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Résumé - La télédétection vise à acquérir l'information sur des cibles en étudiant leur réponse 
aux ondes électromagnétiques. Et partout nous rencontrons des milieux non homogènes et des 
composites. Connaître comment ces milieux non homogènes répondent a la sonde de 
télédétection est de la plus grande importance pour la praticabilité même de la télédétection. 
Le comportement macroscopique d'un composite peut s'exprimer en fonction des 
caractéristiques macroscopiques de ses constituants, mais d'une manière complexe incluant la 
géométrie de leur arrangement. Si nous pouvons obtenir le tenseur diélectrique efficace d'un 
composé, nous pouvons modéliser sa réponse au champ électromagnétique, et donc sa 
réponse comme cible de télédétection. La nécessité pour inclure la géométrie détaillée du 
système d'une façon efficace dans des méthodes numériques, ainsi qu'une équivalence entre 
les images numériques et les modèles de treillis des composites, suggère le recours aux 
techniques de bas niveau de traitement d'images numériques. 
Le cadre de cette thèse est le traitement numérique d'un problème général de télédétection 
fondée sur le problème électromagnétique d'homogénéisation dans des microstructures. Dans 
ce contexte, deux techniques de traitement d'images de bas niveau sont présentées, à savoir, 
une nouvelle méthode pour l'étiquetage des composantes connexes, présentant des 
améliorations significatives par rapport aux méthodes existantes, et une méthode de codage 
des configurations locales avec plusieurs caractéristiques la rendant appropriée pour des 
applications variées. Leurs avantages sont discutés, et des exemples d'application sont fournis 
au-delà du domaine spécifique étant à leur origine, comme la vision artificielle, le codage 
d'image, ou encore la synthèse d'image. 
 
Mots clés - traitement d’images, étiquetage des composantes connexes, codage des 
configurations locales, télédétection, vision artificielle, codage d'image. 
 
Abstract – The aim of remote sensing is obtaining information about targets by studying their 
response to electromagnetic waves. And everywhere we found non homogeneous media. 
Knowing how these non homogeneous media respond to the remote sensing probe is of great 
importance for the very feasibility of remote sensing. The macroscopic behaviour of a 
composite can be expressed as a function of the macroscopic characteristics of its 
constituents, but usually in a complex way which includes the geometry of their arrangement. 
If we are able to obtain the effective permittivity tensor of any given composite, we can 
model its macroscale response to the electromagnetic field, and therefore its response as a 
remote sensing target. The necessity of including the detailed geometry of the system in an 
efficient way in the numerical methods, together with an equivalence between grid models 
and digital images, suggest the recourse to low level image processing techniques. 
The framework of this thesis is the numerical treatment of a general problem in remote 
sensing based on the electromagnetic problem of homogenization of microstructures. In this 
context, two low level image processing techniques are presented, a new method for the 
labelling of connected components, with significant advantages over the classical methods, 
and a local configuration encoding scheme with characteristics which render it useful for 
different applications. Their advantages and applicability are discussed, together with some 
examples of application in fields out of the scope of the specific problem which originated 
them, namely computer vision, image coding, and image synthesis. 
 
Keywords - image processing, connected component labelling, local configuration encoding, 
remote sensing, computer vision, image coding. 
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When I look back, it seems to me
as if this almost miraculous

change of inclination and will
was the immediate suggestion

of the guardian angel of my life,
the last effort made

by the spirit of preservation
to avert the storm
that was even then

hanging in the stars
and ready to envelop me.

People are crazy and times are strange,
I’m locked in tight, I’m out of range.

I used to care, but things have changed.





Preface

Ils ne se rendent pas compte.

The text that follows is to be defended as a PhD Thesis at the École

Doctorale des Sciences Physiques et de l’Ingénieur of the Université Bordeaux

I, within the speciality Signal et Image.

That of life is the strangest of paths, and we often encounter people and

traverse landscapes which we would hardly have ever expected. Specially at

the first stages of our journey. For when we have worn out several pairs of

boots, we have already trod many sharp rocks and have met many different

wills; enough at least as to not be surprised anymore by the unexpected.

After a time, you learn a fundamental truth: Even the hardest of stones will

erode in the wind; if you want to stand, you should bend as the proverbial

bamboo cane.

Behold, this is one of my deepest bows yet. After having obtained a

PhD in Physics in 2002 with a thesis on spatially explicit stochastic models

on remotely sensed imagery, with a good load of pattern recognition, im-

age processing, and computer graphics, I would hardly have ever expected

that only four years later I should have to demonstrate again my capacity

for research in any of the aforementioned fields. Moreover, according to my

obviously erroneous perception of the scientific world, the unusual multidis-

ciplinarity of my previous research would have hinted, endorsed by a degree

in electrical engineering, if anything, a much looked-for ability for multi-

disciplinary problem solving, so precious in engineering. But I was wrong.

Above any other consideration, in the eyes of my colleagues, I was guilty of
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one of the worst faults an initiated can commit: I had deserted the ranks of

the hyperspecialized, I had shaken off the orejeras, I had dared to join the

physicists lines. Well, I’m back.

However, at the corners of life you do not only meet hostile beings, but

also merry companions and welcoming hosts. I have to gratefully acknowl-

edge the people of ESI-LAPS for their understanding, support, sympathy,

and disposition, specially Prof. Mohammed Najim, Christian Germain, and

Jean-Pierre da Costa, but also Prof. Pierre Baylou, Prof. Gilbert Grenier,

Olivier Lavialle, and Saied Homayouni. Working with them has been a plea-

sure, which I hope I will keep enjoying in the future. I cannot refer to the

LAPS without mentioning Prof. Anselmo Seoane, who knocked at the door on

my behalf. My recognition is extended to many people involved in PIMHAI,

that project which, more than anything, has established the links for fruitful

collaboration with a number of researchers in Britain, France, and Portugal.

Even if it were just for this, it was worth the effort.

I have to acknowledge also the School of Computer Science and Software

Engineering of The University of Western Australia, and specially my host

Prof. Mohammed Bennamoun, for having me and providing me with the

nicest of environments, the best of libraries, and the necessary peace of mind

to write this report.

I couldn’t forget Prof. Jaime Peón, infidel among believers, awake in an

age of idiocy; eroded, yes, but still standing in the heights of reason. A

physicist!

Perth, Western Australia
Summer 2005/06
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Résumé

Les composites sont partout. Tout milieu qui ne se compose pas d’un con-

stituant simple est un composé, ou, dans le jargon de l’électromagnétisme,

un milieu non homogène. Par composites (ou milieu microinhomogène, ou

milieu avec microstructures) nous nous référons à une structure assemblée

à partir d’un nombre très grand de particules de matériaux spécifiques dis-

posés dans une manière spécifique, où l’on assume que chaque particule est

considérablement plus petite que la taille du domaine, mais assez grande

comparée aux domaines d’application des équations de macro-échelle, c’est

à dire de taille plus grande qu’atomique ou moléculaire.

La télédétection vise à acquérir l’information sur des cibles en étudiant

leur réponse aux stimuli électromagnétiques. La télédétection nous permet

d’obtenir des informations approfondies à grande échelle sur l’environnement,

et d’étudier également les galaxies éloignées et les confins de l’univers. Et

partout où nous regardons, nous rencontrons des milieux non homogènes et

des composites. Les milieux non homogènes parfois ne sont pas les cibles

elles-mêmes, mais sont interposés entre l’observateur et la cible. Connâıtre

comment ces milieux non homogènes affectent le passage de la sonde de

télédétection (la propagation des ondes électromagnétiques) est de la plus

grande importance pour la praticabilité même de la télédétection.

Cependant, l’importance de la caractérisation de la réponse électromag-

nétique des composites n’est pas limitée à la télédétection. Les composites

(céramiques, fibre de carbone, polymères en plastique) jouent un rôle cen-

tral dans beaucoup de progrès technologiques. Caractériser des composites

et des milieux non homogènes est une nécessité de nos jours dans de nom-
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breux domaines technologiques, que ce soit dans la production de nouveaux

matériaux, pour comprendre le comportement des matériaux existants, ou

encore pour la connaissance scientifique pure. En cela le traitement d’image

a beaucoup à apporter.

Le comportement macroscopique d’un composite peut s’exprimer en fonc-

tion des caractéristiques macroscopiques de ses constituants, mais habituelle-

ment d’une manière complexe qui inclut l’information sur la géométrie de

l’arrangement des constituants de ce composite. La théorie du milieu effi-

cace (TME) est un outil puissant pour décrire les propriétés macroscopiques

des milieux hétérogènes complexes. Dans le cas spécifique de l’électromag-

nétisme, la TME laisse identifier le champ moyen se propageant à l’intérieur

d’un milieu hétérogène avec un champ se propageant à l’intérieur d’un mi-

lieu homogène caractérisé par une constante diélectrique efficace. Ainsi, les

milieux hétérogènes, à l’équilibre macroscopique et sous l’approximation du

milieu efficace (AME), se comportent comme des milieux homogènes avec

des caractéristiques mesoscopiques spécifiques, appelées efficaces.

Ces paramètres efficaces peuvent être trouvés par des règles analytiques,

dans les systèmes les plus simples, ou par des méthodes empiriques. Si nous

pouvons obtenir le tenseur ”constante diélectrique efficace”, généralement

complexe, d’un composé (un minéral, la glace polaire, un type de sol, etc.),

nous pouvons modeliser sa réponse au champ électromagnétique, et donc

sa réponse comme cible de télédétection. On a proposé dans la littérature

plusieurs différentes règles (dites de mélange) pour le calcul de la constante

diélectrique efficace d’une matière composite, en fonction de l’arrangement

spatial et des caractéristiques diélectriques de ses constituants. Cependant,

tous sont conçus pour des géométries spécifiques, et malgré le fait qu’elles

peuvent être appliquées à différentes configurations avec succès, aucune règle

universelle n’existe.

Une approche commune pour traiter la variété de règles de mélange con-

siste à trouver les limites supérieures et inférieures en fonction des con-

stantes diélectriques et des volumes partiels des constituants. Ceci permet

d’approcher la valeur de la constante diélectrique efficace avec une marge
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raisonnable. Cependant, le fait est que les configurations complexes mon-

trant des inclusions arbitrairement formées et qui sortent des limites ne

sont pas rares. Les anomalies entre les limites théoriques et les mesures

se produisent parce que les limites théoriques sont fondées sur des configura-

tions spécifiques, et ne tiennent pas compte de la configuration détaillée de

la microstructure. Les modèles numériques tenant compte de la géométrie

spécifique du problème offrent une alternative aux règles de mélange et aux

limites théoriques. La nécessité pour inclure la géométrie détaillée du système

d’une façon efficace dans la méthode numérique, ainsi qu’une équivalence

facilement établie entre les images numériques et les modèles de treillis des

composites, suggère le recours aux techniques de bas niveau de traitement

d’images numériques pour faciliter l’exécution efficace des méthodes de réso-

lution des modèles numériques.

Les techniques de traitement d’images sont intensivement employées pour

l’analyse des échantillons de matières composites, en utilisant des systèmes

d’acquisition variés. Cependant, il existe également un autre champ en sci-

ence des composites qui peut profiter des méthodes et du savoir-faire issu

du traitement des images: c’est celui des modèles numériques. En effet, les

techniques de traitement d’images peuvent être employées avec succès dans la

résolution des méthodes numériques pour l’analyse des systèmes composés,

quand ceux-ci sont modélisés avec les grilles discrètes régulières, qui, d’un

point de vue informatique, ne diffèrent pas des images numériques.

Les méthodes numériques fonctionnant sur de tels modèles exigent habi-

tuellement l’identification des différentes agrégations des cellules d’inclusion,

c’est à dire, l’identification de chaque granule ou fibre élémentaire du ma-

tériau, et leur caractérisation. Dans ce but, deux travaux fondamentaux

se dégagent. Le premier porte sur l’identification et la caractérisation des

agrégats des cellules appartenant aux mêmes espèces. Ceci est connu en

traitement d’images comme l’étiquetage d’objets ou l’étiquetage des com-

posantes connexes. L’autre traite de la caractérisation de la structure locale

de chaque noeud dans le treillis, c’est à dire, un descripteur local de la config-

uration des voisinages des cellules élémentaires (pixels dans la représentation

équivalente d’image).
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Le cadre de cette thèse est celui d’un problème général de télédétection ou

de caractérisation de matériau composite traité avec une méthode numérique

fondée sur une formulation théorique pour le problème électromagnétique

d’homogénéisation dans les microstructures. Dans ce contexte, le travail orig-

inal présenté dans ce mémoire porte sur les deux techniques de traitement

d’image de bas niveau mentionnées ci-dessus, à savoir, une nouvelle méthode

pour l’étiquetage des composantes connexes, présentant des améliorations

significatives par rapport aux méthodes existantes, et une méthode de codage

des configurations locales qui offre plusieurs caractéristiques la rendant ap-

propriée pour des applications variées. Ce mémoire introduit donc l’algorith-

me de composantes connexes dans le chapitre 2 et la méthode de codage de

configurations locales dans le chapitre 3. Leurs avantages sont discutés, et

des exemples d’application sont fournis au-delà du domaine spécifique étant

à leur origine, comme la vision artificielle, la synthèse d’image, ou encore

le codage d’image. Quant à lui, le chapitre 1 traite de la pertinence de

l’approche ”analyse d’image” pour résoudre le problème électromagnétique

sous-jacent afin que la complexité de ce problème puisse être appréciée dans

toute son ampleur.







Chapter 1

Introduction

’Before I come on board your vessel,’ said he,
’will you have the kindness to inform me whither you are bound?’

1.1 A world of composites

Composites are everywhere. Anything which is not made up of a single con-

stituent is a composite, or, in the electromagnetism lingo, a nonhomogeneous

medium. The landscape is a composite. The soil is a composite. Polar ice,

and also that of glaciers, is a composite. It is made of water molecules and

air bubbles, pollutants discounted. The atmosphere is a composite, a lay-

ered one, and each layer is itself a composite. Rocks are composites, and

also modern composites, which have opened the doors to many technologi-

cal advances, due to their never-seen-before properties regarding lightweight,

endurance, strength, plasticity, and versatility. Why all these fabulous prop-

erties were not seen before? Because composites present features different

from that of their constituents. Mix two or more substances that were not

mixed ever before, and you have got a new material. That is what makes

composites so interesting: Put two pure constituents in the same pot, mix

them in the appropriate proportions, and you will get something new, which

behaves differently from any of the pure substances. And that is also what

makes them so complex. The resultant behaviour is not (generally) a linear
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combination of those of the constituents. It is not only the volume fraction

of each constituent what defines the result, but also the way how each con-

stituent is arranged in the new material. Structure comes into scene. What

is the size of the inclusions of each constituent, what is their shape, how are

they arranged. All this governs the way the composite is going to behave in

response to mechanical, chemical, and electrical influences.

Note that the term composite has a precise meaning. It is well understood

that most substances are not made of pure elements, but of a combination

of elements forming molecules or crystals. However, those are compounds.

By composite (or microinhomogeneous media, or media with microstruc-

tures [7, 10, 117, 216]) we refer to a structure assembled from a very large

number of particles of specific materials arranged in a specific way, where each

particle is assumed to be considerably smaller than the size of the domain,

but large enough as to be domains of application of macroscale equations,

i.e. larger than atomic or molecular sizes. The arrangement is considered

regular in the sense that the microstructure can be considered periodic, qua-

siperiodic, or statistically homogeneous. Thus, the behaviour of a piece of a

composite is representative of the behaviour of any other piece. The minimal

representative piece is usually called the unit cell.

What remote sensing is all about is acquiring information on targets by

studying their response to electromagnetic stimuli —sonic systems, such as

sonar, excluded, unless the definition is extended to include also mechani-

cal stimuli, such as sound waves—, no matter if the stimulus is provided by

an external agent, say, the Sun, or by the remote sensing device itself, say,

radar or lidar. Remote sensing allows us to obtain exhaustive large scale

information about the environment, and also to investigate distant galax-

ies and the confines of the Universe. And wherever we look, we will find

nonhomogeneous media and composites.

To be able to discover anything about a target by remote sensing, either

we compare the signal returned from it with that of known targets, in the

hope that the unknown target is within our collection of samples, or we

unravel the complex interactions between the materials composing the target
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and the electromagnetic waves we are using as probe.

Thus, there are two main approaches in the processing of remote sensing

data. The one will observe the spectral signature, i.e. the response curve of the

target along the region of interest of the electromagnetic spectrum, perhaps

just a single sample (such as in radar), just a few (multispectral images), or

many (hyperspectral images), even up to the degree of obtaining an accurate

plot of the whole response curve (imaging spectroscopy), and compare it to

others in the same image, or versus a collection in what is usually called a

“spectral library”, using statistical or pattern recognition tools for the match-

ing. The other will model the way matter interacts with e.m. waves, specially

composite materials, depending on the constituents, their proportions, and

the way they are arranged, and will try to give responses about the targets

according to the observed behaviour. The first approach will be able to give

information of the type “this is the same as” or “this is similar to”, or “there

is as much x as” or “there is less x than”1, which can be, and in fact it has

shown to be, very important. The second approach, provided that we are

able to model accurately the response of complex materials for a wide range

of constituents and structures, will be able to give qualitative and quanti-

tative information on an absolute basis, such as “the target is made up of

elliptical inclusions of constituent c in a host matrix h with a volume fraction

between vl and vh”
2. This is, of course, a tougher way than the other, but it

also opens many more possibilities. Moreover, it may be the only choice for

certain applications, such as ground penetrating radar for deep exploration

of the subsoil, or imaging spectroscopy of distant planets and stars.

Sometimes nonhomogeneous media are not the target themselves, but

1Note that sometimes we abuse the language when commenting results as those just
mentioned and say “these pixels here are pines”. According to the usual methodology,
all we are formally authorized to state about such results is “those pixels there have a
spectral signature more similar to that of those pine trees there than to any other thing
in this image”.

2Yes, the same consideration can be made regarding this second approach. The strict
way to put it would be “the target has the same spectral response as a target made up of
elliptical inclusions of constituent c in a host matrix h with a volume fraction between vl

and vh would have, according to our model”. Model, which, for sure, will include a series
of implicit or explicit assumptions.
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they are interposed between the observer and the target, as it is the case of

the atmosphere in satellital remote sensing, its lower layers in aerial remote

sensing, sea water in the study of the bottom of the oceans, polar ice in

the study of Antarctic geology, or sand dunes in the study of the subsoil

of deserts. Knowing how these nonhomogeneous media affect the passage

of the remote sensing probe (the propagation of e.m. waves) is of utmost

importance for the very feasibility of remote sensing.

The importance of the characterization of the e.m. response of composites

is not restricted to remote sensing, however. Composites (ceramics, carbon

fiber, plastic polymers) play a major role in many technological advances.

Many new technologies rely on new materials, which by their specific, extra-

ordinary characteristics regarding their electrical or mechanical behaviour,

make possible the exploration of adverse environments (the outer space, the

bottom of the sea, the darkest depths of Earth), the miniaturization leading

to ultra portability and very high speeds, or “intelligent” materials which

adapt themselves to the environment and take advantage of what before

used to work against them. We are reaching a point where we can design

custom materials à la carte, where the client specifies the kind of behaviour

he wants from the material (resistivity, colour, thermal expansion, elasticity,

. . . ) and the designer will hand him a recipe, specifying the ingredients, the

proportions, and how to mix them to achieve the proper arrangement that

will assure the required behaviour. This may not be a reality yet, but we are

getting closer, specially regarding certain families of composites and specific

properties within certain margins [225].

Certainly, we can produce samples of a composite, measure their electri-

cal and mechanical response, then vary a little bit the recipe, produce new

samples, characterize them, and proceed with this trial and error procedure

until the desired performance is approximated. However, the response is

far from linear, specially in the vicinity of critical phase effects, where the

more interesting behaviours are usually observed. If we are able to model

the composite, then we can alter the parameters in our model (constituents,

volume fractions, structure) and check the behaviour in a much advantageous

manner, even if still in a trial and error fashion. The step further is then
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understanding the model as to be able to predict the outcomes we will get

as a response to changes in the inputs (the recipe of our composite). Then

we will be able to go straightforwardly for the target.

Anyway, characterizing composites and nonhomogeneous media is a ne-

cessity nowadays in many technological fields, either aiming at producing

new materials, understanding the behaviour of preexisting materials, or in

the quest for pure scientific knowledge. And in this task image processing

has a couple of things to say.
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1.2 Effective medium

It was the secrets of heaven and earth that I desired to learn;
and whether it was the outward substance of things or the inner spirit of nature

and the mysterious soul of man that occupied me,
still my inquiries were directed to the metaphysical,

or in its highest sense, the physical secrets of the world.

As stated above, nonhomogeneous media behave differently from any of

their constituents. The macroscopic behaviour of a composite can be ex-

pressed as a function of the macroscopic characteristics of its constituents,

but usually in a complex way which includes information on the geometry

of the arrangement of the constituents that form the composite. The Effec-

tive Medium Theory (EMT, see [55] for a comprehensive introduction) is a

powerful tool to describe the macroscopic properties of complex heteroge-

neous media. It was first suggested by Maxwell Garnett [87], and later by

Bruggeman [39,40], based on Maxwell’s equations for the static limit. In the

specific case of electromagnetism, EMT permits to identify the average field

propagating inside an heterogeneous medium with a field propagating inside

an homogeneous medium characterized by an effective permittivity. Thus,

nonhomegeneous media, at macroscopic scale, under the Effective Medium

Approximation (EMA) behave as homogeneous media with specific meso-

scopic characteristics, called effective. These effective parameters can be

found either by analytic rules, in the simpler systems, or by empirical meth-

ods.

We are interested in the average fields because describing the field at

every point in the composite is basically pointless. For most purposes we

do not need a detailed description. Replacing the original system by an

averaged system is called homogenization. We replace the microscopically

nonhomogeneous material by an homogeneous material which imitates the

relevant behaviour of the original system through the effective properties. In

contrast with the randomly varying properties of the composite, the effective

properties are constant or, in the quasiperiodic case, smoothly varying func-

tions of the position in the domain. Note that the averaged system will not
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preserve all the features in the original system, so we choose which features

we want preserved in the homogenization process. The microscale informa-

tion is lost by homogenization, specifically all processes determined by the

individual behaviour of the inclusions: local fields, fine scale oscillations,

etc. The reader interested in homogenization is directed to any of many

books [7,12,13,56,59,109,153,186]. A variety of homogenization methods in

different fields are described in [9, 15,31,125,144,152,192,193,211,242,247].

For some discussions on the numerical aspects of homogenization see [8, 84,

93,94,105,225,279], and in [11,53,58,136,171] some interesting instances of

unexpected behaviour of homogenized systems can be found.

Generally, we want to preserve the solution of a boundary value problem.

By forcing the solution in the averaged system to approach that of the original

system, we get equations leading to the solution for the effective properties of

interest. Homogenization is a local process. The nonhomogeneous medium is

replaced by a homogeneous medium in a small neighbourhood, the unit cell,

where the local fields are replaced by their mean values, i.e. averages over

the unit cell. It is assumed that the unit cell is representative of any piece of

the composite at the same scale. The size of the unit cell has to be compared

with the rate of variation of the external fields. Homogenization assumes

that the size of the unit cell is much smaller than the other parameters of

the system, and that for a given scale the choice of the unit cell does not

affect the homogenization results. Then the composite can be substituted by

a regular repetition of identical unit cells, without apparent variation in the

macroscale behaviour of the variables of interest.

Thus, if we are able to obtain the (generally complex) effective permit-

tivity tensor of any given composite (a mineral, polar ice, a given soil type,

. . . ), we can model its macroscale response to the electromagnetic field, and

therefore its response as a remote sensing target. Many natural geophysi-

cal materials are heterogeneous media whose electromagnetic behavior can

be characterized in an homogenized way in many applications. Soil, for in-

stance, is a mixture of differently shaped granules, water, air, and organic

structures, and for dielectric measurements, a thoroughly mixed soil, with a

volume large in comparison with its constituents, can be treated as a homo-
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geneous body [107].

1.2.1 The effective permittivity

Under the effective medium approximation, there exists a unit cell that re-

flects all the relevant macroscopic characteristics, such that the material

could be replaced by a regular arrangement of repetitions of the unit cell

without any change in its macroscopic (effective) response to the electro-

magnetic field. This assumption is facilitated by the introduction of the

long wave approximation (LWA), valid whenever the features being probed

are much smaller than the wavelength, neglecting the scattering effects just

by assuming that the wavelength is large compared to the characteristic

size of the inclusions and their separation. The LWA determines the range

of applications depending on the material, and vice versa. However, it al-

lows the treatment of common problems in geoscience, where the need for

large penetration depths usually dictates low frequencies of operation. For

instance, effective permittivity is a critical parameter in ground-penetrating

radar (GPR) (it controls the speed of the electromagnetic wave, the reflection

coefficient at the interfaces, and the imaging resolution) and has a consistent

behavior over the typical GPR frequency range [165].

