
N° d'ordre : 2634

THÈSE
présentée à 

L'UNIVERSITÉ BORDEAUX  I 

ÉCOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGÉNIEUR 

par Guillaume NEAU 

ingénieur MATMECA 

POUR OBTENIR LE GRADE DE  

DOCTEUR
SPÉCIALITÉ : MÉCANIQUE

__________________________
Ondes de Lamb dans des plaques anisotropes viscoélastiques:

étude des fronts d’onde et atténuation 

Lamb waves in anisotropic viscoelastic plates:  
study of the wave fronts and attenuation 

__________________________

Soutenue le : 8 janvier 2003 

Après avis de : 

MM.  O. LEROY, Professeur émérite, Institut Catholique de Louvain, 

N. SAFFARI, Lecturer, University College London. 

Devant la commission d'examen formée de : 

MM.  B. AUDOIN, Professeur, Université Bordeaux 1,  

   M. DESCHAMPS, Directeur de Recherche, CNRS, 

O. LEROY, Professeur Emérite, Institut Catholique de Louvain, 

   M.J.S. LOWE, Senior Lecturer, Imperial College, 

   D. ROYER, Professeur, Université Paris 7, 

   N. SAFFARI, Lecturer, University College London.  

-2003-



Remerciements 

Cette thèse a le label européen et a été réalisé dans deux pays de la communauté. Les 
recherches se sont déroulées pour moitié au sein de l’équipe Propagation Acoustique et 
Ultrasons Laser du Laboratoire de Mécanique Physique de l’Université de Bordeaux 1, et au 
sein de l’équipe du Non-Destructive Testing Laboratory, de l’Imperial College de Londres. 

Je tiens à remercier le Professeur D. Desjardins de l’Université de Bordeaux 1, ainsi que le 
Professeur P. Cawley de l’Imperial College, pour m’avoir accueilli dans leur laboratoire 
respectif. 

I would like to thank Professor O. Leroy, Professor Emeritus from the Institut Catholique de 
Louvain and Dr. N. Saffari, from University College London, for accepting to examine my 
work.

Le Professeur D. Royer, de l’Université Paris 7, m’a fait l’honneur de présider le jury 
d’examen. Qu’il voit en ces mots toute la gratitude et le profond respect d’un étudiant qui 
s’est longtemps penché sur "Ondes élastiques dans les solides", pour comprendre de 
nombreux aspects de la propagation d’ondes. 

Mes remerciements s’adressent également au Professeur Bertrand Audoin, de l’Université de 
Bordeaux 1, non seulement pour sa participation au jury de thèse mais aussi pour nos 
nombreuses discussions bénéfiques. 

Je tiens à exprimer ma reconnaissance à Marc Deschamps, Directeur de Recherche CNRS au 
LMP et à Mike Lowe, Senior Lecturer à l’Imperial College, pour avoir encadré mes travaux 
pendant ces trois années. A cette équipe d’encadrement, j’associe Olivier Poncelet, Chargé de 
Recherche CNRS au LMP. Sa pédagogie et ses qualités scientifiques font de lui un modèle et 
un allié d’une valeur inestimable pour un étudiant. A eux trois, ils représentent l’équipe idéale 
sur les plans scientifiques et humains, et garantissent le succès de leurs thésards. Je réalise la 
chance que j’ai eue de pouvoir travailler avec eux, et je les en remercie chaleureusement. 



I would like to address my warm thanks to Professor Alexander Shuvalov, AKA Sacha, for 
his valuable help on many scientific problems, as well as on the writing in English. I am quite 
sure that Mike noticed some variations in the writing style of the thesis! I also want to thank 
him very much for his involvement in my work.     

I want to express many thanks to both NDT and LMP crews which I truly enjoy to work with. 
I think of Thomas Vogt, Olivier Diligent, Mark Evans, Paul Wilcox, Rob Long, Greg 
Gondek, Francesco Simonetti, Alex Demma, Malcolm Beard, Jon Allin, Keith Vine, Brian 
Pavlakovic, Dave Alleyne, Jimmy Fong, and Richard Seppings for the English side.  

Du côté français, je pense à Arnaud Bernard, Nicolas Leymarie, Manu Leclézio, Fred 
Reverdy, Stéphanie Rousserie, Clément Rossignol, Jérome Dufaure, Matthieu Léger, Raynald 
Laheurte, Cécile Baron, Marie Cinquin, Hinde Meri, Guillaume Huet, Franck Le Poulain, 
Thomas Lubet, Sylvain Laporte, Marion Lamazouade, et une mention spéciale à Béa 
Desoudin pour sa disponibilité. 

I finally want to thank the American side Seiji Nakagawa, Kurt Nihei, Daniel Turler and 
particularly Deb Hopkins for their mind-opening effect.  

Merci à mes parents pour leur soutien. 

Merci à ma Anne. 



Contents

Remerciements ......................................................................................................................... 2

Contents..................................................................................................................................... 4

Introduction .............................................................................................................................. 6

Introduction ............................................................................................................................ 10

Chapter 1  Lamb wave propagation in non-absorbing plates............................................ 13

1.1 Introduction.................................................................................................................... 13

1.2 Infinite media.................................................................................................................. 14

1.3 Lamb waves in an elastic orthotropic plate. .................................................................. 18

1.4 Group velocity and steering angle of Lamb modes........................................................ 27

1.5 Conclusion...................................................................................................................... 37

Chapter 2  Lamb waves in viscoelastic anisotropic plates.................................................. 38

2.1 Introduction.................................................................................................................... 38

2.2 Wave modelling .............................................................................................................. 39

2.3 Material damping models............................................................................................... 40

2.4 Attenuation of Lamb modes............................................................................................ 43

2.5 Conclusion...................................................................................................................... 47

Chapter 3   Energy velocity and attenuation along the ray direction ............................... 50

3.1 Introduction.................................................................................................................... 50

3.2 Energy contributions ...................................................................................................... 52

3.3 Energy attenuation of guided modes.............................................................................. 53

___________________________________________________________________________

4



3.4 Lamb mode properties along the observation direction................................................. 57

3.5 Calculations along the energy direction, alternative example ...................................... 66

3.6 Conclusion...................................................................................................................... 72

Chapter 4  Experimental illustration ................................................................................... 76

4.1 Introduction.................................................................................................................... 76

4.2 Post-processing .............................................................................................................. 77

4.3 Non-absorbing case: group velocity and frequential dispersion ................................... 82

4.4 Steering angle and phase attenuation ............................................................................ 86

4.5 Attenuation and velocity along the energy direction ..................................................... 90

4.6 Conclusion...................................................................................................................... 97

Conclusion............................................................................................................................... 98

Conclusion............................................................................................................................. 100

References ............................................................................................................................. 102

Résumé .................................................................................................................................. 110

Abstract ................................................................................................................................. 110

___________________________________________________________________________

5



Introduction

De nombreuses méthodes de contrôle non-destructif (CND) ont émergé ces récentes années. 

Impliquant de nombreux domaines de la physique comme les rayons X, la thermique ou les

ultrasons, ces méthodes ont l’avantage de permettre le suivi de la qualité d’une structure au 

cours de sa vie, sans avoir à l’endommager. Les domaines d’application du CND sont variés. 

Le besoin de détecter les défauts ou les points de corrosion éventuellement présents dans les 

sites de stockages de produits toxiques en est un. La conservation dans des conditions idéales 

des produits pétroliers dans des cuves cylindriques, aussi bien que les déchets nucléaires dans 

des fûts bétonnés ou dans des caves granitiques, nécessite un contrôle permanent de 

l’étanchéité des structures contenant ces produits. Le transport de produits dangereux ou non 

(pipelines, conduites d’eau) est également un sujet se prêtant à l’étude de la salubrité des

canalisations transportant ces substances. L’industrie aéronautique a besoin de s’assurer de la 

qualité structurale des composants utilisés dans la conception des avions. Dans tous ces 

exemples, ces fissures, ces vides, ces délaminages peuvent être la source de défauts 

préjudiciables à la sécurité.

Concernant les ultrasons, les méthodes de contrôle par transmission ou réflexion ont 

largement été étudiées et ont prouvé leur efficacité. Ces techniques conventionnelles utilisant

les ondes de volumes, restituent précisément la forme et la localisation des défauts (Hosten, 

B., 1991; Kundu, T., Ehsani, M. et al., 1999; Gan, T.H., Hutchins, D.A. et al., 2001) mais

nécessitent un temps de contrôle assez long, et ce d’autant plus que la structure à tester est 

grande. Des ondes se propageant sur de longues distances permettraient un contrôle plus 

rapide.

Ces ondes existent, elles sont guidées par la géométrie de la structure insonifiée et sont 

appelées ondes de Lamb. Guidées par des plaques, des coques ou des tuyaux cylindriques, ces 

ondes se propagent dans des structures de faible épaisseur devant les autres dimensions. Elles 

existent dans les milieux isotropes et anisotropes.

Elles ont été découvertes au début du XX
ème siècle (Lamb, H., 1917), après les études 

fondamentales sur les ondes de volume décrites par Christoffel (Christoffel, E.B., 1877), et 

sur les ondes de surface étudiées par Rayleigh (Rayleigh, L., 1885). Les ondes de volumes,
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solution de l’équation du mouvement en milieu infini, sont entièrement caractérisées par les

propriétés du matériau insonifié et la direction de propagation. Elles sont largement utilisées 

dans le cadre de la caractérisation de matériau (Chu, Y.C. and Rokhlin, S.I., 1994), et pour 

l’imagerie des défauts de structures (Cawley, P., 1987; Gruber, J.J., Smith, J.M. et al., 1988). 

L’onde de surface, dont la recherche a été motivée par la géophysique dans le cadre de l’étude 

des séismes (Biot, M.A., 1952; Dorman, J., Ewing, M. et al., 1960), fait intervenir une

interface libre du milieu semi infini considéré. L’onde de Lamb fait intervenir toute

l’épaisseur du guide et présente la particularité d’être dispersive. L’étude de telles ondes a 

naturellement débuté sur des matériaux isotropes, pour lesquelles les ondes de Lamb

(couplage entre polarisations transverses verticales et longitudinales) et les ondes transverses 

horizontales (SH) sont découplées. Depuis, le terme « ondes de Lamb » s’est généralisé aux 

ondes guidées se propageant dans les directions principales ou non de plaques anisotropes. 

Les ondes de Lamb sont étudiées et utilisées dans de nombreux domaines de contrôle non-

destructif. Elles servent par exemple à la détection de délaminages (Rokhlin, S., 1979; Guo, 

N. and Cawley, P., 1993; Tan, K.S., Guo, N. et al., 1995; Leclezio, E., 2002), de corrosion 

(Sun, K., J., and Johnston, P., H.,, 1995; Cawley, P. and Alleyne, D., 1996), à tester 

l’adhésion de structures collées (Lowe, M.J.S. and Cawley, P., 1994; Nagy, P.B., 1994;

Challis, R.E., Bork, U. et al., 1996; Kundu, T., Maji, A. et al., 1998), et à la caractérisation de 

matériaux (Nagy, P.B. and Adler, L., 1989; Bar-Cohen, Y. and Mal, A.K., 1990; Chimenti,

D.E., 1997).

Grâce à leur bon compromis masse-robustesse, l’utilisation des composites dans l’industrie 

aéronautique s’est répandue. En conséquence, l’étude de la propagation des ondes guidées 

dans les matériaux anisotropes s’est développée (Nayfeh, A.H. and Chimenti, D.E., 1988; 

Dayal, V. and Kinra, V.K., 1989; Ditri, J.J. and Rose, J.L., 1994). La synthèse des matériaux

composites, par empilement de fibres pré-imprégnées dans des orientations particulières, 

privilégie certaines directions pour la propagation de l’énergie. Le phénomène de déviation de 

faisceau, connu pour les ondes de volumes, est également observé pour les ondes guidées se 

propageant dans les directions non-principales des plaques anisotropes. En plus de la 

dispersion fréquentielle des ondes de Lamb se propageant en milieu isotrope, il faut prendre 

en compte la dispersion angulaire induite par l’anisotropie.  La connaissance des propriétés de 

phase et d’énergie des ondes de guidées dans ces matériaux est primordiale pour une bonne 

utilisation de leur potentiel de contrôle. C’est l’objet du travail présenté.

Le chapitre 1 détaille le cadre théorique des ondes de Lamb dans une plaque orthotrope. Les 

courbes de dispersion (variation de la vitesse de phase avec la fréquence), ainsi que les 

propriétés de groupe (vitesse et angle de déviation) y sont décrites. Ces paramètres sont 

également étudiés en fonction de la direction de phase, variant entre les axes principaux du 

matériau. Faisant référence aux travaux de (Simon, C., 1997), la difficulté de nommer les 

modes de Lamb pour toutes les directions de propagations est abordée. En effet, les propriétés 
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des modes guidés varient en fonction de la fréquence et de la direction de phase, y compris la 

polarisation. Ainsi, il apparaît que les propriétés de chaque mode de Lamb généralisé peuvent 

être représentées en 3D. Cette visualisation est nouvelle et constitue l’apport de cette première

section. L’étude se restreint toutefois au cas purement élastique, le cas absorbant étant abordé 

au  chapitre suivant. 

Le chapitre 2 étend donc l’étude théorique des ondes de Lamb aux matériaux anisotropes 

viscoélastiques. Les modèles rhéologiques les plus communs y sont décrits, ainsi que leur 

conséquence sur la propagation des ondes guidées. L’atténuation des ondes guidées y est 

étudiée, à la fois en fonction de la fréquence et de la direction de phase. Toutefois, seule 

l’atténuation causée par la viscosité du matériau est étudiée dans ce chapitre. D’un point de 

vue expérimental, la diffraction du faisceau due à la taille finie de la source et la diffusion

causée par les fibres de verre ou de carbone sont en partie responsable de l’atténuation des 

ondes. Pour les fréquences utilisées dans ce travail, les longueurs d’onde seront de l’ordre de 

quelques centimètres. Dans ces conditions le matériau insonifié est perçu comme homogène et 

la diffusion par les fibres du composite peut être négligée. En ce qui concerne la diffraction, 

les mesures d’atténuation seront réalisées assez loin de la source, dans une zone où la 

décroissance en fonction de la distance a une importance moindre. Ces phénomènes ne sont 

donc pas pris en compte dans cette étude, qui se focalise sur l’atténuation causée par la

viscosité du matériau. Comme pour les vitesses de phase et de groupe décrites dans le 1er

chapitre, il est également possible de représenter l’évolution de l’atténuation en 3D, ce qui est 

la nouveauté apportée par cette étude. En milieu viscoélastique, il n’est cependant pas simple

de définir une vitesse de groupe qui ait un sens physique. Pour compléter l’étude des ondes de 

Lamb, il est nécessaire de décrire la propagation de l’énergie. C’est un des thèmes du chapitre 

3.

Le chapitre 3 s’attache en effet à définir la vitesse d’énergie des ondes de Lamb en milieu

anisotrope viscoélastique, à partir du vecteur de Poynting. En se rapprochant de la

configuration expérimentale « source ponctuelle/récepteur ponctuel », les propriétés des ondes

de Lamb sont étudiées le long de la direction d’observation. Cette représentation se distingue 

de la dispersion du module de la vitesse de groupe, présentée pour une seule direction de front 

de phase, qui nécessite, pour une information complète sur le vecteur vitesse d’énergie,

l’association de la dispersion de la direction d’énergie. Les dispersions de la vitesse d’énergie, 

ainsi que de l’atténuation sont présentées le long de la direction d’énergie. Cela permet de

suivre la naissance et la disparition de cornes sur les surfaces d’ondes des modes guidées, en 

fonction de la fréquence. De plus, l’étude théorique de l’atténuation le long du rayon met en 

lumière la signification physique de la projection de l’atténuation de phase sur la direction 

d’énergie. Autant que l’auteur le sache, ce domaine n’a pas été étudié et constitue la 

nouveauté apportée par cette partie. 
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Le chapitre 4 se concentre sur l’illustration expérimentale des propriétés décrites dans les 

précédents chapitres. Les expériences sont réalisées sur des composites uni-directionnels de 

verre et de carbone époxy. Elles portent successivement sur la mesure de la vitesse d’énergie 

pour toutes les directions d’observation, la mise en évidence de la déviation de faisceau pour 

une direction de phase particulière et sur l’atténuation le long de la direction de phase et 

d’énergie des ondes de Lamb. Il faut noter dans cette partie la nouveauté apportée par les 

mesures de vitesse d’énergie dans la zone de corne, ainsi que les mesures d’atténuation des

ondes guidées se propageant dans des directions non-principales. Au travers des résultats

obtenus, la prise en compte de tous les paramètres des ondes de Lamb se propageant dans des 

matériaux anisotropes viscoélastiques s’avère essentielle. Une attention particulière est portée 

sur le potentiel d’application des ondes guidées à la caractérisation de tels matériaux.
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Introduction

Numerous non-destructive evaluation (NDE) methods have emerged in recent years.

Involving various domains of Physics, such as X-rays, heat-transfer, or ultrasound, the 

advantage of these methods is that they enable the monitoring of the integrity of structures 

during their life, without having to destroy them.

The applications field of NDE is varied. The aeronautic industry needs to ensure the structural 

integrity of components used in the manufacturing of aircraft. The need to detect defects or 

corrosion zones which may occur in toxic chemicals storage sites is also important. The 

preservation in ideal conditions of oil in cylindrical tanks, as well as of nuclear wastes in

concrete containers or in granite caves, requires frequent inspection of the waterproofness of 

the structures containing these chemicals. The transport of material which may be dangerous, 

is also a topic for which the study of the integrity of pipes is required. For all these examples,

defects such as cracks, voids, and delaminations can be prejudicial to safety. 

Concerning ultrasound, the transmission and reflection testing methods have been studied 

extensively and have proved to be very effective. These conventional techniques enable the 

rendering of the shape and location of the defects, but are time-demanding, especially for 

large structures. Waves which are able to propagate over these large distances would facilitate

faster inspection. 

Such waves exist. They are guided by the geometry of the insonified structure and are called 

Lamb waves. Guided by plates, cylindrical pipes or shells, these waves propagate in structures 

for which the thickness is small compared to other dimensions. They can propagate in 

isotropic or anisotropic media.

Lamb waves were discovered at the beginning of the XX
th century (Lamb, H., 1917), after 

fundamental studies on bulk waves described by Christoffel (Christoffel, E.B., 1877), and 

suface waves studied by Rayleigh (Rayleigh, L., 1885). Bulk waves, being the solution of the

equation of motion in infinite media, are entirely characterised by the properties of the 

insonified material and the direction of propagation. They are widely used in the context of 

material characterisation (Hosten, B., 1991; Chu, Y.C. and Rokhlin, S.I., 1994), and for the 

imaging of defects in structure (Cawley, P., 1987; Gruber, J.J., Smith, J.M. et al., 1988). The 
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surface wave, for which the research has been motivated by geophysics for earthquake studies 

(Biot, M.A., 1952; Dorman, J., Ewing, M. et al., 1960), involves a free interface of a semi-

infinite medium. The Lamb wave involves the whole thickness of a layer of material (the 

waveguide) and has the particularity of being dispersive. The study of such waves naturally 

began with isotropic materials, for which the Lamb waves (coupling between the transverse

vertical and longitudinal polarisations) and the shear horizontal waves (SH) are uncoupled. 

