114 = v(Ilg)
that can be executed on an asynchronous network. II4 has two components: The original
component and the synchronization component. Each of these components has its own local
variables and messages at every vertex. The original component consists of the local variables
and the messages of the original protocol IIg, whereas the synchronization component consists
of local synchronization variables and synchronization messages.

As from now, we are going to show that the changes needed to build a synchronizer from
any of our protocols can be done effortless. Further, we will show that it is possible to make
use of these changes to prove the correctness of the so constructed synchronizers. This proof
will be done with respect to the definition given by David Peleg [Pel00].

Conceptually, the modifications of our protocols are done in two steps. The first step
affects the label attached to each vertex. In fact, we add three new items to each label. The
first item consists of a boolean variable S. This variable decides which component(original
component or synchronization component) is active on each vertex. Only the rules of the
active component can be applied on a vertex v. The other items are two buffers B, and B,_1
that represent the messages that a vertex v, at pulse p(v), has to send respectively in pulses
p(v) and p(v) — 1. We claim that a protocol p that is generated from the above modifications

52 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

satisfies all the specifications of a synchronizer. In a general way, a protocol 114 = u(Ilg) will
work in two phases.

Initially, the item S, is set to true for all vertices v and therefore the synchronization
component is active (Phase one). As soon as a vertex v increases its pulse p(v), its variable
Sy is set to false. Hence, only rules from Ilg can be applied on v. The original component is
active (phase two). Each application of a rule of IIg sets back the state of S, to true. Thus
the synchronization component can begin to synchronize v with all the other vertices. This
cycle is done until Ilg stops 114 with any specific request.

3.7.2 A General Overview

Both phases depicted in the previous section are summarized in Figure 11. The rule R,
represents phase one and Ro represents phase two. A describes the set of rules used in the
synchronization protocol(r) and €2 is the set of relabeling rules used in the algorithm IIg. The
first rule means that as long as S, = True holds, it is only allowed to synchronize v with all
the vertices in the network. As soon as v changes its pulse, the second phase is started for v.
In this phase, it is no more allowed to synchronize but it is permitted to execute rules of the
algorithm Ilg. After the execution of Ilg, rule one is active once again, and the cycle goes on.
All our synchronizers will have to use a rule that plays the role of Ry. This rule should ensure
a good interaction between the two protocols v and Ilg. Now, it is time to give an example

i, AQ,B;, Bi—1,T i+1,A,Q,Bit1, B, F
. *
Rl : [B, [
4, A, Q,B;,B;1, F i,A\,Q,B;,Bi_1,T i, A,Q,B;, Bi—1, F
. * .
fRQ : [Py [’ {
s j<i

5.0, Bj,Bj_1,x

Figure 11: General method to construct a synchronizer.

to illustrate how the described construction can be achieved in a realistic way.

Example: Synchronizer using SSP. Let G be a graph with diameter d = A(G). Consider
alabeling function \, where () : V' — [1..00] x [~ 1..d+1] x M x M x{T, F}UL(IIg). Initially
all vertices are labeled (1, —1, By, By, F,I14). The graph relabeling system is R = (L1, 11, 1)
defined by L1 = {[1..00] x[—1..d+1] X M XM x{T, F}}UL(Ilg), I; = {(1, -1, By, By, F,In1,)},
P; = {R1, R2, R3, R4} UPr, where L(IIg) represents the type of label used in IIg, Iy, is the set
of initial states in IIg, Pry, is the set of rules used in Iy, R1, R2, R3 and R4 are the relabeling
rules with forbidden contexts given in Figure 12. The specifications and the properties of the
underlying algorithm of this protocol are discussed in Section 3.3.

The rule R4 is of extreme importance in this protocol. R4 plays the role devoted to R2 in
Figure 11. It allows the application of exactly one action of the algorithm Ilg on a vertex v.
After such an action, the vertex v enters the synchronization phase. R4 can be generalized to
all the synchronizers we could construct using the protocols introduced in earlier sections.

3.7. BUILDING SYNCHRONIZERS 53

i,a,Bi,Bi_l,T i+1,—1,Bi+1,Bi,F

—_—

R1 :

i—|—1,—1,B¢+1,Bi,x i+1,—1,Bi+1,Bi,J3
’I:,Oé,Bi,Bith

.,Oé,Bi,Bifl,T
R2 : o o) } ifa<d
i,min(av) +1,Bi,Bi—1,T

- !
t—1,a',Bi—1,Bi—2,x

t,a, By, Bi—1,T i+1,—1, Bit1, Bi, F

R3: e ° if o > d
. . o, Bi, Bi—1, F
Z,Ot,Bi,Bi_l,F z,a,Bi,Bi_l,T {I }
. * .

R4i: e B [; j<i

- /
J,a', Bj, Bj—1,x

Figure 12: Protocol I14 using the SSP method.

Correctness of the synchronizers

We now introduce some meaningful properties that can all be guaranteed from the synchro-
nizers we can build.

Definition 3.7 (Readiness)

Pulse readiness: A wverter v is ready for pulse p, denoted Ready(v,p), once it has already
recetved all messages of the algorithm sent to it by its neighbors during their pulse number
p— 1.

Readiness rule: A verter v is allowed to gemerate its pulse p once it is finished with its
required original actions for pulse p — 1 and Ready(v,p) holds.

Definition 3.8 (Delay rule) If a vertex v receives in pulse p a message sent to it from a

neighbor w during some later pulse p' > p of w, then v declines consuming it and temporarily

stores it in a buffer. It is allowed to process it only once it has already generated its pulse p'.

Claim 3.2 Let p be a synchronizer built as described in section 3.7.1. pu always satisfies the
1. Readiness rule and the

2. Delay rule

Proof.

54 CHAPTER 3. SYNCHRONIZING DISTRIBUTED ALGORITHMS

1. The proof is an immediate consequence of the use of rule R2 (see Figure 11). A vertex
v is allowed to generate its pulse p, if and only if S, = T" and v satisfies the conditions
required from the synchronization protocol. The only possibility for .S, to become True
is the execution of rule R2. Thus, v has executed its required Ilg-actions for pulse p — 1
and Ready(v, p) holds.

2. Let v be a vertex that has received in pulse p a message m’ sent to it from a neighbor
w during pulse p’ > p. All our synchronization protocols guaranteed that after a finite
number of steps, v and w will be in the same pulse p’. On the other hand, v can only
consume the messages contained in the buffer Bj’. Such a buffer always exists. Indeed,
the pulse difference between two vertices in the whole network is maximal 1. This means
that v will be able to consume m’ as soon as p(v) = p’ holds.

Lemma 3.20 [Pel00] A synchronizer imposing the readiness and delay rules guarantees pulse
compatibility.

The above lemma states easily the reasons why all our synchronizers guaranteed the principle
of pulse compatibility introduced in Definition 3.6. Peleg show in the year 2000 an essential
relationship between the concept of pulse compatibility and the correctness of a synchronizer.
One of the interesting parts of his work was announced as the lemma below .

Lemma 3.21 [Pel00] If synchronizer u guarantees pulse compatibility, then it is correct.
Theorem 3.5 Let pu be a synchronizer built as described in section 3.7.1. p is correct.

Proof. The proofis deduced from Claim 3.2 and according to Lemma 3.21 and Lemma 3.20. O

Second Part

Algorithmic Recognition of Graphs
Properties with Local Computations

reduction algorithm is based on a finite set of reduction rules and a finite set

of graphs. Each reduction rule describes a way to modify a graph locally. The

original idea of a reduction algorithm is to solve a decision problem by repeatedly

applying reduction rules on the input graph until no more rule can be applied. If

the resulting graph is in the finite set of graphs, then the algorithm returns #rue, otherwise it

returns false. Up to now, reduction algorithms are studied under two different computation

models. While the first model deals with a sequential execution of reduction rules, the second

model is concerned with the parallel execution of the corresponding graph transformation

operations. In this part, we introduce a third approach that consists in executing the reduction

rules in a fully distributed and asynchronous system. We make use of this algorithm to

develop an algorithmic approach for solving the labeled graph recognition problem with local
computations.

In contrast to the distributed algorithms presented in the previous chapter, the computa-
tion of reduction algorithms depends on our capability to solve the k-local election problem
(k > 3) in the local computations framework. Thus, the first chapter of this part will be
devoted to the presentation of a distributed algorithm that with high probability solves the
k-local election problem for arbitrary k. This algorithm is based on distributed computations
of rooted trees of minimal paths. Its correctness also depends on the use of local heuristics that
try to avoid random numbers collisions, where each random number represents the identifier
of a root vertex. The results concerning the performance and the analysis of this algorithm
appear in the Proceeding of the Fourth International Workshop on Experimental and Efficient
Algorithms [Oss05a).

At the beginning of the second chapter of this part, we will give a formal definition of
reduction systems and introduce the notion of handy reduction systems that states necessary
conditions for a reduction algorithm to be computed in a distributed environment. Thereafter,
we will present a distributed protocol that makes use of reduction rules to solve graph decision
problems. Using these results we will show that all decision problems (or graph properties)
for graphs of bounded treewidth can be solved by local computations. From these results,
we will state a relationship between the use of handy reduction systems, for solving decision
problems, and labeled graphs recognizers introduced by Métivier et al. in [GMMO04]. At the
end of this part, we will introduce the concept of unfolding reduction rules that will help us
to solve constructive reduction algorithms by means of local computations.

o6

The last chapter of this part is concerned with the detection of properties during the
execution of a distributed algorithm. The main goal is, given a distributed algorithm encoded
by local computations A; and a set of properties related to the different network components,
to be able to check the validity of these properties during the execution of A;. We will present
a virtual time based algorithm which is able to perform an online or offline check of local and
global properties. This algorithm represents a tool that is needed to test the correctness of
programs executions in the Lidia environment (see Chapter 7). All the results stated in this
chapter have been published in [MO04a).

Chapter 4

A Probabilistic Algorithm for Local
Elections

Contents

4.1 The k-local Election Problem 57
4.2 Randomized Local Elections 58
4.3 Distributed Computation of a Rooted Tree of Minimal Paths . . 59
4.4 Solving the k-Local Election Problem 63

4.4.1 An Experimental Algorithm for Anonymous Networks 66

4.4.2 Collisions Detection oL 68
4.5 Concluding Remarks, 68

4.1 The k-local Election Problem

The problem of election is linked to distributed computations in a network. It aims to choose
a unique vertex, called leader, which subsequently is used to make decisions or to centralize
some information.

For a fixed given positive integer k, a k-local election problem requires that, starting from
a configuration where all processes are in the same state, the network reaches a configuration C
such that for this configuration there exists a non empty set of vertices, denoted &, satisfying:

e cach vertex v € £ is in a special state called leader and

e Vv € C and for all vertex w # v such that d(v,w) < k then w is in the state lost (i.e.

wéef).

We assume that each process has the same local algorithm. This problem is then considered
under the following assumptions:

e the network is anonymous: unique identities are not available to distinguish the pro-
cesses,

o7

58 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

e the system is asynchronous,

e processes communicate by asynchronous message passing: there is no fixed upper bound
on how long it takes for a message to be delivered,

e cach process knows from which channel it receives a message.
In the local computations framework, we generally deal with two kinds of local computations:

LC: in a computation step, the label attached to the center of a ball of radius 1 is modified
according to some rules depending on the labels in the ball. The labels of the other
vertices in the ball are not modified.

LC5: in a computation step, labels attached to the vertices in a ball of radius 1 may be
modified according to some rules depending on the labels in the ball.

The implementation of distributed algorithms encoded by means of these local computations
[BGMT01] can be performed using k—local elections (k < 2). Once a vertex v is locally
elected a local computation can be applied on the ball centered on v. This ensures a faithful
relabeling of disjoint subgraphs of radius 1. The main motivation of this work is to extend the
implementation of local computations to balls of radius more than 1. Therefore, it is necessary
to solve the k-local election problem (k > 3) such that all the elected vertices should be able
to execute graph relabeling steps on disjoint subgraphs of radius % From the work of Angluin
[Ang80], we deduce the following facts.

Fact 4.1 [Ang80] There is no deterministic algorithm for solving the k-local election problem
for k> 1.

Fact 4.2 [Ang80] There is no Las Vegas algorithm for solving the k-local election problem for
k> 3.

Based on distributed computations of rooted trees of minimal paths, we present in this chapter
a simple randomized algorithm which, with very high probability, solves the k-local election
problem (k > 2) under the above assumptions. For the sake of time complexity, we will assume
that each message incurs a delay of at most one unit of time [AP90|. Note that the delay
assumption is only used to estimate the performance of our algorithms. This does not imply
that our model is synchronous, neither does it affect the correctness of our algorithms. That
is, our algorithms work correctly even in the absence of this delay assumption.

4.2 Randomized Local Elections

Many problems have no solution in distributed computing [Lyn89]. The introduction of ran-
domization makes possible tasks that admit no deterministic solutions. General considerations
about randomized distributed algorithms may be found in [Tel00]. We present in this subsec-
tion the two randomized procedures: RL; and RLs that respectively solve the 1 and 2-local
election problem. The introduction and the study of these procedures are due to Métivier et
al. [MSZ02]. Let K be a nonempty set equipped with a total order.

4.3. DISTRIBUTED COMPUTATION OF A ROOTED TREE OF MINIMAL PATHS 59

Randomized 1-Local Election

RLi: Fach vertex v repeats the following actions.

v selects an integer rand(v) randomly and uniformly from the set K.

v sends rand(v) to its neighbors.

e v receives the numbers sent by all its neighbors.

v wins the 1-local election if for each neighbor w of v: rand(v) > rand(w).

Randomized 2-Local Election

RLy: Each vertex v repeats the following actions.

v selects an integer rand(v) randomly and uniformly from the set K.

v sends rand(v) to its neighbors.

e v receives messages from all its neighbors. Let Int, be the maximum of the set of
integers that v has received from vertices different from w.

For all neighbors w, v sends Int,, to w.

e v receives integers from all its neighbors.

v wins the 2—local election in B(v,2) if rand(v) is strictly greater than all integers
received by v.

Proposition 4.1 Let G = (V, E) be a connected graph. After the execution of a randomized

2-local election there are at most % vertices v of G that have won the 2-local election.

Proof. Let X5 be the number of vertices that have won the 2-local election. Each time a
vertex v wins this local election, at least one vertex w in V(G) (with |V| > 1) loses the same

election. This means that Xo + 1 x Xy < |V|]. Thus Xy < % O

4.3 Distributed Computation of a Rooted Tree of Minimal
Paths

Let G = (V,E) be an anonymous network with a distinguished vertex wp. The problem
considered here is to find a tree of (G, V'), rooted at ug, which for any v € V' contains a unique
minimal path from v to wg. This kind of tree is generally used to pass a signal along the
shortest path from v to uy (see Moore [Moo59]).

To solve the above problem, we can simply fan out from wug, labeling each vertex with a
number which counts its distance from wg, modulo 3. Thus, ug is labeled 0, all unlabeled
neighbors of ug are labeled 1, etc. More generally, at the tth step, where t = 3m + ¢,m €
N,q € {0,1,2}, we label all unlabeled neighbors of labeled vertices with ¢ and we mark the
corresponding edges. When no more vertices can be labeled, the algorithm is terminated.
It is then quite simple to show that the set of marked edges represents a tree of minimal

60 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

paths rooted at ug. In an asynchronous distributed system, where communication is due to
a message passing system, we do not have any kind of centralized coordination. Thus, it
is not easy for a labeled vertex to find out that all labeled vertices are in the same step t.
To get around this problem, we have slightly modified and adapted the above procedure for
distributed systems.

The Algorithm.

Our algorithm works in rounds. All the vertices have knowledge about the computation round
in which they are involved, they also have a state token that indicates if they are locked or
unlocked. At the end of round 4, all vertices v € {w € V|d(w, ug) < i} are labeled and locked.
Initially, all vertices v # wug are unlocked and unlabeled, all edges are unmarked and wg is
labeled 0. At round 1, all unlabeled neighbors of ug are labeled 1 and locked. A vertex w is
said to be marked for a vertex v if the edge e = {w, v} is marked. For further computations
the algorithm has to satisfy the following requirements:

r1: Each time an unlabeled vertex is labeled, it is set in the locked state.
ro: A labeled unlocked vertex v # ug becomes locked if:

e v is in the same round as all its marked neighbors,
e v does not have any unlabeled vertex in its neighborhood,

e All the marked neighbors w of v that satisfy d(ug,w) = d(ug,v) + 1 are locked.

r3: A locked vertex v in round p becomes unlocked and increases its round, if it has an unlocked
marked neighbor w in round p + 1.

We encode this procedure by means of a graph relabeling system where the locked and
unlocked states are respectively represented by the labels L and U. The root is the only
distinguished vertex labeled with R. Marked edges are labeled with 1. The set of labels
is L = {0,1,(z,d,r)} with x € {N,L,U,R} and d,r € N. d and r respectively represent
the distance from the root vertex (modulo 3) and the computation round of a given vertex.
The initial label on the root vertex ug is (R,0,1) and all the other vertices have the label
lo = (N,0,0). All the edges have initially the label 0. The graph relabeling system is
R1 = (L,I,P) with P = {R1, R2, R3, R4} where R1, R2, R3 and R4 are the relabeling
rules given in Procedure 4.1 . The rooted tree computation is described by the next procedure.

Procedure 4.1 [Computing a rooted tree of minimal paths/

R1 : Initializing the first level

Precondition :

— Mwo) = (R, d,7),

— Jv € B(vg, 1)(v # vo A A(v) = (N,0,0)).
Relabeling :

4.3. DISTRIBUTED COMPUTATION OF A ROOTED TREE OF MINIMAL PATHS

- X(r]) =1,
— XN(v) :=(L,(d+ 1) modulo 3,r).

R2 : Unlock the first level (part 1)

Precondition :

— Mwo) = (R, d,7),

— Yv € B(vg, 1)(v # vo A A(v) = (L, (d 4+ 1) modulo 3,r) AN A({vo,v}) = 1).
Relabeling :

— XN(vo) := (R,d,r + 1),

R3 : Unlock the first level (part 2)

Precondition :

— Mwo) = (R, d,7),

— v € B(vg, 1)(v # vo A A(v) = (L, (d 4+ 1) modulo 3,7 — 1) A A({vg,v}) = 1).
Relabeling :

— XN(v) := (U, (d+ 1) modulo 3,r).

R/ : Unlock the remaining levels

Precondition :

— Mwo) = (U, d,r),

— v € B(vg, 1)(v # vo A A(v) = (L, (d+ 1) modulo 3,r — 1) A A({vg,v}) = 1).
Relabeling :

— XN(v) := (U, (d+ 1) modulo 3,r).

R5 : Add new leaves to the tree

Precondition :

- Aw) = (U),

— Jv € B(vg, 1)(v # vo A A(v) = (N,0,0)).
Relabeling :

— XN(v) :=(L,(d+ 1) modulo 3,r),

— N([vg,v]) := 1.

62 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

R6 : Lock internal vertices of the tree

Precondition :
-)‘(UO) = (Ua d, ’l“),
— Yv € B(vg, 1)(v # vg A XN(v) # (N, 0,0)),
— Yw € B(uvg, 1)(w # vo A A{vo,w}) =1 = (A(v) = (L, (d + 1) modulo 3,7) V
A(v) = (U, (d — 1) modulo 3,7) V A\(v) = (R, (d — 1) modulo 3,7))).
Relabeling :
— MN(vg) := (L,d,r).

Lemma 4.1 Let D = A(G) be the diameter of the graph G. At the end of round i 1 <i < D,
all the 1—labeled edges build a rooted tree T, that contains the root uy and all L—labeled
vertices. Ty, has therefore a depth of 1.

Proof. We show this lemma by induction on ¢. We recall that initially all vertices
different from wg are labeled with (N,0,0). During the execution of round i = 1, only
rule R1 can be executed. This round ends with the execution of rule R2. Thus, only
the neighbor vertices of uy are L-labeled and they build (with ug) a tree 7;10 of minimal
paths rooted at wuyp. ’Z;lo has therefore depth 1. Let ’Z;fo be the constructed tree after round
i. By the induction hypothesis we know that all vertices v # wg of 7, are L-labeled.
During the computation of round i + 1, all the L-labeled are first unlocked (see rules R3
and R4). Thereafter, rule R5 increases the rooted tree by adding new L-marked vertices
(at most one new vertex per leave) to 7. At the end of round i + 1, all U-labeled
vertices are locked through rule R6. From the preconditions and the effects of the rules R5
and R6 we can deduce that ijl is a minimal path tree rooted at ug and having depth i+1. O

Corollary 4.1 Let v € V be a L—labeled vertex and p = {v,vp,v1...,v5,u0} a path from v to
ug such that all v; (i < j) are L—labeled and v; # ug, v; # v, Vi, k < j. Then p is a minimal
path from v to ug.

Adding two adequate relabeling rules makes it possible to generate rooted trees of minimal
paths having a depth k such that 1 < k£ < D, k£ € N. Such an improvement is presented in
[Oss05a).

Lemma 4.2 Let ij) be a rooted tree of depth d. The time complexity of constructing Zfé 18
O(d?) and the message complezity is O(|E| +n * d).

Proof. Let ’Z;fo represents the tree of minimal paths, of depth ¢ and rooted at vertex ug. We
recall that all vertices of Tjo must be locked and unlocked for the computation of Tjj . Thus,
the worst case time and message complexity for computing one path rooted at wg of tree Tu“é
is Zlei = O(d?),1 < d < D, with D representing the diameter of G. Thus, the message
complexity for computing 7,2 starting from G is O(|E| 4+ n = d) [Lyn96]. All the vertices v
that satisfy the rules R2 and R3 can change their labels simultaneously. That is, we assume
that a vertex at depth 7 sends messages to its neighbors at depth ¢ 4+ 1 simultaneously. The
same fact is also true for the rules R4 and R5. For these reasons, we need 2(d+ 1) time units

4.4. SOLVING THE k-LocAL ELECTION PROBLEM 63

to construct the tree ’Z;ff)“ from fo) . Thus, the time complexity of our procedure is given by

d
D 2x(i+1) =d(d+1)+2d = O(d?).
=1

4.4 Solving the k-Local Election Problem

Starting from the rooted tree procedure described in Section 4.3, we intend to design a simple
procedure that should be able to solve the k-local election (k > 2) in an anonymous network.
Let I, be the identity of a vertex u and (S, >) be a structure model of tuples of the form (z1, x2)
where 1 and x9 are real numbers and (x1,x2) > (x3,24) < (1 > 23) V(21 = 23) A (T2 > 24).
Basically, we have developed an algorithm that works in three steps.

Procedure 4.2 (Solving the k-Local Election Problem)

Step 1: FEach vertex u chooses a random number r, and tekes advantage of its tuple n, =
(tu,I,) € S to perform a 2—local election (RLs). The winners and losers of these
elections are respectively marked with W and L.

Step 2: Each W —marked vertex u starts the construction of the tree TS (with depth d) of
minimal paths rooted at u.

Step 3: Once TY is constructed for a given vertex u, the tuples of all the W —marked vertices
in T are compared to ny. If n, > n,,Yv € T4 v # u (v is W-marked) then u has won
the local election in the ball of radius d centered on u.

The use of minimal path trees ensures that the tree T contains all vertices of the set {v €
V(G)|d(u,v) < d}. We remind that Procedure 4.1 was designed for a single root. Thus, all
labels were related to the computation of the same tree. In Procedure 4.2, several trees have
to be computed in a distributed way. For this reason, the label of each vertex v, in the new
procedure, includes a set L, of tuples representing the different states of v in the computations
of all the rooted minimal path trees that contain v. Furthermore, to encode the marking of
edges and to distinguish the different elements of £, we relax one specification of our model
and require that each vertex has a unique identity. The label of each vertex v also indicates
if v has won the RLs procedure. Moreover, it includes an item that represents the label of v
during the computation of the tree of minimal paths rooted at v.

The use of identities is certainly a weak point of our algorithm. Nevertheless, we will see
that without identities, our methodology solves the k—local election with very high probability.
The structure (S,>) ensures that at least one vertex terminates the election as winner. We
are now ready to present the basics of our procedure for solving the k—local election problem
(k> 2).

64 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

Definition 4.1 A tuple structure model (7T, <) is an irreflexive total ordering of tuples t,, =
(I’U7 Swy My, 7’;”, M'un ffj,),Vw (S V U)h@'f'@.'

e [, is the identity of a root node v,

e sy is an element of the set {R,U, L},

My = d(v,w) modulo 3,

0 <7r¥ =d(v,w) <k is the round of vertex w in the computation of the minimal path
tree rooted at v,

M., is the mazimal tuple (on the minimal path between v and w) known by w so far,

o FU is the identity of the father of vertex w in the minimal paths tree rooted at v.

Definition 4.2 For all u,v,i,j € V, let t; and t; be two elements of (T,<). Then

ot = t;‘ if and only if I, = I,, (mj +1)%3 = m;, - ri, FU = Ij, si=Lifs;=U
and s; = L if s; = R. We say t; <t;.

o ti=1t; if and only if I, = I,,, (mj — 1) modulo 3 =m; and ri = r{;, Fir=1,s8=U if
sj =1L and s; = R if s; = L. We say t; <1;.

Let G be a graph, for each vertex v we assume that A(v) = (Z,, Sy, Ly, ty, &) where:
e 7, is the identity of the vertex v,

e S, is an item that indicates the state of vertex v (L or W). Initially all vertices are in
the L state.

e L, is a set of elements of (7, <),
e 1, is the label of vertex v in the tree of minimal paths rooted at v,

o &, is an item that indicates if v has won the k—local election (elected, non_ elected).

