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Résumé 
L’acide gamma aminobutyrique (GABA) étant le principal neurotransmetteur inhibiteur du 
cerveau, il joue un rôle clé dans la modulation de nombreux processus physiologiques et 
psychologiques. Il existe deux classes de récepteurs GABAergiques : les récepteurs 
GABAergiques ionotropiques, comprenant les récepteurs GABAA et GABAC, et les 
récepteurs GABAergiques metabotropiques, incluant uniquement les récepteurs GABAB. Les 
récepteurs GABAB sont des hétérodimères composés de deux sous-unités, la sous-unité 
GABAB(1) et la sous-unité GABAB(2). La présence de chacune de ces sous-unités est requise 
pour que le récepteur soit fonctionnel. De nombreuses études ont montré que les récepteurs 
GABAB étaient impliqués dans de nombreuses psychopathologies, comme l’anxiété, la 
dépression et l’addiction. Le but de la présente thèse a été d’examiner, chez l’animal, la 
contribution des récepteurs GABAB dans ces trois différentes pathologies, prenant avantage 
du récent développement de souris transgéniques GABAB(1) et GABAB(2) knock-out et d’un 
modulateur positif allostérique du récepteur GABAB (GS39783). 
Dans la première partie de notre travail, nous avons montré que l’ablation du gêne codant 
l’une ou l’autre de ces sous-unités abolissait l’hypothermie induite par le deux GABAB
agoniste (baclofen, GHB). Ces résultas confirment que l’hétérodimérisation de ces deux sous-
unités est nécessaire au bon fonctionnement du récepteur GABAB.
La seconde partie de notre étude avait pour but d’examiner le rôle des récepteurs GABAB
dans l’anxiété. Pour cela, nous avons évalué l’impact de l’inactivation du gène codant pour 
l’une des deux sous-unités du récepteur GABAB dans des modèles animaux d’anxiété. Nous 
avons ainsi observé que les souris GABAB(1)

-/- et GABAB(2)
-/- présentaient un phénotype 

hyper-anxieux et étaient insensibles à l’action d’anxiolytiques tels que les benzodiazépines. 
Afin de confirmer la contribution de l’hétérodimère GABAB dans l’anxiété, nous avons 
examiné les effets du GS39783 dans ces mêmes tests. Ainsi, nous avons mis en évidence que 
le GS39783 possédait des propriétés anxiolytiques. Etant donné que ces modulateurs 
allostériques sont dépourvus des effets secondaires associés aux benzodiazépines, comme la 
sédation et la tolérance, ils représentent une nouvelle approche thérapeutique dans le 
traitement des troubles anxieux. 
Dans une troisième partie, nous avons entrepris l’étude de l’implication des récepteurs 
GABAB dans les syndromes dépressifs. L’approche génétique, nous a montré que la 
suppression du gène codant pour l’une ou pour l’autre des deux sous-unités du récepteur 
GABAB induit un effet antidépresseur dans le test de la nage forcée, mais pas dans le test de 
tail suspension. Corroborant ce phénomène, nous avons mis en évidence que le blocage 
pharmacologique de ces récepteurs induisait aussi avoir des effets antidépresseurs dans ce test, 
suggérant un rôle des récepteurs GABAB dans les syndromes dépressifs. Toutefois les 
processus sous-tendant les propriétés antidépressives des antagonistes des récepteurs GABAB
sont à ce jour encore mal connus. Supposant une possible interaction entre les systèmes 
sérotoninergiques et les récepteurs GABAB, nous avons étudié les effets des ligands du 
récepteurs GABAB sur l’effet antidépresseur de la fluoxétine (un inhibiteur de la recapture de 
la sérotonine) puis leurs impacts sur la downrégulation des récepteurs sérotoninergiques 5-
HT1A dans l’hippocampe induite par le stress chronique.  Nous avons observé que les 
antagonistes GABAB ne modifiaient pas les propriétés antidépressives de la fluoxétine dans le 
test de la nage forcée, mais bloquaient la downrégulation des récepteurs 5-HT1A induite par un 
stress chronique. Ces résultats suggèrent un role clé du système sérotoninergique dans les 
propriétés antidépressives des antagonistes GABAB. Inversement, nous avons mis en évidence 
que la fluoxétine administrée de manière chronique atténuait la réponse hypothermique 
induite par le baclofen, montrant que le système sérotoninergique participerait aussi à la 
modulation des fonctions physiologiques liées aux récepteurs GABAB.



Etant donné que de nombreuses études précliniques et cliniques ont suggéré que les récepteurs 
GABAB pourraient moduler les comportements associés aux systèmes de récompenses, nous 
avons entrepris d’évaluer l’effet de la stimulation des récepteurs GABAB dans des modèles 
associés aux comportements addictifs et sur les adaptations moléculaires induites par 
l’administration aiguë et prolongée de psychostimulants ou de nicotine. Au niveau 
comportemental, nous avons montré que le GS39783 atténuait l’hyperlocomotion induite par 
l’administration aiguës de cocaïne, et également la sensibilisation locomotrice à la cocaïne 
induite par administration répétée de cocaïne. Par ailleurs, nous avons observé que le 
GS39783 s’opposait à l’établissement d’un conditionnement de place induite par la nicotine. 
Au niveau moléculaire, le GS39783 réduit l’induction de c-fos dans le noyau accumbens 
induite par l’administration aiguë de cocaïne et diminue l’activation du CREB et du DARPP-
32 provoquée par l’administration chronique de cocaïne. De plus, le GS39783 atténue 
l’accumulation de fosB dans le noyau accumbens et le striatum dorsal causée par 
l’administration de cocaïne et de nicotine. Ces observations suggèrent que la stimulation des 
récepteurs GABAB par un modulateur allostérique inhibe  à la fois la perception des effets 
réenforçants des substances appétitives mais aussi les adaptations moléculaires associées à 
celles-ci.
Ainsi, ces études nous permettent de conclure que les récepteurs GABAB pourraient 
représenter une cible potentielle dans l’élaboration de nouvelles pharmacothérapies des 
troubles anxieux, de la dépression et des comportements addictifs. 



Summary
Although there is much evidence for a role of the inhibitory neurotransmitter -aminobuytric 
acid (GABA) in the pathophysiology of neuropsychiatric disorders, the role of GABAB
receptors in behavioral processes related to these disorders has not yet been fully established. 
Indeed, further progress in the field has been largely hampered by the lack of appropriate 
tools. The recent development of new pharmacological and genetic tools offers a novel 
opportunity to investigate the contribution of GABAB receptors in anxiety, depression and 
addiction. Consequently, the studies in the present thesis are focus on addressing a broad 
hypothesis that GABAB receptors  play a key role in the manifestation of psychiatric disorders. 
Thus, using recently generated GABAB(1)

-/- and GABAB(2)
-/- mice, which lack functional 

GABAB receptors, and pharmacological tools; we assessed the role of GABAB receptors these 
three neuropsychiatric disorders. 
Firstly, we demonstrated that targetted deletion of either of GABAB receptor subunit induced 
an exacerbate anxiety in several animal model of anxiety. Indeed, both GABAB(1)

-/- and 
GABAB(2)

-/- mice  were more anxious than their wildtype littermates (less time spent in the 
light; reduced number of transitions) in the light-dark box paradigm. Conversely, we also 
demonstrated that pharmacological activation, via administration of a novel GABAB receptor 
positive modulator GS39783 decreased anxiety in the light-dark box and elevated zero maze 
tests. Altogether, these data support an involvement of GABAB receptors in the modulation of 
anxiety-related behaviors. 
Secondly, we also demonstrated that GABAB receptor might contribute to the modulation of 
depressive-related behavior. Thus, we showed that genetic inactivation of either of GABAB
receptor subunit induced an increase in the time spent in immobility in the forced swim test, 
but not in the tail suspension paradigm, suggesting that targetted deletion of either of GABAB
receptor subunit produce an antidepressant-like effect in mice. These behavioral effects are 
unrelated to alterations in locomotor activity. In confirmation of the genetic data, acute and 
chronic treatment with CGP56433A, a selective GABAB receptor antagonist also decreased 
immobility in the FST, whereas GS39783 did not alter this behavior. In effort to gain a better 
understanding of processes underlying the antidepressant properties of GABAB antagonist, we 
also explored the interaction between GABAB and serotoninergic system. Thus, we 
demonstrated that pharmacological blockade or genetic inactivation of serotonin transporter 
affect GABAB -related function, using baclofen-induced hypothermia. Conversely, we also 
demonstrated that acute, sub-chronic and chronic treatement with GABAB ligands affected the 
expression of 5-HT1A receptor in the hippocampus. Together, these data confirm both the 
putative involvement of GABAB receptor in depressive disorder and the strong interaction 
between 5-HT and GABAB system. 
Finally, the last part of the present thesis addressed the issue of the role of GABAB receptors 
in addiction. Indeed, we showed that activation of GABAB receptor counteract both 
behavioral and molecular changes associated with a single adminsitration of cocaine. More 
specifically, both baclofen, a GABAB receptor agonist, and GS39783 attenuate both 
hyperactivity and accumbal c-fos induction elicited by a single administration of cocaine. 
Moreover, we also demonstrated that GS39783 attenuates the acquisition of locomotor 
sensitization triggered by chronic cocaine administration. GS39783 also differentially 
attenuated the accumulation of fosB in the CPu, and inhibited CREB and DARPP-32 
activation and upregulation in the Nac, suggesting that GABAB activation counteracted both 
molecular and behavioral changes triggered by repeated administration of cocaine.Finally, in 
a nicotine place conditioning paradigm, we showed that repeated treatment with GS39783 
inhibits the acquisition of nicotine place preference acquisition. GABAB positive modulation 
also inhibited the accumulation of fosB in the NAc, supporting a role for this transcription 
factor in reinforcing properties of nicotine. Taken altogether, these results show that GABAB



receptor modulation is effective in attenuating reinforcing properties of drugs of abuse and 
interferes with drug-induced modulation of several signaling pathways.
To conclude, our data support the role of GABAB receptor in anxiety, depression and 
addiction and that  GABAB receptor might be considered as one of the most promising 
therapeuthic targets for treating these disorders.  
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CHAPTER 1: GENERAL INTRODUCTION. 

1.1 -AMINOBUTYRIC ACID (GABA). 

1.1.1  Historical perspective. 

GABA is the major inhibitory neurotransmitter in brain. Although the chemical 

structure of -aminobutyric acid (GABA) was first synthesized as far back as 1883 (see 

(Cooper et al., 2002), GABA was independently identified and reported to be present in the 

vertebrate brain only in 1950. Indeed, three different groups (Awapara et al., 1950; Roberts 

and Frankel, 1950; Udenfriend, 1950) discovered a large amounts of GABA in the 

mammalian brain and suggested that this substance could have some metabolic function. 

Although subsequently, several groups suspected the existence of a inhibitory 

neurotransmitter, which was ascribed to an unknown “factor I” (Florey, 1954), the abundance 

of GABA and its structural analogy with glutamate supported the idea that it seemed to play a 

role in glutamate metabolism. Thereafter, several key studies demonstrated that GABA could 

actually function in the inhibition of central neurotransmission.. In 1958, two groups 

demonstrated that the action of GABA and synaptic inhibition could be quite similar, 

resulting in a selective increase in membrane Cl- conductance (Boistel and Fatt, 1958; Kuffler 

and Edwards, 1958). Although several groups suggested that GABA could be a inhibitory 

transmitter during the following decade (Hayashi, 1959; Kravitz et al., 1963; Otsuka et al., 

1966), GABA had been only been shown to satisfy all the classical criteria of 

neurotransmitter, in the early 1970s (Krnjevic, 1974; Roberts, 1986a).

Growing interest in GABAergic neurotransmission, during the last four decades, 

results from evidence of a direct or indirect involvement of the GABAergic system in 

numerous psychiatric and neurologic disorders; most interestingly in relation to anxiety 
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disorders. GABA has been shown to be the principal neurotransmitter involved in the action 

of benzodiazepine drugs (Haefely et al., 1975), historically, the most used class of anxiolytic 

family. In addition, more recent studies had pointed a role of GABA system in the pathology 

of mood disorders (Brambilla et al., 2003), drug dependence (Markou et al., 2004) and 

schizophrenia (Coyle, 2004). 

1.1.2  Distribution. 

Since its discovery in 1950, it has been shown that GABA is present in high 

concentration in the mammalian brain. GABAergic neurons in the brain are primarily 

interneurons, and it has been estimated that 30-40% of all CNS neurons utilize GABA as their 

primary neurotransmitter (Roberts, 1986b; Hendry et al., 1987). In contrast, GABA seems to 

be absent or present in only trace amounts in peripheral tissue, such as liver, spleen and heart; 

or in peripheral nerve tissue such as sciatic nerve, splenic nerve and sympathic ganglia.  

1.1.3  Metabolism, storage and release. 

GABA is formed by a closed metabolic pathway known as the GABA shunt (Fig.1.1). 

The GABA shunt begins with -ketoglutarate from the Kerbs cycle being changed to the 

excitatory neurotransmitter glutamate by GABA-transaminase (Blanton et al., 1987). 
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Fig.1.1 GABA metabolism pathway. 
GABA-T: GABA transaminase; GAD: Glutamic acid decarboxylase, GHB:  -hydroxybutyric 
acid, SSADH: succinic semialdehyde deshydrogenase, SSAR: Succinic semialdehyde 
reductase.

Fig.1.1 Voies métaboliques de GABA. GABA-T: GABA transaminase; GAD: Glutamic acid 
decarboxylase, GHB:  -hydroxybutyric acid, SSADH: succinic semialdehyde 
deshydrogenase, SSAR: Succinic semialdehyde reductase. 

GABA is formed through the decarboxylation of glutamate by glutamic acid 

decarboxylase (GAD) within neurons (Olsen and DeLorey, 1999). GABA in glial cells can be 

metabolized to succinic semialdehyde by GABA-T if -ketoglutarate is available to accept the 

amino group and thus form glutamate. This creates the closed loop preventing the depletion of 

GABA. Excess succinic semialdehyde can be oxidized to succinic acid or  -hydroxybutyric 

acid (GHB) by succinic semialdehyde dehydrogenase (SSADH). Succinic acid re-enters the 

Krebs cycle to complete the loop. The rate limiting step in GABA formation is the enzymatic 

action of GAD. GAD is only found in GABAergic neurons and has two isoforms in most 

vertebrates, GAD65 and GAD67, named for their molecular weights (in kilodaltons), which 

derive from two distinct genes (Erlander et al., 1991). GAD will decarboxylates glutamate to 

form GABA only when it is bound to its cofactor, pyridoxal phosphate (PLP; (Miller and 

Walters, 1979)). Studies in the rat have shown that GAD65 is usually not associated with PLP 

while GAD67 is nearly saturated with this cofactor (Kaufman et al., 1991). The amount of 
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inactive GAD65 and its location at the nerve terminal suggests it is utilized to respond to 

short-term increases in demand for GABA (Martin and Rimvall, 1993). 

Following its synthesis, GABA is stored in synaptic vesicles and its release occurs by 

the classical Ca2+-dependent mechanism upon depolarization of presynaptic membrane. 

1.1.4  GABA receptors subtypes. 

Once released into the synaptic cleft, the inhibitory neurotransmitter GABA acts 

through specific receptors located in both pre-and postsynaptic membranes. In vertebrates , 

there are two major types of GABA receptors: the ionotropic receptors, including GABAA

receptors and GABAC receptors and the GABAB metabotropic receptors(Bormann, 2000).  

  1.1.4.1 GABAA receptors. 

GABAA receptors are the most prevalent GABA receptors in the vertebrate brain. 

They are expressed in the CNS but also in the peripheral nervous system. GABAA receptors 

are ionotropic, and mostly postsynaptic. Their activation induces a fast inhibitory postsynaptic 

activation potential (IPSP, (Eder et al., 2001)).Regarding their structure, they are 

transmembrane hetero-oligomeric protein composed of five subunits which are organized into 

a channel. Each subunit comprises for transmenbrane domains (TM1-4), a large intracellular 

loop between TM3 and TM4 containing protein kinase and tyrosine kinase phosphorylation 

sites and a short C-terminus. By now, seven distinct classes of subunits ( , , , , ,  and )

have been cloned and several isoform of these subunits were identified (See Fig.2). In the 

mammalian brain, the major subunit composition of GABAA receptor is an assembly of one ,

two  and two  subunits (Rudolph et al., 2001). GABAA receptor activation by GABA allows 

the chloride ion channel (Cl-) to open, increasing the conductance of Cl- (Bormann, 1988). 

This activation induces an hyperpolarisation of neuronal membranes, reducing the cell 

excitability. 
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In terms of pharmacology, GABAA receptors have a binding site for GABA, as well as 

sites for agonists, such as muscimol and isoguvacine and competitive antagonists such as 

bicuculline. In addition, several ligands have been shown to modulate GABAA receptor 

activation. Benzodiazepines are allosteric modulators of GABAA receptors, they increase the 

probability of channel openings, where barbiturates and neurosteroids increase the period of 

pore opening. Further, GABAA receptors present also some bindings sites for picrotoxin (non 

competitive antagonist) and alcohol (Rudolph et al., 2001). 

During the last decade, localization of various binding sites on GABAA receptor has 

been investigated. For example, GABA has been shown to bind at the interface of  and -

subunits (Zezula et al., 1996). Benzodiazepines binding site is localized at interface of  and 

-subunits (Skolnick et al., 1997). More recently, genetically engineered mice have added 

new tools for the dissection of specific pharmacologic function of GABAA subunits (Rudolph 

et al., 2001).

Although it is now clear that GABAA ligands and especially benzodiazepines 

represent a relevant pharmacotherapy for neuropsychiatric disorders such as anxiety, their 

associated side-effects, including sedation, muscle-relaxation, and amnesia has led the 

scientific community to investigate other possible therapeutic targets. 

  1.1.4.2  GABAC receptors. 

GABAC receptor structure is relatively analogous to GABAA receptors. They are also 

ionotropic receptors, composed of five subunits organized in Cl- channel. In contrast to 

GABAA receptors GABAC receptors can assemble as homoligomers composed exclusively of 

1-3 subunits (See Fig.1.2.). There has been much debate as to whether they represent a novel 

receptor subunit family distinct from GABAA receptors (Bormann, 2000), however the 

current IUPHAR classification feels that it is more appropriate to classify them as part of the 
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GABAA superfamily. GABAC receptors are also characterized by their insensitivity to 

bicuculline and benzodiazepines. GABAC receptors are expressed exclusively in retina, spinal 

cord, superior colliculus and intestinal tract. Thus, their localization limits their relevance as 

target for the treatment of neuropsychiatric disorders. 

Fig.1.2. GABAA and GABAC Receptors
(a) GABAA receptors and its associated modulatory binding sites. (b) GABAA receptor 
subunit structure. Organisation of GABAA receptor subunits. (c) GABAC receptors and its 
associated modulatory binding sites. Adapted from (Bormann, 2000). 
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Fig.1.2. Les récepteurs GABAA et GABAC
(a) Le récepteur GABAA et ses sites de modulation. (b) La structure des sous-unités des 
récéepteurs GABAA.  Organisation des sous-unités des récepteurs GABAA. (c) Le récepteur 
GABAC et ses sites de modulation. 

1.2  GABAB Receptors 

 1.2.1  GABAB receptors structure. 

  1.2.1.1  General structure. 

Initially, GABAB receptor was identified as a GABA receptor insensitive to the 

GABAA receptor antagonist (bicuculline) but sensitive to a GABA analog, baclofen (Bowery 

et al., 1981). Although a considerable amount of pharmacological tools were developed 

during the decade subsequent to the discovery of GABAB receptors (Kerr and Ong, 1995) the 

cDNAs for GABAB receptors were not cloned until 17 years later (Kaupmann et al., 1997) a 

decade after that of GABAA receptor (Schofield et al., 1987). 

Using high-affinity radioligand antagonist, Kaupmann and colleagues isolated two 

different splice variants of GABAB receptor, GABAB(1a) and GABAB(1b), which differ only at 

their two different N-terminus (Kaupmann et al., 1997). GABAB(1a) and GABAB(1b)  receptor 

splice variants are protein of 960 and 844 amino acids respectively. GABAB(1) recombinant 

protein are composed of three main regions: the N-terminal extracellular domain (ECD), a 

region comprising seven transmenbrane domains (TMD) and intracellular C-terminal domain 

(ICD)(Kaupmann et al., 1997). Their molecular structure exhibits some similarities with 

family 3 G-protein coupled receptors; this family includes metabotropic glutamate receptor, 

Ca2+ sensing, vomeronasal and taste receptors. Surprisingly, in the same study, Kaupmann and 

collaborators demonstrated that both GABAB(1) proteins exhibited 100 to 150-fold lower 

binding affinities for agonist compared to native GABAB receptors. In addition, they also 

demonstrated that GABAB(1) protein failed to couple to their effector systems. Ultimately, 
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GABAB(1) proteins have shown to be retained in the endoplasmatic reticulum and not 

transported to the membrane (Couve et al., 1998). Taken together, these data suggested that 

GABAB(1) subunit may need a missing factor which traffics it to the membrane and 

consequently renders them functional. 

One year after the discovery of GABAB(1) subunit, six different groups identified a 

novel subunit, the GABAB(2) receptor subunit (Jones et al., 1998; Kaupmann et al., 1998a; 

White et al., 1998; Kuner et al., 1999; Martin et al., 1999; Ng et al., 1999). This second 

GABAB receptor subunit exhibits many of structural features of GABAB(1), such as high 

molecular weight, seven transmenbrane domain and a long extracellular chain at the N 

terminus. Furthermore, GABAB(2) subunit shows 35% of homology and 54% similarity to 

GABAB(1) receptor subunit. In contrast to GABAB(1) subunit, GABAB(2) is expressed at the 

surface of plasmatic membrane. Interestingly, this GABAB(2) receptor was shown to be 

coexpressed with GABAB(1) subunit and transport to the plasma membrane. 

  1.2.1.2  Heterodimerization : A prerequisite for GABAB receptors function? 

As stated previously, GABAB(2) receptor subunit has been shown to be coexpressed 

with GABAB(1) receptor subunit. However, the six research groups which contributed to 

GABAB(2) discovery, suggested that this subunit may play a key role in GABAB function. 

Indeed, the co-expression of GABAB(1) and GABAB(2) receptor subunit results in increase in 

agonistic potency compared to GABAB(1) alone (Kaupmann et al., 1998a). Further, 

recombinant hetoromeric GABAB(1,2) has been shown to couple to all effector system 

associated to native GABAB receptor, such as adenylate cyclase, K+ channels and Ca2+

channels. Moreover, the GABAB(2) receptor subunit facilitates proper trafficking to the cell 

membrane. Indeed, GABAB receptor trafficking depends on interaction between GABAB(1)

and GABAB(2) at the C-terminal coil-coil domain by masking the retention motif RXRR 

present at the C terminus of GABAB(1) receptor subunit (Margeta-Mitrovic et al., 2000; 
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Pagano et al., 2001). However, an exclusive role of this C-terminal coil-coil domain in the 

heterodimerization process of GABAB(1) and GABAB(2) receptor subunits has not been 

determined. 

Taken together, these data led to the supposition that heterodimerization may be a 

prerequisite for GABAB receptors function and offer a putative canvas for GABAB receptor 

activation (See Fig.1.3.). 

It has been shown that GABA or GABAB receptor agonists binds to a component of 

GABAB(1) subunit. Indeed, the ligand site is located within the ECD of the GABAB(1)

(Malitschek et al., 1999), named the Venus flytrap modules (VFTMS) (Galvez et al., 1999). 

Although GABAB(2) also possesses a similar VFTMS, it does not bind any ligands (Kniazeff 

et al., 2002). The binding of GABAB receptor ligand to GABAB(1)  receptor subunit thus 

produces a conformational change in GABAB receptor subunit protein that allows GABAB(2)

subunit to engage and activate G protein –coupled signaling system (Marshall et al., 1999) 

  1.2.1.3  GABAB receptors isoforms. 

Originally, Kaupmann and collaborators described only two different isoforms of the 

GABAB(1) receptor subunit, but subsequently several GABAB(1) isoforms were identified. To 

date, nine different isoforms were isolated : GABAB(1a), GABAB(1b) , GABAB(1c), GABAB(1c-a),

GABAB(1c-b), GABAB(1d), GABAB(1e), GABAB(1f) and GABAB(1g) (Bettler et al., 2004). These 

isoforms differ by their ECD (presence or absence of sushi’s motifs), the presence or the 

absence of ER-retention signal, their transmenbrane domain and their coiled-coil domain. In 

addition, certain of these variants are not conserved from the human to the mice (ie. 

GABAB(1c) or GABAB(1c-a)); and certain isoforms are absent in both human and mouse (ie, 

GABAB(1d)). However, GABAB(1a) and GABAB(1b) appears to be the major isoform in the 

brain (Bettler et al., 2004). 
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These two isoforms have been shown to be conserved in several studies :human, rat, 

mouse, chicken, frog and zebrafish. As previously mentioned, GABAB(1a) and GABAB(1b)

differs in their ECD (Kaupmann et al., 1997). Thus, the first 147 aminoacids of the mature 

GABAB(1a) subunit are replaced by 18 amino acids in the GABAB(1b) isoform. More 

specifically, GABAB(1b) subunit does not exhibit repeated sushi motif sequences which exhist 

in the GABAB(1a) receptor subunit (Bettler et al., 1998; Hawrot et al., 1998). Although 

repeated sushi’ motif have been shown to be involved in protein-protein, its role in GABAB(1a) 

receptor subunit remain elusive. 

In addition these two isoforms have been shown to exhibits differences in their 

temporal and spatial expression patterns. In a elegant study, Fritschy and collaborators  have 

demonstrated that GABAB(1a) receptor subunits are the predominating isoform during early 

development, whereas GABAB(1b) receptor subunits are generally more expressed in the adult 

brain (Fritschy et al., 1999). Regarding their respective distribution, it appears that GABAB(1a)

receptor subunits would be more located pre-synaptically whereas GABAB(1b) receptor 

subunits would be more post-synaptic. Indeed, in the cerebellum, the GABAB(1a) receptor 

subunit is mostly confined to the granular cell and molecular layer whereas GABAB(1b)

transcripts are abundant in Purkinje cells that are postsynaptic (Kaupmann et al., 1998b). 

However, there is no evidence for this pre-post synaptic distinction in other structures to date. 
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Fig.1.3. The native GABAB receptor. 
GABAB receptors is an heterodimer composed of two subunits., GABAB(1) and GABAB(2). Each subunit have  N-terminal extracellular domain 
(ECD), a region comprising seven transmenbrane domains (TMD) and intracellular C-terminal domain. GABAB receptors ligands bind to the 
GABAB(1) subunit only., inducing a conformational change. This latter process allows GABAB(2) receptor subunit to initiate G protein activation is 
facilitated. In the brain two predominant GABAB(1) isoforms (1a, 1b) are expressed which differ only at their very N-terminal sequence. GABAB(1a)
discriminates from GABAB(1b) by the presence of two ‘Sushi domain’ motifs. The binding site of the positive allosteric modulator CGP7930 has 
recently been localized to the transmembrane region of GABAB(2) (Binet et al., 2004). Adapted from (Cryan and Kaupman, 2005). 

Fig.1.2 le récepteurs GABAB.
Le récepteur GABAB est un hétérodimère composé de deux sous-unités. Chacune de ces deux sous-inutés possèdent un domaine extracellulaire, une 
région transmenbranaire et un domaine intracellulaire. Les ligands se fixent à la sous-unité GABAB(1) induisant un chamgement dans la 
conformation du récepteur autorisant la sous-unité GABAB(2) à initier l’activation des proteine G. Dans le cerveau, les isoforms prédominantes sont 
GABAB(1a) et GABAB(1b).
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 1.2.2  GABAB receptors distribution and localization. 

The distribution of GABAB receptors in the vertebrate brain has been described using 

in situ hybridization, immunohistochemistry and autoradiography. In the rat, GABAB(1)

receptor mRNA is expressed in most neuronal cell populations with the highest levels in the 

hippocampus, thalamic nuclei and cerebellum (Bischoff et al., 1999). Moderate levels of 

GABAB(1) receptor mRNA are found in the olfactory bulb, amygdala, pallidum, septum, 

hypothalamus and preoptic area (Bischoff et al., 1999). Very low levels of GABAB(1) receptor 

mRNA are expressed in the molecular layer of the cerebellum and in glial cells (Bischoff et 

al., 1999). Interestingly, GABAB receptor mRNA have been shown to be very abundant in the 

raphé nuclei, including median and dorsal raphé nuclei.  In dorsal raphé nucleus (DRN), 

GABAB(1)  transcripts have been shown to be colocalized with the serotonin transpoter 

mRNA:  85% of GABAB(1) labeled cells exhibited serotonin transporter transcript. In contrast; 

only 5% of GABAB(1) labeled cells expressed GAD mRNA. Thus, it appears that GABAB(1)

transcript may be located more on serotoninergic neurons than GABAergic interneurons in 

this structure (Serrats et al., 2003). Furthermore, the distribution pattern of GABAB(1)

transcript  and GABAB receptor binding sites overlap in the majority of brain structure 

(Bischoff et al., 1999). 

Regarding GABAB(2) subunit, its transcripts are abundant in the piriform cortex, 

hippocampus and habenula. The regional distribution of both GABAB(1) and GABAB(2) is

mostly similar, suggesting that heterodimerization is crucial for signaling. However, in some 

brain areas such as caudate putamen, GABAB(2) transcript are not detectable, even though 

GABAB(1) transcripts are expressed (Bischoff et al., 1999). 

However, the lack of GABAB(2) mRNA expression in the striatum/caudate putamen 

region is not in agreement with immunohistochemical data which shows high levels of 
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GABAB(2) protein expression in that region (Kaupmann et al., 1998a; Durkin et al., 1999; 

Clark et al., 2000; Berthele et al., 2001). High levels of GABAB(1) and GABAB(2) protein 

expression were also found in the neocortex, hippocampus, thalamus, cerebellum and 

habenula (Charles et al., 2001).

Autoradiography in rat brains has shown that generally, GABAB receptors have lower 

expression levels than GABAA receptors with exceptions in a few distinct brain regions  

(Bowery et al., 1987; Chu et al., 1990). In one study, GABAB receptors in the rat were at 

higher levels than GABAA receptors in the globus pallidus, lateral posterior thalamus, lateral 

amygdaloid nucleus, habenula, and the molecular layer of the cerebellum (Bowery et al., 

1987). Another other study found GABAA receptors had higher numbers of binding sites than 

GABAB receptors in nearly every brain region (Chu et al., 1990). Thus, GABAB receptors are 

widespread in the rat brain, but the ratio between GABAA and GABAB receptors may vary 

between brain regions. 

At the cellular level, electron microscopy studies have demonstrated that GABAB(1)

protein is abundant in the cytoplasm of neurons (Sloviter et al., 1999). This observation 

confirms that GABAB(2) is the limiting factor for heterodimer expression at cell surface. In 

addition, there is no clear evidence for a presence of GABAB(1) protein in the absence of 

GABAB(2)  receptor subunit (Charles et al., 2001). Furthermore, numerous 

electrophysiological studies demonstrated that GABAB receptor are located pre- and post-

synaptically (Dutar and Nicoll, 1988; Potier and Dutar, 1993). More recently, electron 

microscopy studies confirmed colocalization of GABAB(1) and GABAB(2) protein at both 

synaptic and extrasynaptic sites (Kaupmann et al., 1998a; Fritschy et al., 1999; Kulik et al., 

2002); see figure.1.4). 
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Fig.1.4. Cellular localization of GABAB receptors in the hippocampus . 
GABAB receptors are located both pre- and postsynaptically as well as on extrasynaptic 
membranes. Presynaptic GABAB autoreceptors located on GABAergic terminals inhibit the 
release of GABA whereas GABAB heteroreceptors inhibits the release of several other 
neurotransmitters (e.g. glutamate) as well as of bioactive peptides. Postsynaptic GABAB
receptors activate potassium channels and induce slow inhibitory postsynaptic potentials 
(IPSPs), the fast component of which is mediated through GABAA receptors. Extrasynaptic 
receptors are likely activated via GABA spill-over from adjacent synapses. Adapted from 
(Cryan and Kaupman, 2004). 
Fig 1.4. Localisation cellulaire des récepteurs GABAB dans l’hippocampe. 
Les récepteurs GABAB sont à la fois pré et post synaptique. Les récepteurs GABAB
présynaptique localisés sur les cellules GABAergique inhibent la libération de GABA alors 
que les hétérorécepteurs inhibent la libération d’autres neurotransmetteurs. Les récepteirs 
post-synaptiques, quant à eux, active les cannaux potassiques et induisent une IPSP. 

1.2.3  GABAB receptor effector mechanism. 

Downstream effects of GABAB receptor activation are mediated by G-proteins, 

although G protein independent effects have been described as well (Harrison, 1990). 

Initially, evidence for a coupling to G proteins came from studies showing binding that at 

GABAB receptors was inhibited by GTP analogs (Hill and Bowery, 1981; Asano et al., 1985). 
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Using various techniques, several groups showed  that GABAB are mainly couple to Gi  – 

and Go -type G proteins (Asano and Ogasawara, 1986; Morishita et al., 1990; Campbell et al., 

1993; Menon-Johansson et al., 1993; Greif et al., 2000). These G proteins then interact with 

Ca2+ and K+ channels as well as adenylyl cyclase to elicit specific intracellular responses to 

agonist binding. 

  1.2.3.1  Coupling to Ca2+ channels. 

Presynaptic GABAB receptors can be divided into autoreceptors or heteroreceptors 

depending on whether or not they control GABA release or a different neurotransmitter 

(Bettler et al., 2004). GABAB receptors inhibit neurotransmitter release by blocking Ca2+

influx through voltage dependent Ca2+ channels via the G  subunits of the G-protein 

complex (Dascal, 2001; Zamponi, 2001). Ca2+ channels of both N- and P/Q-type have been 

implicated in presynaptic neurotransmitter release (Wu and Saggau, 1997), and inhibition of 

both of these types of channels by GABAB receptors has been demonstrated (Menon-

Johansson et al., 1993; Mintz and Bean, 1993; Amico et al., 1995; Herlitze et al., 1996; Ikeda, 

1996; Poncer et al., 1997; Takahashi et al., 1998; Shen and Slaughter, 1999). This inhibition 

is voltage-dependent and can be overcome by a high frequency action potentials (Herlitze et 

al., 1996; Ikeda, 1996) (Brody and Yue, 2000). In addition, both L- and T-type Ca2+ channels 

can either be inhibited or facilitated by GABAB receptors (Scott and Dolphin, 1986; Scott et 

al., 1990; Crunelli and Leresche, 1991; Matsushima et al., 1993) dependent on the input site. 

GABAB receptors have also been shown to inhibit postsynaptic N- and P/Q-type Ca2+

channels in the rat supraoptic nucleus (Harayama et al., 1998). 

1.2.3.2  Coupling to K+ channels. 

Postsynaptically, GABAB receptors activate inwardly rectifying K+ channels (GIRK), 

via the G  subunits, which creates a slow inhibitory postsynaptic current (Newberry and 

Nicoll, 1985; Luscher et al., 1997). This IPSP is distinguishable from the faster IPSP of the 
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GABAA receptor because of its longer latent period and shorter decay time (Lacaille, 1991; 

Otis et al., 1993). These IPSCs are stimulated by baclofen, can be inhibited by the GIRK 

channel blocker barium or GABAB receptor antagonists and display an inhibitory potential of 

similar magnitude to the K+ equilibrium potential (Lacaille, 1991) (McCormick, 1989; 

Thompson and Gahwiler, 1992; Pitler and Alger, 1994). There is also evidence that GABAB

receptors may act through K+ channels other than GIRKs, such as fast inactivating, voltage-

gated K+ channels (Saint et al., 1990) and Ca2+-sensitive K+ channels (Blaxter et al., 1986; 

Gerber and Gahwiler, 1994). In addition, GABAB receptors also activate presynaptic K+

channels (Thompson and Gahwiler, 1992), although they are likely made up of different 

subunits than the postsynaptic channels (Luscher et al., 1997). 

  1.2.3.3  Coupling to adenylyl cyclase. 

GABAB receptors also modulate postsynaptic receptor activity via adenylyl cyclase. 

There are nine known isoforms of adenylyl cyclase and all of them are expressed in the brain 

(Simonds, 1999). GABAB receptors have been shown to both inhibit and stimulate cAMP 

formation and this is dependent upon the specific G-protein as well as the type of adenylyl 

cyclase present in the neuron (Bowery et al., 2002; Calver et al., 2002). Adenylyl cyclase 

types I, III, V and VI are inhibited by Gi - and Go -type proteins, the predominant targets of 

GABAB  receptors (Bettler et al., 2004). GABAB receptors can also stimulate adenylyl cyclase 

types II, IV and VII via G  proteins when Gs -type proteins from another G protein coupled 

receptor (GPCR) are activated by norepinephrine, isoprenaline, histamine or vasoactive 

intestinal peptide (Tang and Gilman, 1991; Simonds, 1999; Bettler et al., 2004). The results of 

in vitro studies have been confirmed using in vivo microdialysis in rats (Hashimoto and 

Kuriyama, 1997). GABAB receptors have been shown to modulate the activity of protein 

kinase A (PKA). PKA targets many ion channels, and K+ channel activation is reduced when 

GABAB receptors modulate PKA formation by inhibiting cAMP formation (Gerber and 
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Gahwiler, 1994). PKA activity can also be reduced by GABAB receptors in presynaptic 

neurons which prevents neurotransmitter release (Kubota et al., 2003). Cross-talk also occurs 

with protein kinase C, but the mechanism is unknown (Kubota et al., 2003). 

1.2.3.4  Other Effectors 

In addition to their conventional effector mechanism, it was also postulated that 

GABAB receptors interact with several proteins.  Indeed, three laboratories demonstrated that 

the coiled coil domain of GABAB(1) receptor subunit  interacts with transcriptional factors 

from ATF/CREB family: ATF4 and ATFx (Nehring et al., 2000; White et al., 2000). It 

appears that GABAB receptors and ATF4 are colocalized in the soma and dendrites of 

cultured neurons and in retinal cells. Further, GABAB receptor activation induces an increase 

in ATF4 transcriptional activity. Interestingly, GABAB agonists has also been shown to both 

stimulate (Ito et al., 1995) and inhibit (Barthel et al., 1996) transcription via CREB pathways. 

 1.2.4  Pharmacology of GABAB receptors. 

1.2.4.1  GABAB receptors agonists. 

-p-chlorophenyl-GABA, named baclofen, is the prototypical GABAB receptor 

agonist. It was synthesized first in 1962 and introduced to the market in ten years later 

(Bettler et al., 2004) for the treatment of spasticity. Although it has been widely used as 

pharmacological tool in elucidating the role of GABAB receptor in several disorders including 

epilepsy, cognition, pain, its associated side-effects, including sedation and hypothermia, limit 

its relevance in the context of behavioural pharmacology. Its activity is stereospecific with l-

baclofen approximately 3-5 times more potent than the racemic mixture in the rat (Bowery et 

al., 1983; Bowery et al., 2002). Ten years after its discovery, several groups initiated synthesis 

of new generation of GABAB receptor agonist, including CGP 35024 (Froestl et al., 1995). 

This generation of agonist appears to be 5-7 fold more potent than the active form of baclofen 
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(Froestl and Mickel, 1997). These ligands served also for the development of radioligands 

such as CGP27492. Ultimately, a third generation of GABAB receptor agonist, including 

CGP44532, was developed in the 1990s. 

  1.2.4.2  GABAB receptors antagonists. 

The first described GABAB receptor antagonists were phaclofen, saclofen and 2-

hydroxysaclofen in the late 1980s (Kerr et al., 1987; Kerr et al., 1988). These compounds 

were instrumental in characterizing the GABAB receptor despite the requirement of doses in 

the high mircromolar range to antagonize baclofen induced hyperpolarizations (Dutar and 

Nicoll, 1988; Karlsson et al., 1988). The next advance in antagonist development was the 

creation of compounds that cross the blood-brain barrier after intraperitoneal (CGP35348) 

(Olpe et al., 1990) or oral (CGP36742) administration (Olpe et al., 1993). The latest 

generation of GABAB receptor antagonist, including CGP56433A, in the late 1990s. These 

ligands now reached nanomolar affinities at GABAB receptor (Froestl and Mickel, 1997). 

1.2.4.3  GABAB receptors and  -hydroxy butyric acid (GHB). 

 -hydroxy butyric acid (GHB) is a short-chain fatty acid derived metabolically from 

GABA (see Fig. 1.1). However, widespread interest in this compound has arisen only in the 

past 5-10 years, primarily as a result of the emergence of GHB as a major recreational drug 

and public health problem. Indeed, GHB is currently one of the most frequently used agents 

for pharmacological-assisted sexual assault. Its administration induces disinhibition, muscle 

relaxation and lasting anterograde amnesia in the victim. In addition, GHB is also present at 

micromolar concentration in the brain where high-affinity [3H]GHB binding-sites are located 

(Bernasconi et al., 1999). GHB is also used medically in the treatment of narcolepsy (Black 

and Guilleminault, 2001). 
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Although, there is large body of evidence that GHB may act via an independent GHB-

specific receptor site in the brain (Maitre, 1997; Bischoff et al., 1999), it has also been 

suggested that GABAB receptors could mediate at least some effects of exogenous GHB. 

Indeed, GHB has been shown to bind to native and recombinant GABAB receptors, although 

with significantly lower affinity than its cognate high-affinity [3H]GHB binding-sites in the 

brain (Lingenhoehl et al., 1999). In addition, several studies reported that GABAB receptor 

antagonists could block GHB-induced effects. For example, CGP35348, a GABAB receptor 

antagonist, blocks the effect of GHB and baclofen on locomotor activity and dopamine level 

in forebrain (Nissbrandt and Engberg, 1996). Together, these data suggested that the 

involvement of GABAB receptor in GHB-mediated function remain elusive.  

 1.2.5  Novel pharmacological and genetic tools.  

1.2.5.1  GABAB receptors positive modulator. 

Over the years, GABAB receptor agonists have been extensively used to assess the 

role of GABAB receptors in several pathologies. Nevertheless, as mentioned previously, 

baclofen exhibited a numerous number of side-effects. Given the above considerations a new 

strategy to modulate GABAB receptor function was initiated. Indeed, allosteric modulators of 

GPCRs have become a major research topic due to their ability to affect a receptor’s response 

to the endogenous agonist (Bettler et al., 2004). Recently, three synthetic allosteric 

modulators of GABAB receptors have been described (Urwyler et al., 2001; Kerr et al., 2002; 

Urwyler et al., 2003). Application of GABAB receptor positive modulators in the presence of 

an agonist shifts the concentration-response curve to the left, as the modulators increase the 

potency of GABA (Urwyler et al., 2001; Kerr et al., 2002; Urwyler et al., 2003). These 

modulators (CGP7930, CGP13501, GS39783) enhance both the potency and the maximal 

efficacy of GABA at GABAB receptors in both native and recombinant (Urwyler et al., 2001; 

Kerr et al., 2002; Onali et al., 2003; Urwyler et al., 2003). All of these compounds are 
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hydrophobic, suggesting that they interact with the GABAB receptors in the TMD, a 

hypothesis that has recently been verified for CGP7930 (Binet et al., 2004). Allosteric 

positive modulation of metabotropic receptors is a recently identified phenomena, providing 

novel means for the pharmacological manipulation of G-protein-coupled receptors acting at a 

site apart from the orthosteric binding region of the receptor protein (Soudijn et al., 2002). 

Such properties suggest that allosteric modulators may offer a number of potential 

pharmacological improvements over the use of conventional agonists as has been 

demonstrated for modulators acting at ligand-gated ion channels (Costa, 1989). In the case of 

GABAA receptors, such modulation has been therapeutically utilized with the 

benzodiazepines, which amplify the action of the endogenous neurotransmitter GABA. 

Therefore, we hypothesized that GABAB receptor positive modulators will be superior drugs, 

devoid of the side effect profile associated with full agonists such as baclofen.

  1.2.5.2  GABAB(1) Knock-out mice. 

Recently, three different groups generated mice lacking GABAB(1) receptor subunit 

(Prosser et al., 2001; Schuler et al., 2001; Queva et al., 2003). Interestingly, these mice exhibit 

a strong downregulation of GABAB(2) subunit confirming that the expression of this subunit is 

intricately dependant to the presence of GABAB(1) receptor subunit. Furthermore, these mice 

were generated on two different genetic backgrounds. Schuler and collaborators used mouse 

on a BALB/c genetic background while the others groups used a 129Sv/J or a C57BL/6. 

Although, mice generated on BALB/c background are viable, those on other genetic 

backgrounds die within 3-4 weeks after birth, limiting their utility in the context of 

behavioural analysis in adult animals. 

Regarding their phenotype, Schuler and collaborators have shown that targeted 

deletion of GABAB(1) receptor induced spontaneous seizures, hyperalgesia and memory 

impairment in mice. In addition, they also demonstrated that baclofen, the prototypical 
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GABAB receptor agonist, failed to induce its typical muscle relaxant and hypothermic effects 

in GABAB(1)
-/- mice. In line with the behavioural data, this group also demonstrated that 

GABAB(1)
-/- mice exhibited a loss of all biochemical and electrophysiological GABAB

receptor responses. Taken together, these data lead to suggest that GABAB(1) receptor subunit 

is essential for GABAB receptor function and that heterodimerization is clearly a prerequisite 

for GABAB receptor function. 

  1.2.5.3  GABAB(2) Knock-out mice. 

To date, only one group has generated mice with targeted deletion of GABAB(2)

receptor subunit (Gassmann et al., 2004). The original goal of this study was to assess the role 

of GABAB(2) receptor subunit in brain and also to clarify whether GABAB(1) receptor subunit 

can participate in functional GABAB receptor in the absence of GABAB(2) subunit. This group 

generated the mice using BALB/c genetic background in accordance to previous studies 

showing reduction of viability in other strain after targeted deletion of GABAB(1) subunit 

(Prosser et al., 2001; Schuler et al., 2001; Queva et al., 2003). In line with phenotype 

observed in GABAB(1)
-/- mice , GABAB(2) receptor subunit deficient mice exhibit also 

spontaneous seizures, hyperalgesia and memory impairment. In addition, Gassmann and 

collaborator observed a strong downregulation of GABAB(1) receptor subunit protein in these 

mice. In contrast to GABAB(1)
-/- mice, mice lacking GABAB(2) receptor subunit exhibit 

atypical electrophysiological GABAB-receptor mediated responses in hippocampal slices. 

Furthermore, the genetic ablation of GABAB(2) subunit induce a relocation of GABAB(1)

receptor subunit protein from the distal neuronal sites to the soma and proximal dendrites 

compared to wild-type animals. Thus, it appears that GABAB(2) receptor subunit is essential 

for receptor localization. However, it is conceivable, regarding atypical electrophysiological 

response observed in these mice, that GABAB(1) receptor subunit could be functional in 

neurons that naturally lack GABAB(2) receptor subunit. Nevertheless, the recent development 
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of transgenic mice in which the endogenous GABAB(2) gene has been mutated in order to 

express a C-terminally truncated version of protein contradict this theory (Thuault et al., 

2004). Indeed, both pre- and post-synaptic GABAB functions are abolished in these mice. 

Therefore, GABAB(1) receptor subunit does not reach to the cell surface in these mice. To 

conclude, further studies are required in order to understand the exact role of each GABAB

receptor subunits in GABAB function and to confirm or not a putative GABAB receptor 

function in neuron lacking naturally GABAB(2) receptor subunit.  