Since then, the term “Lamb waves” has been generalised to include guided waves propagating 

in principal or non-principal directions of anisotropic plates. Lamb waves are studied and 

applied in numerous domains of NDE. For instance, they are useful for the detection of 

delaminations (Rokhlin, S., 1979; Guo, N. and Cawley, P., 1993; Tan, K.S., Guo, N. et al., 

1995; Leclezio, E., 2002), of corrosion (Sun, K., J., and Johnston, P., H.,, 1995; Cawley, P. 

and Alleyne, D., 1996), for the testing of adhesion of bonded structures (Lowe, M.J.S. and 

Cawley, P., 1994; Nagy, P.B., 1994; Challis, R.E., Bork, U. et al., 1996; Kundu, T., Maji, A.

et al., 1998), and for material characterisation (Nagy, P.B. and Adler, L., 1989; Bar-Cohen, Y. 

and Mal, A.K., 1990; Chimenti, D.E., 1997). 

Thanks to their good strength-weight ratio, the use of fibre composites in aeronautics has 

increased. Consequently, the study of the propagation of guided waves in anisotropic

materials has been developed (Nayfeh, A.H. and Chimenti, D.E., 1988; Dayal, V. and Kinra, 

V.K., 1989; Ditri, J.J. and Rose, J.L., 1994). Due to the manufacturing process of composites, 

using the piling of pre-impregnated fibres in particular orientations, some directions are 

privileged for the transport of energy of the guided waves. The phenomenon of beam

deflection (or skewing), well-known for bulk waves in anisotropic materials, occurs for the 

guided waves which propagate in non-principal directions of anisotropic plates. On top of the 

frequency dispersion of the Lamb waves, which is already a property of waves in isotropic

media, angular dispersion, caused by the anisotropy, has to be taken into account. The 

knowledge of the phase and energy properties of the guided waves travelling in such materials

is of primary importance for the full exploitation of their inspection potential. This is the topic

of the thesis.

The first chapter presents the theoretical framework of Lamb waves in an orthotropic plate. 

The dispersion curves (dependence of the phase velocity with the frequency), as well as the 

group properties (velocity and deviation angle), are described. Those parameters are also 

studied as a function of the phase front direction, varying between the principal axes of the

material. Referencing the work of  Simon (Simon, C., 1997), the problem of naming the Lamb

modes for all directions is addressed. The properties of guided modes vary as a function of the 

frequency and as a function of the phase direction, and of their polarisation. Thus, as the 

originality of the work produced in this chapter, the properties of each generalised Lamb

mode are represented using a 3D view. The study is however limited to the purely elastic

case, the absorbing case being the focus of the following chapter. 
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Chapter 2 expands the theoretical study to the Lamb waves in anisotropic viscoelastic 

materials. The most common rheological models are described, along with their consequences 

on the propagation of guided waves. The attenuation of guided waves is studied, both as a 

function of the frequency and of the phase direction. However, only the attenuation caused by 

the viscosity is taken into account; attenuation caused by beam spreading and diffraction are 

neglected. The beam spreading is due to the finite size of the source and the diffraction is 

caused by the glass or carbon fibres. At the frequencies used in this work, the wavelengths are 

approximately in the order of a few centimetres. Under these assumptions, the insonified 

material is seen as homogeneous, and this allows the fibre diffraction to be neglected. 

Concerning the beam spreading, the measurements are realised quite far from the source, in a 

zone where the amplitude decrease as a function of the distance has relatively little effect. As 

for the phase and group velocities described in the first chapter, it is also possible to represent 

the dependence of the attenuation in a 3D plot, which is the novelty brought by this chapter. 

In a viscoelastic medium, it is however not straightforward to define the group velocity with a 

strict physical interpretation. In order to complete the study of the Lamb waves, it is necessary 

to describe the energy propagation. It is one of the topics of Chapter 3. 

The third chapter is centred on the definition of the energy velocity of the Lamb modes in an

anisotropic viscoelastic medium, from the Poynting vector. Getting closer to the “point 

source-point receiver” experimental configuration, the properties of the Lamb modes are 

studied along the observation direction. This representation is opposed to the dispersion of the

group velocity modulus, presented in Chapter 1 for a fixed phase direction, which needs, for a 

complete description of the energy velocity vector, the association of the deviation angle 

dispersion. The dispersions of the energy velocity as well as the attenuation are now 

represented for a given energy direction. It enables the possibility of following the appearance 

and the vanishing of cusps on the wave surfaces, as a function of the frequency. Moreover, the

theoretical study of the attenuation along the ray direction casts light on the physical 

interpretation of the projection of  the phase attenuation onto the energy direction. To the best 

of the author’s knowledge, this part is new and has not been explored in the literature. 

Chapter 4 is centred on the experimental illustration of the previously described properties.

Experiments are realised on unidirectional glass and carbon-epoxy composites. They concern 

successively the measure of the energy velocity in all observation directions, the

determination of the beam skewing angle for a selected phase direction, and the attenuation 

along the phase and energy directions of the Lamb waves. It is to be noted that the 

experimental observation of the energy velocities in the cusp region, as well as the attenuation 

measurements in non-principal direction of generalised Lamb modes is new. Through the 

obtained results, the knowledge of all the parameters of the Lamb waves propagating in an 

anisotropic viscoelastic medium are revealed to be essential. Particular attention is brought to 

the potential of using guided modes for materials characterisation.
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Chapter 1 

Lamb wave propagation in non-absorbing plates 

1.1 Introduction 

This chapter aims to review the equations and solutions of bulk waves propagating in an 

infinite anisotropic medium, before introducing the guided waves in plates, the so-called 

Lamb modes. In the first part of this chapter, solutions of the equation of motion for an 

anisotropic infinite medium are described. Studies of bulk waves have been published by 

many authors, and general works from (Auld, B.A., 1973; Royer, D. and Dieulesaint, E., 

1996) and (Balasubramaniam, K. and Whitney, S.C., 1996) can be cited for instance. Through 

their use in material characterisation (Hosten, B., 1989; Audoin, B., Baste, S. et al., 1991;

Castagnède, B., Kim, K.Y. et al., 1991), bulk modes are well exploited and referenced. The 

role of these so-called bulk mode solutions, that are eigenvalues and eigenvectors of the 

Christoffel equation, in the phenomenon of guided waves in a bounded geometry is then 

detailed. In the case of an anisotropic medium, the Lamb modes are indeed seen as the

superposition of successive reflections of bulk modes inside the plate (Solie, L.P. and Auld, 

B.A., 1973), as the scalar and vector potentials commonly used in the isotropic case (Lamb, 

H., 1917) are too complicated to derive.

The equations of the Lamb modes as well as their solution are presented. Due to the

increasing use of Lamb modes for non-destructive applications, many publications concerning 

Lamb wave modelling in both isotropic and anisotropic materials, are provided by the 

literature. Works from (Chimenti, D.E., 1997), (Simon, C., Kaczmarek, H. et al., 1997),  that 

concern Lamb waves in general, as well as studies of their use on anisotropic material have 

been used. Publications on the use of Lamb waves for Non-Destructive-Testing (NDT)

(Alleyne, D.N. and Cawley, P., 1991; Lowe, M.J.S., 1993), for paper characterization 

(Bonnin, A., Huchon, R. et al., 1999) or for material characterisation (Chimenti, D.E., 1997) 

have been of great help in writing the derivation section.
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Having the characteristics of the Lamb modes, the third section focuses on their group 

velocity. The propagation properties of guided modes, such as the steering angle, the 

frequential and spatial dispersions developed in (Simon, C., Kaczmarek, H. et al., 1997; 

Poncelet, O., Deschamps, M. et al., 2000; Potel, C., Gatignol, P. et al., 2001) are detailed in 

this last section of the chapter.

1.2 Infinite media 

An infinite orthotropic medium is considered. The elasticity tensor is described by the fourth 

rank tensor C , and  is its mass density. The generalised Hook’s law expresses the stress 

tensor  as a function of the stain tensor . This well-known relationship is described by: 
ijkl

ij ij

(1.1).ij ijkl klC=

In the case of a purely elastic medium, a small perturbation of the equilibrium of the particles,

caused by a source, results in an endless motion of the particles. This motion, infinitely far

and after the perturbation, is governed by: 

(1.2), ,tij j iV=

where  are the components of the particle velocity vector. Solutions of Eq. (1.2) are

searched in the form of monochromatic waves with an angular frequency , a phase 

slowness vector S , a polarisation vector P  and an amplitude A . The displacement field U
of this type of wave at a location 

iV

31 2, ,x x xM  can be expressed as: 

 (1.3) (= 1 1 2 2 3 3exp ,i iU AP i t S x S x S x )

)
where U  are the components of the displacement field and S  are the components of the 

slowness vector in the (  coordinate system, see Fig.
i i

1 2 3, ,e e e (1.1). Since the derivation of

bulk solutions is going to be used for the Lamb solutions derivation, let us introduce the 

orientations of the coordinate system. The slowness vector can be decomposed into the

component S  and the component S .1 //

//
S

1e

1 2 3, ,x x xM

2e

3eS1S

Figure 1.1: coordinate system. 

The direction of S  is ruled by the direction . The slowness vector can therefore be

expressed as: 
//
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(1.4)
1 1

2 //

3 //

cos ,

sin

S S

S S

S S

= =S

where S  designates the modulus of S . (In this work all vectors are denoted using bold font

and their modulus or components are expressed in normal font.) 
// //

Inserting the type of solution described in Eq.(1.3) into the equation of motion results in the

well-known Christoffel equation. This system can be expressed in a matrix form, where the 

eigenvalues and eigenvectors of the Christoffel matrix fully provide the bulk modes (Auld, 

B.A., 1973; Royer, D. and Dieulesaint, E., 1996). The eigenvalues are indeed the squared 

phase velocities and the eigenvectors are the polarisation of these bulk solutions. Another

expression can be obtained if the solutions are searched in terms of slowness rather than

velocity. Writing the slowness vector S  as the inverse of the phase velocity V  (inverse of 

the phase velocity modulus, collinear to the velocity direction), the solving of the equation of 

motion leads to nullifying the determinant of the matrix  described as: 

ph

C

 (1.5) 

2 2
11 1 1 12 1 13 1// // //

2 2
66 1 2 23// //

2 2
55 1 3 //

,C

C S a S a S S a S S

C S a S a S

C S a S

+

= +

+

2

2

,

with

 (1.6) ( )
( ) ( )

2 2 2
551 66 2 22 44

2 2
3 44 33 12 12 66

5513 13 23 23 44

cos sin ; cos sin ;

cos sin ; cos ;

sin ; sin cos .

a C C a C C

a C C a C C

a C C a C C

= + = +

= + = +

= + = +

The determinant of  can be viewed as the sixth order polynomial form in S  or the third

order polynomial form in S . This polynomial has to be solved to fully characterise the bulk 

modes able to propagate in the considered medium.

C 1
2
1

Having the solutions for the phase slowness, the polarisation can be obtained. Both the 

determinant of  and the polarisations of the solutions are expressed using the minors of 

. They are described as:
C

C

 (1.7) 
11 22 33 23 23 12 12 33 13 23

13 12 23 13 22 22 11 33 13 13

23 11 23 13 12 33 11 22 12 12

, ,

,

, ,

= =

= =

= =

where  are the components of the matrix . The determinant of , denoted  can be 

expressed as: 
ij C C C

 (1.8)11 11 12 12 13 13.C
= +
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It is to be noted that there are two other forms to express . An arbitrary choice is made to 

use Eq.(1.8). Consistently with this choice, the polarisation vectors for each solution are

described by:

C

(1.9)

( )
( )

( )
=

13 1

23 1

33 1

,

i

i

i

S

S

S

P i

) )

where S  are the solutions of , and P  are the components of the polarisation vector 

. Now being able to solve the equation of motion for a given component S  and a given 

phase direction , it is possible to plot the bulk solutions in polar coordinates.

1
i = 0C

i
k

iP
//

Anticipating the interface geometry that is going to be developed in the next section, the plane 

 of Fig.(1.2 e) can be seen as the azimuthal plane and the planes (  as zenithal 

planes. Solutions of the Christofel equation can be described using slowness surfaces. Cuts of 

these surfaces can be made. When the involved coordinates are S  and S  the solution plot is

called a slice of the slowness surface. When the involved coordinates are S  and , the 

resulting plot concerns those skimming waves, for which the S  component is null (Bescond, 

C. and Deschamps, M., 1998; Wu, T.T. and Liu, P.L., 1998). It is to be noted that these waves 

can also exist with the out of plane components, when the slowness surface exhibits a vertical 

tangent plane.

( 2 3,e e 1,e e

2

1
i

1
i

//

3S

For an anisotropic material, the slowness surface does depend on the azimuthal angle . For

instance, the example of a unidirectional carbon-epoxy is taken, for which the elasticity tensor 

is shown in Table (2.3) of Chapter 2. Fig.(1.2) represents the slowness surfaces for each type 

of the polarisation at different directions in plots a) to d), as well as the skimming waves in

plot e). These plots do not depend on the frequency in the case of a purely elastic solid. In this

figure, the polarisations are represented using a dashed line for the longitudinal mode, solid 

and dotted line for the transverse modes. The connection between plots a)-d) and e) is obvious 

since they correspond respectively to zenithal and azimuthal views of bulk modes. The 

intersections of plots a)-d) with the vertical axis do not depend on the phase direction. They 

are represented with trapezoids remaining at the same values for all phase directions. The 

intersections of plots a)-d) with the horizontal axis for phase direction of 0, 20, 60 and 90 

degrees, represented respectively with discs, triangles, stars and squares, can be visualised on 

the skimming waves plot e) that lies in the azimuthal plane. As opposed to the variation of 

these values with the direction of the phase, the intersections with vertical axis are constant

for any phase direction.
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Figure 1.2: Slowness surfaces slices for the unidirectional carbon-epoxy plate. Plots a) to d)

represent cuts of the bulk slowness surfaces for  = 0 (fibres direction), 20, 60 and 90 

degrees. Plot e) represents the solutions for which  is null. Projections of the wave 

slownesses of plots a) to d) are indicated in plot e) with circles, triangles, stars and squares

respectively.
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This illustration of the calculation of bulk solutions of the Christoffel equation concludes this

first section. The solutions of waves propagating in a purely elastic, infinite anisotropic

medium have been described. Their role in the propagation of Lamb wave is detailed in the 

next section. 

1.3 Lamb waves in an elastic orthotropic plate. 

The geometry of the system is now a plate of finite thickness  and infinite other dimensions.

This plate is bordered by vacuum. In an orthotropic material, the three kinds of bulk modes

existing in an anisotropic medium must be considered.

h

One way to model Lamb wave is to describe them as the superposition of partial solutions

(Solie, L.P. and Auld, B.A., 1973). Due to the bounded geometry of the plate, the bulk waves 

can indeed be reflected by the upper and lower interfaces of the structure, see Fig.(1.3). The

combination of these successive reflections, going towards the upper or the lower interfaces, 

results in guided modes propagating along the phase front direction, lying in the ( )
plane.

2 3,e e

//
S

//
S

//
S

2
h+

2
h

1
1S +

2
1S +

3
1S +

1e

1
1S
2
1S
3
1S

Figure 1.3: Lamb wave modelling. The combination of bulk wave reflections results in guided 

modes propagating at the slowness S .
//

The superposition of these partial solutions must satisfy the boundary conditions, i.e. no

tensile stress at both interfaces, since the surrounding medium is the vacuum. In order to

express the stress tensor of these partial waves, their displacement fields are expressed as 

follows:

 (1.10) 

1 1
1 1 2 2 3 3 1 1 2 2 3 3

2
1 1 2 2 3 3 1 1 2 2 3 3

3 3
1 1 2 2 3 3 1 1

( ) ( )
1 1 1 1 1 1

( ) (
2 2 2 2 2 2

( ) (
3 3 3 3 3 3

;

;

;

i S x i t S x S x i S x i t S x S x

i S x i t S x S x i S x i t S x S x

i S x i t S x S x i S x i t

A e e A e e

A e e A e e

A e e A e e

+ + +

+ + +

+ + +

= =

= =

= =

U P U P

U P U P

U P U P 2 2 3 3 )S x S x

2 )
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where  designates waves propagating in the e  direction,  in the -  direction. For an 

orthotropic material, the symmetry plane (  exists and two cases are possible: 

symmetrical or anti-symmetrical modes. Based on the displacement field, this choice depends 

on the polarisations for “plus” and “minus” modes. If ( , the solution is 

symmetrical, if ( , the solution is anti-symmetrical. From the displacement fields,

the stress tensor is derived using the following relation: 

+ 1

1
iS =

1e

A

)1
i

)
)

, .

S+

A+ =
A A+ =

(1.11),2 ij i j j iu u= +

The stress field is then obtained using Hook’s law. To satisfy boundary conditions the 

following equations must hold: 

1

11

12

13
2

0

0 .

0hx =±

= (1.12)

This system can be expressed in a matrix form : 

(1.13)( )
1

2//

3

0

, , 0 ,

0

A

S A

A

=

where ( )//
, ,S  is a 3×3 matrix, and  is the amplitude of the iiA th partial mode. In order 

to find non-trivial solutions of Eq.(1.13), the determinant of ( )//
, ,S  must be null. This

determinant can be factorised in the product of amplitude term and the quantity noted

 (for symmetric and anti-symmetric case respectively). The problem of 

nullifying the Lamb determinant is therefore equivalent to the problem of nullifying the 

quantity . This term, sometimes called the Lamb determinant in this work, is 

described in the symmetric case by: 

( )//
, ,

(, //S A
S

,S A
S

), ,

 (1.14) ( ) ( ) ( ) (1 2 3 3 2 1 2 1 3 3 1 2 3 1 2 2 1 3//
, , ,S S = + )

)

with : 

( ) (
11 1 1 12 2 2 13 3 3

5566 2 1 1 2 3 1 1 3

1

;

;

cot ; 1,2,3,
2

;

j j j j
j

j j j j j j
pj

j
j

C P S C P S C P S

C S P S P C S P S P

hS j

= + +

= + = +

= =

 (1.15) 

where  stands for the polarisations, and j 1,2,3
jP  are the components of the polarisation vectors. 

To obtain the Lamb determinant for the anti-symmetrical case, the cotangent function is to be 

replaced by tangent function. The aim now is to find triplets (  solutions of:)//
, ,S
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(1.16)( ), //
, , 0.

S A
S =

A classical zero-finding algorithm such as the Newton-Raphson algorithm is used to find the 

solutions and so plot the dispersion curves. For this purpose, the derivatives of 

 with respect to the phase slowness S , the phase front direction , and to the 

angular frequency  are needed. It implies the knowledge of the derivative of  , contained 

in , with respect to  and . To calculate these partial derivatives, the 

implicit function theorem is used on the Christoffel determinant.

(, //
, ,

S A
S

(, //
, ,

S A
S

) //

)
1S

//S

At a fixed phase front direction, 
C

 is considered as depending only on S  and . For S
and S  solutions,

1 //
S 1

// C
 is zero and remains constant, its total differential is therefore zero:

// 1
// 1

0.C C
Cd dS dS

S S
 (1.17) 

Hence, for S  and S  solutions of: 1 //

( )1 // constant
,C S S

=
= 0, (1.18)

the derivative of S  with respect to S  is: 1 //

//1

//

1

.