Initially A(v) = (Z9,89, £9 ¢%) for all vertices v with Z? = Z,,, SY € {L,W}, £% = @ and
t9 = (I,, R,0,1,n,,I,). All vertices are in the state non_ elected. Procedure 4.2 (Steps 2 and
3) is then computed by the relabeling rules given in Procedure 4.3.

Procedure 4.3 (Solving the k-local election)

R1 : Initializing the first level

Precondition :
-)\(’Uo) = (Ivov o voa vo) /\Suo = W

— Jv € Bvo,1)(v # vo AVt € Lyt = (L, x, my, 7, Moy, F') AN Iy # Iy A €
{R,L,U})).
Relabeling :

= NW) = (Zy, S0, Loy + 1] 10, E).

vo?

4.4. SOLVING THE k-LocAL ELECTION PROBLEM 65

R2 : Unlock the first level (part 1)

Precondition :
= Sop = W Atyy = (Lug, By My, 708, My, F0),
— Vv e B(vg, 1)(v #vo At} € Ly).
Relabeling :
=ty = Ly, Rymiyy, 10 + 1, My, F0),
= N(v0) := (Zuy, Svgs Loy Loy s Evg)-

R3 : Unlock the first level (part 2)

Precondition :

= Suy = W Aty = (Ig, Ry g, 720, My, F0),

— Jv € B(vo, 1)(v #vo A3ty € Lo(ts = Loy, L, (Mo, + 1) modulo 3,770 — 1, M, F}°))).
Relabeling :

Ly =Ly —

— t:= (I, L, (mvo + 1)%3, 100 + 1, M, F°),

= N() = (Lo, So, Lo + 10, &),

R/ : Unlock the remaining levels

Precondition :
— Jv € Bluo,)(v # vo At € Lo(Gt; € Log(ti = (Ip, Lymu,ry, My, FE) N =
(Ip, U, (my — 1)%3, 7y + 1, My, F1))))-
Relabeling :
= N(©) = (L, S0, Lo — tis 10, &),
= ti = (Ip,U,my,ry + 1, My, FF),
— NW) = (Zy,Sv, Loy + ti, 10, Ey).

R5 : Add new leaves to the tree

Precondition :
— v € B(vo, 1)(v # vo ATt € Loy (ti = (Ip, Uy miy, 7,0, Moy, F1))),
— Ate Lyt = Igx,my,ry, My, F)NI, = 1) Nx € {R,L,U}.
Relabeling :
— M} :=max(My,,ny),
= ti = (Ip, U,my,, 0, M3, FP),

— N() = (Zy, 80, Lo +] 10, E).

66 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

R6 : Lock internal vertices of the tree

Precondition :
3ty € Loy (ts = (Ty, Uy Mg, 720, My, FE)),
— Yv € B(uvo,1)(v # vo A Ft; € Ly(t; = (Ig, 2, My, Tgy My, F) /\]—'5 = Iy, Ny =
I, Ne € {R,L,U}) = t; = (Ip, L, (M, + 1)%3,7,° ,Mv,}' YV ity = (Ip,U, (my, —
R

s (M, — 1) modulo 3,75, My, F?))

i po

D)%3, 7,0, My, FE) V ty = (I,
Relabeling :
-)\/('UO) = (I’Uovs’vovﬁvo - tivtvoag’uo)}
— Yo € B(vo,1)(v # vo ATtj € Ly(t; = (Ip, L, (M, + 1) modulo 3,7,°, M, FP') N Fl =
Ty Ng =1, = MvO = max(My,, M,))),
= ti = (Ip, Lymy,, 10 Myy, FP),
-)‘/(UO) . (1)0381107[-1’110 +t’utv0751)0)

To know that a vertex v is already involved in the computation of the tree rooted at a vertex
w, one has in Procedure 4.3 to look for an element ¢ € £, whose root vertex has the same
identity as w. This fact gives the above rules a more complicated aspect as the rules described
in Procedure 4.1 . Nevertheless, these rules exactly perform the required task. The rules R5
and R6 ensure that each time an internal vertex w is locked, the maximal known tuple M,, is
actualized bottom-up. This actualization is done up to and including the vertices of the first
level.

Corollary 4.2 During the computation of the rooted minimal paths tree T, at the end of
round i < D, v is aware of the mazimum tuple n,, € S amongst the tuples generated by all
the W-marked vertices of T,.

4.4.1 An Experimental Algorithm for Anonymous Networks

Due to the use of identities, Procedure 4.3 is not adapted for anonymous networks. We now
present a variant of Procedure 4.2 that is able to solve the k-local election problem in an
anonymous network.

Procedure 4.4 (Solving the k-local election problem in an anonymous network)

Step 1: FEach vertex v chooses a random number n, and performs a 2—local election (RLs).
The winners and losers of these elections are respectively marked with W and L.

Step 2: Fach W—marked vertex w chooses a random number n), and sets its identity to be
the number n}.

Step 3: For each W —marked vertex u, we construct the tree T (with depth D) of minimal
paths rooted at u.

Step 4: Once T,P is constructed for a given vertez u, the chosen numbers of all the W —marked
vertices in TP are compared to n’. If n¥ > n’,Yv € TP v # u (v is W-marked) then u
has won the local election in its ball of radius k = D

4.4. SOLVING THE k-LocAL ELECTION PROBLEM 67

As soon as the first two steps have been performed, the last parts of this procedure can be
computed effortlessly by Procedure 4.3. Obviously, the correctness of Procedure 4.4 heavily
depends on the absence of random numbers coincidences in the whole network. That is, if
two W-marked vertices generate the same random number, the algorithm can not guarantee
a faithful execution.

Assumption 1 We assume that each vertex v selects at random uniformly and independently
an integer rand(v) from {1,..,N}. Let X be a set of vertices containing a given vertez v such
that | X| = h. Under the above assumptions on rand we obtain the probability,

1 L /N -1\ 1\
P d d v X — == —_— =(1-— .
r(rand(v) # rand(w), Vw € {v}) N ;(N) < N)
We need to reduce the value of Pr(rand(v) = rand(w),Yw € X — {v}). To achieve this task,
we assume n our framework that the set X represents the set of all W-marked wvertices in
the network and that |X| < N. Due to Fact 4.1 we know that |X| < % Furthermore, the
integer N, which is the range of selection for vertices, is supposed to be large enough, so that
the probability of coincidence of rand in the whole network becomes small. Thus,

Pr(rand(v) = rand(w),Yw € X —{v}) = 1-— (1 - %) o : (1)

This means that if N is large enough, the probability that two vertices generate the same
random number converges to 0. This assumption is equivalent to the one supposing that all
vertices choose at random uniformly and independently a real from the interval [0, 1].

Theorem 4.1 (Correctness) Procedure 4.4 solves with high probability the k-local election
problem in an anonymous network.

Proof. The proof is derived from the requirements presented in Assumption 1 O

Lemma 4.3 (Complexity) The time complezity of solving the k-local election for a vertex
v, 1 an anonymous network, is the same as the complexity required to compute a tree of
minimal paths with depth k and rooted at v, that is, the complezity of Procedure 4.4 is O(k?).

Proof. Let n = [|V(G)| The RLy procedure has a message complexity of
O(n? + X ccINa()]) = O(®* 4+ n(n — 1)). Under the time assumptions we have
made, it is easy to see that a given vertex vy knows, after a constant time, that it has
won or lost the 2-local election. Furthermore, Procedure 4.4 has also a worst case mes-
sage complexity of O(y(|E| +n * k)). With v < % representing the number of vertices
that have won the RLs procedure. The time complexity of solving the k-local election
problem for a given vertex vg is the same as the time required to compute a tree of
minimal paths with depth k and rooted at vg. Thus, the time complexity of our proce-
dure is O(k?). This means that the time complexity of solving the k-local election problem
is not constrained by the topology of the network nor by the size of the underlying graph G. O

68 CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

4.4.2 Collisions Detection

From the expression described in equation (1) of Assumption 1, we know that the probability
of collision in the network is indeed very small but it is still higher than 0. For this reason we
have to find out some heuristics that should help us to detect and correct random numbers
collisions. Due to the use of rooted trees of minimal paths, we are not interested in avoiding
collisions in the whole network. In fact, as long as the computations of the trees can be
performed faultless, Procedure 4.4 correctly solves the k-local election problem. Thus, we are
only interested in avoiding collisions in balls of radius 2k. Inspired by proofs given in [Ang80],
Métivier et al. [MSZ02] have proved the following proposition.

Proposition 4.2 ([MSZ02]) There is no deterministic or Las Vegas algorithm to detect if
there is a coincidence in a ball of radius k for k > 2.

The main consequence of this proposition is that the 2-local election of Procedure 4.4 can
be performed such that there are no collisions in balls of radius 2. The main heuristic for
detecting random numbers coincidences in a ball of radius 2k can then be deduced from the
next lemma.

Lemma 4.4 Let w and vy be two vertices such that w € T . If d(w,vg) = d and Jw; €
B(w, 1) such that wy € T,% and |d(w,v) — d(w1,v0)| > 1 then there exists a vertes vy such
that ny, =n;, .

0

Proof. During the computation of the tree ’];’f) all unlabeled vertices that are at distance d
(with d < k) from vy are labeled in the same round and all of them are aware of the value of
d. This means that for a given vertex w that is at distance d from vy and that belongs to
T, all the neighbors of w that belong to Tvlf) are at distance d; € {d — 1,d,d + 1}. Thus,

vo?

Yuy € B(w, 1), wy € ’Z;’; = |d(w,vg) — d(w1,vg)| < 1. O

Once a collision is detected by a vertex w, an error message is sent to the vertices involved
in the collision. As soon as a vertex knows that it is involved in a collision, it set its state to
L and continues with the computation. A second alternative could also consist in generating
a new random number and starting the construction of a new rooted tree of minimal paths.

4.5 Concluding Remarks

It is clear that, using Lemma 4.4, allows to detect most of numbers coincidences in balls of
radius 2k. Nevertheless, there are a small set of collisions that can not be detected by a vertex
w € T where d(w,v9) = d. As a matter of course, the vertex w could never be able to detect
the collision between vy and v, if d(vg,v)) = D < 2k and D € {2d,2d + 1,2d + 2}. This
relies on the fact that all the neighbors of w that belong to the tree TU’Z are supposed to be at

distance d; € {d — 1,d,d + 1} from a vertex, in this case v{, having the same identity as vy.
That is, the conditions of Lemma 4.4 could not be satisfied and w could not be able to detect
this collision. In spite of our impossibility to detect this kind of random numbers coincidences,
our algorithm has performed very significant results in practical uses. This is due to the fact
that the probability of collision can be considerably reduced by using random real numbers

4.5. CONCLUDING REMARKS 69

from the set [0,1]. The use of several heuristics also plays a decisive role for the robustness of
our methodology.

70

CHAPTER 4. A PROBABILISTIC ALGORITHM FOR LOCAL ELECTIONS

Chapter 5

Recognition of Graph Properties with
Local Computations

Contents
5.1 Reduction Systems 0. 71
5.2 Encoding Reduction Rules in a Distributed System 75
5.2.1 Encoding the Reduction Rules 75
5.2.2 Distributed Computations of Reduction Rules 79
5.3 Distributed Computations of Decision Problems. 81
5.3.1 Increasing the degree of parallelism 83
5.3.2 Applications: Decision Problems for Graphs of Bounded Treewidth . 86
5.3.3 Labeled graphs recognizable by local computations 88
5.4 Unfolding Reduction Rules, 91
5.4.1 Constructive Reduction Algorithms. 92
5.5 Concluding Remarks 95

5.1 Reduction Systems

This chapter focus on a classical problem for distributed algorithms, the recognition problem.
Formally, we intend to compute some topological information on a network of processes,
possibly using additional knowledge about the structure of the underlying graph.

Litovsky et al. [LMZ95] have used local computations to define a general notion of graph
recognizers. To this end they specified an initial labeling and a terminal family K of irreducible
labeled graphs. A graph G is recognized if the labeled graph (G, \), where X is an initial
labeling, can be reduced to a graph in &. They introduced the notion of k-covering and
proved, for instance, that the family of series-parallel graphs and the family of planar graphs
can not be recognized by means of local computations. Starting from these results, Godard
et al. [GMMO4| have proposed the notion of recognition with structural knowledge by means
of local computations. Using coverings and a distributed enumeration algorithm proposed by

71

72 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

A. Mazurkiewicz [Maz97], they characterized the graph classes that are recognizable with or
without structural knowledge. Their notion of recognition with structural knowledge consists
in defining a labeled graph recognizer with structural knowledge ¢ as a triple (R, K,¢) where
R is a locally generated relabeling relation that is noetherian on the set {(G,A,@))|G € Gr},
K is the final condition (i.e., there is a recursive set K of finite subsets of L such that K =
{G € G1|lab(G) € K}), and ¢ is a computable function which associates with each labeled
graph G a label «(G) € L. In this framework Gy, is the class of labeled graphs over a fixed set
L and a labeled graph G is recognized by (R, I,) if Irredr ((G, A, g))) N K # O.

The main goal of the present work is to present an algorithmic solution for solving the
recognition problem in the local computations environment. To this end the procedure based
on labeled graph recognizers is not very adequate. As a matter of fact, deciding that a labeled
graph G satisfies a given property, consists in checking if Irredz ((G, A,g))) N K # ©. That is,
we have to find an element of K isomorphic to an element of Irredz ((G, A,(@))). Unfortunately,
the graph isomorphism problem is known to be NP-hard. Even if we assume the existence
of unique processes identifiers, solving this problem by means of local computations could
be very tedious. A further objection to the use of labeled graph recognizers concerns the
set KC whose size can be unbounded. A better solution is proposed in [LMZ95| where the
set of terminal graphs K is specified by special conditions defined by means of propositional
formulas. Nevertheless, this approach makes it possible neither to count vertices or edges with
given labels, nor to verify their relative positions. For example, it is impossible to specify that
the final labeled graph contains exactly one vertex labeled by a given element T or that there
exists two adjacent vertices labeled by T'. We could certainly used a better logical language to
express the propositional formulas. But we would still have the problem of evaluating them
efficiently in the local computations framework.

We propose an algorithmic approach of the recognition problem based on the concept of
graphs reduction which is a further means to define sets of finite graphs.

In fact, there are several ways to define sets of finite graphs by finite devices. The main
ones are graph grammars (see Handbook on graph grammars [EKMR99|, Courcelle [Cou90b,
Cou90al), systems of equations (see. Bauderon et al. [BC87]), logical formulas (in particular
monadic second-order logic [Cou90b, ALS91]), by forbidden configurations such as forbidden
minors (Robertson et al. [RS87|, Arnborg et al. [APC90]) and finally by reduction.

A terminating reduction system (R, K) consists of a rewriting relation —z and a finite
set K of accepting graphs. Given any graph G, every sequence of —g-rewritings terminates.
Such a terminating sequence yields a graph called a normal form of G. A rewriting system
defines a class L of graphs if every normal form of a graph G € L is in K and if no normal
formof H ¢ L isin K.

(Classical examples of graph reduction concern trees or series-parallel graphs. For instance,
consider a graph G. Remove a pendant edge {u, v} with its end vertex u. Repeat this process
until a graph G with no pendant edge is obtained. Obviously, Gg is an isolated vertex if and
only if the original graph was a tree.

The idea of reduction algorithms originates from Duffin’s characterization of series-parallel
graphs using series and parallel reductions rules [Duf65|. By taking advantage of these re-
duction rules, Valdes et al. [VTLT79] have presented a reduction algorithm that recognizes
series-parallel graphs in linear time. Arnborg and Proskurowski [AP86]| extended these ideas
and obtained reduction rules that characterize the graphs of treewidth at most 3 and, amongst

5.1. REDUCTION SYSTEMS 73

other, they showed that these reduction rules can be used to recognize graphs of treewidth at
most 3 in O(n?) time. In [MT91] an improved version of this algorithm that runs in linear
time is given.

Arnborg et al. [ACPS93| have presented a more general approach based on algebraic
setting. They introduced a set of conditions that ensure faithful graph reduction algorithms.
Moreover, they showed that for a large class of decision problems on graphs of bounded
treewidth, there is a set of rules for which these conditions hold. These include all MS-
definable decision problems. A linear reduction algorithm based on such a set of reduction
rules was given.

Bodlaender and Hagerup [BH98| have shown that the sequential reduction algorithm pre-
sented by Arnborg, Courcelle and Proskurowski [ACPS93| can be efficiently parallelized, if the
set of reduction rules satisfies some additional conditions. They also showed that these condi-
tions are satisfied by all finite state decision problems, assuming yes-instances have bounded
treewidth.

In this chapter, we will first extend the framework of reduction algorithms by presenting
the first distributed algorithm that computes reduction algorithms with success. The local
computations systems are essentially “static” in the sense that they never change the underlying
structure of the graph on which they work, but only the labeling of its components (edges or
vertices). This principle represents the main challenge in encoding reduction algorithms by
local computations. As a matter of fact, to achieve this task, we have to find a way to express
the removal or the addition of graph components in the underlying network. Therefore, we
introduce an encoding system for reduction algorithms based on four basic reduction rules
that can easily be encoded by local computations. These are edge addition, edge deletion,
vertez deletion and edge contraction. Starting from these rules, we state necessary conditions
that must hold for a set of reduction rules to ensure a faithful distributed execution. These
conditions have induced the introduction of the concept of handy reduction system. Moreover,
we prove that these conditions are satisfied by all sets of reduction rules which characterize
finite state decision problems on graphs of bounded treewidth. For instance, we prove that
all graphs of bounded treewidth that satisfy a given graph property definable in the monadic
second order logic can be recognized by local computations.

Using the notion of recognition with structural knowledge by means of local computations
[GMMO04]|, we state an immediate relationship between handy reduction systems and labeled
graph recognizers with structural knowledge. We also prove that if € is a class of covering
minimal graphs of bounded treewidth that satisfy any MS-definable property P, then € is
size recognizable. That is, there is an algorithm encoded by local computations that, given a
covering minimal graph G and its size |V (G)|, decides whether G belongs to € or not.

Ordinary reduction algorithms do not provide a possibility of constructing solutions, but
only decide upon membership in a class of graphs. Therefore, we make use of constructive
reduction systems, introduced in [BvAdF01|, to present a distributed algorithm that, given a
graph G and a constructive reduction system (R,Z) for a property P, performs the reduction
rules on G until a normal form is reached. If G belongs to P, a solution that attests that G
satisfies P is constructed. Obviously, constructive reduction systems are only useful for graph
properties of the form: P(G) = “there is an S € D(G) for which Q(G, S) holds” where D(G)
is a solution domain, which depends on G and @ is an extended graph property of G and S
ie., Q(G,S) € {true,false} for all G and all S € D(G).

74 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

We now present some basic definitions that are useful for the understanding of the graph
reduction paradigm [BvAdFO01].

Definition 5.1 (Sourced graphs) A sourced graph G is a triple (V,E, X) with (V,E) an
undirected graph, and X CV is an ordered subset of the vertices, denoted by (x1,...,z;),1 > 0,
called the set of sources. Vertices in V — X are called inner vertices. A sourced graph (V, E, X)
is called an l-sourced graph if | X| = 1. A sourced graph (V, E, X) is said to be open, if there are
no edges between sources (Yv,w € X,{v,w} ¢ E). The usual undirected graph (i.e., without
sources) will be simply called graph.

Definition 5.2 The operation & maps two sourced graphs G and H with the same number [
of sources to a graph G © H, by taking the disjoint union of G and H, then identifying the
corresponding sources, i.e., for © = 1,...,1 the ith source of G is identified with the ith source
of H, and then removing multiple edges (i.e. see Figure 13).

1 1 1
PGNP PO\
—_—
2 2 2
O Inner vertices
® Source vertices

Figure 13: Example of @-operation for two graphs

Two sourced graphs (Vi, Eq, (21, ..., 2x)) and (Va, Ea, (y1, ..., 1)) are said to be isomorphic,
if k£ =1 and there exists a bijective function f : Vi — Vi with Yo,w € Vi, {v,w} € E; <
{f(v), f(w)} € Ey and for all i,1 < i < k, f(z;) = y;. The main difference with the usual
definition of graph isomorphism is that we require the corresponding sources to be mapped to
each other.

Definition 5.3 (Reduction rule) A reduction rule r is an ordered pair (Hy, Hs), where Hy
and Hy are l-sourced graphs for some I > 0. An application of the reduction rule (Hy, Hs)
1s the operation, that takes a graph G of the form G1 @© Gs, with G1 isomorphic to Hy, and
replaces it by the graph Go ® G3, with Gy isomorphic to Ho. We write G — Go @& Gs.

For two graphs G and G’, and a set of rules R, we write G R, G’ if there exists an 7 € R
with G = G’. An example of the application of a reduction rule r = (Hy, Hy) is given in
Figure 14. Given a reduction rule r = (Hy, Hy), we call H; the left-hand side of r, and Hs
the right-hand side of . G contains a match Gy if there is an » € R such that G is a match
to r in G. If G contains no match, then we say that G is irreducible (for R).

The following conditions are useful for a set of reduction rules in order to get a character-
ization of a graph property P.

Definition 5.4 Let P be a graph property and R a set of reduction rules.

e R is safe for P if, whenever G R, G, then P(G) < P(G).

5.2. ENCODING REDUCTION RULES IN A DISTRIBUTED SYSTEM 75

e R is complete for P if the set T of irreducible graphs for which P holds is finite.

. . . R / . .
e R is decreasing if, whenever G — G, then G’ contains fewer vertices than G or more

generally V(G| + |E(G")| > |[V(G)| + |E(G)].

1 1 1 1
s e s [
2 2 2 2

Figure 14: Applying rule r to G yields G'.

Definition 5.5 (Reduction System) A reduction system for a graph property P is a pair
(R,Z), with R a finite set of reduction rules which is safe, complete, and decreasing for P,
and T the set of 1rreducible graphs for which P holds.

A reduction system (R,Z) for a property P gives a complete characterization of P: P(G)
holds for a graph G if and only if any sequence of reductions from R on G leads to a graph
G’ which belongs to Z (i.e. is isomorphic to a graph in 7).

The following lemma both serves to show a limit on what problems can be solved with
graph reduction, and can be used to turn sequential algorithms with running time linear in
the number of edges into algorithms with time linear in the number of vertices.

Lemma 5.1 (/BvAdF01]) Suppose that property P is characterized by the reduction system
(R,Z). Then, there is a number ¢, such that for all graphs G = (V, E) with P(G) = true, |E| <
c-|V].

5.2 Encoding Reduction Rules in a Distributed System

The main task of this section is to present a general distributed algorithm that, given a graph
G and a set of reduction rules R, performs all the reduction steps on G until the resulting
graph is irreducible for R. Before we plunge in the details of this procedure, we first state the
boundary conditions that ensure the correctness of our algorithm.

As a matter of course, depending on the computational model, the distributed execution
of reduction rules comes up against several problems. The major difficulty we have to face
while performing reduction rules in the local computations environment relies on the fact that
local computations do not allow structural changes of the basic underlying graph. To tackle
this inconvenient, we have to design an adequate encoding of reduction rules. This encoding
should satisfy all the requirements of the local computations framework.

5.2.1 Encoding the Reduction Rules

To encode reduction rules, we define four basic rules: wertex deletion, edge deletion, edge
addition and edge contraction. Starting from these rules, we will define a class T of reduction

76 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

rules that can easily be encoded in our framework. Further, we will show that there is a large
class of decisions problems that can be encoded using the rules of the class Y. To encode the
basic reduction rules on a graph GG, some requirements have to be satisfied:

1. each vertex v € G has a unique identifier .
2. G is a labeled graph described as (G,), 9).

3. 0y : Ig(v) — > is an injective function which associates to each edge incident to v a
distinct port number from the set).

4.) is a vertex labeling function such that for a vertex v, A(v) = (S, P,), with

o S e {A T} is a token that should express the state of vertex v during the compu-
tation.

e P, is a set of paths that contains for each neighbor w of v exactly one path p.’
from v to w.

Initially, all the vertices of a labeled graph (G, A, d) are A-labeled. That is, for each vertex v
it holds A\(v) = (A, P,).

Definition 5.6 Let (G, \,9) be a labeled graph with port labeling. The underlying graph of
(G, \,0) denoted Gf is the subgraph of G that contains all the A-labeled vertices of (G, \,0).

In this representation, a vertex can be in the states active (A) or tunneling (T'). Moreover,
each path p = {v,v1, va, ..., v} € P, is encoded using the port labeling of the vertices traversed
by p. To avoid confusion and to distinguish the elements of P, from each other, each path
p = {vo,v1,v2,...,v,} is identified by I,,. The use of the port numbering function ¢ does
not represent a restriction to regular graphs having known degrees. In fact, the graphs we
generally deal with could have unbounded degrees.

Encoding the basic reduction rules in the local computations framework can be done in
the following way.

Vertex Deletion (delete_node(u): The deletion of an active vertex u is performed in two
steps. In the first step, each neighbor w of u removes the path p¥ from its set P,. In
the second step, the state of u is set to D and P, remains unchanged.

Edge Deletion (delete _edge((u,v)): During the deletion of an edge e = (u,v), u removes
the path p? from its set P, and v removes the path pl from its set P,.

Edge Addition (Add__edge((u,v)): During the addition of an edge e = {u,v}, u adds the
path p! to its set P, and v do the same with the path pj.

Edge Contraction (contract edge((u,v)): To contract an edge e = (u,v), we set u in the
state T" and P, remains unchanged. Afterward, the values of P, and P, for w such
that pl € P, are actualized as follows: P, = P, — p¥ U {p¥|p¥ € Py, A pY & P,} and
Pw = Pw — pi, + po,. That is, each active neighbor of u that was not a neighbor of v
becomes a neighbor of v after the contraction of the edge e. The above representation also
ensures the suppression of multiple edges that can appear during an edge contraction.