1.3  Involvement of GABAB receptors in neuropsychiatric 
disorders.

 1.3.1  Role of GABAB receptors in anxiety. 

  1.3.1.1  Anxiety disorders.. 

Anxiety is a common human emotional reaction that occurs in response to a 

threatening situation. At mild level anxiety is considered “normal” and resulting in a 

multiplicity of adaptative changes, including increase of heart-rate, blood pressure or arousing 

states. However, anxiety is considered pathological when it interferes with every day life, or 

when it becomes persistent, excessive or inappropriately triggered by little or no external 

stressful stimuli. To date, the diagnostic and statistical manual of mental disorders- Fouth 

edition (DSM-IV) classification of anxiety describes several forms of anxiety disorders, 

which currently include: generalized anxiety disorders, obsessive-compulsive disorder, 

phobias, panic disorder, and post traumatic disorder (American Psychiatric Association.). 

Each type of anxiety disorder exhibits a unique combination of symptoms that in some cases 

overlap (see Table 1). Together, these disorders affect over 20 % of the population at some 

point in their life time, with an annual estimated cost of $44 billion in the United States 

(Greenberg et al., 1999). A recent pan-European study demonstrated that anxiety disorders are 
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the most prevalent medical disorder across E.U. members states (Andlin-Sobocki and 

Wittchen, 2005). 
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Disorder Symptoms Lifetime prevalence % Treatments. 

Generalized
anxiety 
disorders

Excessive anxiety and worry, a difficulty in 
controlling the worry, sleep disorder, hyperaurosal. 

5 Benzodiazepines, SSRIs, Buspirone 

Panic
disorder

Occurrence of spontaneous panic attacks, presence 
of anticipatory anxiety and the presence of phobic 
avoidance. 

3 SSRIs, benzodazepines 

Post-
traumatic
stress
disorder

Recurrent episodes of inappropriate fear resulting of 
a initial trauma. The traumatic event is persistently 
reexperienced. Sleep disorders. Irritability. 

3 SSRIs 

Social phobia Marked and persistent fear of one or more social or 
performances situation. Marked avoidance of these 
situation interefering with life. 

13 SSRIs, benzodiazepines  

Specific
phobia 

Specific aversion to an element (animals, blood…)  11 Mainly behavioural therapy. 

Obsessive-
compulsive
disorder

Recurrent obsessions and compulsions: 
Obsession are persistent, intrusive or inappropriate 
thoughs that cause anxiety. 
Compulsion are repetitive acts that the sufferer feels 
driven to perform to cope with anxiety. 

2 SSRIs 

Table.1. Classification of anxiety disorders, their prevalence and commonly used treatments. Adapted from (Barlow, 2001) 

Tableau.1. Classificatio des troubles anxieux, leur prévalence et leurs traitements. 
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To date, barbiturates, benzodiazepines, many classes of antidepressants and 5-HT1A

receptor agonist have been used as anxiolytics. However, benzodiazepines and selective 

serotonin reuptake inhibitor (SSRIs) are considered first line treatments for anxiety disorder. 

Benzodiazepines are shown to be effective in generalized anxiety disorders, social phobia and 

panic disorders (See Table, 2), whereas SSRIs , including fluoxetine, paroxetine, sertraline 

fluvoxamine and citalopram, appears to be more effective in the majority of anxiety disorders. 

It is important to note that these treatments differ in their onsets. Indeed, benzodiazepines 

have a rapid onset of action, consequently they are mainly used to treat acute anxiety episode 

or panic attack. Nevertheless, many factors limit their used for chronic anxiety such as 

dependence, alcohol interactions, cognitive impairment and sedation (Nemeroff, 2003). 

Concerning the SSRIs, it has been shown that they have slow onset of action  2 to 8 weeks 

before benefit may be noticed ((Nemeroff, 2003). However, several groups reported that 

SSRIs may be anxiogenic during the early phase of treatment (Gorman et al., 1987). 

Currently, the combination of both families of drug seems to be the most effective treatment 

for panic disorders or social phobia. It has to be noted that buspirone, a partial 5-HT1A receptor 

agonist, is also currently used in certain anxiety disorders, suggesting that serotoninergic 

might be involved in these pathologies. Although, this strategy still remain effective, side-

effects associated with these families, including sedation, tolerance, cognitive impairment for 

benzodiazepines, sexual dysfunction for SSRIs, has propelled efforts in the scientific 

community to explore extensively the neurophysiology of anxiety disorder, in attempt to 

develop new agents. 

1.3.1.2  Modeling anxiety in animals. 

Given the heterogeneity of symptoms and the multiplicity of anxiety disorders, it 

appears difficult to recapitulate all of them in animals and particularly in rodents. 

Nevertheless, several DSM-IV criteria have been successfully modeled in rodents  (Rodgers 
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et al., 1997; Belzung and Griebel, 2001; Cryan and Holmes, 2005). For example, the 

avoidance of places from which escape, observed in agoraphobia, could be observed in certain 

rodents model of anxiety. Separation anxiety could be modeled measuring ultrasonic 

vocalizations in pups separated from their mother (Miczek et al., 1995). However, it is 

essential not too anthropomorphize emotional human behaviours to mice because “Aberrant 

behaviours symptomatic of human mental illness, therefore, most of pathological behaviours 

observed in human can not occur in a recognizable form in rodents”(Crawley, 2000). Indeed, 

some symptoms of schizophrenia such as hallucination or delusion or some symptoms of 

depression such as recurrent thoughts of death will be impossible to observe in rodents. 

Consequently, several authors have proposed criteria for evaluating whether paradigm has 

validity as a model of psychiatric disease. McKinney and Bunney suggested four major 

criteria to evaluate animal model of depression, but these criteria are also valid to the others 

neuropsychiatric disorders (McKinney and Bunney, 1969): 

1) It has to be “reasonably” analogous to the human disorder in its 

manifestation or symptomatology. 

  2) Behavioural change observed can be objectively monitored. 

3) The pharmacological treatments effective in the model have to be 

similar than observed in humans. 

  4) The system should be reproducible between investigator. 

Other groups would prefer three different criteria including: “Predictive validity“ 

allied with the second criterion proposed by MacKinney; “Face validity”, similar to the first 

criterion proposed above; “Construct validity”, related to similarities of neurobiology and 

etiologically between the model and human disorder (Willner and Mitchell, 2002). Regardless 
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of the differences between these proposals, it appears a real difficulty to satisfy all this 

criterion, but they provide a useful tool to modeling neuropsychiatric disorders. One 

pragmatic proposal by Geyer and Markou is that the only criteria that are necessary and 

sufficient for initial use of an animal model, are that the paradigm has strong predictive 

validity, and that the behavioural readout be reliable and robust in the same laboratory and 

between laboratories (Geyer and Markou, 1995; Geyer and Markou, 2000). Nevertheless, the 

term predictive validity does not have not the same meaning for Willner and Mitchell as it 

does for Geyer and Markou. For the latter investigators, the predictive validity is defined as 

the ability to make the accurate predictions about human phenomenon of the interest based on 

the performance of the model. This last definition includes Willner’s definition, but extends it 

to the identification of any variables that influence both experimental preparation and the 

modeled phenomenon in similar ways. 

Regardless of theses semantic consideration, many authors have suggested different 

classification of animal models of anxiety. Thus, Rodgers described two categories of 

paradigms. (Rodgers et al., 1997). The first includes tests based on conditioned fear whereas 

the second regroups paradigms based on unconditioned fear. More recently, Cryan and 

Holmes proposed an alternative classification (Cryan and Holmes, 2005). They distinguished 

model based of fear-related behaviour from the exploratory-based approach-avoidance test. 

Conditioned anxiety paradigms 

Using Rodgers classification, conditioned anxiety paradigms assess the ability of an 

animal to emit or suppress responses induced by the delivery of an unavoidable form of 

punishment. This category can be further categorized as conflict or non/conflict based 

paradigms (See Table 2.). In non-conflict based tasks the rodent is re-exposed to an 

environment or stimuli that result in fear or anxiety related behaviour. This subcategory 



GENERAL INTRODUCTION 

43

includes fear-potential startle (Davis et al., 1993), fear conditioning, conditioned ultrasonic 

vocalization or defensive burying (Blampied and Kirk, 1983). In contrast, the second 

subcategory (i.e. Conflict models) involves punishment in response to innate behaviour, 

including eating or drinking. Classically, conflict paradigms largely comprised Vogel test 

(Vogel et al., 1971), Geller-Seifter conflict (Geller et al., 1962). Although, conditioned 

paradigms allow for experimental control over behavioural baselines, they exhibit a huge 

learning and memory component. Thus, amnesic agent could be considered as falses positives 

in these paradigm. For example, scopolamine has been shown to be active in Geller-Seifter 

paradigm (Ketelaars and Bruinvels, 1989). Regarding their predictive validity, 

benzodiazepines appears to be effective (Geller et al., 1962; Vogel et al., 1971) in most part of 

these models. However, there is only limited number of studies which reported an anxiolytic 

effect of chronic SSRIs in these test (Borsini et al., 2002; Millan, 2003). 

Unconditioned anxiety paradigms

In the present dissertation, the majority of studies were carried out using 

unconditioned animal model of anxiety. This category includes exploratory-based approach-

avoidance conflicts tests described by Cryan and Holmes, social tests (File and Hyde, 1978) 

and several other paradigms based on unconditioned behaviours (see Table 2). The first 

subcategory exploits the natural tendencies of rodents to avoid a potentially dangerous area. 

In the elevated-zero mazes, the aversive area is the open quadrants might (see, material and 

methods). Thus, anxiolytics tend to decrease both the entries into and the time spent in these 

quadrants. In addition, several ethological marker of anxiety are monitored during this test, 

such as stretch-attempt posture, rearings or head dips. Similarly, the light-dark box test use 

spontaneous tendency of mice to avoid the light area of a test chamber (see material and 

methods). In this model, anxiolytic activity is characterized by a increase in the latency to 

enter in the safe (dark) compartment,  an increase in the number of transitions between dark 
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and light compartment and an increase in the time spent in light compartment (Bourin and 

Hascoet, 2003). The staircase test is based on the fact that mice tend to avoid height (Simiand 

et al., 1984; Pick et al., 1996; Weizman et al., 1999). Anxiolytic, including benzodiazepines, 

have shown to increase the ratio of the number of the steps climbed compared with number of 

rearings. Similarly to the elevated zero maze, some behavioural indicators of anxiety are 

measured in this test such as rearing. This subcategory comprises also the mirrored chamber 

and the open-field hole-board paradigm. Regarding their predictive validity, classical 

benzodiazepines and several other anxiolytics have been shown to decrease in avoidance of 

aversive/threatening areas. Conversely, anxiogenic drugs, such as beta carbolines or 

yohimbine, often potentiate the anxiety-like avoidance response in these tests  (Rodgers et al., 

1997). However, chronic SSRIs appear also to be less effective or ineffective in these tests 

(Borsini et al., 2002). More recently, a novel approach has been shown to be more sensitive to 

this last treatment, Dulawa and collaborators demonstrated a effect of chronic fluoxetine in 

the novelty-suppressed feeding (Dulawa et al., 2004; Dulawa and Hen, 2005). Indeed, 

BALB/c mice have been shown to decrease their food intake when they are in a novel 

environment. In this study, it has been demonstrated that chronic, but not acute treatment with 

SSRIs reversed this suppression.

Although, this category of paradigm is widely used in behavioural pharmacology 

research, there are several potential caveats associated with their used. For example, 

psychostimulant or sedative effect of a drugs have the potential to cause a false positive 

anxiety-related behaviour in these tests (Pollard and Howard, 1986). 
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Conditioned response tests Unconditioned response test. 

Conflict tests 
Geller-seifter paradigm. 
Vogel paradigm. 

Exploratory-based approach-avoidance conflicts tests 
Elevated plus-maze. 
Elevated zero-maze. 
Light-dark box 
Mirrored Chamber. 
Staircase test. 
Novelty-suppressed feeding. 

Non-conflict tests 
Active/passive avoidance. 
Conditioned emotional 
response. 
Shock probe defensive 
burying. 
Fear potentiated startle. 
Fear conditioned paradigm. 
Conditioned ultrasonic 
vocalization. 

Social tests 
Separation-induced ultrasonic vocalizations. 
Social competition 
Social interaction 

Others
Stress-induced hyperthermia. 
Acoustic startle. 
Hot-plate. 
Mouse defensive test battery. 
Shock-induced ultrasonic vocalizations 
dPAG-induced flight.  
Predator odor induced 
Lactate or cystokinin administration induced panic-like 
behaviour. 

Table.2. Classification of animal model of anxiety disorders. Adapted from 
(Rodgers et al., 1997). 
Tableau 2. Classification des modéles animaux d’anxiété. 

Quantification of general measures of locomotor activity in a test (e.g., distance 

traveled in the light/dark test; closed arm entries in the elevated plus-maze) can increase 

confidence in the anxiety-related specificity. Alternatively, these psychostimulant or sedative 

effect can be assessed on formal tests of locomotor activity (e.g., open field; (Hascoet and 

Bourin, 1998) and motor function (e.g., rotarod coordination); however, caution should be 

taken to minimize the stressful nature of such tasks to avoid cross-contamination with anxiety. 

In addition, this category comprises also tests measuring innate response to aversive 

stimulus or situation, such as maternal separation, electric shock or predator presentation  
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(Blanchard et al., 1997; Blanchard et al., 2003). The response measure can be a behaviour, 

including flight (Blanchard et al., 1997; Blanchard et al., 2003) and ultra-sonic vocalization 

(Miczek et al., 1995), or physiological parameters, such as autonomic arousal or body 

temperature. For example, the stress-induced hyperthermia (SIH) is mainly based on the 

increase of core temperature observed after stress. This procedure involves two sequential 

rectal temperature measurements, spaced 10 min apart. The first rectal temperature 

measurement (T1) reflects the basal body temperature, whereas the second measurement, 10 

min later reflects the stress-induced temperature (T2) due to the rectal procedure 10 min 

earlier. The difference, T (=T2 T1) is the measure for stress-induced hyperthermia. This 

parameter appears to be an indicator of anticipatory anxiety. Benzodiazepine, including 

diazepam, chlordiazepoxide; 5-HT1A receptor agonists such as flesinoxan, buspirone are 

active in blocking stress-induced hyperthermia (Van der Heyden et al., 1997). 

Although pharmacological studies have provided a tremendous amount of information 

regarding the neurobiology of anxiety, the recent development of genetically engineered mice 

have added innovative new tools to the armamentarium of researchers (Finn et al., 2003) 

(Cryan and Holmes, 2005). Thus, genetic manipulations, including overexpression or knock-

down, allow to examine novel targets for the anxiolytic activity for whicsh few established 

pharmacological tool exist. Recently, Cryan and collaborators demonstrated that targeted 

deletion of mGlur7 receptor induced anxiolytic-like behaviour, despite an absence of 

pharmacological studies (Cryan et al., 2003c). Additionally, genetic manipulation will enable 

better testing of the validity of current molecular theories of a anxiety disorders. Thus, the 

anxiogenic effect of targeted deletion of 5-HT1A receptor supports the role of serotoninergic 

system in the neurophysiology of anxiety (Parks et al., 1998; Ramboz et al., 1998; Sibille and 

Hen, 2001). At this time more that 40 different mutant lines have been reported to have 

phenotypes interpreted as abnormal anxiety related behaviour in these test and this technology 
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must be considered as the primary technological advance in neuroscience during these last 

decades.

1.3.1.3  Neurobiology of anxiety. 

The recent development of non-invasive brain imaging techniques generated a large 

number of studies on the involvement of brain structure in anxiety disorders. In a recent 

review, Douglas Bremner at Emory University school of medecine, proposed a diagram of 

key structures involved in the majority of anxiety disorders. Thus, several authors 

demonstrated that the amygdala, a region generally associated with fear responses, is 

remarkably overactive in PTSD patients (Bremner, 2004). Similarly, increased amygdala 

activation was also observed with fMRI during symptom provocation in phobic patients. In 

addition, some structure such as medial prefrontal cortex or anterior cingulate cortex might be 

affected in anxiety disorders. PTSD patients exhibit a decrease in medial prefrontal activity. It 

has been proposed that this structure, including the anterior cingulate, could be involved in the 

extinction of fear (Maren, 2005), and consequently in the reminiscence of initial trauma 

observed in PTSD. Regarding obsessive compulsive disorders, studies have reported an 

increase on orbitofrontal cortex, anterior cingulate cortex, and caudate nucleus function in 

OCD patients compared to normal subjects, that could be normalized with antidepressant 

treatments (Bremner, 2004). This data support the theory that OCD disorder could be 

characterized by abnormal processing within the lateral orbitofrontal loop, including caudate, 

cingulate and orbitofrontal cortices (Chamberlain et al., 2005). 
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Fig.1.5. Schematic diagram of structures involved in anxiety disorders. 
Adapted from (Bremner, 2004) 
Fig.1.5. Diagram des structures impliquées dans les troubles anxieux. 

In addition to this structures, most of the work on the neurobiology of anxiety has 

focused on monoamines, including serotonin and norepinephrine, and on the GABAergic 

system (Millan, 2003). Although serotoninergic, noradrenergic and GABAergic system 

appears to be the major system involved in anxiety disorders, there is emerging evidence for 

the role of glutamatergic system (Spooren et al., 2003), vasopressin, galanin (Holmes et al., 

2003a) or other in the neurobiology of anxiety disorders.

Noradrenaline (NA). 

It is now generally accepted that noradrenaline (NA) play a key role in anxiety. 

Indeed, several studies reported that stressful stimuli such as immobilization, foot-shock, and 

tail pinch have increase NA turnover in the locus coeruleus, hypothalamus, hippocampus, 
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amygdala and cortex (Bremner et al., 1996). Clinically, yohimbine, a 2-receptor antagonist 

has been shown to increase anxiety in normal patients (Goldberg et al., 1983) and to increase 

panic frequency in panic patients (Charney et al., 1984). Moreover, propanolol, a -

adrenoreceptor antagonist is also used to treat some form of anxiety, particularly when 

physical symptoms are severe (e.g., social phobia; performance anxiety (Noyes, 1985).

Serotonin (5-HT).

Regarding the serotoninergic system, the well-established effectiveness of SSRIs and 

buspirone in the treatment of anxiety  (Feighner and Boyer, 1989; Lydiard, 1998) support an 

eventual role of this system in anxiety disorders. In addition challenge studies have 

demonstrated that single dose of 5-HT receptor agonist, such as mCPP, is anxiogenic in 

patient with panic disorders and in control subjects (Charney et al., 1987). In animals, 

exposure of a variety of stressors produces an increase in 5-HT release in the medial 

prefrontal cortex, nucleus accumbens and lateral hypothalamus (Inoue et al., 1994). In 

addition, local injection of 5-HT1A agonist has been shown to affect anxiety behaviour in 

several animal paradigms (Menard and Treit, 1999). More recently, mice with targeted 

deletion of 5-HT1A receptor have been shown to exhibit high level of anxiety (Ramboz et al., 

1998; Sibille and Hen, 2001). Ultimately, Neumeister and collaborators demonstrated that 

patients suffering of panic disorder exhibit a marked reduction of cerebral 5-HT1A  receptor 

binding in the anterior and posterior cingulate cortices compared to normal subjects 

(Neumeister et al., 2004). Regarding the other receptors, some studies have also reported an 

anxiolytic-like action of 5-HT2 receptor agonists, an anxiogenic-like effect of 5-HT2A receptor 

antagonism in mice (Nic Dhonnchadha et al., 2003). 
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GABA.

As mentioned previously, alterations in the GABAergic system have been linked to 

the pathophysiologiy of anxiety disorders. It is widely accepted than patients with anxiety 

disorders, including panic disorder, PTSD and generalized disorder; have reduced 

benzodiazepine binding sites in various brain region, in comparison with healthy subjects 

(Tiihonen et al., 1997; Malizia et al., 1998; Bremner et al., 2000a). Consistent with theses 

observations patient with panic disorder were found to exhibit lower brain levels of GABA 

than controls (Goddard et al., 2001). Ultimately, the widespread used of benzodiazepines in 

the treatment of anxiety disorder corroborated the predominant role of GABA in these 

disorders.

Preclinically, several pharmacological or genetic manipulations of GABA receptor or 

GABA levels have been reported to modulated anxiety. Briefly, the majority of preclinical 

model of anxiety disorders have been validated with classical benzodiazepines, such as 

diazepam or chlordiazepoxide (Rodgers et al., 1997; Millan, 2003). Interestingly, 

benzodiazepines receptor inverse agonists, beta-carbolines, have been reported to be 

anxiogenic in most of animal model of anxiety (Guidotti et al., 1980). In addition, a large 

number of studies demonstrated also that GABAA receptor activation, via agonist, have been 

reported to induce anxiolytic-like effects in several models of anxiety (Higgins et al., 1988). 

Moreover, several agents acting on GABA transaminase (GABA-T) has widely been found to 

produce anxiety reduction in several animal model of anxiety. For example, GABA-T 

inhibitors, such as vigabatrin appear to be anxiolytic in the social interaction or elevated plus-

maze tests (Corbett et al., 1991). Although GABAA receptor activation or GABA level 

elevation seems to be clearly involved in the pathophysiology of anxiety, there is no clear 

preclinical literature, to date, on the possible involvement of GABAB receptor in anxiolytic-
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like activity. To date, there are only a few studies assessing the effect of GABAB receptors 

ligands in anxiety paradigm. 

1.3.1.4  Role of GABAB receptors in anxiety: Clinical studies. 

To date, clinical data on the specific role of GABAB receptors are limited. Breslow 

and collaborators were the first to use baclofen to treat anxiety disorders. In their studies, they 

treated nine medication-free panic subjects with oral baclofen (30 mg/day for 4 weeks) in a 

double-mind, placebo-controlled crossover trial. Interestingly, they also reported that baclofen 

reduced significantly the number of panic attacks and score in Hamilton anxiety scale 

(Breslow et al., 1989). Correspondingly, baclofen has been also reported to be effective in the 

treatment of PTSD. Indeed, Drake and collaborators demonstrated that 8-weeks of treatment 

with baclofen significantly reduced the score in clinician-administered PTSD Scale. 

Nevertheless, this study was performed in a open-label trial and a double-blind, placebo 

controlled studies are required to support the efficacy of baclofen in the treatment of PTSD 

(Drake et al., 2003). In addition, it has been also reported that baclofen reverses the anxiety 

associated with spinal chord injury. Using a double-blind design, Hinderer reported that 

decreased level of their Beck Inventory-A anxiety scale scores with 40 mg/day of baclofen, 

and a further level reduction with 80 mg/day of baclofen (Hinderer, 1990). 

Finally, several studies reported that baclofen is effective in the treatment of anxiety 

associated with alcohol dependence. Indeed, alcohol withdrawal results in several different 

symptoms, including autonomic hyperactivity, tremor, and nausea or vomiting, hallucinations, 

psychomotor agitation, grand mal seizures and anxiety. Addolorato and collaborators, using 

double-blind design assessed the effect of baclofen on alcohol intake, alcohol craving and 

associated anxiety symptoms (Addolorato et al., 2002b). They showed a significantly 

decrease of alcohol intake and craving in patients treated with baclofen, but also a decrease in 
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state anxiety. These data are supported by a recent a self-case reported showing that baclofen 

relieved anxiety associated with alcohol abstinence (Ameisen, 2005). 

At this point, baclofen has been shown to be effective in the treatment of 4 different 

anxiety disorders; however its use is confined to marginal clinical studies. Largely, this is 

because baclofen have many unwanted sides effects, including sedation, hypothermia. 

Moreover, the absence of post-mortem and imaging data supports the idea that more studies 

are needed to elucidate the role of GABAB receptor in human populations. 

1.3.1.5  Role of GABAB receptors in anxiety: Preclinical studies. 

In the Vogel conflict test, only two studies reported an anxiolytic effect of baclofen. 

Ketelaars and collaborators demonstrated that 0.46 mg/kg and 1 mg/kg of baclofen increased 

significantly the number of punished-drinking in rats (Ketelaars et al., 1988). Subsequently, 

Shephard  and collaborators confirmed these effects using higher doses of baclofen (0.5-2 

mg/kg, i.p; (Shephard et al., 1992). Although these studies supported a potential anxiolytic 

effect of baclofen, there is a potential caveat regarding their results. Indeed, baclofen has been 

shown to induce memory impairment in several animal models. For example, it is now clear 

that baclofen induces memory deficits in the passive avoidance test (Swartzwelder et al., 

1987). In addition, few studies failed to observed anxiolytic-like effect of baclofen in this 

paradigm (Agmo et al., 1991; Umezu, 1999). 

In accordance with clinical data, baclofen has also been shown to counteract anxiety 

associated with alcohol or benzodiazepines withdrawals in rats. File and colleagues 

demonstrated that the day after 21 days of treatment with diazepam, animals exhibited 

decrease in social interaction (File et al., 1991; File et al., 1992). At physiological level, they 

also reported that baclofen reverses increased in K+ evoked release of [3H] 5-HT in 

hippocampus associated with benzodiazepine withdrawal (File and Andrews, 1993). 
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Similarly, the same group have shown that baclofen (1.25 and 2.5 mg/kg) reversed also 

anxiety associated with alcohol withdrawal, using social interaction and elevated plus maze as 

behavioural readout. Nevertheless, these authors reported also some sedative effect of 

baclofen at higher dose.

In a more ethological animal model of anxiety, Nastiti and collaborators demonstrated 

that baclofen (0.5 and 1 mg/kg) decrease significantly ultrasonic calling of mouse pups 

induced by maternal separation (Nastiti et al., 1991). Surprisingly, they reported that these 

effects are not due to a potential sedative effect of baclofen. 

The most conflicting results, regarding the effects of GABAB ligands in anxiety 

paradigm, were observed using the elevated plus maze. In a first study, Dalvi and Rodgers 

observed that baclofen at 3 mg/kg decreases dramatically the ratio between open/closed arm 

entries suggesting anxiogenic effect of GABAB receptor activation in mice. In contrast, they 

reported that at this dose, baclofen increase the time spent in the central area and decrease the 

total number of arm entries, suggesting that sedative effect could be contribute to anxiogenic 

effect observed (Dalvi and Rodgers, 1996). Interestingly, they also observed that the GABAB

receptor antagonist, CGP35348, failed to affect any behavioural parameters in these test. 

Conversely, a recent study reported that baclofen (0.05, 0.1 and 0.2 g/rat i.c.v. or 1, 2, 4 

mg/kg i.p) failed to affect the locomotor activity and behaviour in rat elevated plus maze. 

More surprisingly, these authors observed an anxiolytic-like effect of CGP35348 in the same 

test, when is injected i.c.v (Zarrindast et al., 2001). 

Given the discrepancy of results observed in all these studies, it is currently hard to 

conclude to a conclusive role of GABAB receptor in anxiety disorders. The major limiting 

factor of these observation is that the majority of studies use the prototypical GABAB receptor 

agonist, baclofen, which has been reported to have a wide constellation of side-effects, 
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including motor impairment, amnesic effect and hypothermia (Bowery et al., 2002). Thus, the 

discovery of GABAB receptor allosteric positive modulators and genetic modified mice might 

help in the investigation of the involvement of GABAB receptors in anxiety disorders. 

 1.3.2  Role of GABAB receptors in Depression. 

  1.3.2.1  Depression: Definition. 

Depression is one of the most serious disorders in today’s society (Wong and Licinio, 

2001). The World Health Organization predicts that unipolar depression will be the second 

most prevalent cause of illness-induced disability by 2020 (Murray and Lopez, 1997) and 

recently published data suggest that the current lifetime prevalence for depression is as high 

as 16.2% in the US adult population (Kessler et al., 2003). Further, with the economic burden 

of depression estimated to be as high as $44 billion per year in lost productive work time 

(Stewart et al., 2003), the imputes has never been greater to gain better understanding of the 

underlying pathophysiology and to develop superior treatment strategies for depression. Since 

the 1960s, depression as been diagnosed as “major depression” based on symptomatic criteria 

set in the DSM-IV: Symptomatology of the depression (see Table 3.). Moreover, depression 

should not be considered as a single disease, but a heterogeneous pathology comprised of 

numerous diseases, including melancholic depression, psychotic depression and dysthymia. 

The first antidepressants were discovered, entirely by serendipity, about fifty years 

ago. Indeed, imipramine, a tricyclic antidepressant (TCA) (Kuhn, 1957) and iproniazid, a 

monoamine oxidase inhibitor (MAOI) (Loomer et al., 1957), were derived from work on 

antihistamine research and antitubercular drugs respectively. These two classes of 

antidepressant have been demonstrated to dramatically improve the symptom of depression 

(Frazer, 1997). Nevertheless, they have several side-effects: MAOI are associated with 

dangerous hypertensive episodes above, which are caused when patients eat food rich in 
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tyramine. Similarly, TCA have been shown to block sodium channels, which can cause 

cardiac arrhythmias and cardiac arrest in overdose (Frazer, 1997). Consequently, today 

psychiatrists generally prefer newer antidepressants such as SSRI or norepinephrine-selective 

reuptake inhibitors. These new categories share with the TCA the ability to inhibit 

monoamine reuptake, but they are reported to be more selective and lacking the undesirable 

binding properties of TCAs. Regarding their onset of action, it is now well accepted that all 

antidepressants start to be fully effective only after 4 to 6 weeks of treatment (Frazer, 1997). 

These data support the idea that, although all antidepressant medications elicit their primary 

pharmacological effects by altering monoamine (serotonin, noradrenalin or dopamine) 

concentrations in the brain, their mood elevating effects would parallel long term adaptive 

changes.

1.3.2.2  Animal models of depression-related behaviour and antidepressant 

activity. 

Like anxiety disorders, depression is a heterogeneous disorder with symptoms 

manifested at the psychological, behavioural and physiological level which leads to difficulty 

in attempting to mimic the disorder in the laboratory (Table 3). Indeed, many of the human 

symptoms of depression as described in the DSM-IV (such as recurring thoughts of death or 

suicide or having excessive thoughts of guilt) are impossible to model in rodents. However, it 

is conceivable to think that some core symptom of major depression could be modeled in 

animals. Indeed, the loss of interest or pleasure observed in depressed patient, called 

anhedonia, has been translated in rodents (see Table 3). Thus, environmental or 

pharmacological manipulations have been reported to decrease the sucrose consumption in 

(Willner et al., 1992b) or intracranial self stimulation (Moreau et al., 1992). To date, there is a 

huge variety of animal models of depression (see Table 3), differing in terms of their 

predictive validity, face validity and their reliability. 
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Depression Symptom in humans How it is modeled in rodents? Ref.  

Depressed mood most of the day  Not applicable  

Markedly diminished interest or pleasure in all or 
most activities most of the day

Intracranial Self-Stimulation (ICSS) and 
progressive ratio responding in response to rewards 
such as sucrose can assess anhedonia 

(Kokkinidis et al., 1986; Gilliss et al., 2002) 

Large changes in appetite or weight gain Easily measured (Nonogaki et al., 1998; Karolyi et al., 1999) 

Insomnia or excessive sleeping  Sleep architecture can be measured using EEG (Boutrel et al., 1999; Boutrel et al., 2002) 

Psychomotor agitation or slowness of movement Can be assessed in terms of ease of handling. 
Activity can be measured in novel environment And 
motor co-ordination assessed using rotarod 

(Mizoguchi et al., 2002; Kafkafi et al., 2003; Wahlsten et 
al., 2003) 

Fatigue or loss of energy  Social withdrawal 
Energy Expenditure 
Treadmill/Running wheel  
Swimming 
Nesting Behaviour 
Active Waking in EEG 

(Dixon et al., 1994) 
(Nonogaki et al., 2003) 
(Grippo et al., 2003) 
(Dunn and Crnic, 1993) 
(Ballard et al., 2002) 
(Cheeta et al., 1997)

Indecisiveness or diminished ability to think or 
concentrate

Animal models of cognition 
Working memory 
Spatial Memory 
Attention 

(Crawley, 2000) 
(Estape and Steckler, 2002) 
(Contarino et al., 1999) 
(van Gaalen et al., 2003) 

Recurrent thoughts of death or of suicide Not applicable  

Feelings of worthlessness or excessive or 
inappropriate guilt 

Not applicable  

  Table.3. Symptoms of depression and their associated model in rodent. Adapted from (Cryan and Mombereau, 2004). 

Tableau 3. Les symptomes de la dépression et leur modèles animaux associés. 
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Forced swim test. 

The forced swim test (FST) is probably the most widely and most frequently used 

experimental paradigm for detecting antidepressant activity, largely due to its relative 

reliability across laboratories and its ability to detect activity a broad spectrum of clinically 

effective antidepressants (Cryan et al., 2002a). The test is based on the observation that 

rodents, following initial escape-oriented movements, develop an immobile posture in an 

inescapable cylinder filled with water. If antidepressant treatments are given prior to the test, 

the subjects will actively persist engaging in escape-directed behaviours for longer periods of 

time than after vehicle treatment. Recently, the rat FST has been further modified and 

demonstrated that the test reveals specific behavioural components of active behaviours, 

namely swimming, which is sensitive to serotonergic compounds such as the selective 

serotonin (5-HT) reuptake inhibitors and 5-HT receptor agonists, and climbing (a.k.a. 

struggling), which is sensitive to tricyclic antidepressants and drugs with selective effects on 

catecholaminergic transmission (Cryan et al., 2002a; Cryan et al., 2002b). In addition, Alcoro 

and colleagues (Alcaro et al., 2002) have shown that chronic treatment with the serotonergic 

antidepressant clomipramine increased swimming behaviour whereas the catecholaminergic 

drugs desipramine and amphetamine primarily increased struggling behaviour in a mouse 

version of the test. This dissection of active behaviours in the mouse FST has also recently 

been extended to unveil depressive-like behaviours in mice lacking the corticotrophin 

releasing factor (CRF) receptor 2 (Bale and Vale, 2003). 

Tail suspension test.

The tail suspension test is theoretically similar to the FST, briefly mice are suspended 

by their tails for six minutes, and the amount of time they spend immobile is recorded (Steru 

et al., 1985; Cryan et al., 2005). Acute antidepressant treatments will decrease these 
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immobility scores. Advantages of this test include its ability to detect a broad spectrum of 

antidepressants; it is inexpensive, methodologically unsophisticated and easily open to 

automation. This automation enables the assessment of additional parameters such as power 

and energy of movement (Porsolt et al., 1987; Steru et al., 1987). Furthermore, the TST also 

circumvents the need of the mouse to swim which may be relevant for examining the effects 

of certain genetically modified animals where motor co-ordination may be compromised. A 

relevant example of this is mice of the 129 strain which have problems keeping afloat when 

tested in the FST following treatment with SSRIs (Lucki, 2001) are suitable for testing in the 

TST.

Considering the different validity criteria of these tests, both the FST and TST have 

strong validity. Initially, Porsolt, for the FST, and Steru, for the TST reported that most of 

clinically effective antidepressants are active in this test (Porsolt et al., 1977; Steru et al., 

1985). In addition, non-pharmacological treatments, such as electroconvulsive shock are 

effective in both of them (Porsolt et al., 1977; Teste et al., 1993). Interestingly, etiological 

factor of major depression, such as stress or drugs of abuse-induced withdrawal, have been 

shown to affect the immobility in these test. Thus, withdrawal states induced by chronic 

administration phenylcyclidine, “angel dust” or amphetamine decreased significantly time 

spent in immobility in the FST and TST, respectively (Noda et al., 1995; Cryan et al., 2003b). 

While these tests seem to have remarkable predictive validity, there are major caveats 

associated with their use. For one, because these tests respond to acute treatment, thus they do 

not reflect the slow onset of antidepressant in the clinic. However, recent studies 

demonstrated that sub-effective dose of antidepressant, observed in acute study, is effective 

when it is administrated chronically (Dulawa et al., 2004). Another major issue is the 

relevance of immobility behaviour in the context of depression. Indeed, several authors 

debated of the signification of this behaviour (Cryan and Mombereau, 2004; Petit-Demouliere 
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et al., 2005). Finally, some authors have pointed the major lack of selectivity of these tests. 

Indeed, the original studies, Steru and Porsolt demonstrated that drugs, such as amphetamine 

or cocaine non-selectively decrease immobility behaviour in these test. Thus, in order to 

exclude eventual false positive, it seems to be fundamental to assess locomotor activity, 

susquently these test (Porsolt et al., 1977; Steru et al., 1985).To conclude, while FST and TST 

appears to have low and questionable construct validity, they assert them-self as a powerful 

animal model of antidepressant activity more than animal model of depression. 

Chronic mild stress. 

In contrast to these to tests, the chronic mild stress might be the model of depression 

with the strongest construct validity (Willner et al., 1992b; 1992a; Willner, 1997). This test 

consists of exposing rodents to series of mild unpredictable stressors during a prolonged 

period. Interestingly, the regimen has been demonstrated to induce anhedonia-like behaviour 

in animals. Thus, chronically stressed animals exhibit decrease in the consumption for sucrose 

solution and brain reward function as assessed using ICSS. Although anhedonia-like 

behaviours has generally, been shown to be reversed by chronic, but not acute, treatment with 

several classes of antidepressants (Moreau et al., 1992; Willner, 1997), this paradigm appears 

to have a poor inter-laboratory reliability in rat (Reid et al., 1997; Cryan and Mombereau, 

2004). In mice, recent studies interesting modification of the chronic mild stress model, using 

a 1-3 point scale for the assessment of the physical state of the animals fur. Animals subjected 

to chronic stress do not groom themselves or take interest in the state of their fur. There is 

certainly some analogy between this stress-induced state and the observations that depressed 

patients have a reduced efficiency with which even the smallest tasks are accomplished, 

leading to the inability to maintain minimal personal hygiene (Griebel et al., 2002b; Santarelli 

et al., 2003). Further, it has been shown that chronic treatment with the antidepressant 

fluoxetine and novel antidepressant candidates improved the physical state index of the mice. 
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In addition to this behavioural readout, several studies demonstrated that chronic mild stress 

could induce neuroimmune, neuroendrocrine or physiological changes observed in patients. 

For example, chronically stressed animals exhibits high plasma corticosterone analogous to 

hypercorticolism observed in major depressed patient (Froger et al., 2004). Consequently, this 

paradigm should be considered as a powerful tool to elucidate the involvement of stress in the 

etiology of depression. 

Learned helplessness. 

Similarly, the learned helplessness is also based on exposure to unpredictable 

stressors. This paradigm is mainly based on the observation that repeated exposure to 

inescapable and uncontrollable electric shock induce escape deficit in animals. Although, 

originally observed in dogs (Seligman, 1972), this model was subsequently translated in 

rodents, including rat (Seligman et al., 1975) and mice. In these test, antidepressant have been 

reported to reverse escape deficits usually after short-term treatment (Anisman et al., 1978; 

Anisman et al., 1979; Leshner et al., 1979; Sherman and Petty, 1982; Martin et al., 1990a). 

One important caveat that must be considered with the learned helplessness paradigm is that 

alterations in pain sensitivity caused by pharmacological or genetic manipulation will 

influence the behaviour of the animals.  Indeed, a recent example has pointed the difficulty to 

distinguish the helplessness from hypoalgesia in this paradigm (MacQueen et al., 2001).

Olfactory bulbectomy model. 

The last major animal model of depression is the olfactory bulbectomy model.  As the 

name suggests this paradigm consists in bilateral removal of the olfactory bulbs of rodents. At 

behavioural level, this manipulation induced an hyperactive response in a novel brightly lit 

open field apparatus, which is reversed almost exclusively by chronic, but not acute, 

antidepressant treatment and at doses which do not compromise the performance of sham-
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lesioned control animals (Kelly et al., 1997; Cryan et al., 1998). Moreover, olfactory 

bulbectomy have been shown to induce neurochemical, neuroendocrine and neuroimmune 

alterations many of which are comparable with changes seen in patients with major 

depression (Jesberger and Richardson, 1988; van Riezen and Leonard, 1990; Lumia et al., 

1992; Kelly et al., 1997). Indeed, studies in the rat have shown that following olfactory 

bulbectomy there are marked changes in the serotonergic (Zhou et al., 1998; Connor et al., 

1999; Watanabe et al., 2003), noradrenergic (van Riezen and Leonard, 1990) and GABAergic 

(Dennis et al., 1993) systems.  

Like in anxiety, several genetic manipulations have been assessed in the majority of 

test. Nevertheless, some the FST and the TST seem to share the exclusivity of research based 

on transgenic. Indeed, more than 30 studies, for the FST and 13 studies, assessed the effect of 

genetic manipulations on antidepressant-like activity (Cryan and Mombereau, 2004).



GENERAL INTRODUCTION 

62

Behavioural Model Readout  Comments Ref 

FST Immobility  Quick, Easy, robust,  
Sensitive to both acute and chronic treatments 

(Porsolt et al., 1977; Lucki et al., 2001) 

Modified FST Immobility 
Swimming 
Climbing 

Sensitive to acute and chronic antidepressant treatments; Differentiates 
antidepressants from different classes including SSRIs in rat, needs to be 
further characterized in mouse 

(Alcaro et al., 2002; Bale and Vale, 2003) 

TST Immobility  Quick, Easy, robust. Sensitive to acute treatments. 
Certain strains climb their tail 

(Porsolt et al., 1987; Bai et al., 2001; Mayorga et al., 2001) 

Olfactory Bulbectomy Hyperactivity in a novel 
environment 
Passive avoidance deficits 

Behavioural effects evident only following chronic treatment;  
mechanism of action poorly understood  

(Otmakhova et al., 1992) 
(Hozumi et al., 2003) 

Learned helplessness Number of escape failures 
Latency to escape 

Sensitive to short-term antidepressant treatments; ethical  
restrictions in some countries 

(Anisman et al., 1979; Shanks and Anisman, 1993) 

Chronic Mild Stress Sucrose Preference 
ICSS
Fur State 

Behavioural effects reversed in temporal fashion to that seen in depressed 
patients

(Harkin et al., 2002) 

(Griebel et al., 2002a; Griebel et al., 2002b; Ducottet et al., 
2003) 

Drug-withdrawal induced 
anhedonia 

ICSS
Sucrose Preference 
FST
TST
Learned helplessness 
Progressive ratio (rat) 

Requires further validation; cannot easily assess baseline strain  
differences using ICSS  
Is probably dependent on regimen of administration of drug 

(Kokkinidis et al., 1986; Barr and Phillips, 1999; Anraku et al., 
2001; Barr et al., 2002; Cryan et al., 2003b) 

(Russig et al., 2003) 

Prenatal Stress Immobility (FST) 
Endocrine Parameters (rat) 

May not be specific to depression, also proposed as model of schizophrenia (Koenig et al., 2002) 

Neonatal Clomipramine Immobility (FST) 
Circadian disturbances 
Endocrine parameters 

Only limited testing of antidepressants have been conducted in rat and none 
in mouse 

(Vogel et al., 1990; Velazquez-Moctezuma and Diaz Ruiz, 1992; 
Hansen et al., 1997) 

Maternal Deprivation HPA axis 
ICSS (RAT) 

Only limited testing of antidepressants have been conducted in rat and none 
in mouse 

(Schmidt et al., 2002) 
(Matthews and Robbins, 2003) 

DRL 72 Response rate  
Reinforcement rate 

Sensitive to short-term antidepressant treatments in rat (Wong et al., 2000) 
(Seiden et al., 1985) 

Resident Intruder Agonistic behaviour Distinguishable behavioural effects only following chronic treatment; 
Requires further validation in other laboratories 

(Mitchell and Redfern, 1997) 

LPS-induced  immunological 
activation 

Temperature responses 
Cytokines production 
Endocrine parameters 
Sickness behaviour 

Requires further validation for mouse (Dunn and Crnic, 1993; Shen et al., 1999; Yirmiya et al., 2001) 

Table 4: Comparative analysis of rodent depression models (adapted from Cryan and Mombereau, 2004) 
Tableau 4: Analyse comparative des modèles animaux de dépression. 
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  1.3.2.3 Neurobiology of depression. 

Like in anxiety disorders, several brain imaging studies have reported some changes in 

blood flow or related measures in several brain areas. For example, Drevets and colleagues 

reported an increased in regional metabolism and cerebral blood flow in the amygdala, orbital 

cortex and medial thalamus, and decreased in dorsomedial/dorsale anterolateral prefrontal 

cortex and anterior cingulated cortex in major depressed subjects (Drevets, 2000). As 

previously reported, these structures have been shown to be particularly involved in emotional 

behaviour. Therefore, several studies have also investigated the morphological of brain 

structure in depressed patients. Indeed, it has been observed an enlargement of amygdala 

during the first episode of depression (Frodl et al., 2002; Frodl et al., 2003). In contrast, 

several studies demonstrated decrease of hippocampus volume in depressed patients (Sheline 

et al., 1996; Bremner et al., 2000b; Steffens et al., 2000).  

Regarding the neurochemistry of depression, the monoamine hypothesis was first 

formulated forty years ago (Bunney and Davis, 1965; Coppen, 1968; Schildkraut, 1995). This 

hypothesis proposes that depression could be a consequence of deficiency of the monoamine 

neurotransmitters norepinephrine and/or serotonin in the brain. On the basis on this 

hypothesis, various classes of antidepressant agents have been developed that act in increase 

levels of monoamines within the synaptic clef. 

Noradrenaline (NA). 

Originally, the relationship between NA and depression began with the observation 

that reserpine-induced depletion of monoamines (including, NA), leads to depressive 

symptoms in some vulnerable subject (Bernstein, 1957). Subsequently, several post-mortem 

studies demonstrated alterations in adrenoceptor functions in depressed patients and suicide 

victims. Thus, it has been shown that major depressed patients exhibit elevated 2-

adrenoceptor density and affinity in the locus coeruleus compared to healthy subjects 
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(Ordway et al., 1994; Ordway et al., 2003). Moreover, it has also been reported alteration 

increase in -adrenoceptors in frontal cortex of suicide victim (Zanko and Beigon, 1983). 

Finally, Klimeck and collaborators demonstrated reduced levels of norepinephrine transporter 

binding in the locus coeruleus of depressed patients (Klimek et al., 1997). Preclinically, it has 

been reported that chronic treatment with desipramine decreases dramatically the responses 

induced by 2-adrenoceptor agonists, such as clonidine or dexmetdetomidine (Guo et al., 

1998; Sacchetti et al., 2001). These data suggest that chronic antidepressant treatment might 

induce a desensitization of 2-autoreceptor. Together, it could be safe to conclude that 2-

autoreceptors are hypersensitive in depression that could be counteracted by the progressive 

desensitization induced by chronic treatment with antidepressant. 

Serotonin.

Like for NA, the fact that reserpine-induced depletion of monoamines caused 

depressive symptoms in subjects, lead also to initiate the investigation of the role of serotonin 

in depression (Coppen, 1968). Concerning 5-HT receptors, it has been demonstrated that 5-

HT1A autoreceptors seems to be supersensitized in the midbrain of depressed subject 

(Stockmeier et al., 1998). Therefore, two different studies, have also demonstrated a decrease 

of serotonin transporter binding in the midbrain of depressed patients (Pirker et al., 1995; 

Tauscher et al., 1999). Preclinically, several studies demonstrated that chronic SSRI 

treatement or targeted deletion of serotonin transporter induced a desensitization of 

somatodentric 5-HT1A  receptor (Fabre et al., 2000; Le Poul et al., 2000). Conversely, it has 

been shown a hypersensitive response of 8-OH-DPAT, a 5-HT1A receptor agonist, in helpless 

mice, mice model of depression developed via selective breeding (El Yacoubi et al., 2003). 

Regarding postsynaptic 5-HT1A, there is no conclusive effect of chronic antidepressant on this 

receptor. However, some studies demonstrated a supersensitization of postsynaptic 5-HT1A

receptor after chronic SSRI treatment (Mongeau et al., 1997). Together, these data suggest 
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that hypoactivity of serotoninergic system could be induced via the hypersensivity of 5-HT1A

autoreceptors in raphé nucleus. Although, the 5-HT1A receptor appears to be the primary 5-HT 

receptor most implicated in depression, several studies have also shown involvement of 5-

HT2A or 5-HT1B in the physiopathology of depression (see review, (Cryan and Leonard, 

2000).