C

C

SdS
dS

S

= (1.19)

Following the same pattern, at a fixed S  and for S  and  solutions  of:
// 1

( )
//

1 constant
,

C S
S

=
= 0, (1.20)

the derivative of S  with respect to  is deduced: 1

1

1

.

C

C

dS
d

S

= (1.21)

Derivatives of  with respect to the frequency are much easier to obtain, since 

no composite functions are involved with the frequency argument. All the tools are now 

present to perform the Newton-Raphson algorithm with analytical derivatives. The advantages 

of the analytical formulation are the precision and quicker computation times.

(, //
, ,

S A
S )

To initialise the search, the Newton-Raphson algorithm needs an initial guess of the solution 

to ensure the convergence. In order to get this initial value, the modulus of the Lamb

determinant is calculated as a function of the slowness, at a given frequency. The minima of 

this function correspond to solutions existing at this frequency. One particular mode is chosen 

to launch the search. Thus, at a given frequency, the root can be found using this algorithm.
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To find the solution corresponding to the neighbouring value of the frequency, the result of 

the previous search is used as the initial guess, and so on. With such an implementation, the 

dispersion curves of Lamb modes can be calculated. The programming has been written in 

C++, under Windows platform.

It is to be noted when calculating the dispersion curves that particular care has to be taken at

the beginning of the high dispersion zones. In these zones, it is observed that the algorithm

fails sometimes to remain on the same mode and finds a different one. This phenomenon of

“mode jumping” has been discussed in the literature (Lowe, M., 1995; Pavlakovic, B., Lowe, 

M. et al., 1997). Refinements on the search have therefore to be done in the vicinity of such 

zones to avoid this problem.

The model has been validated using several material properties. Lamb modes have been 

calculated for a graphite-epoxy plate, for the 0 and 45 degrees phase directions. Results 

superpose perfectly with those published in Nayfeh’s book (Nayfeh, A.H., 1995). The model

has also been compared with Disperse, a multipurpose software developed at the Imperial

College by B. Pavlakovic and M.J.S Lowe (Pavlakovic, B., Lowe, M. et al., 1997; Lowe, 

M.J.S. and Pavlakovic, B., N., 2001). Rigorously the same dispersion plots have been 

obtained by the two programs, for glass and carbon-epoxy plates, both in principal and non-

principal directions. Moreover, the analytical approach developed here extends the

possibilities of analysis in non-principal directions. As seen later in this work, the

dependences of the steering angle on the frequency and the energy velocity on the observation 

direction, which are not calculated by Disperse, can be plotted using the developed program.

Taking again the example of the unidirectional carbon-epoxy (material properties in Table 

2.3), the dispersion curves of the main Lamb modes propagating in a 3.6 mm thick plate are 

displayed in Figs.(1.4a and 1.4b), for several phase front directions (0 degree being the 

direction of the fibres).

A digression is brought here concerning the names of guided modes: it is chosen to extend the 

names of fundamental modes existing in the 0 degree principal direction to any direction. 

Therefore the SH0 mode that rigorously exists in principal directions only, is named the same

way when it couples with other displacement components in non-principal directions. For

higher order modes however, the segregation is more difficult and their name will be deduced

from their order and nature only (symmetric or not). In that case, the mode SHi existing only 

in principal directions is named Si in an other direction, i being the number of this now

coupled mode. It is to be noted that i is not the order of the mode any longer. The modes are

labelled in order of appearance, and not with respect to the number of nodes in the plate 

thickness as they would conventionally be. In principal directions, where the Lamb modes and 

the SH modes are not coupled, their dispersion plots intersect with each other (even orders 

correspond to symmetric SH modes, odd orders to anti-symmetric SH modes).
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Figure 1.4a: Phase velocity dispersion for 0 and 20 degrees phase front directions, for the 3.6 

mm thick carbon-epoxy plate. Dotted and lines of plots (1) and (2) represent the SH and the

Lamb modes respectively. Grey and black lines of plots (3) and (4) are used to distinguish the 

guided modes. As seen on the close-up views for the 20 degrees direction (plots (5) and (6)),

Lamb and SH modes are coupled and do not intersect in non-principal directions. 
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In non-principal directions, for which these formerly different type of modes are coupled 

together, branches of the same nature (i.e. symmetric or anti-symmetric) do not intersect any

longer (Solie, L.P. and Auld, B.A., 1973; Simon, C., Kaczmarek, H. et al., 1997).

It can be noticed that velocities of the S0 and A0 mode are decreasing from their maximum

value in the 0 degree direction to their minimum value at 90 degrees. At low frequency, these 

variations are consistent with the shapes of these modes.
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Figure 1.4b: Phase velocity dispersion for 60 and 90 degrees phase front directions, for the 

3.6 mm thick carbon-epoxy plate. For the 60 degrees direction, dispersion curves do not 

intersect. Grey and black lines of plots (1) and (2) are used to distinguish the guided modes. 

At 90 degrees (principal direction), Lamb (solid lines) and SH modes (dotted lines) are

uncoupled and the dispersion curves do intersect in plots (3) and (4).
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The S0 mode at low frequency is indeed essentially a compression mode, it propagates 

therefore faster in a direction where it involves  stiffer C . A similar comment can be made

on the A
ijkl

0 mode, which is a bending mode at low frequency. 

In parallel to calculating the dependence of the phase velocity on the frequency for a given 

phase front direction, it is also possible to compute the variation of the phase velocity with the 

phase front angle, for a given frequency. For several frequencies, the variation of the first

Lamb modes with the phase front direction is displayed in Fig.(1.5). Again, it can be seen that 

the anisotropy affects drastically the value of the phase velocity of the guided modes and it 

does this in a different way at different frequencies.  The dependence of the phase velocity on 

the frequency does vary with the phase front direction as well. 

The solution branches are labelled SH or S according to their polarisation in the principal 

direction 0°. Changing the phase front direction  varies the Lamb modes polarisation. At 

low frequency, this variation is such that the branch, which is SH or S0 at 0 degrees principal 

direction, retains the same type at 90 degrees. In Fig.(1.5) at 0.1 MHz for instance (plots 

( )1 and ( ), only three modes are present, their polarisations are “normal”, i.e. depend on the 

phase direction so that they present the same relative characteristics for any phase front 

direction. At 0 degrees (along the horizontal axis of these plots), the S

)2

0 mode is mostly

compressional, the SH0 mostly a shear mode and A0 mostly a bending mode. At 90 degrees 

(vertical axis), they do present the same characteristics. In this case, this is what is called by 

Simon a “normal” dependence of the polarisation on the phase front direction.

However, at higher frequency (plots ( )3 and ( )4 ), the branch which is, say, SH0 (dotted line)

at 0 degree, on its angular variation arrives at 90 degrees as the S0 branch (same velocity and

polarisation), whereas the S0 branch (solid line) at 0 degrees becomes, correspondingly, the 

SH0 one at 90 degrees (same velocity and polarisation). As described in (Simon, C., 1997), it 

is observed in Fig.(1.5), that the polarisation transfer occurs, to paraphrase the author. While

they keep their name given in the 0 degree direction, these two modes have swapped their 

polarisation while rotating the phase front direction.

Another general comment can be made to this figure. The number of modes increases with the

frequency as there are more Lamb modes at higher frequency. Moreover many of the modes

present inflexion points on their slowness surface, that imply cusps on their associated wave 

surface. This feature is described in the next section where the energy velocity of guided 

modes is detailed. 

One way to visualise all these dependencies at one glance is to use a 3D view of one mode. A 

convenient projection is proposed here, using cylindrical coordinates for which the elevation 

axis represents the frequency, the polar angle represents the phase front direction, and the 

polar modulus represents the phase velocity. Some example plots are displayed in Fig.(1.6).
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Figure 1.5: Slowness surfaces cuts of the Lamb modes at a) 0.1, b) 0.5 and c) 1.1 MHz, for 

the 3.6 mm thick carbon-epoxy plate.
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Concerning the A0 mode, remarks made earlier on its dispersion curves for different phase 

directions are observable. Indeed, along the 0 degree direction, its velocity is greater than its

phase velocity at 90 degrees. The smooth dependence of the phase velocity of this mode with 

the phase direction and the frequency is illustrated by this plot. 

V//
cos

(mm/µs)

V
// sin

(mm/µs)

( )f MHz

90o= 0o=

0A  mode

V// cos (mm/µs) V
// sin

(mm/µs)

( )f MHz

0o=

90o=

0S  mode

Figure 1.6: 3D views of the A0 and the S0 mode, for the 3.6 mm thick carbon-epoxy plate. 

Cylindrical coordinates: the elevation is the frequency, the polar modulus is the phase 

velocity and the azimuthal angle is the phase front direction. 
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In the bottom plot of Fig.(1.6) the S0 mode is displayed. Similar comments can be made on its 

phase velocity values depending on the phase direction. The variations are however steeper 

than for the A0 mode. According to its phase dispersion plots at 0 and 90 degrees respectively, 

its phase velocity does vary from more than 7 to less than 3 mm/µs at zero frequency. Slices 

of this 3D view made respectively at 0, 60 or 90 degrees correspond to the phase velocity 

dispersion plots displayed in Figs.(1.4a) and (1.4b). 

Having these characteristics of the guided modes at hand, it is now possible to study their 

energy velocity. As shown in (Auld, B.A., 1973), in the case of non-absorbing media, the 

energy velocity is rigorously equal to the group velocity. The next section describes the 

calculation of the group velocity of guided modes, as well as the steering angle phenomenon

that occurs for anisotropic materials.

1.4 Group velocity and steering angle of Lamb modes. 

The group velocity V  corresponds to the wave packet velocity. For dispersive waves, it is

expressed as the derivative of the angular frequency with respect to the wave vector k :
g

//

//

.g =V
k

(1.22)

Using once more the implicit function theorem, the expression of the group velocity vector as 

a function of the Lamb determinant can be obtained. This is the aim of the following

derivation.

At a fixed phase front direction , for S  and solutions of the Lamb equation
//

(Eq. 1.16),

 is null. Its total differential is therefore null: 
,S A

, //
//

0.
S A

d dS d
S

= + =  (1.23) 

Expressing the phase slowness vector as a function of the wave vector k  and the frequency 

as:
//

//

//
,=

k
S (1.24)

the differential of S  reads: 
//

// // //
2// // //

//

1 .d d d d= + =
S S k

S k k
k

d  (1.25) 
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Fig. 1.7: Lamb mode slowness surface cut and group velocity at fixed frequency,  is the

steering angle. 

Hence from Eq. (1.23), it can be obtained: 

//
//

// //

1 0.d d+
S

k
S S

=  (1.26) 

The previous equation yields (Auld, B.A., 1973; Simon, C., Kaczmarek, H. et al., 1997; 

Poncelet, O., Deschamps, M. et al., 2000): 

//

//
//

//

.g
d
d

= =
S

V
k S

S

 (1.27) 

The components of the group velocity vector are as follows: 

//

//

//
//

,g

S
V =

S
S

(1.28)

and:

// //
//

.gV

S

=

S
S

 (1.29) 

The direction of the group velocity may be characterised by , the deviation angle measured

from the phase direction reference: 

//

arctan .g

g

V

V
= (1.30)
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The steering or deviation angle, is also defined as the algebraic difference between the group 

direction  and the phase direction .

(1.31).=

This concludes the derivation of the group velocity of the Lamb modes. As seen in Eq.(1.27) 

where the denominator of the group velocity contains two derivatives of the Lamb

determinant, the dispersion acts through two variables: the frequency and the direction of 

propagation. Compared to the group velocity of bulk waves, where the dispersion is only 

angular, the dispersion of Lamb modes is a more involved phenomenon since it is both 

angular and frequential.

It is known that for anisotropic material, the direction of the group velocity differs from the 

phase front direction. As for bulk waves in a purely elastic material (Auld, B.A., 1973; 

Nayfeh, A.H., 1995; Balasubramaniam, K. and Ji, Y., 2000; Potel, C., Gatignol, P. et al., 

2002), the group velocity vector is normal to the phase slowness surface, as seen in Fig.(1.7). 

However the relation (Auld, B.A., 1973) for bulk waves reads: 

(1.32)
//

1,g =S V

Eq. (1.32) is modified in the case of frequency dispersive waves such as Lamb modes. Using 

the previous expression of the group velocity, it can be obtained: 

//

//
//

. 1
.g = +

S

S V
S

.  (1.33) 

The scalar product of the phase slowness vector with the energy (or group) velocity vector, 

described in Eq. (1.33), is affected by a frequential dispersion term that is absent in the case of

bulk modes. The fact that the group velocity of the guided modes can be greater or lower than 

its associated phase velocity, is explained by role of the dispersion term. The consequences of

that expression will be analysed later in Chapter 3, in the context of viscoelastic media.

It is interesting that the phenomenon of energy focusing, well-known for bulk waves (Auld, 

B.A., 1973; Maznev, A.A. and Every, A.G., 1995; Bescond, C. and Deschamps, M., 1998; 

Wolfe, J.P., 1998), occurs for the Lamb modes as well. Lamb mode slowness surfaces can

indeed have many inflexion points in a 90 degrees sector. It implies that the same group 

velocity direction may correspond to many phase front directions. These particular shapes are 

responsible for the cusps of the associated group velocity (or wave surface). Moreover, the 

slowness surfaces of Lamb modes, and therefore their associated wave surfaces, vary with the 

frequency as well.

It is understood now that for a complete information on the group velocity of a Lamb mode,

the variation of its velocity modulus with the frequency must be complemented by the

variation of its steering angle with the frequency (Simon, C., Kaczmarek, H. et al., 1997; 

Poncelet, O., Deschamps, M. et al., 2000). 
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To illustrate these features the unidirectional carbon-epoxy example has been used. The

particular case of the 0 degree (principal direction) is given in Fig.(1.8). There is indeed no 

steering angle for principal directions. In Fig.(1.9), the associated group velocity of Lamb

modes propagating in the phase direction of 60 degrees are displayed, along with their

associated steering angle. 
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Figure 1.8: Group velocity of the symmetric and anti-symmetric modes in the 0 degree 

principal direction for the 3.6 mm thick carbon-epoxy plate. 

Regarding Fig.(1.9), it is to be stressed that the direction of the group velocity depends on the 

frequency. Whereas the phase velocity dispersion plots concern only one phase direction, the 

group velocity plots displayed in Fig.(1.9) are to be associated with phase front directions 

varying with the frequency. The variations of the steering angle with the frequency are 

substantial. For instance, the S0 mode propagating in the 60 degrees phase direction has a 

steering angle around –50 degrees at low frequency. It means that its energy travels 

approximately along the 10 degrees direction at this frequency. Moreover, the steering angle 

dispersion follows the frequency dispersion. Each high dispersion zone of either the group or 

phase velocity implies a strong variation of the deviation angle with the frequency and vice 

versa. Looking at the A0 mode for instance, its steering angle is stabilised after 0.15 MHz; its

group velocity plot correspondingly presents little dispersion after this frequency. 

A digression is brought here concerning the S1 mode displayed in Fig.(1.9). This mode

presents a steering angle greater than 2  in absolute value. It can be explained that this mode

is actually the combination of two modes. If one mode is defined by a single-valued function 

describing the dependence of the phase velocity on the frequency, the phase dispersion of S1

in Fig.(1.4) involves two modes. The threshold between the two modes is the point of infinite 
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dispersion, so that the solutions found below and above that threshold belong to the two 

different modes, one for which the group velocity component along the phase direction is

negative, the other for which this component is positive (Auld, B.A., 1973). This feature is 

illustrated in Fig.(1.10).
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Figure 1.9: Group Velocity modulus (top plots) and steering angle (bottom plots  for a 60 

degrees phase direction for the 3.6 mm thick carbon-epoxy plate.

The group velocity of a guided mode can be studied for a fixed frequency as well. 

Corresponding to the bulk wave case, such plots showing the group velocity modulus as a

function of the group direction are called wave surfaces. Such plots for the example material

at 1.1 MHz are displayed in Figs.(1.11) and (1.12) and represent the associated wave surfaces 

of the slowness surfaces shown in Fig.(1.5).

Due to the number of modes present at 1.1 MHz, wave surfaces at this frequency have been 

separated in two plots for clarity. In these figures, for which the horizontal axis represents the 

0 degree direction (direction of the carbon-epoxy fibres in this case), it can be observed that 
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some modes which were cusp free at 0.1 MHz, acquire cusps at higher frequencies, and vice

versa.

Phase velocity

frequency

dispersion

1S

//
0gV <

1S

//
0gV >

threshold

Figure 1.10: S1 mode case of infinite dispersion. Above the point of infinite dispersion, the

component of the group velocity along the phase direction becomes negative. 

For instance the SH0 mode has a cusp at 0.1 MHz but not at either 0.5 or 1.1MHz. Another 

example can be pointed out for the S0 mode that has no cusps at 0.1 MHz and 1.1 MHz and 

has one at 0.5 MHz. The presence or absence of these cusps implies arrival or vanishing of the

inflexion points on the slowness surfaces at these frequencies, as shown in Fig.(1.5).

The influence of anisotropy, which entails the angular dispersion and affects the frequency 

dispersion is visible on all Lamb modes displayed in Figs.(1.11, 1.12). The frequency 

dependence of slowness surfaces of the guided modes and the associated wave surfaces will 

be studied in detail in Chapter 3, when dealing with the Lamb mode properties along the 

direction of energy propagation.

As it has been done for phase quantities, it is possible to summarise the dispersions of the 

group velocity with a 3D view of a mode, shown in Figs.(1.13, 1.14). These figures are

displayed in cylindrical coordinates, as for the previous 3D plots. For the two top plots of

these figures, the polar modulus represents the modulus of the group velocity, the elevation 

the frequency and the azimuthal angle is the phase angle. All iso-frequency cuts have the 

same colour scale. The interpretation of the 3D group velocity plot is however more intricate. 

It is indeed necessary to bear in mind that the polar angle is the phase direction. To have the 

complete information, the 3D view of the steering angle is necessary. For the two bottom

plots of Figs.(1.13, 1.14), the axes are in Cartesian coordinates, with labelled axes. The two 

principal axes that are the 0 and the 90 degrees direction are clearly visible since there is no 

steering in these directions. The group velocity of one point of the phase dispersion curve 
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// , ,S

,

 picked on Fig.(1.6) is completely defined by taking the elevation of the point 

in the top plots of either Fig.(1.13) or (1.14), and the associated , ,  point on the 

associated bottom plots, i.e. the modulus and the steering angle of the group velocity 

respectively.
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Figure 1.11: Wave surface cuts of the Lamb modes at 0.1 and 0.5 MHz. The horizontal axis 

represents the 0 degree direction (direction of the carbon-epoxy fibres in this case).

Accordingly the vertical axis represents the direction perpendicular to the fibres (the plane of

visualisation is the azimuthal plane). The left and right hand side plots concern respectively 

the symmetric and the anti-symmetric modes. The wave surface represents the wave energy 

front of a guided mode in the unidirectional carbon-epoxy plate.
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Figure 1.12: Wave surface cuts of the Lamb modes at 1.1 MHz. The horizontal axis represents 

the 0 degree direction (direction of the carbon-epoxy fibres in this case). Accordingly the

vertical axis represents the direction perpendicular to the fibres (the plane of visualisation is 

the azimuthal plane). The left and right hand side plots concern respectively the symmetric

and the anti-symmetric modes. The wave surface represents the wave energy front of a guided 

mode in the unidirectional carbon-epoxy plate. 
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Figure 1.13: 3D view of the energy (group) velocity (above) and steering angle (below) for

the A0 branch. For the energy velocity plot, the azimuthal angle is the phase front direction in 

degrees, the elevation is the frequency in MHz and the polar radius is the group velocity 

modulus in mm/µs. For the steering angle plot, axes are denoted in the figure. 
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the S0 branch. For the energy velocity plot, the azimuthal angle is the phase front direction in

degrees, the elevation is the frequency in MHz and the polar radius is the group velocity 

modulus in mm/µs. For the steering angle plot, axes are denoted in the figure. 
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1.5 Conclusion 

This first chapter presented the theoretical background concerned with the propagation 

properties of the Lamb modes in elastic anisotropic materials. The detailed derivation exposed 

in this chapter aimed to introduce the notations for the following chapters as well as to

describe the approach exploited in this work.