5.2. ENCODING REDUCTION RULES IN A DISTRIBUTED SYSTEM 77

All the described actions are depicted in Figure 15. Obviously, an edge contraction rule can
be simulated by successive executions of the other three basic rules. Due to the requirements
involved by our computation model, any kind of reduction rules can not be expressed by local
computations. As a matter of course, if the left-hand side of a reduction rule is not connected,
our encoding system will never be able to simulate its execution. This is why we restrict our
attention to handy reduction rules.

Delete_node(u) :
u(A, Pu) u(T, Pu)
oe———O o————O
v(A, Py) v(A, Py — py)
Delete _edge((u,v)) :

u(A, Pu) w(A, Pu —p)
o——0 ——>
U(A7PU) U(A77Dv _pZ)

w(A, Puw)
A, Py +py)

u(A, Py + po)

Add_edge((u,v)) :

Contract_edge((u,v)) :

A Pu T'Pu
I—’) I—‘
Pr =P, —pt U{p?|p¥ € Pu Ap¥ &Py}

P = Puw — Py U {pw|pt, & Puw}

Figure 15: Encoding basic reduction rules by local computations

Definition 5.7 (Handy reduction rule) Let r = (Hy, Hy) be a reduction rule. r is said to
be a handy reduction rule if the following conditions hold.

1. Hy and Hs are connected,
2. |V(Hz)| < [V(Hy)l.

The main aspect of handy reduction rules resides in the fact that no arbitrary vertices are
created during the reduction step. That is, new edges and vertices can only be created while
executing an edge addition or an edge contraction rule.

Definition 5.8 (Handy reduction system) A handy reduction system is a reduction sys-
tem (R,Z) where R only contains handy reduction rules and all graphs G € T are connected.

78 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Lemma 5.2 Let (R,Z) be a handy reduction system. Then any r € R can be computed by a
fized sequence of rules rp = {b1, b, ...,bx} where b; are basic reduction rules.

Proof. Let r = (Hy,H2) € R be a handy reduction rule. To show the validity of this
lemma we are going to give a procedure C, that, starting from the graph H; constructs
the graph Hy. Let u : V(H2) — V(H;p) be an injective function that maps each vertex
of Hs to a vertex of Hy. p maps source vertices of Hs to source vertices of Hy. Assume
D = {u € V(H)Vw € V(Hs),u(w) # u}. C, constructs the graph H) by performing the
following steps on Hi:

Step 1: Remove all vertices of ® from H;. After this, p becomes a bijection.

Step 2: For each edge {u,v} € FE(Hz) if {p(u),u(v)} ¢ E(H;), then add the edge
{n(w), p(v)} to E(Hy).

Step 3: For each edge {u,v} € E(Hy) if {u~*(u),p~ (v)} € E(H>), then the edge {u,v} is
deleted from E(H).

As a matter of fact, the graphs H) and Hj have the same number of vertices. Furthermore,
{u,v} is an element of E(H}) if and only if {u~!(u), p~1(v)} is an element of E(Hs). Thus,
the graphs H) and Hs are isomorphic. This means that Hs can be constructed from Hp by
successive executions of the basic reduction rules: vertex deletion (Step 1), edge addition
(Step 2) and edge deletion (Step 3). O

The particularity of basic reduction rules is that, within our encoding system, they can
easily be computed by local computations on balls of a fixed radius k (see Figure 15). By the
hand of Lemma 5.2 we can also apply this property to handy reduction rules.

Fact 5.1 FEach handy reduction rule v can be represented by a sequence of basic reduction
rules r; that allows the ezecution of v in the local computations framework.

Remark 5.1 Handy reduction rules can be seen as a strong restriction of the concept of re-
duction algorithm. Nevertheless, we will show that all decision problems, on graphs of bounded
treewidth, definable in the monadic second order logic [Cou90b] can be decided using adequate
sets of reduction rules satisfying the conditions stated in Definition 5.7.

In the local computation framework, we generally deal with asynchronous messages passing
systems. This means that we have to act with caution while sending messages. For this reason,
each message m sent by any process u to a process v contains the path p?. Each time a vertex
w receives the message m, it checks if the identity of m is the same as its own identity. If this
is not the case, w sends m to the next vertex that appears in the path pp.

The way reduction rules are encoded plays a significant role for the correct execution
of the computed algorithms. For instance, two active vertices, that become neighbors after
the execution of an edge contraction rule, must have a global knowledge about their actual
neighborhoods. Hopefully, the properties of the basic reduction rules ensure that, at any given
time, each vertex of Gf\‘ has global knowledge about the set of its neighbors. Hence, the set of
all A-labeled vertices gives a complete representation of the graph obtained after a reduction
operation on graph G. In fact, if there is a graph G’ such that there is a rule r with G = &,

5.2. ENCODING REDUCTION RULES IN A DISTRIBUTED SYSTEM 79

then there exists a labeling function X such that (G, \,6) = (G, X,§). In the same way it is
easy to show that the graphs G’ and G‘/{‘, are isomorphic. The labeling function X is therefor
represented by the encoding of A after the execution of the sequence r; on (G, A, 9).

Proposition 5.1 Let P be a property characterized by a handy reduction system (R,Z) and
G a graph. If (G, \,6) 55 (G, Xi,0), then P(G) & P(G4).

Proof. Due to the fact that the initial basic underlying graph of (G, \,d) has the same
properties as G, it is evident that P(G) < P(G4). The set R is safe and we know from
Lemma 5.2 that the execution of any rule r € R can be effectively simulated in (G, A, 0).

Thus, (G, A,8) = (G, \;, 6) implies P(G{}) & P(G4). O

5.2.2 Distributed Computations of Reduction Rules

Our main purpose here is to present a distributed algorithm that, given a graph (G, \,J) and
a set of handy reduction rules R, performs all the reduction steps on Gf until the resulting
graph is irreducible for R. Before we go into the details of this procedure, we first state the
boundary conditions that ensure the correctness of the designed algorithm.

First of all we require that the functions A and ¢§ satisfy the conditions of our encoding
system as described in Section 5.2.1. Moreover, we set k = min{d € N|d > A(H;),Yr =
(Hi,Hs) € R}. Starting from the graph G, we construct the labeled graph (G, \,0) and
simulate the execution of the reduction rules of 'R. This computation works in rounds and
in each round all vertices execute the three steps of Algorithm 5.1. The correctness of this

Algorithm 5.1 Computing reduction rules
Input: A graph (G, A,¢) and a set of handy reduction rules R.
Each vertex v executes the following steps forever.
Step 1: v performs a (2k + 2)-local election. All the winners become W-marked and the
other L-marked.
Step 2: each W-marked vertex v looks for a rule » € R such that r; can be applied on
(BGS? (v,k+1),\,9).
if such a rule could be found, then
go to Step 3;
else

the procedure continues in Step 1.
end if
Step 3: r; is performed on (BGf (v,k 4+ 1),\,9). The procedure continues in Step 1.

algorithm strongly depends on the correctness of the procedure used to perform the local
election and the matching search. We are going to briefly refer to the details of Step 1 and
Step 2 of Algorithm 5.1.

The k-local Election. To solve the k-local election problem, we take advantage of the
methodology introduced in [Oss05b] and presented in Chapter 4. This methodology is suitable
for graphs with identities. Moreover, it can can also be used to generate a Las Vegas algorithm

80 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

that solves the local election problem in anonymous graphs with very high probability. For
a given graph G = (V, E), the procedure given in |Oss05b| ensures that any winner vertex
v € V is aware of the subgraph representing the ball Bg(v, k). After each k-election round,
each winner vertex v has computed a tree of minimal paths rooted at v having a maximal
number of levels. This tree, denoted 7)¥, has at most k levels. That is, all vertices w # v are
at distance at most k£ from v. This principle induces the following fact.

Fact 5.2 ([Oss05a]) Let v be a vertex that has won the k-local election in a graph G. If T*
has at most k — 1 levels, then Bg(v,k) = G and all vertices u # v are L-marked.

Finding Reduction Matches. Once a vertex v has won the (k + 1)-local election of Algo-
rithm 5.1, it has to find a match G; for any reduction rule r = (H;, Hy) € R in Bga (v,k+1).
In contrast to the sequential and parallel reduction algorithms (|BvAdFO01|, [BH98|) where one
looks for a match in the whole graph, our algorithm tries, for a W-marked vertex v, to find a
match in the subgraph containing v. It is clear that if k£ > %ﬁx) — 1, then one has to search
in the whole graph G‘/{‘. This allows several reduction steps to be performed simultaneously

on non overlapping balls of radius k& + 1.

Let now r = (Hy, Hs) € R be a reduction rule. The problem of finding a match G; in
BG;‘ (v,7) is equivalent to looking for an induced subgraph of BG;‘ (v,7) (5 € N) isomorphic
to H;. For this reason, we use the algorithms of Bunke et al. |[BMO00| and the procedure
introduced by Cortadella et al. [CV00] to solve the subgraph isomorphism problem in Step 2
of Algorithm 5.1. With this strategy we are able to correctly solve the subgraph isomorphism
problem in our framework. If j has a reasonable size and G has a small degree, then it is also
possible to use the tree pruning algorithm introduced by Ullman |UIL76].

In order to speed up the performance of the used subgraph isomorphism algorithm, we
require that the W-marked vertex v of BG? (v,k 4+ 1) has to be mapped to one source of the
graph Hi. If H; only contains inner vertices, then v is mapped to a vertex that has to be
removed from the underlying graph, or which adjacent edge has to be deleted during the
reduction Step. Thus, the size of the pruning tree can be considerably reduced.

Lemma 5.3 Let M C R be a set of rules that have a match in G5'. If M # O then during
some computation round t, Algorithm 5.1 performs at least one reduction rule on Gf\‘.

Proof. If a given rule r = (Hy, Hy) € R has a match in Gf\‘, then this match is in any case
a subgraph of a ball of radius k + 1 centered on some vertex w. Thus, as soon as w wins a
(2k 4 2)-local election, rule r can be performed on Bga (w, k +1). If more than one rule can
be executed on BG? (w,k + 1), only one rule is performed. The choice of the performed rule
is done in an equiprobable way. O
We are now interested in the way parallel reduction steps on overlapping subgraphs are
avoided.

Lemma 5.4 All the parallel reduction steps executed in Algorithm 5.1 occur on distinct sub-
graphs of radius k + 1.

Proof. Without loss of generality, let r;, 7; € R be two rules executed respectively by the
vertices w1 and wsy. The execution of r; and r; are performed on balls of radius & + 1. If wq
and w9 have won a (2k+2)-local election, then all vertices of the sets {v € V|d(v,w;) < 2k+2}

5.3. DISTRIBUTED COMPUTATIONS OF DECISION PROBLEMS 81

and {v € V|d(v,w2) < 2k + 2} are L-marked. This means that d(wy,ws) > 2k + 2. If
d(wi,wg) = 2k + 3 then r; and r; are performed on different balls of radius k& + 1. More
generally, if vg € BGQ (w1, k+1) and ug € BG;‘ (wa, k + 1), then d(vg,ug) > 2. O

The correctness of the next lemma follows immediately from Lemma 5.3 and Lemma 5.4.

Lemma 5.5 Algorithm 5.1 performs reduction rules on simple graphs.

5.3 Distributed Computations of Decision Problems

Now we exploit the concepts described in the previous section to present the first distributed
algorithm that, given a handy reduction system (R,Z) for a property P, decides whether
property P holds for a given graph G. Starting from the input graph, our algorithm repeats
applying rules from R until no rule can be applied anymore. If the resulting graph belongs to
the set Z, then P holds for the input graph. The main challenge in this procedure relies in the
local detection of the global termination of the reduction algorithm. In fact, the local detection
of the explicit termination of a distributed algorithm can be pretty difficult and is sometimes
not practicable (([MMW97]). To overcome this difficulty, we slightly modify Algorithm 5.1 and
added new computation steps that permit the local detection of the global termination.

Let (G, A, d) be alabeled graph and (R,Z) a handy reduction system for a property P. We
define k and k1 as k = min{d € N|d > A(H,),Vr = (H1,Hz) € R and d > A(G;),VG; € T}
and k1 = min{d € N|d = A(G,),VG; € Z}. Starting from the graph (G, \,0), we simulate the
execution of the reduction system (R,Z) using Algorithm 5.2.

Termination Detection. Detecting the termination in Algorithm 5.2 includes at most
three cases. There is the case where P(G) holds and two other cases that can occur when P
does not hold for the input graph G. The second case is subsumed in the correctness of the
next lemma.

Lemma 5.6 During the computation of Algorithm 5.2 by vertex v, if the tree T£2k+2) has at
most 2k + 1 levels, no reduction rule could be applied and no graph G; € I isomorphic to
Bga (v, k + 1) was found, then P(G) does not hold.

Proof. We deduce from Fact 5.2 that BG;‘ (v,k+1) = Gf\‘. This induces that if no reduction
rule can be applied on BGQ (v, k+1) and there is no graph G; € 7 isomorphic to BG? (v, k+1),

then the graph Gf\‘ is irreducible and P(Gf) does not hold. Proposition 5.1 leads to the
correctness of the above lemma. O

The remaining situation concerns the case where P(G) does not hold, Gf is irreducible
and the size of G‘;‘ does not allow any vertex v to have a view over the whole network. That

is specially the case when Tézkﬂ) has at least 2k + 2 levels. In this situation, no vertex
will be able to detect locally the global termination of the reduction procedure. This means
that Algorithm 5.2 will never stop. Nevertheless, it is possible to overcome this difficulty by
using snapshot based property detection techniques as described in Chapter 6 and presented
in [CL85, MO04a|. For instance, if any vertex v knows that each vertex has won at least

82 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Algorithm 5.2 Distributed test of a graph property
Input: A graph (G, \,§) and a handy reduction system (R,Z).
Each vertex v executes the following steps:
Step 1: v performs a (2k + 2)-local election. All the winners become W-marked and the
other L-marked.
Step 2: each W-marked vertex v looks for a rule » € R such that r; can be applied on
(BG)‘} (v,k+1),\,9).
if such a rule could be found, then
the procedure continues in Step 3.
else
the procedure continues in Step 4.
end if
Step 3: 7 is performed on (BGf (v,k+1),A,d). The procedure continues in Step 1.

Step 4: v checks if any graph G; € 7 is isomorphic to the graph BGQ (v, k+1).
if a graph G; € 7 is found, then
v sends a stop signal to all u € Gf\‘. Thus, P(G) holds and the algorithm stops.
else
the procedure continues in Step 5.
end if
Step 5:
if T52k+2) has at most 2k + 1 levels, then
P(G) does not hold and the execution can be stopped.
else
the procedure continues in Step 1.
end if

5.3. DISTRIBUTED COMPUTATIONS OF DECISION PROBLEMS 83

one local election and, regardless of this fact, no reduction rule was performed, then v can
broadcast the stop signal.

Lemma 5.7 (Decidability of P) Given a decreasing reduction system (R,Z) for a property
P, Algorithm 5.2 correctly recognizes simple graphs for which the property P holds.

Proof. This is an immediate consequence of the fourth step of algorithm 5.2 and of the
correctness of Lemma 5.5 and Lemma 5.6. O

The two-colorable cycle problem. We illustrate the execution of our algorithm by the
hand of a simple example. Consider the reduction system of a graph property P, where P(G)
holds if and only if G is a two-colorable cycle. Let (R,Z) be the reduction system where Z
is the set containing only the cycle on four vertices. We assume that vertices that are ready
to perform a reduction rule are red colored and the others are respectively black, green or
blue colored depending on their relative position in the ball centered on a red colored vertex.
Figure 16 presents the set Z, the rule » € R and the corresponding sequence of rules r;. It
also depicts the simulation of the execution of (R,Z) on a graph (G, \,d). The property P
is decided using three steps that successively transform (G, \,9) in (G, A1,0) and (G, A2, 0).
In the depicted example k = 4 and k; = 4. This means that the vertices have to perform a
10-local election before executing the reduction rule r. Due to the size of GG, only one vertex
is able to win the local election at a given time. This leads to a sequential execution of
the reduction algorithm. In fact, parallel reduction steps can only occur if A(G) > 2k + 3.
Unfortunately, the graph G presented in Figure 16 has a diameter less than 11. To increase
the number of parallel reduction steps, we have to adjust the choice of the parameters k£ and
k1 to reach a better degree of parallelism.

About the time complexity. Due to the use of unique identifiers in our encoding system,
it is possible to elect a vertex vg that locally reconstructs the whole graph and execute the
sequential reduction algorithms of Arnborg et al. [ACPS93| or Bodlaender et al. [BvAdFO01]
which yield a linear time complexity. Nevertheless, the election algorithm requires O(n?) time.
Hence, this adds up to a general time complexity of O(n?). A second possibility consists in
executing the reduction algorithm in rounds such that in each round, any vertex v tries,
exactly once, to find an executable reduction rule r € R. This can be reached by using the
synchronizers protocols described in Chapter 3. In this case, the worst case time complexity
will be at least O(n?). This results to the fact that, in many cases, the number of reduction
rules that must be checked seems to grow rapidly. Even if we can check the existence of a
match for a given rule r in constant time, the general time complexity is always expressed as
O(Kn?), where K = |R]|.

5.3.1 Increasing the degree of parallelism

Each time a vertex v wins the k-local election, it looks for a match in the ball BG;‘ (v,k+1).
If we are able to reduce the diameter of Boa(v,k + 1), we will also be able to reach a better
degree of parallelism during the execution of Algorithm 5.2. Reducing the value of £ will scale
down the size of the subgraphs of Gf in which matches of reduction rules are sought. Now we

84 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Part A: - -
T ’u — :>u , 1 ={Contract_edge(w, u), Contract edge(z,u)}
Yy z Yy
] xro
x4 r3
Part B:
(a; 4,{(3,0),(2,h)}) (a; 4,{(3,0),(2,h)})
2 3
(b7A7{(37a)7(17c)}) (b7A7{(37a)7 (176)})
(Ad o). 2 ap) (h A, {(1,9), (2. @)})
1 1 1
(e, A, {(2,d), (1,0)}) (e, A,{(2,3,¢),(1,0)})
(9. A {1, 1) (4, D) RTINS
4 2 4
), (3, ¢ (d, T, {})
(510,000 @AL2A.GOD (1T
3
(e, 4, {(1), (3, D)D) (e 4, {(1,4,9), (3,2, 0)})

(@, 4,{(3,1,¢), (2,)})

(6.7, {})

(h, A, {(1,9),(2,a)})

1

(g, A, {(1,h), (4,1,3,2,0)})
4

(CARE))

(e, A,{(2,3,1,4,9),(1,3,a)})

(4, T,{})

(e, T {})

Figure 16: Example: recognizing the property that a graph is a two colorable cycle.

5.3. DISTRIBUTED COMPUTATIONS OF DECISION PROBLEMS 85

present a way the value of k can be reduced without loosing the properties of our reduction
algorithm.

Definition 5.9 (Feasible radius) Let (R,Z) be a reduction system for a property P. For
each r = (Hy, Ha) and each w € V(Hy) we define the feasible radius of w in r, denoted k), as

k,, = min{k; € N|Vwo € V(H1),wo € B, (w, k;)}.
For a given connected graph H, kg 1s defined in the same way. That is

EH = min{k; € NVwy € V(H),wo € B (w, k;)}.

The feasible radius of a vertex w in a reduction rule r = (Hy, Hy) represents the minimal
depth of the tree of minimal paths, rooted at w, that contains all the vertices of Hy. Different
vertices of Hy could have different feasible radiuses in r. This is why we are interested in
finding the vertex among all vertices of H; that has the minimal feasible radius.

Definition 5.10 (Radius) Let (R,Z) be a reduction system for a property P. For each
r = (Hy, Ha) we define the radius of r, denoted k", as

k" = min{k; € N|Jwo € V(H1), k,, = ki}.

s g

The radius of a connected graph Iy € T, denoted k', is also defined as

k" = min{k; € N3wg € V(I), kX = k;}.

) wQo

Definition 5.11 (feasible radius of a system) Let S = (R,Z) be a reduction system for
a property P. The feasible radius of the system S is the radius Kg such that

kr = max{k; € N|Fr € R with k" = k;}.
kr = maz{k; € N|I3H € T with k™ = k;}.
Kg = maz{kr, kz}.

The value of each k" with r = (Hy, Hy) € R is at most equal to the maximal diameter of H;.
This implies that kg < i with ¢ = min{d € N|d > A(H;), Vr = (H1,Hs) € R}. In the same
way, kr < j with j = min{d € N|d = A(G,),VG; € I}. The consequences of all the above
definitions induce the following corollary.

Corollary 5.1 Let k and ki be defined as in Algorithm 5.2. Then Kg <k and kr < k1.

Proposition 5.2 For each rule r = (Hy, Hy) € R, there is at least one vertex w € V(H;)
such that any vertex of the graph Hy is in the ball By, (w, Kg).

Proof. The correctness of this statement is a direct implication of the definitions of Kg and
kr. O
We call W, the set of vertices that satisfies the property of Proposition 5.2. In the same way,
this property can be extended to any graph H € 7 instead of r € R. In this case, we will refer
the set of vertices w, which contains all vertices of H in their balls By(w, Kg), as Wg. On
the basis of these ideas, it is then possible to execute the reduction algorithm using Kg instead

86 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

of k. Under these conditions, we could face the situation where, for a given rule r = (Hy, Hs),
balls of radius Kg of some vertices can not contain the whole set V' (H;). For instance, in the
reduction rule depicted in Part A of Figure 16, K¢ = 2 and the ball of radius 2 centered on
y does not contains the vertices z and w. This means that if there is a subgraph G; of G‘;‘
isomorphic to H; and that contains a W-marked vertex v, it is useless to associate v with
the vertex y of Hy. Hence, each time a vertex v tries to find a match of a rule r (or a graph
HeT)in Bga (v, Kg), it has to be associated with the vertices of W, (or Wg). The degree
of parallelism is thereby increased, but the number of vertices of H; that could be associated
to a W-marked vertex v of Gf are reduced considerably. Such a reduction has an interesting
side effect. In fact, it speeds up the solution of the subgraph isomorphism problem as stated
in [BMO00, UlL76].

Remark 5.2 Obviously, Kg is the smallest value that ensures that whenever a vertex v wins
a Kg-local election, it is possible for v to find a match for any rule r € R or for any graph
H € 7. As a matter of fact, if we perform our reduction procedure using a ko-local election
with ko < Kg, then there will always exists a rule ro = (Hy, Hy) € R or a graph Hy € T such
that H{ or Hy are not contained in any ball of radius ko centered on any vertex v of Gf\‘. This
induces the following lemma.

Lemma 5.8 Let P be a property and S = (R,I) a reduction system that characterizes P.
Then the use of Kg induces the maximal degree of parallelism in Algorithm 5.2.

Proof. k-local election with higher values of k yields potential parallel execution of reduction
rules on non overlapping balls of radius k. The fact that Kg is the smallest value that allows
to execute the reduction algorithm leads in the correctness of the above statement. O

5.3.2 Applications: Decision Problems for Graphs of Bounded Treewidth

A reduction system (R,Z) for a property P corresponds to a polynomial-time algorithm that
decides whether property P holds for a given graph G: repeat applying rules from R starting
with the input graph, until no rule from R can be applied anymore. If the resulting graph
belongs to the set Z, then P holds for the input graph, otherwise, it does not. During
this procedure, the number of reductions that has to be performed is at most n, since each
reduction reduces the number of vertices by at least one. In order to obtain a linear-time
reduction algorithm for deciding membership in a recognizable set of graphs with treewidth
bounded by some known number k, Courcelle et al. [ACPS93] have introduced a new type
of reduction systems called special reduction systems. This type of reduction systems has the
property that for any graph G for which P(G) holds, either G belongs to Z, or G contains a
match which can be found in an efficient way.

Based on the principle of d-discoverability, Bodlaender et al. [BvAdFO01] have given an

equivalent definition of special reduction system. Their definition uses the bounded adjacency
list search method introduced in [BH9S|.

Definition 5.12 (bodlaender et al. [BvAdFO01]) Let d be a positive integer. Let G be a
graph given by some adjacency list representation and let G1 be an i sourced graph. G1 1s said
to be d-discoverable in G if

5.3. DISTRIBUTED COMPUTATIONS OF DECISION PROBLEMS 87

1. Gy 1s open and connected, and the mazimum degree of any vertex in G1 is at most d,
2. there is an i-sourced graph Go such that G = G1 ® Ga, and

3. G1 contains an inner vertex v such that for all vertices w € V(Gy) there is a walk W
in Gp with W = (ug,ug, ..., us), v =1uy, w = ugs, and for each i, 2 < i < s—1, in the
adjacency list of u; in G, the edges {u;—1,u;} and {u;,u;+1} have distance at most d.

From the above definition, Bodlaender and De Fluiter have proved the next lemma and stated
that if we have a special reduction system for a property P, then we have a sequential algorithm
which decides P, on connected graphs, in O(n) time and space.

Lemma 5.9 (|[BvAdFO01]) Let v be a vertex in G. If v is the inner vertexr of some d-
discoverable match Gy to a rule r = (Hy, Hs), then such a match can be found from v in
an amount of time that only depends on the integer d and the size of G1, but not on the size

of the graph G.

Definition 5.13 (Special Reduction System [BvAdFO01]) Let P be a graph property and
(R,Z) a reduction system for P. Let nyqq be the maximum number of vertices in any left-hand
side of a rule r € R. (R,Z) is a special reduction system for P is we know positive integers
Nonin and d, Nupin < Nmaz < d, such that the following hold.

e For each reduction rule (Hy, Hy) € R, Hy and Hs are open and connected.

e For each connected graph G and each adjacency list representation of G, if P(G) holds
and G has at least Ny, vertices, then G contains a d-discoverable match.