Other neurotransmitters and cell survival pathway. 

Like anxiety, several other major systems seem to play an important role in 

depression, such as glutamatergic system (Krystal et al., 2002) or hypothalamic-pituitary-

adrenal axis (Nemeroff, 1989). For example, anhedonia, one of the core symptoms of 

depression, could be related to dysfunction of dopaminergic system (Willner, 1983b; 1983a; 

1983c). However, there is emerging evidence for a role of cell survival pathway dysfunction 

in the pathophysiology of depression. This hypothesis is mainly based on the observation that 

depressed patients exhibit a reduction of hippocampal volume and increase of amygdala 

volume (see above). These results lead to the hypothesis that proteins involved in the 

neuroplasticity, such as neurotrophic factors could be also affected in depression (Altar, 

1999). Indeed, brain derived neurotrophic (BDNF), the most widespread growth factor in the 

brain, have been shown to be upregulated by chronic, but not acute, antidepressant treatment 

in the dentate gyrus and pyramidal cell layer of hippocampus of rodents (Nibuya et al., 1996). 

Conversely, it has been reported that chronic stress decreases levels of BDNF in the same 

region (Smith et al., 1995; Vollmayr et al., 2001).  More recently, Shirayama and 

collaborators demonstrated that injection of BDNF in hippocampus induced antidepressant-

like effect in two animal model of depression. The most compelling evidence comes from a 

recent study , where antidepressants increase level of hippocampal BDNF level in depressed 

patient (Chen et al., 2001).These data suggest that drugs which can lead to upregulated BDNF 

levels have the potential to have antidepressant activity. Another approach to affect BDNF is 
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to act on the transcription factor CREB (cAMP responsive element binding protein). Indeed, 

BDNF gene is induced in vivo and in vitro by CREB (Tao et al., 1998; Conti et al., 

2002).Thus, it has been demonstrated that chronic antidepressant increases levels of CREB 

expression in several brain structure, including hippocampus (Thome et al., 2000). Clinically, 

Levels of CREB are reportedly reduced in temporal cortex of depressed patients (Dowlatshahi 

et al., 1998; Dowlatshahi et al., 1999). Although, there is currently an extensive literature on 

these hypotheses, no direct pharmacological approaches to enhance BDNF concentrations 

have been developed at this time. 

GABA.

It is now generally agreed that GABAergic system plays a key role in the 

pathophysiology of depressive disorders. Indeed, a vast amount of studies have implicated a 

GABAergic function in the depression (Brambilla et al., 2003). Thus, it has been shown that 

depressed patient exhibited reduced plasma (Petty et al., 1990) and cerebrospinal GABA 

levels (Gold et al., 1980). Further, post-mortem studies described a decrease of GABA 

cortical levels negatively correlate with the severity of depression (Honig et al., 1988). As 

early observations predicted, studies, using imaging techniques, also demonstrated 

GABAergic dysfunction in this pathology. Sanacora and collaborators demonstrated reduced 

GABA concentration in occipital cortex of drug free depressed patients (Sanacora et al., 

2002), with a possible normalization after treatment with SSRI or electroconvulsive therapy 

(Sanacora et al., 2003; Sanacora et al., 2004).  

  1.3.2.4  Role of GABAB receptors in depression: Clinical studies. 

Paradoxically, only a sporadic number of studies have investigated the role of GABAB

receptor in depression. The majority of these studies used baclofen induced release of growth 

hormone as an in vivo index of hypothalamic GABAB receptor function. In healthy subjects, 

administration of baclofen induced increases in growth hormone concentrations, cortisol and a 
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lowering of body temperature. It has been reported that depressed patients exhibits a blunted 

growth hormone response to baclofen (Marchesi et al., 1991; O'Flynn and Dinan, 1993). 

Marchesi and collaborators demonstrated a significantly lower response to baclofen in 

depressed compared to healthy subjects. In line with these findings, O’Flynn and Dinan 

reported also a blunted growth hormone response to baclofen in depressed patient particularly 

in dexamethasone non-suppressor patients. However, two different studies demonstrated that 

these parameters are not affected in major depressed subject (Monteleone et al., 1990; Davis 

et al., 1997). In addition, Monteleone and collaborators also showed that chronic treatment 

with SSRIs or tricyclic antidepressant failed to affect growth hormone response to baclofen. 

In addition, only one study investigated the effects of baclofen on the affect of 

depressed patient (Post et al., 1991). In this study, the authors reported that baclofen 

exacerbates depressive symptoms. However, they examined the effect of baclofen only in five 

patients.

Thus, although GABAergic system seems to play an important role in depressive 

disorder, no conclusive picture of the potential involvement of GABAB receptor in depression 

has emerged to date. Nevertheless, the development of more potent ligands (Froestl et al., 

1999) and the cloning of GABAB receptor (Kaupmann et al., 1997) offer to the scientific 

community a new opportunity to assess the role of GABAB receptors in the pathophysiology 

of depression. 

1.3.2.5  Role of GABAB receptors in depression: Preclinical studies. 

Although clinical studies failed to demonstrate a clear picture of the role of GABAB

receptor in depression, numerous preclinical studies have investigated the effect of GABAB

ligands in large number of animal model of depression 
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Nakagawa and collaborators, using learned helplessness paradigm, reported that 

systemic baclofen, but not bicuculline, administration exacerbates the escapes failures to the 

inescapable shocks (Nakagawa et al., 1996a; 1996b). Furthermore, this group also 

demonstrated that GABAB activation, via systemic administration of baclofen, counteracted 

the antidepressant-like effect of desipramine in this paradigm, whereas muscimol appeared to 

be ineffective at modifying the actions of antidepressant drugs (Nakagawa et al., 1996a). On 

the contrary, the same group reported that CGP36742, a high potent GABAB receptor 

antagonist, dose-dependently improved the escapes failures induced by inescapable shocks 

(Nakagawa et al., 1999). On the other hand, these studies support an eventual involvement of 

GABAB receptors in depression.  

Subsequently, Kram and collaborators investigated the impact of learned helplessness 

paradigm on the expression of GABAB and GABAA receptors in several brain structures. 

Using autoradiography, they demonstrated a downregulation of GABAB receptors in the 

medial and lateral septum of rats which did not develop helpless behaviour and the 

helplessness rat (Kram et al., 2000). However, this group did not find any changes in the 

GABAB receptor in the frontal cortex among groups, as it was previously reported by Martin 

and collaborators (Martin et al., 1990b). In this study, a decreased GABAB receptor binding 

density in the frontal cortex of rats with learned helplessness was observed. Moreover, this 

group also demonstrated that chronic, but not acute, treatments with antidepressants normalize 

the lower GABAB receptor binding observed in helpless rats. Regardless of these 

discrepancies, GABAB receptor seems to play an important role in coping behaviour. 

In the forced swim test, another paradigm involving the ability of animals to cope with 

stress, baclofen appears to counteract also the antidepressant-like effect induced by 

desipramine, mianserin and buspirone (Nakagawa et al., 1996c) in rat. Interestingly, baclofen 

has been shown to decrease the time spent in immobility in the mice paradigm (Aley and 
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Kulkarni, 1990). Slattery and colleagues recently demonstrated that GABAB receptor 

antagonists but not the GABAB receptor positive modulator GS39783 had an antidepressant-

like profile similar to SSRIs in the modified rat FST (Slattery et al., 2005a). 

In effort to clarify the effect of GABAB ligands in animal model of depression, 

Bittiger and collaborators assessed the effect of CGP 51176A, a highly potent GABAB

receptor antagonist in the chronic mild stress paradigm (Willner, 1997). Indeed, they observed 

that chronic GABAB receptor blockade (four weeks of treatment) blocked the reduction of 

sucrose consumption induced by chronic mild stress in rat (Bittiger et al., 1996).  

In accordance with the data observed in learned helplessness model, bulbectomized 

animals have been shown to exhibit a downregulation of GABAB receptors in frontal cortex 

(Lloyd et al., 1989). In this paradigm, animals underwent a surgical ablation of the olfactory 

bulb which induced hyperactivity in the open-field test and a deficit in the passive avoidance 

paradigm (Kelly et al., 1997). Initially, baclofen has been reported to be able to block the 

hyperactive response in this model (Dennis et al., 1993). However the sedative properties of 

baclofen could interfere with any potential antidepressant-like effect in this paradigm. In 

contrast, a recent study demonstrated that GABAB receptor antagonist has an antidepressant 

like effect in this model (Nowak  et al., 2004).  

Taken together, results obtained in these different animals model of depression, 

supported the idea that GABAB receptor antagonist can be viewed as a potential targeted to 

treat depressive disorder.

Finally, several groups have also assessed the impact of antidepressant treatment on 

GABAB receptor binding and expression in animals’ brain. In the majority of these studies, 

chronic antidepressant treatment appears to up-regulated GABAB receptors in the frontal 

cortex and hippocampus. Indeed, the majority of binding studies, demonstrated that 
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antidepressant, including SSRI, tricyclic antidepressant and MAO inhibitors, increased 

GABAB receptor density in the frontal cortex (Gray and Green, 1987). In addition, it has also 

been shown that antidepressants upregulated GABAB(1a) receptor subunit transcript in 

hippocampus without affecting GABAB(1b) transcript (Sands et al., 2004). In addition, various 

studies investigated GABAB function in vivo after chronic antidepressant treatment. Borsini 

and colleagues demonstrated that 18 days of treatment with desipramine failed to affect 

hypothermia response induced by single administration of baclofen (Borsini et al., 1986, 

1988). In support of this, MacManus and colleagues reported also absence of effect of chronic 

antidepressant treatment, using motor-suppressant effect of baclofen as an index of GABAB

receptor function (McManus and Greenshaw, 1991). In contrast, it has been shown that 

chronic antidepressant treatments enhance baclofen induced hypothermia in mice (Gray et al., 

1987). Concerning these data, the differences between the protocols used, including treatment 

regimen, routes of administration and the species used could explain these discrepancies. 

Therefore, it has been postulated that motor-suppressant and hypothermic effect of baclofen 

recruit different subpopulation of neurons (Jacobson and Cryan, 2005). Consequently, we can 

presume that chronic antidepressant may affect differentially these two subpopulations. 

Despite these discrepancies, the recent development of GABAB receptor engineered 

mice (Schuler et al., 2001; Gassmann et al., 2004) will provide a useful tool for a better 

understanding of GABAB receptor function in antidepressant action. Moreover, further studies 

are required in order to dissect the multiplicity of physiological function underlied by GABAB

receptors.  
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1.3.3  Role of GABAB receptors in addiction. 

  1.3.3.1  Addiction: Definition. 

Drugs dependence is one of the major public health issues in today’s society. Recent 

surveys such as the National household survey on drug abuse revealed that the prevalence of 

drugs abuse among US adults aged 12 years or older is 29.5% for nicotine abuse, 5.9 % for 

heavy alcohol abuse and 7.1% for illicit drug abuse (see 

www.drugabusestatistics.samhsa.gov/nhsda/2k3nsduh/2k3Results.htm). A study prepared by The 

Levin Group for the National Institute on Drug Abuse and the National Institute on Alcohol 

Abuse and Alcoholism estimated the total economic cost of alcohol and drug abuse to be 

$245.7 billion for 1992  ( see www.whitehousedrugpolicy.gov/publications/index.html). Finally, 

addiction has recently been proposed to be categorized as a chronic medical illness (McLellan 

et al., 2000). 

Addiction can be defined as a chronic disorder that manifests as a psychological 

compulsion for the affected individual to maintain drug administration without being able to 

control or reduce intake. Clinically, psychiatrists distinguish at least two different disorders 

associated with drug intake, the “drug dependence” that is often used synonymously with 

addiction and “substance abuse” (DSM-IV). In addition to compulsive use of drugs, “drug 

dependence” include several other symptoms including the tolerance and the withdrawal 

syndrome observed following chronic use and abstinence respectively (see Table 5.). 

Tolerance is defined by the necessity to administer a drug in increasing doses in order to 

achieve the same effect. Concerning withdrawal, it represents the physical aspects of drug 

dependence and can be defined by the repertoire of aversive symptoms when the abused drug 

is suspended, including agitation, tremor, insomnia and anxious states Although it is currently 

not described as a required criterion for drug dependence in the DSM-IV, sensitization has 
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been proposed as key element of drug dependence (Robinson and Berridge, 1993). 

Sensitization can be defined as the increased response to drug that follows its repeated, 

intermittent presentation (Robinson and Berridge, 1993). Conversely, “substance abuse” is 

simply excessive use of a drug or use of a drug for purposes for which it was not medically 

intended (see Table 5.). In addition, “substance abuse” doesn’t require the development of 

tolerance or withdrawal (see Table 5.). However, it is important to note that substance abuse 

may lead to addiction or substance dependence. 
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Substance abuse Drug dependence. 

A maladaptive pattern of substance use leading to 
clinically significant impairment or distress, as 
manifested by one of more of the following occurring 
over the same 12-month period. 

1. Recurrent substance use resulting in a failure 
to fulfill major role obligations at work, school, or 
home. 

2. Recurrent substance use in situations in which 
it is physically hazardous. 

3. Recurrent substance-related legal problems. 
4. Continued substance use despite having 

persistent or recurrent social or interpersonal problems 
caused by substance. 

1. Tolerance. 
2. Withdrawal. 
3. The substance is often taken in larger amount over a longer 
period than was intended. 
4. Any unsuccessful effort or persistent desire to cut down or 
control substance use. 
5. A great deal of time is spent in activities necessary to obtain 
the substance or recover from its effects. 
6. Important social, occupational, or recreational activities 
given up or reduced because of substance use. 
7. Continued substance despite the knowledge of or having 
had a persistent or recurrent physical or psychological problem 
that is likely to be caused or exacerbated by the substance. 
8 Three or more symptoms occurring during the last year. 

Table.5. Diagnostic criteria for substance abuse and drug dependence (DSM-IV, the American Psychiatric association). 

Tableau 5. Critère de diagnostique pour les abus de substances et la dépendence.  
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Regarding the pharmacological treatment of addictive disorders, the multiplicity of 

primary sites of action of drugs of abuse  has led to the thinking that it would be difficult to 

try to treat all different drug dependences with a common treatment (Heidbreder and Hagan, 

2005). Thus, during the last two decades, several medications have been developed for 

specific drugs of abuse. Currently, there are at least three different approaches for the 

pharmacotherapeutic treatment of addiction. The first strategy consists of treating the disorder 

by mimicking drug action. This strategy includes methadone and buprenorphine for heroin 

addiction and nicotine replacement, such as patch or gum, for nicotine addiction. The first and 

the best established example of this approach is methadone, a slow-onset, long-acting -

opioid receptor agonist  Thus, at a specific dose, addicts on methadone have a low level of 

sustained activation of opioid receptors limiting the craving and consequently allowing the 

patient to reengage in social activities (Although, the patient can be maintained for many 

years using appropriate doses, the major caveats of this approaches is that the patient is still 

being exposed to opiates). The second approach consists in the blockade of drugs target, such 

as -opioid receptor for heroin addiction. Thus, naltrexone, an antagonist with high affinity 

for -opioid receptor, blocks the ability of opiates to produce their many effects including 

addiction. Nevertheless, its efficacy is relatively limited and its use is usually confined to the 

“white collar “ addicted, including physicians or nurses addicted to opiates (Roth et al., 1997). 

The last approach consists in the blockade of the addiction process. Thus, naltrexone as been 

also shown to be effective in alcoholism-related disorders (Volpicelli et al., 1992). Indeed, 

preclinical studies have demonstrated that alcohol’s addictive action might be mediated by 

opiod receptor (Modesto-Lowe and Fritz, 2005). Despite the relative wide amount of 

medications against addictive disorders, a better understanding of adaptative physiological 

changes involved in subsequent to chronic drug exposure, of individual genetic susceptibility 



GENERAL INTRODUCTION 

75

and for the environmental factor underlying intake of abused drugs might be helpful in the 

development of new pharmacological therapeutic. 

1.3.3.2  Animal models of addiction. 

Although drug addiction might be, as compared to other psychiatric diseases, 

relatively easy and reliably measurable in laboratory animals, it seems to be difficult to 

reproduce the entire symptomatology of this pathology within a single animal model. Thus, 

several models have been developed to investigate a single pattern of symptoms, such as 

withdrawal, tolerance, sensitization or relapse behaviour. However, the majority of 

paradigms, including place preference, self-administration or intracranial self-stimulation, are 

mainly designed in order to appreciate the reinforcing properties of drugs (see below), they 

can’t be considered as model of addiction per se. Nevertheless, these models provides 

interesting tools in order to investigate the capacity of potential anti-addictive therapeutic to 

attenuate reinforcing properties of drugs. 

Locomotor Activity 

In addition, to enhancing cerebral dopamine release, drugs of abuse increase the 

locomotor activity of animals (for review see (Kalivas and Stewart, 1991). Indeed, it has been 

speculated that mesolimbic dopaminergic system mediate both the rewarding and the 

locomotor activity stimulating effects of various abused drugs (for reviews see (Wise and 

Bozarth, 1987; Wise and Rompre, 1989). Lesion based studies demonstrated that selective 6-

OHDA-induced destruction of mesolimbic dopamine neurons results in abolition of 

psychostimulant-induced locomotor activity in rats (e.g. (Kelly et al., 1975) ) suggesting that 

locomotor activity might be considered as a behavioural index of activation of the 

dopaminergic system. Thus, an extensive number of studies have assessed the effects of 

potential anti-addictive agents on the hyperactivity elicited by drugs of abuse. For example, 

Tessari demonstrated that MPEP, a metabotropic glutamate 5 receptor antagonist, blocked the 
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hyperlocomotion elicited by a single administration of nicotine (Tessari et al., 2004). 

Nevertheless, there are several caveats in using this paradigm as a surrogate for the rewarding 

aspects of abused drugs. Pharmacological agents with muscle relaxant properties can be 

considered as “false positive” in this test.  One approach to overcome such issues is to 

combine such locomotor paradigms with neurochemical analysis of brain dopamine release, 

via microdialysis (Kuczenski et al., 1995), or analysis of activity of mesolimbic system, via c-

fos analysis (Dalia and Wallace, 1995). Finally, this test is not specific to addictive disorders 

but to all pathologies relative to hyperdopaminergic alterations. Indeed, locomotor based 

assays have been extensively used in schizophrenia-related research (Beninger, 1983). 

Locomotor sensitization 

As mentioned previously, tolerance and sensitization phenomenon are both key 

components of the behavioural repertoire of addictive disorders. In laboratory animals, 

repeated treatment with opioids or psychostimulants, including cocaine and amphetamine, has 

been shown to elicit these of two phenomenons, depending of the dose and the regimen used 

(Stewart and Badiani, 1993). Classically, intermittent repeated administration of drugs elicits 

sensitization whereas continuous administration of drugs results in tolerance phenomenon. A 

behavioural manifestation of sensitization to many drugs of abuse is progressive and enduring 

enhancement in motor stimulant effects elicits by repeated administration of drugs. Although 

the relevance of behavioural sensitization as a model of addiction is matter of debate, 

Robinson and Berridge have proposed that sensitization may play a role in some of persistent 

features of drug abuse, such as drug craving and compulsive drug-seeking behaviour 

(Robinson and Berridge, 1993). Regardless of these considerations, behavioural sensitization 

paradigms is, currently, used in order to investigate long-lasting molecular changes induced 

by repeated administration of drugs abuse (Nestler and Aghajanian, 1997; White and Kalivas, 

1998). Using this paradigm combined with molecular analysis, Nestler and collaborators have 
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demonstrated that repeated administration of cocaine elicit both, pointed mutation of DARPP-

32 attenuated both behavioural sensitization to cocaine and its associated accumulation in 

nucleus accumbens, suggesting that DARPP-32 might be involved in behavioural and 

molecular adaptation induced by repeated administration of cocaine (Zachariou et al., 2005). 

Thus, this behavioural sensitization might be an elegant approach to assess the effects of 

potential anti-addictive medications on long-lasting changes induced by repeated treatment 

with drugs of abuse. For example, -vinyl gaba (Vigabatrin), an irreversible inhibitor of the 

enzyme GABA transaminase, have been shown to alter the acquisition and expression of 

cocaine-induced sensitization (Gardner et al., 2002).The major limitation of this approach is 

that drugs are passively administrated, limiting his construct validity. In addition, several 

studies have been shown that passive vs active repeated administration may elicited different 

molecular and physiological adaptation (Jacobs et al., 2003). 

Place conditioning 

Another commonly used paradigm to evaluate rewarding effects of drugs of abuse is 

place conditioning (see review (Tzschentke, 1998). The place conditioning paradigm is based 

on the principal that was first introduced by Pavlov, that environmental cues that originally 

possess no incentive salience could acquire such salience by virtue of being repeatedly paired 

with affective stimuli. In this case, animals would learn to approach or avoid environmental 

stimuli which have been repeatedly paired with rewarding or aversive events. These responses 

would be named conditioned place preference (CPP) or conditioned place aversion (CPA). 

Typically, a conditioned place preference apparatus for rodents consists of at least two 

compartments, one of which is paired with the administration of a drug of interest, whereas 

the other associated to vehicle. After the conditioning the animals will be allowed to choose 

between the two compartments (see review (Tzschentke, 1998). If the animals spend more 

time in previously drug-paired compartment the animals displays CPP, if they spend more 
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time in vehicle associate compartment the animals displays CPA. In the context of addiction, 

the CPP paradigm has been extensively used to appreciate the rewarding properties of drugs 

(Carr and White, 1983). Thus, most drugs of abuse, such as, morphine, heroin, cocaine, 

amphetamine, nicotine, alcohol and cannabinoid agonist, have been described to elicit CPP 

(Stewart and Grupp, 1981; Mucha et al., 1982; Spyraki et al., 1982; Fudala et al., 1985; 

Lepore et al., 1995). Consequently, several groups have investigated the effect of potential 

anti-addictive compound on the CPP-elicited by drugs. For example, a recent study 

demonstrates that ultra-low doses of naloxone blocked the CPP to morphine (Olmstead and 

Burns, 2005). In addition, the place conditioning model provides also an interesting tool to 

investigate withdrawal phenomenon. Thus, buprenorphine, a treatment for opiate dependence, 

has been shown to block the opiate withdrawal-induced conditioned place aversion in rats 

(Stinus et al., 2005). Recently, this model was also adapted in order to investigate relapse 

behaviour by the reinstatement of CPP triggered by stress or priming administration of drugs 

of abuse (Kreibich and Blendy, 2004; Romieu et al., 2004; Popik et al., 2005; Ribeiro Do 

Couto et al., 2005). Although place conditioning might be viewed as a powerful paradigm to 

investigate addictive disorders, there are several potential caveats associated with its used. 

Firstly, this paradigm is devoid of construct validity, mainly because it has not been validated 

as protocol for measuring rewarding properties of drugs in human (Bardo and Bevins, 2000). 

In addition, this paradigm has been shown to have a huge learning component, mainly 

amygdala dependent (White and McDonald, 1993). Thus, NMDA antagonist have been 

shown to alter the acquisition of ethanol and morphine induced conditioning preference (Biala 

and Kotlinska, 1999; Ribeiro Do Couto et al., 2005), suggesting that agent with amnesic 

properties would be considered as a false positive in this paradigm. 
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ICSS (Intracranial self stimulation) 

As mentioned previously, ICSS was the first experimental tools to investigate brain 

reward system and provides a direct measure of brain reward function (Olds and Milner, 

1954; Phillips et al., 1989; Wise et al., 1992). In this paradigm, animals are trained to perform 

an operant (press a lever, nose poke, turn a wheel, head-dip) in order to obtain electrical 

stimulation in the so-called “pleasure centers” (see above). As ICSS directly activates the 

brain reward pathways, there is no satiation, tolerance, or sensitization to its rewarding effects 

(Phillips et al., 1989; Markou and Koob, 1991). The other main advantage of this paradigm is 

that it provides a quantitative measure of reward that was demonstrated to be extremely stable 

over periods of months under baseline conditions (see (Phillips et al., 1989; Wise et al., 1992; 

Kornetsky, 2004). Different drugs of abuse, including cocaine, morphine, heroin, 

amphetamine, cocaine, phencyclidine, all reduce the threshold current for ICSS (Kornetsky, 

2004). Thus, several groups have investigated the effects of potential anti-addictive drugs on 

these parameters. For example, the reduction of intracranial self stimulation reward thresholds 

induced by cocaine have been demonstrated to be counteracted by metabotropic glutamate 5 

receptor antagonist (Kenny et al., 2005) or 7 nicotinic receptor antagonist (Panagis et al., 

2000). Interestingly, low dose of bupropion, an antidepressant use in the treatment of nicotine 

addiction, have been also shown to block the reduction of intracranial self stimulation reward 

thresholds induced by acute nicotine injection (Cryan et al., 2003a). In addition, ICSS 

paradigm have been widely use in the investigation of withdrawal symptoms. Indeed, ICSS 

has provided investigators with a reliable behavioural readout to assess such alterations in 

brain reward after cessation of drug administration (Leith and Barrett, 1976; Markou and 

Koob, 1991; Cryan et al., 2003b; Spielewoy and Markou, 2003). For example, it has been 

shown that withdrawal from chronic nicotine induces a dramatic decrease in brain reward 

function as reflected by elevations in brain reward thresholds, these elevation has been have 
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been shown to be a great model of anhedonia, a core syndrome of withdrawal(Epping-Jordan

et al., 1998; Harrison et al., 2001; Semenova and Markou, 2003). More recently, Cryan and 

collaborators, using ICSS, demonstrated that bupropion counteracted the anhedonic states 

induced by cessation of chronic nicotine administration (Cryan et al., 2003a).  

Self administration 

The most elaborated model in experimental research is self-administration paradigm. 

In this case rats, monkeys and more recently mice earn an intravenous or intracerebral 

infusion of the drug of interest by execution of instrumental response, i.e. lever pressing, nose 

pokes or head dipping. This approach is considered to be one of the best measures of 

reinforcing properties of a drug in the brain because it appears to be analogous to self-

administration observed in humans. Thus, the majority of drugs of abuse , such as cocaine, 

morphine, heroin, alcohol, nicotine, and cannabinoid receptor agonists; have been shown to 

elicit self-administration in rats (Pettit et al., 1984; Vaccarino et al., 1985; Corrigall and Coen, 

1989; Koob, 1992; Martellotta et al., 1998b).Initially, several groups investigated the 

reinforcing properties of drugs used a  “fixed ratio” schedule of self administration. In this 

approach, the number of responses required for an infusion of drug is set at fixed number. 

However, “fixed ratio” paradigm might be viewed as measuring the fact of reinforcement, but 

not the degree of reinforcing properties (Arnold and Roberts, 1997). In other terms this 

schedule indicates the presence of reinforcing properties of drugs without measuring its 

rewarding properties per se. In addition, the other strategy for measuring the degree of 

reinforcing efficacy is drug self-administration under “progressive ratio” reinforcement 

(Stretch et al., 1971). In this case, animals are required to increase the number of response for 

each successive reinforcement. The reinforcing efficacy of the drug is determined by the 

measure of the breaking point, defined by the largest ratio of responses: reinforcements that 

the subjects complete or the number of responses: reinforcements ratios completed by the 
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subject per session. Interestingly, it has been shown that breaking point vary dose-

dependently (more the dose is high, more the breaking point is elevated). Consequently, the 

paradigm was extensively used in order to assess the effects of potential anti-addictive drugs 

on reinforcing properties of drugs of abuse. For example, MPEP, a metabotropic glutamate 5 

receptor antagonist, has been shown to decrease the breaking point maintained by nicotine 

and cocaine, suggesting that this compound might attenuate reinforcing properties of drugs of 

abuse (Paterson and Markou, 2005). More recently, self-administration schedules have been 

adapted to investigate the phenomenon of relapse. After a behavioural extinction of drug-

taking habit, the reinstatement of drug administration can be triggered in laboratory animals 

by stimulus, including drug, stress or drug paired-environmental cues (Shalev et al., 2002). 

This last approach is analogous to the behavioural aspects observed during human relapse 

(Epstein and Preston, 2003). To conclude, the self-administration paradigm could be 

considered as the most powerful tool to investigate addictive disorder, mainly because it 

exhibit a high face and construct validity and a particularly high reliability. However, its main 

disadvantage is largely technical, because it requires survival surgery and sophisticated testing 

apparati.

 1.3.3.3  Neurobiology of addiction. 

Despite their diverging primary sites of action, all drugs of abuse can lead to 

dependence, suggesting that all of there may be a  common biological substrate underlying 

their mechanism of action i.e. the brain reward system. Initially , Olds and colleagues 

demonstrated that rodents work to electrically stimulate relatively discrete areas of brain, 

which demonstrates the existence of brain-reward reward system. In the rat, several brain 

structure have been shown to elicit intracranial self stimulation including, septal nucleus, the 

medial forebrain bundle and the mesolimbic dopaminergic system (Porrino et al., 1984; 

Phillips et al., 1989).
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Indeed, it is now generally agreed that dopaminergic system play a key role in 

reinforced behaviours and consequently in addictive disorders. Briefly, the midbrain 

dopamine system is composed of two major projections: the nigrostriatal system, which 

projects from the substantia nigra to the corpus striatum, and the mesocorticolimbic dopamine 

system, which projects from the ventral tegmental area (VTA) to the nucleus accumbens, 

olfactory tubercle, frontal cortex, and amygdala. It is the mesocorticolimbic system that has 

been primarily implicated in the reinforcing actions of drugs of abuse. Virtually all drugs of 

abuse, including psychostimulant, opioids and nicotine share the common ability to increase 

the release of dopamine in nucleus accumbens and in the caudate putamen (Bassareo et al., 

1996; Pontieri et al., 1996; Tanda et al., 1997; Cadoni and Di Chiara, 1999). Nevertheless, the 

effects of addictive drugs on brain dopaminergic activity seem to be stronger in the nucleus 

accumbens than in caudate putamen (Imperato et al., 1987; Imperato et al., 1988). In addition, 

several groups have performed selective dopaminergic lesion of mesolimbic system in order 

to confirm the key role of this system in drug reinforcement/reward. Using 6-OHDA, Roberts 

and collaborators demonstrated that dopaminergic lesions of the nucleus accumbens or VTA 

decreased cocaine-maintained self-administration (Roberts et al., 1977; Roberts and Koob, 

1982).In line with these findings, 6-OHDA lesions of the nucleus accumbens have also been 

shown to decrease amphetamine self-administration (Lyness et al., 1979). 

Although these data support the role of VTA and nucleus accumbens in the reinforcing 

action of drugs of addiction, these structures also participate in the motivation to seek the drug 

and in the reinstatement of drug administration. Indeed, inactivation of VTA and the core 

compartment of the nucleus accumbens using the GABA agonists’ baclofen and muscimol 

prevented cocaine-primed drug-seeking behaviour in an animal reinstatement model of relapse 

(McFarland and Kalivas, 2001). In addition to these structures, several others brain areas have 

been implicated in relapse phenomenon. Thus, MacFarland and collaborators have 
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demonstrated a role for a number of regions including the extended amygdala (including the 

central nucleus of the amygdala, ventral bed nucleus of the stria terminalis), the shell part of 

the nucleus accumbens, and the prefrontal cortex in the reinstatement of cocaine self-

administration by foot-shock stress, suggesting that these structures would participate in drug 

seeking behaviour. Similarly, imaging studies have shown that craving for cocaine is 

associated with metabolic activation of the prefrontal cortex, amygdala, and striatal complex 

in addicted patients (Childress et al., 1999; Volkow et al., 1999; Kilts, 2001). In addition, 

recent studies have reported changes in orbitofrontal activity in patients addicted to cocaine. 

Although theses subjects exhibited a reduction of orbitofrontal cortex and cingulate gyrus 

compared to healthy subject, they have hyperactivity of the orbitofrontal cortex when they are 

tested shortly after last cocaine use or during drug-induced craving (Volkow and Fowler, 

2000). In fact, this groups postulated that hypermetabolism of orbitofrontal may contribute to 

compulsive behaviours in patients with obsessive compulsive disorders (Volkow and Fowler, 

2000). Based on these different findings Kalivas and Volkow (2005) suggested recently a 

working model substrate involving in addiction (fig.1.6A) and in the reinstatement (Fig.1.6B.) 

of drug taking(Volkow, 2005). 
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Fig 1.6. Schematic diagram of neural substrates involved in addiction (A) and in reinstatement phenomenon (B). 

Fig 1.6. Circuits des substrats neuronaux impliqués dans l’addiction et les phénomènes de rechutes 
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Although it is undisputed that dopamine plays a key role in addictive behaviours, it 

appears that other neurotransmitters, including glutamate and GABA, might be involve in this 

disorders, as it is reported in fig 1.6A. Furthermore, certain neuropeptide, such as cortropin-

releasing factor (CRF) seems to become involved in following chronic drug administration. 

Thus, it has been demonstrated that injection of CRF antagonist in the central nucleus of 

amygdala would reverse anxiogenic-like effect of ethanol and opiate withdrawal (Koob, 

1996). More recently, several groups have investigated the impact of repeated drug 

administration on several proteins in order to appreciate the long-lasting molecular changes 

involved in addictives disorders. At this point, one of the most extensively studied mediator of 

psychostimulant-induced molecular and behavioural changes is the dopamine and adenosine 

3’, 5’-monophosphate-regulated phosphoprotein (DARPP-32) (Greengard et al., 1999). 

Addidionally, two different transcription factors have been pointed to be particularly regulate 

by repeated administration of drugs of abuse : cAMP responsive element binding protein 

(CREB) and fosB (Nestler and Aghajanian, 1997; Blendy and Maldonado, 1998). 

Dopamine and cAMP Regulated Phosphoprotein of 32-kD (DARPP-32) is a 

converging point of cAMP signaling activated by D1 receptors and the Ca2+/Calmodulin 

pathway activated by NMDA receptors in the Nucleus Accumbens (Liu and Graybiel, 1996; 

Greengard et al., 1999). DARPP-32 can be either an inhibitor of protein-phosphatase 1 (PP1) 

or protein kinase A, whether it is phosphorylated on Threonine 34 (Thr34-DARPP-32) or 

Threonine-75 (Thr75-DARPP-32), respectively. Acute cocaine exposure increases the levels 

of Thr34-DARPP-32 in NAc, through a PKA-dependent mechanism (Nishi et al., 1999b), 

while chronic exposure favors the phosphorylation of DARPP-32 on Thr-75 (Bibb et al., 

1999). Loss of DARPP-32 in mice decreases the sensitivity to stimulant and rewarding effects 
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of cocaine, supporting the role of DARPP-32 activation in addictive disorders (Hiroi et al., 

1999; Zachariou et al., 2002). 

CREB is a member of the bZIP superfamily of transcription factors, including CREM 

(cAMP response element modulator) and ATF-1 (activating transcription factor 1). CREB 

activation via phosphorylation at Ser-133 is required to elicit transcription. Furthermore 

several signal transduction cascades, including the cAMP pathway via protein kinase A, 

intracellular Ca2+ via Ca2+ calmoduline-dependant kinases (CaMK) the Ras/extracellular 

signal regulated kinase (ERK) protein kinase pathway. Initially, it has been demonstrated that 

repeated, but not acute, administration of morphine upregulated CREB expression in the locus 

coeruleus (Guitart et al., 1992). In line with these data, mice containing targeted mutation of 

the  and  isoform of the CREB exhibited attenuated physical symptoms of morphine 

withdrawal (Maldonado et al., 1996), confirming the role of CREB in the modulation of 

physical opiate dependence. In addition to its role in locus coeruleus, accumbal CREB have 

been shown to be implicated in addictive disorders. Indeed, chronic cocaine increases CREB 

phosphorylation in the NAc (Terwilliger et al., 1991; Kano et al., 1995); whereas, viral-

mediated overexpression of CREB in this region decreases the reinforcing properties of 

cocaine (Carlezon et al., 1998). Moreover, overexpression of a mutant form of CREB 

increased the reinforcing properties of cocaine (Carlezon et al., 1998). Similar effects are seen 

in mice containing targeted mutation of the  and  isoform of the CREB, which are more 

responsive to the reinforcing effects of cocaine compared to wild-type littermates (Walters 

and Blendy, 2001). Taken together, these data suggest that CREB may contribute to 

reinforcing but also dysphoric effects of drugs. More recently, Kreibich and Blendy 

demonstrated that CREB  mutant mice exhibited a deficit in the reinstatement of cocaine-

induced place preference triggered by stress but not by cocaine administration (Kreibich and 
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Blendy, 2004) suggesting that CREB might be involved in relapse or drug seeking 

behaviours.

fosB is a truncated splice variant of the full-length FOSB, a member of the fos 

family of transcriptional factors, including c-fos, fosB, fos-related antigens 1 and 2 (Fra-1 and 

Fra-2). Fos family members heterodimerize with Jun family transcription factors to form an 

activator protein (AP-1) complex, that could induce or repress transcription, depending on the 

specific AP-1 binding site. Although acute exposure to drugs of abuse, such as cocaine, have 

been shown to elicited c-fos induction in the nucleus accumbens and dorsal striatum (Graybiel 

et al., 1990; Young et al., 1991), these protein decline rapidly toward basal levels within 8-

12h of drug exposure. Conversely, it appears that although fosB is modestly expressed 

acutely, it exhibits a particularly high stability and demonstrates in vivo half-life of weeks 

(Chen et al., 1997). Thus, repeated administration of several drugs of abuse, including 

cocaine, amphetamine, opiates, ethanol, nicotine and phencyclidine have been shown to 

induce an accumulation fosB in the nucleus accumbens and dorsal striatum (Hope et al., 

1994; Nye et al., 1995; Pich et al., 1997; Kelz and Nestler, 2000). In order to confirm the role 

of fosB in addictive behaviour, several groups have investigated subsequently the effect of 

genetic manipulation of fosB in several animal models of addiction. Thus, mice expressing 

specifically fosB in the nucleus accumbens and dorsal striatum exhibited sensitized 

behavioural response to cocaine (Kelz et al., 1999). Similarly, these mice exhibit a 

hypersensitivity to rewarding properties of cocaine and morphine place preference and self-

administration paradigms (Kelz et al., 1999; Kelz and Nestler, 2000; Colby et al., 2003). 

Finally, these mice work harder to self-administer cocaine in a progressive ratio self-

administration assay, suggesting that fosB may sensitize animals to the incentive 

motivational properties of cocaine and thereby lead to a propensity for relapse after drug

withdrawal (Colby et al., 2003). As expected, mice expressing the dominant negative 
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antagonist of antagonist of fosB, c-Jun, in the nucleus accumbens and dorsal striatum 

exhibit an attenuate sensitivity to cocaine in place-conditioning paradigm (Peakman et al., 

2003). Thus, these data indicate that the accumulation of fosB might contribute to long-

lasting change induced by repeated administration of drugs of abuse and in their long term 

reinforcing properties.

Because both CREB and FosB are transcription factors, we can speculate that their 

downstream effects could participate to the neuroplasticity triggered by repeated 

administration of drugs of abuse. For example, it has been shown that mice over-expressing 

FosB exhibit upregulation of the Cdk5, in the remodeling of neuronal processes (Benavides 

and Bibb, 2004). CREB has been shown to modulate dynorphin, an opiod peptide expressed 

in a subset of accumbal neurons (Cole et al., 1995). Dynorphin has been shown to be 

particularly involved in the phenomenon of dysphoria during the withdrawal from cocaine 

(Shippenberg and Rea, 1997). Nevertheless, further studies are require to confirm an eventual 

role of these transcriptional factor in regulation of gene primordial to neuroplasticity such as 

BDNF or receptors involved in long term potentiation or depression. 

1.3.3.3 Clinical studies implicating GABAB in addiction 

Emerging clinical data indicate that decreased GABAergic function may represent a 

major etiological step in the development and maintenance of the addictive state suggesting 

that manipulations that target the GABA system may be useful as treatments for addiction. 

For example, it has been demonstrated that the alcoholic withdrawal state induce is associated 

with reduced plasma and cerebrospinal fluid GABA (Coffman and Petty, 1985; Adinoff et al., 

1995). In addition recent studies, using brain imaging technology, reported decrease in of 

GABA concentration in dorsal prefrontal cortex and occipital cortex of cocaine abusers 

(Hetherington et al., 1997; Ke et al., 2000). 
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Concerning alcoholism, preliminary human trial with baclofen has been somewhat 

encouraging. In a preliminary study, Addolorato and collaborators investigated the effects of 

short-term baclofen administration on alcoholic patients (Addolorato et al., 2000). Thus, they 

demonstrated that baclofen, administrated for 4 weeks, reduced alcohol craving from the first 

week the drug administration and remained so throughout the entire treatment period. They 

also reported that most of subjects exhibit less obsessional thinking about alcohol. In line with 

these results, Flannery and collaborators, using open-label design, demonstrated that baclofen 

treatment for, 12 weeks, decrease significantly the number of drinks per dinking day and the 

number of heavy drinking days and in consequence increase abstinent days (Flannery et al., 

2004). In addition, they also reported that baclofen treatment significantly decreased anxiety 

and craving. Interestingly, a single self-case report by physician reported that baclofen 

reduces the severity of alcohol craving and produces complete abstinence for 9 consecutive 

months (Ameisen, 2005). 

For opiate addiction, a 12-week, double-blind, placebo controlled, parallel-group 

experiment in recently detoxified opioid-addicted patents demonstrated that baclofen 

produced significantly higher treatment retention and non-significant but favorable trend to 

reduce opioid craving and self-reported alcohol and opiate use (Assadi et al., 2003). 

Nevertheless, inspection of opiate levels in urine failed to demonstrate differences between 

baclofen-treated and placebo treated patients ref. 

Regarding addiction associated with psychostimulant, such as cocaine, a preliminary 

open-label, 18 week study revealed that baclofen produced a reduction in both cocaine 

craving and use, which was verified by urinalysis (Ling et al., 1998). However, patients didn’t 

report an effect of baclofen of cocaine ”highs” states. More recently, Shoptaw and 

collaborators, using a follow-up 16-week, double-blind, placebo-controlled study in 70 

patients, demonstrated that baclofen significantly reduced cocaine use which was verified by 
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urinalysis (Shoptaw et al., 2003). Surprisingly, they also shown that baclofen is more effective 

in subjects with a high consumption of cocaine compared to subjects with low consumptions. 

In order to confirm the potential anti-addictive properties of baclofen, a recent study , 

designed with 7 non-treatment seeking volunteers with recent histories  of cocaine use, 

demonstrated that baclofen failed to affect behavioural and cardiovascular effects of intranasal 

administration of cocaine (Lile et al., 2004). Interestingly, a study, using PET (Positron 

Emission Tomography), showed that cocaine users given baclofen 1-2 hours before watching 

a video of cocaine cues showed a reduced cocaine craving and less activation of anterior 

cingulated and amygdala compared to placebo treatment (Brebner et al., 2002). Consequently, 

it is becoming evident that GABAB receptor is involved in the phenomenon of relapse and 

craving.

Taken together, these studies confirmed that GABAB activation, via treatment with an 

agonist, can be viewed a plausible and rational pharmacology strategy for addictive disorders 

and that GABAB receptor may play a role in addictive disorders. Nevertheless, the majority of 

these studies used the prototypical GABAB receptor agonist which has been demonstrated to 

have a wide range of side-effects including sedation and muscle relaxant properties (Bowery 

et al., 2002). Although several reports suggested that tolerability might be adequate, a few 

reports demonstrated that abrupt cessation of baclofen treatment could elicit withdrawal, 

including hallucinations, fever, delirium, hypotension, bradycardia (Peng et al., 1998). At this 

point, the recent development of GABAB receptor positive modulator, see section 1.2.4.3, 

could represent a more interesting approach to avoid these side-effects. 

1.3.3.4  Preclinical studies on the role of GABAB receptors in addiction 

 It has been long known that GABA plays an important role in the modulation of 

dopaminergic reward circuit. Thus, GABAergic neuronal inputs have been shown to regulate 

neural tone within the ventral tegmental area (Kalivas et al., 1990) and the nucleus accumbens 
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(Christie et al., 1987), suggesting that GABAB receptors might be involved in “reward 

system” and addictive behaviours. Thus, intra-VTA infusion of baclofen has been shown to 

block the enhancement of nucleus accumbens induced by the opioid agonist DAMGO 

(Kalivas et al., 1990); confirming that activation of GABAB receptors on dopaminergic cell 

counteract meso-accumbens dopaminergic function. More recently, systemic administration 

of baclofen has been demonstrated to attenuated cocaine-, nicotine, and morphine-induced 

enhancement of nucleus accumbens dopamine as measured by microdialysis (Fadda et al., 

2003), suggesting that baclofen might alleviate reinforcing properties of these drugs of abuse 

in behavioural paradigm. Thus, in contrast to anxiety and depression, an extensive number of 

studies have assessed the effects of GABAB receptor ligands in animal models related to 

addictive disorders. 

As we discussed previously, locomotor activity is critically dependent on activation of 

dopaminergic neurotransmission. Thus, several investigators have assessed the effects of 

GABAB receptor activation on the locomotor stimulation induced by psychostimulants or 

another drugs of abuse. Using locomotor activity as a potential behavioural index of 

dopaminergic activity, Cott and collaborators demonstrated that baclofen eliminates the 

hyperactivity induced by acute administration of alcohol (Cott et al., 1976). Similarly, 

systemic administration of baclofen has been demonstrated to attenuate hyperactivity induced 

by apomorphine, a dopamine D1-D2 receptor agonist, and d-amphetamine (Phillis et al., 

2001). Although these results can’t provide information on the effects of GABAB receptor 

activation on the reinforcing properties of drugs, they support the fact that GABAB receptor 

activation might attenuate dopaminergic stimulation elicited by drugs of abuses. It is clear that 

the sedative effects of baclofen may confound interpretation of such data. 

In self-administration paradigms, baclofen has been shown to dose dependently 

reduces cocaine self-administration under a “fixed ratio” reinforcement (Shoaib et al., 1998; 
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Campbell et al., 1999; Di Ciano and Everitt, 2003), and induced a dose-dependent reduction 

of progressive ratio breaking point for intravenous cocaine (Roberts et al., 1996). Similarly, 

baclofen has also been demonstrated to reduce the breaking point maintained by 

methamphetamine and nicotine (Ranaldi and Poeggel, 2002; Markou et al., 2004), suggesting 

that when is administrated systemically, baclofen attenuates the reinforcing properties of these 

drugs. In addition, a few studies have shown that micro injection of baclofen in the ventral 

tegmental area also inhibits also nicotine and cocaine self-administration (Shoaib et al., 1998) 

(Corrigall et al., 2000). As expected, the highly selective GABAB receptor CGP44532 shows 

similar anti-addictive properties as seen with baclofen in cocaine self-administration 

paradigm, decreasing the progressive ratio breaking point maintained by cocaine (Roberts and 

Brebner, 2000). More recently, a study, using GABAB receptors positive modulator CGP7930 

and GS39783, reported that GABAB receptor positive modulation suppresses the initiation of 

cocaine self-administration (Smith et al., 2004), as it was previously observed with baclofen 

(Roberts et al., 1996). Thus, these data suggested that GABAB activation, via both agonist and 

positive modulator alters reinforcing properties of drugs in the self-administration paradigm. 

As we previously mentioned in section 1.3.3.3, GABAB receptor might be involved in 

the phenomenon of relapse. Thus, baclofen dose-dependently reduced cocaine-induced 

reinstatement triggered by re-exposure to cocaine (Campbell et al., 1999). In lines with these 

data, GABAB receptor agonist, CGP44532, have been shown to inhibit cue-triggered relapse 

to nicotine seeking behaviour (Paterson et al., 2005). Finally, Hotspenpiller demonstrated that 

systemic baclofen administration cocaine-conditioned locomotion in rats (Hotsenpiller and 

Wolf, 2003) confirming the potential anti-relapse properties of baclofen.