Several different rules for the computation of the effective permittivity

ǫeff(ω) of a composite material have been proposed in the literature, as a

function of its structure and the spatial arrangement and dielectric charac-

teristics of its constituents [185,227]. The simple mixing model for inclusions

with permittivity function ǫi(ω) which occupy a fractional volume p in a host

matrix with permittivity function ǫm(ω):

ǫeff(ω) = p ǫi(ω) + (1− p) ǫm(ω) (1.1)

is generalized as the power–law approximation [19,23,147]:

ǫ
1/n
eff (ω) = p ǫ

1/n
i (ω) + (1− p) ǫ1/n

m (ω) (1.2)

where different values of n give the Landau (n = 2) [141] and the Looyenga

(n = 3) [146] approximations. The classical model for spherical inclusions in
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an isotropic matrix is:

ǫeff(ω)− ǫm(ω)

ǫeff(ω) + 2ǫm(ω) + υ(ǫeff(ω)− ǫm(ω))
=

= p
ǫi(ω)− ǫm(ω)

ǫi(ω) + 2ǫm(ω) + υ(ǫeff(ω)− ǫm(ω))
(1.3)

where different values of υ produce the well known Maxwell Garnett rule

(υ = 0) [87], the Bruggeman rule (υ = 2) [39] or Polder-van Santen mixing

formula [199, 252], and the coherent potential approximation (υ = 3) [129].

Similar expressions are those of Böttcher [29, 30], Tsang and Kong [250],

Bohren and Huffman [28], and Monecke [178]. Iglesias et al. [113] presented

a mixing rule from which those of Bruggeman, Böttcher, Tsang and Kong,

and Landau can be derived.

All of these are designed for specific geometries, and in spite of the fact

that they may be successfully applied to different configurations, there is no

universal rule. Bergman’s theorem [14] relates the effective dielectric function

of a two-phase composite to its structural microgeometry through a spectral

function, G(L):

ǫeff(ω) = ǫm(ω)

(

1− p

∫ 1

0

G(L)(ǫm(ω)− ǫi(ω))

(1− L)ǫm(ω) + Lǫi(ω)
dL

)

. (1.4)

G(L) is generally unknown for arbitrary systems, but it can be either ana-

lytically or numerically derived for any existing mixing rule [234]. In fact, its

derivation permits the validation of mixing rules, provided that G(L) has to

be non-negative, normalized in [0, 1], and that its first moment should equal

(1− p)/3. Böttcher’s spectral function, for instance, only complies with the

normalization restriction. However, finding the spectral function for specific

nontrivial configurations is far from trivial.

A common approach for dealing with the variety of mixing rules in the

literature is trying to find upper and lower bounds for ǫeff(ω) as a function

of the permittivities and fractional volumes of the constituents [228]. This

allows approximating the value of the effective permittivity within a rea-

sonable margin, and makes rigorous bounds an important tool for practical

applications.
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The absolute bounds are dictated by the fact that no mixture may have

effective permittivity greater or lesser than any of its constituents. Tighter

limits are those of Wiener [268], result of making n = ±1 in (1.2), which

correspond to serial (minimum permittivity) and parallel (maximum) con-

figurations of parallel plates. Hashin and Shtrikman formulated stricter

bounds [103]: The lower bound is (1.3) with υ = 0 (Maxwell Garnett for-

mula) whereas the upper bound is the inverse, with inclusions treated as

host and vice versa. Stronger, third order bounds have been suggested by

Milton [170], Felderhof [75], or Helsing [106], which take into account the

shape of the inclusions through the so-called Miller parameter.

No matter how tight the bounds, the fact is that, even when typical con-

figurations within the midrange of the fractional volume obey particularly

well the bounds, complex configurations with arbitrarily shaped inclusions

that go out of bounds are not rare [228]. Losses in the material, which could

even bring to the violation of the absolute limits, scattering, and magneto-

electric effects should be blamed. However, we work under the assumptions

of negligible scattering (LWA) and low-loss, nonmagnetic materials without

free charges. Dielectric loss is negligible if the conductivity of a material is

less than 10 mS/m, as it is for many geologic materials. The low-loss and

nonmagnetic assumptions are valid for most sedimentary materials contain-

ing freshwater [165]. Under these assumptions, discrepancies between the

theoretical bounds and measurements occur because the theoretical bounds

are based on specific configurations, and do not take into account the detailed

configuration of the microstructure of any given material, which influences

its effective response. The percolation threshold [233], for instance, which

depends on the shape and spatial configuration of the inclusions, strongly

affects the effective permittivity [226].

The alternative to mixing rules and theoretical bounds is numerical mod-

elling taking into account the specific geometry of the problem [16–18,38,52,

89, 114, 122, 123, 168, 195, 219, 220, 231, 248, 249, 253, 267]. The author devel-

oped with Prof. J. F. Peón-Fernández a numerical method to estimate ǫeff(ω)

through the computation of the potential at the boundaries of inclusions em-

bedded in a host matrix [161]. The interested reader can find in Appendix
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A the details of the theoretical formulation supporting the method, which is

not a requisite but can help to understand some of what follows.

The necessity to include the detailed geometry of the system in an efficient

manner in the numerical method, together with an easily established compu-

tational equivalence between digital images and lattice models of composites,

recommended the recourse to low level digital image processing techniques

to aid in the efficient implementation of the method.

1.2.2 The numerical method

In the following I will describe with some detail the implementation guidelines

of the numerical method such that the relevance of the techniques described

in this report and the complexity of the problem at hand can be appreciated

in all their extent.

Once the unit cell —the minimum representative volume— is established,

we subject it to a potential U0, i.e. two opposite boundaries are forced to

potential 0 and U0 respectively, without restriction on the free boundaries,

and we want to obtain the potential at the boundaries of every inclusion in

the unit cell. This is a Dirichlet problem that can be solved using a wealth of

well known numerical methods [67], including a probabilistic solution [182]

using Monte Carlo methods [98,212], see Appendix B.

We generate a cubic mesh that partitions the unit cell into a lattice of

elementary homogeneous cells, and we want to obtain the potential at every

node in the mesh on the boundary of inclusions.

The potential at each node in the mesh, U , can be written as a function

of the potentials at the neighbour nodes, ν ∈ {x+, x−, y+, y−, z+, z−}, sub-

ject to the conservation of the normal component of ~D and of the tangential

component of ~E, using a Taylor series expansion where the derivatives are ap-

proximated by finite differences, i.e. the Newton-Cotes formula for Laplace’s

equation,

U =
∑

ν

sνUν ,
∑

ν

sν = 1 (1.5)
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where the interpolation coefficients sν are determined by the boundary condi-

tions [54]. Edges connecting two nodes are interfaces between homogeneous

elementary cells. The finite difference equivalent of the boundary condi-

tion of conservation of the normal component of ~D is obtained by applying
∫∫

~D · d~S = 0 to the interface [80]. Thus, for instance, in a 2D mesh, if there

is a horizontal interface (along x̂) between local permittivities ǫ1 (above) and

ǫ2 (below), then U = sx+Ux+ + sx−Ux− + sy+Uy+ + sy−Uy− , where

sx+ = sx− =
1

4
, sy+ =

ǫ1

2(ǫ1 + ǫ2)
, sy− =

ǫ2

2(ǫ1 + ǫ2)
. (1.6)

The rest of configurations is obtained in the same way.

To compute the potentials at the mesh nodes a classical relaxation scheme

[116] can be used, such as Gauss–Seidel [121] or successive overrelaxation

(SOR) [72], by repeatedly updating the potentials according to (1.5) until

convergence. These methods provide the field solution; they find the po-

tential for every node in the mesh. However, we need it only for a subset,

the nodes on the boundaries of inclusions, i.e., the boundaries of foreground

pixels in a equivalent image representation. Connected components labelling

allows us to know to which inclusion belongs each node and which are the

nodes we are interested in.

The alternative when only a few local solutions are needed is Monte Carlo

random walk. In a Monte Carlo random walk solver, the coefficients sν in

(1.5) are probabilities that guide the displacement of random walkers through

the mesh. A walker in a node like that of (1.6) would move to the right with

probability sx+ and to the left with probability sx− .

Monte Carlo random walk works as follows: N walkers leave from a given

node i whose potential Ui is to be obtained. A walker finishes its trip upon

arrival to a node k on any of the boundaries of the unit cell with fixed

potential, Uk ∈ {0, U0}, which act as sinks. The potential at node i is

estimated as

Ui =
1

N

∑

k

nkUk (1.7)

where nk is the number of walkers that reached the fixed potential node k.
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See Appendix B for a formal treatment of the Monte Carlo solution of elliptic

PDE’s.

Whatever the method to solve the potential, the procedure to compute
↔

ǫeff is as follows:

1. Force a unitary macroscopic field ~E0 in one of the three orthonormal

directions of the system, say ~E0 = (1, 0, 0), by forcing the two cor-

responding normal faces of the unit cell to potential 0 and U0 = 1

respectively (all lengths are normalized with respect to the length of

the unit cell).

2. Use a relaxation method or Monte Carlo random walk to approximate

the potential at the boundaries of the inclusions.

3. Compute the first three components of the permittivity tensor using

(A.18) with ê = (1, 0, 0)





ǫxx

ǫyx

ǫzx



 =





ǫm

0
0



+
ǫi − ǫm

VC

N
∑

n

∫

�
�

�
�

∫

Sn

U(~r) d~S. (1.8)

4. Repeat the procedure with ~E0 = (0, 1, 0) and ~E0 = (0, 0, 1), by succes-

sively applying U0 to each of the remaining pairs of opposite faces of

the unit cell.

Monte Carlo vs. Relaxation

Relaxation methods provide the field solution of the potential inside the unit

cell, i.e. in a single run we get the potential for every node in the mesh. With

Monte Carlo, we need a run for each node of interest. The iterations in relax-

ation methods and Exodus are fairly similar (see Appendix C for a detailed

treatment of Exodus Monte Carlo). Relaxation methods may show slow con-

vergence, depending on the spatial arrangement of the unit cell. Successive

overrelaxation [72] provides a method for accelerating convergence with re-

spect to Gauss–Seidel, but estimating the optimum moment parameter ω
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can be difficult, specially in 3D, and the wrong choice may worsen things.

More sophisticated methods exist, such as multigrid [237], but at the cost of

increased complexity. In serial machines, Exodus can also be accelerated by

incorporating the solved nodes to the list of sinks (known potential nodes).

Thus, the more nodes are solved, the more sinks for walkers, the faster the

remaining nodes are solved.

Exodus is a clear choice for solving the potential of just a few single nodes.

When the number of target nodes is big, a field solution through relaxation is

clearly advantageous in serial machines. In between, the specific geometry of

a given problem will determine the opportunity of one or the other method,

through its effect on the behaviour of the random walkers and the rate of

convergence of the relaxation methods.

In spite of the above considerations, the local character of the Monte

Carlo random walk solution allows for greater parallelism, given the fact

that the local solutions are independent, and thus achievable through inde-

pendent processes that can be executed in parallel. This holds either with

traditional Monte Carlo or Exodus. Exodus has the additional advantage of

not requiring random walks in the strict sense, provided that random walks

are difficult —but not impossible, see [275]— to parallelize. Moreover, the

potentials at boundary nodes are required only to perform the integral in

(1.8). This can be computed node per node, and thus distributed together

with the potential estimation in a purely parallel implementation.
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1.3 The role of image processing

There is an obvious role for image processing in the world of composites, and

materials science in general. Image processing techniques are extensively used

for the analysis of samples of composite materials, using imaging techniques

such as light microscopy, from optical reflection microscopy and confocal laser

scanning microscopy to novel techniques such raman microscopy, tomogra-

phy, and microtomography, as well as non-optical microscopy techniques in-

cluding electron microscopy, nuclear magnetic resonance, ultrasonics, and

scanning acoustic microscopy [60]. Image processing allows the detection of

imperfections, the characterization of average grain sizes and shapes, fiber

lengths and diameters, interstitial spaces, holes, bubbles, aggregation levels,

homogeneity, presence or absence of coatings, pollutants, constituents, etc.

either providing processing techniques which enhance the images previous to

their analysis by human operators, or well up to the last link in the chain,

through machine vision systems that can analyze samples with a high degree

of reliability, accuracy, repeatability, and objectivity.

However, there is also another field in composites science which can profit

of image processing methods and know-how. Such a field is numerical mod-

elling. Image processing techniques can be successfully used in the implemen-

tation of numerical methods for the analysis of composite systems when these

are modeled with regular discrete grids, which, from a computational point

of view, do not differ from digital images. Composites are often modelled as

2D or 3D host matrices with inclusions of one or several species, and regu-

lar lattices are used to discretize matrix and inclusions. Thus modelled, if

lattice cells covering host material are interpreted as background pixels, and

lattice cells covering inclusion material of different species are interpreted

as pixels of different colors, the model is computationally indistinguishable

from a digital binary —if only one species is present— or colour —if several

species are present— 2D or 3D image. As such, there is a wealth of image

processing techniques that can be used to aid in the analysis and simulation

of composites.

Numerical methods running on such models usually require the identifi-
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cation of the different aggregations of inclusion cells, i.e. the identification of

each different granule or fiber in the host material, and their characterization,

regarding their size, shape, and spatial arrangement, for instance with regard

to possible clustering or regularities. For this aim there are two fundamental

tasks: One is the identification and characterization of aggregates of cells

belonging to the same species. This is known in image processing as object

labelling or connected component labelling [222], and in statistical physics

as cluster identification or cluster labelling [91]. Another common task is the

characterization of the local structure for every node in the lattice, i.e. a lo-

cal descriptor of the configuration of elementary cell (pixel in the equivalent

image representation) neighbourhoods.

The homogenization method just described is a good example of a nu-

merical method that can be effectively boosted by the adequate use of these

techniques. As it is justified in Appendix A, the homogenization process de-

vised to obtain the effective permittivity of a composite made up of inclusions

of several species in a host matrix, all with known permittivities, requires the

computation of the potential at the boundaries of the inclusions inside the

unit cell, after subjecting it to a known external field, and the subsequent

integrations such as that in (1.8). For that purpose, the inclusions of the

different species have to be identified, and the local configuration at each

location where the potential is obtained has to be taken into account for the

potential estimation and for the numerical integration.

We generate a cubic mesh that partitions the unit cell into a lattice of

elementary homogeneous cells, and we want to obtain the potential at every

vertex (node) in the mesh on the boundary of inclusions. Given the fact

that the mesh is a regular 2D or 3D grid, and the elementary cells are ho-

mogeneous, the rendered lattice is computationally equivalent to a 2D or

3D image, the equivalent image representation (EIR) of the model, with the

elementary cells corresponding to pixels or voxels. In the following, in gen-

eral, I will refer to both pixels and voxels as pixels, for the comfort of both

the reader and the writer, but it is well understood that in 3D models the

elementary cells correspond to voxels in the EIR. Mesh edges are the pixel

boundaries, and the vertices or nodes the corners of the image pixels. Pixel
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Model EIR
Unit cell Image

Boundaries Image edges
Elementary cells Pixels (or Voxels)

Inclusion cells Foreground pixels
Matrix cells Background pixels

Nodes (Vertices) Pixel corners
Edges Pixel boundaries
Facets Voxel boundaries

Species Colour
Inclusion Label

Table 1.1. Correspondences between the model and the equivalent image
representation (EIR).

colours or graylevels are dictated by the species to which the corresponding

elementary cell belongs. Pixels with the same colour correspond to inclusions

of the same species. After connected component labelling on the EIR, labels

identify the individual inclusions, and colours the different species. Table 1.1

summarizes the equivalences between the composite model and the EIR.

Thus, for instance, (1.6) can be reinterpreted in EIR terms as stating

that the interpolation coefficients for each pixel —or voxel— corner depend

on the colour of the neighbouring pixels —or voxels— in the equivalent image

representation. The reader should keep in mind that the EIR is not an image

of a sample of the composite, but a convenient interpretation of the model

for the purposes of applying digital image processing methods to assist the

numerical methods running on the model.

A connected components labelling of the IER provides the numerical

methods with information which allows including in the computations only

the relevant data. For instance, during integration of the potential, iden-

tifying the inclusion to which each boundary node belongs, such that the

potential can be integrated on a per inclusion (grain, fiber, . . . ) basis.

The other relevant image processing technique is the encoding of the local

structure around each node, i.e. the encoding of the configuration of local

pixel neighbourhoods in the EIR. No matter what method is used to solve
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the potential, the set of sν coefficients in (1.5), six in 3D systems and four

in 2D, has to be determined for each node in the mesh. The determination

of these coefficients requires the inspection of all eight or four neighbour

elementary cells of each node to determine their permittivity, as in (1.6).

This can be done once per iteration, which is a considerable overhead, or

only once at the beginning if a six or four dimensional array is used to

store the coefficients of each of the L3 (L2) nodes in the mesh, what can

take a considerable amount of memory. The solution is to encode the local

configuration of the elementary cells surrounding each node according to an

efficient scheme, such that later, during the iterative computations, the code

associated to each node will determine the coefficients from a predefined finite

set of possibilities.

The same applies for solving the integrals in the right hand side of (1.8).

To evaluate the contribution of a node to each of the components of the

corresponding integral, we have to determine to how many free facets of

inclusion cells, normal to each direction, belongs the node. In EIR terms, we

have to determine to how many foreground pixels or voxels in the boundary

of a connected component belongs a given pixel or voxel corner. This again

depends on the local configuration.
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1.4 Original contributions

Within the framework just described, where a general problem in —but not

restricted to— remote sensing is dealt with a numerical method based on

a theoretical formulation for the electromagnetic homogenization problem

in microstructures, implemented with the aid of original image processing

methods, there are a number of significant contributions, namely:

- An original theoretical formulation for the homogenization problem of

the effective permittivity.

- A numerical method with an efficient implementation of the formula-

tion above.

- A new connected component labelling with various advantages with

respect to the classical methods.

- A local configuration encoding scheme with a number of characteristics

that make it suitable for different applications, including image coding

and pattern recognition.

- A 3D chain code for arbitrary 3D shapes.

- Some numerical results for regular composites demonstrating the fea-

sibility of the methods above from which some interesting results can

be concluded (see Appendix E).

These have been published in a number of refereed journals and confer-

ences:

- J. Mart́ın-Herrero, 2006. “Hybrid object labelling in digital images”,

Machine Vision and Applications Journal, (in press).

- J. Mart́ın-Herrero and J. F. Peón-Fernández, 2005. “Computation of

longwave electromagnetic response of nonhomogeneous media”, IEEE

Transactions on Geosciences and Remote Sensing, 43(7):1479–1489.
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- J. Mart́ın-Herrero, J. F. Peón-Fernández, T. P. Iglesias, 2005. “The

effective permittivity of lossless granular composites: From periodic to

random distributions”, Proceedings of the XXVIII General Assembly of

the International Union of Radio Science (URSI-GA2005).

- J. Mart́ın-Herrero, 2005. “Two low level image processing techniques

for the characterization of composite systems”, Proceedings of the 5th

International Conference on Composite Science and Technology.

- J. Mart́ın-Herrero, 2004. “Hybrid cluster identification”, Journal of

Physics A, 37:9377–9386.

- J. F. Peón-Fernández, J. Mart́ın-Herrero, N. Banerji, T. P. Iglesias,

2004. “Numerical study of effective permittivity in composite systems”,

Applied Surface Science, 226:78–82.

- J. Mart́ın-Herrero, J. F. Peón-Fernández, N. Banerji, T. P. Iglesias,

2002. “Monte Carlo estimation of the effective electric response in

composites”, in S. Bandyopadhyay (ed.) Composite Systems: Macro-

composites, Microcomposites, Nanocomposites. 300–306.

while others have been submitted and are awaiting revision.

This report will be focused on the connected component algorithm and

the local configuration encoding scheme, detailing them and their advantages,

and providing examples of application in fields out of the scope of the specific

environment which originated them, namely machine vision, image synthesis,

and image coding.

Chapter 2 deals with the connected component labelling algorithm, and

Chapter 3 deals with the local configuration encoding scheme. The formal

treatment of some ancillary aspects is presented for reference in the Appen-

dixes, and also some results of the homogenization method which benefits of

the techniques detailed in the text.







Chapter 2

Hybrid Connected Component
Labelling

. . . for nothing contributes so much to tranquillize the mind
as a steady purpose —a point on which the soul may fix its intellectual eye.

2.1 Introduction

Labelling the connected components of a digital image is a fundamental low

level technique in image processing and machine vision, as an intermediate

step allowing further processing at object level. A connected component

is a set of connected pixels in a binary image such that a connected path

made of neighbouring foreground pixels exists between every two pixels in

the set. The notion can be easily extended to non binary images by repeating

the process for each digital level, colour, or group of colours. A connected

components labelling of a binary image is a labelled image in which the value

of each foreground pixel is the label of its connected component. Connected

component labelling in digital images is just a specific application of the more

generally known as cluster labelling or cluster identification algorithms, of

primary use in statistical physics1. Several algorithms for serial machines

1Cluster identification is a low level technique fundamental in spatial analysis. Its
purpose is assigning the same label to every connected site having the same state in a
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have been described for this task, which can be broadly classified between

recursive and iterative techniques, and between single pass and two pass (or

more). Parallel implementations are not discussed here; the interested reader

is directed to [5].

2.1.1 Connectivity in digital images

A continuous image is an intensity function f(x), 0 < f(x) <∞, that gives

the intensity of (usually, but not necessarily) light at the points with spatial

coordinates x. A digital image F is obtained by regular spatial sampling and

intensity level quantization of f . A digital image is then a tessellation of the

space into regular p-gons, polygons with p edges, where the amplitude of f

remains constant. These p-gons are denoted pixels —picture elements— in

2D, when x ∈ R
2, and voxels —volume elements— in 3D, when x ∈ R

3.

Connectivity in F is defined in terms of adjacency relations among p-

gons. A neighbourhood rule will determine which p-gons are connected. Two

p-gons are neighbours if they share an edge, a vertex, or both. From now on,

without loss of generality, we will restrict the discussion to square pixels. The

extension to cubic voxels is trivial, and the generalization to p-gons follows

straightforwardly. Square pixels are generally assumed to be centered at

consecutive integer lattice points of the plane, and the pixel with coordinates

(i, j) in the plane is denoted as pi,j. Dealing with square pixels, a pixel will

have four neighbours if we consider adjacency in terms of edges, or eight

neighbours if we consider edges and vertices.

Two pixels pi,j and pu,v are 4-neighbours if |i − u| + |j − v| = 1 and

8-neighbours if 0 < max{|i − u|, |j − v|} ≤ 1. Two pixels obeying a given

common condition A are connected by a 4(8)-path if there exists a sequence

of pixels pik,jk
, 1 ≤ k ≤ n, obeying A, such that pik−1,jk−1

is a 4(8)-neighbour

of pik,jk
. The usual condition A is often having a given intensity level or

colour, for instance, black, but many others may exist depending on the

lattice. Connectivity is defined according to a neighbourhood rule, which depends on
lattice dimension and geometry, usually a 4-nearest neighbour or 8-nearest neighbour rule
in square two dimensional lattices.
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application, e.g. texture similarity in a neighbourhood window in textural

region segmentation.

Let CA be the connectivity relation defined on F as follows: For all pairs

of pixels p, q ∈ F , (p, q) ∈ CA ⇐⇒ p and q obey A and are connected by a

path in F . Then CA is an equivalence relation that partitions the pixels of F

obeying A into distinct equivalence classes. Each equivalence class is called

a connected component, object, figure, or cluster, depending on the context.

I will use interchangeably the first two terms, sometimes just abbreviated as

components.

The labelling problem is concerned with assigning a unique label to each

connected component in the image. In a labelling of F two pixels obeying

A have the same label if and only if they are in the same connected com-

ponent. Some definitions follow: The internal distance between two pixels

obeying A is the length of the shortest 4- or 8-path connecting them. The

internal diameter of a connected component is the maximum of all internal

distances among all pairs of pixels in the component. Let PA be the set

of pixels in F obeying A. A pixel in PA belonging to component c under

4(8)-neighbourhood is a boundary pixel of component c if one of its 8(4)-

neighbours is in PA. The centroid of a connected component is the average

location of all the pixels in the component. The bounding box is the min-

imum rectangular box enclosing the component. A spanning or percolating

component is a component with pixels in two opposite boundaries of F . Al-

ternatively, two sides of the bounding box of a spanning component are in

opposite boundaries of F . Percolation Theory is the field of science dealing

with the phenomena associated with percolating clusters in general lattices.