Properties concerning phase as well as group quantities have been described and illustrated 

through the example of a unidirectional carbon-epoxy plate. Both angular and frequential 

dispersion have been taken into account in the description of the energy velocity. It has been

demonstrated that the knowledge of a Lamb mode can be displayed using 3D plots, revealing 

the dependence on both the frequency and the phase front direction.

The complexity of the group velocity of Lamb modes propagating in anisotropic media has

been emphasised with the interpretation of the 3D view of group velocity dispersion and its 

associated steering angle. Even though this information is useful when exciting a chosen 

phase direction, it is not suitable for the inverse case when the energy direction is chosen from 

the beginning. This point is going to be detailed in Chapter 3, concerned with the properties of 

Lamb modes along the observation direction. 

Moreover, the effects of anisotropy on phase and group velocities have been described, in the 

case of a purely elastic material. The natural next step is to study the more general case of a 

visco-elastic anisotropic material. The validity of the equations derived for the elastic case are 

discussed in the next chapter.
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Chapter 2 

Lamb waves in viscoelastic anisotropic plates 

2.1 Introduction 

Whilst the first chapter was focused on the purely elastic case and reviewed the basics of 

guided mode propagation, this part of the thesis puts the emphasis on viscoelastic materials. A 

purely elastic material is indeed a simplification of the physical reality. There always exist 

phenomena acting in the process of wave propagation which induce energy losses and 

therefore affect the amplitude of the particle motion. In composite materials specifically, such

as carbon or glass fibre-reinforced epoxy resins, the fibres act as scatterers for the bulk 

acoustic waves. Moreover, the composite matrix material is responsible for the viscous 

damping that causes the absorption of some of the wave energy (Auld, B.A., 1973; Chandra,

R., Singh, S.P. et al., 1999; Biwa, S., Watanabe, Y. et al., 2001). On top of these phenomena,

beam spreading occurs. For guided modes, losses due to beam spreading are lower than for 

the waves propagating in an infinite medium. The geometrical structure, usually a cylinder or 

a plate, guides the waves so that the losses due to diffraction are small compared to the losses

caused by the absorption.

In this chapter the attention centres on the latter type of attenuation. The attenuation of the 

Lamb modes in composite plates is significant and affects their measurability after a

propagation over a long distance. For the development of NDT methods using guided waves, 

it is essential to know about the properties consequent to the material viscosity. But so far, the 

studies of all researchers of Lamb waves in composites have depended on the assumption of

elastic materials, mainly because of the limitations of the current modelling tools and the 

difficulty to obtain the complete viscoelastic tensor of the material under investigation. This

lack of works taking the material viscosity into account stresses the need for such a study. 

In the first section the wave modelling is described, i.e. the usual mathematical formulation of 
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the slowness taking the attenuation into account. Then the viscoelastic medium is studied 

using most common rheological models. Their influence on the wave propagation and 

attenuation is described as well. In this section, the characterisation using conventional

techniques of a unidirectional carbon-epoxy panel is described. The Lamb wave formulation 

in this particular case is then compared with the purely elastic case, and differences are 

explained and illustrated. The attenuation of Lamb modes is described in the same way as the 

phase velocity, i.e. with frequential and spatial dispersion plots. 

2.2 Wave modelling 

The waves propagating in a viscoelastic medium are losing some energy, so there is a need for

a term to represent this attenuation. The choice of a complex slowness vector is classical and 

is described as follows (Carcione, J.M., Cavallini,  F., 1995): 

(2.1)
// // //

,i=S S S

where
//

S  and S  stand for the propagation term (real part of the slowness vector) and for 

the damping term (imaginary part of the slowness vector) respectively. The propagation term 

is related to the phase velocity V  of the wave in the same way as for the elastic case:

//

ph

//

1
.

ph

S
V

(2.2)

The damping term is related to the wave attenuation //k  (imaginary part of the in-plane wave

vector) through the relation: 

//
//

,=
k

S (2.3)

where  is assumed to be real. These two components of the complex slowness vector can be 

collinear or not, in accordance with the homogeneous or heterogeneous model of the wave 

solution, respectively. There is no assumption made here on the homogeneity of the waves. In 

the implementation,
//

S  and S  are two collinear vectors, as displayed in Fig.(2.1). If the

waves are homogeneous, then S  stands for the total damping term. If they are 

heterogeneous, this term stands for the projection of the total damping term onto the phase 

direction.

//

//
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Figure 2.1: Complex slowness vector.

2.3 Material damping models 

Two models are often used to describe absorbing media. One of them expresses the dynamic

behaviour of the hysteresis shaped stress-strain relationship by means of the complex

viscoelastic tensor C   (Lakes, R.S., 1999). *
ijkl

(2.4)* ,ijkl ijkl ijklC C i C= +

where  and C are the real and imaginary part of the viscoelastic tensor. In this

hysteretic model, the imaginary part of each viscoelastic constant does not depend on the 

frequency. In contrast, the Kelvin-Voigt model (Rose, J.L., 1999) assumes a linear 

dependence of C  on the frequency. 

ijklC ijkl

ijkl

(2.5),ijkl ijklC =

where  is the viscosity tensor. When used in the equation of motion, the first model has 

lesser consequences on the implementation. Compared to a non-absorbing propagation model,

the only modification is that the viscoelastic tensor becomes complex. All derivations using 

formerly the real elastic tensor remain the same with this viscoelastic model. On the other

hand, the effect of the Kelvin-Voigt model, bringing about the frequency dependence of the

tensor , is more drastic, the imaginary part of the viscoelasticity tensor being re-

calculated at each frequency.

ijkl

*
ijklC

The impact of both models has been thoroughly investigated. From the Christoffel equation, 

the attenuation of bulk waves, assuming C  , can be expressed as a function of the 

complex C  (Auld, B.A., 1973; Hosten, B., Deschamps, M. et al., 1987). It appears that the 

attenuation is proportional to the frequency times the imaginary part of the viscoelastic tensor. 

It is obvious from Eqs.(2.4 and 2.5) that the attenuation of bulk waves, being the loss per unit 

distance travelled, is a linear function of the frequency in the case of the hysteretic model and

ijkl ijklC<<
*
ijkl

___________________________________________________________________________

40



a quadratic function of the frequency in the case of the Kelvin-Voigt model.

Materials used in this study have been characterised using interferometry methods, at a given 

frequency. For that particular frequency, the attenuation in either model must therefore be the

same. As seen in Fig.(2.2), this point constitutes the reference point for both viscoelastic

models. Further away from this characterisation frequency, differences in attenuation 

predicted by the two models increase in the measure of the linear and the quadratic functions

of the frequency. Thus, from a practical point of view, the difference between the models

matters only if the working frequency is very different from the characterisation frequency. 

Bearing in mind that the attenuation plots shown in Fig.(2.2) concern bulk waves, it is

expected that similar differences will be obtained for the attenuation of Lamb waves. This

matter is discussed in the derivation of Lamb waves in lossy and anisotropic plates.

The materials used in this work have been characterised using conventional ultrasonic

interferometry methods (Castaings, M., Hosten, B. et al., 2000). In this process, a small

sample of the unidirectional carbon-epoxy is immersed into water. Signals going through the 

sample are compared with signals travelling in the water only, for several incidence angles.

Bulk waves velocities are measured for each configuration.
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Figure 2.2: Comparison between the hysteretic model (solid line) and the Kelvin-Voigt model 

(dotted line). The arbitrary material is characterized at 1 MHz. The figure represents the 

attenuation per meter of a bulk mode using the two rheological models, as a function of the 

frequency.
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11 14.00C 11 0.28C

12 6.40C 12 0.60C

13 6.80C 13 0.25C

22 86.60C 22 7.50C

23 9.00C 23 0.30C

33 13.50C 33 0.60C

44 4.70C 44 0.28C

55 2.72C 55 0.10C

66 4.06C 66 0.12C

Table 2.3: Viscoelastic components of the unidirectional carbon-epoxy panel. All quantities 

are given in GPa. The material density is 1.56 g.cm-3. The thickness of the sample is 3.6 mm.

Characterisation frequency is 2 MHz (*). Axes are those described in Chapter 1. e  is the

normal to the plate and e  is the direction of the fibres.
1

2

Using an inverse problem formulation on the recorded information, it is possible to get back

to the real and imaginary part of the viscoelastic tensor of the material. This has been 

performed on the Carbon-epoxy panel and the results are shown in Table (2.3).

The hysteretic model has proved to be more frequently used in composites NDE literature,

reviewed in (Lakes, R.S., 1999). Rheological models have been discussed in (Leymarie, N.,

Aristégui, C. et al., 2002; Leymarie, N., Aristégui, C. et al., 2002) and further investigations 

on the material behaviour are under development. Some authors choose the attenuation law

depending on the nature of modes: attenuation of the longitudinal modes manifests a different

dependence on the frequency than that of the shear modes (Szabo, T.L. and Wu, J., 2000).

Even though the characterisation of specifically the viscoelastic materials is partly an issue

and a possible application of this work, it is not the primary topic of this study. It suffices to 

mention that the theoretical framework developed for describing the propagation properties of 

the Lamb modes in viscoelastic anisotropic materials can adapt to any rheological model. For

clarity, the choice is made to use the hysteretic model.

(*) the author is thankful to Dr. M. Castaings for his help on material characterisation.
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2.4 Attenuation of Lamb modes 

In the case of viscoelastic materials, the expressions for the Lamb determinant and its

derivatives remain the same, except that the variable  is now a complex quantity. Roots are 

therefore complex as well, and constitute the propagation and damping terms of the searched

solution. A particular feature of the Newton-Raphson algorithm is that it is working the same

way for both real and complex variables, as long as all computed functions are holomorphic 

functions of a complex variable. In other words , on solving Eq.(1.16), a mode is now 

characterized not only by its phase velocity as a function of the frequency, as in the purely 

elastic case, but also by the dependence of its attenuation on the frequency.

//
S

As seen on Fig.(2.4), the attenuation of the guided modes does not follow an explicit 

mathematical function. It is mode shape and frequency dependent. Large and sudden 

increases in attenuation are connected to the mode shapes changing with the frequency. For 

example, the S0 mode, which is essentially compressional at low frequencies, has a very low 

attenuation in this range of the spectrum. As the frequency increases its displacement gets 

more and more out of plane and its attenuation changes drastically. Most of the modes follow 

this pattern. Their attenuation is strongly related also to the phase velocity dispersion: the 

greater the frequential dispersion is, the larger is the change of attenuation. As the frequency 

tends to infinity, the Lamb modes converge to bulk solutions. Accordingly, their attenuation 

become a linear function of the frequency. Focusing on the behaviour of the S2 mode in Fig. 

(2.4), it can be seen that in the vicinity of its former cut-off frequency (former = in the non-

absorbing case), the attenuation is very high and decreases  along with the dispersion when 

the frequency raises. Further away in the frequency range (around 1.2 MHz), the attenuation 

increases again, along with the dispersion of the phase velocity.

A noteworthy point is the fact that there are no cut-off frequencies of the guided wave 

dispersion curves any longer. Event though it is not evident from Fig.(2.4), all modes start at 

zero frequency, like the S1 mode. The scale is not large enough to observe all the dispersion

curves of the guided modes going back to zero frequency and velocity. The former

propagating mode solutions (S  real), are extended for values of the frequency lower than 

their cut-off frequency in highly attenuated or purely imaginary (non-propagating) solutions. 
//

When the viscosity of the material is small, it has very little effect on the value of the phase 

velocity. Even so, some modes that were distinct in the purely elastic case become connected 

with each other in the absorbing case. However, this connection is actually true for the phase 

velocity only (linked to the real part of the slowness), whereas the attenuations of two 

“crossing” modes are different. Since a mode is completely defined by the quadruplet 

// //, , ,S S , there is therefore no crossing of guided modes. The same phenomenon has

___________________________________________________________________________

43



been observed in the isotropic case by (Bernard, A., Deschamps, M. et al., 1999). For an 

illustration, some computations have been performed for the unidirectional Carbon-epoxy

plate, and results are shown in Fig.(2.4).
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Figure 2.4: Lamb mode dispersion and attenuation for a 60 degrees phase direction, for the 

3.6 mm thick carbon-epoxy plate. The first row displays phase velocity (mm/µs) as a function 

of the frequency (MHz), for symmetric and anti-symmetric modes respectively. The second 

row displays their associated attenuation (Np/m) as a function of the frequency (Hysteretic 

model).

As said in the previous section, the rheological model affects drastically the value of 

attenuation of wave modes. Assuming the same rheological models as in Fig.(2.2), the 

attenuation prediction for the Lamb modes is described by the following pattern: far below the 

characterisation frequency, the Kelvin-Voigt model gives a substantially lower attenuation 
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than the hysteretic model, at the characterisation frequency both models imply the same

attenuation, and above this frequency the Kelvin-Voigt model provides a much larger 

attenuation than the hysteretic model.

In Fig.(2.5), the dispersions of phase velocity are compared with and without attenuation. The

phenomenon of modes “crossing” described above applies for this case. For the 20 degrees 

phase direction, the S0 mode in the attenuative case is a combination of the S0 and S1 modes

existing for the purely elastic case.
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Figure 2.5: Mode connections. For 20 and 60 degrees phase direction (left and right hand 

side plots respectively), the Lamb modes dispersion curves are plotted in solid lines and 

labelled for the absorbing case, for the 3.6 mm thick carbon-epoxy plate (Hysteretic model). 

The modes displayed using dotted lines represent the Lamb modes in the purely elastic case.

It can be seen as well that the absorbing S2 mode at 20 degrees (left plot) is a confluence of 

the purely elastic S2, S3 and S4 modes. The same observation can be made for the 60 degrees 

phase direction (right plot), where the absorbing S2 mode is an arrangement of purely elastic 

S2 and S3 mode fragments.

In addition to the dependence on the frequency, there is a well-pronounced angular 

dependence in the case of lossy anisotropic media. Like the phase velocity, the attenuation

also varies with respect to the direction of the phase front. An illustration of this dependence

is given in Fig.(2.6) for several frequencies.
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Figure 2.6: Attenuation of Lamb modes in polar coordinates, for the 3.6 mm thick carbon-

epoxy plate (hysteretic model). The first row displays attenuation  of the fundamental Lamb 

modes at 0.1 MHz. The second row displays attenuation of symmetric and anti-symmetric 

guided modes at 0.5 MHz, respectively on the left and right hand side of the figure.

On these polar plots representing the in-plane attenuation of Lamb modes as a function of the 

phase direction, it can be seen that the attenuation is affected by the anisotropy of the 

material. For instance at low frequency (0.1 MHz), the S0 mode – mainly compressional at 

this frequency – is less attenuated in the direction of the fibres than in the 90 degrees 

direction, which is consistent with its mode shape. A similar comment can be made about the 

A0 mode at the same frequency (when it is a bending mode) for which the attenuation is lower

at 0 than at 90 degrees. At low frequency, i.e. with relatively simple mode shapes, this
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behaviour can be taken as a general rule. In the unidirectional carbon-epoxy example, the 

fibres act as a guide at 0 degree, whereas they act as scatterers in the perpendicular direction. 

This rule does not apply anymore at higher frequencies, with more complicated mode shapes.

To have a glance of all dependencies of the attenuation of one Lamb mode, the 3D view is 

again a useful tool. The attenuation of A0 and S0 are shown, respectively on top and bottom of 

Fig.(2.7), in cylindrical coordinates, and are naturally associated with 3D views of A0 and S0

phase velocity. These latter plots are however not displayed because of their similarity to

Fig.(1.6) of Chapter 1.

In the absorbing case, a mode is characterised by both the real and imaginary part of its 

slowness, at given frequency and phase front direction. The reading of Fig.(2.7) follows the 

same rule as the other previously displayed 3D views. The in-plane coordinates are polar, i.e.

the polar modulus stands for the attenuation and the azimuthal angle as the phase direction. 

The elevation is the frequency, just as in the other 3D plots. What has been shown with 2D

polar plots is also visible in these figures; the attenuation of the A0 mode is substantially 

higher in the 90 degrees direction than along the fibres. The dependence of its attenuation is 

rather smooth both with the frequency and the phase direction. For the S0 mode however, the 

behaviour is not so straightforward. At low frequency it is more attenuated at 90 than at 0

degree, but when the frequency increases the variation of attenuation in high dispersion zones 

becomes steeper than for the A0 mode.

2.5 Conclusion 

This chapter summed up the modifications induced by the viscoelasticity on the phase 

velocity and attenuation. It has been seen that the viscosity causes very little changes to the 

magnitude of the phase velocity of the guided modes. However, the remarkable phenomenon

of mode connections may be encountered for anisotropic absorbing plates.

The dependence of the attenuation of guided modes with the frequency is naturally strongly 

affected by the choice of a rheological model.

For simplicity and to follow the trend of many authors working on composites, the choice has 

been made to use the hysteretic model, where C  does not depend on the frequency. 

Nevertheless, it is to be noted that all the development carried out in this work is applicable to 

any rheological model.

ijkl

Similarly to the guided modes velocities for the non-absorbing case, the attenuation is shown 

in 3D plots, highlighting its dependence on both the frequency and the phase direction.
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Figure 2.7: 3D view of the attenuation of A0 (top figure) and S0 (bottom figure), for the 3.6 

mm thick carbon-epoxy plate. The coordinate system is cylindrical: the polar modulus is the 

attenuation (Np/m), the azimuthal angle is the phase direction (degrees), and the elevation is 

the frequency (MHz).
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This chapter encompasses therefore the properties of Lamb modes caused jointly by the 

anisotropy and the viscoelasticity of the insonified material.

A limitation, reserved in this part, is that the phase velocity and attenuation have only been 

described; consequences of the viscosity on the group and energy velocity of guided modes

have not been investigated yet. This more general subject is the topic of the next chapter.
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Chapter 3 

Energy velocity and attenuation along the ray 
direction

3.1 Introduction 

Lamb waves are attractive for the non destructive testing industry. They can propagate in 

many materials for which quality control or the knowledge of the material properties is 

needed (Lowe, M.J.S. and Cawley, P., 1994; Challis, R.E., Bork, U. et al., 1996; Ghosh, T., 

Kundu, T. et al., 1998; Kundu, T., Maji, A. et al., 1998; Bonnin, A., Huchon, R. et al., 1999; 

Lowe, M.J.S. and Diligent, O., 2001). With conventional ultrasound techniques the scanning 

of a large structure is very long and tedious. The advantage of the guided waves is that they 

can propagate over large distances, thus reducing the time of the structure scan. The aim of an 

industrial application of Lamb waves is therefore to make a fast scan of large structures, 

spotting roughly the defect zones. A complementary conventional scan should then be

performed in the area determined by the fast guided wave scan, if more precision is needed.