Regarding the ICSS paradigm, baclofen, CGP44532, and GS39783, the GABAB

receptor positive modulator, have been shown to attenuate reinforcing properties of cocaine in 

this paradigm (Dobrovitsky et al., 2002; Slattery et al., 2005b). Nevertheless, Slattery and 
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collaborators reported that baclofen, but not GS39783, administration elevates ICSS reward 

thresholds in absence to cocaine suggesting anhedonic and/or sedative effect of baclofen at 

the doses used. Similarly results were obtained with CGP44532 (Macey et al., 2001). 

In the place conditioning paradigm, microinfusion of baclofen in the ventral tegmental 

area blocks the acquisition of the morphine-induced place preference and both the acquisition 

and the expression of alcohol-induced place preference (Tsuji et al., 1996; Bechtholt and 

Cunningham, 2005). In addition, systemic administration of baclofen blocks the acquisition of 

morphine induced-place preference and both acquisition and expression of place preference 

elicited by d-methamphetamine (Li et al., 2001; Kaplan et al., 2003). Although these data 

strongly suggest that baclofen could attenuate reinforcing properties of drugs of abuse, it 

should be noted that the place preference has an important cognitive component. Thus, the 

effects observed systemically with baclofen could be partially due to its amnesic properties 

(Swartzwelder et al., 1987). 

Finally, several groups assessed the effects of GABAB receptor activation on the 

phenomenon of sensitization to drugs of abuse. Indeed, systemic injection of baclofen blocks 

both the establishment and the expression of behavioural sensitization to amphetamine 

(Bartoletti et al., 2005). Similarly, Broadbent and Harless reported that systemic injection of 

baclofen attenuate the establishment of behavioural sensitization to ethanol (Broadbent and 

Harless, 1999). More recently, two studies demonstrated an efficacy of local injection 

baclofen on behavioural sensitization to drugs of abuse. Leite-Morris demonstrated that 

baclofen injection in the ventral tegmental area blocks both establishment and the expression 

of morphine induced sensitization (Leite-Morris et al., 2004). Secondly, Steketee and Beyer 

demonstrated that intra-prefrontal cortex injection of baclofen attenuates the establishment of 

cocaine sensitization in rats, suggesting that GABAB receptor of both structure might be 

involved in sensitization phenomenon (Steketee and Beyer, 2005). Taken together, these data 
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demonstrated that baclofen might also counteract long-lasting mechanism involved in 

sensitization phenomenon. 

To conclude, this general overview of the effect of GABAB receptor ligands in several 

model of addiction led to the belief that GABAB receptor activation represents a potential new 

therapy for drug addiction. Nevertheless, the anhedonic-like effect of baclofen observed in the 

ICSS paradigm combined with its sedative properties could limit its widespread utility in the 

context of behavioural pharmacology. Thus, the encouraging result obtained using GABAB

receptor positive modulators in ICSS and self-administration paradigms support the use of 

this pharmacological approach for the assessment of the role of GABAB receptor in addictive 

behaviours.
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1.4  Specific Objectives of the Research 

Although GABAB receptors were first proposed to play a role in psychiatric disorders 

such as depression and anxiety over 20 years ago (Pilc and Lloyd, 1984), further progress in 

the field has been largely hampered by the lack of appropriate tools. Therefore, they have 

been little interest in the role of GABAB in neuropsychiatric disorders in the decade preceding 

the initiation of my research for this thesis in 2002. The recent development of new 

pharmacological and genetic tools offers a novel opportunity to investigate their contributions 

in psychiatric disorders. Consequently, the aim of this thesis was to examine the role of 

GABAB receptors in anxiety, depression and addiction, using these novel tools. We 

consciously decided to adopt a multidisciplinary approach to dissect the relevance of GABAB

receptors as a therapeutic target for all three of these psychiatric disorders, namely anxiety, 

depression and addiction. Furthermore, the comorbidity of these three disorders validated this 

approach (Markou et al., 1998). 

 In the first part of the present thesis, we evaluate the impact of targeted deletion of 

either receptor subunit, in order to confirm the conventional view that heterodimerization of 

GABAB(1) and GABAB(2) is a prerequisite for GABAB receptor function. To this purpose, we 

assessed the effect of genetic ablation of either of GABAB receptors subunit on hypothermic 

and motor deficit elicited by the prototypical GABAB receptor baclofen. To investigate the 

contribution of GABAB receptors to GHB action, we evaluated also the hypothermic response 

elicited by GHB in GABAB(1)
-/- and GABAB(2)

-/- mice. 

Although GABA-mediated neurotransmission has long been known to have a crucial 

role in anxiety, there are only sporadic studies investigating the specific contribution of 

GABAB in this pathology. This is largely because investigators have used baclofen for their 

investigations, which has a narrow window of efficacy before confounding side-effects are 
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manifested in anxiety paradigms. The recent development of GABAB(1)
-/- and GABAB(2)

-/-

mice and GABAB positive modulator, offer a novel opportunity to investigate the role of 

GABAB receptors in anxiety. Thus, we assessed the effect of targeted deletion of either of 

GABAB receptor subunit in well validated models of anxiety, namely the light-dark box test, 

the staircase test and the elevated-zero maze. In order to corroborate the effect obtained in 

GABAB(1)
-/- and GABAB(2)

-/- mice pharmacologically, we assessed also the effect of a highly 

potent GABAB receptor antagonist in the light-dark test. Finally, we took the advantage that 

GABAB receptor positive modulators are devoid of side effects associated to GABAB receptor 

full agonist, to confirm prior findings supporting a anxiolytic like effect of GABAB receptor 

stimulation. Thus, we evaluate the effects of GS39783 in several paradigms of anxiety, 

acutely and chronically. 

As mentioned in the introduction, there is growing body of evidence for a putative 

involvement of GABAB receptors in depressive disorders. Considering these prior studies, we 

hypothesized that genetic ablation of GABAB receptor might result in antidepressant-like 

phenotype in mice. To this purpose, we assessed the effect of targeted deletion of either 

GABAB receptor subunits in well validated model of antidepressant, namely the forced swim 

test and the tail suspension test. In order to exclude potential false positive result in these test 

due to hyperactivity, we secondly measured locomotor pattern of GABAB knock out animals 

in a new environment. In order to confirm the antidepressant-like phenotype of the GABAB(1)
-

/- and GABAB(2)
-/- mice pharmacologically, we assessed the effects of  both GABAB

antagonist CGP56433A and GABAB receptor agonist in the FST and also measured their 

effects on locomotor activity. Finally, we investigated the interaction of GABAB receptors 

and serotoninergic system in the context of depression. Thus, we evaluate the effects of 

GABAB receptor antagonist on the antidepressant like-effects of SSRIs. Further, we assessed 

the effects of GABAB receptors ligands on the behavioural effects of SSRI and the expression 
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of 5-HT1A receptor mRNA in the hippocampus. Conversely, we also investigated the impact 

of pharmacological blockade or genetic ablation of serotonin transporter, on GABAB receptor 

function using baclofen induced hypothermia as index of GABAB receptor function. 

Finally, we decided to investigate the role of GABAB receptors on behavioural and 

molecular alteration relevant to addictive disorders. To this purpose, we assessed the effect of 

GABAB receptor, via administration of baclofen or GABAB positive modulator, on behaviour 

and molecular changes elicited by single and repeated administration of drugs of abuse. In a 

first experiment, we investigated the effect of GABAB positive modulator and baclofen on 

hyperactivity and c-fos induction elicited by a single administration of cocaine. Secondly, we 

evaluated the ability of GS39783 to modulate behavioural sensitization to cocaine and its 

associated molecular adaptation, namely CREB and DARPP-32 activation and FosB

accumulation. In effort to recapitulate these effect in more ethological model of addiction, we 

decided, finally, to assess the effect of  GABAB receptors positive on conditioned place 

preference triggered by nicotine and its associated FosB accumulation in nucleus 

accumbens. 
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CHAPTER 2 :GENERAL MATERIALS AND 
METHODS.

2.1 Animals. 

 2.1.1 Mice. 

The GABAB(1) and GABAB(2) knockout mice were generated on a BALB/c genetic 

background as described previously (Schuler et al., 2001; Gassmann et al., 2004). In order to 

reduce the influence of strain effects all pharmacological studies were carried out in male 

BALB/c mice which were obtained from Charles River, France (Formally Iffy Credo). In 

addition, BALB/c mice have been shown to be highly emotional, or anxious, relative to other 

strains in several anxiety paradigm such as light-dark box or open-field test (Griebel et al., 

2000; Kim et al., 2002). Furthermore, this strain has also been shown to be highly sensitive to 

the effects of chronic SSRI in forced swim test and novelty-induced hypophagia, confirming 

that the use of this strain is particularly relevant in anxiety and depression research (Dulawa et 

al., 2004). Nevertheless, this strain has been also demonstrated to be insensitive to 

psychostimulant properties of drugs of abuse (see section 6.1). Consequently, all experiment 

related to cocaine were carried out with C57BL/6J mice which were obtained from Charles 

River, France. 

 2.1.2 Rats. 

Regarding the studies investigating the effect of role of GS39783 on nicotine-induced 

place preference, we choose male Wistars Rats (Charles River, France) as a robust place 

preference to nicotine had been previously validated in our laboratories. 
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2.2 Assessing GABAB receptor function in vivo. 

 2.2.1 Baclofen-induced hypothermia. 

Baclofen induces marked hypothermia which can be easily monitored using a rectal 

probe. This drop in temperature gives a robust indicator of the function of GABAB receptors 

in vivo (Serrano et al., 1985; Gray et al., 1987; Jacobson and Cryan, 2005). Rectal 

temperature was measured to the nearest 0.1 °C by an ELLAB instruments (Copenhagen, 

Denmark ) thermometer Model DM 852 by inserting a lubricated thermistor probe model 

PRA-22002-A (ELLAB, Copenhagen, Denmark) (2.2 mm diameter) 20 mm into the rectum; 

the mouse was hand held at the base of the tail during this determination and the thermistor 

probe was left in place for 15 s. Animals are habituated to the thermometer prior to 

administration of baclofen 

 2.2.2 Baclofen-induced impairment of motor coordination. 

Rotarod test

Baclofen induces motor impairment which can be easily monitored using the rotarod 

test. This ability of baclofen to induce motor incoordination also gives a robust indicator of 

the function of GABAB receptors in vivo (Schuler et al., 2001; Jacobson and Cryan, 2005). 

The rotarod apparatus consists of 28 mm diameter rod partitioned into five available lanes 58 

mm wide to accommodate individual mice. The rotarod apparatus consists of a cylinder 

subdivided into five available mice positions of each 6 cm in diameter, which is positioned 30 

cm above the Table and rotates at a speed of 12 rpm (Dunham and Miya, 1957). The mice 

were placed singly on the cylinder. On the day before the start of the experiment animals were 

trained over two separate sessions to stay on the rotarod for 300 seconds. During the test day 

the length of time each mouse remained on the cylinder (= ‘endurance time’, maximal score 

300 sec) was measured. 
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Fig.2.1. The Rotarod apparatus. 

2.3  Assessing anxiety behaviour in mice. 

 2.3.1 Light-dark box test. 

The light-dark box test was carried out essentially as described previously (Holmes et 

al., 2002; Cryan et al., 2003c). This paradigm is one of the most widely used of exploratory-

based approach avoidance conflicts tests in mice. It’s based on the innate aversion of mouse 

to illuminated areas. The apparatus consisted of a clear Plexiglas cage (44 x 21 x 21 cm) 

separated into two compartments by a partition, which had a small opening (12 x 5 cm) at 

floor level. The open compartment was open topped made of transparent Plexiglas and 

brightly illuminated by a 60 W desk lamp overhead (approx 1000 Lux). The smaller 

compartment was 14 cm long and made from black Plexiglas. It was covered on top also by 

black Plexiglas. Mice were individually placed in the centre of the brightly lit compartment, 
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facing away from the partition and allowed to freely explore the apparatus for 10 minutes. 

The apparatus was cleaned thoroughly between subjects. The number of light-dark transitions, 

time spent in the light compartment and latency to enter dark were recorded by a trained 

observer, with transitions being the most reliable indicator of anxiety-like behaviour in the 

test (Crawley and Davis, 1982; Holmes, 2001). 

Fig.2.2. The light-dark box. 

 2.3.2 Staircase test. 

Like light-dark box paradigm, staircase test in also exploratory-based approach 

avoidance conflicts tests. This paradigm exploits the natural tendencies of mice to avoid 

height. The test was carried out essentially as described earlier (Simiand et al., 1984; Cryan et 

al., 2003c) and consists of placing an experimentally naïve mouse in an enclosed staircase 

with five steps made of grey plastic. Each step was 2.5 cm in height 7.5 cm in length and 11 

cm in width. The apparatus was 45cm in length with one end 12 cm and the other 25 cm in 

height. The number of steps climbed and rearings made in a 3-min period was observed. The 

step-climbing count was increased every time the animal moved from one step to another in 
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the ascending direction. The apparatus was briefly wiped with a wet paper towel and dried 

between animals. Animals were moved to the testing room at least one hour prior to testing. 

The test has been validated using different anxiolytics (Simiand et al., 1984; Pick et al., 1996; 

Weizman et al., 1999) and has been used to examine anxiety-related phenotypes in genetically 

modified animals (Cryan et al., 2003c; Salas et al., 2003). The number of steps climbed and 

the rearing behaviour of the mice are recorded as measures of anxiety-related behaviour. 

Fig.2.3. The staircase test. 

 2.3.3 Elevated-zero maze. 

The elevated-zero maze is also a widely used anxiety paradigm. This test use 

spontaneous tendency of rodents to avoid open areas. In contrast to the elevated-plus maze, it 

has no central area removing any ambiguity in interpretation of the time spent on the central 

area of the elevated-plus maze allowing uninterrupting exploration. The apparatus was a 5.5-

cm-wide circular track constructed of grey Plexiglas with an inside diameter of 34 cm, a mid-

track circumference of approximately 121 cm, and an elevation of 40 cm. It consisted of two 
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open quadrants with a raised, 2-mm edge and two closed quadrants with walls 11 cm high. 

Mice were placed in one of the closed quadrants designated as the starting quadrant and were 

allowed to investigate the zero maze for a period of 5 min. During this time, an observer 

scored mice on several anxiety-related variables as identified in previous studies (Shepherd et 

al., 1994; Tarantino et al., 2000). These included times spent in both open and closed 

quadrants, number of transitions between quadrants, latency to leave the closed quadrant, 

stretchings (elongated body posture with at least snout over open/closed divide) into open 

quadrant, rearings, head-dips. 

Fig.2.4. Elevated-zero maze. 

 2.3.4 Stress-induced hyperthermia. 

As mentioned in the introduction, the stress-induced hyperthermia is a model of 

anticipatory anxiety. The test procedure for the modified stress-induced hyperthermia was 

adopted from Van der Heyden et al. (Van der Heyden et al., 1997) and is based on the original 
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description of stress-induced hyperthermia by Lecci et al. (Lecci et al., 1990): rectal 

temperature was measured to the nearest 0.1 °C by an ELLAB instruments thermometer 

(Copenhagen, Denmark) via a lubricated thermistor probe (2 mm diameter) inserted 20 mm 

into the rectum while the mouse was hand held near the base of the tail. The probe was left in 

place until steady readings were obtained (  15 seconds). Twenty-four hours before testing 

the animals were individually housed in smaller cages (26 x 21 x 14 cm). Stress-induced 

hyperthermia was assessed as follows: The core-temperature of each mouse was measured 

twice. The second measurement (T2) was 15 minutes after the first measurement (T1), which 

served as the basal value for each condition. The dependent variable, i.e. the stress-induced 

hyperthermia, was defined as the difference between T2 - T1. T1 was used to evaluate 

whether the test-compound by itself would have a potential effect on basal body temperature. 

 2.3.5 Novelty-induced hypophagia. 

The novelty-induced hypophagia is anxiety paradigm with a high predictive validity. 

Indeed, it has been shown to be highly sensitive acute administration of benzodiazepines, but 

also to chronic administration of SSRI. In this paradigm, the exposure to a novel environment 

is anxiety-provoking leading to an increase in latency to drink and decrease in food 

consumption. In the present thesis, the novelty-induced hypophagia was adopted from that 

described by Dulawa et al. (Dulawa et al., 2004). Mice were singly housed one week prior 

experiment began. Mice were trained to drink diluted (1 : 3; milk : water) sweetened 

condensed milk for 30 min. during 3 consecutive days. Milk was presented in 10 ml 

serological pipettes cut at the bottom and closed with a 0.5 ml ependorff. Pipettes were 

positioned through wire cage lids. Home cage testing occurred on day 4 when mice were 

briefly removed from their cages to position pipettes containing the milk, and testing began 

when mice were returned to their cages. The latency to drink and the volume consumed were 

recorded every 5 min for 30 min. Home cage testing occurred under normal lighting. Novel 
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cage testing occurred on day 5, when mice were placed into new clean cages of the same 

dimensions but without shavings, with pipets containing the milk positioned. In order to 

enhance the aversiveness of the new environment, novel cage testing occurred under bright 

lighting (approx. 1300 lux), with white paper placed under cages. 

2.4  Assessing antidepressant-like activity in animals. 

 2.4.1 Forced-swim test. 

As mentioned in the introduction, the forced swim test is probably the most 

extensively used paradigm to screen antidepressant. Here, it was conducted as previously 

described (Cryan et al., 2001; Cryan et al., 2003c). Briefly, mice were placed individually into 

plexiglass cylinders (24 cm tall x 21 cm in internal diameter) filled with water (23 – 25˚C) to 

a depth of 15 cm. All test sessions were recorded by a video camera positioned directly above 

the cylinders. Videotapes were subsequently scored blind by a trained observer. The 

behavioural measure scored from videotape was the duration of immobility during the last 

four minutes of the six minute test period as previously validated (Porsolt et al., 1978). A 

mouse was judged to be immobile when making only those movements necessary to keep its 

head above water. 



GENERAL MATERIALS AND METHODS 

106

Fig.2.5. The forced swim test. 

2.4.2 Tail suspension test. 

The second animal of depression used in the present thesis is the tail suspension test. 

Like the forced swim test paradigm, this paradigm is highly predictive of antidepressive 

activity and widely used in depression research. The test was carried out essentially as 

described previously (Steru et al., 1985; Cryan et al., 2003c; Cryan et al., 2005) with the 

exception that an automated device was used to score immobility (BioSeb, Chaville, 

France)(Cryan et al., 2005). Mice were individually suspended by the tail to a metal hook 

(distance from floor = 18 cm) using adhesive tape (distance from tip of tail = 2 cm). 

Typically, mice demonstrated several escape-oriented behaviours interspersed with 

temporally increasing bouts of immobility. The computer recorded the number of seconds 

spent immobile over the entire 6 minute period. 
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Fig.2.6.The tail suspension test. 

2.5  Determination of 5-HT1A  receptor mRNA expression in 
hippocampus.

2.5.1  RNA isolation, DNAse I digest and reverse transcription 

Hippocampi were disrupted (2 x 2 minutes at 20Hz) using a Mixer Mill 300 (Qiagen). 

Total RNA was isolated from disrupted brain tissue using the “absolute RNATM” RT-PCR 

Miniprep Kit ( Stratagene) according to manufacturer’s protocol. The quantity and quality of 

the RNA was determined by optical density (OD) at 260 nm and 280 nm (NanoDrop®). To 

remove traces of genomic DNA contamination, a small aliquot of total RNA was digested 

with RNAse-free DNAse (RNAse-free DNAse Set, Qiagen). The enzyme was inactivated by 

addition of EDTA and heating up to 65°C. After the DNAse I digest, a spot check of the RNA 

samples was performed by real-time PCR assays to ensure the absence of genomic DNA. 

DNAse I-treated total RNA was reverse transcribed into cDNA by random priming using the 

StrataScriptTM Reverse Transcriptase kit (Stratagene). 
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2.5.2  Real-time quantitative RT-PCR 

5-HT1A primers and probe (see Table 1) were designed with the aid of the Primer 

Express software (Version 1.0; Applied Biosystems). Probes were labeled with 6-

carboxyfluorescein (FAM) at the 3 -end and with 6-carbox-tetramethyl-rhodamine (TAMRA) 

at the 5 -end. For both the amplification of 5-HT1A and the internal control 18S cDNA, the 

standard amplification program was used (1 cycle of 50°C for 2 min, 1 cycle of 95 °C for 10 

min, 40 cycles of 95 °C for 15 s, and 60 °C for 1 min). Direct detection of the PCR product 

was enabled by the 5 3  exonuclease activity of Taq polymerase, thereby terminating the 

close proximity of the reporter dye to the quencher dye by reporter fluorochrome cleavage 

leading to an increase of reporter dye fluorescence equivalent to the increase of amplified 

PCR product. Real-time RT PCR assays were performed using the qPCRTM Mstermix 

(Eurogentec) on an ABI Prism  7700 Sequence Detection System (Applied Biosystems, 

Foster City, CA, USA).  5-HT1A primers and probe were used at concentrations of 300 nM 

and 175 nM, respectively. Real-time RT PCR assays for the internal control gene 18S rRNA 

were performed by using the “18S Genomic Endogenous Control Kit” (Eurogentec). 

Relative levels of target transcripts are reported after normalization to 18S rRNA. The 

normalized raw data were analyzed with the so-called “comparative CT method” as described 

in detail in Livak and Schmittgen, 2001(Livak and Schmittgen, 2001).  

2.6  Locomotor activity and animal models relevant to 
addiction.

 2.6.1.Locomotor activity. 

Animals were placed in automated locomotor activity cages (31 cm length, 19 cm 

width, 16 cm height; TSE, Bad Homburg, Germany) and the distance traveled was measured 
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by the number of horizontal beam-breaks as previously described (Spooren et al., 2000). Data 

were collected using personal computer in 5-minute intervals. 

Fig.2.7.Locomotor activity chamber. 

 2.6.2 Behavioural sensitization to cocaine. 

The mice were habituated to the test environment for three days and basal locomotor 

activity was measured. After an intraperitoneal injection of saline the mice were placed in the 

test cages (as above) for 30 min and locomotor activity was recorded. From days 4-10, mice 

were injected with cocaine (20 mg/kg/d, i.p.) or saline and locomotor activity was recorded. 

To assess the effects of drugs on the acquisition of behavioural sensitization to cocaine, tested 

drugs or its associated vehicle was applied 30 minutes before each cocaine injection. This 

period of acquisition of sensitization was followed by 14 days without drug treatment. In 

order to investigate the effect of GS39783 on the expression of cocaine sensitization, we 

designed a challenge trial (see e.g. (Kalivas and Stewart, 1991). On day 23 (challenge day), 

mice were administrated a dose of 10 mg/kg i.p. cocaine. In order to assess the effect of a 
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drug on the expression of sensitization, drugs or its associated vehicle was applied 30 min 

prior to the cocaine injection. 

 2.6.3 Place conditioning paradigm. 

The apparatus was as described previously (Chaperon and Thiebot, 1996). Briefly, rats 

were trained and tested in black wooden open fields (76×76×50 cm) located in a room dimly 

lit room (red-light). The floor of each open field was covered with removable quadrants made 

from one of two textures, wire mesh or rough plexiglas. These textures were chosen on the 

basis of previous studies indicating that naive rats exhibited no unconditioned preference for 

either of them.

The general procedure consisted of two phases: conditioning and testing. Conditioning 

consists of an alternation of four drug-paired conditioning sessions with four vehicle-paired 

sessions. During drug-paired sessions, drugs were administered prior to exposure to the open-

field covered with one floor texture. During the vehicle-paired session, rats received vehicle 

injection a 30 min exposure to the other floor texture. For half of rats, the first conditioning 

session was a vehicle-paired session, and for the other half a drugs-paired session. The day 

following the last conditioning session, rats were placed for a single 20 min testing session in 

the open field whose floor was made up of two quadrants of the vehicle-paired texture and 

two quadrants of the dug-paired texture. The quadrants of the same texture were positioned 

diagonally opposite to each other floor texture. During the test session, time spent on each 

texture was automatically recorded by means of the video system and analyzed by appropriate 

in-house developed software (SuperG Software, Hans C. Neijt; Novartis Pharma, Basel, 

Switzerland).
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Fig.2.8. Place conditioning paradigm. 
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2.7. Determination of specific molecular markers affected 
by administration of drugs of abuse. 

2.7.1  Tissue Preparation 

Brains were quickly removed, chilled in ice-cold phosphate-buffered saline (PBS) and 

nucleus accumbens,  dorsal striatum and hippocampus were dissected on ice-chilled glass 

plate and flash-frozen in dry ice.

2.7.2  Immunoblotting 

Individual tissue samples for western blot analysis were homogenized with a glass-

glass homogenizer in ice-cold buffer containing (in mM) Hepes (pH 7.9) 20, NaCl 400, 

MgCl2 5, EDTA 0.5, EGTA 0.1, including complete protease (Roche) and phosphatase 

inhibitors (Sigma). Homogenates were kept 20 min on ice and centrifuged 15 min at 20000 g, 

4°C. Pellets containing particulate fractions enriched in organelles and nuclei were mixed 

with 2X Laemmli sample buffer (125 mM Tris pH 6.8, 4% sodium dodecyl sulfate, 0.005% 

(w/v) bromophenol Blue, 200 mM dithiothreitol, 20% glycerol), heated to 90°C for 5 min and 

loaded on 10% SDS acrylamide gels (Bio-Rad). After electrophoretic transfer (Biorad blotting 

device), nitrocellulose membranes were incubated 1 hour at room temperature in PBS 

containing 0.1% Tween 20 and 5% fat-free powdered milk (PBST/milk). After three washes 

in PBST the membranes were incubated overnight at 4°C with primary antibodies in 

PBST/milk, and washed again three times in PBST. Incubation with horseradish-peroxydase-

conjugated secondary antibody was for 1-2 hours at room temperature. Peroxydase activity 

was detected using Supersignal West Pico substrate (Pierce) and Kodak MR-1 X-ray films 

(Amersham Biosciences). Afterwards, bound antibodies were removed (restore buffer, Pierce) 

and the membranes incubated with an anti-actin antibody to check for loading. X-ray films 

were scanned and analyzed with NIH ImageJ software (http://rsb.info.nih.gov/ij/, v1.31) 

according to manufacturer’s indications. Intensity values are presented as the ratio of the 
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optical density of the band of interest and of its actin control. Individual samples were not 

pooled and care was taken not to overexpose X-ray films in order to ensure linearity of 

signals. All experiments were performed in duplicate or triplicate.  

2.7.3  Reagents 

Primary antibodies used were rabbit anti- Fos (sc-253, Santa Cruz Biotechnology, 

1:1000), rabbit anti-FosB (sc-48, Santa Cruz Biotechnologies, 1:500), mouse anti-

phosphoCREB (clone 1B6, Cell Signaling, 1:1000), rabbit anti-DARPP-32 (2302, Cell 

Signaling, 1:2000), rabbit anti-CREB (sc-58, Santa Cruz Biotechnology, 1:1000),  rabbit anti-

actin (A2066, Sigma, 1:5000). Secondary antibodies were HRP-linked goat anti-mouse IgG 

(1:2000, Bio-Rad) or goat anti-rabbit IgG (7074, Cell Signaling, 1:1000 to 1:5000). All other 

reagents are from Sigma. 

2.8. Drugs

Desipramine, chlordiazepoxide, diazepam, cocaine and (-)-nicotine were obtained 

from Sigma (St. Louis, MO). Fluoxetine, L-baclofen, GS39783 (N,N’-Dicyclopentyl-2-

methylsulfanyl-5-nitro-pyrimidine-4,6-diamine), CGP56433A (3-{1(S)-[3-

(cyclohexylmethyl)hydroxyphosphinyl)2(S)hydroxypropylamino]nethyl} benzoic acid) and  

CGP44532 (((S)-3-amino-2-hydroxy-propyl)-methyl-phosphinic acid) were synthesized in-

house. In mice, all drugs were made up fresh prior to use and administered orally in a 

suspension of 0.5% methylcellulose at a concentration of 10 ml/kg expected cocaine which 

was administrated intra-peritoneally and dissolved in NaCl 0.9%. Regarding rat studies, 

GS39783 were dissolved in a suspension of 0.5% methylcellulose at a concentration of 5 

ml/kg and administrated orally. ( )Nicotine bitartrate free base dissolved in NaCl 0.9%, and 

the pH was adjusted between 7.3 and 7.5 with a few drops of 0.1 M NaOH; and administrated 

at a concentration of 5ml/kg sub-cutaneously.  
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2.9. Statistics  

For all behavioural studies, all data were analyzed using the appropriate within-

subject, and mixed-design ANOVAS or Student’s t-test (in the case of comparisons between 

just two groups of animals) followed by where appropriate by Fishers’s posthoc tests, using 

the SYSTAT software package. The level of significance was set at P < 0.05. Data from 

Section 5.5.3 were analyzed using t-test. Indeed, each group was compared to their proper 

controls groups. Specifically, chronic handled animals were compared to naïve animals and 

animals treated with GABAB ligands and antidepressants were compared individually to 

chronic handled animals. Finally, all molecular results obtained in chapter 6 were analyzed 

using the appropriate within-subject, and mixed-design ANOVAS or Student’s t-test (in the 

case of comparisons between just two groups of animals) followed by post hoc Newmann-

Keuls test where appropriate.
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CHAPTER 3: IMPACT OF TARGETED 
DELETION OF GABAB RECEPTOR 
SUBUNITS ON GABAB RECEPTOR 
FUNCTION: IN VIVO STUDIES. 

3.1  Introduction. 

In vivo assays receptor function using selective agonists using physiological or 

behavioural readouts of have been long employed to probe alterations in receptors following 

specific manipulations (e.g. (Goodwin et al., 1985; Cryan et al., 1999)). A key necessity for 

such research strategy is to have a robust and rapidly obtainable measure that is able to 

capture in a temporal and dose dependent manner the actions of the agonist.  This is certainly 

been the case for GABAB receptors where the selective tool baclofen to probe GABAB

receptor function in both animals and humans.   

Among other effects in vivo, stimulation of GABAB receptors, is known to produce a 

marked hypothermia which parallels behavioural changes, including impairment of motor 

coordination (Brogden et al., 1974; Gray et al., 1987; Schuler et al., 2001; Cryan et al., 2004). 

This effect is considered to be a central origin, since intracerebroventricular injection of the 

prototypic GABAB receptor agonist baclofen lowers body temperature. The specific site at 

which GABAB receptor agonists act is unknown, but it probably resides within the 

hypothalamic thermoregulation center (Yakimova et al., 1996). For these reasons, it has been 

well accepted that baclofen-induced hypothermia might be considered as a good in vivo index 

of GABAB receptor function, and in particular the function of hypothalamic GABAB

receptors. 

Thus, several investigators have assessed the effects of genetic or pharmacological 

treatment on this parameter. GABAB receptor antagonists have been shown to block the 
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hypothermic response to baclofen (Jackson and Nutt, 1991; Humeniuk et al., 1995). More 

recently, two different groups used this phenomenon in order to confirm the loss GABAB

receptor function in mice lacking GABAB(1) receptor subunit (Schuler et al., 2001; Queva et 

al., 2003). In their studies, both of them observed that targeted deletion of GABAB(1) receptor 

subunit totally blocked hypothermic response associated to systematic administration of 

baclofen, suggesting that GABAB receptor function require GABAB(1) subunit.

Another widely used in vivo assay for GABAB receptor activation is motor 

incordination and sedation which can be measured using a rotarod or open field apparatus 

Baclofen has long been known to produce motor discoordination in a range of species such as 

mice (Gray et al., 1987; Schuler et al., 2001; Cryan et al., 2004; Gassmann et al., 2004; 

Jacobson and Cryan, 2005), rats (Kasture et al., 1996) and rabbits (Frosini et al., 2004). 

Clearly, it is these muscle relaxant effects that have made baclofen the drug of choice for 

treatment of spasticity in man (Bowery et al., 2002). 

When assessing GABAB receptor function it is important to look at multiple readouts 

as they may be controlled by different populations of GABAB receptors.  Indeed, recently 

Jacobson and Cryan (Jacobson and Cryan, 2005) have shown that certain mice strains had a 

marked hypothermic response to baclofen in the absence of motor impairing effects and vice-

versa.

Accordingly, two different groups corroborated this hypothesis, using in vitro 

techniques, including electrophysiology and functional approaches. Indeed, these researchers 

observed that GABAB(1)
-/- lack pre or postsynaptic GABAB responses (Prosser et al., 2001; 

Schuler et al., 2001). Altogether these data support the idea that heterodimerization of 

GABAB(1) and GABAB(2) receptor subunits is a prerequisite for GABAB function (Marshall et 

al., 1999) excluding that GABAB(2) receptor subunit might assemble functional receptors by 

itself or in association with a protein other that GABAB(1).
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Nevertheless, several findings lead to speculate that GABAB(1) and GABAB(2) receptor 

subunit might have separate role. Firstly, GABAB(1) exhibits a more widespread cellular 

distribution than GABAB(2) (Kaupmann et al., 1998a). In addition, despite the fact that 

GABAB(1)  subunit require GABAB(2) for its delivery to plasma membrane (Margeta-Mitrovic 

et al., 2000), GABAB(1) was originally cloned by surface expression in mammalian cells 

(Kaupmann et al., 1997). Finally, GABAB(1) receptor subunit occasionally yields 

electrophysiological responses when transfected alone into heterologous cells (Kaupmann et 

al., 1997). Thus, it is conceivable that the GABAB(1) receptor subunit is functional either alone 

or in combination with unknown protein. 

Like baclofen, -Hydroxybutyrate (GHB) have been shown to induced hypothermia in 

rodents (Snead, 1990) and in humans (Chin et al., 1998) and also induce sedation and motor 

incordination (Lobina et al., 2005). Although it has been proposed to function as 

neurotransmitter (Cash, 1994), its receptor interaction are a matter of much debate. As 

mentioned in the general introduction, two different theories coexist at this time. The first 

suggest that the action of GHB is mainly mediated by specific GHB receptors, but not by 

GABAB receptors. Indeed, it has been shown that GHB binding differ from the GABAB

receptors binding (Snead, 1994). In addition, the putative GHB antagonist NCS-382 has been 

shown to have no affinity to GABAB receptors (Maitre et al., 1990). Conversely, the second 

theory supports the idea that GHB response might be GABAB receptor dependent. To clarify 

whether GABAB can participate in GHB response, we sought to assess the effect of targeted 

inactivation of GABAB receptors on hypothermia and rotarod performance induced by GHB. 

Thus, the aims of the present chapter were three-fold. In order to confirm that genetic 

inactivation of GABAB(1) receptor subunit abolish GABAB receptor function, we analyzed 

both hypothermic and motor effects of baclofen in GABAB(1)
-/- mice. Secondly, using the 

recently generated GABAB(2)
-/- mice, we investigated the effect of targeted on the deletion 
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GABAB(2) on the physiological and behavioural effects of baclofen. Finally, we examined the 

effect of genetic ablation of GABAB(1) or GABAB(2) on the well characterized hypothermic 

response to GHB, in clarify which receptors can be involved in physiological response 

induced by GHB. 

3.2 Experimental Design. 

GABAB(1) and GABAB(2) knockout mice were generated on BALB/c genetic 

background as described previously (Schuler et al., 2001; Gassmann et al., 2004). Mice were 

used at an age of 10-17 weeks. Regarding baclofen experiments, animals were placed on the 

rotarod cylinder immediately before and 1, 2 and 4 hours following R-baclofen (12.5 mg/kg, 

p.o.) administration. Temperatures were taken immediately after completion of the rotarod 

trial. The dose of baclofen was selected from previous studies (Schuler et al., 2001). Rectal 

temperature was measured 60 minutes and immediately before; 30 minutes, 60 minutes, 2 

hours and 4 hours after GHB administration. 

3.3  Effects of targeted deletion of GABAB(1)  subunit on 
GABAB receptor function. 

 3.3.1 Results. 

3.3.1.1  Effects of targeted deletion of GABAB(1)  receptor subunit 
on baclofen induced hypothermia. 

A two-way repeated measures ANOVA revealed a significant effect of baclofen 

treatment[F(1,35) = 78.85, P < 0.001] , genotype [F(1,35) = 9.603, P = 0.004] ,a significant 

genotype X baclofen treatment interaction [F(1,35) =45.21, P < 0.001]. As reported 

previously, GABAB(1)
-/- mice have slightly lower body temperature than their wildtype 

counterparts (Queva et al., 2003), however in these studies it failed to reach the level of 

statistical significance (P> 0.05). Baclofen induced a dramatic decrease of body temperature 

during with maximal effect two hours following administration in GABAB(1)
+/+ mice. 
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However, GABAB(1)
-/- mice had a totally blunted response to baclofen-induced hypothermia 

(See Fig. 3.1.). 
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Fig.3.1.Lack of baclofen-induced hypothermia in GABAB(1)
-/- mice. 

GABAB(1)
+/+ mice treated with 12,5 mg/kg (p.o.) of baclofen (n = 10) exhibited a decrease of 

core body temperature compare to  GABAB(1)
+/+ mice treated with vehicle (n = 10). GABAB(1)

-

/- mice treated with baclofen (n = 10) exhibited no reduction of body temperature compare to 
GABAB(1)

-/-  mice treated with vehicle (n = 9). All data points represent mean ± SEM values. 
The arrow denotes the time of compound application. ***Groups that differed significantly 
from to GABAB(1)

+/+ mice treated with vehicle (p<0.001). # groups that differed significantly 
to GABAB(1)

-/- mice treated with vehicle. 

3.3.1.2  Effects of targeted deletion of GABAB(1)  receptor subunit 
on baclofen-induced motor coordination impairment. 

On examination of rotarod test ANOVA revealed a significant effect of baclofen 

treatment [F(1,35) =842.64, P < 0.001] , genotype [F(1,35) = 721.77, P < 0.001] and a 

[F(1,35) = 758.05, P < 0.001]. No baseline difference in rotarod performance was observed, 

however GABAB(1)
-/- mice were devoid of the motor impairing effects of baclofen which was 
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clearly observed in GABAB(1)
+/+ mice (see Fig.3.2). Thus, these results confirm that the 

absence of GABAB receptor function in mice lacking GABAB(1) receptor subunit. 
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Fig.3.2.Baclofen fails to induced motor impairment in GABAB(1)
-/- mice.

GABAB(1)
+/+ mice treated with 12,5 mg/kg (p.o.) of Baclofen (n = 10) exhibited a motor 

impairment compare to GABAB(1)
+/+  mice treated with vehicle (n = 10). GABAB(1)

 -/-  mice 
treated with baclofen (n = 10) exhibited no change in the endurance on the rotarod compared 
to GABAB(1)

-/-  mice treated with vehicle (n = 9). All data points represent mean ± SEM 
values. The arrow denotes the time of compound application. ***Groups that differed 
significantly from to GABAB(1)

+/+ mice treated with vehicle (p<0.001). 

3.3.1.3   Effects of targeted deletion of GABAB(1)  receptor subunit 
on GHB-induced hypothermia. 

ANOVA (repeated measures) revealed that there was a significant difference in 

temperature responses to GHB between both genotypes [F(1,15) = 15.05, P < 0.001] and a 

genotype X time interaction [F(5,75) = 69.40, P < 0.001]. -Hydroxybutyrate induced a 

marked (6 °C) hypothermia in wild-type animals. However, there was no significant effect of 

GHB on temperature in GABAB(1)
-/- mice over the 3-h recording period after GHB application 
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(Fig.3.3). Posthoc analysis revealed that there was a slightly, but significantly, lower basal 

temperature in GABAB(1)
-/- mice compared with wild-type mice at both time points prior to 

GHB administration (Fig3.3). 
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Fig.3.3. Core body temperature after -hydroxybutyrate (GHB) application in 
wild-type and GABAB(1)

/  mice. 
 Body temperature after application of 1 g/kg GHB (p.o.) to wild-type ,white squares,  (n = 
10) and GABAB(1)

/  mice, white dots (n = 7). The arrow denotes the time of compound 
application. # Groups that differed significantly from genotype control (P < 0.05, Fisher's 
posthoc tests). All data points represent mean ± SEM values. 

3.4  Effects of targeted deletion of GABAB(2)  subunit on 
GABAB function. 

 3.4.1 Results. 

3.4.1.1  Effects of targeted deletion of GABAB(2)  receptor subunit 
on baclofen induced hypothermia. 
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Somewhat surprisingly, we observed that GABAB(2)
-/- mice respond similarly to 

administration of baclofen. Indeed, a two-way repeated measures ANOVA revealed a 

significant effect of baclofen treatment [F(1,32) = 79.973, P < 0.001] , genotype [F(1,32) = 

9.187, P = 0.003] ,a significant genotype X baclofen treatment interaction [F(1,32) =95.21, P 

< 0.001.]. Intriguingly, basal temperature of GABAB(2)
-/- also was slightly lower than that of  

wild-type animals. Although baclofen, in wild-type animals, elicits a marked hypothermia 

which reached its nadir at 120 min after administration, it seems to be without effect in 

GABAB(2)
-/- mice. (see Fig 3.4)  
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Fig.3.4.Lack of baclofen-induced hypothermia in GABAB(2)
-/- mice.  

GABAB(2)
+/+ mice treated with 12,5 mg/kg (p.o.) of Baclofen (n = 10) exhibited a decrease of 

core body temperature compare to  GABAB(2)
+/+ mice treated with vehicle (n = 10). GABAB(2)

-

/- mice treated with baclofen (n = 9) exhibited no reduction of body temperature compare to 
GABAB(2)

-/-  mice treated with vehicle (n = 7). All data points represent mean ± SEM values. 
The arrow denotes the time of compound application. ***Groups that differed significantly 
from to GABAB(2)

+/+ mice treated with vehicle (p<0.001).  
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3.4.1.2  Effects of targeted deletion of GABAB(2)  receptor subunit 
on baclofen-induced motor coordination impairment. 

Regarding the impact of targeted deletion of GABAB(2) subunit on motor impairment 

induced by baclofen , analysis of variance (repeated measures) revealed a significant effect of 

genotype [F(1,32) = 786.013 , P < 0.001], and effect baclofen treatment F(1,32) = 786.195 , P 

< 0.001] and a genotype X treatment  interaction [F(1,32) = 786.195 , P < 0.001]. Post-hoc 

analysis indicated that baclofen produced a marked hypothermia in wildtype animals 

(Fig.3.5.). Conversely, this response appears to be totally abolished in GABAB(2)
-/- mice. 

Altogether, these data , combined with the experiment on core temperature, suggested that 

GABAB(2) receptor subunit seems to be essential to GABAB receptor responses in vivo.  
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Fig.3.5. Lack of baclofen-induced motor impairment in GABAB(2)
-/- mice. 

GABAB(2)
+/+ mice treated with 12.5 mg/kg (p.o.) of Baclofen (n = 10) exhibited a motor 

impairment compare to GABAB(2)
+/+  mice treated with vehicle (n = 10). GABAB(1) 

-/-  mice 
treated with baclofen (n = 9) exhibited no change in the endurance on the rotarod compared to 
GABAB(2)

-/-  mice treated with vehicle (n = 7). All data points represent mean ± SEM values. 
The arrow denotes the time of compound application. ***Groups that differed significantly 
from to GABAB(2)

+/+ mice treated with vehicle (p<0.001). 
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3.4.1.3  Effects of targeted deletion of GABAB(2)  receptor subunit 
on GHB-induced hypothermia. 

 A one-way repeated measures ANOVA revealed no significant effect of genotype 

[F(1,14) = 3.695, P = 0.075] but a significant effect of time [F(5,70) = 14.396, P < 0.001] and 

a significant genotype X time interaction [F(5,70) = 14.223, P < 0.001]. Post-hoc analysis 

indicated that GABAB(2)
-/- exhibit significantly lower basal core temperature. Furthermore, 

GHB, at 1 g/kg, induced a strong hypothermia in wild-type mice. As we observed in 

GABAB(1)
-/- mice, GHB, at the dose use, failed to induced hypothermia in GABAB(2)

-/- mice.  
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Fig.3.6. Core body temperature after -hydroxybutyrate (GHB) application in 
wild-type and GABAB(2)

/  mice. 
Body temperature after application of 1 g/kg GHB (p.o.) to wild-type, white square, (n = 10) 
and GABAB(2)

/  mice, white dots, (n = 6). The arrow denotes the time of compound 
application. #Groups that differed significantly from wild type genotype (P < 0.05, Fisher's 
posthoc tests). All data points represent mean ± SEM values. 

3.5  Discussion. 
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The present set of data demonstrates that both GABAB receptor subunits are required 

to elicit the hypothermic and motor response induced by baclofen. Indeed, in agreement with 

a previous study, we shown that targeted deletion of GABAB(1) receptor subunit abolished 

totally motor impairment , measured by endurance on the rotarod, and hypothermic effect of 

baclofen. Secondly, using recently generated GABAB(2)
-/- mice, we observed that that genetic 

ablation of GABAB(2) receptor subunit blunted also these responses, confirming that 

heterodimerization of GABAB(1) and GABAB(2) subunit is a prerequisite for GABAB function. 

Finally, the hypothermic response triggered by GHB appeared to be totally blocked in both 

GABAB(1)
-/- and GABAB(2)

-/- mice, suggesting that physiological response to GHB seems to be 

mediated by GABAB receptors. 

In agreement with the study of Schuler and colleagues (2001), baclofen neither 

affected temperature regulation neither motor coordination in GABAB(1)
-/- mice, which 

confirms the notion that GABAB(1) receptor subunit is necessary for these effects of baclofen 

and that GABAB(2)  receptor subunit can be alone(Schuler et al., 2001). Accordingly, it has 

been shown also that GABAB(1)
-/- exhibits a lack of GABAB bindings sites, disruption of 

GABAB receptor function (characterized by GABA- or baclofen [35S]GTP S binding ), and 

absence of GABAB auto-or heteroreceptors and postsynaptic GABAB receptor function 

(Prosser et al., 2001; Schuler et al., 2001). In addition, pharmacological studies have 

demonstrated that GABAB receptor antagonists are also able to block hypothermic response 

elicited by baclofen (Humeniuk et al., 1995). Given that both pharmacological blockade and 

genetic inactivation of GABAB receptors abolished hypothermic response, it is safe to 

conclude that baclofen-induced hypothermia and its associated motor response can be viewed 

as a powerful and simplistic translational in vivo read-out of GABAB receptor function. 

Nevertheless, the characterization of the biological and, more specially, specific GABAB

receptors involved in these responses could reinforce its interest. Thus, the discovery that 
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hypothermic response to 8-OH-DPAT is mainly caused by 5-HT1A autoreceptor stimulation in 

mice (Goodwin et al., 1985) provided a huge tool in the context of psychiatric researched. 

Indeed, this technique is the most used to assessed desensitization of somatodendritic 5-HT1A

receptor characterizing antidepressant-like response. 