For the purposes of labelling, all the information needed about the pixels

is if they obey or not obey A. Thus, no matter if we are dealing with a binary

image, a grayscale image, a colour image, or a multi or hyperspectral image,

and no matter how simple or complexA is, the labelling only requires a binary

mask of the image, where usually pixels in PA are referred as foreground pixels

and pixels in PA as background pixels.
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2.1.2 The classical recursive approach

One of the common techniques for object labelling is the classical recursive

connected component labelling algorithm [149,239], which can be traced back

to the 70’s [3, 35, 142, 240], or even earlier. The operation of the recursive

technique is as follows: The labelling is initialized by assigning a negative

integer to all foreground pixels, and 0 to the background pixels. A recursive

function assigns the current label, an ordered positive integer, to the current

pixel and scans all of its neighbours in search of another negative label. If any

is found, the function calls itself to repeat the procedure there. A single pass

over the image, in which the function is invoked for every foreground pixel,

labels every object in the image with consecutive labels, such that at the end

of the pass the total number of objects in the image is known. The extension

to non binary masks is straightforward, by using as many different negative

labels as identity criteria An, for instance different digital levels, colours, or

group of colours in the image. Explicit algorithms and detailed treatment of

the pure recursive technique for cluster labelling and percolation detection

in normal and huge images can be found in [155].

The advantages of the recursive technique are that it performs compo-

nent labelling and, optionally, straightforward component characterization

and percolation detection during the labelling in a single pass over the im-

age, and its comparative simplicity, because it does not need handling any

additional data structure as it is the case with two-pass iterative algorithms.

The recursive technique allows object characterization (e.g. area, centroid,

bounding box) and detection of spanning objects in parallel with the labelling

in a single pass over the image. It also allows the labelling and character-

ization of a given component without having to label all the image. The

ability to characterize objects during the labelling, such that a given object

can be identified and processed without being forced to label all objects in

the image, can be a great advantage in time-critical applications, such as

many real time machine vision applications.

The major factor limiting the applicability of the recursive technique is

usually considered to be the entire image having to fit in random access
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memory. This could be a concern some years ago, but not anymore in most

applications, due to the exponential development of the hardware. The real

limiting factor nowadays is the stack. The major drawback of the recursive

technique is the intensive use of the stack, which threatens processes with

being interrupted by a stack overflow. This is due to the high number of

consecutive recursive calls (recursion depth) issued by the algorithm when

labelling big components. The recursive technique requires an oversized stack

to store local and state variables for a large number of consecutive recursive

function calls when dealing with images containing big objects. The stack

is usually limited by the system, and the risk that a stack overflow may

interrupt lengthy unsupervised or critical real time processes appears. One

solution to this problem is avoiding recursion by converting the algorithm to

iterative, which requires creating and managing a custom stack in the heap,

a dedicated data structure that may require more room than the image itself.

2.1.3 The classical iterative approach

The classical alternatives to recursive labelling are two pass iterative tech-

niques [70,99,110,150,208,209] which require the entire labelling of the image

with temporary labels, followed by a second pass during which some of the

labels are corrected. Thus characterization of objects during the labelling

becomes fairly complicated [111,112] when compared with the recursive ap-

proach, and the labelling of just a single object is not possible. In exchange,

they allow the labelling of huge images with small memory usage, as they

usually need to have in memory just two lines (in 2D) and an equivalence

table.

In Rosenfeld and Pfaltz’s algorithm [208], during a first pass each fore-

ground pixel is labelled with the labels of the pixels immediately preceding

it in row-major order. When a pixel is attributed more than one label, the

minimum of them is selected, and the location is marked as a “merge” point.

Thus, after the first pass, different pixels in the same component may have

different labels, and merge points are possibly scattered all over the image.

Thus a second pass is necessary where pixels are relabelled using the merge
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points until all pixels in the same component have a unique label. The merge

points are processed such that every time a merge point is found, an equiv-

alence pair is obtained by collecting the labels of the neighbour pixels pre-

ceding the merge point in row-major order. This equivalence pair is used to

relabel all the pixels in the image, and the procedure is repeated for all merge

points. This is obviously less than optimal, and Rosenfeld and Pfaltz already

discussed using global equivalence tables. Hoshen and Kopelman [110] devel-

oped the idea to produce one of the more used labelling algorithms, known

as Hoshen-Kopelman algorithm (HK hereafter), a two pass algorithm that

first propagates cluster labels sequentially to the forward neighbours while

constructing a global equivalence table for conflicting labels, and then trans-

lates all labels to their definitive values according to the equivalence table on

a second pass.

Lumia et al. [150] suggested using a small local equivalence table instead

of a large global equivalence table. The equivalence table contains all equiv-

alence pairs just for the current scan line, and the labels are propagated from

one line to the next during the scan. All equivalence pairs in the current line

are collected in the equivalence table using Union-Find operations, taking

advantage of Tarjan’s almost linear Union-Find algorithm [241] to handle

the equivalence table. Union-Find algorithms allow efficient construction

and manipulation of equivalence classes using data trees, as first suggested

by Galler and Fischer [90]. Then the line is re-scanned to relabel all pixels

according to the equivalence table. This method is suitable for implementa-

tion on computers with very small memory, but, as stated above, nowadays

memory is not the major concern it used to be.

Using Tarjan’s Union-Find operations greatly improves the handling of

equivalence tables, and therefore nowadays the best iterative performance is

achieved with global Union-Find equivalence tables. Union is used to add

new equivalence pairs every time a new label conflict (merge point in Rosen-

feld and Pfalzt’s notation) is encountered, and Find is used in the second

pass to relabel the entire image [70]. However, HK remains one of the most

popular, if not the most, labelling algorithms, specially within physicists.

The Swendsen-Wang cluster update algorithm [238] uses HK to update clus-
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ter states in the generation of samples from the Ising model [115] and the

generalization for more than 2 states, the Potts model [200]. The Ising and

Potts models are of interest for image processing because of their ability to

produce image samples with interesting statistical properties. See [272], [88],

or [95] for a review.

Less popular approaches to connected component labelling use boundary

tracing to surround the component and then fill in the interior [1,47,92], and

also quadtree and bintree representations based on successive subdivision of

the image into quadrants [214,215].

2.1.4 Recent developments

In spite of its fundamental role as a basic low level image processing tech-

nique, connected component labelling has not received much attention from

the image processing community, at least when compared to the statistical

mechanics community. This is probably due to the fact that in computa-

tional physics the challenge is way bigger, due to typical size —while images

in the order of Gigapixels are not yet expected in the short term, statistical

mechanicians are usually interested in simulating phenomena in near infi-

nite media—, lattice structure —images are more than usually regular grids,

crystal lattices show very different arrangements—, and dimension —images

are not expected to go over three dimensions in the near future, physicists’

lattices in 5D are not rare. Also because the image processing community

seems to be satisfied with the performance of the iterative algorithms, once

the recursive algorithm is almost automatically rejected from consideration

due to memory limitations, except for very specific applications. However,

with the advent of real time computer vision, all critical low level techniques

have to be fine tuned to the limit of their possibilities, in order to achieve

the processing abilities required from modern applications in negligible time,

and this automatic selection of the method of choice must be revised.

Percolation theory is probably the field that has been more prolific in con-

nected components identification and related algorithms. Percolation deals
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with connectivity in lattices, of which regular square grids —images— are a

particular case. A lattice is said to percolate when a connected component

spans the entire lattice between two opposite borders. This is of interest in

many fields as disparate as soil permeability, mining, fire spread, conductiv-

ity, or magnetism, see Stauffer [233] for a readable introduction. Detecting

spanning objects is a common task in many image processing applications

related to spatial analysis, such as geographical information systems (GIS)

and landscape analysis [270], metapopulation ecology [176], or risk fire as-

sessment [124], to mention just a few. Within machine vision, it usually

appears as the need to check the continuity of parts under inspection, such

as wirings, pipes, or beams.

There have been recent advances in simulation techniques for the study of

percolation at different occupation densities and lattice geometries, with con-

siderable gains in performance at the cost of increased specificity. Works like

those of Paul, Ziff, and Stanley [194] or Babalievski [6] focus on high dimen-

sional lattices. The former use a pure recursive technique to grow the lattices

on the spot; they do not label pre-existent components. Babalievski com-

pares spanning-tree approaches with HK, and presents a depth-first method

to identify loops of occupied sites. Sheppard et al. [224] report an efficient al-

gorithm for simulating invasion percolation in big lattices. Rappaport [202],

Moukarzel [180], Tiggemann [244], or Moloney and Pruessner [177] have also

devised methods to deal with huge lattices, some of them implementing HK

on parallel machines. Parallel implementations of HK can also be found in

Flanigan and Tamayo [77], Constantin et al [65], or Teuler and Gimel [243].

Al-Futaisi and Patzek [4] present an extended version of HK to deal with

non-lattice environments. Newman and Ziff [187] provide a method (includ-

ing code) to study percolation for all possible occupation densities, p, at

a time in random uniform images built during the process, which outper-

forms the classical methods by several orders of magnitude2. However, this

performance comes from the specific purpose of the method, as the authors

recognize when they state that typical depth-first or breadth-first methods

2As a marginal note, I find their average 4.5 seconds for each possible value of p on a
10002 lattice using a typical depth-first search on a 2001 computer considerably high.
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are optimal for a single value of p.

In spite of these many developments, algorithmic efficiency has many

readings. Algorithms may exist which may be faster for a given task, but

using quite complex data structures, rather obtrusive for the non specialized

computer programmer. Or the task may be so specifically constrained that

the algorithms can not be used for general purposes. Thus everything de-

pends on what is expected from a given technique. The fact is that HK is

used by a great number of researchers, to the point of being “still the stan-

dard technique for identifying clusters in percolation” [177], in spite of the

aforementioned works. This reflects that not everybody has access to paral-

lel supercomputers, the convenience of simple, understandable, customizable

code, and that many applications require the labelling of pre-existent lattices,

such that “growing” the lattice on the spot is unsuitable.

Therefore, typical general purpose connected component labelling algo-

rithms remain necessary tools, and the simplicity and elasticity of recursive

labelling would made it a good alternative to the iterative techniques if its

stack limitations were overcome. The pure recursive technique needs a stack

of about 5 Mb to prevent overflow when processing a 512× 512 image. That

is too big a stack for not such a big image. The aim is maintaining the sim-

plicity of the recursive approach, without any other data structure than the

image itself, while dealing with this major drawback, stack abuse. Also pre-

serving the single pass, one component at a time, character of the recursive

technique, which makes it so flexible and suitable for many purposes.

The answer is hybrid object labelling [159,164], a combination of recursion

and raster scanning, such that raster scanning is used along one direction,

the rows, and recursion is reserved for the other(s), to change row. The

hybrid technique can be directly substituted into any program using the

recursive technique, just by replacing the recursive function, without any

further modification, but a significant decrease in the number of consecutive

recursive function calls, and enhanced performance, as I will show.
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2.2 The algorithm

In the following, while not stated otherwise, I assume a binary mask stored

into random access memory as a two-dimensional integer array, px,y, where

every pixel is located by row y and column x. The labelling is initialized

with negative labels for foreground pixels and 0 for background pixels. Ob-

ject labels are positive integers. The hybrid technique, as the pure recursive

technique, assigns labels consecutively, such that when the labelling is com-

plete, the last label equals the total number of objects in the image.

The pure recursive technique has a main loop that scans the labelling in

search of a negative label and calls a recursive function, which assigns the

current cluster label to the site and explores its neighbours. If a negative label

is found, the recursive function calls itself for that neighbour and the process

is repeated. When the last site of the component has been thus labelled, the

recursion ends, the current label is increased and the scan along the image

is continued in search of the next component. Thus, a single pass over the

image suffices to label all components with definitive consecutive labels, and

each component is wholly labelled at one stroke, allowing component charac-

terization (computation of component parameters) and percolation detection

(checking if opposite ends of the image are reached) during the labelling. It

also permits labelling a single component without having to label the whole

image, which is, for instance, the idea behind Wolff’s cluster update algo-

rithm [271] for generation of samples of the Potts model. The drawback is

that it requires a recursive call for each site in the component, many of them

consecutive, and, therefore, the recursion depth can be very high, thus de-

manding a big stack, even in moderately sized images, if a high fraction of

foreground pixels or very compact components are expected.

The solution: Let’s use iterative scanning to explore along a direction,

say, without loss of generality, along rows, and let recursion for the rest of di-

rections (one in 2D, two in 3D). Thus, the number of recursive calls, now used

only to change row, is drastically reduced. Let a burst be a set of connected

pixels along a row bounded by background pixels or the image boundaries. I

use a recursive function which iteratively labels every pixel in a burst before
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exploring the adjacent rows (two in 2D, three in 3D). If a foreground pixel is

found, a recursive call is issued for the burst on that row. Thus, the number

of recursive calls is reduced from one per pixel in the component to one per

burst in the component. Small components may have very few pixels per

burst, and thus the improvement may not be that significant for them, but

small components never cause recursion depth troubles (stack overflow). Big

components, more prone to requiring a high number of consecutive recursive

calls, will also have a greater number of pixels per burst, and, therefore, the

decrease of the recursion depth is very significant. Regarding speed, the over-

head of repeated function calls is higher than that of iterative scanning, and,

therefore, the decrease in the number of recursive function calls balances the

slightly increased complexity of the recursive function when compared to the

pure recursive technique. Thus, the relaxation on stack requirements should

come at no cost in overall performance.

Any program using the recursive technique can be updated to hybrid la-

belling just by replacing the recursive function at the core of the algorithm,

here called Label(), without any further change. The pseudocode in Algo-

rithm 1 illustrates the algorithm for 4-neighbourhoods in 2D images.

Algorithm 1 2D hybrid labelling for 4-neighbourhoods

0→ label
for all x, y if px,y < 0 {increase label, Label(x, y)}

Label(x, y)
while px−1,y < 0 decrease x
x→ m
while pm,y < 0 {label→ pm,y, increase m}
while x < m

if px,y−1 < 0 Label(x, y − 1)
if px,y+1 < 0 Label(x, y + 1)
increase x

end of Label

The image is scanned in search of foreground pixels, recognized by their
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negative labels. Any arbitrary search order may be used, thus priorizing

specific areas of the image, or a given object. When the recursive function,

Label(), is called, it labels the entire object, using the value stored in label,

a global variable, before returning control. After the scan, all objects are

labelled and label contains the total number of objects in the image. Label()

scans the image along x (decreasing x, backscan hereafter) until the first pixel

in the burst is found. Its location in the row is kept in x. Then the scan

proceeds forward from x (forward scan hereafter), assigning the current label

to the pixels in the burst, until its end. This end location is kept in m. Last,

the forward scan is repeated (second forward scan) to search for foreground

pixels in the adjacent rows (y − 1 and y + 1)3. If any is found, Label() calls

itself to repeat the procedure on the new burst. Thus the number of recursive

calls is reduced to at most one per burst, because Label() enters every burst

only once. The order in which backscan, forward scan, and second forward

scan are executed ensures the complete labelling of the whole object. To label

a single, given object, for instance in response to a mouse click from the user

of a graphic interface, the scan of the whole image is replaced by a single call

to the recursive core of the algorithm, Label(), with the coordinates of the

mouse.

A slightly faster version labels pixels in the backscan, thus shortening

the length of the forward scan. This is accomplished by keeping in m the

location of entry in the burst, then backscanning in x, followed by a forward

scan in m, and a second forward scan from x to m, see Algorithm 2.

The reader may be wondering why if Algorithm 2 is faster should anyone

be interested in Algorithm 1, when they are virtually identical. Well, there is

a subtle difference: In the first, slightly slower version, all pixels are labelled

by the same instruction. In the faster version, pixel labelling takes place in

3The keen programmer will easily notice that a sound implementation deserves a single
decrease of y before entering the second forward scan to convert the search in y − 1 and
y + 1 into a search in y and y + 2. This decreases in 2N − 1, with N the number of pixels
in a component, the number of integer subtractions per component. No need to obscure
the pseudocodes above, however. Also note that too keen a programmer may be thinking
in introducing a local variable in Label() to hold y+1, thus affording an additional 2N−1
integer additions per component. He should think twice, however, and remember the main
goal: Decreasing stack use.
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Algorithm 2 Faster 2D hybrid labelling for 4-neighbourhoods

0→ label
for all x, y if px,y < 0 {increase label, Label(x, y)}

Label(x, y)
x→ m
while px−1,y < 0 {decrease x, label→ px,y}
while pm,y < 0 {label→ pm,y, increase m}
while x < m

if px,y−1 < 0 Label(x, y − 1)
if px,y+1 < 0 Label(x, y + 1)
increase x

end of Label

two different places in the code (backscan and forward scan). This may be

an annoyance when component characterization involves complex operations

and labelling speed is not that critical.

Using 8-neighbourhoods only requires changing the limits of the second

forward scan. This is achieved just by changing the while conditions in the

backscan and the second forward scan. See Algorithm 3 for the faster version.

The extension to 3D images is straightforward. A new index appears,

and the second forward scan grows to explore the two additional adjacent

rows in the new index. See Algorithm 4 for 4-neighbourhoods.

The pseudocodes are particularized for binary masks for clarity. If there

are more than two classes in the mask, px,y can be initialized with as many

negative integer labels as different identity criteria An are in the image, and

Label() adapted to search for the negative label that triggered the first call

into the current component.

For obvious reasons, hybrid labelling requires a programming language

allowing recursive function calls. I recommend C or C++, because their

function calling protocol is very efficient [236]. The function calling protocol

has special relevance when dealing with techniques using recursivity, and the
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Algorithm 3 Fast 2D hybrid labelling for 8-neighbourhoods

0→ label
for all x, y if px,y < 0 {increase label, Label(x, y)}

Label(x, y)
x→ m
while px,y < 0 {label→ px,y, decrease x}
while pm,y < 0 {label→ pm,y, increase m}
while x ≤ m

if px,y−1 < 0 Label(x, y − 1)
if px,y+1 < 0 Label(x, y + 1)
increase x

end of Label

Algorithm 4 Fast 3D hybrid labelling for 4-neighbourhoods

0→ label
for all x, y, z if px,y,z < 0 {increase label, Label(x, y, z)}

Label(x, y, z)
x→ m
while px−1,y,z < 0 {decrease x, label→ px,y,z}
while pm,y,z < 0 {label→ pm,y,z, increase m}
while x < m

if px,y−1,z < 0 Label(x, y − 1, z)
if px,y,z+1 < 0 Label(x, y, z + 1)
if px,y+1,z < 0 Label(x, y + 1, z)
if px,y,z−1 < 0 Label(x, y, z − 1)
increase x

end of Label

different calling conventions offered by a given compiler should be checked for

optimized performance. In C, hybrid labelling can be implemented with very

compact, clean code, even shorter than the pseudocodes above. Alternatively,

the simplicity of the algorithm renders assembler a reasonable option.
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One of the main features of recursive labelling is its ability to easily

characterize the objects during their labelling, in a single pass over the image.

In classical recursive labelling the recursive function is called once for every

pixel belonging to an object, and computations such as increasing object

area, averaging pixel coordinates, or recording extreme coordinates for the

bounding box, can be performed anywhere within the recursive function.

Such computations are equally possible with the hybrid technique, provided

that they are performed at the right place. In Algorithm 1 a single call to

Label() involves the labelling of several pixels, a whole burst, in the forward

scan, which is the right place for the computations, to ensure that they are

performed once for each pixel. If a computation involves pixel coordinates,

just note that during the forward scan in Algorithm 1 they are referred as

(m, y), because x is used to keep the initial position for the second forward

scan. See Algorithm 5 for an example of characterization during labelling. If

the faster version is used (Algorithms 2 to 4), the characterization code has

to be repeated in the backscan and the forward scan.

Algorithm 5 2D hybrid labelling and surface area for 4-neighbourhoods

0→ label
for all c 0→ areac

for all x, y if px,y < 0 {increase label, Label(x, y)}

Label(x, y)
while px−1,y < 0 decrease x
x→ m
while pm,y < 0 {label→ pm,y, increase arealabel, increase m}
while x < m

if px,y−1 < 0 Label(x, y − 1)
if px,y+1 < 0 Label(x, y + 1)
increase x

end of Label

The ability of the recursive techniques to sequentially label entire ob-

jects with a definitive label in a single pass, permits very fast detection of

spanning objects (percolation check). When using two-pass algorithms the
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whole image has to be labelled before checking for percolation, because sev-

eral conflicting labels may be temporarily assigned to different objects. The

presence of spanning objects is detected searching for matching labels in op-

posite borders of the image. The whole table of equivalence classes has to

be built before the check, in order to correct every conflicting label in the

borders. With hybrid labelling, though, spanning objects can be detected

during the single labelling pass, rendering the final search in the borders un-

necessary. If the algorithm is configured such that the raster scans proceed

along the direction of interest, two flags can signal if two opposite borders

of the image are reached during the labelling of an object. If both flags are

set after labelling an object, it is a spanning object, identified by the current

label.

However, a different, straightforward approach to percolation detection

can be used. By definition, only the objects touching a border of the image

can be spanning objects. By restricting the labelling to the first line in the

image, we only have to check if we reach the last line during the labelling.

Thus, at most only the objects touching the first line of the image are la-

belled, in general just a fraction of the objects in the image. Moreover, if

percolation does exist, the labelling can be stopped as soon as a pixel of

the spanning object in the last line is found. In this way, recursive percola-

tion check significantly improves the iterative approach. While the technique

can be equally used with both the recursive and the hybrid approach, the

advantageous use of the stack by hybrid labelling prevails. And it is also

faster, because it uses iterative scanning to move along the direction of in-

terest. This is not the only alternative to labelling the entire lattice. Ziff,

Cummings and Stell [277] proposed a hull method, only for two dimensional

images, that surrounds the spanning component, thus checking for percola-

tion without having to label all the image. Depending on the specific image

configuration, this may be a faster approach, but whenever a direct path, or

a quasi direct path, from border to border exists, more probable at higher

densities, a hybrid percolation check just cuts through from border to border

in one or a few iterative for loops. Thus, while the hull method runs at least

in time O(N7/8) in the criticality region, hybrid percolation check could be
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running in time O(N1/2) or close.

Thus, checking for percolation during the labelling just requires checking

if the extreme coordinates, x and m, reach opposite boundaries of the image

within a component. However, if percolation check is the only purpose of the

labelling, the algorithm is greatly simplified and accelerated: Scanning the

last line in the image is enough; if x reaches the first line during the labelling,

the image percolates and the labelling can be halted. Using the last line as

the “entry” point is justified by the reverse tracking of the backscan. See

Algorithm 6 for a very fast percolation detector.

Algorithm 6 Very fast 2D percolation detection

0→ percolation
for all y while not percolation if pxmax,y < 0 Label(xmax, y) → percolation

Label(x, y)
while px−1,y < 0 decrease x
if x = 0 return 1
x→ m
while pm,y < 0 {1→ pm,y, increase m}
while x < m

if px,y−1 < 0 Label(x, y − 1)
if px,y+1 < 0 Label(x, y + 1)
increase x

return 0
end of Label
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2.3 Benchmark results

As it can be shown by the pseudocode in the section above, the hybrid

algorithm succeeds in retaining the advantages of the recursive approach

(simple, compact code, labelling a single object without the need of labelling

the entire image, using definitive, consecutive labels in a single pass, no

need of additional data structures, easy object characterization during the

labelling, including detection of spanning objects), while reducing the number

of recursive calls, theoretically, at least, in a considerable extent. However,

to prove the validity of the idea and the convenience of the algorithm, further

evaluation beyond theoretical formulations or intuition is needed. It is yet

to prove the impact on speed due to the decrease of pressure on the stack,

and also to quantify this claimed enhancement on stack use.

2.3.1 Algorithmic performance

It is way too usual that systematic evaluation of algorithms for image process-

ing and computer vision is neglected. For anybody arriving to the discipline

with a background in physics or a formal computer sciences education, this

is a source of frustration. The reasons for this state of affairs may be varied,

but they often reduce to a common ground. First, there is no doubt that

some problems in computer vision are as hard as new, and classical rigorous

error or performance analysis is out of discussion. Second, much emphasis

is put on mathematical rigor in mathematical formulations supporting new

methods or strategies. However, there seems to be a large breach between the

foundations of methods and approaches and their algorithmic embodiment.

Once the theoretical ground is established, several algorithms will come to

flourish on it with more or less fortune, without anybody asking for proof of

performance beyond the convenience of use due to this or that feature. This

is generally due to the fact that there is usually as much distance from the

theoretical formulation of a problem to the specific implementations as there

is from the images to the real world they try to reflect. This tendency has

somehow reversed in the past few years, where we have assisted, for instance,
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to real time demonstrations of performance of given methods during confer-

ences or scientific meetings, even if, in general, within the framework of very

specific applications. Proof of the growing concern about this extreme, are

the efforts to establish generally accepted rules for the performance analy-

sis of computer vision algorithms [100]. The three major criteria for the

performance of computer vision algorithms are:

- Successful solution of task. This is a top priority. But also the precise

definition of the tasks for which it is suitable and what are the limits.