Example 5.1 (Special reduction system) consider the graph property described in Figure
16. It can easily be seen that (R,Z) is a special reduction system for P with d = Nyin = Nmay =
5.

Definition 5.14 For each integer k > 1, let TWy be the graph property defined as follows:
for each graph G, TWy(G) holds if and only if tw(G) < k. Furthermore, for a property P and
an integer k, we define the property Py as Py(G) = P(G) N TW(G). The property TWy(G)
15 satisfied if and only if the treewidth of G is at most k.

Definition 5.15 (Finite index) Let P be a graph property, and | a non-negative integer.
For l-sourced graphs G1 and Ga, we define the equivalence relation ~p; as follows:

G ~py Ga & for all l-sourced graphs H : P(Gh @ H) & P(Gy @ H).
property P is of finite index if for all 1 > 0, ~p; has finitely many equivalence classes.

Lemma 5.10 ([Cou90b]) All MS-definable graph properties are of finite index.

There are many equivalent terms for a graph class of which the corresponding graph property is
of finite index: such a graph class is recognizable, [Cou90b|, finite state or fully cutset regular,
[AF91], or regular [BLW8T7]. The equivalence has been shown by Courcelle and Lagergren
[CL96|. Throughout the rest of this chapter we will use the term recognizable for this kind of
graph classes.

88 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Lemma 5.11 (Arnborg et al. [ACPS93]) Every recognizable set of graphs L of bounded
treewidth can be defined by a special reduction system.

From the above lemma we deduce the following theorem.

Theorem 5.1 Let P be an MS-definable graph property. FEvery special reduction system that
characterizes Py, for (k > 1), is a handy reduction system.

Proof. It is deduced from Lemma 5.10 and Lemma 5.11 that there is a special reduction
system S that characterizes Py. We now assume that S = (R,Z). Without loss of generality,
let r = (Hy, H2) € R be a reduction rule. From the above definition we know that H; and
Hj are open and connected. Furthermore, R is decreasing. Thus |V (H2)| < |V(Hp)|. We
know that Z C L (see Lemma 5.11). That is, all the elements of Z have bounded treewidth.
This means that they are connected. Thus, r is a handy reduction rule. O

Courcelle [Cou90b]| has given a large class of graph properties which are recognizable,
namely the class of properties that are MS-definable. There are many (even NP-complete) de-
cision problems which are MS-definable (i.e., the corresponding properties are MS-definable).
These include Hamiltonian Circuit and (for fixed k) k-Colorability. A detailed list of such
properties was presented by Arnborg et al. [ALS91]. Lemma 5.11 and Proposition 5.1 now
immediately imply the following result.

Corollary 5.2 P is a MS-definable graph property. Then there is an algorithm, encoded by
means of local computations, which decides P on every bounded treewidth graph.

5.3.3 Labeled graphs recognizable by local computations

Godard, Métivier and Muscholl [GMMO04| have stated necessary conditions for recognizability
with structural knowledge in the local computations environment. In their framework, they
say that a class § is recognizable if there exists some locally generated relabeling relation such
that starting from any labeled graph G some final labeling can be reached, under the condition
that it is possible to decide whether G belongs to § or not. They were specially interested in
recognizing labeled graphs which have a certain structural knowledge encoded in the initial
labeling.

Let G = (G, \) be a labeled graph and let o be a label. Then A, is the uniform labeling
on G with label «, that is, every vertex v is labeled by the pair (o, A(v)), the labels of the
edges remain unchanged. The labeled graph G has some structural information encoded by
its labels (a distinguished vertex, identities) and « can encode some structural properties of
the graph, like the size or a bound of the diameter of the graph. They define recognition with
structural knowledge in the following way.

Definition 5.16 (Graph recognizer) A nondeterministic labeled graph recognizer with
structural knowledge v is a triple (R, IC, 1) where R is a locally generated relabeling relation that
is noetherian on the set {(G, A, @))|G € G}, K is the final condition (i.e., there is a recursive
set K of finite subsets of L such that K = {G € Gr|lab(G) € K}), and ¢ is a computable
function which associates with each labeled graph G a label (G) € L.

Fact 5.3 states the necessary condition for recognizability.

5.3. DISTRIBUTED COMPUTATIONS OF DECISION PROBLEMS 89

Fact 5.3 A labeled graph G is recognized by (R, K, 1) if Irredr (G, Ayg))) N K # O.

Definition 5.17 (Graph recognizer with knowledge) A deterministic labeled graph rec-
ognizer with structural knowledge o satisfies, in addition to Definition 5.16 for each G € Gy,
either Irredr ((G,Ay@))) NK = O or Irredr ((G, Ayq))) € K.

For this kind of recognizer, a labeled graph G is recognized if and only if Irredg (G) C K. A
class F of labeled graphs is recognizable with structural knowledge ¢ (or, informally, recognizable
knowing ¢) if there exists a labeled graph recognizer with structural knowledge (R, C,¢) such
that the set of labeled graphs that are recognized by (R, K, ¢) is F. Some examples of structural
knowledge are given below:

e The diameter A(G) of the graph.
e The topology of the graph (e.g., the adjacency matrix is given).

e The size of the graph, i.e., the number of vertices |V (G)|. In this case a class of graphs
is said to be size recognizable.

Proposition 5.3 (Godard et al. [GMMO4]) The class of covering-minimal graphs is size
recognizable.

All the reduction algorithms we stated in the previous sections of this chapter were dedicated
to the local computations framework. Thus, any reduction system (R,Z) for a property P
can also be seen as a labeled graph recognizer with structural knowledge. In this case, each
vertex is aware of the existence of unique identifiers. This induces the next lemma.

Lemma 5.12 Let (R,Z) be a handy reduction system that characterizes property P. Then
there exists a labeled graph recognizer with structural knowledge (R*,kC, 1) that recognizes the
class of labeled graphs satisfying P.

Proof. Let A be a relabeling relation that satisfies the conditions of our encoding system as
introduced in Section 5.2.1. Furthermore, assume R* = (L, I, P*) where the sets L and I are
defined as in Section 5.2.1. The set P* and K can be constructed in the following way.

e For each r = (Hy,Hs) € R we add the relabeling rule (Hyi, A\, \') to P*, where X is
obtained from A after executing the sequence r; on Hj.

e K contains the set 9t of graphs g such that there are graphs go and (g1, A, d) satisfying:

— go € I:
— the underlying graph of g; is a subgraph of g,

— go is isomorphic to the underlying graph of g; (with respect to the labeling function
A) and

— for all vertices w € V(g), if w & V(g1) then w is in the tunneling state. That is, w
is no more active in the reduction procedure.

In this construction ¢ represents the existence of unique identities in the graph. The so
constructed recognizer can be seen as a simulation of the reduction algorithm computed by

90 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

the reduction system (R,Z). Thus, it is obvious to show that the obtained labeled graph
recognizer correctly recognizes the class of graphs satisfying property P. O
From the above statements we derive the following lemma.

Lemma 5.13 Let P be a graph property characterized by a handy reduction system (R,T).
Assume F is a class of covering minimal graphs which satisfy Py, for k > 1. Then F is size
recognizable.

Proof. Given an input graph G and the size |V (G)| of G. From Proposition 5.3 we can check
if G is covering-minimal or not. Assume G is covering-minimal. Using Lemma 2.1 we can
elect a vertex vg in G that assigns to each vertex of G a unique identifier. Henceforth, Lemma
5.12 is used to construct the labeled graph recognizer (R*,C,:) for the class F. In this case,
¢t computes the size of G. a
An immediate consequence of Lemma 5.13 concerns the recognition of MS-definable properties
of graphs of bounded treewidth.

Corollary 5.3 Let P be a MS-definable property. Assume F is a class of covering minimal
graphs which satisfy Py, for k > 1. Then F is size recognizable.

Proof. The proof is obvious using Proposition 5.1 and Lemma 5.13. a

Remark 5.3 It would also be interesting to ask the question about the possibility to construct
a handy reduction system (R,T) starting from a labeled graph recognizer (R*,IC,¢). Obviously,
such a construction is addicted to the characteristics of the graph recognizer (R*,IC,i). Let
(R*,IC, 1) be a labeled graph recognizer with structural knowledge satisfying

e the property recognized by (R*,IC, 1) is size recognizable,

e R* is a locally generated relabeling relation that is noetherian on the set {(G, A, q))|G €
Gr}, K with L being a two elements set: L = {ly,l2}.

If we assume, without loss of generality, that

o nutially, all l1-labeled components or all lo-labeled components are connected,
o cach relabeling never transforms an ly-labeled graph component to an lo-labeled one,

o after a relabeling step, all la-labeled components form a connected subgraph of the input
graph,

e cach irreducible graph G* contains at least one lo-labeled vertex.

Then such a recognizer can be computed by a handy reduction system (R,Z) where the fact of
changing an lo-labeled component to an li-labeled one is seen as a removal of this component.
Hence, the rules contained in R* can be easily transformed in handy reduction rules and the
set T is built from K by removing all l1-labeled components from the graphs contained in K.
Note that if |L| > 2, then it is not easy to construct a handy reduction system without changing
the basics of the algorithm computed by (R*,KC,1).

5.4. UNFOLDING REDUCTION RULES 91

5.4 Unfolding Reduction Rules

In the previous sections we have seen how the underlying graph Gf of alabeled graph (G, A, 6)
can be reduced to a smaller underlying graph Gf, of (G, N, 0) using a set R of handy reduction
rules. The labeling relation A is stated as in Section 5.2.1. We are now interested in presenting

a set R, of corresponding unfolding rules that satisfies (G, N, 0) P, (G,), 0).

Definition 5.18 (Unfolding rule) The unfolding rule r, of a handy reduction rule r =
(Hy,Hy) € R is the relabeling rule defined by (Hy, N, \).

From now on we present the way the graph (G, A,) can be reached from the graph (G, \,0)
by executing rules of R, in a distributed way.

To achieve the operation (G, \,) LN (G, A, 0) one has to take some preventive measures

during the reduction of G,\,0). In fact, it is necessary for each vertex to have a global
knowledge about the reduction rules it has performed during the reduction procedure. For
this reason, we enhance the label of any vertex v with an ordered list £, containing the
unfolding rules of all rules » € R that were executed by v. That is, after executing a rule
r = (Hy, Hy) € R vertex v stores (Hj, N, \) in £, where the underlying graph of H] is the
match of Hy in Bga (v, k) and each vertex of V(H{) corresponds to exactly one identifier that
appears in BG;‘ (v, k). Thus,

On the other hand, only A-labeled vertices are considered to be active in the execution of
Algorithm 5.1. This means that it is imperative for the unfolding procedure that the graph
(G, XN,d) contains at least one A-labeled vertex. Subsequently, the distributed execution of
unfolding rules becomes similar to the procedure described in Algorithm 5.1. This procedure
is depicted in Algorithm 5.3.

Fact 5.4 The execution of an unfolding rule v, exactly corresponds to the reverse execution
of the corresponding reduction rule 7.

Due to the definition of unfolding rules and to the evident similarity between Algorithm 5.3
and Algorithm 5.1, the properties of the last named algorithm are summarized in the next
proposition.

Proposition 5.4

A: If a reduction rule r was executed by a vertex v, then the unfolding rule r,, will be executed
by v during the execution of Algorithm 5.3.

B: Letr', ri be two reduction rules performed by verter v such that 17 was ezecuted after 1.
Then Algorithm 5.3 will execute 17, before executing 1.

C: If two reduction rules r*, 17 were ezecuted on a subgraph (Go, A,6) of (G, A,6), then the
corresponding unfolding rules r!, and ri, will be performed respecting the execution order
of r* and 7.

92 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Algorithm 5.3 Undoing reduction rules
Input: A graph (G, \,¢) and a set R, of unfolding rules .
For all vertices v of (G, X, d), A(v) = (S, Py, £,) with S € {A,T}.
Each A-labeled vertex v executes the following actions.
Step 0:
if £, =0, then
v stops the computation.
else

the procedure continues in Step 1.
end if
Step 1: v performs a (2k + 2)-local election. All the winners become W-marked and the
other L-marked.
Step 2: each W-marked vertex v takes the next rule r, € £, and checks if r, can be applied
on BGf, (v, k+1).
if r, can be applied, then
the procedure continues in Step 3.
else
go to Step 0.
end if
Step 3: r, is removed from £, and performed on (BG?/ (v,k+1),XN,0) and the algorithm
continues in Step 1.

Proof. The first two statements are immediate consequences of the definition of £ and of the
fact that the probability for each vertex v to win the (2k + 2)-local election is different from
zero. We now turn our attention to the last statement.

Assume that 7* and 7/ were performed on two non overlapping balls of radius k+1 centered
respectively on vertices w; and w;. The statements A and B imply that ri and ri, will be
performed in any order without troubles. Suppose now that 7’ and 7/ were performed by
two different vertices w; and w; on two overlapping balls of radius k + 1. Without loss of
generality, let ug be a vertex that is contained in both balls. The state changes of ug are done
in a sequential way. Thus, if r* was performed on ug before 77/, then 7, will not be performed
until 77, is done. O
From the above proposition it is granted that Algorithm 5.3 never falls in a deadlock and that
unfolding rules that can not be executed in parallel will be executed in the reverse order of the
execution of the corresponding reduction rules. This implies the correctness of the following
fact.

Fact 5.5 Algorithm 5.3 correctly performs the unfolding rules.
Now we turn our attention to the presentation of a procedure that, using unfolding rules,

executes constructive reduction algorithms in a distributed way.

5.4.1 Constructive Reduction Algorithms

Bodlaender et al. [BvAdF01| have extended the notion of reduction algorithms to constructive
reduction algorithms, which can be used to construct solutions for decision problems.

5.4. UNFOLDING REDUCTION RULES 93

The basic idea of constructive reduction algorithm is the following. The algorithm consists
of two parts. In the first part, an ordinary reduction algorithm is applied. The reduced graph
is then passed to the second part. In this part, a solution is constructed for the reduced
graph, if it exists. After that, the reductions that are applied in Part 1 are undone one by one
in reverse order, and each time a reduction is undone, the solution of the graph is adapted
to a solution of the new graph. This results in a solution of the input graph. Constructive
reduction rules are dedicated to graph properties of the form

P(G) = “there is an S € D(G) for which Q(G, S) holds”.

where D(G) is a solution domain (or shortly domain), which is some set depending on G, and
@ is an extended graph property of G; i.e., Q(G,S) € {true,false} for all graphs G and all
S € D(G). An S € D(G) for which D(G) holds is called a solution for G. If a graph property
P is of the form “P(G) = there is an S € D(G) for which Q(G, S) holds”, then P is called a
construction property defined by the pair (D, Q).

Now we introduce constructive reduction algorithms which for a construction property P
defined by (D, Q); not only decide P, but if P holds for an input graph G, also construct an
S € D(G) for which Q(G, S) holds.

Definition 5.19 (Constructive Reduction System) . Let P be a construction property
defined by (D, Q). A constructive reduction system for P is a quadruple (R,Z, Ar, A7), where

e (R,T) is a reduction system for P,
o Ag is an algorithm which, given

— a reduction rule r = (Hy, Hs) € R,

— two terminal graphs Gy and Ga, such that Gy is isomorphic to Hy and Gs is iso-
morphic to Ho,

— a graph G with G = Gy ® H for some H, and
— an S € D(QG) for which Q(G,S) holds,

computes an S’ € D(G1 @ H) such that Q(G1 & H,S") holds,

o A7 is an algorithm which , given a graph G which is isomorphic to some H € T, computes

an S € D(G) for which Q(G,S) holds.

Algorithm A7 in a constructive reduction system (R,Z, A, A7) is used to construct an initial
solution of the reduced graph G, if G € Z. Algorithm Ag is used to reconstruct a solution,
each time a reduction is undone on the graph.

Definition 5.20 Let P be a construction property defined by (D, Q). A constructive reduction
system (R,Z,Ar, A1) for P is a special constructive reduction system for P if

1. (R,Z) is a special reduction system for P (see Definition 5.13), and

2. algorithms Ar and Az run in O(1) time.

94 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

It is clear that one way to obtain an Algorithm A in a constructive reduction system which
runs in O(1) time is to ensure that Ax only has to change a solution locally. That is, the
solution to be constructed only differs from the input solution in the part of the graph that was
involved in the reduction. Special constructive reduction systems that satisfy this property
will be called locally constructive systems.

Let P be a constructive property defined by (D, Q) and let (R,Z,Ar,. A7) be a locally
constructive system for P. Algorithm 5.4 computes for a given graph G a solution for G if
one exists.

Algorithm 5.4 Distributed computation of constructive reduction systems
Input: A graph (G, \,0), a locally constructive system (R,Z, Ar, A7) and an empty set R,
of unfolding rules.
For all vertices v of (G, A,), A(v) = (S, Py, £y) with S € {A,T}.

(«Part 1x)

if a vertex v is A-labeled, then
v execute Algorithm 5.1 and constructs £,.
if P(G) holds, then
a True signal is sent to all A-labeled vertices.
else
a false signal is sent to all vertices
the procedure stops.
end if
end if

(+Part 2x)

Any A-labeled vertex v that has received the True signal performs the remaining steps:
Step 1: v performs a (2k + 2)-local election. All the winners become W-marked and the
other L-marked.
Step 2: each W-marked vertex v takes the next rule r, € £, and checks if r, can be applied
on BGQ(’U, kE+1).
if r, can be applied, then

go to Step 3.
else

go to Step 1.
end if
Step 3: (BGf (v,k 4+ 1),\,9) is transformed to (BG;‘ (v, k +1),XN,0) by the execution of 7.
ry is removed from £,. Thereafter, A is used to construct a new solution .S for which
Q(B(;f, (v,k +1),5) holds and the algorithm continues in Step 1.

Fact 5.6 The correctness of Algorithm 5.4 can be deduced from Lemma 5.5 and from the
definition of constructive reduction systems.

If we restrict our attention to graphs of bounded treewidth, we can see that constructive

5.5. CONCLUDING REMARKS 95

reduction systems can be used for a large class of construction properties. For this purpose,
we require solution domains to be of specific form: for a graph G, there is a t with D(G) =
D1(G) x Do(G) x --- x D¢(G), where each D;(G) (1 < i < t) is either V, E,P(V(QG)), or
P(E(Q)). If D is of this form, we say that D is a t-vertex-edge-tuple or, if ¢ is not important,
a vertex-edge-tuple. P(V(G)) and P(E(G)) are respectively the power set of V and E.

As an important case, we consider the MS-definable construction properties. The construc-
tion properties defined by (D, @), where D is a vertex-edge-tuple and @ is an MS-definable
extended graph property, correspond exactly to the MS-definable construction problems (Arn-
borg et al. [ALS91]).These problems have the particularity that they can be solved in O(n)
time and space for graphs of bounded treewidth if a tree decomposition of bounded width is
given for the input graph.

Theorem 5.2 ([BvAdFO01]) Let P be a construction property defined by (D,Q), where D
15 a vertez-edge-tuple and @ is MS-definable. For each k > 1 there is a special constructive
reduction system for Py, which can be effectively constructed if a definition of Q in MSOL is
known.

An immediate consequence of Theorem 5.2 is that if the constructed special constructive
reduction system is also a locally special constructive reduction system, then P can also
be decided and constructed using Algorithm 5.4. This implies the correctness of the next
theorem.

Theorem 5.3 Let P be a construction property defined by (D,Q), where D is a vertez-edge-
tuple and @ is MS-definable. Then there exists a distributed algorithm encoded by means of
local computations that decides Py. If there is a locally special constructive system for Py, then

an S € D for which Q(G,S) holds can be constructed.

5.5 Concluding Remarks

In this chapter, we have presented a general framework that enables the execution of reduction
algorithms in a distributed environment. From this framework we have presented an algorithm,
encoded by local computations, that decides whether a property holds for a given graph or
not. This has helped us to define a new sort of reduction systems, called handy reduction
systems, and to establish a direct relationship between labeled graph recognizers with structural
knowledge [GMMO04] and handy reduction systems. In the same way, we were able to show
that any MS-definable property on graphs of bounded treewidth can effectively be recognized
using specific handy reduction systems.

The approach described here has also been adapted to the distributed computation of
constructive reduction systems. That is, for a certain class of decision problems on graphs,
our framework has the power of simultaneously solving a decision problem and computing a
corresponding solution that reinforces the validity of the result of the decision problem. All
the computations are done in a fully distributed way.

In further researches, we expect to extend the methodology presented in this work to the
distributed computation of reduction-counter rule as described in [BvAdFO01]. This should
help us to develop distributed procedures for solving classes of optimization problems such as
Maz Independent Set, Hamiltonian Circuit and k-Colorability for fixed k.

96 CHAPTER 5. RECOGNITION OF GRAPH PROPERTIES WITH LOCAL COMPUTATIONS

Another interesting problem is to determine the class of graph properties characterized by
handy reduction systems. The property to have maximum degree at most some fixed constant
k is an example of a property that is characterized by a handy reduction system and that has
yes-instances of unbounded treewidth.

Chapter 6

Checking Properties in Distributed
Systems

Contents
6.1 Introduction, 97
6.2 Properties Description and Computation Sequences 98
6.3 A Virtual Time Based Algorithm 100
6.3.1 Computing Global States 101
6.3.2 The Merging Procedure L. 104
6.3.3 Enumerating Strong Consistent Global States 104
6.3.4 Complexity Analysis oo 107
6.4 Concluding Remarks, 107

6.1 Introduction

The detection of global conditions is a fundamental problem in an asynchronous distributed
system. In such a system, a process can not know the state of other processes at any given
time due to communication delays. This makes it difficult to detect properties, or predicates,
spread across the system. Thus, computing a global predicate or function, a need that occurs
frequently in many distributed systems, typically requires significant programming.

Being able to observe a distributed computation is useful for many fundamental problems
in distributed software, such as debugging, testing, and fault-tolerance. After a program is
debugged and tested, it must be monitored for fault-tolerance, this also requires something
that will observe the global state. Finally, the ability to observe global predicates generalizes
algorithms for many other problems such as detecting program termination, token loss, and
deadlock.

Research on how to detect global predicates has yielded three sets of algorithms. In
the global snapshot algorithms [Mat93], global snap-shots of the computation are repeatedly
computed until the desired predicate becomes true. However, this approach works only for

97

98 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

stable predicates like deadlock and termination, which do not turn false once they become
true.

In the second set of algorithms, a lattice of global states is constructed. Unlike the global
snapshot approach, this approach lets users detect unstable predicates [CM91]. Nevertheless,
this can mean exploring a prohibitive number of global states. Garg and Waldecker, Chandra
and Kshemkalyani [CK03, GM97, GW92| introduced a third approach which exploits the
structure of the predicate, but does not build a lattice. Instead, the computation itself is
examined to deduce if a predicate became true or not. These algorithms are computationally
efficient and can be used to detect even unstable predicates.

In this chapter, we present a procedure that is able to check stable and unstable properties
in a fully distributed environment. To this end, using the global snapshot algorithm is not
very helpful for our purpose. Although the third approach has some complexity advantages,
its application in the case of local computations is problematic. First of all, the predicates we
expect to check do not always contain variables indexed by process identifiers. These predicates
could also contain existential quantifiers as well as universal quantifiers. Furthermore, the
networks we deal with are, in general, anonymous. For these reasons, we have improved the
approach of Cooper and Marzullo [CM91| and stated an algorithm that does not necessary
need to build a lattice of all global states and is able to check the validity of any type of given
properties in an acceptable time and message complexity. The approach presented here has
the particularity that it also works in systems whose models are equivalent to the standard
distributed system model.

6.2 Properties Description and Computation Sequences

The local state of a process p; is defined as the union of the state of p; with the states of all its
incident edges. A global state is a collection of local states, one from each process. A history
of a distributed system can be modeled as a sequence of events in their order of occurrence.
Since execution of a particular sequence of events leaves the system in a well-defined global
state, a history uniquely determines a sequence of global states through which the system has
passed. Unfortunately, in an asynchronous distributed system, no process can determine the
sequence of global states through which the system has passed. In absence of a global time, it
is also tedious to classify all computation events in their order of occurrence. This problem is
due to the existence of causally independent events, that can be performed simultaneously or
in any order.

Definition 6.1 (Coherent sequence) A coherent computation sequence of a distributed ez-
ecution is a sorted sequence S of events such that if an event e occurred (during the computa-
tion) before an event €', then € appears after e in the sequence S.

Our goal is to sort all computation events to obtain a coherent computation sequence of the
system. Causally independent events have the particularity that they can be computed in any
order or at the same time. Thus, we restrict consistent computation sequences, to coherent
sequences that describe the computation of such independent events in a strict order.

6.2. PROPERTIES DESCRIPTION AND COMPUTATION SEQUENCES 99

Description of Properties.

In opposition to the langauge Lidia (Language for implementing distributed algorithms
see Chapter 7), other programming languages like IOA [GLV97] take advantage of invariants
discovery tools like Daikon [NEO1, BE04] to find all invariants and check their validity. All
these invariants are related, in the case of IOA, to a specific automata and are therefore locally
checkable. For our purpose, we hope to check local properties as well as global properties.
Moreover, we do not intend to pay attention to all types of properties. Rather, we are only
interested in two classes of properties defined as followed.

Definition 6.2 (Class of Quasi-invariants)
A property 1 is a quasi-invariant if for every consistent observation of the execution, there
exists a global state of it in which v holds.

Definition 6.3 (Class of Invariants)
A property v is an invariant if for every consistent observation of the execution, v holds in
all global states of the execution.