The prerequisite for this task is the knowledge of all the propagation properties of the Lamb

waves.

In some cases, it is possible to use Lamb modes knowing their phase information only. With

the spectrum method (Sachse, W. and Pao, Y.-H., 1978; Castaings, M. and Hosten, B., 2001),

the experimental phase velocity dispersion curves can be gained, performing several adjacent

measurements with the receiving transducer. The change in phase between two adjacent

measurements is expressed by the phase of the transfer function, which is defined by the 

Fourier transform of one signal divided by the Fourier transform of its adjacent one. Knowing 

the distance between the two measurement points  and the change in phase , the 

phase velocity can be deduced using the following relation:

x

2 .ph

f xV = (3.1)
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Performing this routine automatically for several frequencies, it is possible to obtain

experimental phase velocity dispersion curves and therefore to infer information on the plate

integrity.

There are however many cases when dealing with dispersive waves requires not only the 

knowledge of their phase quantities but also of their energy quantities. In a point source- point 

receiver configuration for instance, with measurement at a single location, the received signal 

contains explicitly the energy information and is measured in an observation direction that is

the ray direction or the energy direction. In the non-absorbing case, the group velocity is equal 

to the energy velocity, see Chapter 1. However with viscoelasticity taken into account, the 

definition of the group velocity in viscoelastic media becomes obscure. Even a choice for an 

approximate definition poses difficulty. The derivative of the angular frequency with respect 

to the real part? To the imaginary part? To the modulus of the wave vector? None of these 

would be rigorously meaningful. The first suggestion is however often used as an 

approximation of the group velocity; see discussion about this in (Bernard, A., Deschamps,

M. et al., 1999). At the same time, the definition of the energy velocity is physically clear: it is 

the ratio of the averaged Poynting vector and the total energy density of the system, in other 

words the velocity of the energy travelling across the plate section. Moreover, as shown in 

(Bernard, A., Deschamps, M. et al., 1999), the comparison between the approximation of the

group velocity, the energy velocity and experimental measurements concludes that the

approximation of the group velocity is only valid when the attenuation is relatively small,

whereas the energy velocity of the guided modes propagating in a viscoelastic medium is in

accordance with the measurements.

The aim of the forthcoming study is to bring understanding to a new topic: the energy velocity 

and attenuation dispersions of a guided mode in the direction of observation. Some interesting

analytical features of these quantities are investigated. This chapter consists of three sections. 

In the first one, all the energy terms are described and the complex Poynting vector is defined. 

The energy velocity is derived from the complex Poynting vector. In the second section the 

scalar product of S  and the energy velocity vector is derived and the resulting terms are

interpreted. This section intends to elucidate the attenuation of guided modes in their energy 

direction, as opposed to the phase attenuation or simply the attenuation in the previous chapter

(Caroll, N.L., Humphrey, V.F. et al., 2002). Finally, in the third section the concept of

frequential dispersion of both the energy velocity and the attenuation along the observation 

direction is introduced. As has been illustrated in the first chapters, the energy velocity 

dispersion curves need to be linked to the dispersion of their associated steering angle. It is

believed that the display of these dispersions for a given energy direction which is presented 

here is novel. In contrast, the usual group velocity dispersion plots displayed in the literature 

are computed for a given phase front direction. 

//
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3.2 Energy contributions 

As said earlier, the viscoelastic tensor has complex components. Hence the stress tensor can 

be decomposed into two contributions: the elasticity stress  and the viscosity stress tensor 

 (where e stands for elastic and d for dissipation). 

e
ij

d
ij

(3.2)

,

,

.

e d
ij ij ij

e
ij ijkl kl

d
ij ijkl kl

i

C

C

= +

=

=

In consequence, the potential energy e  and the dissipation energy e  densities for time-

harmonic waves, can be expressed in terms of the complex formulation. The energy carried

by a wave is indeed the average in time of the product of two sinusoidal quantities. This 

product can be expressed using the conjugate of one of the two associated complex terms.

Taking into account the fact that products  and  are real (Royer, D. and Dieulesaint,

E., 1996), the time-averaged energy densities can be expressed as: 

p d

*e
ij ij

*d
ij ij

*

*

1 ,
4
1 ,
4

e
p ij ijt

d
ij ijd t

e

e

=

=
(3.3)

where t  stands for the average over a time period, and  for the complex conjugate. The 

mean kinetic energy density is given by: 

*

*1 .
4 i ik t

e V= V (3.4)

With regards to the Lamb waves, these averaged energy densities can be integrated over the 

thickness of the plate to obtain the spatially averaged energy terms. Let E  be the averaged

energy in time and in space: 
n

/2

1/2

1 ,
h

n n th
E e

h

+
= dx (3.5)

where  designates the type of energy ( . Let us introduce the local complex 

Poynting vector, according to (Auld, B.A., 1973): 

n ), ,n p d k=

*1 ,
2i t

P = ij jV (3.6)

The in-plane projection of the power flow is define as: 
/2

1// ///2

1 ,
h

h
dx

h

+
= P (3.7)

where  is the real part of the in-plane component of the complex Poynting vector. This 

quantity represents the energy flow carried along the energy direction, in the azimuthal plane. 
//

P
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From these power-flow and energy quantities, the energy velocity is defined as the following

ratio:

// ,e
p kE E

=
+

V (3.8)

It is to be noted that this quantity is real and represents the speed at which the energy is

carried by a guided mode in an anisotropic absorbing plate. This definition is physically clear 

in terms of energy contributions, as opposed to the group velocity in such a case. In practical 

terms, this is the velocity that is going to be measured in the experimental illustration. The 

description of the energy propagation is however incomplete, since this term does not take

into account the energy attenuation. The study of the attenuation of guided modes along the 

energy direction is the topic of the next section. 

3.3 Energy attenuation of guided modes 

The derivation of this section is largely based on theory from (Auld, B.A., 1973; Royer, D. 

and Dieulesaint, E., 1996) dealing with the case of a piezoelectric purely elastic wave guide, 

and from (Carcione, J.M., Cavallini,  F., 1993) in the case of viscoelastic bulk modes. The 

aim of the derivation is to determine the scalar product of the energy velocity vector with the 

complex slowness vector, in the case of a viscoelastic anisotropic wave guide. As will be seen 

later, the physical interpretation of the involved terms casts light on the properties of the 

attenuation of guided modes in viscoelastic plates. Manipulating the equation of motion

Eq.(1.2) leads to the the following relation:

*
1,1// //

. 2
2 i ik t

ie V= +S P . (3.9)

The derivation to find Eq.(3.9) is detailed hereafter. First we note that multiplying Eq.(1.2) by

 leads to: *
iV

* *
, 4i ij j i i k t

V i VV i e= = .

i

 (3.10) 

The left hand side term can be expanded this way. 

 (3.11) 

( )

( )

* *
, 1 1 2 2 3 3

* * * *
, 1 1 2 2 3 3

* *
, 1 1 2 2 3 3

* *
, 1 1 // //

;

;

2 ;

2 ,

i ij j i i i i

i ij j i i ii i

i ij j i i

i ij j i i

V V ik ik

V V ik V ik V

V V i k P k P

V V i

=

=
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= + k P

which, according to Eq.(3.10), leads to,: 
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*
1 1// //

2 4 i ik t
i i e V=k P .  (3.12) 

On expressing the wave vector as a function of the slowness vector Eq.(3.9) is obtained. On 

the other hand, the strain-displacement relationship can be time-derived to get: 

(3.13), .ij i ji V=

Multiplying this equation by  gives: *
ij

*
1 ,1// //

. 2 2
2p i idt t

ie i e V= +S P * .  (3.14) 

The relation (3.14) is obtained through the following steps. 

( )** *
,

* * *
,

*
,

;

;

4 4 ;

e d
ij i j ij ij ij ij ij

e d
ij i j ij ij ij ij

pij i j dt t

V i i i

V i

V i e e
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);
i V

 (3.15) 

Expanding the left hand side term of the last expression leads to: 

 (3.16) (

* * * *
, 1 1 2 2 3 3

* *
, 1 1 2 2 3 3

* * *
, 1 1 // //

;

2

2 . ,

ij i j i i ii i

ij i j ii

ij i j ii
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V V i

=
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= + k P

which gives: 
*

1 1// //
2 . 4 4p iidt t
i e i e i= +k P * .V  (3.17) 

Applying one more time the relation between the wave vector and the slowness vector, gives 

Eq.(3.14).

Adding Eqs.(3.14) and (3.9) leads to: 

// //
. ,p k dtt t t

e e e i e i e= +S P
l t

 (3.18) 

where

( )*
1,1 1,1

1 Im  and .
2 2i i lt t

e V e= *1P=  (3.19) 

The energy term
t

e  can be understood, in the case of Lamb waves, as a dispersive energy,

and l t
e  as the complex contribution of the leakage into the outside medium. These local 

equations can be integrated over the thickness of the wave guide. In the case of a plate in

vacuum, that is to say in the case of a wave propagating without any loss due to leakage, the 

integration of  over the thickness is zero. Integrating Eq.(3.18) over the thickness gives: 1,1P

//
. 1e

p k

E
E E

=
+

S V , (3.20)

and
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// .V d
e

p k

E

E E
S .

1

(3.21)

Eqs.(3.20) and (3.21) define respectively the projections of the phase slowness and the 

attenuation onto the energy velocity. Eq.(3.20) recalls the relation S V , which is valid

in the case of non-dispersive waves, as illustrated in Fig.(3.1). Let  be the projection of the 

phase slowness vector S  onto the energy direction and  be the inverse of the energy

velocity modulus; then this relation can be written as: 

//
. e =

enS

// eS

(3.22),
ee nS S=

As illustrated in Fig.(3.2), the phase fronts, separated by the phase wavelength  define a 

wavelength  in the direction of observation. The time needed to cover these two distances

is the same, as expressed by the following relation:

//

en

(3.23)
// //
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Figure 3.1 : Phase and energy slowness and velocity projection for non-dispersive plane 

waves. n  is the phase direction, n  is the energy direction.
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Figure 3.2 : Phase front (dotted lines) defining a wavelength along the energy direction  .en

In the case of the Lamb waves, Eq.(3.22) is modified by a dispersive energy component to 

form Eq.(3.20). This interpretation of  can be approached using an analogy with the non-

absorbing case. In this case, the group velocity is rigorously equal to the energy velocity, and

Eq.(1.31) is verified. The right hand side of

E

Eq.(1.32), that reads for the non-absorbing case

only, refers to a frequential dispersion component. The analogy with Eq.(3.20) illustrates the
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interpretation of E  as a contribution responsible for frequential dispersion. Moreover the

following relation, obtained from Eq.(3.20), relates  to a characteristic of  the dispersion,

i.e. the difference between phase and energy velocities.

E

//

.

k

V E

E E+

//n

en

ee n
ES S = (3.24)

Indeed for dispersive waves, these two quantities are different, as seen in Fig.(3.3) illustrated

by a grey zone between the slownesses along the energy direction, and the label . In the

principal directions where no angular dispersion is present, it can be seen that the difference

between the phase and energy velocity is completely expressed by the term

S

E  and the in-

plane power flow. This difference between slownesses can be expressed in velocities as well,

illustrated by the grey zone and the label  along the phase direction n  in Fig.(3.3). V
//

//

//
//

,n
p

V V = (3.25)

where V  is the projection of the energy velocity onto the phase direction and V  is the

phase velocity modulus.
//n //

enS

//
n

eC

//
S

C
//

V

eS

V

S

Figure 3.3: Phase and energy slowness and velocity projections for dispersive guided waves. 

 is the difference between the projection of the energy velocity onto the phase direction

and the phase velocity. Accordingly, is the difference between the projection of the phase 

slowness onto the energy direction and the energy slowness. 

V
S

From Eq.(3.21), the projection of the phase attenuation onto the energy direction reads: 

//
//

. d
e

E
=k n , (3.26)

The term  is indeed expressed in [J.mdE -1], it represents the dissipation energy per unit 

distance of the wave guide. The power flow  is expressed in [J.s
//

-1] and the frequency in

[Hz]. The dimension of this ratio is therefore in [m-1], consistent with an attenuation per unit 
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distance. Eq.(3.26) shows the physical meaning of the projection of the phase attenuation 

along the ray direction (direction of the energy). This projection is equal to the ratio of the 

viscous dissipation energy to the average power flow in the azimuthal plane and therefore 

corresponds to the displacement field attenuation, along the energy direction (Deschamps, M. 

and Assouline, F., 1999). This quantity can be expressed as well in Nepers per wavelength

which is obtained in multiplying the attenuation per unit distance by the wavelength. Using

Eq.(3.23), the same attenuation in Nepers per wavelength may be referred to in the phase or in

the energy direction, see Fig.(3.4). The attenuation along the ray direction is indeed obtained 

by multiplying the phase attenuation by the cosine of the steering angle whereas the

wavelength in the energy direction is equal to the phase wavelength  divided by the same

cosine.

en

//
n

//
S

enS
enS

//
S

Figure 3.4: Projection of the phase slowness along the energy direction.  is the deviation 

angle.

In this section, it has been seen that all guided mode properties appear differently whether the

observer is in the phase or in the energy direction. Coming back to the point-source / point-

receiver configuration, the point source is expected to excite modes in every phase directions, 

and the receiver is reading the energy information taking into account all the eventually 

different phase contributions. This matter is going to be illustrated in the next section, where 

the focus is put on the understanding of the direction of observation of guided modes in 

anisotropic media.

3.4 Lamb mode properties along the observation direction

As said earlier in Section 1.3, displaying the modulus of the energy velocity in a non-principal 

direction of an anisotropic media is an incomplete description. In Chapter 1, it has been 

explained and illustrated that those plots also need the associated steering angle. In this 

section, it is proposed to reverse the visualisation type, i.e. to represent the energy velocity 
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dispersion in a chosen observation direction, whereas the phase velocity is to be displayed in 

modulus as a function of the frequency. To have the corresponding phase direction, the 

associated steering angle plot is still needed. The aim of such a visualisation is to get closer to

a point-source - point-receiver experimental configuration, in which case the measured

quantities are indeed the energy velocity and attenuation. This type of visualisation is useful

in anisotropic media since quantities measured in a given direction might have been steered 

from a different phase direction. Moreover, in a cusp region, there is more than one signal 

received for the same mode at the same frequency. This is precisely what has been developed 

in this section.

The energy velocity of guided modes is calculated for a chosen observation direction. To the

best of the author’s knowledge, such a computation is novel. The principle of the calculation 

is as follows. From a dispersion curve of one Lamb mode (phase velocity as a function of the

frequency) in a given phase direction, the slowness and wave surfaces are calculated at each 

frequency, using the classical dispersion plot values as initialisation. This information

contains the direction of energy as well, or the direction of observation. At this point, phase 

directions (there can be more than one in a cusp region) corresponding to the chosen 

observation direction are searched on the slowness surface. For these particular phase 

directions, all quantities of the mode are calculated, i.e. the energy and the phase velocity,

steering angle, phase and energy attenuation. This operation is then automatically repeated for 

the whole frequency range under consideration. This gives rise to multi-valued dispersion

curves as opposed to the classical single-valued dispersion plots. An illustration of these 

calculations has been performed for guided modes SH0, S0, A0, A1, S1 and S2, in the example

carbon-epoxy plate. In Fig.(3.5), their energy velocity dispersion is represented in the 50 

degrees direction of observation.

As seen in Fig.(3.5), the energy velocity dispersion for most of the guided modes does 

alternate between single-valued and multi-valued curve types. This reveals the frequency-

dependent arrival and vanishing of cusp of the wave surface in a sector enclosing the chosen 

direction. Looking at the S0 mode for instance, it appears that there is no cusp until the

frequency 0.4 MHz, then a cusp shows up in the 50 degrees direction, since there are three 

phase directions and velocities steering energy into the given direction of observation.

This cusp stays in this direction until the frequency 1.02 MHz, at which it moves away from 

the chosen observation direction. These features are summed up in Fig.(3.6), displaying 

waves surfaces of the S0 mode for several frequencies.

In this figure, it can be seen that at 0.4 MHz, the intersection between the 50 degrees direction

line and the S0 wave surface does occur at three points. These three intersections predict the 

three different arrival times, which should be picked up experimentally.

___________________________________________________________________________

58



1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.5 1 1.5 2

E
n

er
gy

 v
e

lo
ci

ty
(m

m
/µ

s)

Frequency (MHz)

1

1.5

2

2.5

3

0 0.5 1 1.5 2

E
n

er
gy

 v
e

lo
ci

ty
(m

m
/µ

s)

Frequency (MHz)

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 0.5 1 1.5 2

E
ne

rg
y 

ve
lo

ci
ty

(m
m

/µ
s)

Frequency (MHz)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.5 1 1.5 2

E
ne

rg
y 

ve
lo

ci
ty

(m
m

/µ
s)

Frequency (MHz)

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

E
ne

rg
y 

ve
lo

ci
ty

(m
m

/µ
s)

Frequency (MHz)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.5 1 1.5 2

E
ne

rg
y 

ve
lo

ci
ty

(m
m

/µ
s)

Frequency (MHz)

RV

RV

0 modeA

1 modeS 2 modeS

1 modeA

0 modeSH 0 modeS

RV

Figure 3.5: Energy velocity dispersion in the 50 degrees observation direction. SH0, S0, A0,

A1, S1 and S2 modes. Plate is unidirectional carbon-epoxy, with material properties given in 

Table(2.3).
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Figure 3.6: Azimuthal cuts of the wave surfaces of the S0 mode at several frequencies. The 50 

degrees direction is shown by the straight line. There is no cusp in this direction until 0.4 

MHz, and then the cusp appears, remains present for a frequency bandwidth and disappears 

at 1.02 MHz.

In other words these three intersections correspond to three values of energy velocity of the S0

mode, travelling in the same energy direction, despite the fact they have three different phase 

directions and velocities.

As opposed to non dispersive wave surfaces, for which the cusp of the shear mode is sharp 

(Every, A.G., Kim, K.Y. et al., 1997), it is observed in Fig.(3.6) that the shape of the waves 

surfaces of the S0 mode is smooth. The frequency dispersion component, defined in the 

previous section, soften the energy focusing region.

For frequencies between 0.4 and 1.02 MHz, there are still three intersections between wave

surfaces of S0 and the 50 degrees direction line, indicating the cusp presence within this

frequency range. 

At 1.02 MHz, only two intersections are observed. As seen in Fig.(3.6), it corresponds to a 

cusp tangent to the 50 degrees direction line. At higher frequency, the cusp still exists, but 

shifts away toward the 90 degrees direction. This behaviour is in accordance with Fig.(3.5)

where the S0 energy velocity dispersion in the 50 degrees direction becomes single-valued, 

after being multi-valued in the frequency range 0.4-1.02 MHz.

Similar conclusions can be inferred for the other modes displayed in Fig.(3.5). The general

rule is that a single-valued dispersion zone means only one phase direction and velocity 
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steering in the chosen observation direction , while a multi-valued dispersion zone of the 

energy velocity corresponds to several phase directions and velocities aligned along ,

thereby revealing a cusp region including the chosen observation direction. 