- Accuracy. This includes an analysis of the statistical and systematic

errors under carefully controlled conditions.

- Speed. One of the major criteria defining the applicability of an algo-

rithm.

There are different ways to evaluate algorithms according to the criteria

above. Ideally this should include three classes of studies:

- Analytical studies. Mathematics to verify algorithms, check error prop-

agation, and predict catastrophic failures.

- Performance tests with computer generated images. These provide

performance data under carefully controlled conditions.

- Performance tests with real-world images. The final test for practical

applications.

There is no reason to exclude connected component labelling algorithms

from this sort of analysis. Proof of successful solution of task is in most of

cases self-evident, as it is the case with the hybrid technique. Explaining

how the algorithm works, supported on some pseudocode, as in the section

above, renders any proof of workability superfluous4.

4Well, this assertion should be tinged. A necessary condition is that the audience
knows about computer programming, including recursion. This, for instance, was not the
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Accuracy is not of application in the domain of working connected com-

ponents algorithms. Either they work or not. If a connected component

algorithm fails to label some connected components, it is plainly failing.

This is not the case of either classical techniques, nor is it the case of hybrid

labelling. A different subject matter is when a connected component algo-

rithm is at the core of a segmentation algorithm, say textural region growing,

where the criteria for defining “foreground” and “background” (in labelling

terminology) pixels on the fly, i.e. a set of probably complex identity criteria

An, will determine the degree of accuracy of the global segmentation tech-

nique. But this is not related to the accuracy of the labelling. Once a pixel

is defined as foreground or background, a working labelling technique will

never fail to ascribe it to the adequate component.

However, limits of application, task suitability, and, of course, speed, are

major issues regarding connected component labelling which deserve careful

study. Analytical study of algorithmic complexity to compare the perfor-

mance of the recursive, the iterative, and the hybrid techniques is not ad-

equate, though. Mathematical analysis would in this case be restricted to

speed because accuracy is out of scope. Still, the different nature behind

each technique (recursivity and iterativity) renders complexity order estima-

tions (the “big O” analysis) less than significant. The number of times a

pixel is visited, either for checking its label, either to assign or reassign a

label, can be estimated for the general case for each algorithm —and I say

“estimated” because it depends on the structure of the components in the

image, and the precise implementation of each algorithm—, but the results

would induce wrong performance estimations, as the basic technique used

for those “visits” —iterative loops in the iterative techniques, recursivity in

the recursive techniques, a mixture in the hybrid approach— is different and

therefore involves different basic processor operations. Moreover, the general

estimation would greatly differ from concrete application scenarios, because

the influence of the structure of the components in the image, and there-

case of a computer vision journal referee which asked for proof that the hybrid technique
would work on a ring-shaped object, because he expected “the various instances of the
algorithm working in opposite directions to collide at the bottom”! The author decided
he was addressing the wrong journal. . .
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fore of the image itself, is far too large. An extreme instance of this is just

another case of critical phase transition in percolation: The behaviour of

many magnitudes and processes changes abruptly in the vicinity of percola-

tion. Connected component labelling is just another process running on the

lattice, subject to the same critical phase transition effects. The density of

foreground pixels, and thus the probability of percolation, affect therefore

the behaviour of the labelling techniques in a non trivial way.

This is where synthetic images, also called neutral scenarios, or neutral

landscapes, depending on the context, enter the game. Sets of random sam-

ples of images provide controlled environments with statistical significance to

study and compare the performance of algorithms. Synthetic random image

models adequatelly designed yield general results independent of specific ap-

plications and conditions, while allowing to analyze the expected behaviour

in a family of uses or field of application by carefully designing the models so

that the image samples have general characteristics corresponding to those

expected in the specific fields of application. In the following I will describe

several image sets I generated to test the hybrid technique versus the classical

approaches, and show the results of the tests.
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2.3.2 Sample image sets

I generated three sets of synthetic binary images (masks) of size 512 × 512:

the Uniform set, the Ising set, and the Block set. Uniform is composed of

images with a pseudorandom uniform distribution of foreground pixels, with

density ranging from 5% to 95% in steps of 5%, 1 000 different images for

each density. Figure 2.1 shows some sample Uniform images with different

densities of foreground pixels. A magnification of a 25×25 window is included

for each image, to better appreciate the shapes of the objects. Figure 2.2

shows the average number of objects per image, their average area, the area

of the bigger object, and the percentage of images with at least one spanning

object —“percolating” images. A threshold, called the percolation threshold,

pc, is clearly visible at about 60% of foreground pixels. Uniform images are

the equivalent of the so-called neutral landscapes in landscape analysis [269],

and provide images without any recognisable spatial structure where the

behaviour of the algorithms is clearly determined by the density of foreground

pixels, i.e. they act as “control” images.

The Ising set is made of samples of size 512× 512 of the Ising model,

P (σ) ∝ exp(β ·
∑

δ[σi, σj]), β =
J

kBT
(2.1)

The parameter β governs the average cluster size in a binary random dis-

tribution of pixels. I generated the samples with the Swendsen-Wang algo-

rithm [238], a Markov chain Monte Carlo simulation [148, 169] of the Ising

model [88]. The Ising set is composed of images with β from 0.10 to 1.00

in steps of 0.05, 1 000 images for each value of β. Figure 2.3 shows some

sample Ising images with different β values. Figure 2.4 characterizes the

objects in the Ising set. A phase transition occurs when β is about 0.85,

where a spanning object suddenly appears. The Ising set represents a neu-

tral approximation to typical scenes with a very high number of components

of intricate and arbitrary shape, such as thematic maps, crystal lattices, or

satellite imagery.

The Block set is composed of images with a pseudorandom distribution

of 30 square blocks of foreground pixels with overlap allowed, with block size
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ranging from 10 × 10 to 190 × 190 in steps of 10, 1 000 different images for

each block size. Figure 2.5 shows some sample images from the Block set

with different block sizes, figure 2.6 the characterization data. Block images

represent a highly structured, specific spatial configuration, resembling scenes

with relatively few, compact objects, typical of machine vision applications.

I labelled the three sets with the recursive technique, the iterative tech-

nique —the fastest iterative Union Find implementation I have been able to

write—, and the hybrid technique. According to their different approaches

to the problem, the performance of the recursive technique should depend

mainly on the number of foreground pixels, while the hybrid and iterative

techniques should also show a dependence with the spatial arrangement.

Thus, the Uniform set is a priori the worst case scenario among those pro-

posed for the hybrid and iterative techniques, while the classical recursive

technique at the same density of foreground pixels should not show any

marked preference. I recorded the average time per image for each algorithm,

and monitored the recursive function calls of each of the two algorithms is-

suing recursive calls. The total number of recursive function calls influences

the speed. The maximum number of consecutive recursive function calls is

the recursion depth, which determines the size required for the stack and

thus is directly related to the probability of stack overflow. All data that

follows was obtained on a desktop PC with processor iPentium4 2.4 GHz,

512 Mbytes RAM, under OS MS-WindowsXP, with the C/C++ compiler of

the Borland C++Builder 6 package.
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Figure 2.1. Some samples from the Uniform test sets, density of foreground
pixels 10%, 25%, 45%, 60%, 80%, and 90%. Samples include a magnification
of the detailed structure.
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Figure 2.2. Characterization of the Uniform set: Number of objects, average
object area, average area of the larger object, and percentage of percolating im-
ages. The linear scale for the percolation data is not shown, but the rightmost
bars are 100%.
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Figure 2.3. Some samples from the Ising set, β values 0.05, 0.30, 0.50, 0.75,
0.85, 0.95.
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Figure 2.5. Some samples from the Block set, block sizes 20 × 20, 50 × 50,
90× 90, 120× 120, 150× 150, and 180× 180.
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2.3.3 Stack use

Figure 2.7 shows the recursive function calls data with the Uniform images.

As expected, hybrid labelling uses less recursive function calls per image, but

the critical figure is the recursion depth, which determines the required stack

size. Recursive labelling needed a stack big enough for 223 351 consecutive

recursive function calls (at the highest density of foreground pixels, 95%)

while the hybrid technique needed room for just 20 820 consecutive recursive

function calls, at a density of 75%, which is 9%. Thus, hybrid labelling

required a stack 11 times smaller than recursive labelling, which needed 5

Mbytes to avoid stack overflow errors during the tests with the 512 × 512

images.
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Figure 2.7. Number of recursive calls and recursion depth for the Uniform
set. The thicker lines with hollow symbols show recursion depth (maximum
consecutive recursive calls).

The recursion depth of the hybrid technique reaches the thousands only
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above pc (figure 2.2), while it is only 168 just before, at 55%. This is explained

by the sudden appearance of a large, spanning object, as shown by the curve

of average area of the biggest object, figure 2.2, logarithmic scale. Below pc,

the Uniform images are composed of an increasing number of small, sparse

objects, which keep steadily growing and becoming more and more complex,

but still spanning a relatively low number of rows. At pc, there is a large

probability of a big number of individual objects to grow so close to each other

that they become a single, large spanning object, with very intricate shape.

Above pc, this large object dominates the scenario, and keeps growing and

becoming more compact —less, longer bursts—, thus requiring less recursive

calls.

In the Ising set, Figure 2.8, recursive labelling results are more or less

the same than those for the Uniform set if the figures are compared using

the density of foreground pixels, which in Figure 2.8 is shown by the bars

in the background. The maximum recursion depth was 219 513 calls for the

recursive technique, at β = 1.00, while the hybrid technique decreased to a

maximum 6 037, at β = 0.90, which is less than 3%, thus requiring a stack

36 times smaller, i.e. assuming the same behaviour for both algorithms with

size (more about this in a few moments), the hybrid algorithm is able to label

Ising images greater than 3 000× 3 000 with the same stack required by the

classical recursive technique for images of size 512× 512.

Figure 2.9 shows recursive function calls curves for the Block set. Note

the broken vertical axis and the corresponding scale change. They evidence

the fact that hybrid labelling takes advantage of relatively compact objects.

The more intricate an object, the more bursts per row, the more recursive

function calls are needed to label it, and vice versa. Thus, the maximum

consecutive recursive function calls required by the recursive technique with

the Block set was 243 071 while that of the hybrid technique was 520, 0.2%.

This implies a stack about 500 times smaller.

Figures 2.9 and 2.8 show average percentages of foreground pixels in the

Ising and Block images, so that they can be somewhat related to the Uni-

form graphs. Thus the effect of spatial structure may be separated from the
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Figure 2.8. Number of recursive calls and recursion depth for the Ising
set. The thicker lines with hollow symbols show recursion depth (maximum
consecutive recursive calls). The bars show the average density of foreground
pixels.

dependence on the quantity of foreground pixels. With the recursive tech-

nique, the total number of recursive calls does not depend on the spatial

arrangement of the foreground pixels, while recursion depth depends on the

average object size. With the hybrid technique, total recursive function calls

and recursion depth are clearly dependent of the spatial structure of the im-

age. This dependency is positive: In the worst case (Uniform set), hybrid

labelling clearly outperforms recursive labelling in stack use; from there on,

spatial structure only increases this advantage.

I also performed some tests with the iterative version of the classical re-

cursive technique. The iterative version is obviously not recursive, but it still

uses a stack —a custom stack, with the corresponding overhead. Therefore,

the iterative version can be compared to the recursive algorithms by means of

stack depth, the counterpart of recursion depth. They denote in both cases
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Figure 2.9. Number of recursive calls and recursion depth for the Block
set. The thicker lines with hollow symbols show recursion depth (maximum
consecutive recursive calls). The bars show the average density of foreground
pixels.

the maximum number of entire sets of variables per pixel location pushed

into the stack (thus measured in “calls”, not in bytes). However, the sets are

smaller in the iterative version, where only the pixel location coordinates are

stored, than in the recursive algorithms, where also state and local variables

have to be stored. Therefore, note that the same depth implies different

space requirements in each case.

The iterative version required less stack depth than the recursive version

for all the test sets. This is due to the order in which labelling and exploration

is forced in each version. The original, recursive version priorizes search

directions which it follows to the boundary of the component before visiting

the rest of neighbours of the initial pixels, which remain in the stack. The

iterative version labels all neighbours of each pixel and pushes them into

the stack before proceeding to the next pixel in the stack, and each pixel
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is popped out of the stack before exploring its neighbours. This results in

less consecutive pushes, although total pixel locations pushed are the same,

because all pixels in each component are pushed once and only once into the

corresponding stacks in both algorithms. In spite of this reduction, stack

depth is still considerable: The iterative version required for the Uniform

set a stack able to hold 115 558 pixel locations (52% of the recursion depth

of the recursive version, but also more than 5 times the recursion depth of

hybrid labelling), i.e. to label the 256 kb Uniform images it required a 903

kb data structure, whereas hybrid labelling, according to the recursion data

above, transparently used less than 460 kb of the system stack. In the Block

set, things were a little worse, with a stack depth of 129 000 locations, 53%

of the recursive version, but almost 250 times the recursion depth of hybrid

labelling, i.e. 1 008 kb, 4 times the size of the images, whereas hybrid labelling

used less than 11 kb of the system stack.

Therefore, hybrid labelling clearly reduces the pressure on the stack. The

question then is whether it pushes the limit beyond the reach of practical

applications. Figures 2.10 and 2.11 show the variation of recursion depth

—stack depth in the iterative version— with image size, using nine Uniform

and five Block sets, with different image size, 1 000 images per size and

set. The graphs show the experimental data points and polynomial curves

fitted to the data. Next to each curve is its equation, the squared multiple

correlation coefficient5, and the standard deviation in thousands of calls.

Note that the independent variable in the fits is image length x = L in square

L× L images. In the Uniform set, Figure 2.10, the three algorithms show a

quadratic behaviour, i.e. recursion and stack depth grow with image size L2,

but the corresponding coefficient is one order of magnitude less for the hybrid

method than for the recursive method, whereas for the iterative version is

nearly half. Extrapolating these results, to reach the same recursion depth

than the classical recursive method for Uniform images of size 512 × 512,

hybrid labelling would require images bigger than 1 700 × 1 700. At that

image sizes, the iterative version of the classical recursive technique would

require a stack 1 180 334 pixel locations deep, i.e. a 9 Mb data structure for

5Coefficient of multiple determination, R2, the closer to 1 the better the fit.
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images of 2.8 Mb.

With the Block set, Figure 2.11, the hybrid trend experiences a quali-

tative change: Recursion depth grows with the root of image size, i.e. with

image length L. Compact objects have very few, usually only one, bursts

per row, and in consequence recursive calls grow with object length, not

object surface area, as it is the case with the recursive technique and its

iterative version. Proceeding in the same fashion as above, we can estimate

that hybrid labelling would only reach similar recursion depths to that of

the classical recursive method for 512×512 Block images with images bigger

than 230 000 × 230 000, which is about 50 Gb of image, well over the usual

capacity of nowadays systems’ RAM, but also over normal (binary) image
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images.

sizes. At that image sizes, the iterative version would require a stack deep

enough for more than 2.72·109 pixel locations, i.e. a data structure occupying

more than 200 Gb.

The curves give us upper (Figure 2.10, worst case, Uniform set) and

lower (Figure 2.11, favourable case, Block set) limits for the recursion depth

of hybrid labelling. With unstructured, purely random uniform image data,

hybrid labelling will be working on or near the lower curve in Figure 2.10,

recursion depth in the order of 0.08L2. The more structured and compact the

components in the image, the closer the work point will move to the lower

curve in the graph of Figure 2.11, recursion depth in the order of 1.01L.
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The main goal is thus achieved, the risk of a stack overflow error interrupt-

ing a critical process or preventing the labelling of moderately sized images

is greatly diminished, if not gone. Additionally, less memory dedicated to

the stack implies more memory available for other purposes. Anyway, the

maximum stack size is usually not limited by the amount of available RAM,

but by the system, and this upper limit is usually too low for images slightly

larger than those of the test sets (512 × 512). In fact, I was not able to

test classical recursive labelling on 1 000× 1 000 Uniform images due to the

limitation imposed by my linker on the maximum stack size (10 Mb). Hence

my asseveration that nowadays the real limitation of the recursive technique

is not the capability to hold the entire image in memory, but the room re-

quired in the stack. Table 2.1 summarizes the recursive calls data for the

three sample sets.

Recursion depth (512× 512) Uniform Ising Block
Recursive 223 351 219 513 243 071
Hybrid 20 820 6 037 520
× Stack reduction (512× 512) 11 36 500
Trend with size (images L× L)
Recursive 0.9L2 0.9L2

Hybrid 0.08L2 1.01L

Table 2.1. Summary of the recursion and stack data.

2.3.4 Speed

Note that different implementations, levels of optimization, compilers, and,

of course, platforms produce different results. Therefore, precise timings have

to be taken just as indications of expected performance.

Figure 2.12 shows the average time per image consumed by the three

techniques (classical recursive, two pass Union Find iterative, and hybrid

labelling) in the labelling of the Uniform set, i.e. in absence of spatial struc-

ture. The three algorithms show different behaviour above and below the

percolation threshold, pc (see Figure 2.2). As already mentioned, this is

just another instance of critical phase transition. The recursive technique
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follows the curve of average object size, and is the fastest below pc. How-

ever, its performance is no longer the best above pc, and it clearly shows the

worst performance when more than 80% of the image is covered with fore-

ground pixels. Th eiterative version of the recursive technique (not shown),

shows similar behaviour. The reduced stack depth results advantageous at

the higher densities, but the custom stack shows to be slower than the sys-

tem stack at the lower densities. On average, it consumed 96% of the time

required by the recursive version.
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Figure 2.12. Average time per image used by the three techniques in the
labelling of the Uniform images.

The behaviour of two pass iterative labelling reflects the cost of managing

an equivalence table and the need of a second pass to translate conflicting

labels. The hump around pc is due to the highly connected “salt and pepper”

configuration typical of those densities (figure 2.1). Further up, above 70%

of foreground pixels, the net of objects becomes extremely dense, such that

the number of equivalence classes decreases drastically. In the limit, iterative

labelling of an image with no background pixels is reduced to scanning the
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whole image assigning the same label to each pixel after a trivial check of the

labels of the previous (in scan order) neighbours, followed by a trivial second

pass where no label translation is performed. However, this does not seem

to be the most interesting of scenarios.

The hybrid technique shows an intermediate curve which peaks between

65% and 75%. Here again the influence of the percolation threshold appears.

There are two major factors involved: On one side, the lesser foreground

pixels, the faster the labelling. On the other side, the more intricate the

shape of the objects, the slower the labelling. Below pc the former is the

factor with more weight, because when the objects are small their shape is not

that important. Above pc, it is the latter, because one large spanning object

appears whose shape and size determine the performance of the labelling

technique.

Therefore, in absence of any spatial structure, well below pc, when small

objects predominate, hybrid labelling pays a price for its lower requirements

on the stack, up to 31% more time at a density ranging from 35% to 45%.

However, above pc hybrid labelling is faster than recursive labelling. It needs

just a third of the time at 95%. The bigger differences at higher densities

produce an overall result in favour of the hybrid technique, which averages

83% of the time used by the recursive technique, 86% of the iterative version.

The average performance of the hybrid and two pass iterative techniques is

virtually the same: hybrid labelling averaged 99% of the time used by the

Union Find iterative technique, even when their behaviour along the range

of densities is clearly different, in response to their different modus operandi.

When confronted with the Ising set, Figure 2.13, the spatial structure

begins to exert its positive influence on the hybrid technique and the dif-

ferences increase: Hybrid labelling needed just 74% of the time used by the

calssical recursive technique, and 91% of the time used by the classical itera-

tive technique. The effect of the phase transition is clearly visible, specially

affecting to the recursive technique due to the sudden increase of the number

of foreground pixels, and causing a slight time increase in hybrid labelling,

which is visibly attenuated with respect to the corresponding hump in Figure
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Figure 2.13. Average time per image used by the three techniques in the
labelling of the Ising samples. The bars show the average density of foreground
pixels in the Ising set.

2.12. The iterative technique is the less affected by the phase transition be-

cause the decrease in the equivalence classes balances the increased number

of foreground pixels.

With the Block set, Figure 2.14, hybrid labelling definitely shows the

best performance of the three techniques. The relatively flat behaviour of

the Union-Find iterative and hybrid techniques shows how the spatial con-

figuration of the foreground pixels alleviates the effect of their increasing

density, while the curve of the classical recursive technique still follows the

density of foreground pixels. The more foreground pixels, the more time

needed by the recursive technique, with little influence of shape or spatial

configuration. The iterative version shows the same trend, but modulated

by the effect described for the Uniform set: a slower stack dominating the

lower densities, and the lesser depth governing the higher densities, but this

time the overall effect is clearly better, 59%. On average, hybrid labelling
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Figure 2.14. Average time per image used by the three techniques in the
labelling of the Block set. The bars show the average density of foreground
pixels in the Block set.

consumed 26% of the time used by recursive labelling (44% with respect to

the iterative version), and 58% of the time used by Union Find labelling.

Again the bars in the background of the Ising and Block graphs allow

linking the graphs by the density of foreground pixels. It can be seen that,

in spite of the by far less dependence on spatial configuration of the classical

recursive technique, there is an offset of about 1 ms between the Block and

Uniform timing curves for the classical recursive technique. A quick look at

Figures 2.2 and 2.6 can help to understand the reason. Regarding speed,

classical recursive labelling pays little attention to the fact that pixels may

be arranged in compact squared shapes or in intricate dendritic shapes while

jumping recursively from neighbour to neighbour. However, the recursive

exploration of neighbourhoods is preceded by an iterative scan of the image

looking for foreground pixels which trigger the recursive action. The Block set

averages less than 30 components per image, while the Uniform set averages
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more than 20 000 components per image. The offset in the classical recursive

curve accounts for the influence on the image scan of the number of times that

foreground pixels are met, the label index is incremented, and the recursion

initiated.

Differences with the Block and the Uniform set for the hybrid and Union-

Find algorithms are determined by the different spatial structures of the test

sets. Hybrid labelling will also show the same effect of the number of ob-

jects on the image scan in search of foreground pixels. However, it is quite

clear that at the lower densities in the Uniform set, when objects average

very few pixels in size, it cannot take advantage of the mixed iterative re-

cursive strategy, which even becomes a burden regarding execution time. In

the Block set, however, save for the smallest blocks, even at relatively low

densities components have a reasonable size and compact shape which allow

the hybrid technique to outperform the recursive technique, and improve its

Uniform results. Regarding the two pass method, the number of equivalences

in the Uniform set and therefore the time spent in the handling of the equiv-

alence table is much higher in the Uniform and Ising sets than in the Block

set, as it can be deduced from the details in the image samples (Figures 2.1,

2.3, and 2.5). Tables 2.2 and 2.3 summarize the performance data discussed.

Uniform Ising Block
Average ms/image
Recursive 6.88 7.06 7.65
Two pass iterative 5.79 5.75 3.42
Hybrid 5.74 5.23 1.99
Max. ms/image
Recursive 15.62 14.85 13.52
Two pass iterative 7.65 6.53 4.46
Hybrid 9.38 6.04 2.81

Table 2.2. Summary of the performance data for the classical techniques and
the hybrid technique with the three 512× 512 image sets.
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Hybrid Uniform Ising Block
Average time
Of recursive 83.4% 74.1% 26.0%
Of two pass iterative 99.1% 91.0% 58.2%
Max. time
Of recursive 60.1% 40.7% 20.8%
Of two pass iterative 122.6% 92.5% 63.0%

Table 2.3. Performance of the hybrid technique with respect to the classical
techniques with the three 512× 512 image sets.

Image size

I repeated the performance tests with Uniform, Ising, and Block sets with

different image sizes (100×100, 200×200, 300×300, 400×400, and 500×500),

1 000 images per size and set, Figures 2.15, 2.16, and 2.17, and the trend is

similar to the behaviour shown in Figures 2.12, 2.13, 2.14. This shows that

the behaviour detailed for the 512 × 512 images holds for other image sizes

and can be generalized.
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Figure 2.15. Average time per image consumed in the labeling of several
Uniform sets with different image sizes (100 × 100 to 500 × 500, in steps of
100). The lower the curve the smaller the images.
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Figure 2.16. Average time per image consumed in the labeling of several
Ising sets with different image sizes (100× 100 to 500× 500, in steps of 100).
The lower the curve the smaller the images.
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Figure 2.17. Average time per image consumed in the labeling of several
Block sets with different image sizes (100 × 100 to 500 × 500, in steps of
100). The lower the curve the smaller the images. Block size is expressed as
a percentage of image length.
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2.3.5 Performance detecting spanning objects

I also tested the performance for spanning object detection, Algorithm 6 in

section 2.2, on the three image sets. Naturally, both recursive and hybrid

labelling are clearly faster than two pass iterative labelling for detecting the

presence of spanning objects: The iterative technique requires as much time

as for labelling the entire image plus the label matching search on the two

opposite image borders after the labelling, while the recursive algorithms

only need to label, at most, the objects touching one of the borders of the

image, as explained at the end of section 2.2.
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Figure 2.18. Average time per image consumed in the detection of spanning
objects in the Uniform set. The bars show percolation data: Percentage of
images containing at least one spanning object.