Regarding the GABAB(2)
-/- mice, we demonstrated that targeted deletion of GABAB(2)

receptor subunit is sufficient to abolish hypothermic response and motor impairment induced 

by baclofen. These results are analogous to the results obtained in GABAB(1)
-/- mice and 

suggest that these responses relate to GABAB(1,2) heterodimer activation. In addition, parallel 

studies, obtained in collaboration with the group of Bernhard Bettler, Martin Gassmann, and 

colleagues at the University of Basel, confirmed the lack of other baclofen-induced responses 

in GABAB(2)
-/- mice (Gassmann et al., 2004). Thus, using saturation binding experiment, they 

demonstrated a decrease of number of GABAB receptor bindings sites in GABAB(2)
-/- mice. In 

addition, they observed GABAB(2)
-/- mice exhibits an absence of functional GABAB receptor, 

using GTP [35S] binding. In vivo, they also demonstrated that baclofen failed to induce delta 

waves in EEG. Altogether, these data corroborated the absence of effect of GABAB receptor 

agonist in absence of GABAB(2) receptor subunit. Although they demonstrated also a loss of 

presynaptic GABAB functions in GABAB(2)
-/- mice, electrophysiological experiments 

demonstrated that these mice exhibit atypical post-synaptic response to baclofen in 

hippocampus. Indeed, baclofen elicits an inward current , in GABAB(2)
-/- mice, instead of the 

typical outward current observed in wild-type mice, suggesting neurons that lack naturally 

GABAB(2) receptor subunit might have the potential to express functional GABAB receptor. 

Although behavioural and physiological effects of baclofen, such as hypothermia, motor 

impairment or EEG delta waves induction seems to require heteromeric GABAB(1,2)  receptor, 

it is therefore plausible that the potential functional GABAB receptor, observed in GABAB(2)
-/-

mice, could participate to another neurobiological function. 
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Intriguingly, we also abserved a basal hypothermia in both GABAB(1)
-/- and GABAB(2)

-

/-, suggesting that GABAB receptors might also participate in thermal homeostasis. Although 

the hypothermic effects of GABAB receptor agonists have been known for a long time (e.g. 

(Gray et al., 1987)) antagonist experiments have to our knowledge not suggested that there 

would be any endogenous GABABergic tone in this system. Thus, we can hypothesize that 

basal hypothermia observed in both knock-out lines might be a consequence of compensatory 

changes.

Concerning the involvement of GABAB receptors in the GHB-related responses, we 

demonstrated that hypothermic elicited by GHB is totally abolished in both GABAB(1)
-/- and 

GABAB(2)
-/- mice. Moreover, parallels studies achieved in collaboration with the group of 

Bernhard Bettler, demonstrated that targeted deletion of GABAB(1) receptor subunit blocked 

also pharmacological response to GHB, such as hypolocomotion, increase in striatal 

dopamine synthesis and EEG delta-waves induction. In lines with these data several authors 

demonstrate that many effects of GHB are antagonized by GABAB receptor. Indeed, GABAB

antagonist have been shown to block the sedative properties of GHB (Carai et al., 2001), its 

effects of dopamine release in striatum (Waldmeier, 1991). Together, these studies 

demonstrated that these pharmacological effects of GHB are directly mediated by the 

activation of the functional heteromeric GABAB receptors. Nevertheless, autoradiography and 

ligands-binding assays revealed the presence of specific high-affinity binding sites for GHB 

in the brain of GABAB(1)
-/-, suggesting GABAB receptor do not contribute to GHB-binding 

sites. However, the functional relevance of these GHB binding sites is still unclear. 

To conclude, in this chapter, we have demonstrated that hypothermic and motor 

response to baclofen or GHB require the presence of both GABAB(1) and GABAB(2) receptor 

subunit receptor, confirming the hypothesis that functional GABAB receptors assemble from 

two subunit GABAB(1) and GABAB(2).  However, the atypical electrophysiological response, 
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observed in GABAB(2)
-/- mice,  led two think that the GABAB(1) and GABAB(2) subunits might 

have a differential role in the modulation of neural activity and perhaps in emotional 

behaviours. Further these studies allowed to concluded that GABAB(1)
-/- and GABAB(2)

-/- mice 

would be very useful tools to assess the role of GABAB receptor in animal model of 

psychiatric disorders.
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CHAPTER 4: THE ROLE OF GABAB
RECEPTORS IN ANXIETY. 

4.1  Introduction. 

As mentioned in the introduction, GABAB receptors seem to play a role in the 

modulation of anxious behaviour. More precisely, GABAB activation appears to induce 

anxiolytic like effect in animal models of anxiety (see (Cryan and Kaupmann, 2005). 

Nevertheless, previous data investigating GABAB mechanisms in anxiety are limited and 

rather variable; this is largely because investigators relied on using the prototypical full 

GABAB receptor agonist baclofen for such analysis. Indeed, baclofen has a narrow efficacy 

window before confounding side-effects are manifested in anxiety paradigms (Dalvi and 

Rodgers, 1996). Thus, the sedative properties of GABAB receptor agonists, such as baclofen, 

limit their used in exploratory-based approach-avoidance conflicts tests (Cryan and Holmes, 

2005). Similarly, the memory impairment associated to GABAB receptor agonist or its 

analgesic properties (Bowery et al., 2002) may also represent a major problem in animal 

model of conflict paradigms, such as Vogel test (Vogel et al., 1971), Geller-Seifter conflict 

(Geller et al., 1962). Consequently, the anxiolytic properties of baclofen observed in these two 

paradigms (Ketelaars et al., 1988; Shephard et al., 1992) seem to be questionable and could be 

considered as false positive. Regardless these considerations, sporadic clinical studies report 

that baclofen reversed the anxiety associated with alcohol withdrawal (Addolorato et al., 

2002b) and post traumatic stress (Drake et al., 2003), supporting the involvement of GABAB

receptor in emotional behaviours.  

Two recent developments have added innovative new tools to the armamentarium of 

researchers. Firstly, mice that lack the GABAB(1) subunit or GABAB(2) (Prosser et al., 2001; 

Schuler et al., 2001; Queva et al., 2003; Gassmann et al., 2004) have been generated. As 
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mentioned in previous chapter, these mice exhibit an abolished response to baclofen in vivo. 

Furthermore, GABAB(1)
-/- and GABAB(2)

-/- share atypical phenotype including spontaneous 

seizures, hyperalgesia or cognitive impairment (Schuler et al., 2001; Gassmann et al., 2004). 

Secondly, with positive allosteric modulators, novel pharmacological tools for GABAB

receptors have been characterized (Urwyler, et al., 2001; Urwyler, et al., 2003). These 

molecules enhance the action of GABA at the GABAB receptor and have little or no intrinsic 

agonistic efficacy on their own (Urwyler et al., 2001; Urwyler et al., 2003). Application of 

GABAB receptor positive modulators in the presence of an agonist shifts the concentration-

response curve to the left, as the modulators increase the potency of GABA. In addition, the 

maximal efficacy of GABA is increased. Allosteric positive modulation of metabotropic 

receptors is a recently identified phenomena, providing novel means for the pharmacological 

manipulation of G-protein-coupled receptors acting at a site apart from the orthosteric binding 

region of the receptor protein (Soudijn et al., 2002). Such properties suggest that allosteric 

modulators may offer a number of potential pharmacological improvements over the use of 

conventional agonists as has been demonstrated for modulators acting at ligand-gated ion 

channels (Costa, 1989). In the case of GABAA receptors, such modulation has been 

therapeutically utilized with the benzodiazepines, which amplify the action of the endogenous 

neurotransmitter GABA. Therefore, we hypothesized that GABAB receptor positive 

modulators will be superior drugs, devoid of the side effect profile associated with full 

agonists such as baclofen.

Thus, these novel tools, including mice lacking GABAB receptors and positive 

modulators, provide a new opportunity to explore the role of GABAB receptor in behavioural 

paradigms relevant to anxiety. Thus, we investigated the behavioural effect of genetic 

inactivation of GABAB(1) and GABAB(2) receptor subunit in several anxiety paradigms, such 

as light-dark box or staircase test. We attempt also to corroborate the effect of targeted 
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deletion of GABAB receptor on anxiety with antagonist. Finally, we also assessed the effect of 

GABAB receptor positive modulator in several animal model of anxiety. 

4.2  Experimental Design. 

The GABAB(1) and GABAB(2) knockout mice were generated on a BALB/c 

background as described previously (Schuler et al., 2001; Gassmann et al., 2004). Age and 

sex matched mice were used at an age of 3 to 8 months. Both male and female animals were 

used in all experiments in approximately equal amounts. There was no effect of gender on 

behaviours observed.

In order to minimize the influence of strain effects all pharmacological studies were 

carried out in male BALB/c mice (23-26 g) which were obtained from Iffa Credo, France 

excepted for the elevated zero maze experiment where both BALB/c and OF-1 (30-40g) mice 

were used. In a number of initial studies heterozygous mice (GABAB
+/-) were also used, no 

gene dosage effect was found in any of the behaviours analyzed with heterozygotes behaving 

similarly to wildtypes. Regarding pharmacological studies, all drugs were administrated orally 

1 hour prior behavioural testing.

Concerning the novelty-induced hypophagia experiment, the drugs was administrated 

1 hour prior the test in the new environment. All drugs were made up fresh prior to use and 

administered in a suspension of 0.5% methylcellulose at a concentration of 10 ml/kg. 

 In the case of chronic studies, animals were injected in the afternoon (2-4 pm) for 21 

days and tested on the morning following last injection. They were again injected 

immediately after the initial test and for the consecutive day, locomotor activity testing was 

carried out approx 24 hours following this last injection. Doses for chronic studies were 

selected from the dose-response studies of acute administration of the compounds (data 

presented in these studies). 
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4.3  Impact of targeted GABAB(1)  receptor subunit on 
anxiety related behaviours. 

 4.3.1  Light-dark box. 

Upon being placed in the light side of the apparatus, freezing behaviours was observed 

in 30% of the GABAB(1)
-/- mice but none of the wildtype. As shown in Fig.4.1, GABAB(1)

-/-

mice displayed marked increases in anxiety-related behaviours in the light-dark box paradigm 

compared with wildtype (GABAB(1)
+/+) or heterozygous (GABAB(1)

-/+) mice. ANOVA 

revealed a significant effect of genotype on the time spent in light compartments [F(2,45) = 

11.02, P = 0.001] and on the number of transitions [F(2,45) = 4.39, P = 0.018]. Further, there 

was a genotype influence on the latency to enter in the dark compartment [F(2,45) = 4.86, P = 

0.012.]. Post-hoc analysis revealed that GABAB(1)
-/- mice exhibited a decrease of the latency 

to enter into the dark compartment compared to wildtype and heterozygous mice. GABAB(1)
-/-

mice showed a significant decrease in the time spent in light compartment compared to 

heterozygote or wildtype mice (Fig.4.1B) and exhibited significantly fewer light-dark 

transitions (Fig.4.1A). This latter parameter being the most reliable indicator of anxiety in the 

light-dark box test. Heterozygote mice behaved in the same manner as wildtype mice in all

parameters in this test. Altogether, these effects are indicative of an increased anxiety in 

GABAB(1)
-/- mice. In order to confirm the reliability of the phenotype a second cohort of 

animals were tested in the light-dark box. These GABAB(1)
-/- mice had both qualitatively and 

quantitatively the same (anxious) phenotype (data not shown.). 
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Fig.4.1. Increased anxiety in GABAB(1) deficient mice in light-dark box. 
(A) GABAB(1)

-/- mice had a marked decrease of transitions between light and dark 
compartments compared with heterzygote or wildtype mice. (B) GABAB(1)

-/- mice spent less 
time in light compartment in comparison to heterozygous or wildtype mice. (C) GABAB(1)

-/- 

mice (n = 16) exhibited a decrease in latency to enter in the dark compartment, compared to 
heterozygous (n = 16), but not compared to wildtype mice (n = 16). All bars represent mean 
values, with vertical lines indicating one SEM. *,**,***groups that differed significantly to 
wildtype mice (P < 0.05, P < 0.01 and P < 0.001 respectively). 

 4.3.2  Response to classical benzodiazepines in the light-dark box. 

Regarding the latency to enter in the dark compartment, two-way ANOVA revealed an 

effect of genotype [F(1,58) = 9.645, P = 0.03], but not effect of  treatment [F(2,58) = 0.802, P 

= 0.453] and no genotype x treatment interaction [F(2,58) = 1.360 , P = 0.265]. These data 

suggest that GABAB(1)
-/- mice are more anxious that their wildtype counterparts, but that 

benzodiazepines failed to significantly affect this parameter in both GABAB(1)
-/- mice and 

wildtype. Concerning the time spent in the light compartment, two-way ANOVA failed to 

reveal  any significant effect of genotype [F(1,58) = 1.867, P = 0.177], but an effect of  
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treatment [F(2,58) = 3.390, P = 0.041] and no genotype x treatment interaction [F(2,58) = 

0.188, P = 0.829]. On examination of the number of transitions, Analysis of Variance 

(ANOVA) revealed an effect of genotype [F(1,58) = 6.623, P = 0.013], treatment [F(2,58) = 

3.283, P = 0.045], but no genotype x treatment interaction [F(2,58) = 0.829, P = 0.442]. Post-

hoc analysis indicated that diazepam or chlordiazepoxide increased significantly the number 

of transitions in wildtype mice, but this effect was markedly blunted in GABAB(1)
-/- mice (Fig 

4.2A). Nevertheless, taking together, these data corroborated that GABAB(1)
-/- mice are more 

anxious than their wildtype counterpart and demonstrated that targeted deletion of GABAB(1)

receptor subunit attenuated the response to benzodiazepines in the light-dark box. 

Intriguingly, it has to be noted that the anxious phenotype of GABAB(1)
-/- mice is less robust 

than in experiment of section 4.3.1. These discrepancies might be due to that many GABAB(1)
-

/- mice froze upon being placed in the apparatus (30% in vehicle treated animals) in the 

present study.
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Fig.4.2. Blunted anxiolytic effect of benzodiazepines in GABAB(1)
-/- mice. 

A) Effects of acute administration of diazepam (7.5 mg/kg, p.o.) and chlordiazepoxide (CDZ, 
10 mg/kg, p.o.)  on the number of transitions in GABAB(1)

+/+ and GABAB(1)
-/- mice: acute 

administration of diazepam (7.5 mg/kg, p.o.) and chlordiazepoxide (CDZ, 10 mg/kg, p.o.) 
increased the number of transitions in GABAB(1)

+/+ mice. n = 10-11 per treatment group. 
These two treatments didn’t affect the number of transitions in GABAB(1)

-/-  mice. n = 10-11 
per treatment group. B) Effects of acute administration of diazepam (7.5 mg/kg, p.o.) and 
chlordiazepoxide (CDZ, 10 mg/kg, p.o.)  On the time spent in light compartment in 
GABAB(1)

+/+  and GABAB(1)
-/- mice. (C) Effects of acute administration of diazepam (7.5 

mg/kg, p.o.) and chlordiazepoxide (CDZ, 10 mg/kg, p.o.)  on the latency to enter in dark 
compartment in GABAB(1)

+/+  and GABAB(1)
-/-mice. All bars represent mean. Values, with 

vertical lines indicating 1 SEM.* groups that differed significantly to vehicle treated 
GABAB(1)

+/+  mice treated with vehicle( P < 0.05). 

 4.3.3  Staircase test. 

In the staircase test, another paradigm for assessing anxiety-related behaviours, 

GABAB(1)
-/- mice had lower number of rearings than wildtype and heterozygote mice [F(2,45) 

=23.15, P =0.001] (Fig.4.3B). In addition, the number of steps climbed by GABAB(1)
-/- mice 

was decreased compared to wildtype and heterozygote mice [F(2,45) =52.61, P = 0.001] 

(Fig.4.3A).This lack of exploration in the test was associated with a substantial amount of 

freezing behaviour. 
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Fig.4.3. Increased anxiety in GABAB(1)
-/- mice in the staircase test: 

(A) GABAB(1)
-/- mice (n = 16) exhibited a decrease in the steps climbed compared to 

heterozygous (n = 16) and wildtype (n = 16) mice. (B) GABAB(1)
-/- mice had significantly less 

rearing events to heterozygous or wildtype mice. All bars represent mean values, with vertical 
lines indicating one SEM. *** groups that differed significantly to wildtype mice (P < 0.001). 

 4.3.4  Stress-induced hyperthermia. 

Unfortunately, ANOVA revealed no significant effect of genotype on the magnitude 

of the SIH response [F(2,46) = 2.657, p < 0.081; Fig.4.4]. However, analysis of variances 

(repeated measures) indicated a significant effect of genotype on body temperatures [F(2,46) 

= 7.960, p < 0.001], effect of stress on the body temperature [F(1,46) = 91.210, p < 0.001] but 

no interaction genotype X stress [F(2,46) = 2.657, p < 0.081]. Thus, the stress induced by the 

measurement of basal rectal temperature increased significantly the temperature measured 15 

min. after. However, post-hoc analysis revealed a significant decrease of temperature during 

the second measurement in GABAB(1)
-/- compared to wild-type animals. Altogether, these data 

might suggest that targeted deletion of GABAB(1) subunit produced anxiolytic effect in mice, 

however this phenomenon would be mainly due to dysfunction of thermoregulation processes 

in these mice. 
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Fig.4.4. Effect of targeted deletion of GABAB(1) receptor subunit in stress-
induced hyperthermia paradigm: 
(A) Effects of targeted deletion of GABAB(1) receptor subunit on the basal temperature (first 
temperature) and body temperature (second measurement)15 min after stress compared with 
baseline temperature  (B) The stress induced hyperthermia in GABAB(1)

-/- ( n= 16) , 
GABAB(1)

-/+ ( n= 16) and GABAB(1)
+/+ ( n= 17)All bars represent mean values, with vertical 

lines indicating one SEM. ** groups that differed significantly to wildtype mice (P < 0.01). 

 4.3.5  Elevated-zero maze. 

No functional data were obtained from examining the behavioural response of 

GABAB(1)
-/- mice in the elevated zero maze due to the fact that all of the GABAB(1)

-/- mice

actively jumped off the maze. Reasons for this increased flight response are likely to reflect 

an increase in anxiety/panic like behaviour as opposed to lack of motor co-ordination as 

evidenced by absence of motor deficits in rotarod tests (Schuler et al., 2001)(Schuler et al., 

2001; Mombereau and Cryan unpublished observations). Further, similar flight reactions from 

an unstable elevated maze has been recently characterized as a novel model of panic/anxiety 

in rodents (King, 1999a; 1999b; Jones et al., 2002a; Jones et al., 2002b).  Additionally such an 

ethological response has also been demonstrated in the wild house mouse (Mus musculus) in

the elevated plus maze (Holmes et al., 2000).
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4.4  Impact of targeted GABAB(2)  receptor subunit on 
anxiety related disorders. 

 4.4.1  Light-dark box. 

Given that the most robust effect of targeted deletion of GABAB(1) receptor subunit 

was observed in the light dark box, we investigate the effect of genetic ablation of GABAB(2) 

receptor subunit in this test. Somewhat surprisingly, GABAB(2)
-/- mice displayed a similar 

anxious phenotype to that of GABAB(1)
-/- mice in the light-dark box. GABAB(2)

-/- mice spent 

less time in the light compartment [t-test, P = 0.0028], and they had significantly lower 

number of transitions compare to wild-type mice [t-test, P < 0.001]; which is indicative of 

increased anxiety in this paradigm. In addition, the latency to move from the light to the dark 

area of the arena was decreased (Fig.4.5C). These data suggest that deletion of either subunit 

of the functional GABAB heterodimer results in an enhancement of anxiety-behaviours in the 

light-dark box paradigm. 
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Fig.4.5. Increased anxiety in GABAB(2) receptor subunit deficient mice in light-
dark box. 
(A) GABAB(2)

-/- mice (n = 6) had a marked decrease of transitions between light and dark 
compartments compared with their respective counterpart wildtype mice ( n = 10). (B)
GABAB(2)

-/- mice spent less time in light compartment in comparison to wildtype mice. (C) 
GABAB(2)

-/- mice didn’t exhibit a decrease in latency to enter in the dark compartment. All bars 
represent mean values, with vertical lines indicating one SEM.*,**,***groups that differed 
significantly to wildtype mice (P < 0.05, P < 0.01 and P < 0.001 respectively). 

4.5  Pharmacological studies. 

 4.5.1  Effects of GABAB receptor positive modulator on anxiety-related 

behaviours

  4.5.1.1  Light-Dark box. 

As shown in Fig.4.6, ANOVA indicated an effect of drug treatment on the number of 

transitions between dark and light compartments [F(4,45) = 10.06, P = 0.001]. Post-hoc 

analysis revealed that GS39783 (0.3-30 mg/kg, p.o.) and the benzodiazepine chlordiazepoxide 

(10 mg/kg, p.o.) increased the number of transitions. Treatment with GS39783 or 
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chlordiazepoxide one hour prior to testing failed to influence the latency to enter the dark 

chamber but increased the time spent in the light compartment [F(4,45) = 9.30, P = 0.001]. 

Post-hoc analysis indicated a significant effect of both chlordiazepoxide and GS39783 (only 

at the highest dose tested (30 mg/kg). These effects are not due to any confounding effect of 

GS39783 on locomotor activity as acute administration of GS39783 is devoid of any effects 

on locomotor activity (Cryan et al., 2004).  It is of interest that the basal levels of anxiety the 

light-dark test in Fig.4.6. are considerably different between those in Fig.4.1.  The reason for 

this may lie in the fact that these mice are purchased from Iffa Credo and those in Fig.4.1. are 

wildtype BALB/c mice which were housed with their more anxious littermates. 
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Fig.4.6. Anxiolytic effects of acute treatment with the GABAB receptor positive 
modulator GS39783 in the light-dark test.
Effects of acute GABAB positive modulator treatment (doses: 0, 0.3, 3 or 30 mg/kg, p.o.) and chlordiazepoxide 
(CDZ, 10 mg/kg, p.o.) on (A) the number of transitions between light and dark compartments during the test, (B) 
the time spent in light compartment and (C) the latency to enter into the dark compartment. n = 10 per treatment 
group. All bars represent mean values, with vertical lines indicating one SEM. *,**,***groups that differed 
significantly to vehicle treated mice( P < 0.05, P < 0.01 and P< 0.001, respectively). 
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4.5.1.2  Chronic effects. 

In an attempt to assess the effects of chronic administration of the positive modulator 

on anxiety-like behaviour, we tested GS39783, in addition to CGP56433A (a selective 

GABAB receptor antagonist) and the antidepressants fluoxetine and desipramine in the light-

dark box (20 to 24 hours following last treatment). ANOVA revealed an effect of chronic 

drug treatment on the time spent in the light side of the arena [F(4,55) = 2.573, P = 0.04] and 

the number of transitions between the light and the dark sides [F(4,55) = 2.637, P = 0.04], but 

had no effect on latency to enter into the dark compartment (Fig.4.7A). Post-hoc analysis 

revealed that GS39783 was the only compound tested to significantly modify the number of 

transitions (Fig.4.7A) and the time spent in the light side of the arena (data not shown). Taken 

together, these results indicate a potential anxiolytic effect of acute and chronic GS39783 

treatment. As shown in Fig.4.7B, these effects are not due to any confounding effect of 

GS39783 on locomotor activity as chronic administration of GS39783 did not affect 

locomotor activity [F( 4,53) = 0.9289, P = 0.4543]. It is of interest that the basal levels of 

anxiety in the light-dark test in Fig.4.7 are considerably different between those in Fig. 4.6.  

The reason for this may lie in the fact that although all mice are purchased from Iffa Credo, 

those in Fig.4.7. have been handled and injected daily for 21 days such stress has been shown 

to influence anxiety-like behaviours. 
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Fig.4.7. Chronic treatment with the GABAB receptor positive modulator reveals 
anxiolytic effects in the light-dark box test:  
Chronic treatment (21 days) with GABAB the positive modulator GS 398783 (10 mg/kg, p.o., 
once daily), significantly increased (A) the number of transitions between light and dark 
compartments during the test, whereas fluoxetine (10 mg/kg, p.o., once daily), desipramine 
(15 mg/kg, p.o., once daily) and the GABAB receptor antagonist (3 mg/kg, p.o., once daily) 
was without effect. N = 12per treatment group. All bars represent mean values, with vertical 
lines indicating one SEM. * groups that differed significantly to vehicle treated mice( P < 
0.05). (B) Locomotor activity in a novel environment following chronic (23 days) 
administration of the GABAB receptor positive modulator (10 mg/kg, p.o.), fluoxetine 
(10 mg/kg, p.o.), desipramine (15 mg/kg, p.o.) and GABAB receptor antagonist (3 mg/kg, 
p.o.) during the 30 minutes of test. Testing was carried out for thirty minutes 24 hours 
following last dose in the same animals previously tested in light-dark box. None of the 
treatments altered locomotor activity, indicating that the effects of GS39783 in the light-dark 
box are not due to any secondary stimulant effect. n = 12 per treatment group. All bars 
represent mean values, with vertical lines indicating one SEM. 

  4.5.1.3  Staircase test. 

In the staircase, ANOVA indicated a significant effect of treatment on the number of 

steps climbed [F( 4,55) = 10.362, P < 0.0001] but not on the number of rearings [F( 4,55) = 

0.745, P = 0.566]. Unfortunately, only the classical benzodiazepine, chlordiazepoxide, 

increased the number of step climbed and GS39783 appears to be without effect on the 

number of step climbed and rearings (Fig.4.8). Although GABAB positive modulator, 

GS39783, was anxiolytic in light/dark box, it failed to affect behaviour in the staircase test. 
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Fig.4.8. The effects of GABAB receptor positive modulator, GS39783, and 
chlordiazepoxide in staircase test. 
(A) the effects of GS39783, CDZ, on number of steps climbed, 60 min following injection. 
Values represent mean and S.E.M. (n = 12 animals). **, p 0.001 versus control group (0) 
(Fisher’s post hoc test after ANOVA). (B) the effects of GS39783, CDZ, on number of rears, 
60 min following injection. Values represent mean and S.E.M. (n = 12 animals). 

  4.5.1.4.  Elevated-zero test. 

   BALB/c 

To further confirm the anxiolytic effects of GS39783 we tested it in comparison with 

chlordiazepoxide in the elevated zero maze in BALB/c mice, the background strain on to 

which GABAB(1)
-/- mice were generated. ANOVA revealed that drug treatment decreased the 

latency to enter the open sides of the maze [F( 4,55) = 3.192, P = 0.020], the number of 

stretched-attend postures [F( 4,55) = 13.16, P < 0.0001] and increased the time spent in the 

open side of maze [F( 4,55) = 3.932, P = 0.007], increased the number of head dips [F( 4,55) 

= 6.995, P < 0.00001], number of rearing [F( 4,55) = 8.233, P < 0.0001], and the number of 

line crossings [F( 4,55) = 33.76, P < 0.0001]. Post-hoc analysis revealed that chlordiazepoxide 

(10 mg/kg p.o.) significantly affected all parameters tested whereas GS39783 treatment 

reduced the latency to enter the open side at the highest dose tested (30 mg/kg, p.o.; P <0.05) 

(Fig.4.9A) and at doses of 3 to 30 mg/kg, reduced the number of stretch-attend postures 

(Fig.4.9D) only. There was a trend toward GS 39783 increasing the time in the open parts of 

arena which failed to reach the level of significance (Fig.4.9B).  GS 39783 failed to affect the 

number of head dips, number of rearings and the number of line crossings at any dose. Taken 
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together, these data further suggest an anxiolytic effect of GS39783, although the magnitude 

of the effects in this test are much less robust compared with that induced by benzodiazepine 

anxiolytics.
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Fig.4.9. Effects of acute treatment with GS39783 in the elevated zero-maze test 
for anxiety behaviour in BALB/c mice.
Both the effects of acute GABAB positive modulator GS39783 and chlordiazepoxide (10 
mg/kg, p.o.) affected (A) the latency to enter in open side of maze and (D) the number of 
stretched attend postures. However, only chlordiazepoxide significantly increased the time 
spent in the open quadrants of the maze (B), increase head-dips (E), rearings (F) and the 
number of line crossed during the 5 min. of test (C). n = 12 per treatment group. All bars 
represent mean values, with vertical lines indicating one SEM. *,**,***groups that differed 
significantly to vehicle treated mice( P < 0.05, P < 0.01 and P< 0.001, respectively). 

OF-1 

In OF-1 mice, ANOVA revealed that drug treatment decreased the latency to enter the 

open sides of the maze [F(5,63) = 2.82; p=0.023], the number of stretched-attend postures 

[F(5,63) = 13.89; p<0.001] and increased the time spent in the open side of maze 

[F(5,63) = 10.36; p<0.001], increased the number of head dips [F(5,63) = 5.622; p<0.01], 

number of rearing [F(5,63) = 4.162; p=0.002], and the number of line crossings 

F(5,63) = 19.79; p<0.001].In line with result obtained in BALB/c, posthoc analysis revealed 

that chlordiazepoxide (10 mg/kg p.o.) significantly affected all parameters tested. Unlike 
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BALB/c, GS39783 treatment failed to reduced the latency to enter the open side at the highest 

dose tested (Fig.4.10A), however GS39783 increased significantly the number of rearing at 

the highest dose used, and significantly decreased the number of stretched attend posture at 10 

and 30 mg/kg (Fig.4.10D).  In this strain, GS39783 failed to affect the time spent in open 

quadrants, the number of head dips and the number of line crossings at any dose 

(Fig.4.10B,C,E). Taken together, these data confirm the anxiolytic-like properties of GS39783 

in elevated-zero maze paradigm. 
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Fig.4.10. Effects of acute treatment with GS39783 in the elevated zero-maze test 
for anxiety behaviour in OF-1 mice.
Both the effects of acute GABAB positive modulator GS39783 and chlordiazepoxide (10 
mg/kg, p.o.) affected (D) the number of stretched attend postures and (F) the number of 
rearings. However, only chlordiazepoxide significantly decreased the latency to enter in open 
quadrant (A) and increased the time spent in the open quadrants of the maze (B), increase 
head-dips (E)  and the number of line crossed during the 5 min. of test (C). n = 10-12 per 
treatment group. All bars represent mean values, with vertical lines indicating one SEM. *,** 
groups that differed significantly to vehicle treated mice( P < 0.05, P < 0.01 and P< 0.001, 
respectively). 

  4.5.1.5  Novelty-induced hypophagia 

As mentioned in the introduction, the novelty induced-hypothermia is currently 

considered as an interesting model of anxiety in animals, mainly because it is sensitive to 

chronic antidepressant (Dulawa, 2005). Analysis of variances (repeated measures) indicated a 
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significant effect of treatment [F(3,32) = 3.269; p=0.034], of environment (Home vs New) 

[F(1,32) = 231.68; p<0.001] and treatment X environment interaction [F(3,32) = 3.391; p = 

0.03] on the latency to drink. Post-hoc analysis revealed that latency to drink is significantly 

higher in the new environment and that mice treated with chlordiazepoxide exhibit a lower 

latency to drink in the new environment than vehicle treated animals (Fig.4.11A). In contrast, 

GS39783 appears to be without effect on this parameter. Concerning the volume intake during 

the first 5 minutes of test, Analysis of variances (repeated measures) indicated no significant 

effect of treatment [F(3,32) = 0.624; p=0.605] and treatment X environment interaction 

[F(3,32) = 1.998; p = 0.134], but an effect of environment (Home vs New) 

[F(1,32) = 262.586; p<0.001]. Post-hoc analysis revealed that both GS39783, at 30 mg/kg, 

and chlordiazepoxide increase the volume intake during the first 5 minutes in the new 

environment (Fig.4.11B). Regarding the total volume intake during the test, analysis of 

variances (repeated measures) indicated no significant effect of treatment [F(3,32) = 2.109; 

p=0.119], but an effect of environment (Home vs New) [F(1,32) = 24.395; p<0.001] and 

treatment X environment interaction [F(3,32) = 4.379; p = 0.134]. Post-hoc analysis revealed 

that chlordiazepoxide increases the total volume intake (Fig.4.11C).  
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Fig.4.11. Effects of acute treatment with GS39783 novelty-induced hypophagia.  
A. Effects of acute GABAB positive modulator GS39783 and chlordiazepoxide (10 mg/kg, 
p.o.) on latency to consume in the home vs. a novel cage (B), Effects of acute GABAB
positive modulator GS39783 and chlordiazepoxide (10 mg/kg, p.o.) on the volume intake 
during the first 5 minutes in the home vs. a novel cage (C) Effects of acute GABAB positive 
modulator GS39783 and chlordiazepoxide (10 mg/kg, p.o.) on the total volume intake during 
the 30 minutes of test. n = 9 per treatment group. All bars represent mean values, with vertical 
lines indicating one SEM. *,** groups that differed significantly to vehicle treated mice( P < 
0.05 and P < 0., respectively). 

 4.5.2 .Effects of GABAB receptor antagonist on anxiety-related 

behaviour.

  4.5.2.1  Acute effect. 

Given the anxiolytics properties of GABAB receptor positive modulator in the several 

paradigms, we also assessed the effect of GABAB receptor antagonist in the light-dark box. 

Surprisingly, we observed an anxiolytic like effect of GABAB receptor antagonist whereas 

anxiogenic effect would be more expected. Thus, ANOVA revealed a significant effect of 

treatment on the time spent in light compartment [F(5,54) = 2.692; p = 0.0304], on the 

number of transitions between both compartments [F(5,54) = 154.9; p < 0.0001] but not on 
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the  latency to enter in the dark compartment [F(5,54) = 0.245; p = 0.940]. Post-hoc analysis 

indicated that both Chlordiazepoxide and CGP564333A, at 10 and 30 mg/kg increased the 

time spent in the lit compartment (Fig.4.12A). In addition, Chlordiazepoxide increased also 

significantly the number of transitions and there was a trend toward GS 39783 increasing this 

parameter which failed to reach the level of significance (Fig.4.12B). 
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Fig.4.12. Anxiolytic effects of acute treatment with the GABAB receptor 
antagonist CGP56433A in the light-dark test.
Effects of acute GABAB receptor antagonist receptor (doses: 0, 1 , 3, 10 or 30 mg/kg, p.o.) 
and chlordiazepoxide (CDZ, 10 mg/kg, p.o.) on (A) the number of transitions between light 
and dark compartments during the test, (B) the time spent in light compartment and (C) the 
latency to enter into the dark compartment. n = 10 per treatment group. All bars represent 
mean values, with vertical lines indicating one SEM. *, **,***groups that differed 
significantly to vehicle treated mice( P < 0.05 P < 0.01 and P< 0.001, respectively). 

4.6  Discussion. 

In this chapter, we sought to combine pharmacological and genetic approaches to 

obtain converging information on the function of GABAB receptors in behavioural processes. 

Using this dual approach, we demonstrate that through differential pharmacologically 

manipulation of GABAB receptors one can modify behaviours relevant to anxiety related 
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behaviours. Thus, deletion of GABAB(1) receptor subunit results in a more anxious phenotype 

in mice and a decreased sensitivity to classical benzodiazepines in the light-dark box. 

Similarly, we observed that genetic ablation of GABAB(2) receptor subunits produced 

analogous anxious phenotype than observed in GABAB(1)
-/- mice. Congruent with these data, 

we demonstrated that activation of GABAB receptors, via GABAB receptor positive 

modulator, results in anxiolysis. Interestingly, treatment with a GABAB receptor antagonist 

also resulted in a mild anxiolytic-like effect with no anxiogenic-like effects observed in the 

light-dark box. Given the complex overt behavioural phenotype of GABAB(1)
-/- and GABAB(2)

-

/- mice, which includes a high propensity for spontaneous epileptic seizures, hyperalgesia and 

amnesia (Schuler et al., 2001; Gassmann et al., 2004), it was important to combine both 

genetic and pharmacological approaches. Together, these studies clearly demonstrate that 

GABAB receptors play a role in the modulation of behaviours relevant to anxiety related 

behaviours (Holmes, 2001). 

Using the light-dark box, one of the most widely used tests for assessing anxiety-

related behaviour in rodents, we clearly show that GABAB(1)
-/- mice are more anxious than 

their wildtype counterparts (Fig.4.1). Complimentary data were also found in the staircase 

anxiety test, where GABAB(1)
-/- mice had a substantial increase in freezing behaviour and 

failed to explore the elevated platform compared to wildtype animals (Fig.4.3.). It should be 

noted that this increase in anxiety related behaviours is robust and not masked by the already 

high anxiety of the parental strain. In a variety of paradigms it has been shown that BALB/c 

mice exhibit increased anxiety-related behaviours compared to other inbred strains of mice 

(Belzung and Griebel, 2001). The use of mice on this background strain was essential for the 

generation of GABAB  related knockout animals, as mice on other strains died very 

prematurely (Prosser et al., 2001; Queva et al., 2003). Interestingly, unlike genetic deletion 

chronic pharmacological antagonism of GABAB receptors with CGP56433A failed to alter 

anxiety related behaviour in the light-dark-box (Fig.4.7.). This indicates that loss of GABAB
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receptor during development may be critical for the increased anxiety phenotype to be 

unveiled, indeed using conditional knockout technology, such an assertion has recently been 

ascertained for the 5-HT1A receptor (Gross et al., 2002). It is unlikely that the increased 

anxiety-like behaviour is due to motor failure in the animals. Although GABAB(1)
-/-  have less 

activity in locomotor chambers their activity increases over time as the habituate to the 

environment (See chapter 5). 

Concerning the putative anxiolytic effect of targeted deletion of GABAB(1) receptor 

subunit in stress-induced hyperthermia paradigm, we cannot exclude a putative dysfunction of 

thermoregulation in these mice. Indeed, as we shown in the previous chapter, GABAB

receptor plays a key role in the regulation of body temperature. Although GABAB receptor 

antagonist has no effect on basal temperature, suggesting that there would be any endogenous 

GABAB ergic tone under basal condition, we can hypothesize that GABAB receptor might be 

recruited under certain circumstances such as stress.  

We also demonstrated that that selective ablation of GABAB(1) receptor subunit 

attenuated the response to benzodiazepines in the light-dark box test (4.2.). This suggests a 

functional relationship between both GABAB and GABAA receptors in vivo. Thus, we can 

speculate that targeted deletion of GABAB(1) receptor subunit might induced an alteration in 

benzodiazepine binding and/or GABAA subunit expression as is the case with the 5-HT1A

receptor knockout (Sibille et al., 2000). Indeed, an attenuated response to benzodiazepines in 

5-HT1A receptor knockout mice has been shown to be correlate with a downregulation of 1

and 2 GABAA subunits and decrease in benzodiazepine binding in the amygdala. 

Conversely, Queva and collaborators (2003),  in a recent study, demonstrated that GABAB(1)
-/-

mice are more, but not less, sensitive to muscimol, using hypothermia as physiological 

readout of GABA function. However, we can presume that genetic ablation of GABAB(1)

receptor subunit might differentially affect GABAergic function involved in thermoregulation 
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and in anxiety-related behaviour. Although these result confirm that GABAB/GABAA

interaction might be involved in the hyposensitivity to benzodiazepines observed in 

GABAB(1)
-/- mice, we cannot exclude that this attenuated efficacy of chlordiazepoxide and 

diazepam is due to an interaction between loss of GABAB receptor function and the 

background strain employed (Lepicard et al., 2000).

In line with the result obtained in GABAB(1)
 -/- mice, we demonstrated that genetic 

inactivation of the GABAB(2) receptor subunit produces the same behavioural effects as that 

following GABAB(1) receptor subunit deletion. Indeed, the GABAB(2)
-/- mice exhibited a 

decreased time spent in the light compartment and a decrease in the number of transitions 

between the light and dark compartment, analogous to the behaviour observed in GABAB(1)
-/-

mice. However, it should be noted that although we demonstrated that genetic inactivation of 

GABAB(1) or GABAB(2) subunit produces an anxiogenic effect, pharmacological studies fail to 

demonstrate anxiogenic profile of GABAB antagonists (Fig.4.12.). In addition, the 

behavioural similarities between GABAB(2)
-/- and GABAB(1)

-/- mice observed in the present 

study, agree with the current GABAB receptor models implying that genetic inactivation of 

one of the two subunit blocks receptor function (Kaupmann et al., 1998a). Thus, these data 

confirmed the results obtained in the previous chapter suggesting that GABAB function 

require the assemble of GABAB(1) and GABAB(2)  receptor subunit. Nonetheless, several 

studies demonstrated that GABAB(1) subunit may be functional either alone or in combination 

with an unknown protein (Bettler et al., 2004). Moreover, a differential expression of 

GABAB(1) and GABAB(2) receptor protein in subpopulations of striatum has been 

demonstrated (Ng and Yung, 2001). In addition, the recent description of a residual 

electrophysiological GABAB receptor response in hippocampal slices from GABAB(2)
-/- mice 

suggests that GABAB(1) receptor subunits may be able to form functional receptors on their 

own (Gassmann et al., 2004). Therefore, although our data do not provide further evidence for 

this hypothesis, distinctive roles of individual GABAB receptor subunits in the regulation of 
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behaviour cannot be formally excluded. However, heterodimerization seems to be a 

prerequisite for the contribution of GABAB in the neurophysiology of anxiety.

Given that GABAB(1)
-/- mice have elevated anxiety-like behaviour, we hypothesized 

that by activating GABAB receptors we would be able to decrease anxiety in normal animals 

placed in an aversive environment. As expected, following acute administration of the 

recently identified GABAB receptor positive modulator GS37983 (Cryan et al., 2004), animals 

displayed reduced anxiety in the majority of behavioural paradigms used. More specifically, 

we demonstrated that GS39783 decreased the avoidance to potentially dangerous area, such as 

lit compartment in the light-dark box (Cryan and Holmes, 2005). Indeed, GS39783 decreased 

the time spent in the lit compartment in the light-dark box. Furthermore, we also observed that 

GABAB positive modulation increase exploratory behaviour in the elevated zero maze, 

increasing the number of rearing, and in the light-dark box, increasing the number of 

transitions between both compartments. Therefore, both BALB/c and OF-1 mice treated with 

GS39783 exhibits less total stretch attends posture in elevated-zero maze, suggesting that 

GABAB positive modulator might decrease risk assessment in this paradigm (Dawson and 

Tricklebank, 1995). In addition, we also demonstrated that GS39783, (at 30 mg/kg only), 

attenuated the phenomenon of hyponeophagia, confirming the putative anxiolytic-like 

properties of GABAB receptor positive modulator (Dulawa and Hen, 2005). Although we 

failed to demonstrated any effect of GS39783 in the staircase paradigm, a recent study 

demonstrated anxiolytic properties of GS39783 in stress-induced hyperthermia suggesting 

that GABAB positive modulator could attenuate anticipatory anxiety measured in stress-

induced hyperthermia paradigm (Cryan et al., 2003c). Further, the anxiolytic effects of 

GS39783 were also observed following chronic treatment (Fig.4.7). Thus, the present chapter 

reports that GS39783 is effective in several models of anxiety and on several forms/aspects of 

anxiety. Being a positive modulator GS37983 is potentially advantageous over full GABAB

receptor agonists which potentially engenders it more amenable for use in vivo, the major side 
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effects associated with full agonists include sedation, muscle relaxation, hypothermia 

cognitive impairing effects (Cryan et al., 2004). Therefore, given the clinical effectiveness of 

baclofen in the treatment of panic disorder and post-traumatic stress disorder (Breslow et al., 

1989; Drake et al., 2003), it might be also essential to assess the effect of GABAB receptor 

positive modulator in animal model of these disorders. Indeed, paradigms such as lactate-

induced panic-like behaviour (Shekhar et al., 2001) or predatory-stress induced memory 

impairment (El Hage et al., 2005) may be valuable behavioural tools to confirm the putative 

therapeutic properties of GABAB receptor positive modulator.  

Although positive modulation and genetic ablation of GABAB receptors appear to 

modulate anxiety in opposite manners, we also found that pharmacological blockade of 

GABAB receptor, via acute administration of CGP56433A, induced moderated anxiolytic 

effect in the light-dark box paradigm. These data corroborate the results obtained with another 

highly potent GABAB receptor antagonist in the elevated plus maze. Indeed, 

intracerebroventricular injection of CGP35348 has been shown to increased percent of open 

arm entries (Zarrindast et al., 2001). Although these results need to be confirmed in other 

behavioural paradigms, we can presume that GS39783 and CGP56433A recruit differentially 

pre-or post-synaptic GABAB receptor, leading to the same behavioural effect. On the other 

hand, these effects could also be due to also agonistic or partial agonistic efficacy of 

CGP56433A. Indeed, Urwyler and collaborators demonstrated that CGP35348 and 2-OH-

saclofen, which did not stimulate GTP( )35S binding at all on their own, might become partial 

GABAB receptor agonists in the presence of the allosteric modulators (Urwyler et al., 2005). 

In summary the present set of data is clearly indicative of potential anxiolytic activity 

of GABAB receptor positive modulator and conversely genetic ablation of one of the two 

GABAB receptor subunits induced anxious phenotype in mice. Nevertheless, the mechanisms 

responsible for the influence of GABAB receptors on anxiety behaviour are not well 



GABAB RECEPTORS AND ANXIETY 

154

understood. Therefore, future studies should focus on behavioural and electrophysiological 

responses of GABAB receptor activation in key brain regions that are associated with anxiety. 

Currently, several neural substrates might be hypothesized to be involved in this phenomenon, 

such as the amygdala or raphé nuclei. Taking together, these data reconfirm the concept that 

GABAB receptors are relevant therapeutic target for anxiety disorders. 
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CHAPTER 5: THE ROLE OF GABAB
RECEPTORS IN DEPRESSIVE 
DISORDERS.

5.1  Introduction. 

In addition to a putative role of GABAB receptor in the modulation of anxiety related 

behaviours, preclinical and clinical data have also implicate GABAB receptor in the 

pathophysiology of mood disorders (see section 1.3.2). Indeed, depressed patients exhibit a 

blunted growth hormone response to baclofen (Marchesi et al., 1991; O'Flynn and Dinan, 

1993). Furthermore, learned helplessness has been shown to decrease GABAB receptor 

expression in the frontal cortex and that this decrease was reversed following antidepressant 

administration (Martin et al., 1989). In line with these results, Gray and Green demonstrated 

an increased GABAB receptor function in mouse frontal cortex after repeated administration 

of antidepressant drugs or electroconvulsive shocks (Gray and Green, 1987). More recently, 

several authors have pointed that GABAB receptor antagonist might have antidepressant-like 

properties (Cryan and Kaupmann, 2005). Indeed, GABAB receptor blockade have been shown 

to elicit antidepressant-like effects in several depression paradigms , including learned 

helplessness (Nakagawa et al., 1996a), forced swim test (Nakagawa et al., 1996c; Slattery et 

al., 2005a) or chronic mild stress (Bittiger et al., 1996). Thus, the recent generation of 

GABAB(1)
-/- and GABAB(2)

-/- mice provide a novel opportunity to further explore the role of 

GABAB receptors in depression-related disorders. 

The release of monoamines has been shown to be modulated via GABAB receptors 

(Bowery et al., 1980). In particular, emerging evidence suggests a strong interaction between 

GABAB receptors and serotoninergic system. GABAB receptors are densely localized on, and 

intricately interact with serotonergic neurons in the dorsal raphé nucleus (Abellan et al., 2000; 
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Burman et al., 2003; Serrats et al., 2003). Moreover, GABAB receptor activation is known to 

inhibit 5-HT cell firing in the raphé nucleus (Innis, 1988). In addition, microdialysis studies 

have shown that GABAB receptor activation in raphé nucleus decreases serotonin release (Tao 

et al., 1996). Mice lacking the 5-HT transporter have been shown to exhibit desensitization of 

5-HT1A autoreceptors and of GABAB receptors in the dorsal raphé nucleus (Mannoury la Cour 

et al., 2004) providing further evidence supporting an interaction between the serotonergic 

system and GABAB receptors. More recently, GABAB receptor antagonists have an 

antidepressant-like profile in the forced-swim test similar to that of serotonergic 

antidepressants (Slattery et al., 2005a) which is blocked via serotonin depletion. Taken 

together these, data suggest that antidepressant-like effect of GABAB receptor antagonist 

might be mediated via serotonin-GABAB receptor interaction. 