Our class of quasi-invariant properties corresponds to the class of predicates that satisfy the
Definitely condition introduced by Cooper and Marzullo in [CM91]. One of the goals we hope
to reach in Lidia is to prove the correctness of program executions by requiring the validity of
some given predicates. Thus, other classes of properties are not of interest for our purpose.

Unfortunately, most of the invariants we intend to check are not locally checkable. We aim
also to test the kind of invariants that are described in the following examples.

Example 6.1 During the computation of a spanning tree (see Lidia-Program 7.1), the set of
all A—labeled processes and all 1—labeled edges represents a spanning tree.

Example 6.2 During the execution of an election algorithm (Lidia-Program 7.2), there exists
at most one process that is in the elected state.

A process that has only a local view of the network, can not test if these predicates are
satisfied or not. In fact, testing this kind of invariants requires a global knowledge over the
whole network.

Theorem 6.1 (Local checkability) Let ®, be a global property. ®, is locally checkable if
and only if there exists a local formula 1; for each process p;, such that one of the following
statements holds:

(1) ¢, <= Vir;.
(2) ¢, = Fi~.
Proof.

Case 1 &, <= Vit);: If 9; is not satisfied for a given process 4, then i can detected that ®,
does not hold and broadcast a corresponding error message.

Case 2 &, <= Ji—);: This is the same as in Case 1 with the small difference that the error
message is sent whenever 1; holds for a given process i.

100 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

Definition 6.4 A strong conjunctive predicates 1 is of the form N\, ¢;, where ¢; is a predicate
defined on variables local to process p;.

The first statement of Theorem 6.1 can be seen as a strong conjunctive predicate as described
in [CKO03]. Checking the correctness of this kind of invariants can be done locally in the
following way. We use a local computation rule that is executed after each state transition
and issues a warning if the invariant ¢; of process p; fails. This rule should be executed by
each process p;. In the same way, the second condition can also be checked locally.

6.3 A Virtual Time Based Algorithm

We assume an asynchronous distributed system in which n processes communicate by reliable
message passing. Messages are delivered by FIFO channels. An event structure model (&, <),
where < is an irreflexive partial ordering representing the causality relation [Lam78| on the
event set &, is used as model for the distributed system execution. Three kinds of events
are considered: send, receive and internal events. & is partitioned into local executions at
each process. Let V be the set of all processes. Each &; is a totally ordered set of internal
events, executed by process p;, that have modified the local state of p;. The local state of a
process p; is represented by the state of p; and the states of the edges that are in the ball of
radius 1 centered on p;. We also assume that vector clocks C' are available [Fid88, Mat89].
Each process maintains a vector clock C' of size n = |V/| integers, by using the following rules
[Mat89].

(1) Before an internal event at process p;, p; executes C;[i] = C;[i] + 1.

(2) Before a send event at process p;, the process p; executes C;[i] = C;[i] + 1. It then sends
the message timestamped by Cj.

(3) When process p; receives a message with timestamp 7" from process p;, it executes the
following operations before delivering the message.

Opy: (Vk € [1,...,n] Cj[k] := max(Cjlk], T[k])).
Ops: Cjljl = C5lj] + 1.

The timestamp of an event is defined as the value of the vector clock when the event
occurs.

In the above construction each process p; is equipped with a simple clock C;[i] which
is incremented by 1 each time an event happens. An idealized external observer having
immediate access to all local clocks knows at any moment the local times of all processes. An
appropriate structure to store this global time knowledge is a vector with one element for each
process. Mattern [Mat89] has constructed the above mechanism by which each process gets
an optimal approzimation of this global time. Before going further in the description of our
algorithm, we first introduce some theorems and definitions stated in [Mat89].

6.3. A VIRTUAL TIME BASED ALGORITHM 101

Definition 6.5 For two vector clocks vey, veo

o vcy < wey iff Vi vei] < vealil.
o vcy < vey iff vey <weo and vey # ves.
o vcy||lvea iff ~(ver < vea) and —(vey < vey).
Theorem 6.2 (Mattern [Mat89]) At any instant of the physical time we have the relation:
Cili] > Cjli] Vi, j

Theorem 6.3 (Mattern [Mat89]) Yei,ea € € : e1 < ez iff Clea) < C(ea) and eilles iff
C(e1)||C(e2). With C(e) representing the vector timestamp of the event e.

Theorem 6.4 (Mattern [Mat89]) If e € € occurs at process p; then for any event ¢’ # e : e <
e iff C(e)[i] < C(e)]i].

Looking at their timestamps, we can conclude, from the above definition and theorems, that
two events are either independent or that the first occurred once the second was finished. Thus,
we are able to build a partial order on £ to compute global states on distributed systems.

In [Mat89] a variant of Chandy-Lamport algorithm for computing snapshots of a dis-
tributed system using time vectors is given. Snapshots are very useful for the detection of
global properties in distributed systems. The problems with this technique stem from the
fact that it is not possible to take snapshots for all global states through which the system
passes during the computation. Thus, in the case of testing the validity of invariants during
a distributed computation, the use of snapshots can be error-prone.

We restrict our attention to strong consistent global states, i.e., global states through
which the system has passed during the computation.

Definition 6.6 (Local snapshot) The local snapshot of a process p; is the state of p; and
the states of its incident edges.

We represent the internal event of a process p; as the local snapshot that is taken after the
internal event is executed. We now introduce a mechanism that explicitly enumerate all the
global states of a computation in a distributed system.

6.3.1 Computing Global States

The algorithm we present here makes use of time vectors to collect the local snapshots of all
processes. Starting from these local snapshots, we will show how the set of all strong consistent
global snapshots can be efficiently computed. Basically, our procedure works as follows. Each
time a process p performs an internal action that changes its local state, it takes a timestamped
local snapshot and stores it in an appropriated data structure. Once process p has terminated
the computation, it is ready to be involved in the computation of a spanning tree containing
all processes. Thereafter, p exploits the constructed spanning tree to send all the stored events
to an elected process PY. As soon as P has received all the local snapshots, it computes all
the strong consistent snapshots and starts to check the validity of the given properties. Vector

102 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

clocks of processes are maintained using the three rules described at the beginning of this
section.

For simplicity, we consider here only off-line detection of global states, in which the detec-
tion algorithm is run after the distributed computation has terminated. We use identities to
characterize processes. This identities are helpful to manage the vector clocks. Furthermore,
we store the events in a dynamic array, whose element are lists of events. The approach can
also be applied to online detection. In this case, the spanning tree is computed at the begin-
ning of the distributed execution and the snapshots can be immediately sent to the elected
process. All the basics of our procedure are described in Algorithm 6.1.

Algorithm 6.1 Computing a coherent sequence

Rule 0: At the initialization, a sorted array A; of process p; contains the local snapshot sb.
s is therefore timestamped with the vector [0, ...,0]T of size N.

{**Snapshots construction**}
Rule 1: When a process p; performs an internal action that changes its local state, it takes a
local snapshot s; and stores it in the array 4;. The stored s; is timestamped with the value
of the vector clock of p; when the internal action occurred.

{**Spanning tree computation®*}
Rule 2: Once process p; has terminated the distributed computation, p; becomes free and
can be involved in the construction of a spanning tree.

{**Collecting the snapshots**}
Rule 3: If a free process p; is a leaf (in the constructed spanning tree) and its father process
is free, it sends its array A; to its father process and terminates the computation. The father
process merges its array with the arrays of its children.

Rule 4: If a free process p; has received and merged the arrays A; of all its children processes
pj, then p; sends, if possible, the resulting array to its father process.

Rule 5: When a process has received all the arrays of its children, and it does not have a
father process, it merges all the received arrays and starts to check the validity of the given
invariants.

Proposition 6.1 Algorithm 6.1 correctly computes a coherent sequence containing all snap-
shots generated by all the processes.

Proof. In this proof we assume that our merging procedure is faithful. This assumption will
be proved in the next section.

Let s; be the local snapshots of any process p; that executes Algorithm 6.1. After execut-
ing Rule 2, the elements of the array A; are in a total sorted order s <51 <59 <83<...<5
with [being the maximum number of events that have been stored by p;. The principle
used in Rule 3, Rule 4 and Rule 5 to collect the snapshots consists in sending each snapshot
bottom up until it arrives by P°. Snapshots of processes that have a common father process
will be merged before arriving at P°. Thus, after the execution of all rules, process PY is

6.3. A VIRTUAL TIME BASED ALGORITHM 103

expected to have compute a coherent array .A° that contains all the local snapshots of all
processes. In the next sections we will see how coherent arrays can be merged and how strong
consistent global states can be enumerate. O

Due to Theorem 6.3 and Theorem 6.4, the elements of A are in a partial sorted order

58,...,38_1 <80 < oo < Sy ey S < 55 < ... < S

withi < k< h< L.

The events s}y are snapshots stored by Rule 0. All of them were stamped with the same
vector time [0,0,...,0]7 of size N. In this partial order, all events that could be performed
simultaneously are in the same list in AY. That is, they are separated from each other by
commas. Such events are said to be pseudo-parallel. Moreover, in the off-line version of
our algorithm, the spanning tree is computed once. Therefore, we decide to let the vertex
indexed by 0 starting the computation. That is, as soon as this vertex becomes free for the
spanning tree computation, it changes its spanning tree label to A. This avoids loss of time in
performing more complicated election to decide which process should starts the construction
of the spanning tree.

On the other hand, it is not always easy to merge two arrays that contain pseudo-parallel
events. Many problems originate from the fact that the relation || is not transitive. Thus, if
si||s; and sj||sg, then the relation s;||sj is not always satisfied.

Example 6.3 Let e1, es and e3 be three events such that C(er) = [30,15], C(e2) = [1,16]
and C(e3) = [3,20]. From Definition 6.5 and Theorem 6.3 we deduce that es]le; and ep]|es.
Because ea < e3, we can not deduce that esl|es.

This means that, while merging two arrays of events, we have to take some precautions to
avoid incoherences in the end array AY. To this end, we meet the following requirements in
any array .A:

Ry: If 54,85 € Alk] = (sil|sj), Vi,j,k € N,
Ry: If s € A[i], then Vs; € Alk] : s < 55V (s]|s;), Vi, k € N with k > 4.
We then state the following lemma.
Lemma 6.1 Let e;,e; € € be two events with e;||ej. Then
1.Vee&:e <e= (ejlle) V(e <e)
2. Vee:e<e = (elle) V(ie<ey)
Proof.

1. Due to the fact that C(e;)[k] < C(e)[k] Vk and 3k’ € N such that C(e;)[k'] > C(e;)[K],
then 3ky € N such that C(e;)[ko] < C(e)[ko]. This means that e < e; does not hold.

2. Due to the fact that C(e;)[k] > C(e)[k] Yk and k" € N such that C(e;)[k'] < C(e;)[K],
then 3ky € N such that C(e;)[ko] > C(e)[ko]. This means that e; < e does not hold.

104 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

Definition 6.7 (Coherent Array) An array A is said to be coherent if the requirements R
and Ry hold in A.

Proposition 6.2 Let ko, k1 € N, A be a coherent array and ey € Alko]. Then it holds
1. ki <ko A er € Alki] = ((e1 < eo) V (e1]leo))
2. k1 >ky N e € A[kl] = ((60 < 61) \% (61”60))

Proof. The proof of this proposition is a straightforwards consequence of the requirement
Rs combined with Lemma 6.1. O

6.3.2 The Merging Procedure

In this section we introduce an algorithm that generates a coherent array A which satisfies the
conditions of Definition 6.7. This is reached by the execution of Algorithm 6.2 that takes two
dynamic arrays and merges the elements of the first in the second array. In this representation
A.size() denotes the size of the array A.

Fact 6.1 During the execution of Algorithm 6.2, Step 0 is executed once. For each event s;
of Ap, only one of the next three steps (Step 1, Step 2 or Step 3) is executed.

Lemma 6.2 The result of merging two coherent arrays with Algorithm 6.2 is a coherent array.

Proof. Events are added in A, using Step 0, Step 1, Step 2 and Step 3. Obviously, A7[0]
contains all the events timestamped with the vector [0,0,...,0]7. This means that after the
execution of Step 0 the resulting array is coherent. During the insertion of s;, Step 1 is
executed until a value k and an event s; € Ay[k| are founded such that s; < s;. Hence, if
k' < kA3so € Ag[K'] = (sol|si). In the same way, if &' > kA dsg € Ay[k'] = (sol|si V si < s0).
Due to Proposition 6.2 we deduce that the array resulting from an execution of Step 1 on a
coherent array is also coherent. Using the same argument we can proved that the execution
of the last two steps also ensures to obtain a coherent array as output. Thus, merging two
coherent arrays with Algorithm 6.2 produces a coherent array. O

The array containing the local snapshots of any process P is known to be coherent. In
Algorithm 6.1 all these arrays are merged pairwise starting from the leaves of a given spanning
tree. From all of this we deduce the following corollary.

Corollary 6.1 (Correctness) Algorithm 6.1 generates a coherent sequence of the global
states of a given distributed algorithm.

6.3.3 Enumerating Strong Consistent Global States

On the basis of array AY generated by Algorithm 6.1, it is possible to compute all the global
states through which the system has passed during the distributed computation. Due to the

6.3. A VIRTUAL TIME BASED ALGORITHM 105

Algorithm 6.2 Merging two coherent arrays
Input: dynamic coherent arrays A, and A,.
Output: array Aj that contains the elements of A, U A,.

Step 0:
Insert all elements from Ap[0] in the list A4[0].
k= 0.
repeat

if A,[k] =0, then

k=k+1

end if

s; is the smallest element of A, k]

remove s; from A, [k].

Step 1:

d=20

while (s;||s;) Vs; € A4ld] and d < Ag.size(), do
add s; to Ag[d],
d=d+1.

end while

Step 2:
Let d be the smallest index such that 3s; € A,[d] and s; < s;.
if s, € Ay[d — 1], then
there is nothing to do.
else
increment the size of A, by 1,
for m = Ag.size() tom =d+1 do
move all elements from A,[m — 1] to Ay[m].
end for
Add s; to Ayld].
end if

Step 3:
if s; < s; for s; € Ay[L] with L = Ay.size() — 1, then
the size of A, is incremented by 1,
s; is added to Aq[L + 1].
end if
until Ay[k] = 0 and k = A,.size() — 1.

impossibility to sort pseudo-parallel events in a strict order of appearance, we have to make a
decision about the global states that are relevant for our purpose. We define P* as the set of
processes whose snapshots are in A°[7].

Definition 6.8 (Idealized global state) Let G' be the global state represented by the list
A%i], i € N,0 < i < A%size(). An idealized global state G'T' is obtained from G' by replacing

106 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

in the global state G', the snapshots of the elements of P'T! through the snapshots stored in
A0 +1].

The intuitive idea of idealized global state relies on the observation that during the simulation
of a distributed computation, all causality independent events can take place simultaneously
without generating computation errors or disturbing the execution of the algorithm. Let G
be the global state that is represented by the list A%[i], i € N,0 < i < A%size(). The entire
set of idealized global states is generated by the execution of the next procedure.

Procedure 6.1 (Computing idealized global states)

Rule 0: At real time tg, the global state of the network is encoded in the values of the local
snapshots contained in A°[0].

Rule 1: Each list A°[i],Vi € N,i > 0 represents the local snapshots of processes whose local
states have changed since the last global state G'='. We compute the global state G'
by replacing, in the global state G'~', the snapshots of the elements of P’ through the
snapshots stored in A°[q].

Remark 6.1 Obuviously, if the replacements depicted in Rule 1 are performed one by one, then
Procedure 6.1 will compute ezactly |A°[i]| different idealized global states for each 1.

Naturally, the ideas introduced in Procedure 6.1 represent a relaxation of the problem
consisting in finding all global states trough which a distributed system has really passed.
Nevertheless, the informations stored in the coherent array A° are enough to perform an
exhaustive enumeration of all the global states trough which the system could have passed.
This enumeration is obtained using Procedure 6.2.

Procedure 6.2 (Computing all global states)

Rule 0: At real time tg, the global state of the network is encoded in the values of the local
snapshots contained in A°[0].

Rule 1: Each list A°[i],Vi € N,i > 0 represents the local snapshots of processes whose local
states have changed since the last global state G'='. We construct each global state
GF, i <k < |AY[]| x |A°[i]]!, by replacing, in the global state G'~', the snapshots of the
elements of P* through the snapshots stored in AY[i].

Remark 6.2 The replacement sequence used to generate the state G* in Procedure 6.2 cor-
responds to a permutation of the elements of A°[i]. This means that for each list A°[i] we
generate ezactly |A°[i]| x |A°[i]|! different global states.

For the sake of completeness, once a global state is computed, the validity of any given
predicate p can be evaluated in a polynomial time with respect to the length of p. The value
of the previous generated global state can be always stored in order to simplify the evaluation
of the next global state. Moreover, if we use clever data structures, we can evaluate any
predicate p in a time linear to the length of p.

6.4. CONCLUDING REMARKS 107

6.3.4 Complexity Analysis

Let n be the number of involved processes in the network, D = A(G) be the diameter of
the corresponding graph and m be the maximal number of events stored at each process. To
Analyze the message complexity, we consider separately the cost of two procedures. The first
one consists of all the send events executed by all processes while sending their local arrays to
their father process (see rule 3 of Algorithm 6.1). The second procedure is represented by the
message complexity of building a spanning tree in an anonymous network with a distinguished
process. We take advantage of the algorithm described in Chapter 1 to construct a spanning
tree. Thus, the message complexity of this procedure is O(n). If Dy < D is the diameter of the
constructed spanning tree, then the message complexity of the first procedure is O(mDgyn).
In the worst-case, this complexity is O(mDn). Thus, the worst-case message complexity of
the given algorithm is O(mDn).

The two main components that contribute to the time complexity is the merging procedure
and the enumeration of all ¢dealized global states through which the system has passed. In the
worst case, the merging algorithm merges two arrays of size 5*. Thus, the worst-case time
complexity of Procedure 6.1 is given by O(mn). Each list A°[i],0 < i < A% € N contains
at most n events. Thus the time complexity of enumerating all the idealized global states is

O(mn?). The global worst-case time complexity is therefore O(mn?).

6.4 Concluding Remarks

The correctness of the approach introduced in this chapter depends on the existence of an
initially elected (or distinguished) process P? and on the computation of a spanning tree that
is need to send all the local snapshots to P°. In fact, the problem of computing a spanning tree
is closely related to the election problem. That is, if it is no possible to elect a process P° in
a given graph G, then the same impossibility result yields for the spanning tree computation.
If the processes dispose of some specific knowledge on the network, it is possible to perform a
faithful leader election and therefore a spanning tree computation. Godard et al. [GMMO0]
stated the conditions under which such an election is possible. In [Maz97| Mazurkiewicz gives
an election algorithm for the families of graphs which are minimal for the covering relation
when the network size is known. For this family of graphs, the approach presented here can
obviously be used without assigning to each process a unique identifier.

Due to the fact that each process maintains a vector clock indexed by processes identifiers,
all processes are aware of the network size and all the identifiers that exist in the network.
Thus, it is always possible to successfully perform a leader election [GMO02].

The methodology presented here has been successfully implemented and tested in the Vi-
SiDiA platform. Basically, the implementation works on two levels and use two different kinds
of messages. The first type of messages is dedicated to the computation of the election and
spanning tree algorithms, whereas The second type of messages only contains the informations
that are necessary to execute the distributed algorithm whose properties we intend to check.

If we consider the case where there exists a possibility to synchronize the underlying
network [Tel00], then it is useless for a process P to manage a vector clock and to have
knowledge of the network size. In fact, in each synchronization round ¢, a process P performs
exactly one computation step s;. Afterward, s; could be forwarded to an elected process P°

108 CHAPTER 6. CHECKING PROPERTIES IN DISTRIBUTED SYSTEMS

using the edges of a preprocessed spanning tree rooted at P°. The elected process P° could be
represented by the process that starts the first synchronization round and the computation of
a spanning tree could be performed in the same way as done before. Nevertheless, being able
to synchronize a network is a task that depends on the network topology and on the initial
knowledge of the processes.

Third Part

A programming language for local
computations in graphs

ithin the scope of our researches, we have developed a programming lan-

guage for implementing distributed algorithms encoded by local computa-

tions. This language, called Lidia, is based on a two-level transition system

model: the first level is used to specify the behavior of each single compo-
nent, whereas the second level captures their interactions. Transitions are basically expressed
in a precondition-effect style where the precondition part is expressed in the logic language
L. The language £ is an extension of first-order logic by means of new counting quantifiers
and additional computation symbols.

In the first chapter of this part, we will give a formal presentation of Lidia by detailing all
the computational aspects inherent to our programming language. An important section of
this chapter is devoted to the presentation of the logic £ . The use of this logic in the Lidia
framework will be illustrated by the hand of two Lidia programs. These programs show how
a spanning tree and an election algorithm can be implemented in Lidia.

In the second chapter, we will turn our attention to the computational completeness of
Lidia. We will be specially interested in defining the class of distributed problems that can be
easily implemented in Lidia. The proofs we will state take advantage of finite model theory
and of the descriptive complexity of L% . All the results presented in this part have been
published in [MO04c, MO04d].

110

Chapter 7

Implementing Local Computations:
Lidia

Contents
7.1 Imtroduction ¢ v v v v i i i i i ittt e e 111
7.2 The Computation Model oo 0oL, 112
7.3 An informal Overview. 114
7.4 TheLogic L v o i i i i i it i it it e i e et e 116
7.4.1 The Alphabet of £ oo o 116
7.4.2 The Semanticof £ oL 117
7.4.3 The Satisfaction Relation 118
7.5 Transitionin Lidia 0. 118
7.5.1 Preconditions e 118
7.5.2 Effects 119
7.6 Data TypesinLidiao ... 119
7.7 Structure of a Lidia Program 120
7.8 Communication Level o v v v vttt v i e 125
7.8.1 Basic Communication Instructions 126
7.8.2 Edge Labeling o 127
7.8.3 Implementation of the Communication Level 128
7.9 Concluding Remarks, 129

7.1 Introduction

The growing interest in distributed computing systems has resulted in a large number of lan-
guages for programming such systems [BST89]. Many of these languages are oriented towards
systems programming and are typically used for distributed operating systems, file servers,
and other systems programs. All these distributed systems are required to provide increas-
ingly powerful services, with increasingly strong guarantees of performance, fault-tolerance,

111

112 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

and security. At the same time, the networks in which these systems run are growing larger
and becoming less predictable. Hence, distributed systems have become very complex.

The best approach to managing the increased complexity involves organizing systems in
structured ways, viewing them at different levels of abstraction and as parallel compositions of
interacting components. Such structure makes systems easier to understand, build, maintain,
and extend, and can serve as the basis for documentation and analysis. However, in order to
be most useful, this structure must rely on a solid mathematical foundation. This is obviously
necessary if the structure has to support methods of constructing or analyzing systems.

One reasonable mathematical basis is the concept of local computations. In fact, local
computations have been shown to be a suitable tool for encoding distributed algorithms, for
proving their correctness and for understanding their power. In this model, a network is
represented by a graph whose vertices denote processors, and edges denote communication
links. The local state of a processor (resp. link) is encoded by the label attached to the
corresponding vertex (resp. edge).

From this solid theoretical basis, we have developed the Lidia! programming language that
is entirely devoted to expressing and programming distributed algorithms encoded by means
of local computations.

7.2 The Computation Model

Our approach consists of defining an operational model for Lidia that is based on a two-level
transition system. The first level consists of a number of transition systems, each of which
defines the behavior of a single process. The second level consists of a single transition system
that defines the interactions among the first-level transition systems. Transition systems,
which are structures commonly used in operational semantics, have been used in an uniform
and universal way.

A transition system consists of the set of all possible states of the system, the transitions
the system can make in this set, and a subset of states in which the system is allowed to
start. To avoid the confusion between the states of a single process and the states of the entire
algorithm (the global states), the latter will from now on be called configurations.

Definition 7.1 A transition system is a triple S = (C,—,T), where C is a set of configura-
tions, — 1is a binary transition relation on C, and T is a subset of C of initial configurations.

Hence, a transition relation is a subset of C x C. Instead of (v,d) €— the more convenient
notation v — 9§ is used.

Definition 7.2 Let S = (C,—,Z) be a transition system. An execution of S is a maximal
sequence E = (v0,71,72,...), where vo € Z, and for all i > 0, ~; — Yit1-

A terminal configuration is a configuration v for which there is no § such that v — . Note
that a sequence E = (y0,7v1, 72, ...) with 75 — ~;+1 for all 4, is maximal if it is either infinite
or ends in a terminal configuration.

We use a set of first-level transition systems to specify processes as autonomous entities that

TLanguage for Tmplementing DIstributed Algorithms.

7.2. THE COMPUTATION MODEL 113

can compute and / or interact with their environment. Thus every step of the computation
in such a process may depend not only on the internal state of the process, but also on
some input it may obtain from its environment. These processes are open systems in a sense
analogous to Wegner’s notion of Interaction Machines |[Weg98|. Typically, each transition
system is unbounded and nondeterministic, reflecting the fact that the process it represents is
an interactive system; i.e., its unpredictable behavior depends on the input it obtains from an
external environment that it does not control. The environment of each process is represented
by the set of processes that belong to its neighborhood and by system external actions that
could force the execution of a given action in the network.

Every process that exists in Lidia, is modeled as a transition system (in the first-level).
Each of these systems describes the potential steps that its corresponding process can perform,
assuming that it is embedded in an environment that is optimally cooperative. The details
of the internal activity of a process (e.g., its computations) are described by its respective
first-level transition system. Most such detail is irrelevant for, and hence unobservable by, the
second-level transition system.