The energy velocity plots may be complemented by the diagrams for the other quantities 

characterising a mode. The method to calculate the phase velocity, attenuation, steering and 

phase angle referred to a given observation direction, has been explained above. These 

complementary plots are given for the fundamental modes A0, SH0 and S0 in Figs.(3.7), (3.8) 

and (3.9) respectively. They represent a modulus versus frequency dependence. Note that the 

phase direction, referred to a fixed energy direction (the direction of observation) does indeed 

vary due to the frequency dispersion. This variation should be recovered from the phase 

direction plots, also presented below. In turn, concerning the attenuation, the plots display the 

attenuation of the phase projected on the energy direction. This quantity has been studied in 

the previous section and has been found to correspond physically to the energy attenuation, 

see Eq.(3.26). In Figs.(3.7), (3.8) showing the SH0 and the S0 mode, it appears difficult to 

distinguish the different attenuations per unit distance associated to different phase directions. 

The distinction between them is however much clearer if the attenuation value is displayed in

Nepers per wavelength. Once more, it is to be noted that for all curves, the transition from

multi-valued to single-valued zone or reciprocally, reveals the arrival and vanishing of the

cusp area embracing the given direction of observation. Similar comments can be made on 

any quantity displayed for the A0, SH0, and S0 modes. 

Consider the properties of the SH0 mode, see Fig.(3.7). At low frequency, the difference

between the phase directions steering in the same energy direction of 50 degrees is striking. 

The extent of the cusp area is very large.

According to the phase direction plot (top right), the phase directions steering in the 50 

degrees direction at low frequency are roughly 32, 73 and 86 degrees, that is, the steering 

angles are +18, -23 and –36 degrees, respectively. Looking at the phase velocity curve (top 

left plot), it can be observed that the moduli of the different phase direction velocities are

indeed distinct in the cusp zone.

Note in passing that it is the SH0 mode (see mode labelling in Chapter 1) which tends to the 

Rayleigh energy velocity, along with A0 at high frequency.

Similar analysis can be applied to the S0 mode shown in Fig.(3.8). From this figure and 

Fig.(3.6), it is seen that, at low frequency, there is no cusp at all on the S0 wave surface 

(contrary to the SH0 mode). However, a cusp enclosing the observation direction evolves at a 

higher frequency and then it closes up with further frequency increase. 

Consider the A0 mode. Inspecting Fig.(3.9), it is seen that there are no cusps of the energy

velocity for this branch within the frequency range examined.
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Figure 3.7:Frequential dispersion of the parameters of the SH0 mode, whose energy travels 

along the 50 degrees observation direction. The phase velocity dispersion is displayed in plot 

( )1 , the phase direction dependence on the frequency is displayed in ( )2 , the attenuation per

meter and per wavelength are respectively shown by plots ( )3  and ( )4 .
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Figure 3.8: Frequential dispersion of the parameters of the S0 mode, whose energy travels 

along the 50 degrees observation direction. The phase velocity dispersion is displayed in plot 

( )1 , the phase direction dependence on the frequency is displayed in ( )2 , the attenuation per

meter and per wavelength are respectively shown by plots ( )3  and ( )4 .
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Figure 3.9: Frequential dispersion of the parameters of the A0 mode, whose energy travels 

along the 50 degrees observation direction. The phase velocity dispersion is displayed in plot 

( )1 , the phase direction dependence on the frequency is displayed in ( )2 , the attenuation per

meter and per wavelength are respectively shown by plots ( )3  and ( )4 .

In conclusion, we display the joint locus of the energy velocities, steering along the given 50 

degrees observation direction, by the set of the considered modes SH0, S0, A0, A1, S1 and S2,

in Fig.(3.10). This figure emphasises the complexity of the dispersion along the energy 
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direction. Even though only six modes are displayed, it can be seen that, at some frequencies 

(e.g.  0.77 MHz), there are up to twelve energy velocities along the 50 degrees direction.
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Figure 3.10: SH0, S0, A0, A1, S1 and S2 energy velocity versus frequency for the 50 degrees

direction of observation, in the unidirectional carbon-epoxy plate.
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Figure 3.11: The Rayleigh slowness surface and wave surface in the carbon-epoxy material. 

At 50 degrees, direction indicated by the solid line, the energy velocity of the Rayleigh wave is 

1.36 mm.µs-1.
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For this material the Rayleigh wave surface, displayed in Fig.(3.11) does not contain cusps. 

Therefore, below the bulk wave threshold, there is only one limit to which the energy velocity 

of the fundamental Lamb modes converges (Shuvalov, A.L., 2002). From Fig.(3.10), it can be 

seen that the A0 and the SH0 energy velocities in the direction 50 degrees approach the 

Rayleigh limit.

Another interesting point is that the energy velocities of all other modes in Fig.(3.10) must

tend to the bulk velocity limits, as for the phase velocity dispersion curves. In order to observe

this convergence towards the bulk velocity limits, the wave surface of the S0 mode (that does 

not tend to the Rayleigh velocity) has been calculated at 5 MHz (18 MHz.mm). Results are 

displayed in Fig.(3.12), along with the bulk velocity wave surfaces. It is observed that the S0 

mode converges towards the slow transverse (ST) bulk mode, and that it does this for all

energy directions at 5 MHz.
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Figure 3.12: Bulk and S0 wave surfaces of the carbon-epoxy plate, for which the material 

constants are given in Table (2.3). Left hand side plot: the non dispersive bulk modes are 

displayed using solid lines, labeled T1 for the slow transverse mode, T2 for the fast transverse

and L for the longitudinal mode. Right hand side plot: the S0 wave surface at 5 MHz is 

displayed using empty squares and compared with the T1 wave surface. The straight line 

indicates the 50 degrees direction.

3.5 Calculations along the energy direction, alternative example 

The aim of this section is to extend the study of the energy velocity of guided modes to 

another anisotropic material. The copper-like material has been chosen with the elasticity 

tensor displayed in Table (3.14). A particular feature of this material is a cuspidal shape of the 
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Rayleigh wave surface. In the 10 degrees direction, 5 distinct energy velocities of the 

Rayleigh wave can be observed, as illustrated by Fig.(3.15). Note in passing that the wave

surface is not symmetrical. This is due to the fact that the considered material is not cubic,

even though very similar to this symmetry. This feature emphasizes the strong dependence of 

the wave surface with the material properties.

Calculations have been performed up to 3.5 MHz for a 3.6 mm thick plate (12.6 MHz.mm) so 

that the limit of the guided modes can be observed. As expected, computations displayed in 

Figs.(3.16 and 3.17) illustrate that the energy velocities of the fundamental A0 and SH0 modes

converge towards the Rayleigh energy velocities when the frequency tends to infinity. The 

limit of the S0 mode, not reached at 3.5 MHz in Fig.(3.18), has been approached in calculating

its wave surface at a higher frequency (9.55 MHz, corresponding to a frequency thickness 

product of 34.38 MHz.mm). As expected, its velocity tends to the bulk energy velocity. 

However, the limit is not reached for all directions. The convergence for all angles of

observation is expected at higher frequency.
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Figure 3.13: Bulk and S0 wave surfaces of the copper plate, for which the material constants

are given in Table (3.14). Left hand side plot: the non dispersive bulk modes are displayed 

using solid lines, labeled T1 and T2 for the transverse modes and L for the longitudinal mode. 

Right hand side plot: the S0 wave surface at 9.55 MHz is displayed using empty squares and 

compared with the T1 wave surface. The straight line indicates the 10 degrees direction.

Concerning the A0 mode displayed in Fig.(3.16), the dispersion of its energy velocity in the 

10 degrees direction varies from a single-valued to a multi-valued curve.
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Table 3.14: Copper-like material elastic constants, in GPa. 
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Figure 3.15: Rayleigh slowness (top left plot) and wave surfaces (top right plot) for the 

copper-like material. The straight line represents the 10 degrees direction. The bottom plot is 

a zoom of the wave surface around the 10 degrees direction, zone labeled “A” in the top right 

plot. The five values of Rayleigh energy velocities are reported.
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Figure 3.16: A0 mode properties in the direction 10 degrees of a copper-like material, for 

which the properties are given in Table (3.14). The energy velocity dispersion is displayed in 

plot ( )1 , the dependence of the phase velocity on the frequency is shown in plot ( )3 , and the 

dispersions of the steering angle and the phase direction are displayed respectively in plots 

( )2  and ( )4 .

In these figures, complementary diagrams for the phase direction and the steering angle (their 

sum provides the direction of observation) are displayed for completeness, so that a reader can 

use one or the other type of visualization to interpret the deviation between phase and energy 

directions.
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For the SH0 mode at low frequency, shown in Fig.(3.17), comments are very similar to the 

carbon-epoxy case, but at high frequency, there are 5 energy velocities tending to the 

Rayleigh energy velocities, in accordance with the Rayleigh wave surface in the 10 degrees 

direction.
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Figure 3.17: SH0 mode properties in the direction 10 degrees of a copper-like material, for 

which the properties are given in Table (3.14). The energy velocity dispersion is displayed in 

plot ( )1 , the dependence of the phase velocity on the frequency is shown in plot ( )3 , and the 

dispersions of the steering angle and the phase direction are displayed respectively in plots 

( )2  and ( )4 .

A specific phenomenon is manifested by the S0 mode: two branches can arise and disappear, 

forming a closed curve identified by the label “A”, as seen between 1.3 and 1.6 MHz in

Fig.(3.18). For a given frequency, two new phase front directions steering in the observation 
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direction arise. What has not been seen yet is that these two directions merge at a higher 

frequency and cease together to steer in the chosen direction. This can be geometrically 

interpreted by the merging of two inflexion points of the associated slowness surface slice,

occurring when the frequency increases.
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Figure 3.18: S0 mode properties in the direction 10 degrees of a copper-like material, for 

which the properties are given in Table (3.14). The energy velocity dispersion is displayed in 

plot ( )1 , the dependence of the phase velocity on the frequency is shown in plot ( )3 , and the 

dispersions of the steering angle and the phase direction are displayed respectively in plots 

( )2  and ( )4 . The close curve zone is labeled “A”. 
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It is also noteworthy that the S0 energy velocity exhibits the most intricate behaviour in 

comparison with the other fundamental modes in this material. In particular, there can be up 

to seven S0 phase front directions steering in the 10 degrees direction of observation. A 

detailed description of this phenomenon happening around the frequency of 1.25 MHz is 

brought by wave surfaces of this mode shown in Fig.(3.19).

Displaying all the computed modes in one plot (see Fig.(3.20)) illustrates once again the 

complexity of the dispersion curves. Note that, in a small bandwidth around the 0.34 MHz 

frequency, the energy velocities curves of the S0 and the SH0 modes intersect, see zone 

labelled “A”, zoomed in plot ( )1  of Fig.(3.21). In order to confirm that this feature is not 

caused by a mode jump in the calculations, wave surfaces are displayed around the critical 

frequency of 0.34 MHz (for 0.338 and 0.345 MHz) in plot ( )2  of Fig.(3.21).

It is observed that the variations of these wave surfaces are consistent with the calculated

dispersion of energy velocity in the 10 degrees direction. The variations of S0 and SH0 wave

surfaces with the frequency are indeed very steep in this frequency region.

At the same time, we recall that the phase velocity dispersion curves cannot intersect, due to 

coupling (see Chapter 1), under the given conditions (non principal direction and no 

viscosity). A complementary phase dispersion plot is displayed to highlight the behaviour of

the phase velocity in the vicinity of the energy velocities crossing (in Fig.(3.20), see plot ( )3
and its zoom in plot ( )4 ). From these plots, it is possible to identify the phase direction that

steer in the 10 degrees direction. This direction, which corresponds to the crossing of the SH0

and S0 energy velocities, has been found to be equal to 0.1 degree. The phase velocity 

dispersion in this particular direction has been calculated for the S0 and SH0 modes. As

expected, these two modes exhibit a region where they are very close in velocity but do not 

cross (see zone labelled “B” in plot ( )4 ), due to coupling (see Chapter 1). 

3.6 Conclusion 

In this chapter, a new feature has been put forward, which is displaying mode characteristics

in a chosen observation (or energy) direction. The appropriate algorithm, proceeding from a 

fixed reference observation direction, has been implemented. This approach is essential for

the point source – point receiver experimental configuration, which is of great importance for

many practical applications. The obtained results represent multi-valued dispersion curves 

instead of the classical single-valued curves, thus revealing the presence of a cusp on the 

wave (energy velocity) surface. In particular, it was shown that a frequency dependent

cuspidal form of the wave surface is a fairly common feature of the Lamb modes in 

anisotropic plates. It is evident that a prerequisite for a correct interpretation of the 

experimental data is the knowledge of how many arrival times will be detected in a given 
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direction and at a given frequency. This kind of information is delivered by the developed 

approach. Among other properties of the guided modes, their attenuation in the observation 

direction has been described.
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Figure 3.19: S0 wave surfaces at frequencies for which successively 3, 5 and 7 phase

directions steer in the 10 degrees direction, for the copper-like material. Left plot 

( )1 represents the wave surfaces of the S0 mode for 1.20, 1.25 and 1.30 MHz. Right plot ( )2 is

a zoom of the zone labelled “A” in the left plot. The straight line stands for the 10 degrees 

direction.

Figure 3.20: Energy velocity of the fundamental modes in the copper-like material 

propagating in the 10 degrees direction. Dotted straight lines represent the 5 Rayleigh energy

velocities.
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Figure 3.21: The top left plot ( )1  zooms the energy velocity dispersion of Fig.(3.18) around 

the intersection of the SH0 and S0 energy velocities. The top right plot ( )2  shows the wave 

surfaces of these modes, for the two frequencies marked by straight lines in plot ( )1 . In this

plot, solid lines represent the S0 mode, and dotted lines the SH0 mode. The straight line 

indicates the 10 degrees direction. The bottom left plot ( )3  displays their associated phase

dispersion at a phase angle that steers in the 10 degrees direction. The bottom right plot ( )4
zooms the dispersions of these two modes.

Through the derivation of the involved energy terms and velocity, it has been shown that the 

projection of the phase attenuation onto the associated energy direction corresponds to a ratio 

of the dissipation energy to the total energy, which is physically meaningful.
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These properties have been illustrated by theoretical calculations for the unidirectional 

carbon-epoxy plate and for a copper-like material. Computations for fundamental and higher 

order modes have given plentiful examples of cusp frequential dispersion. The next chapter

deals with the experimental observation of the described phenomena, for unidirectional glass 

and carbon-epoxy plates. 
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Chapter 4 

Experimental illustration 

4.1 Introduction 

Lamb waves are the subject of much applied research relating to the inspection of plate 

structures. They are used to test adhesively bonded components (Seifried, R., Jacobs, L.J. et 

al., 2002), for long range inspection of large structure (Cawley, P. and Alleyne, D., 1996), for 

the detection of delaminations (Tan, K.S., Guo, N. et al., 1995) or for material

characterisation (Safaeinili, A., Lobkis, O.I. et al., 1996; Chimenti, D.E., 1997; Wu, T.T. and 

Liu, Y.H., 1999). The preceding discussion has brought to light different properties of the

Lamb modes, which facilitate their application for non destructive evaluation and testing.

In this Chapter, an experimental illustration of the guided mode properties in lossy orthotropic 

plate is given. Measurements concern both the energy velocity and the attenuation of the

Lamb modes. The aim is to provide experimental examples and validations of what has been 

described theoretically in the previous chapters. Bearing in mind the common difficulty of 

making ultrasound attenuation measurements, performing such experiments in an orthotropic

plate is a challenging task. It embroils the problems coming from the experimental set-up, 

from the characterisation process and from the anisotropy of the material.

Three types of experiments are presented. The first one, described in the second section, is 

carried out using a point source-point receiver configuration, for a unidirectional glass-epoxy 

plate. This experiment is made under the assumption of a purely elastic material, in order to 

illustrate the validity of the group velocity considerations described in Chapter 1.

The second experiment has two goals. One of them is the observation of the steering angle 

phenomenon (for a given direction and frequency), the other is the illustration of the phase 

attenuation of a guided mode propagating in a non-principal direction. The experimental set 

up is performed on a unidirectional carbon-epoxy panel, using a line source and point receiver 

configuration. The set up is described in the third section, along with the obtained results.
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In the fourth section, the experiment deals with measurements of the Lamb mode attenuation

and velocities for all directions, at several fixed frequencies. For such an experiment, the point

source – point receiver configuration has been applied, so that energy velocity and attenuation

could be picked up in any direction. Measurements have been achieved for the unidirectional

carbon-epoxy panel. 

The type of signals obtained for all experiments were very close, so they have been post-

processed using mostly the same tools. The changes made from one set-up to another one are 

related only to the size of the source transducers and the receiving method. The description of 

these processing tools, involving both the time of flight extraction, and the attenuation 

calculation from measured signals, is given in the first section. 

4.2 Post-processing 

The aim of this section is to describe the common post-processing of signals obtained from

different experiments. To retrieve wave and attenuation data, different techniques are 

available. In order to get the energy velocity of a mode, it is necessary to determine precisely

the time of flight of a given packet. Once the mode is recognised, it is possible to calculate its

attenuation from several amplitude measurements at different distances.

There are different ways of determining the arrival time of a mode. The most instinctive way

of looking at the data is actually to look at them in the time domain. When only a single mode

is present, and when the frequency dispersion is small, a good way is simply to take the time

corresponding to the maximum of the envelope of the signal. This can be done by taking the 

inverse Fourier transform of the Hilbert transform of the experimental signal (Max, J., 1977). 

However, in other cases, the information given by the envelope can be erroneous because of 

the presence of more than one mode or more than one single frequency in the wave packet. 

Because the envelope is calculated for the centre frequency of the toneburst, this method is

therefore approximate. For more precision, there is a need of a more powerful tool to extract 

experimental group velocity measurements. For that purpose, a wavelet post-processing

computer routine has been developed. The wavelet transform of a signal is meant to separate 

packets arriving at the same time, but composed of different frequencies. The main advantage

of the processing is to enhance the contrast of the arriving wave packets, in order to identify

them and increase the precision concerning their arrival times. The wavelet transform is 

performed using a Morlet wavelet, with its centre frequency matching the experimental centre 

frequency, in order to perform the correlation with a signal very close to the experimental

source. The wavelet transform of a function f (t) is defined as follows (Flandrin, P., 1993):
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1 *
2( , ) ( ) ( ) .t bW f b a a f t dt

a

+

=  (4.1) 

In Eq.(4.1), is the basic wavelet used for the transformation. is its complex conjugate, 

and a and b stand for dilatation and translation factors, respectively. has to satisfy two 

conditions of admissibility. The first one corresponds to finite energy condition (normalised),

and the second one imposes a zero average on the wavelet, implying some oscillations in the

wavelet function. The Morlet wavelet is defined as follows:

*

1
24

2 0
0 0

1 1( ) exp 2 .
2

tt
t t

= + i t  (4.2) 

To fit the centre frequency of the experimental source,  was fixed at the experimental

centre frequency, and to satisfy the conditions of admissibility, t  is deduced from the

condition 2 t

0

0

0 0  = 5.43 (Flandrin, P., 1993). 

These two methods are illustrated in Fig.(4.1). They have been used on experimental data. It 

appears that, in the frequency range of the experiment where the fundamental modes are not 

very dispersive, the two methods give the same results. This provides a double check of the 

measured quantities. 

There are also different ways of measuring the decay in amplitude. In the time domain, the 

amplitude of the maximum of the envelope corresponds to the amplitude of the mode. If taken

at different distances from the source, this method leads to measurements of amplitude as a 

function of the distance. These measurements can be fitted with an exponential function, 

using the least squares method for instance, see Fig.(4.2). This function is simply related to

the attenuation, and its value at a given frequency (the centre frequency of the wave packet) is 

obtained.