The hypothalamic-pituitary-adrenal (HPA) axis is a key regulator of the stress 

reaction. Dysregulation of this axis is though to play a central role in the pathophysiology of 

depressive disorders(de Kloet et al., 2005). In addition, it is clear , from both preclinical and 

clinical studies that exposure to stressors could participate in the ontogenesis of affective 

illness, such as depressive syndrome, via alteration of the negative feedback of HPA axis 

(Holsboer et al., 1980). Furthermore, the serotonin (5-HT) system and the HPA axis have 

complex inter-relationships (Porter et al., 2004). In particular, the 5-HT1A receptor is very 

susceptible to modulation by stress and HPA-axis activation and is well known to play an 

important role in the pathophysiology of mood disorders (Cryan and Leonard, 2000; Leitch et 

al., 2003). Indeed, it is well accepted that adrenal steroids, such as corticosterone, exerts a 

tonic inhibitory action on 5-HT1A receptor expression in the hippocampus. In particular 

adernalectomy have been shown to up-regulated hippocampal 5-HT1A gene expression (Kuroda 

et al., 1994; Meijer and de Kloet, 1998). Conversely, several studies have demonstrated that 

long-term corticosterone treatment can counteract adrenalectomy-induced 5-HT1A receptor 
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upregulation (Chalmers et al., 1994). More recently, Lopez and co-workers demonstrated, in a 

series of elegant studies, a down-regulation of hippocampal 5-HT1A receptors in both 

chronically stressed rats and major depressed patients (Lopez et al., 1998). Additionally, they 

demonstrated also that chronic administration of desipramine, a tricyclic antidepressant, 

prevent the effect of chronic stress on hippocampal 5-HT1A receptors mRNA, suggesting that 

these receptors might be involved in antidepressant response. Supporting this hypothesis, 

recent studies demonstrated an up-regulation of 5-HT1A receptor mRNA in the hippocampus of 

mice exhibiting antidepressant-like phenotype (Fabre et al., 2000; Mitsukawa et al., 2005).

In the present studies, we investigated the impact of both genetic inactivation and 

pharmacological blockade of GABAB receptors on behaviour in two animal models of 

antidepressant action, the forced swim test and the tail suspension test. In order to investigate 

the interaction between GABAB receptor and serotonergic system, we also assessed the 

effects of a GABAB receptor antagonist on the anti-immobility effect of an SSRI. Using 

baclofen-induced hypothermia, we assessed the impact of pharmacological blockade and 

genetic inactivation of serotonin transporter on GABAB receptor function. Finally, we 

investigated the effects of routine daily handling and oral injection on hippocampal 5-HT1A

receptor mRNA in the BALB/c mouse strain. It has been hypothesized that the BALB/c strain 

may be a relevant strain to model trait, pathological anxiety (Belzung and Griebel, 2001) and 

are particularly sensitive to the effects of chronic antidepressant treatments (Dulawa et al., 

2004). Further, we investigated the effects of antidepressants from two different classes to 

alter any potential changes. Similarly, we examined whether GABAB receptors play any role 

in stress-induced modulation of 5-HT1A receptors and investigated the effects of GABAB

receptor agonist, novel GABAB receptor positive modulator GS39783 and the GABAB

receptor antagonist CGP56433A on 5-HT1A mRNA expression. 
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5.2 Experimental Design. 

The GABAB(1) and GABAB(2) knockout mice were generated on a BALB/c 

background as described previously (Schuler et al., 2001; Gassmann et al., 2004). Age and 

sex matched mice were used at an age of 3 to 8 months. Both male and female animals were 

used in all experiments in approximately equal amounts. There was no effect of gender on 

behaviours observed.  In order to minimize the influence of strain effects, all pharmacological 

studies were carried out in male BALB/c mice (23-26 g) which were obtained from Charles 

River (formally Iffa Credo), France. In a number of initial studies heterozygous mice 

(GABAB
+/-) were also used, no gene dosage effect was found in any of the behaviours 

analyzed with heterozygote behaving similarly to knockouts.  

Regarding pharmacological studies, all drugs were administrated orally 1 hour prior 

behavioural testing. All drugs were made up fresh prior to use and administered in a 

suspension of 0.5% methylcellulose at a concentration of 10 ml/kg. In the case of chronic 

studies, animals were injected in the afternoon (2-4 pm) for 21 days and tested on the morning 

following last injection. They were again injected immediately after the initial test and for the 

consecutive day, locomotor activity testing was carried out approx 24 hours following this last 

injection. Doses for chronic studies were selected from the dose-response studies of acute 

administration of the compounds (data presented in these studies). 

Baclofen-induced hypothermia experiments were carried out using male BALB/c mice 

(23-26 g) which were obtained from Iffa Credo France. Regarding acute study, (9 mg/kg; 

p.o.) L-baclofen and fluoxetine (20 mg/kg; p.o.) were injected simultaneously and rectal 

temperature was measured 60 minutes and immediately before; 60 minutes and 2 hours after 

L-baclofen administration. Doses were selected from previous studies showing robust effects 

at these doses. 
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In the case of chronic studies, animals were injected with fluoxetine (20 mg/kg; p.o.)in 

the afternoon (2-4 pm) for 21 days and baclofen-induced hypothermia were performed 24, 48 

and 72 hours after the last injection of fluoxetine. Rectal temperature was measured 

immediately before; 60 minutes and 2 hours after L-baclofen administration (9 mg/kg; 

p.o.).Finally, 5-HTT-/- and 5-HTT+/+ (18-24 g) were obtained from heterozygous mutants of 

C57BL/6. Rectal temperature was measured 60 minutes and immediately before; 30 minutes, 

60 minutes, 2 hours and 4 hours after  (±)baclofen administration (12 mg/kg; p.o) ( dose 

corrected in order to have robust effect on hypothermia) 

Concerning the experiments assessing the impact of GABAB receptor ligands and 

antidepressants on downregulation of 5-HT1A receptor induced by chronic handling, mice were 

given daily injections (o.d; p.o.) for 21 days. During this period animals they were given 

active drug treatment for the last 1, 7, or 21 days of this treatment regimen with one of these 

six treatments (N=12): vehicle, desipramine (15 mg/kg); fluoxetine (20 mg/kg); the 

prototypical GABAB agonist L-baclofen, (5 mg/kg), GS39783, a novel GABAB receptor 

positive modulator (10 mg/kg) and CGP56433A, a GABAB receptor antagonist (3 mg/kg). 

This treatment regimen was adopted to ensure equal amount of daily handing and injection 

stress in all groups. Handling was minimal and was just the amount needed to restrain the 

animal for injection and to weigh it daily. In addition, twelve mice were untreated and 

unhandled but kept in the same environment for the duration of the experiment; these 

constituted the control group (unstressed group). Hippocampi were collected one hour after 

the last injection and frozen at -80°C and 5-HT1A receptor mRNA were analyzed via RT-PCR ( 

see section 2.5) 
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5.3  Impact of targeted deletion of GABAB(1)  or GABAB(2)
receptor subunits on depression related disorders. 

 5.3.1 Effects of targeted deletion of GABAB(1) receptor subunit in models 

of antidepressant activity. 

5.3.1.1  Forced swim test. 

The FST is the most widely used tool for assessing depression and antidepressant-

related phenotypes in genetically altered mice (Porsolt, 2000; Cryan et al., 2002a; Cryan and 

Mombereau, 2004), hence we examined the effects of mice with a targeted deletion of the 

GABAB(1) receptor subunit on behaviour in this test. As shown in Fig. 7A, there was a 

significant effect of genotype on immobility time in the FST [t-test, P = 0.012]. GABAB(1)
-/-

mice had a significantly lower immobility time as compared to wildtype control mice. The 

magnitude of reduced immobility of the GABAB(1)
-/- mice in this test is similar to that which 

we and others have reported for a variety of antidepressants, including selective monoamine 

reuptake or oxidase inhibitors (Porsolt et al., 1978; Cryan et al., 2001; Lucki et al., 2001). It is 

noteworthy that there was no observable occurrence of seizures or altered motor patterns in 

animals subsequent to being submerged in the water. 
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Fig.5.1. Effect of targeted deletion of GABAB(1) receptor subunit in the forced 
swim test.  
GABAB(1)

-/- mice (n = 16) had a much lower immobility score than wildtype (n = 16) in the 
mouse forced swim test, which indicates an antidepressant-like effect. All bars represent mean 
values, with vertical lines indicating one SEM. *Groups that differed significantly from to 
wildtype mice (P <0.05).  

5.3.1.2  Tail suspension test. 

We also tested the animals in the tail suspension test, another well validated model for 

assessing depression related behaviour in mice (Steru et al., 1985). Further confirming 

accumulating evidence, that both tests rely on different neurochemical substrates to mediate 

their behavioural effects (see (Cryan et al., 2005), deletion of GABAB(1) receptor subunit 

failed to affect the immobility score in this test (t-test, P = 0.710) (Fig.7B). There was no 

observable occurrence of seizures or altered motor patterns in animals subsequent to being 

suspended by the tail. Further, no tail climbing was observed as has been reported with other 

background strains of mice (Mayorga and Lucki, 2001).. 
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Fig.5.2. Effect of targeted deletion of GABAB(1) receptor subunit on tail 
suspension test. 
GABAB(1)

-/- mice (n = 15) exhibited no difference in immobility compared to wildtype mice 
(n = 16) in the mouse tail suspension test. All bars represent mean values, with vertical lines 
indicating one SEM.

5.3.1.3  Locomotor activity. 

In order to address the issue of whether the behavioural effects of GABAB(1)
-/- mice 

seen in the FST are related to potential hyperactivity, we analyzed the locomotor pattern of 

both GABAB(1)
-/- and GABAB(1)

+/+ mice. In a novel environment the locomotor activity of the 

same mice that had previously undergone the FST was recorded over a period of 30 minutes. 

Repeated measures ANOVA revealed a clear impact of the targeted deletion of GABAB(1)

receptor subunit on locomotor activity [F(1,29) = 9.9, P = 0.001]. As shown in Fig. 8A, 

GABAB(1)
-/- mice exhibited a lower horizontal activity compared to wildtype mice during the 

first 20 minutes of the trial. This reduction of locomotor activity during the first minutes of 

trial, could translate into a deficit in habituation to a novel environment in GABAB(1)
-/- mice 

and/or to an increased freezing behaviour, conforming the anxious phenotype observed in 

anxiety paradigms. 

Correlations were also made between activity in the FST and the first 10 minutes in 

the novel locomotor activity chambers. Similar correlations were made with data obtained in 
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tail suspension test. As shown in Fig. 8B, there was no correlation between locomotor activity 

(distance travelled) and immobility in forced swim test in wildtype mice [R = 0.349, P = n.s.] 

as well as in GABAB(1)
-/- mice [R = 0.008, P = n.s.]. These results suggest an absence of a 

stimulant effect as a result of GABAB(1) deletion. Additionally, no correlation was observed 

between immobility in tail suspension test and locomotor activity in a novel environment 

(data not shown). 

Fig.5.3. Effect of GABAB(1) deletion on locomotor activity in mice pre-tested 
with FST: Deficits in habituation and lack of correlation with FST.  
(A) GABAB(1)

-/- mice (n = 15) had a much lower locomotor activity score than wildtype 
mice(n = 16) during the first 20 minutes of the 30-minute trial. There was no consistent 
correlations between immobility score in the FST and locomotor activity score in (Panel B) 
wildtype mice and (Panel C) GABAB(1)

-/-  mice. All bars represent mean values, with vertical 
lines indicating one SEM. **, ***Groups that differed significantly from to wildtype mice (p 
< 0.01 and p< 0.001 respectively).
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 5.3.3 Effects of targeted deletion of GABAB(2) receptor subunit in models 

of antidepressant activity. 

5.3.3.1  Forced swim test. 

In the previous chapter, we provide evidence that GABAB(1)
-/- and GABAB(2)

-/- mice 

behave similarly in paradigm related to anxiety disorders. In effort to assess whether these 

similarities generalize across other behavioural domains we assessed the effects of targeted 

deletion of GABAB(2) receptor subunit in the well characterized animal model of 

antidepressant activity, the FST As we expected, GABAB(2)
-/- mice spent less time in 

immobility than their littermate wild-type [t-test, P < 0.0001], indicating an antidepressant-

like effect. Combined with the antidepressant-like phenotype observed in GABAB(1)
-/- mice, 

these data suggest that disruption of GABAB receptor function via genetic ablation of one of 

the two GABAB subunits, induced antidepressant-like effect in the forced swim test. 
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Fig. 5.4. Targeted deletion of GABAB(2) receptor subunit induced 
antidepressant-like behaviour.
GABAB(2)

-/- mice (n=11) had a much lower immobility score than wildtype (n = 12 in the 
mouse forced swim test, which indicates an antidepressant-like effect. All bars represent mean 
values, with vertical lines indicating one SEM. ***groups that differed significantly to 
wildtype mice (P < 0.001). 
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5.4  Pharmacological studies. 

 5.4.1  Effects of GABAB receptors antagonist in models of 

antidepressant activity. 

5.4.1.1  Forced swim test. 

To test whether the antidepressant-like effect due to genetic inactivation of GABAB

receptor could be recapitulated following pharmacological antagonism, we tested the highly 

selective and potent GABAB receptor antagonist CGP56433A in the FST. As shown in Fig. 

9A, acute administration of CGP56433A affected immobility time in the FST [F(4,53) = 4.56, 

P = 0.003]. Post-hoc analysis revealed that CGP56433A (10 and 30 mg/kg) produced a 

significant decrease in immobility, supporting that genetic inactivation or pharmacological 

blockade of GABAB receptor result in the same antidepressant-like effect in the forced swim 

test. As shown in fig. 5.5, CGP56433A failed to significantly influence locomotor activity in 

habituated mice [F(4,55) = 0.8533, P = 0.49]. These data exclude any potential stimulant 

effect of CGP56433A contributing to behaviour in the FST. 
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Fig.5.5. Acute treatment with CGP56433A reduces immobility in FST but not 
TST.
(A) Effect of CGP56433A treatment (doses: 1, 3, 10 and 30 mg/kg, p.o.) on immobility time 
in forced swim test. n = 10-12 per treatment group. (B) Effect of CGP56433A treatment 
(doses:1, 3, 10 and 30 mg/kg, p.o.) on locomotor activity (60 minutes) in mice that were 
habituated (for 60 minutes) to the novel environment. n = 12 per treatment group. All bars 
represent mean values, with vertical lines indicating one SEM. **groups that differed 
significantly to vehicle treated mice (P< 0.01). 

5.4.1.2  Tail suspension test. 

Targeted deletion of GABAB(1) receptor decrease the time spent in immobility in the 

FST but not in the TST. In attempt to assess whether this behavioural profile can be replicated 

the following pharmacological antagonism, we also assessed the effect of GABAB receptor 

antagonist in TST. Interestingly, ANOVA revealed no effect of treatment on time spent in 

immobility in the TST [F(2,27)=0.24, P=0.791]. Combined with results observed in FST, 

these data confirmed a growing body of data which suggest that the FST and the TST don’t 

recruit the same neurochemical substrate (see Cryan et al, 2005). 
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Fig.5.6. Acute treatment with CGP56433A failed to reduce immobility in TST. 
Effect of CGP56433A treatment (doses:0, 10 and 30 mg/kg, p.o.) on immobility time in tail 
suspension test. n = 10 per treatment group. All bars represent mean values, with vertical lines 
indicating one SEM. **groups that differed significantly to vehicle treated mice (P< 0.01). 

5.4.1.3  Chronic studies 

Although acute administration of antidepressants produces effects in the FST, 

depressive patients must be treated with antidepressants chronically for several weeks to 

produce full therapeutic effects (Mann, 2005). Thus, we assessed the effect of chronic 

treatment (21 days) with sub-effective dose of CGP56433A , 3 mg/kg, in addition to GS39783 

(a GABAB receptor positive modulator) and  desipramine in the forced swim test (20 to 24 

hours following last treatment). As shown fig.5.7 , animals administrated chronically (21 

days) with both CGP56433A (3 mg/kg, p.o., once daily) and desipramine (10 mg/kg, p.o., 

once daily) reduced immobility times in the FST whereas GS39783 was without any effect 

[F(3,44) = 7.966, P =0.001]. Taken together, these data further suggest an antidepressant 

effect of CGP56433, although the magnitude of the effects after chronic treatment are less 

robust compared with that induced by the antidepressant desipramine. 
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Fig. 5.7. Chronic treatment with CGP56433A and desipramine reduces 
immobility in the FST.  
Effects of chronic treatment (21 days) with the GABAB antagonist CGP56433A(3 mg/kg, 
p.o.), desipramine (15 mg/kg, p.o.) and the GABAB positive modulator GS39783 (10 mg/kg, 
p.o.) on immobility time in the FST. n = 12 per treatment group. All bars represent mean 
values, with vertical lines indicating one SEM. *,**groups that differed significantly to 
vehicle treated mice( P < 0.05 and P< 0.01, respectively). 

5.4.2  Effects of GABAB receptors agonist in models of antidepressant 

activity.

Given the antidepressant-like properties of GABAB receptor antagonist, we assessed 

the effect of selective and potent GABAB receptor agonist, CGP44532, in the forced swim 

test. Analysis of variance indicates a significant effect of treatment [F(4,53) = 9.039, P 

=0.001]. Post-hoc analysis indicated that CGP44532 , at 0.3 and 1 mg/kg, increase the time 

spent in immobility in the forced swim test paradigm (P < 0.05 and P < 0.001, respectively). 

In order to exclude a potential sedative effect of CGP44532, we assessed the effects of this 

ligand on locomotor activity. Although ANOVA revealed an absence of effect of treatment on 

distance travelled during the 60 minutes of test [F(4,55) = 2.414, P =0.0597], there was a 

trend toward CGP44532 decreasing the distance travelled which failed to reach the level of 

significance. Although GABAB receptor activation appears to induce depressant effect in the 

forced swim test, we cannot exclude that the sedative properties of GABAB receptor agonist 

confounds this effect. 
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Fig.5.8. Acute treatment with GABAB receptor agonist increases immobility in 
FST.
(A) Effect of CGP44532 treatment (doses: 0.03, 0.1, 0.3 and 1 mg/kg, p.o.) on immobility 
time in forced swim test. n = 10-12 per treatment group. (B) Effect of CGP44532 treatment 
(doses:1, 3, 10 and 30 mg/kg, p.o.) on locomotor activity (60 minutes) in mice that were 
habituated (for 60 minutes) to the novel environment. n = 12  per treatment group. All bars 
represent mean values, with vertical lines indicating one SEM. *, ***groups that differed 
significantly to vehicle treated mice (P < 0.05 and P< 0.001, respectively.). 

5.5  Assessing interactions between GABAB receptors and 
serotoninergic system. 

5.5.1  Effects of GABAB receptor antagonist on anti-immobility 

properties of SSRI in the forced swim test. 

Emerging evidence suggest that GABAB receptor antagonists may recruit 

serotoninergic mechanisms to elicit their behavioural effects (Slattery et al., 2005a). In order 

to investigate the interactions between GABAB and serotoninergic system, we examined the 

combinations of different doses of GABAB receptor antagonist (0, 3 and 10 mg/kg) with 

fluoxetine treatments (0, 3, 10 and 30 mg/kg) in the forced swim test. Two-way ANOVA 

revealed an significant effect of treatment with CGP56433A [F(2,132) = 8.470, P =0.001], of 

fluoxetine [F(3,132) = 3.068, P =0.05], nevertheless there is no fluoxetine X CGP56433 

interactions [F(3,132) = 0.919, P =0.483]. Although post-hoc tests revealed an antidepressant 

like effect of fluoxetine alone at 10 and 30 mg/kg and CGP56433A at 10 mg/kg, GABAB
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receptor antagonist failed to potentiate anti-immobility effect of fluoxetine in the forced swim 

test.
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Fig. 5.9.  Effects of GABAB receptor antagonist on anti-immobility properties of 
SSRI in the forced swim test.  
(A) Effect of CGP56433A treatment (doses: 0, 3, 10 mg/kg, p.o.) combined with Fluoxetine 
treatment (doses: 0, 3, 10  and 30 mg/kg, p.o.)immobility time in forced swim test. n = 12 per 
treatment group. All bars represent mean values, with vertical lines indicating one SEM. *, 
**, ***groups that differed significantly to vehicle treated mice (P < 0.05 and P< 0.001, 
respectively.).  

 5.5.2  Differential hypothermic response to baclofen following 

pharmacological or genetic blockade of serotonin transporter. 

5.5.2.1  Impact of acute fluoxetine treatment on baclofen-induced hypothermia. 

As mentioned in the third chapter, baclofen-induced hypothermia can be considered as 

a good in vivo index of GABAB receptor function. Consequently, it provides a powerful tool 

in order to investigate the impact of serotonergic treatment on GABAB receptors function. 

Thus, we assessed the effect of acute treatment with fluoxetine on the hypothermic response 

induced by baclofen. The ANOVA (repeated measures) indicate a significant effect of 

treatment with baclofen [F(1,36) = 223.224, P < 0.001], an fluoxetine X baclofen interaction 
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[F1,32) = 13.802, P =0.001] but no effect of treatment with fluoxetine [F(1,36) = 01.245, P 

=00.272]. Therefore, the two-way repeated measures ANOVA revealed also an effect of time 

[F3,108) = 172.66, P <0.001], time X baclofen interaction [F3,108) = 13.802, P =0.001] but 

no time X fluoxetine interaction [F3,108) = 1.423, P <0.241] and time X fluoxetine X 

baclofen interaction [F3,108) = 1.655, P <0.183]. Acute administration of fluoxetine (in 

vehicle treated animals) failed to affect temperature. In contrast, baclofen induced a marked 

decrease in body temperature in mice treated with fluoxetine and with vehicle. Finally, acute 

administration of fluoxetine attenuated the hypothermic response induced by baclofen one 

hour but not two hours after administration of baclofen. Thus, we can conclude that acute 

blockade of serotonin transporter failed to affect GABAB receptor function. 
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Fig.5.10. Effect of acute fluoxetine treatment on baclofen-induced hypothermia. 
Acute administration of fluoxetine (20 mg/kg; p.o.) failed to affect body temperature 
compared to mice treated with vehicle. Baclofen (9 mg/kg, p.o.) induced a strong hypothermia 
in group treated with fluoxetine and in the group treated with vehicle. N = 12  per treatment 
group All data points represent mean ± SEM values.. ***Groups that differed significantly 
from to vehicle treated animals (p<0.001).. ### groups that differed significantly to animals 
control animals treated with baclofen(p<0.001). 
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5.5.2.2  Impact of chronic fluoxetine treatment on baclofen-induced 

hypothermia.

Although the acute administration of  fluoxetine appears to have no effect on GABAB

receptors function, blunted GABAB-receptor-induced effects (including electrophysiological 

and signalling responses) have been demonstrated in the DRN of mice lacking the 5-HT 

transporter that is the molecular substrate for SSRI antidepressants (Mannoury la Cour et al., 

2004) suggesting that chronic treatment with SSRI may affect GABAB receptor function. In 

order to corroborate these results in vivo, we investigated the effect of chronic fluoxetine 

treatment (20 mg/kg/day during 21 days.) on the hypothermic response elicited by baclofen. 

Fig.5.11A showed the effect of chronic treatment with fluoxetine on baclofen-induced 

hypothermia 24 hours after the last injection of fluoxetine. One-way repeated measures 

ANOVA revealed a significant effect of fluoxetine treatment [F(1,22) = 47.247, P <0.001],, of 

time [F(3,66) = 80.429, P <0.001] and time X fluoxetine interaction [F(3,66) = 37.717, P < 

0.001]. Although baclofen elicited a marked hypothermia in vehicle-treated animals, this 

hypothermic response was totally blunted in mice treated chronically with fluoxetine.  

Similarly, we also observed this phenomenon 48 hours and 72 hours after the last injection of 

fluoxetine (Fig 5.11B and C, respectively). 48 hours later the last injection of fluoxetine, the 

one-way repeated measures ANOVA revealed a significant effect of fluoxetine treatment 

[F(1,9) = 20.650, P = 0.0014], of time [F(2,18) = 16.032, P <0.001] and time X fluoxetine 

interaction [F(2,18) = 29.933, P < 0.001]. Finally, 72 hours after the last injection of 

fluoxetine, the one-way repeated measures ANOVA revealed a significant effect of fluoxetine 

treatment [F(1,10) = 11.890, P =0.0062],, of time [F(2,20) = 9.562, P = 0.0012] and time X 

fluoxetine interaction [F(2,20) = 9.733, P = 0.0011]. In summary, we demonstrated that 

chronic, but not acute treatement with fluoxetine blocked hypothermic response elicited by 
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baclofen, suggesting that chronic blockade of 5-HT transporter alter GABAB receptor 

function.
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Fig.5.11. Effect of chronic fluoxetine treatment on baclofen-induced 
hypothermia. 
Chronic administration of fluoxetine (20mg/kg/day during 21 days) blunted totally the 
hypothermic response triggered by baclofen , 24 hours (A), 48h hours (B) and 72 hours (C) 
after the last injection of fluoxetine. N = 12  per treatment group for the experiment made 24 
hour after the last injection of fluoxetine and N =5-6 per treatment group for experiment made 
48h and 72h after the last injection of fluoxetine. All data points represent mean ± SEM 
values..**, ***Groups that differed significantly from to vehicle treated animals (p<0.01 and 
p<0.001, respectively). 

5.5.2.3  Effects of targeted deletion of serotonin transporter on baclofen-

induced hypothermia. 

In an attempt to confirm the results obtained after chronic treatment with fluoxetine, 

we also investigated the effect of genetic inactivation of serotonin transporter on the 
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hypothermic response induced by baclofen. The one-way repeated measures ANOVA 

revealed a significant effect of genotype treatment [F(1,19) = 14.492, P = 0.0012], of time 

[F(5,95) = 157.990, P <0.001] and time X genotype interaction [F(5,95) = 6.507, P < 0.001]. 

Intriguingly, post-hoc analysis revealed that 5-HTT-/- mice exhibited more pronounced 

hypothermia that wild-type animals. Interestingly, we demonstrated that chronic 

pharmacological blockade and genetic inactivation of serotonin transporter modulate 

hypothermic response elicited by baclofen in opposite manners. Nevertheless, it is important 

to note that compensatory changes in 5-HTT-/- mice cannot be excluded. 
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Fig.5.12. Effect of targeted deletion of serotonin transporter on baclofen-
induced hypothermia. 
Acute administration of (+/-)baclofen (12 mg/kg) elicited a pronounced hypothermia in both 
genotype. Nevertheless the amplitude of hypothermic response was more marked in 5-HTT-/-

mice (N=14) compared to wild-type animals (N=7).. All data points represent mean ± SEM 
values.. *, **, ***Groups that differed significantly from to vehicle treated animals (p<0.05, 
p<0.001 and p<0.001, respectively). 

 5.5.3  Effects of GABAB receptors ligands and antidepressants on 

downregulation of hippocampal 5-HT1A receptors mRNA induced by chronic 

handling stress. 
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We hypothesized that GABAB receptor ligands, by interacting with serotonergic 

neurotransmission, would counteract the downregulation of hippocampal 5-HT1A receptor 

mRNA induced by handling-stress. In order to confirm this hypothesis, we investigated the 

effects of chronic handling on 5-HT1A mRNA receptor in hippocampus and attempted to 

reverse these effects with antidepressants and GABAB receptor ligands.
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Fig.5.13. Effect of chronic handling and injections of vehicle on 5-HT1A receptor 
mRNA in hippocampus of BALB/c mice. 
Data represent mean ± s.e.m. Student’s t-test was performed where ** P < 0.01 represents 
statistical difference compared with vehicle. 

As shown in Fig.5.13, we observed a downregulation of 5-HT1A receptor mRNA (-

26.6 %) in the hippocampus after chronic handling (combined with injection) compared to 

naïve animals (p = 0.012). In contrast, as shown in Fig.5.14A, acute administration of 

fluoxetine increased 5-HT1A mRNA expression in the hippocampus compared to vehicle 

treated animals. Similarly, sub-chronic and chronic fluoxetine treatment up-regulated 

hippocampal 5-HT1A receptor mRNA (+31.6 %, p= 0.028 and +20.4%, p=0.06 respectively). 

Although, neither acute nor sub-chronic treatment with desipramine up-regulated 5-HT1A

mRNA, we observed that 21 days treatment with desipramine significantly increased 5-HT1A

mRNA expression in hippocampus (+35%, p=0.003, Fig. 2B).  
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Fig.5.14. Effects of (A) fluoxetine (20 mg/kg p.o ) and (B) desipramine (15 
mg/kg, p.o ) treatments (acute , sub-chronic and chronic) on 5-HT1A receptor 
mRNA in hippocampus of BALB/c mice.
Data represent mean ± s.e.m. Student’s t-test was performed where * P<0.05, ** P < 0.01 and 
*** P < 0.001 represent statistical difference compared with vehicle. 

As shown in figure 5.15, 5-HT1A receptors mRNA level were significantly higher in 

all baclofen treated groups. There was a 42% increase of 5-HT1A receptor mRNA after acute 

treatment with baclofen, 53% increase of 5-HT1A receptor mRNA level after sub-chronic 

baclofen treatment whereas chronic baclofen treatment increased expression level by 34.3% 

(p=0.0028, p=0.0005 and p=0.031 respectively) (Fig.5.15 A). Similarly, GS39783, the novel 

GABAB receptor positive modulator, significantly increased 5-HT1A expression in 

hippocampus acutely, sub-chronically and chronically (+53%, p=0.005; +39%, p=0.0024 and 

+44 %, p=0.003 respectively, Fig.5.15B). We also observed that CGP564333A, a GABAB

receptor antagonist, failed to change 5-HT1A mRNA expression after acute and sub-chronic 

treatment (Fig.5.15 C), while 21 days treatment with CGP56433A increased significantly 

hippocampal 5-HT1A mRNA level (+30.7, p=0.015). To conclude, we demonstrate that even a 

relatively minor stressor, such as daily handling and injections can induce marked changes in 

hippocampal 5-HT1A receptor expression levels of BALB/c mice. These data confirm, and 

expand upon, the results obtained from previous preclinical and clinical studies which 

demonstrated that chronic unpredictable stress downregulates, whereas antidepressant 
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treatments up regulates hippocampal 5-HT1A receptors (Lopez et al., 1998). Furthermore, we 

demonstrate that antidepressants and GABAB receptor ligands, can counteract this 

phenomenon 
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Fig. 5.15. Effects of (A) baclofen (5 mg/kg p.o.) , (B) GS39783 (10 mg/kg p.o.) 
and (C) CGP56433A (6 mg/kg p.o.) treatments (acute , sub-chronic and chronic) 
on 5-HT1A receptor mRNA in hippocampus of BALB/c mice. 
Data represent mean ± s.e.m. Student’s t-test was performed where * P<0.05, ** P < 0.01 and 
*** P < 0.001 represent statistical difference compared with vehicle 

5.6  Discussion. 

In the present chapter, we demonstrated that both genetic inactivation and 

pharmacological blockade of GABAB receptors, results in the same antidepressant-like effect 

in the forced swim test but not in tail suspension paradigm. Conversely, we also demonstrated 

that GABAB receptor activation elicited depressant-like effect in the forced swim test. In 
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order to elucidate the interaction between serotoninergic system and GABAB receptors and 

their involvement in antidepressant like effect, we assessed the effect of GABAB receptor 

antagonist on the anti-immobility effect of fluoxetine in the forced swim test. Somewhat 

surprisingly, CGP56433A failed to potentiate the antidepressant-like effect elicited by 

fluoxetine. Secondly, we assessed the effect of several pharmacological and genetic 

manipulation of serotonin transporter on well characterized index of GABAB receptor 

function baclofen-induced hypothermia. Although acutely fluoxetine failed to affect 

hypothermic response elicited by baclofen, chronically, fluoxetine totally blocked this 

response, suggesting an alteration of GABAB receptor after chronic pharmacological blockade 

of serotonin transporter. Intriguingly, we observed an enhancement of hypothermic response 

induced by baclofen in 5-HTT-/- mice. Finally, we demonstrated that both antidepressants and 

GABAB receptor ligands, including agonist, antagonist and positive modulator; counteract the 

downregulation of hippocampal 5-HT1A receptor mRNA elicited by chronic handling.  

The mouse FST is the most widely used experimental paradigm for detecting 

antidepressant activity and to assess alterations in depression-like behaviour in genetically 

modified animals (Borsini and Meli, 1988; Cryan et al., 2002a; Cryan and Mombereau, 2004). 

The behavioural responses in the FST is thought to comprise a coping strategy (Thierry et al., 

1984) in which immobility behaviours represent the psychological concept of "entrapment" 

described in clinical depression (Dixon, 1998; Gilbert and Allan, 1998; Lucki, 2001). Here we 

demonstrate that GABAB(1)
-/- mice have an antidepressant-like effect in the FST as indicated 

by significantly lower immobility than their wildtype controls. This effect is not due to 

hyperactivity per se, as a reduced locomotor response was observed in the very same mice 

after being placed in a novel locomotor activity chamber, with activity increasing over time. 

This is compatible with the anxious phenotype of GABAB(1)
-/- mice and suggests that they are 

more fearful upon being placed in a novel environment.  In opposition to normal habituation 
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responses in a novel environment, locomotor activity in GABAB(1)
-/-mice slowly increased 

with time indicating a disinhibition of their initial anxiety. Further, there was no correlation 

between activity in the FST and that in the locomotor activity apparatus (Fig. 8). This initial 

hypoactivity was unrelated to prior exposure to swim stress or age, as it was also evident 

(although not as pronounced) in experimentally naïve mice (Fig. 2). However, at later time-

points these animals became somewhat more active than wildtype controls, which is in 

accordance with previous data (Schuler et al., 2001).  

Interestingly, GABAB(1)
-/- mice behave similarly to their wildtype controls in the tail 

suspension test. The tail suspension test is another well characterized test for assessing 

depression-like and antidepressant-like activity (Porsolt, 2000; Cryan et al., 2002a; Cryan and 

Mombereau, 2004; Cryan et al., 2005). Although this test is similar to the FST in the 

constructs that it purports to assess (immobility) and for its ability to detect a broad spectrum 

of antidepressants (Steru et al., 1985), it is becoming clear that both tests are probably 

different from each other in terms of the biological substrates that underlie their observed 

behaviours (Bai et al., 2001; Renard et al., 2003; Cryan and Mombereau, 2004; Cryan et al., 

2005). Accordingly, it is believed that using both paradigms can give complementary and/or 

converging information on activities of novel potential antidepressants or molecular pathways 

including those altered in genetically modified animals (Bai et al., 2001) (Conti et al., 2002; 

Cryan et al., 2005). The current data are among the first to show differential effects of a 

genetic modification in the FST and the tail suspension test and confirms the assertion of a 

differential neurochemical underpinning to each test. 

In agreement with what we previously observed in the light-dark box test of anxiety, 

GABAB(2)
-/- mice also behaved similarly to GABAB(1)

-/- mice in the forced swim test. Indeed, 

targeted deletion of GABAB(2) receptor subunit induced a marked decrease in the time spent in 

immobility in the forced swim test. Consistent with the anxiety data, the GABAB(1,2)
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heterodimer appears to be required for the neurophysiologic processes involved in the forced 

swim test.  

In order to confirm the antidepressant-like phenotype of the GABAB(1)
-/- mice and 

GABAB(2)
-/- mice pharmacologically, we assessed the effects of the GABAB receptor 

antagonist CGP56433A in the FST. Our data demonstrate that this GABAB receptor 

antagonist when administered acutely also decreases immobility in the FST without having 

any significant change in locomotor activity (Fig. 9). Chronic administration of CGP56433A 

also produced an antidepressant-like effect similar to that of the antidepressant desipramine 

(Fig. 10). These data corroborated previous results obtained in another depression paradigm, 

such as chronic mild stress (Bittiger et al., 1996) or learned helplessness (Nakagawa et al., 

1999). Conversely, we observed that GABAB receptor agonist elicited depressant like effect 

in FST. These results are in line with previous observation describing that baclofen increased 

susceptibility to helplessness and attenuated the effects of antidepressants (Nakagawa et al., 

1996a; 1996b). Furthermore, baclofen also reduced the efficacy of antidepressants in the FST 

(Nakagawa et al., 1996c). Taken together our current data support the contention that 

antagonism of GABAB receptors may be a suitable target for the development of 

antidepressant agents. 

Although we demonstrated that GABAB receptors appear to be involved in the 

neuropathophysiolgy of depression, the mechanism implicated in the antidepressant-like 

effect of GABAB receptor antagonist are not clear. Nevertheless, several authors have 

speculated that antidepressant-like effects of GABAB receptor antagonist might be mediated 

via the serotoninergic system. Indeed, Slattery and coworkers have demonstrated that GABAB

receptor antagonist increased swimming behaviour in the modified rat forced swim test 

(Slattery et al., 2005a). This behavioural pattern has been shown to be selectively affected by 

SSRIs and serotonergic agonists (Cryan et al., 2002a). Moreover, they also demonstrated that 
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serotonin depletion attenuates the increase in swimming induced by CGP564333A, 

confirming the involvement of serotonergic system in the antidepressant-like effect of 

GABAB receptor antagonists. Congruently, it has been shown that GABAB receptor 

stimulation in the dorsal raphé inhibits the firing of serotoninergic neurons (Innis et al., 1988). 

Thus, we hypothesized that GABAB receptor antagonist should potentiate the effect of SSRIs, 

via alleviation of the inhibition of firing serotoninergic neurons in raphé. Although both the 

GABAB receptor antagonist and fluoxetine induced an antidepressant-like effect in the forced 

swim test, we demonstrated that GABAB receptor blockade failed to potentiate the anti-

immobility effect of fluoxetine in this test. Despite these negative data without neurochemical 

studies, we cannot definitively conclude that GABAB receptor antagonists do not enhance 

serotonin release induced by fluoxetine. Similarly, there is extensive data available which 

demonstrate that SSRI effects on extracellular 5-HT concentration (Gartside et al., 1995) 

might be increased by administration of 5-HT1A autoreceptor antagonists, however they appear 

to be without effect on behavioural response elicited by SSRI (Moser and Sanger, 1999). 

Nevertheless, this hypothesis was recently validated using phaclofen and citalopram in the tail 

suspension. Indeed, Cremers et al. demonstrated that systemic administration of GABAB

antagonist augment both anti-immobility effect and serotonin release elicited by citalopram 

SSRI injection (Jongsma et al., 2004). Taking this research into account, it appears that 

GABAB receptor antagonist might also be considered for accelerate the onset of action and 

increase the effectiveness of antidepressant. The use of animal model requiring chronic 

antidepressant treatment, such as chronic mild-stress or olfactory bulbectomy will confirm the 

reduction of onset of action of antidepressant by GABAB receptor. Thus, further studies, such 

as microdialysis studies, are clearly required in order to more appreciate the impact of 

GABAB receptor blockade on the antidepressant-like effect of SSRI and their associated 

release of serotonin. 
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As mentioned in the introduction, several studies investigated the impact of 

antidepressant on GABAB receptor function. Kasture and co-workers demonstrated that acute 

administration of fluoxetine reversed the catatonia induced by baclofen. In the present study, 

we demonstrated that acute administration of fluoxetine appears to attenuate, but not block, 

the baclofen-induced hypothermia (Kasture et al., 1996). Conversely, Gray and co-workers 

demonstrated that repeated treatment with amytriptyline, a tricyclic antidepressant, enhanced 

temperature and sedation induced by baclofen (Gray et al., 1987). Nevertheless, we 

demonstrated in the current study that chronic treatment with fluoxetine totally blunted the 

baclofen-induced hypothermia, suggesting that chronic blockade of serotonin transporter 

might induce a functional desensitization of GABAB receptor. These results are consistent 

with the findings that 5-HTT-/- mice exhibited altered GABAB-induced responses (Mannoury 

la Cour et al., 2004). Specifically, these animals present a functional desensitization of 5-HT1A

autoreceptors in the dorsal raphé. Moreover, the GABAB receptor agonist inhibited 5-HT cell 

firing in the DRN, which occurred with a 30-fold decrease in potency in 5-HTT knock-out 

mice and was blocked by administration of GABAB receptor antagonist. In addition, 

[35S]GTP- -S binding induced by baclofen was also significantly decreased in the DRN of 5-

HTT knockout mice after baclofen administration. Altogether, the findings herein, combined 

with the data of Mannoury la Cour and collaborators, suggest that both chronic administration 

of SSRI or genetic ablation of serotonin transport might result in a concomitant functional 

desensitization of 5-HT1A  and GABAB receptor, mediated by alteration of common pool of G-

proteins (Andrade et al., 1986).More recently, targeted deletion of GIRK2 has been shown to 

attenuated hypothermic response elicited by 5-HT1A and GABAB receptors agonist (Costa et 

al., 2005).Given that GABAB and 5-HT1A receptors are coupled to the same GIRK, we can also 

presume that modulation of their common GIRK channels might be also responsible  of 

functional desensitization of both 5-HT1A and GABAB receptors in the raphé nucleus. 

Nevertheless, further studies are required in order to understand the exact mechanism 
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underlying this downstream effect. Thus, it might be also interesting to recapitulate our 

present data using these techniques in effort to better understanding the potential adaptation of 

GABAB receptors induced by chronic administration of SSRI. However, we present findings 

were obtained using baclofen-induced hypothermia as an index of GABAB receptors and there 

is no clear evidence, at this time, for a real involvement of GABAB receptor of raphé in this 

response. Surprisingly, we also observed that targeted deletion of serotonin transporter 

potentiated the hypothermic response induced by baclofen. Nevertheless, we cannot exclude 

compensation mechanism in these mice. Previous studies have shown that SERT deficient 

animals have behavioural effects that are opposite to that observed following adult 

knockdown/inhibition of the transporter (Holmes et al., 2003b; Ansorge et al., 2004), which 

may be due to early life loss of the transporter. 

Chronic stress has been shown to be implicated in the aetiology of depressive 

disorders (Charney and Manji, 2004). In the present studies, we demonstrated that a relatively 

minor stressor such as daily handling and injections induce marked changes in the 

hippocampal 5-HT1A mRNA receptor expression of BALB/c mice. These data corroborate, 

and expand upon, the results obtained from previous preclinical and clinical studies which 

demonstrated that chronic stress downregulates 5-HT1A receptor mRNA (Lopez et al., 1998). 

Interestingly, only few studies have investigated the impact of handling and saline injection 

on behavioural and neurochemical parameters. Saline administration have been shown to 

induced depressive-like behaviour in the tail-suspension test combined with a suppression of 

cAMP formation stimulate (Izumi et al., 1996), confirming that chronic handling might be 

considered as chronic mild stressor. Several other studies demonstrated that different regimen 

of stressor induced 5-HT1A receptor adaptation in the hippocampus. For example, it has been 

shown that chronic restraint stress decreased [3H]8-OHDPAT bindings sites in the 

hippocampus of rat (Watanabe et al., 1993) or tree shrew (Flugge, 1995). Taken together, this 
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result suggests that chronic mild stress might affect 5-HT1A receptor in the hippocampus. 

Conversely, we observed that antidepressant, including the tricyclic desipramine and the SSRI 

fluoxetine, could counteract the effect of stress on hippocampal 5-HT1A receptor mRNA. In 

agreement with these results, several electrophysiological studies have demonstrated a 

sensitization of hippocampal 5-HT1A receptor function after long term antidepressant (see 

(Mongeau et al., 1997) for review). Nevertheless, the effects of chronic antidepressant 

treatment on the densities, bindings and expression of 5-HT1A receptor in hippocampus have 

drowned controversial results. Although we corroborated the fact that chronic desipramine 

treatment counteracted the downregulation of hippocampal 5-HT1A receptor mRNA described 

by Lopez and coworkers (Lopez et al., 1998), further studies recapitulating these results on 

the 5-HT1A receptor protein or function, are required to confirmed the role of postsynaptic 5-

HT1A receptor in depression an antidepressant-like effect. In addition to effects observed after 

sub-chronic and chronic treatement, we also observed that acute administration of fluoxetine 

up-regulated hippocampal 5-HT1A  receptor mRNA. Nevertheless, there is no information in 

the literature regarding this effect and the mechanism involved in this acute effect is still 

elusive. Finally, we demonstrated that GABAB activation, via systemic administration of 

GABAB receptor agonist and positive modulator, induced an increase in hippocampal 5-HT1A

receptor mRNA level following acute treatment that was sustained following sub-chronic and 

chronic treatment. Considering that bath application of the GABAB receptor agonist, baclofen, 

was found to cause a concentration-dependent inhibition of dorsal raphé nucleus 5-HT cell 

firing (Innis et al., 1988) , it is conceivable to believe that activation of GABAB receptor could 

decrease serotonin tone leading to a up-regulation of hippocampal 5-HT1A  receptor. 

Nevertheless, the effects of chronic GABAB receptor antagonist treatment on this parameter is 

more difficult to explain, we demonstrate that chronic treatment only, with CGP56433A 

upregulated 5-HT1A receptors in stressed animals. However, the alleviation of the effects of 

stress by anxiolytics or antidepressants can be conceivable and we demonstrated that GABAB
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positive modulator and GABAB antagonist have respectively anxiolytic and antidepressant 

profile in several behavioural paradigms. Nevertheless, it would be simplistic to assume that 

this effect was induced by a direct action of GABAB receptor on serotoninergic system. 

Indeed, in a recent study, Mitsukawa and collaborators demonstrated a up-regulation of 

hippocampal 5-HT1A mRNA in mGlur7-/-(Mitsukawa et al., 2005) in this studies, the authors 

speculated that this adaptation might be a consequence of regulatory effect of HPA axis on 

post-synaptic 5-HT1A  receptors. Nevertheless, further studies are required to understand the 

differential onset of action of GABAB receptor antagonist vs GABAB positive modulator  and 

to determinate their role in anxiolytic and antidepressant elicited by GS39783 and 

CGP56433A.

In summary, the present studies demonstrated that genetic inactivation or 

pharmacological blockade of GABAB receptors produced antidepressant-like effects in the 

forced swim test, confirming the role of GABAB receptor in the modulation of emotion. 

Although the antidepressant-like effects of GABAB receptor antagonist have been shown to 

be mediated by serotoninergic system, the desensitization of GABAB receptor observed after 

chronic SSRI treatment suggests that GABAB receptor might be involved in the therapeutic 

properties of SSRI. These data, combined with the alleviative effect of GABAB ligands on 

downregulation of 5-HT1A receptor mRNA induced by chronic handling, confirm that 

GABAB receptors antagonists may represent a novel approach to the treatment of depression. 
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CHAPTER 6: THE ROLE OF GABAB
RECEPTORS IN ADDICTION. 

6.1  Introduction.

There is accumulating evidence indicating that GABAB receptor activation could be 

beneficial in the treatment of drug addiction. Baclofen has indeed shown efficacy in human 

clinical trials in reducing cocaine, opiate and alcohol craving (Brebner et al., 2002). Baclofen 

also inhibits the rewarding properties of cocaine (Brebner et al., 2000; Di Ciano and Everitt, 

2003; Hotsenpiller and Wolf, 2003), amphetamine (Brebner et al., 2005), nicotine (Corrigall 

et al., 2000) and opiates (Tsuji et al., 1996; Xi and Stein, 1999) in a variety of preclinical 

models.