Although, the multi-level transition system is powerful enough to model distributed algo-
rithms, the power of Lidia is addicted to the computational characteristics of the descriptive
logic £}, . Similar logics have been studied by other authors, and shown to be particularly
robust by [Ott96, GT95, HLN99|. The most important aspect of the language £ is, among
other things, its ability to express counting. In fact, counting is a fundamental operation of
numerous algorithms. Counters constitute also an essential primitive of query languages. In
relational databases, practical query languages, such as SQL, provide counters as built-in func-
tions of the languages. Counters map relations to integers. They are of great importance from
a practical point of view. Moreover, counters raise challenging theoretical problems. Logical
languages generally lack the ability to express counting, though it is very easy to count on
any computational device [AV91].

The Communication Model

Our communication model is a point-to-point communication network which is repre-
sented as a simple connected undirected graph where vertices represent processes and two
vertices are linked by an edge if the corresponding processes have a direct communication
link. Processes communicate by message passing, and each process knows from which channel
it receives or sends a message. That is, each process assigns numbers to its ports. An edge
between two vertices vi and vy represents a channel connecting a port ¢ of vy to a port
j of vg. The communication in Lidia is based on a symmetric port numbering function.
That is, if there exists a channel connecting a port ¢ of v; to a port j of vy, then ¢ = j.
Moreover, Lidia uses an asynchronous message passing model: processes can not access a
global clock and a message sent from a process p to its neighbor ¢ arrives within some finite
but unpredictable time. The operating mode of communication channels is encoded in the
second-level transition system.

The second-level transition system, abstract away the semantics of the first-level processes,
and is only concerned with their (mutually engaging) externally observable behavior. The
external activities of an entire Lidia application are modeled by the second-level transition
system. Here, a configuration corresponds to a set of processes each of which is associated

114 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

with a list of pending messages that have already been broadcast but not yet received. Each
second-level transition is defined in terms of transitions reflecting the message passing actions
of interacting processes. In a computational point of view, the second-level transitions are
the same for all processes involved in the computation. They represent a formal way how
communication links between two processors are implemented.

7.3 An informal Overview

The Lidia language is designed to allow precise and direct description of distributed algo-
rithms encoded by means of local computations. Since the model we used is a reactive system
model rather than a sequential program model, the language reflects this fundamental distinc-
tion. That is, it is not a standard sequential programming language with some constructs for
concurrency and interaction added on; rather, concurrency and interaction are at its core.

Two major concepts in Lidia are separation of concerns and anonymous communication.
Separation of concerns means that computation concerns are isolated from the communication
and cooperative concerns. Anonymous communication means that the processes engaged in
communication do not need to know each other.

The starting points for Lidia were the pseudocodes used in earlier works on Graph Rela-
beling Rules and on I/O-automata. These pseudocodes contain, in the case of I/0 automata,
explicit representations of state transition definition in form of (actions, states, transitions,...).
In this framework, a transition is described using a transition definition (TD) containing the
preconditions and the effects. This pseudocode has evolved in two different forms: a declara-
tive style (see, e.g., [FLMW94]), in which effects are described by predicates relating pre- and
post-states, and an imperative style (e.g., |[Lyn96|), in which effects are described by simple
imperative programs.

Because of our intention to build a formally defined programming language, we made some
design decisions in order to reach a suitable relationship between the local computations model
and the Lidia programming language.

e We use graph data type to symbolize a distributed systems. Each vertex represents a
process and each edge is seen as a communication link between two processes.

o FEach vertex or edge has a label that describes its state at any time.
e All computing entities in Lidia, vertices or edges, are represented by processes.

e We only allow the imperative program style in each 7'D. Thus, the effects part of a rule
is entirely described by a simple imperative program consisting of (possibly nondeter-
ministic) assignments, conditionals, and simple bounded loops. This simplicity makes
sense, because transitions are supposed to be executed atomically.

e Variables can be initialized using ordinary assignments and nondeterministic choice
statements. The entire initial state may be constrained by predicates.

e The Lidia language can make use of some local computations protocols previously intro-
duced and used by Bauderon et al. [BMMS02|. These are randomized algorithms used
to implement local computations in asynchronous systems.

7.3. AN INFORMAL OVERVIEW 115

e Each TD corresponds to a relabeling rule that is represented in a precondition-effect
style. A rule can have additional choose parameters, which are not formally part of the
action name, but which allow values to be chosen to satisfy the precondition and then
used in describing the effect.

e An important aspect of nondeterministic programming is allowing maximum freedom in
the order of action execution. Control over action order is sometimes needed, particu-
larly at lower levels of abstraction where performance requirements may force particular
scheduling decisions. For this reason, we have integrated an explicit support for spec-
ifying action order in Lidia. Thus, each rule is enhanced with a list of all rules that
have a higher order of priority. If there exists no priority decision between two actions,
a random choice is made to designate which rule should be executed.

Related Works and Models

Languages such as IOA [GLV97], UNITY [CM88], SPECTRUM [BFG'93] or TLA
|[Lam89| are similar to Lidia in that their basic program units are transition definitions with
preconditions and effects parts. However, effects in TLA are described declaratively, effects in
UNITY and SPECTRUM are described imperatively and IOA allows both declaration styles.
In contrast to Lidia, SPECTRUM is an algebraic specification language that is based on
axiomatic specification techniques and is oriented towards functional programs. It includes
features such as A-abstraction which would be inconsistent with our aim to construct a simple
programming language.

In the same way, instead of representing processes as I/O-automata (i.e., IOA, SPEC-
TRUM, TLA), any process in Lidia is consider as a processing entity that belongs to a com-
pact system and can perform several computation rules (first-level system). This departure
from the automata model is motivated by the fact that we do not want to deal with complex
automata operations that are useless in the local computation environment. As a matter of
course, the underlying networks of the algorithms we intend to encode in Lidia are always
static and we will never take advantage of operations that compose smaller components in
bigger ones.

Moreover, TLA and UNITY are based on state automata that communicate via shared
variables, whereas Lidia uses an asynchronous message passing system. In most of these
languages, the preconditions of any 7'D are expressed using descriptive languages whose com-
plexities are unknown.

The main particularity of Lidia resides in the fact that, within its framework, the pre-
conditions are exclusively described in the logic £% [MO04d| and the effects are expressed
using an imperative language constructed on L% (LASL). We have shown that the logic L,
has enough descriptive power to fully described all PTIME queries in the structures used in
Lidia. Finally, this particularity of £ has helped us to characterize the class of distributed
problems that are suitable to the Lidia programming environment.

116 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

7.4 The Logic L,

Here, we introduce some extensions of first-order logic that are necessary to understand how
the language L% is built. These are fixed-point logics, infinitary logic and infinitary logic
with counting. Throughout the rest of this chapter, we will assume that the reader is already
familiar with the basic concepts of first-order logic and fixed-point logics as the definition of
formulae and how the notion of truth is defined.

First of all, recall that infinitary logic L., is the extension of first-order logic where
infinite disjunctions and conjunctions of formulas are also allowed. It is well known that any
(isomorphism closed) class C € STRUCT[o] can be defined in Loo, (where STRUCT o]
denotes the class of finite o-structures). Interest of this logic comes from its fragments which
have weaker expressive power. One such fragment is £ where only k distinct variables, free
or bound, are allowed. The finite variable logic £% is then the union of £¥_ over all natural
numbers k. Fixed-point logics (least inflationary logic, partial fixed-point logics and transitive
closure logic) can all be embedded into £ . It is also easy to see that £% , can not express
certain counting properties, such as parity of cardinality. For an extensive study of this logic,
see e.g. [EF95].

L, is obtained by first adding counting terms, counting quantifiers to the logic £,
over two-sorted structures (the second sort being interpreted as N), and then restricting it
to formulae of finite rank. The idea of using the set of natural numbers in the two-sorted
structure is influenced by meta-finite model theory of [GG98|. Similar extensions exist in the
literature |Ott97], but they restrict the logic by means of the numbers of variables, which
still permits fixed-point computation. In contrast, following [HLN99|, we restrict the logic by
requiring the rank of a formula be finite (where the rank is defined as quantifier rank, except
that it does not take into account quantifiers over N), thus putting no limits at all on the
available arithmetic.

7.4.1 The Alphabet of L}

The alphabet of £ is obtained by adding the following counting terms and quantifiers to the
symbols of first-order logic.

e Counting Quantifiers: 3;, Elf‘
e Counting Terms: 31, do, ds,... Elf', EI%‘, 3+
e Equality symbol: =, #

e Usual arithmetic functions: +, —, X, +, modulo, div, exp, factorial,...

All the arithmetic help functions have the intuitive meaning. The counting quantifier 3; is
satisfied if the set of elements, that satisfy a given formula ¢, has a cardinality greater or equal
to i. On the other hand, the formula 3z¢(z) is true, if there are exactly i elements z that
satisfy ¢(x). We have to notice that the variable i is an element of the set of natural numbers
and we can also use it to construct further predicates.

We now define formally the syntax of the infinitary logic L.

7.4. THE LogGic L% 117

Definition 7.3 (Syntax of L) Let o be a vocabulary consisting of finitely many relational
and constant symbols and let {vy,...,v,,...} be an infinite set of distinct variables. The class
of L%, formulas over o is the smallest collection of expressions such that:

e it contains all first-order formulas over o;
o if ¢ is a formula in L}, then so is ~¢;

e if ¢ is a formula in L, i € N and vj is a variable, then (3;)v;¢ and (I;)v;¢ are also
n L ;

e if ¢ is a formula in L, v; is a variable, then the formulas (30)vj¢, (I5)vio, (31)v;0,

o)

(FD)vib, (F2)vib, (F3)vjd, (F3)vjp, (33)vj¢... are also in L3 ;
o if ® is a set of LS formulas, then \/ ® and \ ® are also L, formulas.

Example 7.1 With the logic L}, we can express the fact that a given set ¢ has an even
cardinality. This is done by the following expression:

3 z(r €y A imod?2=0);

The next example reinforces the fact that the power of first-order logic is not enough to describe
all the preconditions that can be erecuted in Lidia.

Ezxzample 7.2 Consider the case where a given vertex vy has to test the following precondition:
The number of its N—labeled neighbors is equal to the number of its A—labeled neighbors.
Without any counting mechanism, it is not possible to express this kind of precondition in
first-order logic. Whereas, this query can be checked in L, with the following sentence:

Jiudjw(u #vo Aw #vg AAu) = N AXNw) =ANi=j).

7.4.2 The Semantic of L}

The semantics of £ formulas is a direct extension of the semantics of first-order logic, with
\/ ® interpreted as a disjunction over all formulas in ® and A @ interpreted as a conjunction.

Although most of the basic theory on infinitary logics was developed for arbitrary struc-
tures, the interesting results only speak about finite ones. This is why we have restricted our
attention to finite structures with finite vocabularies, unless it is explicitly stated otherwise.
Furthermore, we always assume classes of structures to be closed under isomorphism. In the
same sense that sentences of a logic define classes of structures, formulas with free variables
define queries.

Definition 7.4 (Structures of £ in Lidia) A structure A is of the form:

A= <{U17 e 7Um}7 {17 e an}a {L}a <=, 7é7 Oa 17 tlruevfalsea MIN? MAXa
R - REFE R,
Here the relations R® are defined on the vertices domain {v1, -+ ,vm}, while on the numerical
domain {1,--- ,n} one has constants 0 and 1. L is the finite set of labels and {vy, -+ v}

even represents the neighborhood of a given vertexr vg.

118 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

In essence, any vertex w can only see the part of the general domain of A that is represented
by its neighborhood. Further on, the added universe of numbers gives us the ability to do
some arithmetic on the side as we express a property of the input structures.

7.4.3 The Satisfaction Relation

The satisfaction relation makes precise the notion of a formula being true under an interpre-
tation. Let D be the domain of our logic, I be an interpretation relation, A = (D, I) be an
interpretation structure, g be an assignment in A and ¢ be a formula. If ¢ can be represented
in the FOL then the satisfaction relation of FFOL can be used on ¢. If ¢ contains new intro-
duced quantifiers, then the satisfaction relation of ¢ by g in A, is given by the following rules:
Counting Quantifiers

A Edizdlgl & Ak dlglz/di/fl] & A lglz/d]
for at least j elements d € D with j < |D|

A 3 aolgl & AEdlgle/di/j]] & Al olglz/d)]
for exactly j elements d € D with j < |D|

The satisfaction of counting terms is a special case of the above satisfaction relations.

Note 7.1 The fact that we allow formulas with infinite disjunctions and conjunctions in Lk,
can be a bit weird. Nevertheless, all the formulas in L% have finite models. Furthermore, it
can be proved that in finite structures, any formula in L is exactly equivalent to a formula
of a finite logic language (IFP+C). Moreover, the evaluation of all formulas of L%, can be
performed in polynomial time. All these results are stated in [MO04d], however they will be
presented in the next chapter.

7.5 Transition in Lidia

Any distributed algorithm encoded in Lidia is represented as a reactive network system con-
sisting in processors and communication links. Omne such a link enables two processes to
communicate with each other. Because of the fact that the system is reactive, the state tran-
sitions of each process are represented in a Precondition-Effect style. Basically, all processes
execute the same algorithm. This means that the set of transitions defined in the first level
transition system is the same for all processes.

7.5.1 Preconditions

Let now G be a connected graph (network) and v € V' be a vertex(processor) of G. The main
task of the preconditions side is to describe the local properties of the ball of radius k£ centered
on v. Although the logic £ achieves this goal, we made some decisions to adjust it to Lidia.

First of all, we set the universe of the used structure, A, be specific to the neighborhood of
the center of the star we considered. This means that each vertex of G can only “see” the part
of the vertices of V' that belongs to its neighborhood of radius k. In the Lidia language, we
restricted ourself to balls of radius 1. Thus, the neighborhood of a vertex v is represented by

7.6. DaTA TYPES IN LIDIA 119

the entire set of vertices u that are neighbors of v and to the set of edges e that are adjacent to
v. It must be clear that all relations Rf that try to catch any property between two neighbors
of v are strictly forbidden. That is, they do not belong to the structure A related to the
neighborhood of v.

7.5.2 Effects

The Effects sides are described by LASL programs [Oss04]. Basically, the language LASL
requires only one data type: nonnegative integers. The identifiers are defined to be alphanu-
meric strings starting with a letter. Therefore, we do not need any type declaration (since
there is only one data type and since constants can easily be distinguished from identifiers).

Due to arithmetic functions introduced in the language L%, it is clear that LASL contains
the increment and decrement statement types that respectively increment or decrement the
value named by an identifier. More generally, LASL contains the following statement types:

1. Basic statements

e x := varname: is a simple assignation statement.

o Vz(®(x)), p: the statement p is performed exactly once if and only if all elements
x satisfy the predicate ®;.

e 3;2(®(z)), p: the statement p is performed once if and only if there are at least i
elements x that satisfy the predicate ®(x).

e 3}z(®(x)),p: the statement p is performed exactly once if and only if there are
exactly ¢ elements x that satisfy the predicate ®(z).

o Vz(®(z),p): the statement p is performed each time an element x satisfying the
predicate ® is found.

2. Loop statement

e V(®){p}: a given statement p is performed as long as a given predicate ® is satisfied.

Starting from the statements of LASL, we have proved [Oss04| that this language is capable
of expressing the solution of any algorithmically solvable problem. Thus, LASL is able to
express the effects of any transition in Lidia. An important side effect of the power of LASL
is that all arithmetic functions can be computed in Lidia. However, instead of using a LASL
bock procedure to describe a given arithmetic function, for instance modulo, we simply use
the corresponding common notation, % or mod, to refer to this procedure.

7.6 Data Types in Lidia

A general description of all Lidia data types with their respective operations is presented in
[MOO04b]|. Lidia enables users to define new data types in order to characterize the actions
and states of each process. The data types graph, node, edge, Bool, Int, Nat, Real, Char, and
String can appear in Lidia descriptions without explicit declarations. It goes without saying
that the list of data types considered in this section is not exhaustive.

120 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

The used graph data type represents parameterized graphs. Thus, any instance of graph
contains labels attached to its vertices and edges. Compound data types can be constructed
using the following type constructors without explicit declarations:

e Array[l, E]is an element of elements of type F indexed by elements of type I.
e Seq[E] is a finite sequence of elements of type E.

o Set[E] is a finite set of elements of type E.

e Mset[E] is a finite multiset of elements of type E.

e node_ set is a finite set of nodes.

e cdge_set is a finite set of edges.

e int_ set is a finite set of integer numbers.

Users can define additional data types, as well as redefine built-in types. For instance, they
can explicitly declare enumeration, tuple, and union types analogous to those found in many
common programming languages. For example,

e type Color = enumeration of red white blue
e type Msg = tuple of source, dest: Process, contents: String
If S is a set of elements of type E, then the operation x := choose s in S consists in assigning

to x the value of an element of S that has been randomly chosen. Generally, the choose opera-
tion is used to randomly select an element from a set of items that satisfy some characteristics.
It is a simple way to perform random initializations in Lidia.

7.7 Structure of a Lidia Program

We illustrate our model, as well as the use of the language Lidia to describe distributed
algorithms, by two simple examples.

Example 7.3 (Spanning tree computation) The Lidia-Program 7.1 represents a Lidia
implementation that computes a spanning tree in a graph. The corresponding procedure may
be encoded by the graph relabeling system Ry = (L1,11, P1) defined by Ly = {N,A,0,1},
I = {N, A,0}, and P, = {R1} where R1 is the following relabeling rule:

R1 : Expanding rule

Precondition :

— AMug) = A4,

— Jv € B(vo, 1),v # v, A(v) = N, A([vo,v]) = 0.
Relabeling :

7.7. STRUCTURE OF A LIDIA PROGRAM 121

- Nw):=A
- Xl = 1

We assume that a unique vertex has initially label A, all other vertices having label N and
all edges having label 0. At each step of the computation, an A-labeled vertex u may activate
any of its neutral neighbors, say v. In that case, u keeps its label, v becomes A-labeled and
the edge {u,v} becomes 1-labeled. Thus, several vertices may be active at the same time.
Concurrent steps will be allowed provided that two such steps involve distinct vertices. The
computation stops as soon as all the vertices have been activated. The spanning tree is then
given by the 1-labeled edges.

As depicted in Lidia-Program 7.1, every Lidia program consists of four parts. General
variables are declared and initialized in the first and second parts. The types nLabel and
eLabel are introduced to define the kind of labels that will be respectively used on vertices
and edges. The third part defines the kind of local synchronization protocol used during the
computation (see Chapter 4). This part is only used when overlapping parallel rewriting steps
can occur. That is, as long as the rewriting rules are applied on balls of radius & > 0, k-local
elections are needed to ensure the correctness of the computation. In Lidia-Program 7.1, any
vertex vg has to win a 1-local election before computing rule R1. The fourth part contains
the list of all rules that can be applied during the computation.

There are two kinds of rules in Lidia: active and passive rules. While active rules are
executed by vertices that have won the required k-local election, passive rules are executed by
the losers of the same election. In the above example Ry and P, are respectively active and
passive rules. A vertex vy applies Ry if it is N-labeled and it has a A-labeled neighbor v that
has won the k-local election. The consequences of the application of rule Ry are represented
by the relabeling of edge {vg,w} that becomes 1-labeled and by the fact that vy becomes A-
labeled. Generally, a passive rule consists in sending or receiving messages. Thus, instead of
using the term Relabeling, the second part of a passive rule is called Action in Lidia programs.
In any Lidia program the names of all active rules are first listed before each of them is
specified in details. Each specification begins with the rule name followed by the statements
concerning Precondition, Relabeling and Priorities. Passive rules are introduced in the same
lines.

Lidia also provides a structure that allows to set an execution priority between two rules.
For each rule r, this structure is given as a list of rules that have higher execution priority
than r. This is a natural way to encode graph relabeling systems with priorities in Lidia. One
has also to notice that, in Lidia, the forbidden contexts of a relabeling rule r are encoded as
preconditions in r. If the list of rules that have higher execution priorities than a given rule
ro is empty, this does not mean that ry has the highest priority. This simply denotes the
fact that, if the preconditions of of rqy are satisfied, then ry can be executed regardless of the
other rules. Moreover, it may sometimes appear that more than one rule have empty lists of
priorities. In this case, if at least two of them can be applied, an equiprobable choice is made
to decide which rule should be effectively executed.

The general idea of the Lidia-Program 7.1 consists in three phases. In the first phase, all
vertices participate in a 1-local election (lines 14 — 15). In the second phase, each loser w of
the election sends its label to all the winner vertices that belong to its ball of radius 1 (lines
35 — 43). The third phase is executed by all the winner vertices. Each of them receives the

122

CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

Lidia-Program 7.1 Spanning tree implementation

2:

10:

12:

14:

16:

18:

20:

22:

24:

26:

28:

30:

32:

34:

36:

38:

40:

42:

44:

Declaration
type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

: G : graph < nLabel,eLabel >;

edgeLab : eLabel;
nodeLab : nLabel;
Initialization
edgeLab.var = 0;
nodeLab.var := N’;
G.init(nodeLab, edge Lab);
v : node;

v := G.choose__node();
v.label.var :="A’;
Synchronization
Synchro_ LC1();
SpanningTree(vy : node) :
Universe

B : node_set;

B := G.neighborhood(vy);
Active rules: Ry;

L,: node_array < nLabel >;
L, .init(B,nodeLab);

w : node;

Vw € B(w # vo, Ly[w] := ReceiveFrom(w));
R()::{

Precondition

Vo.SYNC = vg;

vo.label.var =N A Jw € B(w # vg A Ly[w].var =’A" A [vg, w].var = 0);

Relabeling
vo.label.var == "A’;
[vo, w].var := 1;
Priorities

{5

b

Passive rules: Py;

P()Z:{

Precondition

vg.SYync # vo;

Action

v : node;

Vv € B(v# vy Av.sync =wv, SendTo(v,vg.label));
Priorities

{5

b

SpanningTree.run(Q);

7.7. STRUCTURE OF A LIDIA PROGRAM 123

labels sent by all its neighbors (lines 22 — 24). Thereafter, it checks if the relabeling rule Ry
can be performed in its ball of radius 1 (lines 25 —34). For a given vertex v, the ball of radius
1 is represented by a node set variable B that contains the star graph centered on v (lines
17 —19). B is called the universe of v. Once a loser vertex has sent its label it performs the
election procedure again. This also yields for a winner vertex that has performed the third
phase.

Example 7.4 (Election in anonymous trees) We now present a second programming ex-
ample that aims to solve the election problem in Lidia. The main idea 1s to perform the election
algorithm in the family of tree-shaped networks. The corresponding election algorithm can be
encoded using the following relabeling system.

L = {N,elected, non-elected} is the set of labels. The initial label on all vertices is lg = N
and there are two meta-rules described as follows.

R1 : Pruning rule

Precondition :

— Awo) =N,

— Jlv € B(vp, 1),v # vg, A(v) = N.
Relabeling :

— MN(vg) := non-elected.

R2 : Election rule

Precondition :

— Awo) =N,

— Yv € B(vg, 1),v # vg, A(v) # N.
Relabeling :

— MN(vg) := elected.

Let us call a pendant vertex any vertex labeled N having exactly one neighbor with the label
N. The meta-rule R1 consists in cutting a pendant vertex by giving it the label non-elected.
The label N of a vertex v becomes elected by the meta-rule R2 if the vertex v has no neighbor
labeled N. A complete proof of this system may be found in [LMS99].

This example is implemented in Algorithm 7.2 and Figure 17 simulates one possible ex-
ecution of the algorithm. In this simulation, all black colored vertices are N-labeled and
non-elected. The white colored vertices are F-labeled and non-elected. The elected vertex is
the red colored vertex that is N-labeled and does not have any N-labeled neighbor. Many
other programming examples in Lidia can be found in [MO04b].

The operating mode of the Lidia-Program 7.2 is similar to the one introduced in Lidia-
Program 7.1. The difference resides in the fact that here, a winner vertex has to check if two
rules(Ry and R;) can be executed before performing the 1-local election again. None of the
both presented programming examples stops. In fact, even though a vertex is elected, the

124 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

Lidia-Program 7.2 Election in an anonymous tree
Declaration
2: type nLabel = tuple of var: string;
type eLabel = tuple of var: int;
4: G : graph < nLabel,eLabel >;
edgeLab : eLabel;
6: nodeLab : nLabel;
Initialization
8: edgeLab.var := 0;
nodeLab.var = 'N’;
10: G.init(nodeLab, edgeLab);
Synchronization
12: Synchro_LC1();
ElectionInTree(vg : node)
14: Universe
B: node_set;
16: B := G.voisinage(vy);
L,: node_array < nLabel >;
18: L,.init(B,nodeLab);
Active rules: Ry, Ry;
20: Yw € B(w # vg, Ly[w] := ReceiveFrom(w));
Ry ={
22: Precondition
v : node
24: wvo.label.var =N’ A 3fv € B(v # vo A Ly[v].var = 'N*);
Relabeling
26: vg.label.var :="F’;
Priorities
28: {};
};
30: Rlli{
Precondition
32: v : node
vo.labelvar =N’ A Yv € B=(v # vg A Ly[v].var #N);
34: Relabeling
vg.label.var :="F’;
36: Priorities
{h
38: };
Passive rules: Ry;
40: R()Z:{
Precondition
42: vg.sync # vg;
Action
44: v : node;
Vv € B(v# vy Av.sync = v, SendTo(v,vg.label));
46: Priorities
{h;
48: };
ElectionInTree.run(G);

7.8. COMMUNICATION LEVEL 125
m j&j\

Figure 17: Distributed computation of the election algorithm in trees

loser vertices have no means to realize this situation. It is possible to deal successfully with
this situation by adding appropriate rules that should broadcast, to all F-labeled vertices, the
information concerning the existence of an elected vertex.