Repeating the same processing method for a range of several frequencies, it is possible to

obtain the attenuation of a selected mode as a function of the frequency. This approach can 

work well if signals are moderately well separated and modes are non-dispersive. The

significance of dispersion is that its accompanying modification of the shape of the signal 

envelope alters the measured amplitude, even in cases where there is no loss of energy

(Wilcox, P., Lowe, M. et al., 2001). 

Another way to look at the data is to look at them in the frequency domain, in a very similar

way as is commonly used to determine transmission or reflection coefficients (Guo, N., Lim,

M.K. et al., 1995). The closest signal to the source is set as the reference . Another signal 

taken at a larger distance from the source is then set as the transmitted signal . The ratio of

the Fourier transforms (FFT) of these signals leads directly to the reduction of amplitude as a 

function of the frequency, for a given distance.
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Figure 4.1: Velocity extraction from experimental data, using either the envelope or the 

wavelet transform.

Knowing the distance , separating the two locations of measurements, this is simply

converted to give the attenuation value

d

f  as a function of the frequency, see Fig.(4.3): 
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where  and S  are the Fourier transforms of the signals ( )0S f ( )i f ( )0 tS  and S ,

respectively.
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Figure 4.2: Attenuation extraction from experimental measurements. Amplitude of the

selected mode are recorded for each distance, then fitted with an exponential function to 

obtain the attenuation at the experimental frequency (Example measurements are done for the 

carbon-epoxy plate, 55 degrees from the direction of the fibres, at 150 kHz). 

Repeating this method for several distances, an average gives a reliable attenuation

measurement of the selected mode. In this case the attenuation is not compromised by any 

dispersion of the signal, but on the other hand it becomes even more important to have good 

separation of signals.
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Once again these two methods have been tried on the obtained experimental data, and it 

appears in these cases that they give the same results. All of the data which were processed

were for modes and frequencies where there was little frequency dispersion. 

One other issue which has not yet been discussed is the beam spreading. When a wave is 

excited from a localized source and it radiates out into the plate, energy considerations dictate 

that the amplitude must decay as the distance from the source, and thus the length of the wave 

front increases. For a point source generating the A0 mode (for example) in an isotropic plate, 

the wave front is a circle with constant amplitude at all circumferential positions, and its 

length increases linearly with the distance from the source. The energy density must then 

decrease linearly with the distance and so the displacement amplitude decreases as the square 

root of the distance.
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Figure 4.3: Attenuation extraction from experimental measurements, using ratio of spectra. 

Left hand side plot: spectra of the closest signal (solid line) and the most distant to the 

source(dotted line). Right hand side plot: Attenuation as a function of the frequency obtained 

from the ratio of the spectra, see Eq.(4.3).

In an anisotropic plate or in any circumstance in which the source has some form of 

polarization, such as the source for the SH0 mode, the spreading function may be strongly 

related to the angular position and can be complex to establish. However one useful 

characteristic is that the effect of beam spreading diminishes at long distances from the

source. Another way of viewing this is to consider that at large distances from the source the 

wave may be approximated as a plane-crested wave rather than a spherical-crested wave.

Indeed this was the assumption which was made here. Thus it is expected that the error 
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associated with beam spreading was smaller for the longer-distance locations than for the near 

locations. Nevertheless, in any case, the error associated with beam spreading is unlikely to be

significant compared to that due to the uncertainties of the measured material constants. 

4.3 Non-absorbing case: group velocity and frequential dispersion 

Recalling the first chapter, it has been seen that group and phase velocities of guided modes

are different. This difference comes from both spatial and frequential terms. The aim of the 

experiment presented in this section is to illustrate the group velocity formula of Eq.(1.27), 

that gives the group velocity of Lamb modes in anisotropic media.

Source

Receiving transducer

Measurement line
step = 1°

di
st

an
ce

=
10

cm

Figure 4.4: Experimental set-up. A fixed point source transducer is used as the source. The 

point source receiver describes a quarter of a circle around the source. 

The experimental set up is briefly described in Fig.(4.4). The emitting transducer is a point-

transducer developed by (Evans, M., Webster, J.R. et al., 2000) that remains still during the 

measurements. The signal, which is sent to the emitting transducer (Macro Design Ltd, U.), is

a 5 cycles sinusoidal shaped signal, modulated by a Hanning window. The receiver, which is 

identical, is plugged to an amplifier and an oscilloscope (Lecroy 9410), linked with an IEEE 

card to a computer for data recording and post-processing. These transducers are lying on an 

unidirectional Glass-epoxy plate (30×30 cm), whose properties are given in Table.(4.5).

Measurements were performed at each degree from the direction of the fibres to its

perpendicular.

For every direction, the envelope and the wavelet transform have been calculated to extract 

group velocities of the excited modes. Associating a grey scale coefficient to each amplitude 
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of the envelope, each signal can be represented by a grey scaled straight line as a function of 

the time.
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Table 4.5: Cij table for the unidirectional glass-epoxy panel, used for the calculations. The 

whole elasticity tensor is given in GPa.
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Figure 4.6: Experimental results for group slowness of Lamb modes in glass-epoxy plate. Left 

hand side plot ( )1 : grey scale image interpolation of measurements envelopes and associated 

maximum values (solid discs). Right hand side plot ( )2 : group slowness of Lamb modes 

present at 0.3 MHz. Solid and dotted line represent the theoretical prediction, empty discs are 

experimental measurements. For both plots the horizontal axis represents the direction of the 

fibres.

Dividing the time values by the distance between the two transducers, one can visualise the 

Lamb wave slowness fronts. This has been performed using an interpolated image of the 

measurement lines, displayed in Fig.(4.6( )1 ). On top of this image the extracted slownesses

have been overlaid. 
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Bearing in mind that the characterisation of anisotropic material is a difficult matter, the 

confidence interval of the elasticity components is rather large. The reader has to be aware 

that the material’s C  have been slightly adjusted in order to fit experimental measurements

in principal directions. Thus the glass-epoxy constants have been modified to provide the best 

fit to the measurements of the A

ij

0 and S0 modes at 0 and 90 degrees. The original C  set

issued from the characterisation process is displayed in Table (4.7) along with its modification

in percentage. In accordance with the characterisation method, the set of in-plane components

of the elasticity tensor is the least reliable and therefore the one which needs the greatest

adjustments to match fundamental mode velocities in principal directions. Thus C C

and  are the most affected components. The rest of the characterisation remains in a 10% 

confidence interval.

ij

13, ,22 23C

44C

9.8% 9.9% 23.9% 0 0 0

17.7 % 11.0% 0 0 0

9.5% 0 0 0

14.0% 0 0

1.5% 0

3.2%

11 12 13

22 23

33

44

55

66

19.71 8.68 9.86 0 0 0

50.45 8.60 0 0 0

21.44 0 0 0

5.70 0 0

5.13 0

5.79

C C C

C C

C

C

C

C

Table 4.7: Material constants in GPa issued from the characterisation procedure at 1 MHz 

(Castaings, M. and Hosten, B., 2000)  (top table), associated modification (bottom table).

The experimental measurements are then compared with theoretical prediction using 

Eqs.(1.27-1.29). The results are displayed in Fig.(4.6( )2 ). Note that points whose slowness

were greater than the slowest mode (A0) have been discarded. The plate used was only 30×30

cm and multiple reflections from edges occurred during the experiment. Points with a greater

slowness than A0 are therefore understood as edge reflections of other modes and cannot be 

compared with the computed prediction. Now aware of all post experiment procedures, the 

obtained results can be discussed. 
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As seen in Fig.(4.6( )2 ) the agreement for the A0 and S0 group slowness is excellent for all 

directions. Concerning the SH0 mode however, measurements do not agree with theoretical

computations. Due to the excitation and receiving method (the point transducers work

predominantly with out of plane motions), this mode has not been well generated in all 

directions and its amplitude is much lower than the S0 one. The mode shape of SH0 being in-

plane in principal directions, it makes sense not to try to observe it at 0 and 90 degrees with

this experimental set up. In non-principal directions however, its mode shape becomes more

complicated and involves some out of plane components. But negating this advantage for its 

detection, its velocity becomes closer to the S0 velocity and the interferences induced by this 

proximity make the separation between these two modes difficult. As seen on Fig.(4.6( )2 )

points measured around the SH0 cusp zone are the result of this phenomenon. Moreover it can 

pointed out that despite the fact that the material has been considered non-absorbing for the

calculations, there is some absorption occurring.
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Figure 4.8: Slowness and wave surfaces of Lamb modes in the Glass-epoxy plate at 0.3 MHz. 

The horizontal axis represents the direction of the fibres. 

It is expected that the attenuation is stronger in the direction perpendicular to the fibres. In 

accordance with this remark, more unwanted reflections and interferences are observed in the 

0 degree direction rather than in the 90 degrees direction, where the attenuation is so high that

the amplitude of edge reflections are not detected. Looking at the A1 mode in Fig.(4.6( )2 ), it

is believed that this mode is not observed experimentally. Some experimental measurements

are very close to this mode slowness but they are actually S0 edge reflection measurements.

These experimental data illustrate the group velocity formula for guided modes in an 

anisotropic plate (see Chapter 1, section 1.4, Eq.(1.27)). In this formula, the dispersion terms
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can be emphasised by comparing the slowness and the wave surfaces of the Lamb modes

displayed in Fig.(4.8). The group velocity formula includes both angular and frequency

dispersion contributions. In principal directions, where there is no spatial dispersion and the 

energy and the phase travel in the same direction, the magnitudes of the group and the phase 

velocity differ. This difference is therefore due solely to the frequential dispersion. In

Fig.(4.8) the distinct phase and group slownesses of A1 for instance illustrate this feature.

This experimental illustration of the computation of the energy velocity of the guided modes,

which has been carried out for all directions of observation, has enabled results to be 

displayed in polar coordinates. However this form of data masks the dependence of the group 

direction on the phase front direction. One goal of the following section is to concentrate on a

single mode in a particular phase direction and to measure its associated steering angle. 

Moreover, the viscosity of the material has not been taken into account yet, so the second goal

of the next experiment is to illustrate the attenuation of a single Lamb mode in an absorbing 

anisotropic plate. 

4.4 Steering angle and phase attenuation

As mentioned above, the present experiment aims to excite a single guided mode at a 

particular phase front direction and to take viscosity into account. For these purposes, a panel 

bigger than the previous one is appropriate. The Lamb modes can indeed propagate over long 

distances and amplitude measurements over a long range are better suited for attenuation 

evaluation. Thus a large panel of unidirectional carbon-epoxy material has been prepared. Its 

dimension are 1.14 by 0.94 m, its thickness is 3.6 mm. The plate was constructed at the 

Department of Aeronautics at Imperial College, from 24 pre-preg plies in parallel alignment.

The material was supplied by S.P.Systems (material reference: Pre-preg 

SE84HT/HEC/150/400/35%+or- 3% ; Order code: PC53-1051). The viscoelasticity tensor of 

this plate has been evaluated using a smaller sample of the same material and is displayed in 

Table (2.3), (Castaings, M. and Hosten, B., 2000; Castaings, M., Hosten, B. et al., 2000). 

A classic method used in ultrasonics for Lamb wave propagation is to have two transducers 

coupled to the sample as described in the previous section. One works as an emitter, the other

as a receiver. This method is very efficient for the measurement of the velocity of guided 

modes, which is achieved simply by taking two measurements with different separation 

distances. However, it is not very suitable for attenuation measurements because of the

variability of the coupling conditions when the transducer is positioned on the plate. It is

difficult to have a constant coupling with any kind of contact method. The contact between 

the transducer and the plate can change (improve) with the time, and therefore raise the 

amplitude of the received signal. For a gel-coupled transducer, it is obvious that the coupling
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is dependent on the temperature of the gel and the extent to which it may have dried out, as 

well as the contact layer thickness and the solid contact with any surface asperities. These 

problems can be improved with a rigorous experimental protocol, but cannot be avoided. 

Furthermore, regardless of the kind of transducer, the Lamb waves spread as they travel along

the plate, and this in itself reduces their amplitude, even in the absence of material

attenuation. Clearly it is therefore very difficult to obtain measurements of the attenuation due 

to the material damping.

The problem can be minimised by keeping one of the transducers in contact in the same

position throughout the duration of the experiments, while moving the other. This is the

approach which was undertaken. For the moving transducer (the receiver), a laser

interferometer sensor was used (POLYTEC). The laser measurements do not depend at all on 

coupling with the plate.

Source

Measurement lines

30 cm

5 cm
20o

Figure 4.9: Experimental set-up. The line source is fixed to the panel. A laser interferometer 

is used to perform measurements along the dotted lines. Horizontal lines represent the fibres 

direction.

However, there is still a significant difficulty in that the sensitivity of the laser sensor is very 

much lower than that of a conventional piezoelectric transducer. This required a great deal of 

effort in maximizing the signal from the transmitting transducer and in setting up of both the 

emitter and the receiver. To get the most of the laser interferometer, a reflective tape has been

used on the measurements spots. Fortunately it was still possible to make a good number of 

measurements, but this issue of sensitivity was a limiting factor in the range of what could be 

measured. The experimental set up is illustrated in Fig.(4.9). The line source is oriented with a

20 degrees angle with the fibres direction (0 degree). Measurements are performed every half 

centimetre at respectively 30, 35 and 40 cm away from the source. 
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Another issue is to find a source that can send approximately a plane guided wave in a 

particular direction. To play this role, a row of nine piezoelectric discs (1 mm thick and 10 

mm wide each, from Morgan Matroc) has been utilised. The signal, which is sent to the

source via a wave generator (Macro Design Ltd, U.), is a 5 cycles sinusoidal shaped signal,

modulated by a Hanning window. Its directivity has been evaluated on an isotropic aluminium

plate with the same experimental set up. The source was positioned in the 0 degree direction. 

Measurements were performed every centimetre, 35 centimetre away from the source, using

the same interferometer as in the previous section.
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Figure 4.10: Directivity of the line source on aluminium plate (left hand side plot ( )1 ) after a 

propagation over 30 cm,  and steering angle on Carbon-epoxy plate (right hand side plot ( )2 )

at 50 kHz. All amplitudes have been normalised by the highest value of the received signals. 

The A0 mode was identified using its energy velocity and its envelope amplitude was

measured for several frequencies and displayed as a function of the direction of the

observation. It appears on the left plot of Fig.(4.10( )1 ) that the line source can excite the A0

mode in a chosen direction within 2 degrees of uncertainty. Moreover it can be seen that

phase and energy travel in the same direction. Having illustrated the diffraction pattern

associated to the A0 mode in aluminium, results of the experiment on the carbon-epoxy panel 

can be interpreted. In Fig.(4.10( )2 ) the envelope amplitude of the A0 mode excited at 50 kHz 

is displayed as a function of the direction of observation, for the three distances described 

above. The peak of amplitude is observed in the 7 degrees direction for all measurement lines,
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implying the 13 degrees steering angle since the main phase excitation direction is 20 degrees. 

This value is to be compared with the predicted steering angle which is 11 degrees. The 

discrepancy with the measured value is totally explained by the uncertainty of the source 

directivity. The agreement of the steering angle is therefore excellent and the phenomenon

understood and illustrated.
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Figure 4.11: Sum of signals for the three measurement lines, respectively at 30, 35 and 40 cm

away of the line source. The bottom right figure compares the computed prediction (solid 

line) with the experimentally obtained phase attenuation (lines and empty discs).

The aim of the second part of this section is to illustrate the attenuation of the A0 mode in a 

non-principal direction (20 degrees). Using the sum of the signals on each row (measurement

line described in Fig.(4.9)), it is possible to obtain a signal whose phase is close to the chosen

phase direction. When summing all the signals of one row, interferences occur. All phase 
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terms are constructive in the 20 degrees direction and destructive for the other directions. The 

resulting signal represents therefore a plane A0 mode with the desired phase direction. This

summation acts as an inverse Fourier transform of the emitted signal. Instead of summing all 

the wave number contributions to obtain the physical signal as a function of the coordinates 

and the time, the summation pulls out the wave number component corresponding to the 

chosen phase direction. In other words, the harmonic associated to the 20 degrees direction is 

extracted by the summation over the row.

This task was performed for the three distances of the experiment in order to compare their

spectrum amplitudes. To get the phase attenuation of the A0 mode, the spectrum division 

appears to be better suited than an exponential fit because of the small number of distance

measurements. The summed signals and the comparison between prediction and

measurements of the A0 phase attenuation are shown in Fig.(4.10). As expected, the amplitude

of the summation decreases with the distance. The attenuation measurement is obtained with

the spectrum ratio described in the first section of the chapter, between lines at 30 and 40 cm

away from the source. Bearing in mind that uncertainties on the imaginary parts of the 

viscoelasticity tensor are large, it is reasonable that the observed agreement between measured

and computed phase attenuation is not ideal. Moreover, the summation over the lines has not 

been carried out over infinite lines but over a finite number of measurements. However 

attenuation values in the spectrum bandwidth of the experiment (around 50 kHz) describe 

reasonably the behaviour  of the A0 mode attenuation at low frequency. 

With this experimental set up, it has been possible to observe quite precisely the beam 

deflection  phenomenon, and to recover the phase attenuation of a fundamental Lamb mode.

An interesting feature is also to evaluate the attenuation of a guided mode along its energy 

propagation direction. This is the aim of the next experiment described in the following 

section.

4.5 Attenuation and velocity along the energy direction 

As stated in the introduction to this chapter, the overall motivation is for the practical use of

guided modes in composites materials. For illustration and to see how detectable Lamb waves 

in composite are, another experimental set-up has been developed. The aim of this procedure 

is to measure the velocities and attenuations of selected guided modes in an anisotropic plate. 

The experimental program focused on the fundamental modes for a number of reasons. The 

attenuation of many of the modes is very high, in which case they are difficult or impossible 

to measure, the separation of multi-mode signals of the higher order modes is difficult, and 
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the fundamental modes remain in any case the modes of greatest practical interest for 

structural monitoring. 

A stack of two 5 mm diameter PZT discs (from Morgan Matroc) has been constructed for the 

transmitter (source). The two PZT discs were connected together electrically so that the power

was amplified compared to only one disc. The source transducer was applied at the centre of

the plate and was connected to a wave generator (Macro Design Ltd, U.). A laser 

interferometer (POLYTEC) was used as the receiver. The set up is shown in Fig.(4.12) and a 

detailed view of the source transducer is shown in Fig.(4.13).

Figure 4.12: Point source-point receiver experimental set-up. The source is fixed to the

unidirectional Carbon-epoxy panel. The laser interferometer can be moved to perform 

measurements on the 7 circle quarters described by the reflective tape spots in the picture. 

The signal, which was sent to the emitting transducer, was a 5 cycles sinusoidal shaped signal, 

modulated by a Hanning window. The laser sensor was positioned so that the focusing of the 

laser beam could be precisely adapted to the spot on which it was aiming. The source always

remained located at the same position. The measurements were made for two main

frequencies 0.1 and 0.15 MHz. During the experiments, the laser sensor was moved from 150 

mm to 300 mm away from the source, with a 25 mm step. The signal received from the laser 

sensor was visualised on an oscilloscope. Signals were then averaged before being recorded

on a computer. The number of recorded signals was thus substantial, therefore a software
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routine was developed to treat these data efficiently and reliably (see the post-processing

section).