Graphs in this section show percolation data (the percentage of images

with at least one spanning object) and the time used by the pure recursive

and the hybrid percolation detectors in each of the three image sets. Iterative

time is not shown because of 1) the exaggerated differences in magnitude,
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and 2) iterative time is the same as that for labelling already plotted in Figs.

2.12, 2.13, 2.14 with a small overhead due to the final label matching search.
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Figure 2.19. Average time per image consumed in the detection of spanning
objects in the Ising set. The bars show percolation data: Percentage of images
containing at least one spanning object.

On the Uniform set, Figure 2.18, below the percolation threshold, pc,

clearly shown by the bars in Figure 2.2, objects are small and very little work

has to be done —negligible time when compared to iterative labelling. Well

above pc, when every image percolates, direct paths across the image are very

likely, and the job can again be done very fast. Then hybrid labelling is clearly

faster than classical recursive labelling, because one or a few bursts will bring

it to the opposite border, while the recursive technique needs a recursive call

for each step along the way. Around the percolation threshold, only one, quite

ramified spanning cluster is usually present, such that a straight path across

the image is less likely, and more pixels have to be labelled before getting to

the opposite border. Here hybrid labelling needed 1 ms per image, recursive

labelling 1.4 ms, and iterative labelling 7.6 ms. Overall, hybrid labelling
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needed 3% of the time required by iterative labelling and 70% of the classical

recursive labelling. This is a significant improvement when dealing with large

images, a large number of images, or real time applications, to be added to

the improved stack use.

The time required for the recursive percolation check on the Ising images,

Figure 2.19, was less than 0.02 ms per image for β outside [0.45, 0.95], where

the iterative technique required more than 6 ms. In the region of the phase

transition, Figure 2.4, which corresponds also to the percolation threshold,

the recursive and the hybrid techniques took up a maximum of 1.69 and

0.69 ms per image, respectively, while the iterative technique required 4.77

ms. On average, hybrid percolation check required 60% of the time used by

the pure recursive technique, and 2.8% of the time required by the iterative

technique.
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Figure 2.20. Average time per image consumed in the detection of spanning
objects in the Block set. The bars show percolation data: Percentage of images
containing at least one spanning object.

Regarding the Block set, Figure 2.20, for the smaller blocks, with low
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densities of foreground pixels (figure 2.9) and low number of small objects

(figure 2.6), recursive and hybrid labelling consumed negligible time. When

bigger objects and some probability of percolation appears, hybrid labelling

moves away from recursive labelling, consuming at the point of worst per-

formance (blocks of size 110× 110) just 23% of the time needed by recursive

labelling. Overall, hybrid percolation detecion averaged 22% with respect to

recursive percolation detection and 9% with respect to iterative labelling in

the Block set. Tables 2.4 and 2.5 summarize the results. The data for the it-

erative technique is that of the labelling of the entire images. For percolation

detection a small overhead for the matching of labels between the borders of

the image should be taken into account.

Uniform Ising Block
Average ms/image
Recursive 0.24 0.27 1.44
Iterative 5.79 5.75 3.42
Hybrid 0.17 0.16 0.32
Max. ms/image
Recursive 1.39 1.69 3.40
Iterative 7.65 6.53 4.46
Hybrid 1.01 0.69 0.77

Table 2.4. Summary of the performance data for detection of spanning objects
with the three 512×512 image sets. Iterative data for the labelling of the images
has been included for reference.

Hybrid Uniform Ising Block
Average time
Of iterative 2.9% 2.8% 9.4%
Of recursive 70.8% 59.3% 22.2%
Max. time
Of iterative 13.2% 10.6% 17.3%
Of recursive 72.7% 40.8% 22.6%

Table 2.5. Relative performance of hybrid detection of spanning objects with
the three 512 × 512 image sets. Iterative data is only for the labelling of the
images, label matching excluded.
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2.3.6 One dimensional arrays for image storage

So far I assumed a image stored in a bidimensional array of integer values,

px,y, such that two indexes, corresponding to column and row, located each

pixel. However, in many applications images are acquired through frame

grabbers, which frequently use one dimensional arrays to store the frames.

One dimensional arrays may also be favoured by the programming language,

or the final purposes of the processing in a given application. When a W ×H

image is stored in a one dimensional array pn, pixel (x, y) is indexed by a

single index, n = y ×W + x. Two sums (indirections) are implicit in the

notation px,y: py is an array of pointers pointing to each row, such that y

has to be added to the base pointer p for it to point to the required row,

and, then, x has to be added to the resulting pointer to point to the required

line into the row. With the pn notation, one of the sums becomes explicit,

allowing the programmer to perform it only when he wants to. The y sum

is only necessary to change the row, and it is not needed while working on

pixels along the same row. With the px,y notation, on the contrary, even

when accessing consecutive pixels on the same row, two sums are performed

in each access to every pixel, due to the double indirection.

While this may sound far too obvious to the experimented programmer,

it has special relevance when dealing with the hybrid technique. The hybrid

technique favours repeated moves back and forth along the same row. It is

clearly suitable for using one dimensional arrays, and thus be directly applied

to the native format of frame grabbers. Row changes only during the second

forward scan, and can be done by adding or subtracting the row length W

to or from the current pixel index. The final result is that as many sums

are eliminated from the backscan and from the forward scan as foreground

pixels are in the image, and a single loop suffices to scan the whole image, see

Algorithm 7. Therefore, hybrid labelling on one dimensional arrays is faster

because it needs less operations. It needed 13% less time for the labelling

of the test sets than the 2D array version. But there is yet an additional

advantage not related to speed: A single index to address the pixels also

means a single argument in the recursive function, and this means that the
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same recursive calls fit into a smaller stack, because one less variable —

usually 4 bytes— is stored per call. Thus, one dimensional hybrid labelling

is faster and relaxes even further the pressure on the stack.

Algorithm 7 2D hybrid labelling for 4-neighbourhoods in 1D image arrays

0→ label
for all n if pn < 0 {increase label, Label(n)}

Label(n)
while pn−1 < 0 decrease n
n→ m
while pm < 0 {label→ pm, increase m}
while n < m

if pn−W < 0 Label(n−W )
if pn+W < 0 Label(n + W )
increase n

end of Label
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2.3.7 Hybridizing the Wolff cluster algorithm and the
Swendsen-Wang algorithm

Hybrid labelling is not only a valid alternative for the labelling of images

per se, it can also substitute any of the classical labelling algorithms at the

core of any higher level algorithm using labelling techniques. To show this,

in the following I will describe the “hybridization” of two well known Monte

Carlo algorithms to sample the Ising [115] and Potts [200] models, and how

it introduces the aforementioned advantages of the hybrid technique into the

parent methods.

In the classical statistical mechanics interpretation of the Ising and Potts

models, individuals in a lattice, called sites, can be in a series of Q different

states, Q = 2 in the Ising model, Q ≥ 2 in the Potts model, which is a

generalization of the Ising model. The probability of a site to be in a given

state depends on the states of its neighbours. Due to the applications to

the theory of ferromagnetism, states are usually referred as spins, and con-

nected sites with the same spin form clusters, but we will use here the terms

“level”, “pixel”, and “component” for the usual “spin”, “site”, and “cluster”,

because our major interest in the Ising and Potts models is synthetic image

generation. The Ising model allows us to generate binary images with known

statistical properties —such as those in the previous section, see Figure 2.3

in 2.3.2. Potts models colour images, with Q different colours, see Figure

2.21.

Wolff’s

Wolff’s cluster algorithm [271] generates samples of the Potts model using the

classical recursive technique to change the level of part of a component. This

is achieved by introducing a probability into the decision of entering —issuing

the corresponding recursive call— a neighbouring pixel with the same level.

The major inconvenient of the algorithm is the possibility of stack overflow

when big components and high probabilities are involved. Therefore, substi-

tuting the pure recursive technique by the hybrid technique should improve
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Figure 2.21. Some samples of the Potts model with six colours (Q = 6) and
different values of β.
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the algorithm. We have just seen that the hybrid technique is also faster

than the pure recursive technique, an additional argument for introducing

the hybrid approach into the Wolff algorithm, taking into account that this

is a Monte Carlo technique, therefore in need of several iterations to achieve

the desired state. Periodic boundaries, i.e. pixels in a border of the image are

neighbours of the pixels in the opposite border, are usually assumed in Potts

models to minimise edge effects. This, together with the probability check

—the typical “coin toss” of Monte Carlo simulations— are the only modifica-

tions required to include the hybrid algorithm in Wolff’s. Periodic boundaries

are obtained by replacing the boundary checks needed every time a site co-

ordinate is incremented or decremented (not explicit in the pseudocode in

section 2.2) by the appropriate conditional increments or decrements. Prob-

ability checks are ANDed to every check of the level of a pixel, see Algorithm

8.

Algorithm 8 2D hybrid Wolff’s

for all n initialize pn

repeat MC times
select random n
pn → s
Flip(n)

Flip(n)
while (pn−1 = s and Rand(2) < P ) decrease n
n→ m
while (pm = s and Rand(2) < P ) {s̃→ pm, increase m}
while n < m

if (pn−W = s and Rand(2) < P ) Flip(n−W )
if (pn+W = s and Rand(2) < P ) Flip(n + W )
increase n

end of Flip

I introduced hybrid labelling with these modifications into Wolff’s algo-

rithm, and obtained a 25% time decrease with respect to the original version

in the generation of Ising samples of size 512 × 512. The considerations of
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Figure 2.22. Average time per component flip with original Wolff and hybrid
Wolff in the generation of Ising (Q = 2) samples of size 512× 512 for a range
of values of β.

section 2.3 regarding the decrease in the risk of a stack overflow in the Ising

set, or the capability to generate much bigger samples with the same stack

size apply exactly the same. Figure 2.22 details the results.

Swendsen-Wang

The Swendsen-Wang algorithm uses another approach to Ising simulations,

which involves the concept of bond connectivity. Bonds are located be-

tween pixels sharing the same level with a given probability (function of

β = J/kBT ). Pixels connected by bonds form components. Then, the level

of the components defined by the bonds is randomly updated and the proce-

dure is repeated for the new configuration. The implementation of Wang [259]

uses the Hoshen-Kopelman (HK) algorithm to identify the components and

update their level. To replace HK with the hybrid approach, this has to be
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modified to work with bond connectivity instead of pixel connectivity, and

then the entire Swendsen-Wang has to be adapted to work with the recur-

sive technique. In Wang’s implementation, first all components in the image

are labelled with HK, then the equivalence table is rearranged (conflicting

labels “translated” to their corresponding “canonical” or “proper” labels, in

usual notation), and then the labels in the equivalence table are randomly

assigned the new levels, such that, last, a scan over the image assigning

these “labels” to the pixels performs the component update. With the hy-

brid labelling technique, randomly assigning one of the permitted levels to

the current label previous to labelling each component suffices to perform

cluster identification —and characterization, if necessary— and update at

the same stroke.

Algorithm 9 2D hybrid Swendsen-Wang

for all n initialize pn

repeat MC times
for all n

(pn = pn+1) and (Rand(2) < P )→ hn

(pn = pn+W ) and (Rand(2) < P )→ vn

for all n if (hn or vn) {⌊Rand(Q)⌋ → label, Label(n)}

Label(n)
n→ m
while hn−1 < 0 {decrease n, label→ pn, 0→ hn}
label→ pm

while hm < 0 {increase m, label→ pm, 0→ hm}
while n < m

if vn {0→ vn, Label(n + W )}
if vn−W {0→ vn−W , Label(n−W )}
increase n

end of Label

To work with bond connectivity, first an array of bonds has to be used

to store the bonds, and then the pixel checks have to be replaced with bond

checks. Also the bond which takes us to a pixel has to be removed after

entering the pixel, or the labelling will endlessly recur to the same pixels.
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The pseudocode in Algorithm 9 is an implementation of Swendsen-Wang

with hybrid labelling.

Decrements and increments of the location index are of course condi-

tioned by the usual periodic boundary assumption, but this is not explicit

in the pseudocode in Algorithm 9 for clarity. The image is stored in a one

dimensional array pn, and two auxiliary boolean arrays, hn and vn, are used

to store the horizontal and vertical bonds. Rand(sup) is a pseudorandom

generator for a uniform distribution in [0, sup). W is the length of a row, Q

the number of levels or colours, P the bond probability, and MC the number

of Monte Carlo steps.
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Figure 2.23. Average time per Monte Carlo step after convergence with
Wang’s Swendsen-Wang and hybrid Swendsen-Wang for Q = 2, 4, 6, and β

from 0.00 to 1.00.

I ran Wang’s implementation of the Swendsen-Wang algorithm particu-

larized for 2D images and my hybrid implementation for Potts with 2, 4,

and 6 colours, and the hybrid version took just an average 63% of the time
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consumed by Wang’s (73% with 2 colours, 61% with 4 colours, and 53% with

6 colours). Figure 2.23 details the results. Wang’s Swendsen-Wang has a

flatter behaviour along β, but hybrid Swendsen-Wang performs significantly

faster. Besides, component characterization and percolation check are far

simpler with the hybrid version than with the original HK Swendsen-Wang.
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2.4 Performance in real world computer vi-

sion applications

Up to now I have analyzed the behaviour and performance of the hybrid

technique in neutral scenarios, with promising results. However, it is on real

images in real applications where a technique ultimately demonstrates its

suitability and convenience. In the following, I will describe the performance

of hybrid labelling in two real computer vision applications, one in 2D and

the other in 3D.

2.4.1 A real-time 2D computer vision application

I implemented hybrid labelling on a real-time machine vision system for

the quality inspection of canned tuna [157, 158]. The system inspects tuna

cans right before the addition of sauce or oil previous to closure, at a high

can rate. It checks the geometry and edge of the can, and its contents,

regarding the quality of the meat and its appearance, and the presence of

holes, strange bodies, blood stains, and bruised tissue. The whole procedure

from acquisition to decision taking and subsequent action is performed by a

single computer, and thus the application is algorithmically very demanding

and the time constraints very tight.

The system achieves an inspection rate of over 1 000 cans per minute for

RO-100 cans (round cans 7 cm in diameter), which implies less than 60 ms

per can for the entire process: Can detection, bus transfer, image processing

(can border extraction and parameterization, contents segmentation, and

analysis), acceptance/rejection decision, and, if necessary, activation of the

rejection system. The system’s performance on a iPentium IV 2.4 GHz MS-

Windows XP based PC is at the time of writing below 50 ms per can. Single

production line rates of 1 000 cans per minute are well above the usual current

rate in the canned tuna industry. The production lines of the canned fish

factories that collaborated in the development of the system have typical work

rates in the order of 300 cans per minute per line, quite high considering that
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the current quality assurance is entirely manual6.

Object labelling is required within the system for the characterization

and classification of dark features in the meat —holes, blood stains, bruised

tissue—, Figure 2.24, after segmentation of the histogram into three classes:

Light meat, dark meat, and dark features.

Figure 2.24. Typical dark features in canned tuna (left) and the correspond-
ing mask for A = {gray level in the “dark feature” class} (right).

After defining the region of interest (ROI) within the image, extraction

and analysis of the border of the can, and analysis of the global characteristics

of the contents, if the meat structure is satisfactory, we segment the ROI’s

gray level histogram using an adaptation of the Expectation-Maximization

(EM) maximum likelihood algorithm [68, 102], such that three major types

of features can be distinguished: 1) light tuna meat, 2) dark tuna meat, and

3) holes, crevices, blood stains, and bruises (dark features), Figure 2.25. The

EM algorithm allows the statistical parameterization of each of the three

features, by modelling the histogram as a mixture of three Gaussian distrib-

utions characterized by their corresponding mean —average gray level of the

corresponding feature—, standard deviation, and weight —proportion of the

ROI corresponding to each feature. From them we can draw some conclusions

6And thus, in view of the production rates, clearly insufficient.
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about the quality of the tuna meat in the can, specifically about the relative

proportion of good quality tuna —light meat— and poor quality tuna —dark

meat—, and the quantity of holes and bruises. It also gives us an adaptive

gray level threshold for the extraction of holes, crevices, blood stains, and

bruises, as the maximum likelihood (ML) threshold between the two lower

mean Gaussians. A fixed threshold would require very stable lighting condi-

tions, usually a risky assumption in a real-world industrial application, and

would assume that the same kind of tuna is processed all the time, what is

generally not true. In the thresholded ROI we can distinguish and measure

the extent and number of the blood stains and bruises via a specifically de-

signed algorithm requiring the previous delimitation and characterization of

the morphology of the dark features. Blood stains and bruises do not pose a

risk for the health of the consumer, but they cause a negative impact in the

appearance of the product and may affect its organoleptic properties.

First, we assume that the histogram of our image is composed of a mix-

ture of Gaussian distributions, each corresponding to each type of feature:

A taller Gaussian distribution, with a higher mean, for healthy light meat;

a lesser mean, for the darker healthy meat, and the smaller Gaussian corre-

sponding to holes, crevices, and bruises. The EM algorithm particularized

for one dimensional discrete data is able to distinguish the three Gaussians

conforming the histogram, and to estimate their relative weights, means, and

variances. The EM formulation for separation of three modes in a greyscale

histogram H(l) is as follows [157].

We want to model our histogram H(l) by a PDF p(l) such that

p(l) =
3
∑

i=1

wiΨi(l, µi, σi) =
3
∑

i=1

Ωi(l), l ∈ {0, 255}, (2.2)

so that we may use the EM algorithm with the update equations

fn(Ωi|l) =
Ωn

i (l)

pn(l)
, (2.3)
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Figure 2.25. EM segmentation of the histogram of the contents of a tuna
can in three classes: “Light meat”, “dark meat”, and “dark features”. The
ML threshold for the “dark features” class is shown by the vertical arrow.

wn+1
i =

∑255
l=0 H(l) · fn(Ωi|l)
∑255

l=0 H(l)
, (2.4)

µn+1
i =

∑255
l=0 H(l) · l · fn(Ωi|l)
∑255

l=0 H(l) · wn+1
i

, (2.5)

and

(

σn+1
i

)2
=

∑255
l=0 H(l) ·

(

l − µn+1
i

)2 · fn(Ωi|l)
∑255

l=0 H(l) · wn+1
i

, (2.6)

where n = 0, . . . stands for iteration. The three Gaussians modelling the

histogram are ordered such that µ1 < µ2 < µ3 and then the ML threshold for



86 Hybrid Labelling

the lower Gaussian provides the condition A ≡ {px,y ≤ ld | Ω1(ld) = Ω2(ld)}
for the labelling. Convergence to a good enough solution for the problem at

hand —locating the darker mode such that a threshold can be deduced to

extract holes and bruises— is usually achieved in a small number of iterations.

In spite of its computational overhead due to the fact that floating point

arithmetic is involved, average execution time per can is below 3 ms.

The strong time constraints discard two-pass iterative labelling: At any

stage of the analysis, as soon as a single defect above tolerance is detected, the

can is rejected and focus moved to the next can. Labelling every dark spot in

the sample prior to analysis is an unacceptable waste of time. The analysis of

the dark features requires characterization through measuring the extent and

shape of the dark feature under analysis, and computing the bounding box.

Additionally, under certain modes of operation of the application, the dark

features causing rejection, among all dark features, have to be emphasized

in the image. All these are typical requirements for recursive labelling.

In order to achieve the robustness required for an industrial quality as-

surance system, almost anything has to be expected to appear in a can. And

this includes cans whose entire content is a dark feature. Therefore, the

labelling algorithm has to be able to cope with big objects without risking

a stack overflow —the system uses 1 Mpixel frames from a 1 024 pixel line

scan camera. Thus, the alternative to iterative labelling, classical recursive

labelling, was not entirely suitable. It would comply with the requirements

under normal operation, but would be a potential source of trouble under

exceptional, but not impossible, conditions. Thus, for instance, due to the

specific illumination method, an empty can would suffice to trigger a stack

overflow. Safeguard code can be added to check for the presence of big ob-

jects in order to prevent stack overflows, by halting the labelling in case a

given upper bound in surface area or recursion depth is reached, but 1) it is

an avoidable overhead in a demanding, optimized to the µs, real-time appli-

cation, and 2) it is an emergency exit, a patch, not a solution. The solution

is hybrid labelling.

Image frames are 1024 × 1024. Tuna images, or rather, dark features in
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tuna images, show considerable degree of spatial aggregation when compared

to the Uniform images (see the mask in Figure 2.24). In the limit, the dark

feature caused by an empty can resembles a highly compact object as those

in the Block set at the higher densities. According to the graphs in Figures

2.10 and 2.11, and the subsequent analysis in 2.3.3, a stack overflow is not

possible with hybrid labelling and 1024 × 1024 images, even in the unlikely

event of a can filled with “uniform random” tuna.

Hybrid labelling not only solved the stack overflow problem, thus im-

proving the robustness of the system, but also speeded up the procedure.

I performed several tests during the in-line testing of a prototype in a real

factory. I measured the maximum recursion depth and the average time re-

quired both by the classical recursive technique and the hybrid technique for

the labelling of dark features in 10 runs of 1 000 cans each. During the tests,

all dark features in each can were labelled and characterized, an average 232

dark features per can, with an average surface area of 36 pixels.

Classical recursive labelling averaged 322±100 µs per can for the labelling

and characterization (area, perimeter, and bounding box) while hybrid la-

belling averaged 158 ± 47 µs per can, 49% of the average time required

by classical recursive labelling. The average saving in computing time was

164 µs per can, with a maximum saving of 343 µs. Maximum recursion depth

for the classical technique was 3 033 consecutive recursive calls —no excep-

tional cans appeared during the tests—, while for hybrid labelling it was 255

consecutive recursive calls, 8%.

A closer look to the performance data reveals that the best relative per-

formance of hybrid labelling was 36.6% of the time used by the classical

technique, while the worst was 61.2%. Hybrid recursion depth was at its

best with 4% of the classical technique recursion depth, and at its worst with

16%, averaging 9%. With respect to the extreme values, the aforementioned

hybrid and classical maximum recursion depths where achieved on the same

can. The minimum recursion depth of the hybrid algorithm was 66, while on

the same can the classical technique recorded 1 693. Vice versa, the classical

algorithm used a minimum recursion depth of 588 consecutive recursive calls
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where the hybrid algorithm recorded 71. Table 2.6 summarizes the results.

Classical Hybrid
Speed
µs per can 322± 100 158± 47 49%
Recursion depth
Average 1 392± 642 125± 50 9%
Maximum 3 033 255 8%

Table 2.6. Summary of benchmarking data in a real time machine vision
application for the quality assurance of canned tuna.
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2.4.2 A real world 3D computer vision application

I used hybrid labelling for the extraction of fibre bundles in a microtomog-

raphy [163] of a Carbon-Carbon composite (C/C) [41, 42], made of carbon

fibres embedded in a continuous matrix of carbon using chemical vapour

infiltration (CVI) [20, 21, 41, 254]. The fact of both matrix and fibres be-

ing fabricated from carbon produces a unique combination of properties,

including very low thermal expansion coefficients and high thermal conduc-

tivity, retaining their mechanical properties at high temperatures (> 2000◦

C, in nonoxidizing atmospheres), high specific strength, excellent resistance

to abrasion, high resistance to thermal shock, very high elastic modulus,

low-weight, high electrical conductivity, low hygroscopicity, nonbrittle fail-

ure, resistance to biological rejection and chemical corrosion, and reasonable

machinability [57].

These properties vary depending on the fibre fraction and type, textile

weave type, and the individual properties of the fibres and matrix materials.

The matrix precursor material and the manufacturing method have a sig-

nificant impact on composite strength. Strong composites require sufficient

and uniform densification. Traditional fabrication techniques may chemi-

cally or mechanically damage the fibres and cause high porosity leading to

poor mechanical properties. Hence the popularity of CVI, the leading fab-

rication process for fibre reinforced composites. CVI consists in subjecting

a fibrous preform to chemical vapour infiltration of relatively high vapor

pressure gases, called precursors, gaseous compounds of the matrix material

that under suitable operating conditions, with comparatively low stress and

temperature, deposit the desired matrix phase on the surface of the preform,

until complete densification is achieved. CVI is a variant of Chemical Vapour

Deposition (CVD), a method to build dense structural parts or coatings on

a substrate surface, by transporting gaseous compounds to the substrate

surface where deposition occurs. CVD and CVI use similar equipment and

the same precursors, but CVD implies deposition onto a substrate surface,

whereas CVI implies deposition within a porous body [260].

Fabrication of a C/C composite by CVI is as follows (see Figure 2.26).



90 Hybrid Labelling

Figure 2.26. Chemical Vapour Infiltration. The light circles represent the
fibres in cross section, the matrix is shown in dark colour. Note the formation
of cavities. (Adapted from [119]).