Exposure to cocaine elicits specific biochemical, physiological and behavioural 

modifications which are hypothesized to be responsible for the development of addictive 

behaviours, such as craving and relapse (Nestler and Aghajanian, 1997). Acutely, cocaine 

elicits motor stimulant effects which are thought to be mediated via an increase in 

dopaminergic transmission in the mesocorticolimbic system. Cocaine inhibits dopamine 

(DA), norepinephrine and serotonin reuptake and thereby causes an increase in synaptic 

concentrations of these neurotransmitters. In the nucleus accumbens (NAc) elevated DA 

levels cause a dysregulation of D1/D2-like DA receptor signalling. This in turn leads to the 

upregulation of several molecular markers of DA signalling, mainly through activation of the 

adenylyl cyclase/ protein kinase A (PKA) pathway (for review see (Anderson and Pierce, 

2005). Fos is a marker of cell activation and is upregulated in the striatum by acute cocaine 

(Graybiel et al., 1990).In addition, repeated administration of cocaine has been shown to elicit 

behavioural sensitization. As mentioned in the introduction, cocaine sensitization is though to 

underlie some facets of cocaine addiction, including craving and relapse (Kalivas et al., 1993; 
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Robinson and Berridge, 1993). Furthermore, repeated administration of cocaine has been 

shown to induce FosB, a truncated form of FosB, which slowly accumulates in NAc and 

dorsal striatum during chronic drug exposure (Hope et al., 1994). Acute and chronic cocaine 

administration also increases the expression of Ca2+-and cAMP-response element binding 

protein (CREB) and dopamine-and-cAMP-regulated-phosphoprotein of 32 kD (DARPP-32) 

in the NAc(Terwilliger et al., 1991; Kano et al., 1995; Bibb et al., 1999; Nishi et al., 1999a). 

Therefore, such increases are thought to play a role in addiction, since viral-mediated 

overexpression of CREB in this region decreases the reinforcing properties of cocaine 

(Carlezon et al., 1998). Moreover, mice expressing specifically fosB in the nucleus 

accumbens and dorsal striatum exhibited sensitized behavioural response to cocaine (Kelz and 

Nestler, 2000). 

Nicotine is the primary psychostimulant component of the tobacco smoke and has 

pharmacological properties leading to a progressive and long-lasting dependence, as shown  

in clinical and preclinical studies (Stolerman and Jarvis, 1995). Indeed, the positive 

reinforcing properties of nicotine has been shown in a wide variety of species (Goldberg et al., 

1989; Donny et al., 1998; Picciotto, 1998; Stolerman, 1999) in self-administration paradigms. 

In addition, nicotine was also found to increase the rewarding efficacy of intracranial self-

stimulation (Panagis et al., 2000; Harrison et al., 2002). Place conditioning paradigms, 

conditioned place preference and conditioned place aversion (CPP and CPA, respectively) are 

based upon the principle that animals, like humans, would learn to seek or avoid 

environmental stimuli which have been previously associated with rewarding or aversive 

events, respectively (Carr et al., 1989)(see section 1.3.3.2). Further, most drugs of abuse, such 

as cocaine, amphetamine, morphine are effective in supporting place preference (Tzschentke, 

1998). Furthermore, several studies demonstrated that nicotine induces conditioned place 
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preference, making it an ideal model to assess nicotine-induced reinforcement (Tzschentke, 

1998; Pierce and Kumaresan, 2005). 

Baclofen’s mechanism of action as an anti-addictive agent likely involves modulation 

of dopamine (DA) activity in the VTA. GABAB receptors are highly expressed in the limbic 

system and can have both pre- and postsynaptic localizations (Bettler et al., 2004). Activation 

of postsynaptic GABAB receptors hyperpolarizes the resting membrane potential through 

activation of potassium channels whereas activation of presynaptic receptors, via Ca2+

channel inhibition, reduces the release of neurotransmitters such as DA, glutamate and 

GABA. In the VTA, GABAB receptors are expressed on dopaminergic cell bodies and 

presynaptically on glutamatergic terminals (Johnson and North, 1992; Fadda et al., 2003). 

Activation of these receptors would hyperpolarize DA neurons and/or lead to a reduction in 

excitatory inputs, respectively, thereby functionally counteracting the effects of cocaine. 

Supporting this hypothesis, micro-injection of the GABAB receptor agonist baclofen into the 

VTA decreases DA release in the NAc in a model of heroin self-administration (Xi and Stein, 

1999). Further, Fadda et al (2003) have also shown that baclofen antagonizes nicotine, 

cocaine and morphine induced dopamine release in the NAc in rats.

Nevertheless, baclofen induces unwanted side effects such as muscle relaxation, 

hypothermia and sedation. Conversely, positive GABAB receptor modulators such as 

GS39783 are active only in presence of GABA and are devoid of the sedative and muscle 

relaxant effects of full agonists (Urwyler et al., 2001; Cryan et al., 2004). GS39783 reduces 

cocaine self-administration in rodent models (Smith et al., 2004) and inhibits the rewarding 

properties of acute cocaine in an intracranial self-stimulation paradigm (Slattery et al., 2005b). 

Although mice lacking GABAB receptor would provide a powerful tool in effort to study the 

role of GABAB receptor in addictive disorders, there are several potential caveats associated 

with their used in animal model of addiction. First, GABAB receptor mice are generated on 
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BALB/c background. Indeed, BALB/c mice have been shown to be insensitive to 

psychostimulant-properties of drugs of abuse such as amphetamine (Logan et al., 1988), 

cocaine (Seale and Carney, 1991) and to phencylciclidine (Freed et al., 1984).Secondly, the 

pro-convulsant properties of cocaine (Grabarits et al., 1966) might enhance the frequency of 

spontaneous seizures observed in GABAB knockout mice (Schuler et al., 2001; Gassmann et 

al., 2004), that could interfere with their locomotor activity pattern 

The goals of the present chapter were to assess the efficacy of GABAB receptor 

activation, via administration of GABAB receptor agonist or positive modulator, in 

modulating the reinforcing properties of cocaine and nicotine. First, we investigated the effect 

of baclofen and GS39783 on both locomotor activity induced by a single administration of 

cocaine and on its associated striatal Fos upregulation. In addition, we assessed the effects of 

GS39783 on behavioural sensitization elicited by repeated administration of cocaine. In order 

to identify the molecular pathways underlying the anti-addictive properties of GABAB

receptor positive modulation, we also examined the effects of GS39783 on specific molecular 

markers of dopamine signalling, such as CREB, DARPP-32 or FosB. We also investigated 

the effects of the novel GABAB positive modulator GS39783 on the reinforcing properties of 

nicotine, using an unbiased place conditioning paradigm. We first evaluated the intrinsic 

reinforcing properties of GS389783 in rats. We then assessed the effect of GS39783 on the 

establishment and the expression of nicotine-induced place preference. Finally, we examined 

whether that GABAB positive modulation could alter FosB accumulation induced by 

repeated administration of nicotine associated with place preference paradigm. 
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6.2. Experimental Design. 

 6.2.1 Effects of GABAB receptor activation on cocaine-related 

behaviours and their associated molecular markers. 

Concerning the effects of baclofen and GS39783 on the hyperlocomotion elicited by a 

single administration of cocaine, male C57BL/6J mice (18-20g) were individually placed in 

locomotor test chambers (see chapter 2 for details). After 30 min of habituation GS39783 (10, 

30, 100 mg/kg p.o.), baclofen (3, 6 mg/kg p.o.) or methylcellulose was applied and the 

locomotor activity recorded. 30 min later mice were injected with cocaine (10 mg/kg i.p.) or 

saline and locomotor activity was recorded for additional 60 min. Doses of GS39783 were 

selected based on previous studies showing activity in anxiety models at this dose range 

(Mombereau et al., 2004). The doses of baclofen were selected based on it being maximal 

doses before behavioural inhibition occurs (Cryan et al., 2004; Jacobson and Cryan, 2005)..  

The dose of cocaine was selected as it produced a robust hyperactivity in previous studies 

(Cryan et al., unpublished). In order to assess the effects of a GABAB receptor agonist and a 

positive modulator on Fos induction triggered by cocaine, mice were sacrificed 1 hour after 

cocaine application and the brains were quickly removed, chilled in ice-cold phosphate-

buffered saline (PBS) and cut in 1-mm thick slices using a mouse brain matrix (RBM 2000C, 

Asi Instruments). NAc and dorsal striatum were dissected on an ice-chilled glass plate and 

flash-frozen in dry ice. Subsequently, c-fos expression was analyzed using the method 

described in section 2.8. 

In studies addressing the effect of GS39783 on behavioural sensitization-induced by 

cocaine, we used the design described in Chapter 2, using male C57BL/6J mice (18-20g).The 

mice were habituated to the test environment for three days and basal locomotor activity was 

measured. After an intraperitoneal injection of saline the mice were placed in the test cages 

(as above) for 30 min and locomotor activity was recorded. From days 4-10, mice were 
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injected with cocaine (20 mg/kg i.p.) or saline and locomotor activity was recorded. To assess 

the effects of GABAB receptor positive modulation on the acquisition of behavioural 

sensitization to cocaine, GS39783 (30 mg/kg p.o.) or vehicle (0.5% methylcellulose) was 

applied 30 minutes before each cocaine injection. This period of acquisition of sensitization 

was followed by 14 days without drug treatment. In order to investigate the effect of GS39783 

on the expression of cocaine sensitization, we designed a challenge trial. On day 23 

(challenge day), mice were administrated a dose of 10 mg/kg i.p. cocaine. In order to assess 

the effect of GABAB receptor positive modulator on the expression of sensitization, GS39783 

(30 mg/kg p.o.) or methylcellulose was applied 30 min prior to the cocaine injection. Separate 

groups of animals were used for molecular studies.  The same regimen of cocaine 

administration was employed as in behavioural studies. 24 hours after the last injection of 

cocaine animals were killed and brains were quickly removed, chilled in ice-cold phosphate-

buffered saline (PBS) and cut in 1-mm thick slices using a mouse brain matrix (RBM 2000C, 

Asi Instruments). NAc and dorsal striatum were dissected on an ice-chilled glass plate and 

flash-frozen in dry ice. FosB , CREB, phospho-CREB and DARPP-32 was analyzed using 

techniques described in section 2.8. 

6.2.2 Effects of GABAB receptor activation on nicotine-related 

behaviours and their associated molecular markers. 

We chose to investigate the effects of GS39783 on the behavioural effects of nicotine 

in rats as a robust CPP procedure had been previously validated in our laboratories (Forget et 

al., 2005). All experiments were carried out on experimentally naïve Male Wistars (Iffa 

Credo, F-69592 L’Arblesle, Cedex France) weighing 180-220g at the beginning of the 

experiments. They were housed four per cage ( 55x33x19 cm) in a humidity- and 

temperature-controlled room under a 12 h light/dark cycle (lights on at 0700). One week prior 
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to the beginning of the experiments, all animals were food-restricted (20 g/day) until the end 

of the study.

In the study addressing the intrinsic reinforcing\aversive properties of GABAB

receptor positive modulator, naive rats were given GS39783 (10, 30 and 100 mg/kg, i.p.), or 

its vehicle for the control group, 30 minutes prior to the drug-paired conditioning sessions. All 

of the rats received vehicle before the vehicle-paired sessions. A single test session took place 

the day following the last conditioning session, i.e. 48 h after the last injection of GS39783. 

Rats were given no injection before this session.

Concerning the effect of GS39783 on the acquisition of place preference to nicotine, 

naïve rats were handled and pre-exposed to the conditioning dose of nicotine (0.06 mg/kg, 

s.c., o.d.) or saline for associated control group, on each of 5 days of the week prior the first 

conditioning session. For the four drugs-paired sessions, rats received nicotine (0.06 mg/kg 

s.c.) or saline immediately before the sessions. 30 minutes prior to the drug-paired 

conditioning session, nicotine-treated rats were given GS39783 (30 and 100 mg/kg; p.o.)  or 

its vehicle. In addition, non-nicotine treated received vehicle 30 minutes before drugs-paired 

conditioning session. During the four vehicle-paired sessions, all the rats received saline and 

vehicle (immediately before session and 30 min. prior session respectively). A single test 

session was conducted the day following the last conditioning session, i.e. 48 h after the last 

injection of nicotine.

Regarding the effects of GS39783 on the expression of conditioned place preference 

to nicotine, naïve rats were handled and pre-exposed to the conditioning dose of nicotine 

(0.06 mg/kg, s.c., o.d.) or saline for associated control group on each of 5 days of the week 

prior the first conditioning session. During the four drug-paired sessions, rats received 

nicotine (0.06 mg/kg s.c.) or saline immediately before the sessions, where all the rats 

received saline before the four vehicle-paired sessions. GS39783 (30 and 100 mg/kg, p.o.), or 
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its vehicle (methylcellulose) for the associated control group, was administered only once, 45 

min before a single test session, which was conducted the day following the last conditioning 

session, i.e. 48 h after the last. 

In order to assess the effects of GS39783 and nicotine regimen on FosB, animals 

were decapitated immediately after the test phase of place conditioning paradigm. Brains were 

quickly removed, chilled in ice-cold phosphate-buffered saline (PBS) and cut in 1-mm thick 

slices using a brain matrix. NAc and Dorsal Striatum were dissected on ice-chilled glass plate 

and flash-frozen in dry ice. Subsequently, FosB expression was analyzed using the method 

described in section 2.8. 

6.3  Effects of GABAB receptors activation on specific 
cocaine-induced behavioural and molecular alterations. 

 6.3.1  GABAB receptor activation decreases selective molecular and 

behavioural effects of acute cocaine administration. 

  6.3.1.1  GABAB  receptor activation attenuates cocaine-induced 

hyperlocomotion. 

In rodents, a behavioural consequence of acute cocaine administration is increased 

locomotor activity (see section 1.3.3.2). We used locomotor activity as readout to assess the 

behavioural effects of baclofen and GS39783 on cocaine exposure. A single injection of 

cocaine (10 mg/kg i.p.) resulted in a marked increase in ambulatory activity, compared with 

administration of saline (Fig.6.1). Post hoc analysis revealed that baclofen at 6 mg/kg lowered  

spontaneous locomotor activity at 0 to 10 minutes time point in animals injected with saline (p

< 0.05; Fig.6.1A). Unexpectedly, animals that had been administered baclofen (3 mg/kg) 30 

minutes prior to saline injection had a brief, exaggerated increase in locomotor activity 

immediately after saline injection which normalized 10 minutes later (Fig.6.1A). In contrast to 
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the effects of baclofen, GS39783 (at 10, 30, 100 mg/kg) did not affect spontaneous locomotor 

activity (Fig. 6.1C). 

The effects of baclofen and GS39783 on cocaine-induced locomotor activity are 

shown in Fig. 6.1B and 1D. Post hoc analysis revealed that both GS39783 and baclofen 

blunted the stimulatory effect of cocaine. Although baclofen significantly attenuated cocaine-

induced hyperactivity at all doses investigated (Fig.6.1B), interpretation of the effect obtained 

with the higher dose (6 mg/kg) is confounded by baclofen’s sedative properties as evidenced 

by reduced basal activity at this dose (Fig.6.1A, B). The GABAB receptor positive modulator 

GS39783 significantly attenuated hyperlocomotion between 10 and 60 minutes after cocaine 

administration (Fig.6.1D).  However, in contrast to baclofen, GS39783 did not affect basal 

locomotor activity. Taken together, these data suggested that activation of GABAB receptors 

with the agonist baclofen or with the positive modulator GS39783 can attenuate the 

locomotor-stimulation induced by a single administration of cocaine. Further, we confirmed 

previous observations showing that GS39783 is devoid of sedative properties of the GABAB

receptor agonist baclofen (Cryan et al., 2004). 
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Fig.6.1. GABAB receptor activation attenuates cocaine-induced 
hyperlocomotion. 
A, C; Effects of baclofen and GS39783 on locomotor activity in mice (n = 12) during a period 
of 60 minutes after saline injection. Values are means ± S.E.M. *,  ***, groups that differed 
significantly from vehicle-treated animals (p < 0.05 and p < 0.001, respectively). B, D,  
effects of baclofen and GS39783 on cocaine induced hyperactivity (10 mg/kg, i.p.) in mice (n 
= 12) during a period of 60 minutes after cocaine injection. Values are means ± S.E.M. #, ## 
and ###,  groups that differed significantly from vehicle-treated animals (p < 0.05, p < 0.01, p
< 0.001, respectively). The arrows indicate the time point of saline or cocaine injection; 
baclofen or GS39783 were applied 30 min before saline/ cocaine. 

  6.3.1.2  Striatal fos upregulation by acute cocaine is inhibited by GABAB

receptor activation. 

To date, in the context of drug addiction only few studies have focused on the 

investigation of the molecular mechanisms affected by potential therapeutic strategies, 

including those focused on GABAB receptors. One of the most robust responses to acute 

cocaine is the activation of immediate early gene expression, most notably Fos, the product of 

the immediate early gene cfos in the NAc and dorsal striatum (Graybiel et al., 1990; Curran et 

al., 1996). To investigate a possible effect of GABAB receptor activation on cocaine-induced 
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Fos upregulation we conducted an experiment with a separate group of animals. The mice 

were treated with baclofen, GS39783 or saline 30 min prior to cocaine or saline injection. Fos 

expression was detected by immunoblots on dorsal striatum and NAc samples and normalized 

to actin controls (Fig.6.2). Treatment with cocaine triggered a robust upregulation of Fos 

expression in both dorsal striatum and NAc (p < 0.001 versus saline; Fig.6.2C-F). Baclofen 

dose-dependently attenuated cocaine-induced Fos expression in both structures (p < 0.001, 6 

mg/kg baclofen) but did not affect basal Fos levels (p > 0.1; Fig.6.2C, D). Similarly to 

baclofen, GS39783 dose-dependently inhibited Fos induction in both dorsal striatum and NAc 

(p < 0.001; 30, 100 mg/ kg GS39783; Fig.6.2E, F) without affecting basal Fos expression at 

any dose used (p > 0.1). Taken together these data show that GABAB receptor activation by 

baclofen and GS39783 attenuated acute cocaine-induced Fos expression.
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Fig.6.2. GABAB receptor activation inhibits cocaine-induced Fos accumulation: 
Baclofen and GS39783 were applied 30 min prior to cocaine and the mice were sacrificed 2 
hrs after cocaine injection (20mg/ kg i.p; n = 5 for each group). A, circles in schematic 
drawing after Paxinos and Franklin (2001) indicate dissected brain regions (NAc, left panel; 
Dorsal Striatum, right panel; bregma coordinates are given). Fos was detected by immunoblot 
in Dorsal Striatum (B, C, E) and NAc (D, E) samples. B, representative Fos immunoblot 
obtained from Dorsal Striatum samples, with its corresponding actin control. Mice were either 
injected with saline or cocaine in absence or presence of Baclofen (3 or 6 mg/kg); S, saline; C, 
cocaine. C, D, Effect of baclofen on Fos-upregulation by cocaine. Averaged densitometric 
values obtained from Dorsal striatum (C) and NAc (D) samples are shown. E, F,  GS39783 
attenuates cocaine-induced Fos upregulation in Dorsal striatum (E) and NAc (F) samples. *,  
+ indicate differences to saline controls or cocaine groups, respectively; o indicates 
differences within treatment groups. *, +, o,  p < 0.05; **, ++,  p < 0.01; ***, +++, p < 0.001; 
a.u., arbitrary units.
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 6.3.2  GABAB receptor activation alters behavioural sensitization to 

cocaine and associated specific molecular markers. 

6.3.2.1 GABAB receptor positive modulation alters the acquisition of cocaine 

sensitization without affecting its expression. 

Chronic cocaine induces locomotor sensitization, which results in an enduring 

enhancement of behavioural responses during repeated drug administration. In behavioural 

sensitization studies at least two different phases are recognized, acquisition and expression 

(for a review, (Kalivas et al., 1993)). Briefly, acquisition is the phase in which behavioural 

and physiological changes develop due to repeated, intermittent exposure to 

psychostimulants. The expression phase is the resulting long-term behavioural changes that 

are the result of underlying neuroadaptations. 
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Fig.6.3. The GABAB receptor positive modulator GS39783 attenuates the 
acquisition of cocaine sensitization. 
Mice (n = 12) were habituated to the locomotor activity chambers during three daily sessions 
(days 1-3) of 30 minutes after receiving intraperitoneal saline injection. GS39783 (30 mg/kg 
p.o.) or vehicle were administrated 30 minutes before cocaine injection (20 mg/kg i.p.) on 7 
consecutives days (days 4-10). Locomotor activity was recorded immediately after cocaine 
injection for 30 minutes. Values are means (n = 10 per group)  ± S.E.M. of the total distance 
traveled during the total 30 minutes of daily session. Two-way repeated measures ANOVA 
revealed a significant effects of GS39783 (F1,68 = 8.632; p = 0.005), of cocaine (F1,68 = 
378.082; p < 0.001) and a significant interaction GS39783 x cocaine (F1,68 = 4.446; p = 
0.039). Statistical analysis demonstrated an effect of time (F6,408 = 23.966; p < 0.001) and 
interaction cocaine x time (F6,408 = 19.626; p < 0.001). Groups that differed significantly from 
cocaine treated animals are indicated (**, p < 0.01;  ***, p < 0.001).

In order to assess the effect of GS39783 on the acquisition of behavioural sensitization 

to cocaine, we measured locomotor activity of mice immediately after daily cocaine injection 

for 30 min during the acquisition phase (Fig.6.3). Statistical analysis (see legend) suggested 

that behavioural sensitization to cocaine occurred. Furthermore, as in the experiments shown 

in Fig. 1D, GS39783 attenuated the hyperlocomotion induced by a single administration of 

cocaine (Fig.6.3, day 4; p < 0.01). In addition, post hoc analysis revealed that mice treated 

daily with cocaine and GS39783 exhibited less hyperactivity than mice treated with cocaine 

alone (days 7 to 10; Fig.6.3). These data suggested that GS39783 attenuated the acquisition of 



GABAB RECEPTORS AND ADDICTION 

200

cocaine sensitization. Repeated treatments did not affect locomotor activity compared with 

the vehicle treated group, confirming the absence of sedative properties of GS39783.
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Fig.6.4. GS39783 does not attenuate the expression of cocaine sensitization. 
The effects of different GS39783 regimen (30 mg/kg p.o.) on hyperactivity induced by challenging dose of cocaine (10 mg/kg i.p., day 26) injected 
after 14 days of drug-free period are shown. Treatment during the acquisition phase (days 4-10) was as decribed in Fig. 3. Three-way ANOVA 
revealed significant effects of repeated cocaine treatment (F1,63 = 113.408; p < 0.001). There was an effect of GS39783 administration both during 
the acquisition period (F1,63 = 4.708; p = 0.034) and prior to the challenge (F1,63 = 6.795; p = 0.005), and an interaction between repeated cocaine 
treatment and GS39783 administrated during the acquisition phase (F1,63 = 4.022; p = 0.049).Bar graphs show means  ± S.E.M. of the total distance 
traveled during the 30 minutes of challenge session. ** and ***, groups that differed significantly from cocaine sensitized animals (p < 0.05 and p < 
0.01, respectively). 
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To investigate the effect of GS39783 on the expression of cocaine sensitization, we 

designed a challenge trial, 14 days after the last cocaine injection (Kalivas and Stewart, 1991). 

During this challenge, all mice received 10 mg/kg of cocaine. As expected, mice treated 

repeatedly with cocaine exhibited an enhancement of total distance traveled compared to mice 

treated only with the challenging dose of cocaine (Fig.6.4, groups 3 versus 1; p < 0.001). 

These data confirmed the presence of behavioural cocaine sensitization. Cocaine sensitized 

mice pretreated with GS39783 before the cocaine challenge did not differ significantly in their 

locomotor response compared with mice receiving only the challenging dose of cocaine (Fig. 

6.4, groups 4 versus 3) indicating that GS39783 does not affect the expression of 

sensitization.  Mice treated concomitantly with GS39783 and cocaine during the acquisition 

phase of exhibited significantly less locomotor activity compared to mice treated only with 

cocaine (Fig.6.4, groups 7 versus 3; p < 0.05), confirming the data shown in Fig.6.3. Dual 

administration of GS39783 during the acquisition and prior to the challenge reduced 

locomotor activity (Fig.6.4, groups 8 versus 3). Altogether, these data suggest that GS39783 

attenuated the acquisition of behavioural sensitization to cocaine without affecting its 

expression.

  6.3.2.2  GS39783 blunts chronic cocaine-associated FosB upregulation in 

dorsal striatum. 

In the mesolimbic circuit, chronic cocaine administration triggers the accumulation of 

FosB, which is thought to play a pivotal role in long-lasting effects of a variety of drugs of 

abuse including cocaine. Over-expression of FosB increases the sensitivity to cocaine and 

the motivational aspects of reward (Kelz et al., 1999; Colby et al., 2003). We studied FosB

expression after 7-days of daily treatment with saline/ cocaine or GS39783/ cocaine (Fig.6.5). 

The animals were sacrificed 24 hours after the last administration. A separate group of 

animals from those used in behavioural studies were used. FosB expression was measured 

using semi-quantitative Western blot analysis employing selective antibodies (Zhang et al., 
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2002; Muller and Unterwald, 2005). Cocaine stimulated a robust increase in FosB

expression in dorsal striatum (Fig. 6.5B; p < 0.001 versus saline) that was partially blocked by 

GS39783 (p < 0.05). In NAc, FosB levels were also upregulated by chronic cocaine (Fig.6. 

5A; p < 0.001) however, in this brain region GS39783 failed to modulate FosB induction by 

cocaine (p = 0.92). Basal levels of FosB expression were not affected in either structure (p >

0.1). During protracted withdrawal FosB levels decrease to basal levels, i.e. 10-12 days after 

cessation of chronic cocaine treatment (Hope et al., 1994). In line with these observations we 

did not detect FosB 14 days after cessation of cocaine repeated administration (Fig.6.5C). 

Chronic treatment with GS39783 before withdrawal had no effect on FosB levels. In 

summary, our data therefore suggest that the mode of action of GS39783 has a modest impact 

on cocaine-modulated FosB expression in the dorsal striatum but not in NAc.
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Fig.6.5. GS39783 has a weak inhibitory effect on FosB induction by chronic 

cocaine.

Mice (n = 5-10 animals/experimental group) were treated daily with cocaine, (20 mg/kg i.p.), 
GS39783 (30 mg/kg p.o.), saline (-) and respective combinations as indicated on 7 
consecutive days. 24 hours after the last treatment the mice were sacrificed and NAc and 
dorsal striatum dissected and processed for immunoblot analysis. Averaged densitometry 
values (bottom panels) are shown. A, B, Cocaine induces FosB upregulation in NAc and 
dorsal striatum. GS39783 partially inhibits FosB induction in dorsal striatum (B) but not in 
NAc (A). C, Mice (9 animals/group) were administered saline/cocaine for 7 days, after which 
cocaine exposure was stopped for 14 days. Then the mice received a cocaine challenge (20 
mg/kg i.p.) 24 hours after which NAc samples were processed for immunoblotting. FosB
protein levels are high immediately after repeated cocaine treatment (24 hours of withdrawal) 
whereas expression levels decline to basal levels after 14 days of cessation of chronic cocaine. 
* and + represent differences to saline or cocaine groups, respectively; *, +, p < 0.05; ***, 
+++, p < 0.001.
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  6.3.2.3  GS39783 blocks chronic cocaine-induced upregulation and activation 

of DARPP32 and CREB. 

Previous studies have shown that chronic cocaine induces a strong activation of 

DARPP-32 and CREB through increased DA signaling (Kano et al., 1995). We therefore 

examined whether such changes on DARPP-32 and CREB are modulated by GS39783 

(Fig.6.6, Fig.6.7). An experimental setup identical to the FosB studies as described above 

was used. In the dorsal striatum a trend towards a decrease of DARPP-32 expression by 

chronic cocaine as well as GS39783 treatments was observed (F3,50 = 2.44; p = 0.07; Fig.6.6). 

In NAc however, chronic cocaine stimulated DARPP-32 expression. In agreement with 

previous studies (Lin et al., 2002; Hu et al., 2005) chronic cocaine administration increased 

DARPP-32 expression in NAc (p < 0.001), but not in dorsal striatum. DARPP-32 

upregulation was not observed when GS39783 was applied 30 minutes prior to each daily 

cocaine administration (p < 0.001). GS39783 did not affect basal DARPP-32 levels (p > 0.1; 

Fig.6.6B).

Fig.6.6. GS39783 inhibits DARPP-32 upregulation by chronic cocaine.  
Dorsal striatum and NAc samples were prepared 24 hours after cessation of repeated cocaine 
treatment, as described in Fig. 4. Treatments with cocaine (20 mg/kg i.p.), GS39783 (30 
mg/kg p.o.), saline (-) and respective combinations are indicated. Representative immunoblots 
(top panels) and averaged densitometry values (bottom panels, n = 5-10) are shown. A, 
GS39783 does not affect DARPP-32 expression in dorsal striatum. B, DARPP-32 
upregulation in NAc by repeated cocaine is inhibited by GS39783. * and + indicate 
differences to saline or cocaine groups, respectively. ***, +++, p < 0.001. 
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CREB is activated by phosphorylation and this active form is shuttled to the nucleus 

where it drives expression of its target genes (Shaywitz and Greenberg, 1999). In addition to 

total CREB we therefore investigated the levels of phosphorylated CREB (pCREB), and 

determined the pCREB/CREB ratios. In dorsal striatum, cocaine and GS39783 had a minor 

effect and the ratio of pCREB/CREB remained unmodified (Fig.6.7A; F3,81 = 1.75; p = 0.16. 

In the NAc chronic cocaine increased CREB activation as evidenced from the pCREB/CREB 

ratio, confirming previous studies (Fig.6.7B; p < 0.01) (Terwilliger et al., 1991; Kano et al., 

1995). Calculation of the pCREB/CREB ratios demonstrated that GS39783 effectively 

inhibited chronic cocaine-induced CREB stimulation. 

Fig.6.7. GS39783 inhibits CREB activation by chronic cocaine.  
Mice were treated for 7 days with daily combinations of cocaine (20 mg/kg i.p.), GS39783 
(30 mg/kg p.o.), saline (-) and respective combinations as indicated. dorsal striatum and NAc 
samples were dissected 24 hours after the end of treatment. P-CREB/CREB ratios were 
calculated from immunoblots (n = 5-10);  representative blots are shown (top panels). 
GS39783 does not modify CREB expression in dorsal striatum (B) but inhibits cocaine-
induced CREB activation in NAc (A).* and + mark differences to saline or cocaine groups, 
respectively; **, ++, p < 0.01. 

6.4  Effects of GABAB receptors positive modulation in a 
model of nicotine reinforcement. 
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 6.4.1  GABAB receptor activation blocks the establishment  of nicotine-

induced place preference but not its expression. 

  6.4.1.1  Intrinsic reinforcing properties of GS39783 

On average, control animals (given saline before both drugs-paired sessions and 

vehicle-paired sessions) did not significantly exhibit preference for either floor texture, 

demonstrating that there was no unconditioned environmental preference. One-way ANOVA 

revealed a significant effect of GS39783 on the time spent in paired quadrant [F( 3,47) = 

4.771, P = 0.006]. Subsequently, post-hoc analysis indicates a significant reduction of the 

time spent in modulator-paired quadrants in animals treated with 100 mg/kg of GS39783, 

when compared to control group ( p<0.001).In contrast, at 10 mg/kg and 30 mg/kg, GS39783 

did not affect the time spent in drug-paired quadrants (Fig.6.8).Together, these results suggest 

that although GS39783 supports conditioned place aversion at 100mg/kg , both lower doses 

tested are hedonically neutral. 
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Fig.6.8.  Intrinsic reinforcing properties of GS39783 in the place conditioning 
paradigm.
At 100 mg/kg, GS39783 elicits a significant place aversion. Each bar represents the mean (n = 
12 per group)  ± S.E.M. of the time spent in drugs associated quadrants. *, **, groups that 
differed significantly from vehicle treated animals (p < 0.05 and p < 0.01, respectively). 
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6.4.1.2  Effects of GS39783 on the establishment of nicotine-induced place 

preference. 

In order to test the effect of GABAB receptor positive modulation on the establishment 

of nicotine place conditioning, GS39783 was administered 30 min prior to the nicotine 

injection during the acquisition phase. Regarding the effect of GS39783 on the establishment 

of nicotine-induced place preference, one-way ANOVA revealed an overall effect of 

treatment [F( 3,40) =3.524, P = 0.023] and subsequent post-hoc test revealed a significant 

effect of nicotine on time spent in drug-paired quadrants (Fig.6.9). Indeed, rats given nicotine 

at the 0.06 mg/kg, during the conditioning phase spent significantly more time on the paired 

nicotine-paired quadrants, compared to control animals (p =0.044). This result suggested that 

0.06 mg/kg of nicotine supports conditioned place preference as previously reported (Forget 

et al., 2005). Post-hoc analysis revealed that GS39783 at 30 mg/kg and 100 mg/kg , when it 

was given 30 min prior each drug-paired session, decreased significantly the amount of time 

the animals spent in nicotine-paired quadrants compared  to animals treated only with nicotine 

(30 mg/kg, p =0.005 and 100 mg/kg, p=0.013). Consequently, these data show that GABAB

receptor positive modulation during the conditioning phase antagonizes the establishment of 

nicotine-induced place preference 
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Fig.6.9. Effects of GS39783 on the acquisition of the nicotine-induced place 
preference.
Nicotine, at 0.06 mg/kg s.c, elicits an significant place preference (black bar) that could be 
blocked by administration of GS39783, at both 30 and 100 mg/kg, during the conditioning 
phase(Grey Bars). Each bar represents the mean (n = 11 per group)  ± S.E.M. of the time 
spent in drugs associated quadrants. * and + represent differences to saline or nicotine groups, 
respectively; **, p < 0.01; +, p < 0.05 and ++, p < 0.01. 

6.4.1.3  Effects of GS39783 on the expression of nicotine-induced place 

preference. 

The effects of GS39783 on the expression of nicotine-induced place preference are 

shown in Fig.6.10. The one-way ANOVA revealed a overall effect of treatments on the time 

spent in drugs associated quadrants [F( 3,40) =3.352, P = 0.028]. As shown in Fig.6.10., 

nicotine supported conditioned place preference (p = 0.03 , compared to control group). Post-

hoc analysis however, revealed that GS39783 at 30 mg/kg and 100mg/kg , when given 45 min 

prior to the testing session, failed to decrease significantly the amount of time spent in 

nicotine-paired quadrant compared to animals treated only with nicotine (p=0.558 and 

p=0.167, respectively). However, the time spent on the nicotine-paired texture by rats given 

GS39783 (100mg/kg) did not differ from the control level (p =0.408). Consequently, although 

GS39783 seems to affect the acquisition of nicotine-induced place preference, it appears to be 

without effect on its expression. 
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Fig.6.10. Effects of GS39783 on the expression of nicotine-induced place 
preference.
Nicotine, at 0.06 mg/kg s.c, induces an significant place preference (black bar) but a single 
administration of GS39783 (Grey bars) prior test phase failed to block the nicotine-induced 
conditioned place preference. Each bar represents the mean (n = 11 per group)  ± S.E.M. of 
the time spent in drugs associated quadrants. *, **, groups that differed significantly from 
vehicle treated animals (p < 0.05 and p < 0.01, respectively). 

6.4.2 Effects of GABAB positive modulator on selective molecular marker 

associated with nicotine administration. 
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Fig.6.11. GS39783 inhibits FosB induction in the NAc by chronic nicotine but 
not acute. 
Effects of chronic GS39783 administration on FosB accumulation (A, B). Rats (n = 5-8 
animals/experimental group) were treated daily with saline (white bars) or nicotine, (0.06mg/ 
kg i.p; black bars) during the 5 days of pre-exposure and the acquisition phase of place 
preference. During conditioning, GS39783 was injected (at indicated concentrations, p.o.) 30 
minutes prior to nicotine/saline administration. Animals were sacrificed 48 hours after final 
test (no nicotine, no GS39783). NAc and Dorsal striatum dissected and processed for 
immunoblot analysis. Representative  immunoblots (top panels) and averaged densitometry 
values (bottom panels) are shown. Nicotine induces FosB upregulation in NAc (A) but not 
in Dorsal Striatum (B). Further, GS39783 completely inhibits FosB induction in NAc at 
both doses used (A). C and D, lack of effect of a single administration of GS39783 on FosB
accumulation. Rats (n=10 animals/group) underwent nicotine pre-conditioning and 
conditioning without exposure to GS39783. The modulator was administered 30 min prior to 
final test at the doses indicated. FosB protein levels are upregulated by nicotine pre-
treatment in NAc (C) and not in dorsal striatum (D). Moreover acute GS39783 treatment fails 
to inhibit this upregulation in NAc. * and + represent differences to saline or nicotine groups, 
respectively; **,  p < 0.05; ***, +++ p < 0.001.

Given that FosB was the most robust change in cocaine experiment, we studied the 

influence of both repeated and single administration of GS39783 on FosB expression in 

NAc and dorsal striatum by semi-quantitative Western blot analysis immediately after 
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completion of the final test. Chronic nicotine stimulated a robust increase in FosB

expression in NAc (Fig.6.11A; p < 0.001 versus saline). This upregulation was completely 

blocked by GS39783 (p < 0.001 versus nicotine) at both doses used, when daily injected 

during the acquisition phase. It should also be noted that both doses of GS39783 did not have 

any intrinsic effect on basal FosB levels. In NAc, a single administration of GS39783 before 

the final CPP testing failed to inhibit FosB induction at both doses (Fig.6.11C). One 

potential concern of the experimental procedure we used is that the FosB signal observed 

might be a direct consequence of the last CPP test, as opposed to a slow build-up of the 

protein during chronic nicotine exposure. This hypothesis can however be ruled out since 1) 

only chronic treatment with GS39783 resulted in inhibition of FosB induction and 2) in 

experiment 2, the last GS39783 administration was performed 48 hours before CPP testing. In 

dorsal striatum, FosB levels were not altered by chronic nicotine, chronic or acute GS39783 

(Fig.6.11B, D; p > 0.05 versus saline). Finally, fig.6.12 shows a plot of the data obtained from 

individually paired behavioural and biochemical data. A significant positive correlation 

between CPP scores and levels of FosB expression can be observed (p < 0.0001, R2=0.38).
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Fig.6.12. FosB induction is correlated to nicotine reinforcement. 
 All data available for animals in both behavioural and biochemical analyses are included. 
Accumbal FosB relative abundance is plotted against the subject’s CPP score. All 
experimental groups were mixed and no animals for which both variables were available were 
discarded. The red line represents the best fit with a least-square methods. Dashed lines 
indicate chance level (x-axis) and FosB basal level (y-axis). 

6.4  Discussion. 

Although molecular adaptations to repeated administration of drugs of abuse have 

been hypothesized to play a major role in the manifestation of dependence (Nestler and 

Aghajanian, 1997) very few studies to date have investigated the ability of potential 

therapeutic agents to modulate such responses. In the present chapter, we demonstrated that 

GABAB receptor positive modulator attenuates both behavioural effects, such as 

psychostimulant effects, sensitization or place preference, elicited by drugs of abuse and is 

also effective in preventing the induction of several molecular markers triggered by single or 

repeated administration of these substances. 
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Effects of GABAB receptor activation on cocaine-related behaviour and 

molecular adaptations. Both the GABAB receptor agonist baclofen and the positive 

modulator GS39783 attenuated the hyperlocomotion induced by a single administration of 

cocaine. Further, we have shown that GS39783 affects the acquisition but not the expression 

of cocaine sensitization. These data are in line with studies demonstrating that intra-prefrontal 

injection of the GABAB agonist baclofen alters the induction of cocaine sensitization without 

affecting its expression (Steketee and Beyer, 2005). On the other hand, intra-VTA baclofen 

administration attenuated both the induction and the expression of behavioural sensitization to 

opiates (Leite-Morris et al., 2004) and a single systemic administration of baclofen attenuated 

the expression of sensitization to locomotor stimulant effect of amphetamine (Bartoletti et al., 

2005).

GS39783 induced similar effects as a non-sedative dose of baclofen (3mg/kg) in 

attenuating acute cocaine-induced hyperlocomotion (Fig.6.1), which is relevant as clinical 

studies suggest efficacy of baclofen in cocaine dependence (Shoptaw et al., 2003). The 

observations that GS39783, in contrast to baclofen, does not alter baseline locomotor activity 

is in agreement with the lack of effects in other behavioural tests in both rats and mice which 

are sensitive to baclofen administration; these include the rotarod motor co-ordination task, 

cognitive tasks and hypothermia measurements (Cryan et al., 2004; Jacobson and Cryan, 

2005). Of note, the effects of GABAB receptor ligands on cocaine-induced hyperactivity 

appear not as robust as that reported with D1 selective DA receptor antagonists such as 

SCH23390, which almost completely block the locomotor stimulant effects of cocaine 

(O'Neill and Shaw, 1999; Adams et al., 2001). However, a thorough evaluation of GABAB

receptor positive modulators in comparison to other drugs attenuating locomotor stimulant 

effects of cocaine requires side-by-side experiments and a careful investigation of their side 

effect profile which may influence locomotor-based behavioural readouts. 
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Locomotor activity is critically dependent on activation of dopaminergic 

neurotransmission (Kelly et al., 1975). A pivotal role of VTA DA neurons in mediating the 

hyperlocomotor effects of DA has been described (Kalivas and Stewart, 1991). VTA DA 

neurons project to numerous limbic loci including the NAc and the prefrontal cortex. 

Activation of GABAB receptors on the cell bodies of VTA DA neurons reduce their 

excitability which in turn leads to a reduction in DA release in the NAc (Olpe et al., 1977; 

Lacey et al., 1988; Westerink et al., 1996; Wirtshafter and Sheppard, 2001). In addition, the 

activity of VTA DA neurons is modulated by excitatory (glutamatergic) and inhibitory 

(GABAergic) afferents. Activation of GABAB receptors on glutamatergic afferents would 

reduce excitatory inputs into the VTA (Johnson and North, 1992; Wu and Saggau, 1997; 

Hotsenpiller and Wolf, 2003). In support of a key role of GABAB receptors in the VTA in 

blocking cocaine-induced hyperlocomotion, baclofen pretreatment dose dependently reduced 

nicotine-, morphine, and cocaine-evoked DA release in the NAc (Fadda et al., 2003). 

Furthermore, baclofen injection into the VTA blocked an increase in firing of NAc neurons 

induced by reward-predictive cues (Yun et al., 2004). Further, Brebner et al. (2005) 

demonstrated that pretreatment with baclofen dose-dependently reduces d-amphetamine self-

administration and blunts associated elevation of DA release in NAc(Brebner et al., 2005). 

Taken together these data provide evidence that GABAB receptor activation reduces VTA DA 

neuron excitability and thereby functionally antagonizes effects of cocaine. However, 

contributions of other components of the mesocorticolimbic circuitry such as the ventral 

pallidum or the prefrontal cortex are also possible (Gong et al., 1998; Kalivas and Volkow, 

2005). Interestingly, Liu et al. (2005) recently reported that cocaine exposure in vivo 

facilitates LTP formation in midbrain DA neurons and that drug induced synaptic plasticity 

could be prevented by enhanced GABAergic inhibition (Liu et al., 2005). The consequence of 

GABAB receptor activation on the formation of drug-associated memories however, has not 

yet been investigated.  
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GABAB receptor positive modulators such as GS39783 are devoid of intrinsic 

agonistic activity  (Urwyler et al., 2003; Cryan et al., 2004). Their action therefore is 

dependent on the presence of GABA (i.e. synaptically released GABA). Several lines of 

evidence suggest that VTA DA neurons are under tonic inhibitory control by GABAB

receptors. Intra-VTA application of the selective GABAB receptor antagonist CGP55845A 

increased extracellular DA levels (Giorgetti et al., 2002). Furthermore, systemic application of 

the GABAB receptor antagonist CGP35348 increased firing of VTA DA neurons (Erhardt et 

al., 2002) whereas the GABAB receptor positive modulator CGP7930 decreased the firing 

frequency of VTA DA neurons in midbrain slice preparations (Chen et al., 2005). Taken 

together with the data for baclofen as described above these studies suggest that GABAB

receptor positive modulators such as GS39783 may attenuate effects of cocaine by decreasing 

VTA DA neuron excitability. 

We have demonstrated that the modulation of several molecular markers by chronic 

cocaine exposure is attenuated by GS39783. In the NAc GS39783 blocked the induction of 

both CREB (as evidenced by the ratio of pCREB/CREB) and DARPP-32, without affecting 

basal levels (Fig.6.6, Fig.6.7). Cocaine treatment increases synaptic DA concentrations which 

in turn causes a dys-regulation of DA receptor signaling. In the NAc this leads to an 

upregulation of the adenylyl cyclase signalling pathway, via increased D1-like DA receptor 

activity (Anderson and Pierce, 2005). Increased cAMP pathway activation in turn augments 

the expression and activation by phosphorylation of CREB and DARPP-32 (Terwilliger et al., 

1991; Bibb et al., 1999). Therefore, most likely GS39783 attenuated CREB and DARPP-32 

induction through GABAB receptor mediated reduction of DA neuron excitability, thus 

preventing selective cocaine-induced changes in DA receptor signaling. Furthermore, GABAB

receptors negatively couple to adenylyl cyclase (Bettler et al., 2004). GS39783 mediated 

inhibition of cAMP formation would be expected to decrease the effect of DA receptor 
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signalling induced upregulation of the adenylyl cyclase pathway, in addition to reducing DA 

neuron excitability. 

Fos expression can be stimulated by a variety of regulators including CREB. After 

acute treatment Fos is induced in NAc and striatum by several drugs of abuse, including 

cocaine (Graybiel et al., 1990; Young et al., 1991; Nye and Nestler, 1996; Zhang et al., 2002; 

Zhang et al., 2004). Leite-Morris et al. (2002) provided evidence that baclofen treatment in 

the VTA blocks Fos immunoreactivity in the NAc, by inhibiting the activation of 

dopaminergic neurons. We have shown that systemic applications of either baclofen or 

GS39783 effectively blocked cocaine-induced Fos induction. These data are in line with the 

observed attenuation of behavioural effects of cocaine and support the hypothesis that 

GABAB receptor activation inhibits the activation of dopaminergic neurons after cocaine 

treatment. 

FosB is accumulated in different brain regions in response to various chronic stimuli 

including cocaine. We observed an increase of FosB levels subsequent to a chronic cocaine 

treatment regimen in NAc, and to a lesser extent in dorsal striatum (Fig.6.5), in agreement 

with previous studies (Hope et al., 1994; Nye et al., 1995; McClung et al., 2004). 

Interestingly, GS39783 did not significantly affect FosB upregulation in NAc but attenuated 

the induction in the dorsal striatum. FosB induction is D1-like DA receptor dependent but 

very little information is available about the downstream signaling cascades/transcription

factors responsible for its induction (Nye et al., 1995). It is conceivable that FosB expression 

is regulated via several tissue specific signaling pathways, which could explain the differential 

effects of GS39783 on FosB induction in NAc versus dorsal striatum.  

Effects of GABAB receptor positive modulator on place preference induced by 

nicotine and its associated molecular markers. Although it appears that GS39783, at 100 

mg/kg, elicited a place aversion in the present study which can be interpreted as an aversive or 
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anhedonic property of the compound at this relatively high dose (Fig.6.8). It should be noted 

that the same dose of GS39783 has been shown to have no effect on baseline intracranial self 

stimulation (ICSS) thresholds (Slattery et al., 2005b) and spontaneous locomotor activity 

(Cryan et al., 2004). Nevertheless, the place conditioning protocol employed here requires 

four administrations of GS39783 versus one for the ICSS and locomotor activity. Although 

these dissimilarities in the regimen of GS39783 could explain the differences between the 

studies, the processes involved in the aversive effect of GABAB positive modulator in the 

present paradigm remain elusive. Furthermore, we cannot rule out a somatic or peripheral 

mediation of this aversive behaviour as the solubility of GS39783 is poor and the texture of 

the gavage treatment may have some taste component that induces aversion. ICSS directly 

targets the reward pathway and thus bypasses sensory inputs such as taste (Wise et al., 1992). 