The first thing to do before measuring attenuation was to recognise the guided modes. To 

identify a Lamb mode, the energy velocity has to be determined. Once the mode is identified, 

it is possible to follow it at several distances from the source and at different frequencies. 

Theoretical computations have been performed at the same frequencies as the experiment was

carried out. In Fig.(1.5) of Chapter 1, the slowness surfaces of the modes A0, S0 and SH0 are 

shown.

Plate

5 mm

1 mm

Out of plane motion

Out of plane motion

1e

Figure: 4.13 Schematic of the source. Its dimension are small compared to the wavelength

and the distance of propagation so that it can be assimilated to a point source. 

Having the phase slowness and attenuation, it has been possible to calculate wave surfaces 

and attenuations along the ray direction for these modes. Velocity measurements are shown in 

Fig.(4.14) at 0.1 and 0.15 MHz. Not only the agreement is good, but it is also possible to see 

the diffraction of the SH0 mode at the edge of the cusp. The accordance between predicted 

and measured energy velocity is excellent for the A0 mode.

In Fig.(4.14), for energy angles above 70° (after the cusp), there are still experimental

measurements of the SH0 velocity, interfering with S0. In the SH0 cusp area, it was also

possible to separate two or three arrival times for the same mode, but steered from different 

phase directions. 
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Figure 4.14: Experimental measurements of energy velocity and wave surfaces of 

fundamental modes. The horizontal axis represents the direction of the fibres. Shadowed 

zones correspond to 0 and 40 degrees direction, to be associated with signals displayed in 

Fig.(4.15).

-16

-12

-8

-4

0

4

8

12

16

0 50 100 150 200 250
Time (µs)

A
m

pl
itu

de
 (

ar
b

itr
a

ry
un

its
)

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250
Time (µs)

A
m

pl
itu

de
 (

ar
b

itr
a

ry
un

its
)

Figure 4.15: Experimental signals at 0.15 MHz. On the left hand side, the signal is quite 

powerful, in the 0 degree direction, 15 cm away from the source. On the right hand side, it is 

weaker and more complicated in the 40 degrees direction, 27.5 cm away from the source. 

Discs, squares and triangles denote the arrival time of A0, S0 and SH0 respectively, to be 

associated with the polar measurements of Figs.(4.14) and (4.17).
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Thus, despite the fact that only three branches of guided modes are present at 0.1 and 0.15 

MHz, five different arrival times should be seen in directions that are within the cusp range. 

This means that, whereas the experimental signal is quite simple in the fibres direction, see 

Fig.(4.15), it becomes more complex in the cusp range.

With the post-processing described earlier, it has been possible to extract four of those five 

arrival times of the signal, and therefore four velocities. They have been indicated in

Fig.(4.14). Such observations, which visualise the wave surface cusps, are well known for 

bulk waves, but believed to be novel for Lamb waves in lossy orthotropic plates. 

The rheological model which was assumed was the hysteretic model, in which the imaginary

part of the viscoelastic tensor is independent of the frequency. It appears that neither this 

model nor the Kelvin-Voigt model, described in Chapter 2, represents correctly the 

dependence of the guided mode attenuation with the frequency. The choice of the rheological

behaviour is made on a model in which the C  depend linearly by parts on the frequency. 

They are ruled by the following relation: 
ij

(4.4)( ) 0 ,ij ij ijC f C= +

where C  and  are the coefficients of the straight line representing the dependence on the 

frequency of the C . The C  have therefore been fitted, using experimental attenuation

measurements of the A

0
ij ij

ij ij

0 mode, both at 0.1 and 0.15 MHz, they are shown in Table (4.16). In 

this adjusted model, the imaginary parts of the C  depend linearly with the frequency, only 

for the considered bandwidth. Outside this region, the frequency dependence of the 

viscoelastic components is not modelled.

ij

11 11

12 12

13 13

22 22

23 23

33 33

44 44

55 55

6

0.10 MHz 0.15 MHz

0.280 0.300

0.600 0.650

0.250 0.260

7.500 7.600

0.300 0.320

0.600 0.610

0.280 0.200

0.100 0.085

f f

C C

C C

C C

C C

C C

C C

C C

C C

C 6 660.120 0.135C

Table 4.16: Frequency dependent C  of the carbon-epoxy plate, in GPa. ij
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Results concerning attenuations are presented in Fig.(4.17), for 0.1 and 0.15 MHz. For the

SH0 mode, measurements are difficult to perform. In directions close to the principal

directions, it has a small out of plane component, and is therefore not easily detectable. The 

amplitude of reception of this mode is much higher in the cusp region, but it has many arrival 

times, with different phase components. Because these components are very close in 

velocities, they interfere together and make attenuation measurements hardly possible. That is 

the reason why only a few attempts are shown in Fig.(4.17) for the SH0 mode. As regards the 

S0 mode, its amplitude was also too small or mixed with the SH0 mode to perform reliable 

measurements, see Fig.(4.15). However, for the A0 mode, which has a larger out of plane 

component than the other modes, it was possible to realize attenuation measurements.
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Figure 4.17: Experimental measurements and theoretical predictions of attenuation of 

fundamental guided modes. The horizontal axis is the direction of the fibres. Consistently with 

Figs.(4.14) and (4.15) the 0 and 40 degrees directions are shadowed.

Results agree with the projection of the phase attenuation along the ray direction, in polar 

coordinates, as seen in Fig.(4.17), and as a function of the frequency as seen in Fig.(4.18).

Fig.(4.17) shows the attenuation of A0 as a function of the frequency, along the observation 

directions 0, 35, 50 and 60 degrees respectively. These measurements demonstrate the 

dependence of the energy attenuation on the observation direction, as well as on the 

frequency.

Due to the back fitting realised on the C  set of the material, these experimental

measurements cannot be interpreted as a quantitative validation of this rheological model.
ij
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Figure 4.18: Attenuation along the observation direction for the A0 mode. Empty discs are the 

measured attenuation in Np/m and the solid lines are the predictions made using the modified 

rheological model. 

However, the adjustment concerns only the rheology of the material and does not compromise

the qualitative understanding of the attenuation of the guided waves. As a proof, once the 

behaviour of the material has been set, the attenuation measurements agree with the predicted

calculations, both as a function of the direction and the frequency. In any case, this 

experiment demonstrates that Lamb waves may offer good possibilities for characterising 

viscoelastic anisotropic materials.
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4.6 Conclusion 

In this experimental study, the focus has been put on understanding the properties of guided 

modes along the energy (observation) direction. An experimental illustration has been given

for the fundamental modes propagating in unidirectional carbon and glass-epoxy plates. 

Concerning the energy velocities, good agreement has been found for all modes at low 

frequency. The beam deviation measurements of a single Lamb mode also proved to be in 

accordance with the computed predictions. It is believed that the experimental observation of 

the cuspidal features, manifested by the SH0 plate mode, is a novelty for the Lamb waves.

This energy attenuation has been viewed as the projection of the phase attenuation onto the 

ray direction. For a point source-far field configuration, the theoretical derivation developed 

in Chapter 3, showed that this quantity is physically clear: this is the ratio of the dissipation 

energy due to viscosity and the total energy of the mode, i.e. the sum of both kinetic and 

elastic energies. Attenuation measurements have been realized for the A0 mode,

demonstrating the potential of using Lamb modes for material characterisation.

This study emphasizes the need for dispersion curves representing the energy velocity in a 

chosen observation direction rather than for a fixed phase direction. A development of this

work is viewed to be based on involving analytical dispersion curves for fundamental modes

at low frequency (Shuvalov, A.L., 2000). This would make the computation faster and also 

facilitate the inverse problem for material characterization. This method should be an efficient 

way to determine complex viscoelastic components involved in low-frequency guided modes.
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Conclusion

In this thesis, the properties of Lamb waves propagating in any direction of an orthotropic 

viscoelastic plate have been studied. The theoretical framework started with the solving of the 

dispersion equation for the purely elastic case. The derivative of the Lamb determinant was 

formulated analytically, and was shown to be valuable for the calculation of the phase 

slowness, the frequency and the phase direction, providing the numerical precision required 

for the following of a mode. Moreover, it enabled the frequency and angular dispersions of 

the phase velocity of the Lamb modes to be obtained quickly, as well as their associated group

velocity. For non-principal directions in anisotropic plates, it is well-known that the phase 

front direction differs from the direction of the energy transport. The study of the group 

velocity is therefore only complete when both the modulus and the direction are determined.

The frequency dispersion of the deviation angle has therefore been calculated and associated

to the frequency dispersion of the modulus of the group velocity. The dependence of the 

properties of the Lamb modes on the frequency and the phase direction has been summed up 

in 3D plots. 

The model was extended to take into account the viscosity of the insonified material, allowing 

the calculation of the wave attenuation caused by the material absorption. This attenuation 

depends on the frequency and on the phase front direction. A global 3D view, representing the

dependence of the attenuation on these variables was given . 

Another novelty brought by this work was the representation of the Lamb waves dispersion 

curves for the direction of observation. All the properties, i.e. the dependence on the

frequency of the phase velocity, the energy velocity, the phase attenuation, the attenuation 

along the ray direction, and the deviation angle, were represented for a chosen energy 

direction. As opposed to the display of these properties for a fixed phase direction, this 

representation enabled the frequency dependence of the cusps of the wave fronts to be 

observed.

The attenuation along the ray direction, defined as the projection of the phase attenuation 

along the chosen observation direction, was also obtained. The study of this quantity has

shown its physical interpretation: this is the ratio of the dissipation energy (caused by the
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viscosity) to the power flow carried by the Lamb wave (flow of the Poynting vector). A 

numerical application of these theoretical considerations has been achieved using the material

data of a unidirectional carbon-epoxy plate and of a copper plate.

Finally, an experimental illustration of the described properties is presented in the last chapter.

The validation of the group and energy velocity formulas (direction and modulus) is offered 

for the glass-epoxy plate. The beam skewing, predicted for the A0 mode propagating in a 

carbon-epoxy plate, has been shown to correspond to the measured values. Complementary

energy velocity measurements have been performed on the carbon-epoxy plate. The cusps of 

the SH0 wave front have been observed at low frequencies in these measurements.

Experimental measurements of the attenuation of the guided modes as a function of the 

frequency and of the phase direction is a challenging task, because of the difficulty of 

obtaining the C  constants of the material, and in particular their imaginary parts. Initially the

constants were measured using a bulk wave characterisation method. Then a rheological 

model that is valid in the experimental frequency bandwidth was chosen, and the imaginary

parts were modified to fit to a few measured data for Lamb wave attenuation. This has been 

achieved for the  A

ij

0 mode propagating at relatively low frequency in the carbon-epoxy plate. 

A valuable perspective of this work concerns the material characterisation. It has indeed been 

shown that, from a viscoelastic tensor obtained from the conventional method using bulk 

waves (at high frequency, compared to the frequency of the Lamb modes that can be easily 

detected), it is possible to refine the complex components of the tensor, and furthermore, for

several frequencies. A rheological model involving a dependence of the attenuation on the 

frequency, which is a combination of several locally valid models, could therefore be 

empirically determined. To begin with, the assumption of low frequency or small thickness 

can be made, in order to obtain an explicit analytical formulation of the dispersion of the 

fundamental Lamb modes. With such a formulation, the inversion problem for which the aim

is to obtain the constants as a function of the energy velocity, can be considered.

It is to be noted that the Lamb modes which are good candidates for easy excitation and 

propagation over large distances, are the fundamental modes at low frequency. Therefore, the 

range of NDE applications on composite structures is not restricted by this low frequency-

thickness assumption.

From a more academical point of view, the calculation of the dispersion curves for a given

energy direction can be optimised. The developed algorithm enables the computations of all

the properties of a Lamb mode for a selected energy direction, from the frequency and angular 

dispersions of the phase velocity and the phase attenuation. An interesting research topic

would be to obtain directly all the properties of the guided waves along the energy direction, 

for a faster inversion.
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Conclusion

Dans cette thèse les propriétés des ondes de Lamb se propageant dans une direction 

quelconque d’une plaque orthotrope viscoélastique ont été étudiées. L’étude théorique porte 

d’abord sur la résolution de l’équation de dispersion pour le cas purement élastique. 

L’importance de l’expression analytique des dérivées du déterminant de Lamb, en fonction de 

la lenteur de phase, de la fréquence et de la direction de phase, se révèle dans la précision 

numérique nécessaire au suivi de mode. De plus, elle permet d’obtenir rapidement les

dispersions fréquentielle et angulaire de la vitesse de phase des ondes de Lamb, ainsi que le 

calcul des vitesses de groupe associées. Pour les directions non-principales d’une plaque 

anisotrope, il est connu que la direction de phase des ondes guidées diffère de la direction du 

transport d’énergie. L’étude des vitesses de groupe n’est donc complète que si le module et la 

direction sont déterminés. La dispersion fréquentielle de l’angle de déviation a donc été 

calculé et associé à la dispersion fréquentielle du module de la vitesse de groupe. Les

variations des propriétés des ondes de Lamb avec la fréquence et la direction de phase a été 

résumée dans des graphiques en trois dimensions.

La prise en compte de la viscosité dans le matériau insonifié permet le calcul de l’atténuation

des ondes guidées causée par l’absorption du milieu. Cette atténuation dépend de la fréquence 

et de la direction de phase. Une vue globale en trois dimension des variations de l’atténuation 

avec ces paramètres est également présentée. 

Une nouveauté apporté par ce travail est la représentation de la dispersion des ondes de Lamb 

pour une direction d’observation donnée. Toutes les propriétés, à savoir l’évolution des 

vitesses de phase, vitesse d’énergie, angle de déviation, atténuation de phase, atténuation le 

long du rayon, en fonction de la fréquence, sont représentées pour une direction de 

propagation d’énergie sélectionnée. Par opposition à la considération de ces quantités pour 

une direction de phase donnée, cette représentation permet par exemple d’observer l’évolution 

fréquentielle des cornes des surfaces d’ondes et se rapproche de la configuration

expérimentale source et récepteur ponctuels. L’atténuation le long de la direction du rayon, 

définie comme la projection de l’atténuation de phase le long de la direction d’observation 

choisie, est également obtenue. L’étude de cette quantité a exhibé son sens physique: il s’agit 
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du rapport énergie de dissipation (perte due à la viscosité) sur le flux de puissance transporté 

par l’onde (flux du vecteur de Poynting). L’application numérique des ces considérations

théoriques a été réalisée sur un matériau composite de carbone-époxy unidirectionnel et un 

cristal de cuivre. 

Enfin, une illustration expérimentale des propriétés décrites est proposée dans le dernier

chapitre. La validation des formules de vitesse de groupe et d’énergie (direction et norme) est

proposée pour une plaque de verre-époxy. D’autre part, la déviation du faisceau, calculée pour

le mode A0 se propageant dans une plaque de carbone-époxy, s’est avérée correspondre aux 

mesures réalisées sur ce matériau. Des mesures complémentaires de vitesse d’énergie ont été 

réalisées sur le carbone-époxy. L’observation de cornes présentes sur la surface d’onde du

mode guidé SH0 a pu être vérifiée expérimentalement.

En ce qui concerne les mesures d’atténuation, elles ont servies à choisir un modèle

rhéologique valide dans la bande fréquentielle utilisée. A partir de ce modèle, les constantes

viscoélastiques complexes, obtenues en premier lieu par une méthode de caractérisation 

utilisant les ondes de volumes, ont été réajustées sur les mesures expérimentales. Tenant 

compte de la difficulté de telles mesures, alliant à la fois les problèmes causés par 

l’anisotropie et ceux liés aux mesures d’atténuation, quantifier l’atténuation de modes guidés 

en fonction de la fréquence et de la direction de propagation est un réel défi. Il a été relevé

pour le mode A0 se propageant à relativement basse fréquence dans le carbone-époxy. 

Une perspective importante de ce travail se situe dans le domaine de la caractérisation de 

matériau. Il a en effet été montré qu’à partir d’un tenseur de viscoélasticité obtenu par des

méthodes conventionnelles utilisant les ondes de volumes (à haute fréquence, comparé à la 

fréquence des ondes de Lamb détectables), il est possible d’utiliser les ondes guidées pour 

affiner les constantes complexes, et ce, pour plusieurs fréquences. Un modèle rhéologique 

impliquant une atténuation dépendant de la fréquence par morceaux pourrait donc être 

déterminé de façon empirique. Dans un premier temps, il est envisageable de faire

l’approximation de faible fréquence ou faible épaisseur dans le but d’avoir une expression 

analytique explicite de la dispersion des modes guidés fondamentaux, afin de pouvoir inverser

le problème et d’obtenir les constantes en fonction des vitesses d’énergie.

Il est à noter que les modes de Lamb susceptibles d’être utilisés aisément sont les modes

fondamentaux à basse fréquence. Cette approximation de faible fréquence-épaisseur 

n’apparaît donc pas restrictive quant aux applications de contrôle non-destructif. 

Sur un plan plus fondamental, il semble intéressant de se concentrer sur l’obtention des 

courbes de dispersion pour une direction d’énergie choisie. L’algorithme développé calcule 

toutes les propriétés des ondes de Lamb pour une direction d’observation, à partir des 

dispersions fréquentielle et angulaire de la vitesse et l’atténuation de phase. L’obtention 

directe des paramètres des ondes guidées selon la direction d’énergie est un thème de

recherche intéressant pour une inversion plus rapide.
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Ondes de Lamb dans des plaques anisotropes viscoélastiques: étude des 
fronts d’onde et atténuation 

Résumé
Les propriétés de la propagation des ondes de Lamb en milieu anisotrope viscoélastique sont 
étudiées. Les variations de la vitesse de phase, de l’atténuation, de la vitesse d’énergie et de la 
déviation de faisceau sont décrites en fonction de la fréquence et de la direction de 
propagation du front de phase. Les considérations énergétiques prises en compte permettent 
d’étudier plus précisément la propagation de l’énergie des modes de Lamb. Ainsi, les courbes 
de dispersion ne sont plus décrites pour une direction de phase imposée, mais selon la 
direction d’observation. L’atténuation des ondes guidées le long du rayon est également 
détaillée. Une illustration expérimentale des propriétés décrites (vitesses de phase et 
d’énergie, angle de déviation, atténuation) est apportée en prenant l’exemple de plaques de 
carbone-époxy unidirectionnels, ainsi que de verre-époxy unidirectionnels. 

Mots clés: Ondes de Lamb, anisotrope, viscoélastique, propagation de l’énergie, 
atténuation. 

Lamb waves in anisotropic viscoelastic plates: study of the wave fronts and 
attenuation

Abstract
The properties of the Lamb waves propagating in viscoelastic anisotropic media are studied.  
The dependences of the phase velocity, the attenuation, the energy velocity, and the beam 
deviation on the frequency and on the phase front direction are described. The energy 
considerations taken into account enable a more precise study of the energy propagation of 
the Lamb modes. Thus, the dispersion curves are not plotted any longer for a given phase 
front direction, but for a chosen observation direction. The attenuation of the guided waves 
along the ray direction is also detailed. An experimental illustration of the described  
properties (energy and phase velocities, skewing angle, attenuation) is carried out on 
unidirectional carbon-epoxy  and glass-epoxy plates. 

Keywords: Lamb waves, anisotropic, viscoelastic, energy propagation, attenuation. 
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