The preform, consisting of a network of fibres of carbon in a porous arrange-

ment, is placed in a high temperature furnace. A vapour precursor of matrix

material flows into the furnace penetrating the pores of the preform. It dis-

sociates at the fibre surfaces and deposits carbon as a solid coating onto it,

“growing” the fibres and filling the inter-fibre spaces. The more the fibres

grow, the smaller the space between them. The corridors allowing the pre-

cursor flow become narrower and begin to close, forming cavities inaccessible
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to the gas. Deposition on the surfaces inside inaccessible cavities stops. In

the end the external surface of the preform is completely sealed, preventing

further densification of the interior and ending the process. Percolation the-

ory plays a major role here, the lowest porosity that permits percolation of

a fluid through the porous space is the percolation threshold of the porous

solid. This is a key factor in CVI as it determines to a great extent the final

microstructure of the composite and hence the mechanical properties of the

material.

Several methods have been developed to model the CVI process [97,118–

120, 204, 205, 230, 232, 260, 276]. Reliable models can help to optimize the

fabrication process minimizing the number and extent of cavities, decreasing

production costs and increasing production quality. Early models tended to

avoid introducing the detailed geometry of the microstructure because its

complexity prevented the use of analytical formulations, a common problem

when dealing with composites (see 1.2.1). Latter models, introducing ele-

ments from percolation theory and effective medium theory, already take into

account the geometry of the problem, but usually the preform is modelled as

a regular array of elongated cylinders. Efforts have also been made to derive

macroscopic properties from the microstructure of CMC materials, to estab-

lish relationships between their microstructure and measurable macroscopic

parameters. A common approach to simulate the local microstructure is the

Expanding Overlapping Circle model [206], which simulates the microstruc-

ture of a cross section of an uniaxial bundle of fibres by a computer generated

digital image of a set of expanding overlapping circles. Pore structure and

surface area are modeled using an analytical expression for cylindrical fibres

by directly utilizing geometric properties of circles and cylinders. This is the

underlying framework of many models for the study of properties of com-

posites, such as thermal conductivity and gas permeability [229], effective

diffusivity [245], or reaction and diffusion kinetics [205,223].

Once the detailed geometry of the composite is accounted for in the model,

the next step is to feed the models with real microstructures, in order to

1) validate the models —otherwise discrepancies between predictions and

measures can always be blamed on the approximations implicit in idealized
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microstructures—, and 2) obtain more accurate predictions on the behav-

iour and performance of the materials and the fabrication processes. And

here is where computer vision enters again the world of composites. Mod-

ern microscopy techniques, either optical and non optical [60], allow detailed

2D and 3D imaging of composites, with enough spatial resolution as to re-

solve their microstructure. Blanc et al. [25] developed an image processing

method to estimate the true principal directions and fibre orientation distri-

bution from a single section of a composite using optical microscopy. The

method applies to reinforcements composed of several main fibre directions

and with cylindrical fibres bundled in threads. Although it provides some

useful 3D parameters, the 2D approach fails to depict completely the complex

3D geometry of the material.

Tomography and other 3D imaging technologies are widely used to ana-

lyze volumetric samples of composites, but the large volumes of data for even

moderately sized samples discourage human operated exhaustive analysis or

repeated measures for statistically sound characterization. However, relative

limited resolution, low dynamic range, few quantization levels, and signifi-

cant noise typical of this type of images make difficult the automated analysis

of the samples. A previous attempt has been made to extract the geometric

properties of a C/C composite [255]. However, the carbon matrix is very dif-

ficult to separate from the carbon fibres, and only the separation of cavities

from the solid phases has been performed. Thus, exploiting at full length the

wealth of information contained in a tomography becomes a challenging task,

in the quest to put an end to the use of tomographic images as collections

of 2D images from series of slices under the microscope, thus preventing the

full development of all their potential.

The sample

The French aeronautics industrial company Snecma Propulsion Solide has

more than 30 years of experience in isothermal CVI for the development

of proprietary C/C, C/SiC, and SiC/SiC composites. Figure 2.27 shows a

200 × 200 × 200 portion of a synchrotron microtomography of a sample of
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Figure 2.27. A synchrotron microtomography of a 3.3 mm2 (side length < 1.5
mm) cubic sample of a C/C composite. Voxel size is 7.45 µm.

one of SPS’s C/C composites. Figure 2.28 shows a 200 × 200 slice of the

microtomography in Figure 2.27.

The image was obtained at the European Synchrotron Radiation Facil-

ity (ESRF) ID19 High Resolution Diffraction Topography Beamline, dedi-

cated to radiography (absorption and phase contrast imaging) microtomog-

raphy, and diffraction imaging (topography, analyzer-based imaging) exper-

iments [62, 63]. C/C composites, due to the close densities of inclusions

and matrix, pose a great challenge to X ray imaging systems. The X ray

beams produced at third generation synchrotron radiation facilities such as

the ESRF at Grenoble (France) have a high degree of coherence. This results

from the small source size, σ, about 50 µm, and the large source to sample
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Figure 2.28. A slice (2.22 mm2) of the microtomography in Figure 2.27.

distance, L, in the 100 m range, so that the transverse coherence length,

dc = λL/2σ, is in the 100 µm range.

Phase jumps occur at the edges of a particle or porosity embedded in

a matrix having a different index of refraction, and phase retrieval allows

obtaining the local phase shift, which is proportional to the density. Besides,

sensitivity is increased by varying the distance from sample to detector [62],

either for light materials such as polymers, or for composites made up of

materials with neighbouring densities such as C/C composites. However, this

technique applies only on very small samples for which all the fibres show the

same orientation. Indeed, in larger samples, where fibres perpendicular to the

tomography axis are likely to occur, these fibres cause very high cumulated

phase values which go beyond the linear range of the detector. The resulting

image is blurred, rendering the separation of fibres and matrix impossible [61].

The image shown in this paper was obtained using phase contrast with fixed
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distance from sample to detector [63].
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Figure 2.29. Histogram of the image in Figure 2.28. There are 53 levels
out of 256 possible levels in the dynamic range, grouped in 27 groups, thus
reducing the effective dynamic range to 27 levels.

Given that we are dealing with a C/C composite, there is no doubt that

the image in Figure 2.27 provides a very good discrimination to the human

observer between fibres and matrix. Cavities can also be clearly seen in the

image. However, Figure 2.27 also shows a high level of noise, poor use of the

dynamic range, and moderate resolution. Resolution is expected to improve

in the near future. X ray detection is performed through film or visible light

scintillators, and, therefore, the system is diffraction limited. X ray lenses

to magnify the image before the detector, such as Kirkpatrick-Baez focusing

devices, may overcome this limitation. Nevertheless, resolution is also limited

by data bandwidth and storage capabilities.

However, limited resolution is not the worst characteristic of the image.

Noise levels and poor quantization are. Figure 2.29 shows the histogram of

the slice in Figure 2.28. Out of 256 possible levels in the 8 bit quantization,



96 Hybrid Labelling

Figure 2.30. Details of fibres/matrix in the image in Figure 2.28. The small
windows at the lower right corners show the entire detail at normal scale.

only 53 have a pixel count greater than 0. Moreover, 51 of the 53 levels are

grouped in 25 groups, thus reducing the effective dynamic range to 27 levels,

i.e. less than 6 bit quantization. The effect of the noise and the reduced

dynamic range can be seen in the details in Figure 2.30. Grayscale based per

pixel segmentation of fibres from matrix is simply not possible. Clearly the

human eye (see the small window at the lower right corners) is performing

high level processing involving edge detection and pattern matching —the

fibres are expected to be circular/elliptical— to segment the image. See the

effect that just a couple of brighter pixels have on the recognition of the fibre

in the lower right corner of the detail on the left of Figure 2.30.

Within this context, our aim is using computer vision to automatically

extract the fibres from the matrix, to allow the detailed characterization of

the material. Once the fibres have been extracted from the matrix, precise

measures such as volume fraction, aggregation, distance between fibres, or

curvature can be performed. But even more, the target is literally to strip

them naked, so that the real microstructure of the composite can be cap-

tured in 3D, ready to be fed into any of the models mentioned above. This

also opens the doors to the use of enhanced reality computer graphics tech-

niques to provide designers and manufacturers with increased insight on the
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structure of the composite.

Preprocessing

As we have just seen, individual greylevel pixels are not suitable to separate

fibre pixels from matrix pixels. It is the edges —contrast between adjacent

regions in the image— that determine the boundaries of the fibres. The rest of

the fibre is restituted by our visual system from the edge information. Thus,

we have to use the edges to define the fibres in the image. Reducing the noise

level always helps, but any noise filtering must respect the edges in the image.

Otherwise, we would be losing the information we are seeking, the basis of the

segmentation procedure. Thus, for instance, the noise is high frequency, but

low pass filtering would also blur the edges. Median filtering could preserve

to some extent the edges, but the resolution is too poor: The edges are too

narrow as to not be wiped away by any but the smallest —and useless—

of windows. One such a noise reduction method, efficiently removing high

frequency noise while preserving the edges, is anisotropic diffusion [24, 188,

197,246,265].

Perona and Malik [197] noted that the convolution of an image I0(x, y)

with a Gaussian kernel

Kσ(x, y) =
1

2πσ2
exp(−|x|

2 + |y|2
2σ2

) (2.7)

with standard deviation σ yields the same result as the solution of the

isotropic diffusion PDE (heat) equation

∂I(x, y, t)

∂t
= div(∇I(x, y, t)), (2.8)

where I(x, y, t) is the image I(x, y) at time t = 0.5σ2, with initial conditions

I(x, y, 0) = I0(x, y), and ∇I is the image gradient.

Introducing in (2.8) as diffusion conductance or diffusivity, g(s), a rapidly

decreasing function of an edge detector such as the gradient magnitude, s =

|∇I|,
∂I(x, y, t)

∂t
= div(g(|∇I(x, y, t)|)∇I(x, y, t)), (2.9)
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smoothing on both sides of edges becomes much stronger than across them.

A diffusivity constant with time but varying with location (x, y) would make

(2.8) a linear nonhomogeneous diffusion equation. However, if g is made a

function of time, as in (2.9), the diffusion equation becomes nonlinear and

nonhomogeneous, referred as anisotropic in the image processing literature,

even when conventional PDE terminology reserves the term for the case

where the diffusivity is a tensor, varying both with location and direction7.

Perona and Malik suggested

g(s) =
1

1 + s2/κ2
(2.10)

and

g(s) = exp(−s2/κ2) (2.11)

as diffusivity functions. Since then, many other diffusivity functions have

been suggested [24, 264]. In fact, Black et al. [24] demonstrated that aniso-

tropic diffusion in the sense of (2.9) is the gradient descent of an estimation

problem with a robust error norm induced by g(s), thus providing a sound

theoretical foundation to choose adequate diffusivity functions.

As several authors have revealed [45, 126, 188, 274], (2.9) is an ill-posed

problem, in the sense that images close to each other are likely to diverge

during the process [274], but it can be stabilized by regularization. One

common approach [45] is to smooth the variable of the diffusivity, i.e. to use

a smoothed version of the image for the gradient in each step, as in

∂I(x, y, t)

∂t
= div(g(|∇Iσ(x, y, t)|)∇I(x, y, t)), (2.12)

where Iσ = Kσ ∗ I with a suitable local convolution kernel Kσ of width σ, for

instance a Gaussian kernel. However, Weickert and Benhamouda [263] proved

that a standard spatial finite difference discretization is sufficient to turn

(2.9) into a well posed system of nonlinear ordinary differential equations.

7The consequence of this “pseudoanisotropy” is that only the magnitude but not the
direction of the diffusion flux can be controlled. Noise close to edges remains unchanged
due to the small flux in the vicinity of edges. To enable smoothing parallel to edges, (2.9)
must be generalized with a diffusivity matrix G with nonzero off diagonal elements (see,
for instance, [79,261,262,264]), thus rendering it truly anisotropic.
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Therefore, direct implementations of the Perona-Malik filter tend to work

reasonably well because of the regularizing effect of the discretization.

The extension to D dimensions is straightforward. The diffusion process

is described by the equation

∂I(x, t)

∂t
= div(G · ∇I(x, t)), (2.13)

where x ∈ R
D and G is a square D ×D diffusivity matrix. Equation 2.9 is

(2.13) with G a diagonal 2× 2 matrix with equal diagonal elements g(|∇I|).

Figure 2.31. Two slices of the tomography in Figure 2.27 before (left) and
after (right) filtering with 3D anisotropic diffusion.
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Figure 2.31 shows the results of applying (2.13) with (2.10) and D = 3 to

the tomography in Figure 2.27, and they are quite satisfactory. The relevant

edges have been preserved while most of the noise has been wiped away.

Extraction of the fibres

However good the results in Figure 2.31 regarding noise reduction and me-

soscale feature preservation, fibres cannot yet be separated on the basis of

individual voxel gray levels. Many fibres show brighter nuclei inside darker

boundaries, whose gray levels can also be encountered in the matrix. Our

approach is masking all pixels within edges. For that purpose we used a

differential profiler [157] along voxel rows. A differential profile is obtained by

constructing an array of integers where every element represents the lowpass

filtered gradient of gray level along a scan line. This is easily implemented

using exclusively integer arithmetic. Let Ix,y,z be the grayscale image. Let

Pl be an integer vector to hold the profile of a scan line, and assume without

loss of generality that the scan direction is along +x. Combining forward

differencing

Pl = Il,y,z − Il+1,y,z (2.14)

with lowpass filtering

Pl =
1

3
(Pl−1 + Pl + Pl+1), (2.15)

and forgetting about the dividing constant, we get

Pl = Il−1,y,z−Il,y,z +Il,y,z−Il+1,y,z +Il+1,y,z−Il+2,y,z = Il−1,y,z−Il+2,y,z (2.16)

and thus the whole procedure to obtain the profile is reduced to a sequence of

integer subtractions of gray levels. Near zero profile segments reflect parts of

the image where no significant variations of gray level occur. Positive peaks

reflect decreasing gray levels, such as when entering a fibre, and negative

peaks increasing bright, such as when leaving a fibre. The narrower the

peak, the faster the variation. The higher the peak, the larger the variation.

Therefore, peak shape and size tell us everything we need to know about

bright transitions along a given direction.
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Figure 2.32 shows a gray level profile (above) and the corresponding dif-

ferential profile (center) along a line of our tomography (below). The vertical

arrows show the transitions in the image corresponding to the peaks above or

below given thresholds (dashed lines) in the differential profile. A tentative

gray level threshold is also plotted on the grey level profile, to show the lack

of robustness of that approach due to the brighter centers of some fibres.
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Figure 2.32. Edge detection by profiling scan lines in slices of the tomography
in Figure 2.27 after filtering with 3D anisotropic diffusion.

To obtain a mask of fibre voxels, therefore, we profile the voxel rows along

the three possible orientations —both directions— in the 3D image, such that

all voxels along a differential profile from a positive peak to a negative peak

are marked as foreground pixels, and the rest as background pixels. Some

fibres are “broken”, i.e. the dark boundary does not surround the entire

fibre, and therefore some profiles may end up with spurious rectilinear spikes

protruding from the fibre mask, due to the lack of a negative peak, or well

similar rectilinear structures may be missing from the interior of a fibre due
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to the lack of a positive peak, or a spurious negative peak inside a fibre.

However, spatial correlation between the differently oriented slices in the 3D

image solve part of these problems —interior fibre voxels not marked in the

profiles in a given orientation are likely to be marked in the profiles along any

of the transversal directions— and the a priori knowledge of the morphology

of normal fibres is enough to get rid of the majority of the thin, rectilinear,

spike-like artifacts protruding from “broken” fibres in a simple postprocessing

stage.

After a mask of fibre voxels has thus been obtained, a labelling algorithm

is used to refine the mask, and, later, to identify each fibre bundle. Refining

the fibre mask consists in getting rid of some bright voxels that may be ad-

hered to the outside face of fibre boundaries, as remnants of matrix material.

This is achieved by labelling the foreground voxels in the mask with a sin-

gle label, but only those corresponding to original gray levels below a given

threshold. A second labelling of the mask will set as background voxels all

foreground voxels belonging to connected components of foreground voxels

unlabelled in the previous labelling. This ensures that the bright voxel hunt

takes effect only in groups of voxels on the exterior of fibres, without affecting

the bright cores of fibres. The result of this two stage cleaning is a depurated

mask of fibre voxels where bright voxels are only permitted in the interior of

fibres.

Once the mask of fibres has been obtained, it is possible to identify every

fibre bundle by labelling all connected components in the mask, see Figure

2.33. It is also possible, by means of mathematical morphology, basically

erosions and dilations, to isolate every fibre, such that each individual fibre

can be identified and characterized. Note that the same procedure may

be applied to cavities —profile peaks bounding the cavities are significantly

taller and narrower due to the high contrast of their edges—, to extract and

characterize them, see Figure 2.34.
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Figure 2.33. Partial renderings of some fibre bundles using the original gray
levels in the tomography.
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Figure 2.34. Partial rendering of one of the cavities formed in the CVI
process, using the original gray levels in the tomography.

Benchmark results

To study the performance of hybrid labelling in the 3D case, I labelled the

mask of fibres with the classical recursive technique, with its iterative ver-

sion, with the two pass Union Find iterative technique, and with the hybrid

technique, and recorded recursion and stack data, global equivalence table

data, and time. For a total of 43 components, with an average size of 54 466

voxels, representing a volume fraction of 32%, the classical recursive tech-

nique required a total of 2 342 055 recursive function calls, with a recursion

depth of 281 607. Hybrid labelling reduced these figures down to 206 900

(8.8%) and 15 481 (5.5%), respectively. These results were obtained when

the scan direction was along z (see axes in Figure 2.27), the dominant ori-

entation of the fibres in the sample. Table 2.7 summarizes the recursion

call data for both techniques, and different scan orientations of the hybrid

algorithm. The effect of the obvious anisotropy of the fibrous components is
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clearly shown, even when many fibres in the sample do not follow the main

orientation. However, even in the worst case (along x), the hybrid technique

keeps recursion depth below 10% of the classical recursive technique. Hybrid

labelling scanning along z required just 1/16 of the stack size used by the

classical technique. The iterative version of the classical recursive technique

needed a custom stack deep enough for 252 341 voxel locations (90% of the

recursion depth of the recursive algorithm), i.e. a 2.9 Mb data structure.

Recursive calls Total Average Depth
Classical 2 342 055 54 466 281 607
Iterative 252 341
(Stack depth) 89.6%
Hybrid along x 284 814 6 623 27 617

12.2% 12.2% 9.8%
Hybrid along y 234 872 5 462 26 246

10.0% 10.0% 9.3%
Hybrid along z 206 900 4 811 15 481

8.8% 8.8% 5.5%

Table 2.7. Summary of recursion and stack data in the labelling of all fibres
in the microtomography in Figure 2.27.

Regarding speed, the classical recursive technique required 147 ms to label

the entire sample, versus the 91 ms (62%) required by the hybrid technique.

Scan orientation had notable impact on the speed of the hybrid technique,

as expected: Scanning along z used 84% of the time scanning along x. The

iterative version of the classical recursive technique needed 167 ms per im-

age, 114% of the recursive time. The two pass iterative technique took a long

498 ms to label the sample, and a global equivalence table able to handle

23 719 labels —for 43 components. The 5-fold increase in time is understand-

able taking into account that it encountered 1 285 286 merge points, each one

needing a Union operation involving a variable-length search in the equiva-

lence table. Table 2.8 summarizes these results. All performance data was

obtained on a iPentium M 2.13 GHz, 1 Gb RAM, under OS MS WindowsXP,

with the C/C++ compiler of the Borland C++Builder 6 package.
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Speed Total (ms)
Recursive 146.9
Iterative 167.3 113.9%
Hybrid along x 108.9 74.1%
Hybrid along y 99.7 67.9%
Hybrid along z 90.9 61.9%
Union-Find 497.8 339.0%

Table 2.8. Performance data for the labelling of all fibres in the microtomo-
graphy in Figure 2.27.
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2.5 Concluding remarks

I have described and studied the application to image processing and machine

vision of a new technique for single pass labelling of connected components,

wholly compatible with the classical recursive technique, such that any sys-

tem using the latter can be upgraded just by replacing the recursive function.

I also have presented test data, synthetic and real, supporting the claim that

the use of this technique is advisable in a significant number of cases.

Hybrid labelling performs less consecutive recursive calls than classical

recursive labelling in any case. This implies a significant reduction in the re-

quired stack size, therefore reducing the probability of a stack overflow inter-

rupting an unsupervised critical application, or just allowing the processing

of images whose size prevented the use of recursive labelling and its advan-

tages with respect to iterative labelling. The decrease in the required stack

size grows with increasing spatial structure in the mask of foreground pixels,

where relatively compact objects are present. Direct conversion of the recur-

sive technique to iterative is also a valid alternative to tackle stack overflow

problems, but at the cost of managing a custom stack in the heap which has

shown to require even more space than the images to be labelled, an overhead

which also pays its toll in speed when compared to the proposed algorithm.

I have also obtained upper and lower bounds for the recursion depth of the

recursive and the hybrid algorithms and for the stack depth of the iterative

version, which serve to determine the practical limits of applicability.

This improvement in robustness implies, in the particular, worst case

of random images of uniformly distributed foreground pixels, an increased

execution time below the percolation threshold. However, this occurs with

relatively low execution times, and thus it is not that significant. Above

the percolation threshold, with longer times, the trend is inverted and hy-

brid labelling needs just a third of the time needed by the classical recursive

technique, such that, overall, hybrid labelling is clearly faster. The average

performances of hybrid labelling and the two-pass iterative technique on uni-

form random images are virtually equal. However, if object characterization

is required, or labelling just a given object is a must, hybrid labelling is
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the choice. The two-pass technique can also be used to characterize objects

during the labelling, but the required modifications carry a considerable over-

head, thus hindering its performance. Versatility and ease of implementation

are also subject matters when selecting an algorithm.

Uniform random images are the worst case scenario for hybrid labelling.

Once some spatial structure appears, it does not other than improving. The

synthetic Block set is a neutral approximation to the kind of imagery usually

found in industrial machine vision and other image processing applications

where a few, usually significant, and relatively compact objects are often

expected. When dealing with the Block set, hybrid labelling behaves like

iterative labelling, but reducing time consumption almost by a half, and to

one fourth with respect to classical recursive labelling. Moreover, feasible

image sizes before risking a stack overflow are increased several orders of

magnitude.

Spatial structure favours hybrid and iterative labelling, but the former

performs better because the latter is hindered by the need to handle a global

equivalence table big enough to store as many labels as expected in the worst

case. The size of this table can be reduced, thus decreasing the gap with

hybrid labelling, but this decreases the robustness of the iterative technique,

because the possibility of an image with an unpredicted large number of

objects cannot usually be dismissed in real world applications.

The Ising set is somewhere in between, the objects in it do not show the

same compactness as in the Block set, but a clear spatial structure can be

noted, as a neutral approximation to remote sensing imagery and the like.

On it, hybrid labelling already holds the winning hand, even if not by as much

advantage as on the Block set —stack reduction is decreased to a “modest”

36 times. Tests with different image sizes show the same trends, suggesting

that the above conclusions may hold for a wide range of image sizes.

The performance data also illustrates the fact that spatial structure dras-

tically affects the behaviour of connected components labelling algorithms.

Component labelling algorithms are not an exception, nor a special case, in

image processing. Many non trivial general purpose (i.e. non specifically ap-



Concluding remarks 109

plication driven) image processing algorithms suffer of this dependence. Care

should be taken when considering performance data irrespective of the spa-

tial structure of the test images, as they may well be misleading for specific

applications or general conclusions.

I have also presented hybrid versions of Wolff’s algorithm and of the

Swendsen-Wang algorithm, to exemplify the feasibility and advantages of

implementing the new algorithm into standard techniques having a labelling

algorithm at their core, either recursive or iterative, in both cases with an in-

crease in speed. The hybrid Wolff’s algorithm benefits also of the correspond-

ing relaxation in the stack requirements without increasing the complexity

of the algorithm, and the hybrid Swendsen-Wang algorithm has considerably

simplified code and easier component characterization as additional advan-

tages when compared to the original implementation.

Recursive techniques are specially suitable when object labelling is just

an intermediate step for checking connectivity between opposite borders of

an image, and not the goal itself. Then, hybrid labelling, while keeping the

benefit of a reduced stack, significantly reduces time consumption with re-

spect to recursive labelling. Traditional analysis of connectivity, involving

object labelling with a two-pass algorithm and the subsequent scan of op-

posite borders of the image, has no choice here, as shown by the fact that

hybrid labelling needed less than one tenth of the time needed by iterative

labelling for any of the image configurations tested. Additionally, hybrid la-

belling permits the characterization of the spanning object in parallel with

the detection.