7.8 Communication Level

Processes are the basic computational entities in the execution of Lidia programs. A process
operates on its internal data which are not accessible to other processes. The interaction
between processes is only performed by means of sending and receiving data through com-
munication channels that are created dynamically. In fact, the creation of an edge (or link) e
connecting two processes p; and p; consists in the creation of a communication channel which
connects p; with p;. This channel has an unique identity which is only known to the processes
p; and p;. Figure 18 represents such a communication channel with identity 1. This channel
is composed of

e two input buffers: I;;, Ij;,
e two output buffers: O;;, Oj;,
e two transmission processes C;j, Cj; and

e an edge relabeling function A.

The behaviors of these processes are implemented in the second level transition system. If
process p; has to send a message M to p;, p; appends M to the buffer O;;. In the same way, if
pi has to receive a message M’ from pj;, it looks for M’ in the corresponding input buffer I;.
The transmission processes C;; and Cj; are responsible for the deliveries of the sent messages
in both directions. For instance, C;; has periodically to move messages from O;; to I;;. The
default transmission channels guarantee all the properties of a reliable communication channel,
which neither loses nor reorders messages in transit.

126 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

pPi @&—e Dj

{Oij, Aleij)} {£i, N (e35)}
1 c, 1
Pi pj
1 Cji 1
{Lji, N (eji)} {0ji, Aeji) }

Figure 18: A communication channel between p; and p;

7.8.1 Basic Communication Instructions

In order to communicate with other processes, a process p; can make use of four basic in-
structions that are also implemented in the Lidia language. Informal descriptions of these
instructions are given as:

ReceiveFrom(p;): This instruction forces p; to look for a new message in Ij;. If the buffer
is not empty, the message on the top of I;; is returned and deleted from I;; (i.e. with
the Pop() operation). Otherwise the value nil is returned.

R1 : ReceiveFrom(p;)
Precondition :
— pj € B(vo, 1),
— 1Ij; # empty.
Relabeling :
— M := I;;.Pop()

SentBy(p;): This instruction forces p; to look for a new message in I;;. If the buffer is not
empty, the message on the top of Ij; is returned (i.e. with the pop() operation), otherwise
the value nil is returned.

R1 : SentBy(p;)
Precondition :
— pj € B(vo, 1),
Relabeling :
— M := Iji.pop()

SendTo(p;, M): With this instruction p; sends a message M to p;. That is, p; appends M
to the buffer O;;.

7.8. COMMUNICATION LEVEL 127

R1 : SendTo(p;,M)
Precondition :
— pj € B(vo, 1),
Relabeling :
— Oji.append(M)

SendAll(M): With this instruction p; executes the instruction SendTo(pj, M) for all its
neighbors p;. That is, p; appends M to all the buffers O;;.

7.8.2 Edge Labeling

In the model of Mazurkiewicz, that has been proved to be more powerful than all the others
[CMO04], it is possible for a vertex v to change the label of one of its adjacent edges. Due
to the characteristics of the communication model presented above, changing the label of an
edge e = {p;,p;} can be performed by process p; in the following steps.

Step 1: Process p; checks if A(e;;) = nil and it has soon read X (e;;). If this is the case, it set
A(e;j) to the new value of the label of e. Otherwise, it repeats Step 1.

Step 2: Process C;; repeats the following actions forever:

o If A(e;j) # nil and X (e;;) has soon been read by p;, then
- Cij set)\/(ei]’) to)\(ei]’),
— it actualizes the timestamp of A'(e;;) and set A(e;;) to nil.

o If A(e;;) = nil or the old value of X(e;;) has not been read yet by pj, then Cj;
actualizes the timestamp of X (e;;).

Step 3: p; waits until a newer value of \(e;;) is set by Cj;. It stores the new label [, and
marks A (e;;) as seen.

Each time process p; has to perform a computation using the label of one of its adjacent edges
e, it must be sure that its stored value I, is the actual value of e. To fulfill this requirement,
p; respect the following conditions.

e Each time p; changes the label of one of its incident edges, its stores the tuple {l,,1,} in
its local memory, where [, and [, are respectively the old and new label values of edge
e. The old value [, is stored with the corresponding timestamp.

e Actualization: if X'(e;;) has not been seen, then \(e;;) is the new value of the edge e.
Otherwise, [,, is the actual label of e.

As depicted in Figure 18, it is obvious that if p; and p; try simultaneously to change the
label of e, they will have two different values of A(e). In fact, it is not possible to break the
communication symmetry between two processes connected by an edge e. Thus, there is no
deterministic algorithm that solves the local election problem in a graph composed by two
connected processes. More generally, it can be proved that all the impossibility results stated
in [CM04] and [CMZ04]| are also valid in the Lidia framework.

128 CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS: LIDIA

7.8.3 Implementation of the Communication Level

In this section we present a possible implementation of the transmission processes described
in the previous sections. As presented in Figure 18, the goal of this kind of processes is to
transmit messages in transit and to ensure a robust edge relabeling system. For a process
Cjj, the basic implementation contains the following four relabeling rules which are encoded
in Lidia-Program 7.3. In the first rule Cj; notices that no new message has been sent by p;
and that either p; has not set a new edge label or p; has not taken the actual edge label)\’(e;-j)
into account. In this case, it only actualizes the timestamp of N (egj). In the second rule, no
new messages were sent, but p; has changed the edge label. Thus, C;; actualizes the label
of the corresponding edge by executing the operations described in Section 7.8.2. Rule R3 is
devoted to the transmission of a new message and rule R4 simultaneously actualizes the edge
label and transmits the new message sent by p; to p;.

R1: NOP
Precondition :
— O;j.empty() = true,
— Meij) =nil vV Read(N(e};)) = false.
Relabeling :

— Timestamp(XN (e;5)).

R2 : EdgeLabel

Precondition :
— O;j.empty() = true,

— Aesj) # nil,
— Read(X(e};)) = true.

Relabeling :
— Neig) = Meyj),
-)\(ei]’) = nil,
— Timestamp(X (ei;)).

R3 : TransmitMessage

Precondition :

— O;j.empty() # true,

— Aezz) =nil V. Read(X(e};)) = false.
Relabeling :

— I;j.append(O;;.Pop()),

— Timestamp(XN (e;5)).

7.9. CONCLUDING REMARKS 129

R4 : MessageLabel

Precondition :
— Ojj.empty() # true,
— A(ei;) # nil,
— Read(N'(e};)) = true.
Relabeling :
— Iij.append(O;;.pop()),
= N(eig) = Aeij),
)\(6”) = nil,
— Timestamp(X (ei;)).

By the hand of these actions, Lidia-Program 7.1 and Lidia-Program 7.2 can be made up by
inserting the transitions of Lidia-Program 7.3 after the last transition rule of the corresponding
programs. Due to the length of the so constructed programs, it is common to describe Lidia
programs by restricting the list of rules to the first level transition system. This should then
have the intuitive meaning that the default communication system is used.

7.9 Concluding Remarks

Lidia is a new programming language that manages the interactions among concurrent com-
ponents and uses a two-levels transition system to model reactive systems. It is devoted to
the implementation of algorithms encoded by local computations.In a programming point of
view, we have developed a code generator that performs a source-to-source translation from
Lidia to the programming language Java. Our main motivation was to enhance the platform
of ViSiDiA [MS] with the so constructed generator. Thus, it is now possible to reach a faith-
ful simulation for the distributed algorithms implemented in Lidia. Furthermore, we have
provided Lidia with a tool that is able to test the validity of given programs properties. The
inputs of this tool are properties expressed in the language £ or in the monadic second order
logic (MSOL) that is known to have the capability to express some NP-hard graph properties
[Cou97]. We expect this tool to represent a first step in the design and development of tools
which should contribute to prove the correctness of the execution of Lidia programs.

The main remaining research problem concerns the construction of a virtual machine for
Lidia. In fact, our efforts aspire now towards the development of such a machine which should
give us the possibility to design a platform independent compiler for Lidia programming.

130

CHAPTER 7. IMPLEMENTING LOCAL COMPUTATIONS

: Lipia

Lidia-Program 7.3 Default transition system for the second level

2:

4:

10:

12:

14:

16:

18:

20:

22:

24:

26:

28:

30:

32:

34:

36:

38:

40:

42:

44:

46:

Declaration

type Lab = tuple of time: int, label: string, status: boolean;
type nLabel = tuple of O;;,I;;: stack,e;j, ¢,.: Lab;

type eLabel = var: int;

G : graph < nLabel,eLabel >;

gt

: transmission(v; : node, v : node) :

Universe

: Active rules: Ry, Ro, R3, Ry;

R1::{

Precondition

Oij.empty() = True A (e;; # nil V e];.status = false),
Relabeling

ejj-time 1= ej;.time + 1.

Priorities

{};

13

RQ::{

Precondition

Oij.empty() = true A (e;; #nil A e};.status = true),
Relabeling

e;j =€y

ey -time 1= ej;.time + 1,

€ij = nil,

Priorities

{3

I

Rg::{

Precondition

Oij.empty() # true A (e;; = nil V e}, .status = false),
Relabeling

Iij.append(Oi;.Pop()),

ey -time 1= ej;.time + 1.

Priorities

Precondition
O;j.empty() # true A (e;; # nil Aej;.status = true),

Relabeling
ILij.append(O;;.pop()),
I

eij =€y

ej;-time := ef;.time + 1,

€ij = Ilil,

Priorities

{5

}s

transmission.run(QG);

Chapter 8

Computational Characteristics of
LIDiA

Contents
81 Introduction 131
8.2 Descriptive Complexity of £5o o 0 oo 132
8.2.1 Logic with Counting 132
822 L Captures PTIME 134
8.3 Computational Completeness of LIDiA 136
8.4 Concluding Remarks v ittt v vt 137

8.1 Introduction

In the last chapter we have presented a new programming language for implementing dis-
tributed algorithms encoded by means of local computations. This language, called Lidia, is
based on a two-level transition system model: the first level is used to specify the behavior
of each single component, whereas the second level captures their interactions. Transitions
are basically expressed in a precondition-effect style. Moreover, Lidia depends on a logic L%
that is used to express the preconditions of each transition. The logic £} is an extension of
first-order logic by means of new counting quantifiers and additional computation symbols.

The main topic of this chapter is to state a relationship between the logical definability in
L and the computational power of Lidia.

We will make use of results of the finite model theory to show that if the rules’ preconditions
of a given problem p can be expressed in L, then p can be computed in Lidia. More generally,
we will state that, in the presence of users defined function, Lidia is able to compute any
distributed problem encoded by means of local computations. Hence, the class of distributed
algorithms expressible in Lidia is exactly the class of problems encoded by local computations.

131

132 CHAPTER 8. COMPUTATIONAL CHARACTERISTICS OF LIDIA

8.2 Descriptive Complexity of L

The main task of this section is to determine the descriptive complexity of the logic £ . More
precisely, we want to find out the main complexity class that is captured by this logic. We
look for results saying that, on a certain domain D of structures, the logic L%, captures the
complexity class PTIME. We expect to satisfy the following conditions:

(1) For every fixed sentence ¢ € L}, the data complexity of evaluating ¢ on structures from
D is a problem in the complexity class PTIME.

(2) Every property of structures in D that can be decided with complexity PTIME is definable
in the logic £ .

As a matter of course, the domain D and the corresponding structures will be defined as
presented in Section 7.4. Our goal is to describe complexity classes by logics. Thus, we agree
to consider complexity classes as classes of languages over {0,1}. However, our results are
not only valid for computations on classes of words (that is, languages), but also on classes of
graphs or arbitrary relational structures.

Example 8.1 A well-known result of Hopcroft and Tarjan [HT7}] says that PLANARITY
of graphs is in PTIME. What this means is that there is a PTIME-algorithm that, given any
adjacent matriz of o graph, decides whether the graph is planar or not.

In general, with each class € of T—structures we associate the language

L(€) = {e((8,<%))|S € ¢, <5, linear order of S} = |] £(S)
Se¢

An encoding for a set S is an injective function e : S — {0,1}*. Formulas can be considered
as words over some richer alphabet and thus easily be translated to words over {0,1}. As
from now, we assume that the reader is familiar with the basics of complexity theory and has
heard of some of the common complexity classes, such as LOGSPACE, PTIME, NPTIME
and PSPACE. We assume further that the reader has knowledge about the principles of logics
such as fized-point logic, least fized-point logic (LFP) and inflationary fized-point logic (IFP).
Fixed-point logic is an extension of first-order logic designed to reflect the power of induction.
There are several formalizations which are not in general equivalent, but the differences are of
no concern to us. This is also justified by the results of Gurevich and Shelah |GS86] stating
that many different definitions of fixed-point logic coincide for finite structures. We refer the
reader to |EF95| for a detailed presentation of the basic material of this section.

8.2.1 Logic with Counting

from the point of view of expressiveness, FOL has two main deficiencies: It lacks the power to
express anything that requires recursion (the simplest example is transitive closure) and it can
not count, as witnessed by the impossibility to express that a structure has even cardinality.
A number of logics add recursion in one way or another to FOL, notably the various forms of
fixed-point logics. On ordered finite structures, some of these logics can express precisely the
queries that are computable in PTIME or PSPACE. However, on arbitrary finite structures

8.2. DESCRIPTIVE COMPLEXITY OF L} 133

they do not, and almost all known examples showing this involve counting. While in presence
of an ordering, the ability to count is inherent in fixed-point logic, hardly any of it is retained
in its absence.

Therefore Immerman proposed [Imm86]| to add counting quantifiers to logics and asked
whether a suitable variant of fixed-point logic with counting would suffice to capture PTIME.
Meanwhile, fixed-point logic with counting has turned out to be an important and robust
logic, that defines natural level of expressiveness and allows to capture PTIME on interesting
classes of structures.

There are different ways of adding counting mechanisms to a logic, which are not necessarily
equivalent. The most straightforward possibility is the addition of quantifiers of the form
322 323, with the obvious meanings. While this is perfectly reasonable for bounded-variable
fragments of FOL or infinitary logic (see e.g. [Ott97]) it is not general enough for fixed-point
logic, because it does not allow for recursion over the counting parameters ¢ in quantifiers
32z, These counting parameters should therefore be considered as variables that range over
natural numbers. This implies indirectly the use of two-sorted structures in most counting
logics with the second sort being the set of natural numbers N. We denote by (FOL + C) the
FOL with counting.

We now define inflationary fized-point logic with counting (IFP + C) by adding to (FOL + C)
the usual rules for building inflationary, ranging over both sorts.

Definition 8.1 Inflationary fized-point logic with counting (IFP + C), is the closure of two-
sorted FOL under the following rules:

(i) The rule for building counting terms;
(ii) The usual rules of FOL for building terms and formulae;

(iii) The fized-point transformation rule: Suppose that (R, T, i) is a formula of vocabulary
T U{R} where T, i and R has mized arity (k,1), and that (u,v) is a k+ l-tuple of first-
and second-sort terms, respectively. Then [ifp Rzu.)|(u,v) is a formula of vocabulary
T.

It is clear that counting terms can be computed in polynomial-time. Hence the data
complexity remains in PTIME for (IFP + C).

Infinitary logic with counting. Let CX be the infinitary logic with k variables,
LF. . extended by the quantifiers 32™ (“There exists at least m”) for all m € N. Further, let

o0ow?

Cg)ow = Uk Cclfow
Proposition 8.1 (Otto [Ott97]) (IFP +C) C CY,.

From the definitions of C% , and L%, we can deduce that £ A C CZ ,. The next propo-
sition states a relation between the logics C¥ , and L.

Proposition 8.2 In finite variable logics, it is effective that CL,, C L.

Proof. The correctness of this proposition can be shown by a structural induction. One

has also to notice that the logic £ can be constructed by augmenting £ with counting

134 CHAPTER 8. COMPUTATIONAL CHARACTERISTICS OF LIDIA

quantifiers, counting terms, equality symbol and useful arithmetic functions. This means
that in finite structures the above proposition is satisfied. O

Note 8.1 Due to a remark of Otto [Ott97], any sentence of IFP is equivalent (over finite
structures) with any sentence in LY, . As a consequence, any sentence of (IFP+C) is equiva-
lent with a sentence of CZ,.

Proposition 8.3 For every fixed sentence ¢ € LS, the time complexity of evaluating ¢ on
structures presented in Section 7.4 is a problem in the complexity class PTIME.

Proof. Vardi [Var95] has shown that the time data complexity of fixpoint logics is in
PTIME. Thus, it is obvious to show that all (IFP+C)-sentences can be evaluated in
PTIME. Due to Note 8.1, all the sentences of CZ , can also be evaluated in PTIME. With

the help of Proposition 8.2, the proof of Proposition 8.3 is a straightforward induction on ¢. O

8.2.2 [} Captures PTIME

We present, in this section, the proof of the fact that the logic £} captures PTIME on the
class of structures used in Lidia and presented in Section 7.4.

First of all, we can derive Corollary 8.1 from Proposition 8.1 and Proposition 8.2. Hence,
we have a direct relationship between the language £ and the well-known logic (IFP + C).

Corollary 8.1 (IFP+C)C L%, .

Definition 8.2 We define § as the class of all (finite) structures. If L is a logic, then L[T]
denotes the set of all L—formulas of vocabulary T.

Classical definitions of a logic, such as the notion of regular logic (see [Ebb853]) do not suffice
for our purpose; in addition our logics are supposed to satisfy certain effectivity conditions.
Gurevich [Gur88| suggested the following definitions.

Definition 8.3 A logic is a pair (L,[=r) where L is a function that assigns a recursive set
L[7] of sentences to each vocabulary T, and =, is a binary relation between sentences and

structures such that for all ¢ € L[] the class Mod(¢) = {A € §|A =L ¢} is an isomorphism
closed class of T-structures.

Definition 8.4 A class € of T-structures is definable in (L, =) if there is an L[T]-sentence
¢ such that € = Mod(¢).

Now we can give a better definition that should make clear what we really mean when we
say that a logic (effectively) captures a complexity class.

Definition 8.5 A logic £ = (L,|=1) effectively captures a complezity class K on a domain
D if the following two conditions hold:

(1) Each K-computable class in D is £-definable.

8.2. DESCRIPTIVE COMPLEXITY OF L} 135

(ii) For all vocabularies T there is a recursive mapping M that associates a clocked K -Turing
machine M ($) with each sentence ¢ € L[| so that if Mod(¢) € D then M(¢) accepts
the language L(Mod()).

Clearly, a logic that effectively captures a complexity class captures the class as defined in
Definition 8.5. The archetypal example of the above definition is given by Fagin’s Theorem:

Theorem 8.1 (Fagin [Fag74|) Ewistential second-order logic 3\ captures NPTIME.

The proof of Fagin’s Theorem also shows that second-order logic captures the polynomial
hierarchy PH. Moreover, it is known that the extension of second-order logic by the partial
fixed-point operator captures PSPACE (see |EF95]). Now we are going to state some capturing
results concerning the logic (IFP + C).

(i) (Immerman, Lander [IL90]) (IFP + C) effectively captures PTIME on the class of trees.

(ii) (Grohe, Marino |GM99]|) For each k > 1, (IFP + C) effectively captures PTIME on the
class of graphs of tree-width at most k.

Theorem 8.2 The language L% effectively captures PTIME on the class of structures intro-
duced in Section 7.4.

Proof. The proof of this theorem is due to the characteristics of the logic (IFP + C) associated
with the consequences of corollary 8.1. O
Theorem 8.2 leads to the main result of this section. In fact, we can use the properties of the
logic L%, to give a class of distributed problems that can be encoded and solved by Lidia.

Note 8.2 Even though the languages (IFP+C) and L}, have the same expressive power in
finite structures, we further prefer to use L% to express the rules’ preconditions in Lidia. This
preference can be legitimated by two reasons. First, we want to keep our logic as simple as
possible. This means that its syntaz should not be far away from FOL. Thus, we avoid using
any logical operator like the one used in fizpoint logic. Moreover, the interesting results of
(IFP+C) are limited to trees (graphs) of bounded tree-width. Unfortunately, future works on
Lidia could involved the expression of rules’ preconditions in graphs with unbounded tree-width.
In this case, the use of a “simpler” formalism like (IFP+C) could be inadequate.

Let F denotes the class of distributed problems that can be expressed in a precondition /effect
style where all the preconditions can be evaluated in PTIME.

Theorem 8.3 For every computable problem f that belongs to the class F there exists a Lidia
program that computes f.

Proof. The preconditions of any problem f € F can be computed in Lidia (see Theorem
8.2). Moreover, the language LASL used to characterize the relabeling steps in Lidia has
enough computation power to compute every computable function. Hence, there exists a
Lidia program that computes f. O

136 CHAPTER 8. COMPUTATIONAL CHARACTERISTICS OF LIDIA

8.3 Computational Completeness of LIDiA

We are now ready to state our main result, namely that every computable distributed problem
is computed by a Lidia program. We introduce, therefore, some definitions and notations that
will help us to bring out the core of the proofs we will state later.

Definition 8.6 We define W as the class of all Lidia programs.

Definition 8.7 We define C as the class of distributed algorithms that can be encoded by
means of local computations.

It is clear that each instance of C can be expressed in a precondition/effect style and that
all nodes and edges of the network have labels that describe their state variables at each
computation step.

Theorem 8.4 (Completeness of Lidia) For every computable f € C there ezists a Lidia pro-
gram that computes f.

The proof of Theorem 8.4 follows from the following lemmas.

Let f € C be a distributed problem and P be the set of preconditions that appear in the
rules of f. We assume that the network has n vertices.

Lemma 8.1 Vp € P,p € PTIME = 3df, € W that computes f.

Proof. This lemma is a direct consequence of Theorem 8.3. Note that we use the notation
“p € PTIME” to express the fact that the complexity needed for the execution of the query p
is polynomial. O

Remark 8.1 Lemma 8.1 is of prime importance for the design of Lidia. In fact, it is clear
that as long as all preconditions of a given problem are in PTIME, we do not need to introduce
user defined functions in the logic L% . The nexst lemma states the case where we face a
precondition, that is not in PTIME. Such preconditions are not common, but they exist.

Example 8.2 Consider the case where all the neighbors P; of a process P are labeled with
numbers x;, and process P has to answer the query D < k? with D :=maz(}_p g i), S CV
and |S| < T (For given k and T). Solving this query is the same as solving the mazimum set
packing problem that is known to be NP-complete.

Lemma 8.2 Vp € Pr,p & PTIME = 3f, € W that computes f.

Proof. Without loss of generality, let p ¢ PTIME, A, be the class of elements (sets of star
graphs of diameter 2) that satisfy p and O,(u, .A,) an oracle that is true if the ball of radius 1
centered on u belongs to the class Ay,. Thus, for any node v we can express the precondition
p of any rule using the oracle O, (v, A,). The oracle will return t¢rue if the precondition p is
satisfied and false otherwise. Hence, the above Lemma is satisfied if and only if the oracle O,
can be implemented in Lidia as an user defined function. In this case, the function O, (u,Ap)
is represented outside the precondition of p and thus outside the language L£X_. ad

8.4. CONCLUDING REMARKS 137

Remark 8.2 In the proof of Lemma 8.2, we do not mean that Lidia is able to tackle computing
problems that are NP-Hard. Qur aim was rather to show that, regardless of the complezity of
a given precondition, it is possible to express it in Lidia. This is only possible if users defined
functions are allowed in the design of Lidia.

Theorem 8.5 (General Completeness of Lidia) The class of problems that are computed by
Lidia programs is exactly the class C.

Proof. Because of Theorem 8.4, Theorem 8.5 is obvious. In fact, Theorem 8.4 states the
completeness of the language Lidia. This means that any distributed algorithm encoded by
local computations can be implemented in Lidia. Furthermore, all computational actions
in Lidia are local in the sense that only network computations in a ball of radius 1 are
allowed. Thus, any distributed algorithms designed in Lidia can be encoded as a list of local
computations rules. O

8.4 Concluding Remarks

As we have seen, Lidia is exactly devoted to the design and implementation of distributed
algorithms encoded by means of local computations. Although Lidia and other languages like
IOA use transition definition (guarded commands) consisting of preconditions and effects, the
preconditions in Lidia are exclusively described in the logic £ . We have proved, in this
chapter, that this logic has enough descriptive power to fully describe all PTIMFE queries in
the structures used in Lidia. This particularity of £} helped us to state the completeness
of Lidia in presence of user defined functions. Hopefully, distributed algorithms encoded by
local computations where preconditions do not belong to the PTIME complexity class are not
usual. For this reason, we have restricted the user defined functions to procedures that can
be easily implemented in the LASL language.

138 CHAPTER 8. COMPUTATIONAL CHARACTERISTICS OF LIDIA

Conclusion and Perspectives

In this thesis we have studied three major problems related to local computations in particular
and to distributed computations in general.

The first problem concerns the execution of synchronous algorithms in fully asynchronous
networks systems. To do this, we have develop network protocols (synchronizers) that are
able to synchronize network processes having some network knowledge. The main purpose
of synchronizers is to execute the computation steps of each process in round, such that
the round difference of any two processes is at most 1 and all processes have to be in the
same round before any of them starts the next round. We have presented different types
of synchronizers that differ in the required network informations. The first type deals with
synchronizers having no informations about the network. We have shown that this kind of
synchronizers are not able to synchronize the executions of processes that are at distance more
than 1. In the second type, we have presented a synchronizer that need to have knowledge
of the network diameter. This protocol takes advantage of the SSP algorithm [SSP85] to
check if all processes have reached the actual round before starting the next one. The idea of
the third type is based on the use of random works in a network with known size. We have
modeled the execution of such a synchronizer as a Markov chain and we were able to state its
correctness. Further on, we have considered synchronizers dedicated to tree-shaped networks
and to networks with a distinguished process. We have proved that all these synchronizers
can be implemented by means of local computations.