Further, studies using conditioned taste aversion protocols may help in the elucidation of such 

intrinsic behavioural effects of GS39783. In addition, future studies using GABAB receptor 

antagonist might clarify if this effect is totally GABAB receptor dependent. Regardless of 

theses considerations, we clearly demonstrated that GS39783, when administrated during 

conditioning phase, blocked conditioned place preference elicited by nicotine at both doses 

used (Fig.6.9) suggesting that GABAB positive modulation blocked the acquisition of 

nicotine-induced place preference, even at doses that were without intrinsic activity. Thus, we 

can deduce that administration of GS39783 prior each drug pairing session attenuates 

reinforcing properties of nicotine during the conditioning phase. As discussed in the previous 

section, we can assume that GS39783 might attenuate the increase of dopamine release, via its 

action dopaminergic neurons of the VTA, resulting in a reduction of the salience of rewarding 

stimulus. Thus, this reduction might limit the establishment of the association between 

nicotine and paired cues. These data are in line with the ability of GS39783 to decrease 

rewarding properties of cocaine in both self administration and ICSS paradigms (Smith et al., 

2004; Slattery et al., 2005b). Correspondingly, it has been shown also that GABAB receptor 
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activation, via agonist administration, decreases also nicotine self-administration (Corrigall et 

al., 2000; Paterson et al., 2004, 2005). Interestingly, we also observed that a single 

administration of GS39783 prior the test failed to significantly affect the expression of 

nicotine-induced place preference. These present results are consistent with previous data 

showing that GABAB receptor positive modulator blocked the establishment but not the 

expression of behavioural sensitization to cocaine (see Fig.6.4.). This absence of effects of 

GS39783 on the expression of CPP might be attributed to the inability of GABAB receptor 

positive modulator to affect conditioned motivational properties of nicotine-paired cues. 

Nevertheless, it has been shown that CGP44532, a GABAB agonist has been shown to block 

cue-induced reinstatement of nicotine-seeking in rats (Paterson et al., 2005). Moreover, a 

number reported that baclofen affects the expression of place preference elicited by ethanol, 

methamphetamine or morphine (Li et al., 2001; Bechtholt and Cunningham, 2005). Thus, it is 

might be postulated that these response require agonistic activity and that enhancement of 

GABAB tone induced by GS39783 is not sufficient to affect the expression of place 

preference elicited by nicotine. Nevertheless, further studies are required in order confirm this 

hypothesis.

Moreover, as mentioned in the introduction, the major caveat of place conditioning 

paradigm consists in its large learning component. While the GABAB receptor agonist 

baclofen have been shown to induce memory impairment in several paradigm, such as passive 

avoidance or water-maze (Swartzwelder et al., 1987; Nakagawa and Takashima, 1997), there 

is no evidence for amnesic-like effects of GS39783. Indeed, GS39783 did not have any 

deleterious effects on cognitive performance in the passive avoidance task(Cryan et al., 2004). 

However, these results were obtained with only one injection of GS39783 before a single 

session of training whereas GS39783 was administrated before each conditioning session in 

the present study. Thus, it might be relevant to evaluate the effect of GS39783 in more 
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sensitive paradigm like water-maze, for spatial memory or delayed non-matching to position, 

for working memory, requiring administration of the drugs before each training session. 

Repeated nicotine self-administration have been also shown to induce a strong 

accumulation of FosB in the NAc, but not in dorsal striatum (Pich et al., 1997) Here, we 

confirm these results in our model of nicotine reinforcement (Fig.6.9). Indeed,  we observed 

that GS39783 was effective in inhibiting FosB accumulation in the nucleus accumbens 

when injected chronically during the acquisition phase of place preference. Nevertheless, we 

observed , in the previous section,  that GS39783 attenuated cocaine-induced induction of 

FosB in dorsal striatum, but not in nucleus accumbens. This discrepancy might be explained 

by the fact that cocaine has higher reinforcing efficacy than nicotine (Risner and Goldberg, 

1983). Moreover, Pich and collaborators demonstrated that cocaine elicited a greater 

accumulation of FosB in nucleus accumbens than nicotine, at doses known to maintain self-

administration (Pich et al., 1997).Conversely, a single administration of GS39783 before the 

final test failed to block nicotine-induced FosB accumulation. Taken together, these results 

suggested that administration of GABAB receptor positive modulator may limit the gradual 

accumulation of FosB occurring during the acquisition phase of conditioned place 

preference to nicotine. Furthermore, we took advantage of the fact that both behavioural and 

biochemical tests in this study were performed on the same group of animals to compare both 

data. We found a strong positive correlation between FosB expression and preference for 

nicotine. Genetic overexpression of FosB in striatal tissues enhances cocaine place 

preference at low doses (Kelz et al., 1999) while, mice carrying an inactivating mutation of 

FosB show reduced preference for cocaine (Hiroi et al., 1997). Our data therefore strengthen 

this existing body of literature suggesting strong associations between the accumulation of 

FosB and the manifestation of reinforcing properties of drugs of abuse.
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Conclusions. In the present chapter, we demonstrated that GABAB receptor positive 

modulator attenuated both molecular and behavioural changes induced by cocaine and 

nicotine, supporting a beneficial role of GABAB receptor modulation as a 

pharmacotherapeutic strategy for addictive disorders. Nevertheless, the observation that 

GS39783 attenuated the acquisition but not the expression of both behavioural sensitization 

and conditioned place preference elicited by cocaine and nicotine, may raise concerns on the 

potential clinically efficacy of GABAB positive modulators, as patients are already sensitized 

or conditioned at the time of treatment. However, in a recent study in rodents also baclofen 

failed to affect the expression of sensitization in a recent study in rodents (Steketee and Beyer, 

2005), despite having clinical efficacy (Addolorato et al., 2002b; Brebner et al., 2002). 

Further, our data demonstrate that several molecular adaptations after repeated cocaine and 

nicotine are attenuated by GS39783 are significant in this respect. It seems evident that 

additional facets to the addiction process need to be addressed in order to develop successful 

pharmacotherapeutic strategies. Therefore, interventions should not be limited to inhibiting 

the rewarding effects of a drug, but should also include strategies to enhance the saliency 

value of natural reinforcers, strengthen inhibitory control, decrease conditioned responses and 

improve withdrawal-induced deficits in mood and anxiety (Volkow and Li, 2004). The fact 

that GABAB receptor positive modulators reduce anxiety in preclinical paradigms (Chapter 3; 

Cryan et al., 2004) suggests that they may assist in the treatment of addiction beyond simply 

reducing the primary rewarding effects of the reinforcer. 
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CHAPTER 7: GENERAL DISCUSSION. 

The studies in the current thesis are focused on addressing a broad hypothesis that 

GABAB receptors play a role in the manifestation of psychiatric disorders. More specifically, 

we investigated the involvement of GABAB receptors in anxiety, depression and addictive 

disorders. The resurgence in interest in GABAB receptors biology can be dated to the cloning 

of GABAB(1) receptor subunit in 1997 (Kaupmann et al., 1997). Thus, we firstly evaluated the 

impact of targeted deletion of either GABAB receptor subunit on GABAB receptor function 

and confirmed the conventional view that functional GABAB receptors assemble from two 

subunit GABAB(1) and GABAB(2). Further, we demonstrated that these mice are useful tools 

for assessing GABAB receptor function in vivo. Secondly, we focused on the involvement of 

GABAB receptors in anxiety disorders, using both genetic and pharmacological approaches. 

In the third part of the present thesis, we assessed the effect of both genetic ablation and 

pharmacological blockade of GABAB receptor in animal models of antidepressant-activity. In 

an effort to gain a better understanding of processes underlying the antidepressant properties 

of GABAB receptor antagonist, we explored the interaction between GABAB receptor and 

serotoninergic system. Thus, we assessed the impact of GABAB receptors ligands on 

behavioural effects of SSRIs and the expression of 5-HT1A receptor mRNA in the 

hippocampus. Conversely, we also investigated the influence of blockade of serotonin 

transporter on GABAB function, using baclofen-induced hypothermia as an index of GABAB

receptor function. Finally, the last part of the present thesis addressed the issue of a role of 

GABAB receptors in addiction by evaluating the effect of GABAB receptor stimulation, via 

GABAB agonist or positive modulator, on both molecular changes and behaviours elicited by 

administration of drugs of abuse, such as cocaine or nicotine.  
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 In addition to these topics which have been individually discussed at the end of 

the individual chapter there are a number of other issues arising from the studies in this thesis 

that are worthy of further elaboration and which are detailed below. 

7.1 Heterodimerization: A prerequisite for GABAB receptor function? 

As mentioned in the introduction, molecular biological and biochemical approaches 

have suggested that, in contrast to the established dogma for the G protein coupled receptor 

superfamily, the GABAB receptor exists as a heterodimer rather than as a single subunit 

(Calver et al., 2002). In the heteromeric GABAB receptor, GABAB(1) subunit have been 

demonstrated to be responsible for binding of GABA, whereas GABAB(2) subunit is necessary 

for surface trafficking and the initiation of G-protein signalling (Bettler et al., 2004). 

Challenging this theory, several researchers hypothesized that functional GABAB receptors 

may exists in neurons that naturally lack GABAB(2) receptor subunits. Specifically, GABAB(1)

subunit exhibits a more widespread distribution throughout the neuroaxis compared with 

GABAB(2) subunit (Ng and Yung, 2001). Additionally, GABAB(1) have been shown to yield 

infrequent electrophysiological biochemical responses, when expressed alone in heterologous 

cells (Kaupmann et al., 1998a; Kaupmann et al., 1998b).  

Taking such research into account, we investigated the impact of targeted deletion of 

GABAB(1) and GABAB(2) subunit on GABAB receptor function. In chapter 3, we demonstrated 

that both GABAB(1) and GABAB(2) knockout animals exhibited a blunted hypothermic 

response to baclofen, suggesting that heteromeric GABAB(1,2) receptor is required for GABAB

function involved in thermoregulation, in agreement with the general view that 

heterodimerization is a prerequisite for GABAB function. Correspondingly, we also observed 

absence of impairment of motor coordination induced by baclofen in both knock-out lines. 

Similarly, we also demonstrated that genetic ablation of one of the two receptor subunit 

abolished totally the hypothermic response associated with GHB, response that have been 
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demonstrated to be mediated by GABAB receptor. Additionally, we also demonstrated that 

GABAB(1)
-/- and GABAB(2)

-/- mice exhibited similar behavioural profiles in anxiety and 

depression-related paradigm. More specifically, both lines showed both anxious phenotype 

and antidepressant-like behaviour in several paradigms (Chapter 4 and Chapter 5 

respectively). Altogether, these results agrees with the general view that most of functions 

mediated by GABAB receptor require the assembly of two GABAB receptor subunits and that 

potential GABAB(1) homodimer or monomer are not involved in the modulation of emotions, 

thermoregulation and motor coordination.  

Although our studies failed to demonstrated differences in the baseline (FST, TST, 

light-dark box) and GABAB receptor agonist-induced (baclofen-induced hypothermia) 

behavioural trait of both lines, electrophysiological and molecular studies have shown 

atypical electrophysiological GABAB  responses in hippocampal slices of GABAB(2)
-/- mice 

and a redistribution of GABAB(1)  receptor subunit in GABAB(2)
-/- neurons from distal 

neuronal sites to the soma and proximal dendrites respectively(Gassmann et al., 2004). These 

observations imply that neurons  naturally lack GABAB(2) receptor subunit have the potential 

to express functional GABAB receptors at membrane surface. While in the general view 

GABAB(2) receptor subunit appears to be essential for the correctly trafficking of GABAB(1)

receptor subunit to cell surface, several studies have pointed that GABAB(1) could also 

exported by another protein. For example, GABAA receptor gamma2S, when expressed with 

GABAB(1) receptor subunit have be shown to promote cell surface expression of the GABAB(1)

receptor subunit (Balasubramanian et al., 2004). Nevertheless, the GABAB(1)/gamma2S 

complex is not detectably functional when expressed alone, as assessed in both ERK 

(extracellular regulated kinase) activation assays and physiological analyses in oocytes. 

Additionally, coexpression of mGluR4 and GABAB(1)  receptor subunit have also been 

demonstrated to led assist plasma membrane expression of GABAB(1) receptor, which appears, 
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unfortunately, not functional (Sullivan et al., 2000). Consequently, we can predict that 

GABAB(1) receptor might be expressed at the membrane level, nevertheless, the effector 

mechanism underlying atypical current is still elusive. Altogether, we demonstrated that the 

majority of GABAB functions in CNS are mediated by GABAB(1,2) assemblies and, although 

electrophysiological studies suggest that GABAB(1) monomers could be functional on is own, 

their physiological relevance are still unclear and therefore difficult to assess their pertinence 

if any in the context of psychiatric disorders. 

7.2 GABAB  receptors: pharmacological target of GHB? 

Given both the therapeutic effects and emerging public health issues related to the use 

of GHB (Snead), it was particularly crucial to investigate the physiological processes involved 

in GHB mediated response. GHB have been shown to be effective in the treatment of sleep 

disorders and alcohol dependence (Agabio et al., 1998). In addition to these therapeutic 

properties, GHB is readily self-administrated and has been recognized as a drug with a strong 

abuse potential (Martellotta et al., 1998a; Nicholson and Balster, 2001). Nevertheless, the 

processes underlying these responses are a matter of debate. Some evidence suggests that 

GHB acts as a weak agonist at GABAB receptors (Mathivet et al., 1997; Lingenhoehl et al., 

1999), whereas other studies indicate that GHB binds to specific receptor (Maitre, 1997; 

Snead, 2000). In the present thesis, we took the advantage of recently generated mice lacking 

GABAB(1) and GABAB(2) receptor in order to assess the involvement of GABAB receptor in 

the well characterized GHB-elicited hypothermic responses. 

In chapter 3, we observed that targeted deletion of GABAB(1) receptor subunit totally 

abolished the hypothermic responses induced by oral administration of GHB. Interestingly, 

these observations combined with the lack of GHB-elicited sedation and the absence of GBL-

induced delta waves in GABAB(1)
-/- mice (Kaupmann et al., 2003), suggested that most of 

pharmacological effects of GHB might be GABAB receptor dependent. Nevertheless, in the 
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same study, Kaupmann and collaborators demonstrated specific binding sites in the brains of 

GABAB(1)
-/- mice for GHB and NCS-382, a GHB antagonist, confirming the previous notion 

that GABAB receptor do not significantly contribute to GHB-binding sites in the brain 

(Bernasconi et al., 1999). Given that the expression pattern in the brain of GABAB(1) and 

GABAB(2) receptor subunits do not fully overlap, it is also conceivable that the GABAB(2)

receptor subunit might contribute to the binding of GHB. Although the absence of 

hypothermic response induced by GHB observed in GABAB(2)
-/- mice cannot exclude this last 

theory, these results confirmed that GHB require a functional GABAB(1,2) receptor assembly 

in order to elicit its hypothermic responses. 

Thus, our data combined with data assessed in collaboration with the laboratory of  

Kaupmann and collaborators, provided physiological evidence for a contribution of GABAB

receptors in the majority of response induced by GHB and that GHB might be a weak agonist 

of GABAB receptor. Although GHB and GABAB receptor agonists share a large number of 

their in vivo effects, including sedation, hypothermia and also beneficial effects in certain 

conditions of drug dependence (Gallimberti et al., 1994; Addolorato et al., 2002a), GHB itself 

may cause physical dependence whereas no abuse potential has been reported for baclofen 

after more than 30 years of clinical use. One possible explanation for this is provided by the 

recent elegant study of Cruz et al., (2004) suggesting that GHB, acts like low-affinity GABAB

ligands and inhibits mesolimbic dopamine system whereas baclofen and other high-affinity 

agonists, will inhibit the system ((Cruz et al., 2004), Fig.7.1). Nevertheless, we cannot 

exclude that some specific GHB receptors might participate also to these differential effects. 

Indeed, the recent development of GHB analogs sharing some, but not all, effect of GHB and 

GABAB receptors agonists offer a new opportunity to dissect GHB receptor mediated effect 

from those mediated by GABAB receptors (Carter et al., 2004). Given that ataxic effects of 

these GHB analogs are not counteracted by GABAB receptor antagonist, it might be 
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interesting to evaluate these compounds in mice lacking GABAB receptor. Moreover, these 

novel GHB analogs represent also exciting new tools for studying the involvement of GHB 

receptors in addictive or anti-addictive properties of GHB. 

Fig.7.1. Bi-directional effects of GABAB receptor agonists on the mesolimbic 
dopamine system.  
At low concentration, baclofen stimulate preferentially GABAB receptor included in 
GABAergic interneuron leading to disinhibition of dopaminergic. Similarly, GHB, as a weak 
GABAB receptor agonist induced the same effect than low concentration of baclofen. C) 
GABAB agonist at high dose stimulates GABAB receptors in dopaminergic neurons of VTA,  
inhibited mesolimbic system. (based on Cruz et al., 2004) 
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7.3 Pharmacological vs genetic approaches to investigate role of GABAB

receptors  in anxiety. 

The results of the section 4.3 and 4.4 provided evidence that targeted deletion of either 

subunit of GABAB receptor induced exaggerated anxious phenotype compared to wild-type 

animals. This was clearly illustrated in the light-dark box for both transgenic lines, and in 

staircase test and elevated-zero maze for GABAB(1)
-/- mice. Supporting earlier findings 

suggesting that GABAB receptors stimulation decreases anxiety in several paradigm (Cryan 

and Kaupmann, 2005), the present data confirm the key role of GABAB receptor in the 

neurophysiology of anxiety. However, we also observed that GABAB receptor antagonist 

CGP56433A failed to induce anxiogenic effects in light-dark box paradigm, acutely and 

chronically. The observed mismatch between the phenotype of knockout animals and the 

effects of antagonist in normal animals could be explained in three ways.

First, one can assume that GABAB(1) or GABAB(2) disruption activated 

compensatory changes during development, and these may have affected 

behaviour in addition to gene disruption. For example, the loss of sensitivity to 

classical benzodiazepine observed in GABAB(1)
-/- mice suggested that lack of 

GABAB receptor during the course of early development may result in 

alterations in GABAA system.  

Alternatively, we can presume that spontaneous seizures observed in both 

GABAB(1)
-/- and GABAB(2)

-/- mice may contribute to their hyper-anxious 

phenotype. Indeed, both preclinical and clinical studies suggested that repeated 

episodes of seizures can result in anxiety (Sayin et al., 2004; Beyenburg et al., 

2005).
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Thirdly, we also observed that both pharmacological blockade and genetic 

ablation of GABAB receptor result in the same antidepressant effects in mouse 

forced swim test (Chapter 5), suggesting that the anxiogenic and 

antidepressant-like effect might recruit different GABAB receptors population 

in brain. Indeed, it is conceivable that CGP56433A might bind preferentially at 

post-or pre-synaptic level resulting in antidepressant-like effect but not in 

anxiogenic effects.

In order to elucidate the contribution of both genetic compensation and seizures, it 

would be interesting in future experiments to use conditional knock-down approaches, using 

cre-lox or siRNA approaches, in the same anxiety paradigm (Haller et al., 2004; Thakker et 

al., 2005). Moreover, the development of GABAB receptor antagonists able to bind 

specifically to pre-or post synaptic receptor would provide a powerful tools in order to 

investigate the impact of GABAB receptor blockade on anxiety and depression.  

Regardless of the interpretation problems surrounding the data observed using 

GABAB knockout animals and GABAB receptor antagonists, we also demonstrated that 

GABAB activation, via administration of recently developed GABAB receptor positive 

modulator GS39783, elicits a clear anxiolytic effect in several animal models of anxiety, 

including ethological tests such as the novelty-induced hypophagia, the elevated plus maze 

and the light–dark box. Moreover the anxiolytic effects of chronic treatment with GS39783 

persist over 21 days, suggesting that there is no obvious tolerance. Moreover, earlier studies 

indicated that GS39783 is devoid of side-effects associated to both GABAB full agonist and 

benzodiazepines (Cryan et al., 2004). Altogether, these findings implicate that GABAB

receptor positive modulation might represent a novel approach in the treatment of anxiety 

disorder and support the putative role of GABAB receptors in anxiety disorders. Nevertheless, 

the behavioural characterization of other GABAB receptor positive modulator, including 
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CGP7930 and CGP13501 (Urwyler et al., 2001; Kerr et al., 2002; Urwyler et al., 2003) is 

required , before it can be definitively stated that they might represent a novel class of 

anxiolytic with a superior side-effect profile than benzodiazepines.

While we demonstrated that genetic inactivation or pharmacological activation of 

GABAB receptor modulates anxiety in opposite manners, the mechanisms underlying the 

influence of GABAB receptors on anxiety behaviour are not well understood at present. 

Firstly, GABAB receptor has been shown to modulate several monoaminergic systems 

involved in anxious behaviours. As suggested in Chapter 5, GABAB receptors strongly 

interact with serotoninergic system in raphé nuclei. Indeed, it has been shown that GABAB

receptors are densely localized on serotoninergic neurons of the dorsal raphé and their 

activation results in the inhibition of firing of these neurons (Innis et al., 1988; Serrats et al., 

2003). In the context of anxiety, Andrews and File reported that baclofen reversed both 

anxiogenic response elicited by benzodiazepine withdrawal and its associated increased of 

hippocampal 5-HT release (Andrews and File, 1993). In line with these studies, we 

demonstrated in the section 5.5.3 that both GABAB receptor positive modulator and GABAB

receptor agonist counteracted the downregulation of hippocampal 5-HT1A receptor mRNA-

induced by a chronic handling. Thus, it might be conceivable that GABAB receptor positive 

modulator could attenuate the elevation of 5-HT in hippocampus induced by stress via their 

inhibiting action on the firing of serotoninergic neurons in the raphé. However, it would be 

simplistic to assume that anxiolytic effect of GABAB agonists can be attributed to a direct 

suppression of serotoninergic transmission. Indeed, GABAB receptors have been also shown 

to modulate of noradrenalin that could also participate in their influence on anxious states 

(Olpe et al., 1988; Losada, 1991). Secondly, GABAB receptor are broadly distribute in several 

structure involved in the regulation of anxiety states, such as prefrontal cortex , hippocampus, 

dorsal periaqueductal grey matter and amygdala (Bischoff et al., 1999; Margeta-Mitrovic et 
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al., 1999). Thus, local injection of GABAB receptor agonist or positive modulator may 

provide more insight into the physiological processes and structure involved in the anxiolytic 

properties of GABAB receptor stimulation. For example, recent studies demonstrated a 

panicolytic-like effect of stimulation of GABAB receptors in the dorsal periaqueductal grey of 

rats (Bueno et al., 2005). 

7.4 GABAB receptor blockade a novel therapeutic strategy for 

antidepressant development ? 

One major purpose of the present thesis was to evaluate the therapeutic benefits of 

altering GABAB receptor function in animal models of antidepressant-like behaviour. As 

reported previously, several studies have demonstrated that GABAB receptor blockade was 

effective in several animal models of depression (Cryan and Kaupmann, 2005) Given the 

emerging evidence for a role of serotonergic system in the antidepressant-like effect 

associated to GABAB receptor blockade (Slattery et al., 2005a); it appeared essential to 

investigated these interactions using appropriate tools. 

In section 5.3, we observed an antidepressant-like phenotype in both GABAB(1)
-/- and 

GABAB(2)
-/- mice and pharmacological antagonism in the forced swim test but not the tail 

suspension test. In contrast of data observed in anxiety sections, we demonstrated that both 

genetic inactivation and pharmacological blockade of GABAB receptor result in the same 

effect. Consequently, we can exclude a potential involvement of compensatory changes in the 

antidepressant-like effect observed in both knockout lines. Nevertheless, more studies using 

paradigms other than the forced swim test, (e.g. the chronic mild stress or in olfactory 

bulbectomy paradigm) are required to confirm the putative role of GABAB receptors in 

depression. For example, Bilkei-Gorzo and collaborators illustrated these needs in a recent 

study (Bilkei-Gorzo et al., 2002). Although they demonstrated an effect of targeted deletion of 

Tac-1 a gene involved in Neurokinin metabolism, in both the forced swim test and tail 
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suspension, they also observed that this genetic manipulation rescued behavioural changes 

elicited by bulbectomy. Regardless of its effect in behaviour, it might be also intuitive to 

explore the effects of GABAB receptors ablation on physiological aspects of depression 

(Cryan and Mombereau, 2004). For example, we demonstrated recently that a clear 

hypersensitivity to dexamethasone suppression test in mGlur7-/- mice (Mitsukawa et al., 

2005). Interestingly, this enhanced suppression is opposite to that seen in many depressed 

patient (Holsboer et al., 1980), corroborating their antidepressant-like phenotype observed 

previously in forced swim test and tail suspension (Cryan et al., 2003c). 

In the second part of chapter 5, we recapitulated the antidepressant-like effects of 

genetic ablation of GABAB receptor using GABAB receptor antagonist CGP56433A. 

Although the influence of GABAB receptor on serotoninergic system is probably still the most 

parsimonious mechanism so far to account for antidepressant-like of GABAB receptor 

antagonist (Chapter 5), GABAB receptors are also to known to alter other neurotransmitter. As 

mentioned previously, GABAB receptors actively inhibit the firing in the locus coeruleus 

(Olpe et al., 1988). Thus, it is therefore possible that GABAB receptors antagonist would 

enhance noradrenergic activity, resulting in potential antidepressant-like effect. Nevertheless, 

the absence of effect of GABAB receptor antagonist CGP56433A of climbing behaviour in the 

modified rat forced swim test led to exclude a potential involvement of noradrenergic system 

in antidepressant-like effect mediated by GABAB receptor antagonist (Slattery et al., 2005a). 

Indeed, this pattern of behaviour have been shown to be modulated by catecholamine 

compounds (Detke et al., 1995; Lucki, 1997; Cryan et al., 2002a). Consistent with this idea, 

microdialysis studies reported that injection of GABAB receptor antagonist in the locus 

coeruleus does not affect the noradrenergic release in frontal cortex (Kawahara et al., 1999). 

In addition, prior studies combined with the findings of chapter 6 provided evidence for a 

modulatory effect of GABAB receptor on dopaminergic system that could participate in 
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antidepressant action of GABAB receptor antagonist. Indeed, anhedonic component of 

depression have been propose to be mediated by dysfunction of brain reward circuitry 

(Gambarana et al., 2001; Tremblay et al., 2005). Given the fact that GABAB receptor 

blockade in the ventral tegmental area elicits increased of local dopamine release (Giorgetti et 

al, 2002), it is conceivable that antidepressant-like potential of GABAB receptors antagonists 

may be due in part to an increase of dopaminergic transmission in brain reward circuitry, 

which may help to alleviate anhedonic-like symptoms. Moreover, GABAB receptor 

stimulation have been demonstrated to increase release of corticosterone and ACTH in rats, 

suggesting a role of HPA axis in the antidepressant-like effect of GABAB receptor (Hausler et 

al., 1993). Based on the fact that behavioural immobility in the FST seems to be contingent 

upon the presence of corticosterone, as elimination of the effects of corticosterone through an 

adrenalectomy (Jefferys and Funder, 1996), inhibition of corticosterone synthesis (Baez and 

Volosin, 1994) alter immobility in this test. It is, therefore, conceivable that the effect 

observed in the present thesis might be partially due to the influence of GABAB antagonist of 

HPA axis activation. Conversely, the pro- depressant effect of CGP44532 observed in the 

present thesis could be also mediated by an enhancement of corticosterone release during the 

forced swim test. As mentioned in the introduction, there is growing body of evidence for an 

involvement of cell survival pathway in therapeutic action of antidepressant (Nestler et al., 

2002). Thus, the recent findings suggesting that GABAB receptor antagonist increase the 

concentration of BDNF in the hippocampus and cortex, adds another facet to the complexity 

in the process of understanding mechanism involved in antidepressant-like effect of GABAB

receptors antagonist (Heese et al., 2000). Actually, this elevation of BDNF represents a 

possible mechanism which may contribute to the antidepressant-like effects of GABAB

receptors antagonist in the forced swim test, as local injection of BDNF in hippocampus 

decreases time spent in the forced swim test (Shirayama et al., 2002).Together, the above 

neurochemical and behavioural findings provide clear evidence for a antidepressant-like 
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effect of GABAB receptor antagonist. Nevertheless, the exact mechanism underlying this 

effect is still unclear and the evaluation pharmacological or genetic manipulation of these on 

the antidepressant-like effect of GABAB receptor will new insights on how GABAB receptors 

influence depression states and antidepressant action.

 7.5 Therapeutic relevance of GABAB receptor activation and blockade 

in the context of co-morbidity of anxiety and depression. 

Superficially at least, it may seem counterintuitive that modulation of a given receptor 

may induce a differential effect on anxiety and depression-like behaviours, given the 

extensive co-morbidity of such disorders clinically (Moller, 2002). However, GABAB

receptors are localized both pre- and post-synaptically, and the elucidation of the relative 

contribution of these individual receptor populations to behavioural phenotypes is currently 

not possible. It should be noted that there are a number of other receptor systems which 

genetic and/or pharmacological manipulation gives opposite effects in animal models of 

depression and anxiety.  Interestingly, mice lacking the 65-kDa isoform of glutamic acid 

decarboxylase (GAD65), which plays an essential role for GABA synthesis, have a similar 

phenotype to GABAB knockout mice (increased anxiety and decreased depression-related 

behaviour; (Stork et al., 2000; Stork et al., 2003)). GAD65-/- mice have a deficit in the 

temporal increase in GABA synthesis which occurs postnatally in wildtype animals. It is 

tempting to speculate that the phenotype of these mice may be in part related to insufficient 

agonist occupancy at GABAB receptors especially during critical postnatal periods. Also of 

note is the fact that such a behavioural pattern is also observed for mice lacking the 5-HT1A

receptor (Ramboz et al., 1998).These mice have been demonstrated to display more anxious-

like behaviour in open-field and elevated-plus maze and antidepressant-like phenotype in the 

forced swim test. Although these phenotypes might seem paradoxical, since anxiety and 

depression are often associated in humans, there is also evidence that serotonin can modulate 
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anxiety and depression in opposite manners, with high serotoninergic activity being 

associated with anxiety and low activity with depression (Graeff et al., 1996). Based of this 

idea, it is conceivable that the opposite action of GABAB receptor stimulation and blockade 

on serotoninergic system might contribute to the contradictory phenotype of mice lacking 

GABAB receptor and to the anxiolytic and antidepressant-like effect of GABAB receptor 

positive modulator and antagonist. On the other hand, targeted deletion of serotonin 

transporter induced both antidepressant-like effect and anxiogenic effect while chronic SSRI 

have been shown to be effective as treatment for anxiety disorders both preclinically and 

clinically (Holmes et al., 2003b).Therefore, recent study demonstrated that blockade of 

serotonin transporter during the early-life a might contribute to the anxious phenotype 

observed in 5-HTT-/- mice (Ansorge et al., 2004). Consequently, we can hypothesize that 

anxious phenotype observed in mice lacking GABAB knock-out animals might be caused by 

the alleviation of inhibition of GABAB receptor on serotoninergic neuron of raphé during 

early-life phase. Considering this, it would be also pertinent to evaluate the effect of chronic 

pharmacological blockade of GABAB receptor in anxiety paradigm sensitive to SSRI , such as 

novelty-induced hypophagia (Dulawa et al., 2004; Dulawa and Hen, 2005) in mature 

organism, considering the putative enhancement of serotoninergic system induced GABAB

receptor antagonist.  

Another receptor system of interest is the nociceptin (aka Orphanin FQ, NOP) which 

has been implicated in anxiety and depression(Jenck et al., 2000; Gavioli et al., 2003; Gavioli 

et al., 2004).  As in the case with GABAB receptors most of the available literature data 

suggest that the activation of the noceceptin receptor produces anxiolytic-like effects, while 

its blockade elicit antidepressant-like actions. Interestingly, several other biological features 

are shared by these two receptors: i) both NOP and GABAB receptors are coupled with the 

same type of G-proteins i.e. the Gi/o and reduce neurotransmitter release at presynaptic sites 
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and cellular excitability at postsynaptic sites (Calo et al., 2000; Bowery et al., 2002) ii) both 

receptors are widely expressed in the brain, and densely located in 5-HTergic neurons of the 

dorsal raphe nucleus (Serrats et al., 2003; Le Maitre et al., 2005); iii) both nociceptin and 

GABAB  seems to exert a similar and powerful control of the 5-HT system functions by 

activating K+ conductance in the dorsal raphe nucleus neurons (Williams et al., 1988; 

Vaughan and Christie, 1996) and reducing 5-HT release in the cerebral cortex (Schlicker et 

al., 1984; Siniscalchi et al., 1999; Sbrenna et al., 2000).  The similar pattern of anatomical 

distribution, transductional mechanisms, effects in models of affective disorders, and ability 

to modulate 5-HT neuron functions displayed by nociceptin and GABAB receptors are 

certainly impressive and strongly suggest that serotonergic signalling represents the target of 

NOP and GABAB  mediated actions on anxiety and depression. As stated previously, the fact 

that 5-HT has long been linked with the pathophysiology of depression and anxiety and 

particularly that clinical and pharmacological studies point to dysfunctions in the dorsal raphe 

5-HT system as critical for the pathophysiology of affective disorders (Valentino and 

Commons, 2005) strongly corroborate this view. 

7.6 GABAB receptors activation, a novel therapeutic approach to treat 

addictive disorders? 

Prior to the emergence of new genetic and pharmacogical tools, there had been a 

decreased interest in examining the role of GABAB receptor in anxiety and depression, 

however at this time (mid 1990’s) researchers began to shown positive effects of baclofen in 

animal model of addiction (Roberts et al., 1996). Over the past decade, GABAB receptor 

activation has emerged as the most interesting therapeutic strategies for the treatment of 

dependence to drugs such as cocaine and nicotine. Further, the last aim of the present thesis 

was to evaluate the putative anti-addictive properties of GABAB receptor stimulation. We 

focused particularly on elucidating both behavioural and molecular changes following chronic 
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exposure to either cocaine or nicotine. Our data suggest that GABAB receptor activation 

(either directly or via positive modulation) can reduce the rewarding aspects of abused drugs 

at both the molecular and behavioural level. Nevertheless, we have to be particularly cautious 

regarding the linkage between the effects observed in behaviour and molecular changes. 

Indeed, the inhibition of DARPP-32 upregulation by GS39783 does not intuitively agree with 

the reduced locomotor activity observed upon the cocaine challenge trial. Although, in line 

with our findings, total DARPP-32 has been shown to be increased after repeated 

administration of cocaine (Hu et al., 2005). The majority of studies investigating DARPP-32’s 

role in addiction are focused on its phosphorylation, and more specifically, on its 

phosphorylation on Thr-75. Since DARPP-32 is preferentially phosphorylated on Thr-75 by 

repeated administration of cocaine and DARPP-32 Thr-75 mutant mice exhibit attenuation of 

cocaine sensitization, study of phosphorylation state of DARPP-32 after cocaine and 

GS39783 treatments could help clarify this matter. While CREB  mutant mice, have been 

shown to be more responsive to the reinforcing effects of cocaine compared to wild-type 

littermates (Walters and Blendy, 2001), CREB activation have been further presumed as 

regulating the aversive such as tolerance and dysphoria (Carlezon et al., 1998). Nevertheless, 

the reduction of FosB induction observed in CPU could be related to the blunting effect of 

GS39783 on cocaine sensitization. Indeed, mice overexpressing FosB have heightened 

cocaine-induced locomotor activity during the sensitization(Kelz et al., 1999).

In order to further confirm the putative anti-addictive properties of GABAB receptor 

stimulation, we also assessed the effect of GS39783 on reinforcing properties of nicotine in 

the place conditioning paradigm. Interestingly, GS39783 attenuated the acquisition but not the 

expression of place preference triggered by nicotine. Similarly with data obtained with 

cocaine, we also observed that GABAB receptor activation via application of GS39783, 

blocked also the accumulation of FosB in the nucleus accumbens only when is injected prior 
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the test. Although it seems difficult and perhaps premature to clearly link these molecular 

adaptations to the behaviours observed, the findings provide in this thesis provide evidence 

for the ability of GS39783 to have anti-addictive potential. 

However,  the exact mechanisms underlying these effects are not clear and can only be 

speculated upon at this point. According to the hypothesis that mesolimbic dopaminergic 

pathway involved in reward, we can presume that GABAB receptor might modulate 

dopaminergic release in several structures. As mentioned in chapter 6, the more simplistic 

scenario would be that GABAB receptor positive modulators enhance the stimulation of 

GABAB receptor on dopaminergic neurons in the VTA. Nevertheless, this response might 

recruit GABAB receptor from other structure such as prefrontal cortex or ventral pallidum. 

GABAB receptor antagonists have been shown to increase ventral pallidal dopamine release 

(Gong et al., 1998). Given the fact that dopaminergic lesions of the ventral pallidal terminals 

impairs the development of place preference elicited by cocaine (Gong et al., 1997), we can 

assume that GABAB receptor positive modulators might also recruit GABAB receptors within 

the ventral pallidum to attenuate the reinforcing properties of nicotine as observed in the 

studies presented in Chapter 6 of this present thesis. On the other hand, we can also speculate 

that the GABAB receptor positive modulator effect might also recruit GABAB receptors 

within the prefrontal cortex. Indeed, local GABAB receptor stimulation in the median 

prefrontal cortex have been shown to attenuate the hyperactivity induced by a single 

administration of cocaine, and the establishment of behavioural sensitization to cocaine 

(Steketee and Beyer, 2005). Similarly, Doherty and Gratton demonstrated that local injection 

of baclofen in this area inhibits accumbal dopamine release triggered by stress (Doherty and 

Gratton, 1999). Further studies, using local administration of GS39783 in these different 

structures may help to deduce a schema of the neuroanatomical pathways where GABAB

receptors recruited in the anti-addictive response of GS39783.  
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Similar complexity is observed in order to explain the ability of GABAB receptor 

positive modulator to counteract the activation of CREB, DARPP-32 and the induction of 

fosB triggered by repeated administration of nicotine or cocaine. As mentioned in chapter 6, 

we presume that this downstream effect is principally mediated by the inhibition of adenylyl 

cyclase by GABAB receptor. Indeed, repeated exposure to stimulant increases activity of 

cAMP-PKA pathway within the nucleus accumbens resulting in an activation of CREB and 

DARPP-32, via the stimulation of D1 receptors. This action might be partially inhibited by 

inhibitory action of GABAB receptor on adenylyl cyclase. Nevertheless, we cannot exclude 

that the effect elicited by GS39783 could be simply the reduction of dopaminergic tone at D1-

receptor elicited by the stimulation of GABAB receptors in the ventral tegmental area. Thus, it 

might be relevant to investigate these processes electrophysiologically in nucleus accumbens 

slices, in order to limit the interfering effect of GABAB-mediate dopaminergic regulation 

from the VTA.  

Additionally, the multiplicity of pathway mediating the activation of CREB, DARPP-

32 and fosB, add a real complexity in the effort to understand the mechanism of action of 

GS39783 at cellular level. For example, CREB activation have been shown to be modulate by 

three different pathways (see fig.7.2): the cyclic AMP-dependant protein kinase pathway 

(cAMP-PKA pathway), the calmodulin kinase pathway (CAMK pathway) and mitogen-

activated protein kinase pathway (MAPK pathway, see Carlezon et al, 2005 for review). 

Although it has been postulated that repeated injection of drugs of abuse recruit mainly the 

cyclic cAMP-PKA pathway (Anderson and Pierce, 2005), a recent study demonstrated also an 

involvement of MAPK pathway in the phosphorylation of CREB elicited by repeated 

administration of cocaine (Mattson et al., 2005). Thus, it is likely, given that GABAB

stimulation have been shown to decrease MAPK activation (Ren and Mody, 2003), that the 

effect of GS39783 on activation of CREB might be mediated via inhibition of MAPK 



GENERAL DISCUSSION 

240

pathway. Thus, further studies on accumbal slices or cell culture might help to clarify all 

cellular pathway involved in the downstream effects of GS39783 on molecular changes 

elicited by administration of drugs of abuse. 

Fig.7.2 Cellular pathway involved in regulation of CREB activity.  
There are three different pathways regulating CREB activity :the cAMP-PKA pathway 
(orange),the CAMK pathway (grey) and  the MAPK pathway (Green). Repeated 
administrations of drugs have been shown to stimulate both  cAMP-PKA pathway, via D1 
stimulation, and MAPK pathway. GABAB receptors might counteract activation of CREB via 
: diminution of dopaminergic tone at D1 receptors, inhibition of adenylyl cyclase and 
inhibition of activation of MAPK. Red arrows signify activation. Blue arrows signify 
inhibition. Abbreviation: CaM, calmoduline; CaMK; Ca2+Calmoduline dependent kinase; 
RSK, MAPK-activated ribosomal S6 kinases; AC, adenylyl cyclase; PKA ; cAMP dependent 
protein kinase. 

In conclusion, the findings of the present thesis suggest a putative anti-addictive 

property of GABAB positive modulator. Indeed, administration of GS39783 attenuated both 

behavioural effect and molecular adaptation elicited by administration of drugs of abuse. 

Nevertheless, it should be noted that the major caveat of models used in the present thesis is 

that drugs were passively administrated by the animal. Given the fact that passive vs active 
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administration of drugs of abuse elicited common but also different molecular and 

physiological changes (Jacobs et al., 2003), it would be pertinent to assess the effect of 

GS39783 in self-administration paradigms in order to compare with the present findings. 

Additionally, addiction is a multifaceted disorder including different states such as craving or 

withdrawal. Although we demonstrated that GS39783 might attenuate the reinforcing 

properties of drugs of abuse, it would be appropriate to investigate its effect in paradigm 

relevant to these syndromes. Considering that it has been postulated that sensitization plays a 

major role in some of the persistent features of drug abuse, such as drug craving and 

compulsive drug-seeking behaviour (Robinson and Berridge, 1993), it would be conceivable 

that GS39783 might reduce craving behaviour and drugs seeking. This hypothesis is 

supported by the fact that GABAB receptor agonist, namely baclofen and CGP44532, have 

been shown to inhibit cue-triggered relapse to nicotine and cocaine-seeking behaviour. On the 

other hand, it might be also essential to assess the effect of GS39783 in animal model of 

withdrawal. Considering that baclofen has been shown to decrease the abstinence sign of 

morphine, alcohol and barbital (Sandoval and Palermo-Neto, 1985; File et al., 1992; 

Kemmling et al., 2002), we can speculate a putative effect of GS39783 in these models. 

Taken together, these findings suggest that GABAB receptor activation, and more specifically, 

GABAB receptor positive modulation might be considered as a novel approach to treat 

addictive disorder. Moreover, its effectiveness in counteracting the effects of a wide spectrum 

of drugs of abuse and in different symptoms of addictive disorder leads one to consider the 

GABAB receptor as one of the most promising therapeutic targets for treating addiction. 

7.7 Concluding remarks 

Since its cloning, GABAB receptor research has undergone a renaissance over the past 

decade. Through the development and subsequent access to novel pharmacological and 

genetic tools, such as GABAB positive modulator and mice lacking GABAB receptor, I have 
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generated strong evidence that GABAB receptors play a key role in psychiatric disorders, such 

as anxiety, depression or addiction. The exact physiological and molecular mechanisms by 

which modulation of GABAB receptor system contribute to these disorders are still elusive. 

Nevertheless, the emergence new technology such as conditional knockdown (Haller et al., 

2004) or RNA interference (Thakker et al., 2005) will help to dissect the brain structure 

recruited in the beneficial properties of GABAB ligands. Moreover, the relative contribution 

of presynaptic and postsynaptic receptors to behavioural effects of GABAB receptors ligands 

needs to be clarified. To this purpose, the group of Bernard Bettler (University of Basel), in 

collaboration with colleagues at Novartis, generated mice lacking GABAB(1a) or GABAB(1b) 

isoforms. Electrophysiology in the CA1 region of mutant mice demonstrates that GABAB(1a,2)

receptors and GABAB(1b,2) receptors fulfil distinct pre- and postsynaptic roles. This novel 

advance give the opportunity to explore the involvement of these two isoforms the modulation 

of emotion and reward system (Biermann et al., 2005; Jacobson et al., 2005).

Additionally, the recent initiation of mapping of GS39783 positive modulator binding 

site at the GABAB receptor heterodimer  (Binet et al., 2004; Dupuis et al., 2004) will 

hopefully provide new tools,  such as antagonist of GABAB positive modulator or mutant 

mice lacking GABAB positive modulation allosteric site. Consequently, these approaches may 

help clarify the localization of GABAB receptor recruited in anxiolytic and anti-addictive 

effects of GABAB positive modulator. Finally, although we focused this thesis on these three 

psychiatric disorders, GABAB receptor system might be involved in other pathology such as 

cognitive dysfunction, epilepsy or schizophrenia, pain  food intake (Patel et al., 2001; 

Treiman, 2001; Mizukami et al., 2002; Froestl et al., 2004; Bowery, 2005; Buda-Levin et al., 

2005; Foltin, 2005). The use of the novel tools employed in this thesis should also help to 

further delineate the therapeutic potential of GABAB receptor activation in animal models of 

these diseases. 
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Taken together, it’s hoped that these studies presented here have, and will continue to, 

renew interest in the behavioural pharmacology of GABAB receptor. Further, we inspire that 

these data will serve as a primer for the development of novel therapies for anxiety, 

depression and drugs dependence where is a huge unmet medical need.  
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ETUDE DU ROLE DES RECEPTEURS GABAB DANS 
L’ANXIETE, LA DEPRESSION ET L’ADDICTION : 
APPROCHE PHARMACOLOGIQUE ET GENETIQUE. 
 

 
 
Notre travail visait à caractériser le rôle des récepteurs GABAB dans l’anxiété, la dépression et l’addiction, 

prenant avantage du récent développement de souris GABAB knockout et d’un modulateur positif allostérique du 
récepteur GABAB (GS39783). Dans un premier temps, nous avons observé que l’ablation du gène codant pour le 
récepteur GABAB induisait un effet anxiogène. Inversement, la stimulation pharmacologique de ces récepteurs 
produisait une réponse anxiolytique. De plus, nous avons mis en évidence que l’inactivation génétique de ces 
récepteurs et leur blocage pharmacologique induisait un effet antidépresseur. Finalement, nous avons observé que le 
GS39783 s’opposait à la fois aux comportements et aux adaptations moléculaires associés à l’administration de 
psychostimulants. Ainsi, ces études nous permettent de conclure que les récepteurs GABAB pourraient représenter 
une cible dans le développement de nouvelles stratégies thérapeutique dans le traitement de ces trois pathologies. 
 
 
 
Taking advantage of the recent development of GABAB  positive modulator GS39783 and mice lacking GABAB(1)  or 
GABAB(2) receptor subunits, the studies in the present thesis are focus on addressing a broad hypothesis that GABAB 
receptors play a key role in the manifestation of psychiatric disorders, such as anxiety, depression and addiction. In a 
first time, we demonstrated that targetted deletion of either GABAB receptor subunit induced strong anxiety. 
Conversely, we also observed that GABAB activation, via administration of GS39783, induced anxiolytic-like effect 
in several paradigms. Secondly, we also demonstrated that genetic inactivation of either GABAB receptor subunit 
induced antidepressant-like effects. In confirmation of the genetic data, acute and chronic blockade of GABAB 
receptor decreased immobility in the forced swim test. Finnaly, we also demonstrated that pharmacological 
activation of GABAB receptor counteracted both molecular and behavioural adaptations elicited by a single 
administration of cocaine or nicotine. Altogether, our data support the role of GABAB receptor in anxiety, depression 
and 
addiction and that GABAB receptor might be considered as one of the most promising therapeuthic targets for 
treating these disorders. 
 

ROLE OF GABAB RECEPTORS IN ANXIETY,  
DEPRESSION AND ADDICTION: 
PHARMACOLOGICAL  AND GENETIC APPROACHES. 
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