Hybrid labelling can be easily modified to work on one dimensional image

arrays, which is the typical storage format of frame grabbers, speeding it up

more than a further ten percent, while relaxing even more the pressure on

the stack, not by further decreasing the recursion depth, but by decreasing

the room needed for each recursive call. The stack reduction is also true for

the classical recursive technique and its iterative version, but the speeding

up is far less noticeable, because they do not favour rows or columns.

I have also illustrated the advantages of using hybrid labelling in a couple
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of real world machine vision applications: In a 2D, real time study case,

the speed of the particular task was doubled and the minimum size for an

object to cause a stack overflow was increased well beyond image size, thus

rending unattainable such an inconvenient possibility. In a 3D study case,

hybrid labelling showed the best performance by far, and a considerable gain

in stack use, which was decreased to less than six percent of the classical

recursive technique.

The 3D results are worth discussing, because, in principle, it is with 2D

images where hybrid labelling presents a greater advantage: Half the direc-

tions are changed from recursive to iterative. The higher the number of

dimensions, the lesser the improvement, because every additional dimension

has to be dealt with using recursive calls, such that, in the limit, hybrid

labelling would converge to pure recursive labelling8. Thus, in the 3D case,

one direction is handled with iterative scanning whereas there are two direc-

tions handled with recursive calls. However, the improvements of the hybrid

approach are clearly noticeable in the 3D study case. The fact that recursion

is used for two directions may hide the all important fact that the number

of recursive jumps to adjacent voxels along each of these two directions is

also reduced, because for every recursive jump a whole burst is labelled, thus

preventing any further recursive calls in the recursive directions to enter the

voxels in that burst. The result is that recursive calls are not only elimi-

nated along the direction chosen for iterative scanning, but also reduced in

the other two directions. The rule is that hybrid labelling requires one and

only one recursive call per burst, and this holds no matter the number of

dimensions.

Under the denomination “hybrid”, which denotes the mixed iterative/re-

cursive approach, hybrid labelling does not incorporate all features of the

classical recursive and iterative techniques. Seemingly, it only keeps the best

features of each world. The iterative side of hybrid labelling is assured by

the recursive side that no “merge” points will be encountered anywhere along

its way. Preventing collisions between equivalence classes while being able

to explore one of the spatial directions by means of closed iterative loops is

8Fortunately, time has not come yet for ∞D images to be of much practical interest.
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advantage enough to outweight the fact that bursts remain one dimensional

no matter the number of dimensions of the image.

The 3D study case also shows another feature of hybrid labelling: It per-

mits to take advantage of anisotropy, such that when predominant features

in the images are expected to favour a given direction, choosing it as the

direction of iterative scanning within the algorithm speeds up the labelling

and reduces even further stack use.

All in all, hybrid labelling shows that recursive object labelling is a valid

alternative to the iterative two pass techniques, just by diminishing the draw-

back of the classical recursive technique: The need of an oversized stack due

to the high number of consecutive recursive calls. Hybrid labelling is a smart

alternative to the two-pass algorithms because it transfers the overhead of

the global equivalence table to the system. Indeed, the system stack may be

seen as a local, “per-component equivalence table”, optimally managed by

the processor through built-in processor instructions, and therefore the algo-

rithm does not need to manage additional data structures, as it happens with

the two pass iterative algorithm, or with the iterative version of the classical

recursive algorithm. The system stack is an inherent characteristic of the

hardware, therefore very fast and efficient, transparently accessed via recur-

sive function calls through the built-in push and pop instructions, without

any further consideration for the programmer than its limited size. Classical

recursive labelling does it also, but less optimally than hybrid labelling, such

as I have just shown.









Chapter 3

Stöhr Edge Encoding

‘The ancient teachers of this science’, said he,
‘promised impossibilities and performed nothing.

The modern masters promise very little;
. . . but have indeed performed miracles’.

3.1 Introduction

One of the major fields in computer vision is object recognition. In a 1996

survey on the application fields for industrial image processing systems [173]

(as cited in [258]), the more demanded topics were “examination of contour”,

“positioning”, “measuring”, and “object identification”. Another major field

of machine vision is texture analysis. Industrial machine vision systems are

usually constrained by high speed requirements, in order to fit into high

throughput production lines. This requirement, while alleviated by the ex-

ponential growth of computer performance, is contrasted with the growing

complexity and computational overhead of a considerable number of image

processing methods in the literature. As Pietikäinen and Ojala put it [198],

“. . . we cannot help wondering if the research has focused too

heavily on a few theoretically impressive (and consequently com-

putationally complex) paradigms?”.
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I describe in the following a computationally simple method for encoding

the edge of a binary shape or object of foreground pixels in a masked image,

which I call Stöhr Edge Encoding (SEE), based on the addition of the first

four terms of a 4-Stöhr sequence [235] to encode all the possible configurations

of every corner of all pixels in the shape, and will show its utility for a

number of typical computer vision problems. The method uses a grid of nodes

corresponding to the vertices of every pixel in the image —thus reconstructing

the original mesh from the equivalent image representation, see section 1.3.

This grid has the same size as the image if the right and bottom borders can

be discarded, as it is usually the case1.

The encoding of an object edge, or all edges in an image is as follows:

A given integer value (weight) is assigned to each vertex of every pixel in

the object, the same assignment for all pixels, such that in a single scan the

corresponding value of each vertex of each pixel is added to the corresponding

node in the node grid. After the scan, every node in the grid holds a code

describing the configuration of the node, i.e. the configuration of the 4-pixel

neighborhood of the node.

The method uses as weights the first elements in a Stöhr sequence, but

would also work with any subset of a B4-Sequence [96]. Using the first

members of a Stöhr sequence warrants that the results of all the possible sums

where each element can occur at most once span an entire integer interval

from 0 on, i.e. every resulting code for any possible node configuration (node

type hereafter) belongs to the interval, and every integer in the interval is a

meaningful and distinct node type code. This simplifies the computation of

Stöhr Edge Code (SEC) histograms and boundary chain codes.

Once the nodes in the contour of an object hold the corresponding Stöhr

Edge Codes, a chain code describing the object shape can be constructed,

just by going through the perimeter of the object collecting the successive

codes. The SEC of every node designates which is the following node in the

perimeter of the object —once a turning direction has been decided— such

1Objects for inspection are usually not allowed to touch any border of the image, or an
uncertainty about their real shape and size would arise.
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that contour following is straightforward. Thus, the SEC can also be used

to follow efficiently the contour of the object for the generation of a classical

crack code.

Without further processing, a SEC chain is less than efficient as a chain

code, because there is a high degree of redundancy —once the type of a

given node is known, the types of the surrounding nodes are restricted to a

subset of the possible configurations—, but this also warrants a high degree

of robustness, such that transmission errors may be detected and corrected.

Therefore it can be used as such when noisy channels or a high error rate are

expected. If this is not the case, the a priori knowledge on the constraints on

neighbouring SEC implicit in SEE allows the use of only two bits per code,

thus generating a compact encoding scheme. Reconstruction from either

the robust or the compact SEC chain is easy in both cases using specific

reconstruction methods.

Some attempts have been made to use chain codes in pattern matching

and object recognition [135,138,145,167,201]. I demonstrate the convenience

of SEE chain codes with a simple test on pattern matching using Levenshtein

distances with the classical crack code [209], the recently introduced vertex

chain code [34], and the SEE chain code.

However, perhaps the primary interest of SEC chain codes is that their

concept can be extended to 3D. Thus, I present a 3D chain code (a real 3D

chain code, for 3D shapes, not curves), the first to be published up to my

knowledge, and show how to encode any arbitrary 3D shape and how to

reconstruct it from the corresponding chain.

The utility of SEE is not restricted to shape encoding through chain

codes. If the SEE codes of an object or an entire image are accumulated on a

histogram, the corresponding vector constitutes an image feature which can

be used for object inspection and for texture classification.

I demonstrate the capacity for object recognition by training simple neu-

ral networks (multilayer perceptrons [104, 108, 174, 207, 210]) to differentiate

between several objects with SEC histograms as the only input. Neural nets
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are also trained to estimate the rotation angle of different objects. Clearly,

SEC histograms used in this fashion are suitable for controlled environments

where only known sets of rigid objects are expected. The restriction, how-

ever, comes accompanied by the extreme computational lightness of SEC

histograms —five integer increments per foreground pixel—, which allows

very high processing speeds in, on the other hand, not uncommon scenarios

in industrial machine vision.

Last, but not least, I apply the SEE technique to texture classification,

by using the SEC histograms of binarized texture samples from the Brodatz

album [37] as input features to a k-nearest neighbor classifier [2, 66,76], and

to a SOFM [130–134]. The performance of SEE is compared to that of the

well known uniform Local Binary Patterns (LBP) [189, 190], which use a

similar approach to texture classification, by means of the distribution of a

set of local configurations along the image.

To finish, I comment on the applicability of SEE to 3D images and specify

the applications into the numerical model framing this report.
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3.2 The algorithm

Pixels/voxels are considered parallelepipeds with edges and vertices. A grid

of nodes is overlaid on the image such that all nodes are on the vertices

of the pixels (voxels) in the image. Pixels are termed either foreground or

background according to a given rule A (see section 2.1.1). An array of

codes with the same size as the grid is set to all zeros. An integer weight is

assigned to each vertex of every pixel in the image, such that in a single scan

over the image the weight of each vertex of each foreground pixel is added

to the code of the corresponding node. After the scan, every node in the

mesh has a SEE code (SEC) describing the configuration of the surrounding

—adjacent— pixels.

We use as weights the first four (eight in 3D) elements in the 4(-8)-Stöhr

sequence, but it would also work with any subset of a B4(8)-Sequence [96]. A

B2-Sequence, also called a Sidon sequence, is an infinite sequence of positive

integers 1 = b1 < b2 < b3 < . . . such that all pairwise sums bi + bj for i ≤ j

are different. The definition is easily extended to Bn-Sequences. A h-Stöhr

sequence [235] is defined as follows: Let a1 = 1 and define an+1 to be the

least integer greater than an which cannot be written as the sum of at most h

addends among the terms a1, a2, . . . , an. Using the first four (eight) members

of the 4(-8)-Stöhr sequence warrants that all the possible sums where each

element can occur at most once span an entire integer interval from 0 onwards

([0, 15] in the 2D case, [0, 255] in 3D), i.e. every code belongs to the interval,

and every integer in the interval is a meaningful and distinct node type code.

This simplifies the subsequent use of the codes, either for histograms or for

indexing look-up tables (LUT).

I illustrate the 2D case for clarity. The 3D case follows in a straightfor-

ward manner. The first four elements of the 4-Stöhr sequence are {1, 2, 4, 8}.
The assignation of weights to each of the four vertices in a pixel determines

the correspondence between each possible code and each local configuration.

Every pixel is assigned the weights in the same order. See Figure 3.1 (left)

for an example. The origin of coordinates is assumed to be the upper left

corner of the image.
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Figure 3.1. Stöhr Edge Encoding. Node codes on the right are the result of
adding up the corresponding weights of the vertices of foreground pixels on the
left (cyclic boundaries have been assumed).

Let (b 9 a) be an operator that increments integer a in b units. If cx,y

denotes the code of node (x, y), on the upper left corner of pixel (x, y), a

single scan over the image performing (1 9 cx,y), (2 9 cx+1,y), (4 9 cx,y+1),

and (8 9 cx+1,y+1) for every foreground pixel (x, y) would produce the result

in Figure 3.1 (right), where the resulting code of each node uniquely identifies

its local configuration (see Figure 3.2 and Algorithm 10). The cost of the

SEE scheme is just four integer increments per foreground pixel.

Algorithm 10 2D SEE

for all (x, y) 0→ cx,y

for all px,y obeying A
(1 9 cx,y)
(2 9 cx+1,y)
(4 9 cx,y+1)
(8 9 cx+1,y+1)

The 3D case follows the same scheme, with the first eight elements of the

8-Stöhr sequence, to produce the 256 codes necessary for the 256 different
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Figure 3.2. All possible local configurations in a 2D image and the corre-
sponding SEE codes for the weight assignment in Figure 3.1. Code 0 is a node
embedded in background pixels, code 15 is a node embedded in an object. All
the rest correspond to boundaries.

local configurations in a 3D image.
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3.3 Chain codes

Freeman [81] was the first to suggest the use of boundary chain codes to rep-

resent digitized shapes, in the early sixties. In later work [82], he presented

some methods for processing chain codes and stated three requisites for any

chain code, namely 1) information preservation, i.e. lossless coding, 2) com-

pact storage, and 3) easy processing. He proposed the classical chain code

where, from a starting pixel on the boundary of a digitized binary shape (a

component in a digital image), each element in the code indicates the direc-

tion to the next pixel along the boundary. This can be one out of eight, if a

8-neighbourhood is used, or one out of four, if 4-neighbourhood, when it is

commonly termed a crack code [209], in reference to following the “cracks”

between pixels instead of jumping from pixel to pixel. To obtain the chain

code a contour following algorithm is necessary, such as that in [71]. Since

Freeman, in spite of extensive work on shape characterization and pattern

recognition using chain codes [135, 138, 145, 167, 201], few new chain codes

have been described [34, 172] apart from some structures loosely related to

chain codes [27, 32, 33]. Bribiesca [34] recently proposed the vertex chain

code, which counts the number of foreground pixels surrounding each vertex

in the object contour. Considerable effort [46,50,127,278] has been dedicated

to real time chain encoding of shapes, mainly related to video compression

techniques [175].

In the following, I will describe two chain codes based in SEE (SCC), a

robust or redundant version, and a compact version, will provide algorithms

for obtaining both types of SCC from a shape —coding— and for obtaining

the corresponding shape from a SCC —decoding. The prominent feature of

SEE chain codes is that they do not need any additional contour following

algorithm, as the SEC provide all the necessary information to trace the

boundary of the shape. Thus, SEC can also be used for efficient computation

of the crack code and the vertex code.
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3.3.1 Robust code

Algorithms 11 and 12 show SEE chain code generation for 4- and 8-neighbo-

urhoods. They assume the SEC of the image have been previously computed

as in Algorithm 10 and are stored in cx,y. ci denotes bit i in c. Both turn

clockwise and are expected to begin in a node (xi, yi) type 1, according to

the encoding in Figure 3.1. If the image is scanned in search of the object in

ascending x and y scan order, the first node with non zero SEC will always

have SEC 1 (see Figure 3.2), and therefore it is not appended to the chain.

An auxiliary variable d is used to keep track of the last movement while

surrounding the object according to the current SEC, using the following

arbitrary assignation of integer values: 0 → x+, 1 → x−, 2 → y+, 3 → y−.

This is necessary with 4-neighbourhood to convert nodes belonging to two

different touching objects or two separate parts of the same object (SEC 6

and 9 in Figure 3.2) to the appropriate node type including only the pixels of

the object of interest. Thus, for instance, if a node type 6 is reached from the

left, the appropriate movement is downwards, and the correct node type for

the chain code is 2. If it is reached from the right, the appropriate movement

is upwards, and the correct node type is 4. Remember that the boundary

is followed clockwise. With 8-neighbourhood, there is no need of node type

corrections for the chain code. However, it is still necessary to know which

was the last movement to decide the next move along the contour in nodes

type 6 and 9. Thus, for instance, a node type 6 reached from the right should

be followed downwards, not upwards. The rest of node types are treated the

same for 4- and 8-neighbourhoods to decide the next movement along the

contour. The contour is followed until the starting point is reached. Using

binary masks generates compact and fast code, see Appendix D for more

specific —but also more obscure— pseudocode for these and the following

algorithms.

Node codes can be appended to the chain code Code as nibbles in an array

of bytes, or well the first nibble in each byte can be used to store the code

and the second a run-length code to indicate a number of equal consecutive
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Algorithm 11 Robust 4-neighbourhood SEE Chain Code (R-SCC4)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

if c = 6 {if d = 0 c← 2, else if d = 1 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 3 c← 1}
append c to Code
if (c0 and c2) {d← 0, increase x}
else if (c3 and c1) {d← 1, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 3, decrease y}

while (x, y) 6= (xi, yi)

Algorithm 12 Robust 8-neighbourhood SEE Chain Code (R-SCC8)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

append c to Code
if (c = 6 and d = 0) {d← 3, decrease y}
else if (c = 9 and d = 3) {d← 1, decrease x}
else if (c0 and c2) {d← 0, increase x}
else if (c3 and c1) {d← 1, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 3, decrease y}

while (x, y) 6= (xi, yi)

nodes up to 162. This does not affect the way the chain code is obtained,

and therefore is not explicit in Algorithms 11 and 12. Figure 3.3 provides an

example.

2However, only a subset of node types can be followed by the same type in a SCC.
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Algorithm 13 4-neighbourhood Crack Code using SEE

initialize Code
d← 0
x← xi, y ← yi

do
c← cx,y

if c = 6 {if d = 1 c← 2, else if d = 3 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 0 c← 1}
if (c0 and c2) {d← 1, increase x}
else if (c3 and c1) {d← 3, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 0, decrease y}
append d to Code

while (x, y) 6= (xi, yi)

Algorithm 14 8-neighbourhood Crack Code using SEE

initialize Code
d← 0
x← xi, y ← yi

do
c← cx,y

if (c = 6 and p = 1) {d← 0, decrease y}
else if (c = 9 and p = 0) {d← 3, decrease x}
else if (c0 and c2) {d← 1, increase x}
else if (c3 and c1) {d← 3, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 0, decrease y}
append d to Code

while (x, y) 6= (xi, yi)

R-SCC is termed robust because it includes redundancy. Once the SEC

of a given node is known, the set of possible SEC for the adjacent nodes

(including the next node along the boundary) is a subset of all possible SEC.

If the whole number of bits is used to store each SEC along the boundary, the
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Figure 3.3. A simple object, and the SEC of the boundary nodes.

Code Length
Freeman 4 3 1 3 4 6 5 6 0 7 6 1 1 39 bits
Crack 1 2 2 1 0 1 2 1 2 2 3 3 2 3 3 0 0 3 3 0 1 0 1 0 48 bits
Vertex 1 1 2 3 2 1 2 1 3 2 1 2 1 3 1 1 3 3 2 1 1 3 1 3 48 bits
R-SCC 2 10 11 7 1 2 11 2 10 8 12 14 8 12 4 5 13 12 4 1 7 1 7 92 bits
SCC 0 2 3 3 0 0 3 0 2 0 2 3 0 3 0 1 3 2 0 0 3 0 3 46 bits

Table 3.1. Chain codes of the shape in Figure 3.3.

SEE chain code is thus incorporating redundancy. Half of the length of the

R-SCC (when run-length is not used) is dedicated to this redundancy. This

is a waste of storage in noise-free systems, but increases robustness in noisy

(error-prone) environments. Thus, the R-SCC in Table 3.1 is 92 bits long,

versus the 48 bit long crack and vertex codes, or the 39 bit long Freeman

(classical) chain code.

Algorithms 13 and 14 show how SEE can be used to obtain the crack code.

Instead of appending the SEC to the chain, it is the value of d (redefined

to match the usual convention in crack codes) that is appended to the code.

Not shown but fairly similar would be the algorithms to construct the vertex

chain code, just by appending to the code, instead of d, the bitwise number

of 1’s in c.
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Algorithm 15 Shape reconstruction from R-SCC Code

d← 0
x← xi, y ← yi

do
extract c from Code
if d= 0

increase x
if c = 2 d← 2
else if c = 3 px,y ← 1
else if c = 6 d← 3
else if c = 7 {d← 3, px,y−1 ← 1}
else Error

else if d = 1
decrease x
if c = 4 d← 3
else if c = 6 {d← 2, px−1,y ← 1}
else if c = 12 px−1,y−1 ← 1
else if c = 14 {d← 2, px−1,y ← 1}
else Error

else if d = 2
increase y
if c = 8 d← 1
else if c = 9 {d← 0, px,y ← 1}
else if c = 10 px−1,y ← 1
else if c = 11 {d← 0, px,y ← 1}
else Error

else
decrease y
if c = 1 d← 0
else if c = 5 px,y−1 ← 1
else if c = 9 d← 1
else if c = 13 {d← 1, px−1,y−1 ← 1}
else Error

while Code 6= ∅

Algorithm 15 shows how to reconstruct a contour from a robust SEE

chain code (R-SCC). The last movement (kept in d) determines the four
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possible node types of the next code element. If it is not in the corresponding

subset, there is an error in the code. This may either halt the process of

reconstruction or well try a weak correction by replacing the defective element

with the SEC in the legal subset closest to the defective element and having

the following element in its list of allowed successors.

A costly, but more effective, error correction strategy is marking all de-

fective elements, and perform an exhaustive ordered search for all defective

elements in the corresponding legal subsets under the constraint that at the

end of the reconstruction the end point of the contour must coincide with

the initial point. The cost of the correction depends on the number of defec-

tive elements in the chain, but the search space for each defective element is

limited to four candidates, and the probability that a wrong correction may

result in matching initial and ending points is very low.

The redundancy based error detection capability of the R-SECC could be

achieved with a crack code repeating each element of the chain twice. This

would equate the length of the robust SEE chain code, but would differ in the

performance of the correction strategy. A defective element would imply a

mismatched pair. A decision should be taken about which of the two elements

in the pair could be the defective one. This decreases the search space per

defective element to two legal candidates (versus the four legal candidates

in the R-SECC). However, redundancy in this duplicated crack code is in

one direction only, either forwards or backwards, and a wrong correction can

not be detected by the following element in the chain. A defective R-SECC

element is detected by the previous element in the chain, but the wrong

correction would cause a mismatch with the following element in the chain.

Redundancy is bidirectional, all elements are linked to the previous and the

following element in the chain. Therefore, the effective search space has the

same size in both strategies and the robustness is greater in R-SECC due to

the “distributed” redundancy.
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3.3.2 Compact code

With SEE it is possible to construct a chain code the same length than the

crack code or the vertex code, just by eliminating the redundancy in the R-

SCC. Algorithms 16 and 17 show how. We will drop the prefix ’R’ to denote

the compact SEE chain code.

Algorithm 16 Compact 4-neighbourhood SEE Chain Code (SCC4)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

if c = 6 {if d = 0 c← 2, else if d = 1 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 3 c← 1}
if d = 0 n← (c0c2)
else if d = 1 n← (c1c3)
else if d = 2 n← (c0c1)
else if d = 3 n← (c2c3)
append n to Code
if (c0 and c2) {d← 0, increase x}
else if (c3 and c1) {d← 1, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 3, decrease y}

while (x, y) 6= (xi, yi)

Chain elements are two bit long, and are formed using only the informa-

tion in the SEC that is new with respect to the previous node. What part

of a SEC is new in a chain depends on the direction we are approaching the

node. Thus, see Figure 3.2, when we approach a node horizontally from the

left (x−, i.e. d = 0 in Algorithms 16 and 17), the only new information the

SEC is providing with respect to the SEC of the previous node regards the

pixels to the right of the current node, and (with the weight assignation of

Figures 3.1 and 3.2) is stored in the bits 1 and 3 of the SEC. All the same,

when we approach a node from down upwards (y+, d = 3), the innovation in
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Algorithm 17 Compact 8-neighbourhood SEE Chain Code (SCC8)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

if d = 0 n← (c0c2)
else if d = 1 n← (c1c3)
else if d = 2 n← (c0c1)
else if d = 3 n← (c2c3)
append n to Code
if (c = 6 and p = 0) {d← 3, decrease y}
else if (c = 9 and p = 3) {d← 1, decrease x}
else if (c0 and c2) {d← 0, increase x}
else if (c3 and c1) {d← 1, decrease x}
else if (c1 and c0) {d← 2, increase y}
else if (c2 and c3) {d← 3, decrease y}

while (x, y) 6= (xi, yi)

the SEC is in the pixels above the current node, i.e. bits 3 and 2 of the current

SEC. The contour following part is the same as in the previous algorithms.

Appendix D provides explicit pseudocode for the bitwise operations.

Table 3.1 shows the SCC of the shape in Figure 3.3 together with the

R-SCC and some other chain codes in the literature. Note that the 2 bit

difference in length of the SCC with respect to the crack code or the vertex

code is due to the fact that SCC assumes the contour always begins in a node

of type 1 (i.e. objects are always found in normal scan order), thus the first

node is never included in the chain.