The second problem we have considered is about the algorithmic recognition of graph prop-
erties with local computations. We proposed a solution based on the execution of reduction
algorithms in the local computations framework. We were able to present the first distributed
algorithm to encode reduction algorithms. This has induced the introduction of the concept of
handy reduction systems that can be seen as reduction systems for distributed environments.
Starting from this algorithm, we have presented a procedure that solves graph decision prob-
lems in distributed network systems. Inspired by the work of Bodlaender et al. [BvAdFO01]
we have proved the correctness of an algorithm that solves a graph decision problem and
computes, if possible, a witness solution for the input problem. At the end, we have stated a
direct relationship between handy reduction systems and labeled graph recognizers with struc-
tural knowledge. We stated that any handy reduction systems can be seen as a labeled graph
recognizer with structural knowledge and that, as a corollary, all MS-definable properties on
graph of bounded treewidth are size recognizable. The implementation of reduction systems
by local computations has necessitated the solution of k-local elections with k£ > 3. To this
end, we have introduced a probabilistic methodology based on distributed computations of
rooted trees of minimal paths. At last we have presented a protocol that, given a distributed

139

140 CONCLUSION AND PERSPECTIVES

algorithm, checks the validity of given properties at run time. This protocol extends the
framework of local computations with a tool that helps to state the correctness of program
executions.

The third major problem addressed in this thesis concerns the development of a pro-
gramming language for implementing distributed algorithms encoded by local computations.
Our general approach has consisted in defining a two-level transition systems based language
called Lidia. Each transition is represented in the precondition-effect style. In Lidia, we use
the logic L, to express the precondition part of each transition and we stated that £, has
enough descriptive power to fully express all preconditions that can be evaluated in PTIME.
This has permitted us to state the computational power of Lidia and to show that in presence
of user-defined functions, Lidia is able to describe any distributed algorithm encoded by local
computations.

Perspectives

A first topic for future research that we consider particularly important treats of network
synchronization by mobile agents. In the first part of this thesis we have presented a
synchronizer based on random walks of a set of tokens without computation power. We have
seen that the correctness of this protocol is strongly addicted to the fact that the network
size is known by all processes. In this representation, the number of tokens is the same as
the network size. The idea here is to replace the tokens by a set of mobile agents (mobile
token with computation power) and to see if the synchronization can be performed under
the same requirements. It also arouses our interest to check if weaker network informations
are enough for the fulfillment of the network synchronization. More precisely, it could be
of importance to define the necessary conditions for a faithful mobile agents synchroniza-
tion. These could include the mobile agents computation model, the minimal number of
agents, the presence of sense of direction and the use of anonymous or identified mobile
agents. All these conditions could be associated with anonymous networks or networks with
unique processes identifiers. On the other hand, dealing with mobile agents could lead us to
have a look on the minimal number of computation steps required for synchronizing a network.

The second direction of research consists of enlarging the application area of reduction
algorithms. We have seen that for each MS-definable property P of graphs of bounded
treewidth there exists a handy reduction system that decides P in a distributed network
system. We think that it could also be interesting to give an equivalent characterization
for MS-definable properties of graphs of bounded clique-width. It is understood that the
corresponding theoretical aspects have first to be established for sequential executions.

In the same way, reduction algorithms have been, up to now, exclusively used to solve
graph decision problems. These algorithms generally match a graph G to a boolean value.
A potential way to increase the power of graph reduction algorithms is to compute specific
functions while reducing the network. The inputs of these functions could then be represented
by the labels attached to the graph components (edges or vertices) that have to be reduced.
For instance, let r be the reduction rule consisting in removing one of the vertices of a
pendant edge having degree 1. Obviously, if we execute rule r iteratively on a graph until

141

we obtain an irreducible graph containing exactly one vertex, then the input graph is a
tree. Suppose now that all the vertices are i-labeled (initially ¢ = 1 for all vertices), and
each time a pendant edge is removed, the label of its remaining endpoint is increased by 1.
After an iterative execution of r on a graph G, if G is a tree, then the number of its vertices
is given by the label attached to the remaining vertex. A resembling technique has soon
been used by Okada et al. [OH91]| for solving problems related to network reliability. Our
intuition and the first attempts to design a formal model for this kind of reduction rules per-
mit us to think that more complicated problems on graphs can be solved using this technique.

A further direction of future work is certainly concerned with the enrichment of the
Lidia programming platform. Foremost, we intend to specify and implement a virtual
machine for the language Lidia. Our aim is to reach an implementation similar to the
one introduced in [M03] and presenting a virtual machine for the programming language
introduced by Habel et al. [HP02]: A core language for graph transformation. The immediate
consequence of such a specification would be to have a platform independent implementation
of Lidia and to have the possibility to take advantage of tools like MPI for implementing
parallel executions in Lidia.

142 CONCLUSION AND PERSPECTIVES

Bibliography

[ACPS93]

[AFO1]

[ALSO1]

[Ang80]

[APS6]

[AP90]

|APC90)

[AVO1]

[AWOS]
[Bar96]
[BCST]

[BCG 964

[BCGT96b]

[BAF96]

S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM, 40(5):1134-1164, November 1993.

K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth, and
well-quasiordering. In Graph Structure Theory, pages 539-564, 1991.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308-340, 1991.

D. Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th Symposium on Theory of Computing, pages 82-93, 1980.

S. Arnborg and A. Proskurowski. Characterization and recognition of partial
3-trees. SIAM J. Algebraic Discrete Methods, 7(2):305-314, 1986.

B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic over-
head. In IEEE Symp. on Foundations of Computer Science, pages 514-522, 1990.

S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characteriza-
tion of partial 3-trees. Discrete Math., 80(1):1-19, 1990.

S. Abiteboul and V. Vianu. Generic computation and its complexity. In proc.
ACM Symp. on Theory of Computing, New Orleans May 1991.

H. Attiya and J. Welch. Distributed computing. McGraw-Hill, 1998.
V. C. Barbosa. An introduction to distributed algorithms. MIT Press, 1996.

M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Mathe-
matical Systems Theory, 20(2-3):83-127, 1987.

P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-
metry breaking in anonymous network: Characterizations. In Proc. 4th Israels
Symposium on Theory of Computing and Systems. IEEE Press, 1996.

P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-
metry breaking in anonymous networks: Characterizations. In Proc. 4th Israeli
Symposium on Theory of Computing and Systems, pages 16-26. IEEE Press, 1996.

Hans L. Bodlaender and Babette de Fluiter. Parallel algorithms for series parallel
graphs. In LNCS Sprinber verlag Berlin, editor, 4th annual European Symposium
on Algorithms (ESA 96), volume 1136, pages 277-289, 1996.

143

144

[BE04]

[BFGT93]

[BGM*01]

[BHIS]

[BLS6|

[BLWS7]

[BMOO]

[BMMS02]

[Bre99|

[BSTS8Y)

[BV99]

[BvAdF01]

[Cha99]
[CKO3]

BIBLIOGRAPHY

A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA 2004), pages 35-49, Vancouver, BC, Canada, October 26-28,
2004.

Manfred Broy, Christian Facchi, Radu Grosu, Rudi Hettler, Heinrich Hussmann,
Dieter Nazareth, Oscar Slotosch, Franz Regensburger, and Ketil Stglen. The

requirement and design specification language Spectrum, an informal introduction
(V 1.0), part 1 & 2. Technical Report TUM-19312, 1993.

M. Bauderon, S. Gruner, Y. Métivier, M. Mosbah, and A. Sellami. Visualization
of distributed algorithms based on labeled rewriting systems. In Second Inter-
national Workshop on Graph Transformation and Visual Modeling Techniques,
Crete, Greece, July 12-13, 2001.

Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal
speedup for bounded treewidth. SIAM Journal on Computing, 27,, pages 1725—
1746., 1998.

H.-L. Bodlaender and J. Van Leeuwen. Simulation of large networks on smaller
networks. Information and Control, 71:143-180, 1986.

M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal
subgraphs of decomposable graphs. J. Algorithms, 8(2):216-235, 1987.

H. Bunke and B. Messmer. Efficient subgraph isomorphism detection: a decom-
position approach. In IEEE Trans. on Knowledge and Data Engineering 12, No
2, pages 307 — 323, 2000.

M. Bauderon, Y. Métivier, M. Mosbah, and A. Sellami. From local computations
to asynchronous message passing systems. Technical Report 1271-02, LaBRI-
University of Bordeaux I, 2002.

P. Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer New York, 1999.

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming
languages for distributed computing systems. ACM Comput. Surv., 21(3):261—
322, 1989.

P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge. In
Proceedings of the 18th ACM Symposium on principles of distributed computing,
pages 181-188, 1999.

Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms
for graphs of small treewidth. Inf. Comput., 167(2):86-119, 2001.

J. Chang. Stochastic processes. 1999.

Punit Chandra and Ajay D. Kshemkalyani. Distributed algorithm to detect strong
conjunctive predicates. Information Processing Letters 87, 2003.

BIBLIOGRAPHY 145

[CL85]

[CL96]

[CLR69]

[CM8S)

[CMY1]

[CMO4]

|CMZ04]

[Cou90a|

[Cou90b]

[Cou97|

[CTWO3]

[CV00]

[Duf65]

[Ebbg5]

[EF95)
[EKMR99]

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1), pages 63—
75, 1985.

B. Courcelle and J. Lagergren. Equivalent definitions of recognizability for sets
of graphs of bounded treewidth. Mathematical Structures in Computer Science,
6(2):141-165, 1996.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, Massachusetts, 1969.

K. M. Chandy and J. Misra. Parallel Programs Design: A Foundation. Addison-
Wesley Publishing Co., Reading, MA, April 1988.

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc.
ACM/ONR workshop on parallel and distributed Debugging, May 1991.

J. Chalopin and Y. Métivier. Election and local computations on edges (extended
abstract). In Proc. of Foundations of Software Science and Computation Struc-
tures, FOSSACS 04, number 2987 in LNCS, pages 90-104, 2004.

J. Chalopin, Y. Métivier, and W. Zielonka. Election, naming and cellular edge
local computations (eztended abstract). In Proc. of International conference on
graph transformation, ICGT 04, number 3256 in LNCS, pages 242-256, 2004.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics (B),
pages 193-242. 1990.

B. Courcelle. The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Inf. Comput., 85(1):12-75, 1990.

B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. Handbook of graph grammars and computing by graph
transformation, 1:313-397, 1997.

Don Coppersmith, Prasad Tetali, and Peter Winkler. Collisions among random
walks on a graph. SIAM J. Discret. Math., 6(3):363-374, 1993.

Jordi Cortadella and Gabriel Valiente. A relational view of subgraph isomorphism.
In RelMiCS, pages 45-54, 2000.

R. J. Duffin. Topology of series-parallel networks. Journal of Math. Analysis and
Applications, 10:303-318, 1965.

H.-D. Ebbinghaus. FEztended logics: The general framework. In J. Barwise and
S. Feferman, editors, 1985.

H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer, 1995.

Hartmut Ehrig, Hans-Jorg Kreowski, Ugo Montanari, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 3: Concurrency, Parallelism, and Distribution. World Scientific, 1999.

146

[Fag74]

[Fid8s]

[FLMS6]

[FLMW94]

GG

[GLV97]

[GM97]

[GM99)

|GMO2]

[GMMO0]

|GMMO4]

|GSS6]

|GT95

[Gur8s]

[GW92]

[Har69|

BIBLIOGRAPHY

R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
pages 4373, 1974.

C.J. Fidge. Timestamps in message-passing systems that preserve partial order-
ing. Australian Computer Science Comm.10 (1), 1988.

M. J. Fisher, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. Distrib. Comput., 1:26-29, 1986.

A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Atomic Transactions. Morgan
Kaufmann Publishers, San Mateo, CA, 1994.

E. Gradel and Y. Gurevich. Metafinite model theory. Information and computa-
tion 140, pages 26-81, 1998.

S. Garland, N. Lynch, and M. Vaziri. loa: A language for specifying, program-
ming and validating distributed systems. Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1997.

Vijay K. Garg and J. Roger Mitchell. Detecting conjunctions of global predicates.
Information Processing Letters, 63(6):295-302, 1997.

M. Grohe and J. Marino. Definability and descriptive complexity on databases of
bounded treewidth. In In C. Beeri. proceedings of the 7th international Conference
on Database Theory, lecture notes in computer science. Springer Verlag, 1999.

E. Godard and Y. Métivier. A characterization of families of graphs in which elec-
tion is possible. In Foundations of Software Science and Computation Structures,
Lecture notes in computer science, pages 159-172. Spinger-Verlag, 2002.

E. Godard, Y. Métivier, and A. Muscholl. The power of local computations in
graphs with initial knowledge. In Theory and applications of graph transforma-
tions, volume 1764 of Lecture notes in compuler science, pages 71-84. Spinger-
Verlag, 2000.

Emmanuel Godard, Yves Métivier, and Anca Muscholl. Characterizations of
classes of graphs recognizable by local computations. Theory Comput. Syst.,
37(2):249-293, 2004.

Y. Gurevich and S. Shelah. Fixed-point extensions of firdt-order logic. Annals of
Pure and Applied Logic 32, pages 265280, 1986.

S. Grumbach and C. Tollu. On the expressive power of counting. Theor. Comput.
Sei., 149(1):67-99, 1995.

Y. Gurevich. Logic and the challenge of computer science. In E. Bdrger, editor,
Current trends in theoretical computer science., pages 1-57, 1988.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed
programs. Lecture Notes in Computer Science, 652:253-264, December 1992.

F. Harary. Graph Theory. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1969.

BIBLIOGRAPHY 147

[HLN99|

[HP02]

[HT74]

[HT94]

[Hui03)

[IL90)]

[Imm86|

[Klo94|

[KY96]

[Lam78|

[Lams9)

[Lav95|

[LL90|

[LMS95]

[LMS99)

L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical char-
acterizations over finite models. Journal of symbolic logic 64, pages 1751-1773,
1999.

A. Habel and D. Plump. A core language for graph transformation (extended
abstract). In Applied Graph Transformation (AGT 2002), pages 187-199, 2002.

John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM wol. 21,
no. 4, pages 549-568, 1974.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broad-
casts and related problems. Technical Report TR94-1425, Ithaca, NY, USA,
1994.

W. Huisinga. Markov chains: A complete description, 2003.

N. Immerman and E. Lander. Describing graphs: A first-order approach to graph
canonization. In A. Selman, editor, Complexity theory restrospective, pages 59-81,
1990.

N. Immerman. Relational queries computable in polynomial time. Information
and Control, pages 25:76-98, 1986.

T. Kloks. Treewidth: computations and approximations. Lecture note in com-
puter science vol. 842, 1994.

T. Kameda and M. Yamashita. Computing on anonymous networks: Part i -
characterizing the solvable cases. IEEE Transactions on parallel and distributed
systems, 7(1):69-89, 1996.

L. Lamport. Time, clocks and the ordering of events in a distributed system.
System Comm. ACM 21(7), pages 558-565, 1978.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3), pages 872-923, May 1989.

C. Lavault. Evaluation des algorithmes distribués. Hermes, 1995.

L. Lamport and N. Lynch. Distributed computing: Models and methods. In J.
van Leewen, editor, Handbook of Theoretical Computer Science, volume B: Formal
Models and Semantics, chapter 19, pages 1157-1199, The MIT Press, New York,
NY, 1990.

I. Litovsky, Y. Métivier, and E. Sopena. Different local controls for graph rela-
belling systems. Math. Syst. Theory, 28:41-65, 1995.

I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and distributed
algorithms. In H. Ehrig, H.J. Kreowski, U. Montanari, and G. Rozenberg, editors,
Handbook of graph grammars and computing by graph transformation, volume 3,
pages 1-56. World Scientific, 1999.

148

[LMZ95)

[Lyn89|

[Lyn96|
[M03]

[Mas91]
[Mat89]

[Mat93]

[Maz87]

[Maz97]

BIBLIOGRAPHY

Igor Litovsky, Yves Métivier, and Wiestaw Zielonka. On the recognition of families
of graphs with local computations. Information and Computation, 118(1):110—
119, April 1995.

N. Lynch. A hundred impossibility proofs for distributed computing. In 8th
International Conference on Distributed Computing Systems, pages 1-28, 1989.

N. A. Lynch. Distributed algorithms. Morgan Kaufman, 1996.

Andreas Moller. Eine virtuelle Maschine fiir Graphprogramme, Diplomarbeit,
Carl von Ossietzky Universitdt Oldenburg, 2003.

W. S. Massey. A basic course in algebraic topology. Springer-Verlag, 1991. Grad-
uate texts in mathematics.

F. Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, North-Holland, 1989.

F. Mattern. Efficient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel and Distributed Computing, 18(4):423-434,
1993.

A. Mazurkiewicz. Trace theory. In W. Brauer et al., editor, Petri nets, applications
and relationship to other models of concurrency, volume 255 of Lecture notes in
computer science, pages 279-324. Spinger-Verlag, 1987.

A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61:233-239,
1997.

[MMOS04] Yves Métivier, Mohamed Mosbah, Rodrigue Ossamy, and Afif Sellami. Syn-

[MMW97]

[MO04a|

[MO04b]

[MO04c]

chronizers for local computations. In Second International Conference on Graph
Transformations (ICGT), volume 3256 of Lecture Notes in Computer Science,
pages 271-286. Springer Verlag, Rome, Italy, September 28 - October 2, 2004.

Yves Métivier, Anca Muscholl, and Pierre-André Wacrenier. About the local
detection of termination of local computations in graphs. In D. Krizanc and
P. Widmayer, editors, SIROCCO 97 - jth International Colloquium on Structural
Information & Communication Complexity, Proceedings in Informatics, pages
188-200. Carleton Scientific, 1997.

M. Mosbah and R. Ossamy. Checking global properties for local computations in
graphs with applications to invariants testing. In IEEE Proc. of the Fifth Mexican
International Conference on Computer science, pages 35-42, 20-24 September
2004.

M. Mosbah and R. Ossamy. LIDiA: A programming language for local compu-
tations in graphs. Technical Report 1314-04, LaBRI University of Bordeaux I,
2004.

M. Mosbah and R. Ossamy. A programming language for local computations in
graphs. In 8th. MCSEAI 9-12 May, Sousse Tunesia, 2004.

BIBLIOGRAPHY 149

[MO04d]

[Moo59|

[MS]

[MSZ02]

[MTO1]

[NEO1]

[OHY1]

[Oss04]

[Oss05a]

[Oss05b]

[0t£96]

[0t£97]
[Pel00]

[Rei32)
[RFHT72]

M. Mosbah and R. Ossamy. A programming language for local computations
in graphs: Computational completeness. In IEEE, editor, Proceedings of the 5th.
Mezican International Conference in Computer Science, Colima 20-24 September
2004.

E. F. Moore. The shortest path through a maze. In Proceedings of an International
Symposium on the theory of Switching, pages 285-292. Cambridge, Massachusetts,
Harvard University Press, 2-5 April 1959.

M. Mosbah and A. Sellami. Visidia: A tool for the visualization and simulation
of distributed algorithms. http://www.labri.fr/visidia/.

Y. Métivier, N. Saheb, and A. Zemmari. Randomized local elections. Inform.
Proc. Letters, pages 313-320, 2002.

Jiri Matousek and Robin Thomas. Algorithms finding tree-decompositions of
graphs. J. Algorithms, 12(1):1-22, 1991.

J. W. Nimmer and M. D. Ernst. Static verification of dynamically detected
program invariants: Integrating Daikon and ESC/Java. In Proceedings of RV’01,
First Workshop on Runtime Verification, Paris, France, July 23, 2001.

Yasuyoshi Okada and Masahiro Hayashi. Graph rewriting systems and their
application to network reliability analysis. In 17th International Workshop, WG
91, Fischbachau, volume 570 of Lecture Notes in Computer Science, pages 3647,
Germany, June 17-19, 1991.

R. Ossamy. LASL: A language for assignation statements in Lidia. Technical
Report 1339-04, LaBRI, University of Bordeaux I, 2004.

Rodrigue Ossamy. A simple randomized k-local election algorithm for local com-
putations. In Jth International Workshop on Ezperimental and Efficient Algo-
rithms, WEA 2005, Santorini Island, Greece, May 10-13, 2005, Proceedings, vol-
ume 3503 of Lecture Notes in Computer Science, pages 290-301. Springer Verlag,
2005.

Rodrigue Ossamy. A simple randomized k-local election algorithm for local com-
putations. Technical Report 1344-05, LaBRI-University of Bordeaux I, 2005.

M. Otto. The expressive power of fixed-point logic with counting. Journal of
symbolic Logic, 61:147-176, 1996.

M. Otto. Bounded Variable logics and Counting. Springer-Verlag, 1997.

D. Peleg. Distributed computing - A locality-sensitive approach. SIAM Mono-
graphs on discrete mathematics and applications, 2000.

K. Reidemeister. Einfiihrung in die kombinatorische Topologie. 1932.

P. Rosenstiehl, J.-R. Fiksel, and A. Holliger. Intelligent graphs. In R. Read,
editor, Graph theory and computing, pages 219-265. Academic Press (New York),
1972.

150

[RSS3)

[RS86]

[RS87]

[Sch89]

[Sens0]

[SSPS5]

[Tel91]

[Tel00]
[U1176]

[VAdF97]

[Var95|

[VTL79]

[Weg98|

[YK96]

BIBLIOGRAPHY

N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. J. Combin.
Theory, Series B 35:39-61, 1983.

N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of
treewidth. J. Algorithms, 7:309-322, 1986.

N. Robertson and P.D. Seymour. Some new results on the well-quasi ordering of
graphs. Ann. Discr. Math., 23:343-354, 1987.

P. Scheffler. Die Baumweite von Graphen als ein Maffir die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR,
Berlin, 19809.

E. Seneta. Non-negative matrices and Markov Chains 2nd. ed. Springer-Verlag
New York, 1980.

Y. Shi, B. Szymanski, and N. Prywes. Terminating iterative solutions of simul-
taneous equations in distributed message passing systems. In 4th International
Conference on Distributed Computing Systems, pages 287-292, 1985.

G. Tel. Topics in distributed algorithms. Cambridge University Press, New York,
NY, USA, 1991.

G. Tel. Introduction to distributed algorithms. Cambridge University Press, 2000.

J. R. Ullman. An algorithm for subgraph isomorphism. In Journal of the ACM,
23(1), pages 31-42, January 1976.

Babette van Antwerpen-de Fluiter. Algorithms for graphs of small treewidth. PhD
thesis, University of Utrecht 1997.

M. Y. Vardi. On the complexity of bounded-variables queries. In In Proceedings
of the 14-th ACM Symposium on Principles of Database System, pages 266276,
1995.

Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of
series parallel digraphs. In STOC "79: Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 1-12. ACM Press, 1979.

P. Wegner. Interactive foundations of computing. Theoretical Computer Science,
192:315-351, 1998.

M. Yamaghita and T. Kameda. Computing on anonymous networks: Part i -
characterizing the solvable cases. IEEE Transactions on parallel and distributed
systems, 7(1):69-89, 1996.

Index

B
eball of radius k........................ 9
e basic limit theorem............... 15, 40
e basic reduction rules 75
C
e capturing complexity classes 134
e children of a vertex.................... 9
e coherent array 104
e coherent computation sequence....... 98
e communication process.............. 125
e construction property 93
e constructive reduction system 93
e convergence property................. 33
e covering: minimal 16
® COVETING: PIrOPEr. . ..ovvurrreennnnnn... 16
® COVETINES . o\t e eie e 16
D
e d-discoverability...................... 86
e degree of parallelism 83
edelayrule......................... 93
edepthofatree........................ 9
e descendant of a vertex................. 9
e diameter of a graph 8
e distance in graph............... 8
e distributed computation.............. 23
E
e event structure model 100
G
e global snapshot 97
e global state 98
egraph ... 7
e graph minor.................. 11
e graph relabeling system with forbidden
contextsl 21

e graph relabeling system with priorities21

151

H
e handy reduction rules................ 7
e handy reduction system 78
e homomorphism of graphs.............. 9
I
e idealized global states............... 106
e infinitary logic 116
e inflationary fixed-point logic......... 133
e internal vertices....................... 9
e irreducible graphs.............. 21
e isomorphic graphs..................... 9
L
e labeled graph recognizers............. 88
e labeled graphs........................ 15
e language LASL 119
eleaveof atree............... ... 9
elevel of a vertex 9
e local computation.................... 22
e local snapshot....................... 101
elocal state..............ooiiil 98
e locally checkable invariants........... 99
e locally constructive systems.......... 94
e locally generated relation............. 23
©10giCo 134
elogic L ... 116
M
e markov chain......................... 14
e monadic second order logic............ 9
e multigrapho oo 7
N
e noetherian relabeling system 24
)
e original component................... o1
P
e pathwidth........... 12

152
e pendant vertex 8
e priority relation...................... 21
e property of finite index............... 87
e pulse compatibility................... 33
e pulse compatibility 33
e pulse convergence 33
e pulse readiness 53
Q
® (UASI-COVETINGS . o vvvvviie e, 18
e quasi-invariants 99
R
e radius of a connected graph 85
e random walks............... 14
e readiness rule 53
e recognizable class 87
e reduction rule............. ... L. 74
e reduction system..................... 75
e relabeling rule..........o oL 20
e relabeling sequence................... 20
e relabeling step oL 20
e relabeling system..................... 20
e reversible markov chain 14
erootedtree......... 9
S
e sourced graph........................ 74
e spanning subgraph 8
e stationary distribution 14
e strong conjunctive predicate......... 100
e subgraph............l 8
e synchronization component........... o1
T
e transition definition.............. ... 114
e transition in lidia 118
e transition system.................... 112

e treewidth and tree decomposition 12

e underlying graph............. 15
e unfolding reduction rule.............. 91

INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