Compactness in compact SCC comes at no cost in reconstruction com-

plexity with respect to robust R-SCC. The only loss is thus the error detection

capability in exchange for storage room or bandwidth. Algorithm 18 shows

pseudocode for the reconstruction of the corresponding object from a com-

pact SCC. Once the last movement is known, the meaning of the two bits in
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Algorithm 18 Shape reconstruction from SCC Code

d← 0
x← xi, y ← yi

do
extract c from Code
if d= 0

increase x
if c = 0 d← 2
else if c = 1 px,y ← 1
else if c = 2 d← 3
else if c = 3 {d← 3, px,y−1 ← 1}

else if d = 1
decrease x
if c = 0 d← 3
else if c = 1 {d← 2, px−1,y ← 1}
else if c = 2 px−1,y−1 ← 1
else if c = 3 {d← 2, px−1,y ← 1}

else if d = 2
increase y
if c = 0 d← 1
else if c = 1 {d← 0, px,y ← 1}
else if c = 2 px−1,y ← 1
else if c = 3 {d← 0, px,y ← 1}

else
decrease y
if c = 0 d← 0
else if c = 1 px,y−1 ← 1
else if c = 2 d← 1
else if c = 3 {d← 1, px−1,y−1 ← 1}

while Code 6= ∅

the chain element is unequivocally determined.
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3.3.3 Template matching with SEE chain code

To illustrate the possibilities of the SEE based chain code in computer vision,

I performed a simple test for object recognition using Levenshtein [143] and

generalized string edit distances [183]. Given two strings X and Y made

of symbols from a finite alphabet Σ, X,Y ∈ Σ∗, the Levenshtein distance,

also known as string edit distance, and the generalized string distance are

measures of similarity between X and Y based on the minimum number of

elementary edit operations needed to transform X into Y .

The set of elementary edit operations is usually restricted to insertion of

a symbol, deletion of a symbol, and substitution of one symbol for another

(transposition and substring manipulation are also considered by some au-

thors), denoted by pairs (a → b) 6= (ε → ε), with a, b ∈ Σ and ε the null

string. An insertion is (a → ε), a deletion is (ε → a), both with a 6= ε,

and a substitution is (a → b) with a 6= b. An edit transformation of X

into Y is a sequence S of elementary edit operations si that transforms X

into Y . The Levenshtein distance is the minimum number of edit operations

that achieve this. The generalized edit distance δ(X,Y ) considers differ-

ent weights for each possible edit operation, γ[(a → b)], γ(S) =
∑

γ(si),

such that δ(X,Y ) = min{γ(S)}, the minimum weighted sum of all possi-

ble edit transformations taking X to Y . Edit distances fulfill the triangle

inequality, and δ is a metric in Σ∗ if γ is subjected to: γ[(a → a)] = 0,

γ[(a→ b)] > 0 ∀ a 6= b, and γ[(a→ b)] = γ[(b→ a)] ∀ a, b ∈ Σ ∪ ε.

String edit distances have been used for matching of protein and DNA se-

quences [218], for text retrieval and correction [273], speech recognition [128],

and other pattern matching applications, including computer vision applica-

tions [43, 44, 51, 83, 166]. See also the references in [183]. An O(|X| × |Y |)
algorithm using dynamic programming for the computation of the (gen-

eralized) edit distance has been independently discovered by several au-

thors [184,217,221,256,257] even if in the pattern recognition literature it is

usually attributed to Wagner and Fischer [257]. It uses the recursive rela-

tion δ(X1...i, Y1...j) = min{δ(X1...i−1, Y1...j) + γ[(Xi → ε)], δ(X1...i−1, Y1...j−1) +

γ[(Xi → Yj)], δ(X1...i, Y1...j)+ γ[(ε→ Yj)]} to iteratively construct a distance
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matrix whose (|X|, |Y |) element is the edit distance from X to Y . Since

then, new algorithms have been developed to reduce the worst case or the

average case complexity [48,49,64,86,140,181,251], of use in time critical ap-

plications, such as data base retrieval. However, the tests that follow do not

have tight time constraints nor involve really long sequences, so the original

dynamic programming O(|X| × |Y |) algorithm is used.

Figure 3.4. Digitized silhouettes of five plant and tree leaves: A) Fig tree,
B) Poinsettia, C) Birch tree, D) Lemon tree, E) Fern. Upper row: Originals
from [34]. Middle row: Original shapes downscaled to 75%. Lower row: Orig-
inal shapes slightly warped. The original shapes are outlined on the warped
images.

Digital shapes can be represented by chain codes, which are sequences of

symbols from small alphabets (|ΣCrack| = 4, |ΣVCC| = 3, and |ΣSCC| = 4),

thus allowing the use of string edit distances as measures of similarity for pat-

tern matching and object recognition purposes [43, 44, 51]. Figure 3.4 shows

the digitized silhouettes of five plant and tree leaves used by Bribiesca in his
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work on the vertex chain code [34]. The middle row shows the original sil-

houettes downsampled to 75% of their original size, and the lower row shows

slightly (and not so slightly) nonlinearly transformed (warped) versions. I

computed the crack chain code (CCC), the vertex chain code (VCC), and the

compact SEE chain code (SCC) of all shapes in Figure 3.4, and computed

all pairwise Levenshtein and generalized edit distances between them. The

weights selected for the generalized string distance try to reflect the mag-

nitude of the direction change caused by each possible symbol substitution,

unitary cost for 90◦ turns, double cost for 180◦ turns, while deletions and

insertions were assigned unitary cost. For the Levenshtein distance all costs

are set to one.

The tables that follow show some results. Comparisons are made on the

individual performance of each coding scheme for pattern matching. For

direct matching, all distances are expressed as percentage of the maximum

distance in the table for each different codification scheme, to ensure that

results are independent of code specificities, such as number of symbols in the

alphabet. Therefore, 0% represents the least similar pair in the table for each

code, whereas 100% indicates two exactly matching sequences. Intermediate

values for each coding scheme represent intermediate degrees of similarity

between total match and biggest dissimilarity.

Table 3.2 shows the results of pairwise matching between the original

shapes. There is of course a perfect match with each shape with itself for all

coding schemes. There is a general agreement among codes on the similarities

between the different leaves, with a few exceptions: VCC finds the Fig leaf

(A) more similar to the Poinsettia (B), whereas CCC and SCC find it to be

closer to the Birch leaf (C). The three of them clearly consider3 the Fern leaf

(E) the least similar to any other, specially the Lemon leaf (D), but while

CCC and VCC find a slightly higher similarity with the Fig (A) and the

Poinsettia (B) leaves, respectively, SCC just finds it very different from any

of the other four leaves. The three agree on the Poinsettia (B) being closest

to the Birch leaf (C), the Birch leaf (C) being closest to the Poinsettia (B),

3Shape comparison with chain codes is based exclusively on local information about
the contours.
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CCC A B C D E
A 100% 45% 48% 41% 6%
B 45% 100% 60% 53% 3%
C 48% 60% 100% 60% 5%
D 41% 53% 60% 100% 0%
E 6% 3% 5% 0% 100%

VCC A B C D E
A 100% 49% 45% 28% 5%
B 49% 100% 53% 38% 6%
C 45% 53% 100% 46% 4%
D 28% 38% 46% 100% 0%
E 5% 6% 4% 0% 100%

SCC A B C D E
A 100% 45% 47% 33% 1%
B 45% 100% 54% 44% 2%
C 47% 54% 100% 51% 2%
D 33% 44% 51% 100% 0%
E 1% 2% 2% 0% 100%

Table 3.2. Direct matching with Levenshtein distance between leaf shapes in
upper row of Figure 3.4. Values indicate relative match, from 100% for exact
match (zero distance) down to 0% for worst match (maximum distance in each
table).

and the Lemon leaf (D) to the Birch leaf (C). In the disagreements between

VCC and CCC, SCC seems to take an intermediate position, for instance in

the decisions about second-closest pairs.

Table 3.3 shows the same results using the generalized edit distance. The

three encoding schemes show little change with respect to cost assignation.

The change is not enough to alter the general pattern of similarity, which

remains about the same. This was verified in all the tests that follow. There-

fore, to avoid redundancy, only the results with the Levenshtein distance are

shown hereafter.

Table 3.4 shows the results of matching the small downscaled shapes

to the original shapes. The table shows both direct matching using the

distances (normalized within table as in the previous tables) and through a

voting scheme, where the candidate templates Ti ∈ {A, B, C, D, E} receive
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CCC A B C D E
A 100% 43% 51% 45% 2%
B 43% 100% 62% 56% 0%
C 51% 62% 100% 63% 5%
D 45% 56% 63% 100% 2%
E 2% 0% 5% 2% 100%

VCC A B C D E
A 100% 47% 44% 28% 5%
B 47% 100% 52% 38% 6%
C 44% 52% 100% 46% 4%
D 28% 38% 46% 100% 0%
E 5% 6% 4% 0% 100%

SCC A B C D E
A 100% 44% 47% 33% 1%
B 44% 100% 54% 44% 2%
C 47% 54% 100% 51% 2%
D 33% 44% 51% 100% 0%
E 1% 2% 2% 0% 100%

Table 3.3. Direct matching with generalized edit distance between leaf shapes
in upper row of Figure 3.4. Values indicate relative match, from 100% for
exact match (zero distance) down to 0% for worst match (maximum distance
in each table).

a number of votes vi according to the Levenshtein distance to the pattern

being matched, P ∈ {a, b, c, d, e}, vi = max{δ(P, Tj)}j − δ(P, Ti). Votes in

the table are expressed in percentage over total votes received by all candidate

templates for each pattern.

The three coding schemes assign the correct template to each pattern,

but some differences are shown. In direct matching, CCC shows the highest

winner scores, while VCC shows the lower ones, and SCC is in the middle,

closer to CCC than to VCC. However, the high winners may hide the fact

that distances to second and third best matches are also higher in CCC, thus

hinting at a lesser sensitivity, or broader response curve, which may affect

the performance of the classifier. The clearest example in Table 3.4 occurs

when matching the downscaled Fern leaf (e), where CCC shows the strongest

direct response of the three encoding schemes, but the winner (E) gets 2.33
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Direct Votation
A B C D E CCC A B C D E

65% 46% 57% 58% 12% a 30% 19% 26% 26% 0%
37% 68% 62% 64% 7% b 15% 30% 27% 28% 0%
36% 47% 71% 61% 6% c 16% 21% 34% 29% 0%
33% 44% 57% 72% 0% d 16% 22% 28% 35% 0%
13% 15% 15% 12% 35% e 2% 10% 10% 0% 78%
A B C D E VCC A B C D E

55% 44% 55% 54% 19% a 27% 19% 27% 27% 0%
32% 59% 53% 55% 15% b 12% 31% 27% 29% 0%
23% 34% 63% 52% 5% c 12% 19% 38% 31% 0%
20% 31% 46% 64% 0% d 12% 19% 29% 40% 0%
22% 21% 18% 18% 29% e 22% 17% 2% 0% 58%
A B C D E SCC A B C D E

62% 42% 52% 49% 13% a 32% 19% 25% 24% 0%
34% 65% 53% 54% 10% b 15% 33% 26% 26% 0%
30% 40% 69% 52% 6% c 15% 20% 38% 28% 0%
27% 38% 50% 69% 0% d 15% 20% 27% 38% 0%
9% 9% 10% 11% 29% e 0% 0% 2% 10% 88%

Table 3.4. Matching with Levenshtein distance the downscaled shapes (small
letters) to the original leaf shapes (capital letters) in Figure 3.4. Left: Direct
matching, where values indicate relative match, from 100% for exact match
(zero distance) down to 0% for worst match (maximum distance in each table).
Right: Votation, where values indicate percentage of votes for each original
shape as candidate for matching the corresponding downscaled shapes. Bold:
Winners.

times the response of the second closest (B), while with SCC the ratio grows

to 2.64 times. The same behaviour can be seen throughout the whole table.

This is clearly revealed by the voting scheme, where SCC clearly shows

the best performance, still exhibiting a narrower response to the best match.

VCC shows the worst performance with very wide responsivity, such that the

downscaled Fig leaf (a), is matched with almost equal strength to the Fig

leaf, the Birch leaf, and the Lemon leaf (A, C, and D), whereas CCC shows

a similar behaviour, if not so markedly, and SCC keeps a healthy 7 points

between the winner, the Fig leaf (A), and the second closest, the Birch leaf

(C). This also happens with the matching of the downscaled Poinsettia (b).
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Direct Votation
A B C D E CCC A B C D E

89% 39% 46% 40% 1% A 42% 18% 21% 19% 0%
40% 86% 54% 50% 0% B 17% 37% 24% 22% 0%
47% 60% 91% 61% 5% C 18% 23% 36% 23% 0%
38% 49% 54% 75% 3% D 17% 23% 25% 36% 0%
2% 3% 6% 6% 67% E 0% 0% 5% 5% 91%
A B C D E VCC A B C D E

75% 39% 34% 25% 13% A 51% 21% 17% 10% 0%
41% 71% 40% 33% 16% B 20% 45% 20% 14% 0%
43% 47% 80% 45% 13% C 18% 21% 41% 20% 0%
19% 24% 31% 46% 14% D 8% 17% 27% 49% 0%
5% 5% 0% 3% 36% E 10% 10% 0% 6% 73%
A B C D E SCC A B C D E

81% 39% 38% 30% 6% A 45% 20% 20% 14% 0%
38% 78% 44% 40% 10% B 17% 42% 22% 19% 0%
43% 49% 84% 49% 9% C 18% 21% 40% 21% 0%
25% 33% 40% 58% 14% D 11% 19% 26% 44% 0%
3% 2% 2% 0% 47% E 6% 4% 4% 0% 87%

Table 3.5. Matching with Levenshtein distance the warped shapes (slanted
letters) to the original leaf shapes (capital letters) in Figure 3.4. Left: Direct
matching, where values indicate relative match, from 100% for exact match
(zero distance) down to 0% for worst match (maximum distance in each ta-
ble). Right: Votation, where values indicate percentage of votes for each orig-
inal shape as candidate for matching the corresponding warped shapes. Bold:
Winners.

Table 3.5 shows the same results for the matching of the warped leaves

with the original leaves. The behaviour is very similar. The three encod-

ing schemes are able to find the correct template both by direct matching

and by vote, CCC shows the strongest direct responses but also a broader

responsivity than SCC, while VCC is the worst performer, if not bad. Again

with the voting scheme SCC reveals the power of its narrower sensitivity —

the warped Fern leaf (E) being the exception—, but now even VCC is able

to grow from its poor direct matching performance showing a better voting

behaviour than CCC due to a narrower sensitivity. With the warped images

there are no border cases, all second-best matches are reasonably far from

the best matches with the three encoding schemes.
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Direct Votation
A B C D E CCC A B C D E

57% 39% 53% 47% 11% a 30% 18% 27% 24% 0%
32% 57% 58% 52% 8% b 14% 29% 30% 27% 0%
29% 38% 65% 47% 5% c 15% 20% 38% 27% 0%
26% 35% 52% 54% 0% d 16% 21% 31% 32% 0%
12% 14% 14% 14% 28% e 0% 12% 9% 11% 68%
A B C D E VCC A B C D E

45% 39% 52% 40% 17% a 26% 20% 32% 22% 0%
28% 44% 48% 39% 14% b 14% 29% 33% 24% 0%
17% 26% 55% 38% 4% c 11% 18% 42% 28% 0%
14% 23% 42% 38% 0% d 12% 20% 36% 33% 0%
26% 26% 23% 24% 28% e 22% 25% 0% 12% 41%
A B C D E SCC A B C D E

55% 39% 50% 41% 14% a 31% 19% 28% 21% 0%
32% 53% 50% 42% 10% b 16% 31% 29% 24% 0%
28% 34% 63% 44% 6% c 15% 20% 39% 26% 0%
24% 32% 48% 48% 0% d 16% 21% 32% 31% 0%
14% 18% 15% 22% 26% e 0% 14% 4% 33% 49%

Table 3.6. Matching with Levenshtein distance the downscaled shapes (small
letters) to the warped leaf shapes (slanted letters) in Figure 3.4. Left: Direct
matching, where values indicate relative match, from 100% for exact match
(zero distance) down to 0% for worst match (maximum distance in each table).
Right: Votation, where values indicate percentage of votes for each warped
shape as candidate for matching the corresponding downscaled shapes. Bold:
Winners.

Table 3.6 shows a more difficult scenario. The downscaled leaf silhouettes

are matched to the warped templates. This poses the hardest challenge, as

the results show. None of the encoding schemes is able to find the correct

winner in all cases. CCC and SCC show the best performance, just a slight

difference causes one error —SCC incorrectly assigned the small Lemon leaf

(e) to the warped Birch leaf (C) for less than one point, and CCC incorrectly

assigned the small Poinsettia leaf (b) to the warped Birch leaf (C) for one

point, and was on the verge of making the same mistake as SECC with the

Lemon leaf (e)—, whereas VCC was wrong with three of the patterns, the

Fig leaf, the Poinsettia leaf, and the Lemon leaf (a, b, and d), all incorrectly

assigned to the warped Birch leaf (C). The usual confidence of SCC on its
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Direct Votation
a b c d e CCC a b c d e

53% 25% 23% 19% 3% A 46% 20% 18% 15% 0%
33% 53% 32% 29% 6% B 22% 38% 21% 19% 0%
48% 54% 62% 48% 6% C 23% 25% 30% 22% 0%
42% 47% 43% 49% 6% D 23% 26% 23% 28% 0%
2% 0% 4% 10% 21% E 6% 0% 11% 27% 56%
a b c d e VCC a b c d e

45% 28% 17% 14% 26% A 51% 23% 6% 0% 20%
39% 44% 26% 23% 26% B 38% 49% 7% 0% 7%
52% 48% 55% 42% 23% C 27% 24% 31% 18% 0%
40% 39% 38% 38% 24% D 27% 25% 24% 23% 0%
17% 14% 4% 0% 28% E 27% 22% 7% 0% 45%
a b c d e SCC a b c d e

49% 24% 20% 15% 5% A 50% 22% 17% 12% 0%
32% 48% 27% 25% 9% B 24% 40% 19% 17% 0%
45% 44% 59% 42% 6% C 23% 23% 32% 22% 0%
34% 36% 37% 42% 14% D 22% 23% 25% 30% 0%
4% 0% 0% 6% 18% E 14% 1% 0% 22% 63%

Table 3.7. Matching with Levenshtein distance the warped shapes (slanted
letters) to the downscaled leaf shapes (small letters) in Figure 3.4. Left: Di-
rect matching, where values indicate relative match, from 100% for exact match
(zero distance) down to 0% for worst match (maximum distance in each table).
Right: Votation, where values indicate percentage of votes for each downscaled
shape as candidate for matching the corresponding warped shapes. Bold: Win-
ners.

responses, revealed by its narrower responsivity, is not such in this case,

where it shows response curves as wide as CCC. However, overall it showed

the best performance, very close to that of CCC, also in this case. Again

VCC was third in the ranking.

Last, table 3.7 shows the reverse, the warped silhouettes matched to the

downscaled images. This time two of the three encoding schemes are able to

solve the riddle without errors. VCC is again the worst performer, including

one error where the correct template (d) is not even second best, but fourth

—out of five— for a pattern (warped Lemon leaf, D) where SCC yields the

correct template without much hesitation —five points of difference to the
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second best match—, and CCC also gives the correct result, even if with less

confidence —two points above to the second best. SCC is again the best

performer, with narrower sensitivity and good overall accuracy.

Therefore, Stöhr Edge Encoding offers a new chain code that does not

need a contour following algorithm other than the SEC codes themselves,

and in rotation invariant environments gives at least similar performance for

template matching with string edit distances as the classical crack code (4-

neighbourhood Freeman chain code) and the recent vertex chain code, if not

better.
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3.3.4 A 3D chain code

SEE works in any number of dimensions, including, naturally, three dimen-

sional images. In 3D, nodes are surrounded by eight voxels, and the number

of different possible local configurations is 256. Assigning the first eight ele-

ments of the 8-Stöhr sequence, {1, 2, 4, 8, 16, 32, 64, 128} to the eight vertices

of each voxel does the trick, see Figure 3.5. As the interested reader will

have already noted, SEE codes provide a binary codification of the local en-

vironment of each node, and thus SEE codes can also be viewed as small

subimages containing small neighbourhoods, only if in a scan order generally

differing from the usual raster order. Each bit in a SEC indicates the state of

a given pixel in the neighbourhood of the corresponding node in the original

image. 2D SEE chain coding just concatenates the (innovative part of the)

SEC codes according to a preestablished contour following scheme, with the

advantage that the SEE codes themselves provide the information about the

direction to follow.

There is no reason to not be able to extend this idea to 3D SEC and im-

ages. Well, a reason may not exist, but a practical issue certainly arises: 2D

contours can be unambiguously followed once a turning direction has been

chosen, but 3D surfaces enclosing 3D shapes are not that straightforwardly

scanned such that all pixels in the boundary are visited once and only once

according to a predictable, repeatable scheme. This is where hybrid labelling

(Chapter 2) reenters the stage, under the shape of hybrid shape boundary

traversal. Hybrid boundary traversal (a backscan, a forward scan, followed

by a second forward scan inspecting neighbour nodes in the transverse direc-

tions) provides a boundary following scheme permitting to scan all boundary

nodes in a 3D shape, such that all (the innovative parts of) their SEE codes

can be concatenated into a chain code that will ultimately hold the whole

information about the shape in a compact way, as much as it happens with

the usual 2D chain codes.

Up to the knowledge of the author, no chain code for 3D shapes has

been published yet. Certainly, the traditional Freeman chain code has been

straightforwardly extended to allow displacements out of the plane, thus
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Figure 3.5. SEE in 3D: (left) A node (black dot) surrounded by 8 voxels and 6
adjacent nodes (grayed dots). Each foreground voxel is represented by a 1 in the
indicated bit (bi) of the SEE codeword (SEC); (right) Assignment of weights to
voxel vertices, and below the correspondence between bits in the SEC, weights
in the voxel vertices, and voxels surrounding the node. For convenience, the
central node is referred as node (x, y, z), and the voxel labelled as b6 is referred
as voxel (x, y, z). From this, a relationship between image coordinates and
nodes can be easily established.

permitting the codification of curves in 3D space, just by increasing the

number of codes to represent the new directions, but the principles underlying

the method are intrinsically the same as that of the 2D chain code. Only

Bibriesca, in his presentation of the vertex chain code [34], introduced a single

sentence suggesting further work to develop a chain code for 3D shapes, but

no news on any development in this sense have since appeared. However, a

compact representation for arbitrary 3D shapes similar to that of 2D chain

codes may prove useful in many different applications, such as archiving of

features of interest in medical images for assessment in time series —tumors

in tomographic images, for instance, where the evolution of shape and size

could then be monitored independently of the position in each successive

tomography without the need to store or analyse the whole tomographies

each time.
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It is possible to generate a very simple 3D chain code just by applying

the 3D hybrid labelling algorithm described in Chapter 2 to the outer voxels

of an arbitrary shape: Hybrid labelling is able to move in any of 6 possible

directions from a pixel to any of the adjacent pixels. These can be encoded

with three bits, say 1 for x− (backscan, in the terminology of hybrid la-

belling), 2 for x+ (forward scan), 3 for y−, 4 for y+, 5 for z−, and 6 for z+

(all of them within the second forward scan). Suppose we scan all boundary

voxels of an arbitrary 3D shape with hybrid labelling, while storing into a

chain the 3 bits that encode the direction of each movement. Now let us try

to reconstruct the shape with the stored chain. We enter the first burst of

voxels in the surface of the shape, and scan forward until the burst of 2’s

in the chain is finished. Then a 4 follows. This means we have to move a

step in y+. However, from which voxel in the burst? Clearly, we have lost

some crucial information. We need to keep track in the encoding also of the

movement along the burst during the second forward scan, so we can know

later, during the reconstruction, from which position in the burst are we ex-

pected to take any of the traverse directions indicated in the chain. In three

bits there is still room for two more codes, 0 and 7, so this is not going to

cause adverse effects on the size of each code in the chain. We may use code

7 to indicate each step forward along the burst in the second forward scan.

Let us go back to the end of the very first burst during the reconstruction.

After the burst of 2’s, we find two 7’s, and then the code 4. This means we

have to count two voxels from the beginning of the burst, and then jump

in y+. Now it works. However, whereas the size of each code in the chain

is not affected, the total length of the chain certainly is. Now we need two

codes per boundary voxel, one to enter them and the other to keep track of

the position of potential turns in the second forward scan. Also note that to

be able to scan the whole surface of any arbitrary 3D shape we have to use

8-neighbourhood connectivity: Just imagine a voxel sitting on top of a flat

surface of voxels. To be able to jump from the upper voxel to the surface

below visiting only boundary nodes, we need a diagonal jump, or we will have

to inevitably go through the voxel right below the upper voxel, which is not

a boundary voxel. This increases even more the length of the chain, because

the bursts in the forward scan become two voxels longer. Therefore, voxel
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hybrid scanning produces the first real 3D chain code described up to date,

but it somehow causes certain intellectual discomfort.

How to preserve the topology of the surface without having to use all this

duplicity of codes? The answer is Stöhr Edge Encoding.

Consider the SEE weight assignation of Figure 3.5. All SEC different from

0 and 255 (FFh) are nodes on a shape boundary, i.e. they belong to facets

separating foreground voxels (voxels obeying A, see 2.1.1) from background

voxels (voxels not obeying A). Our aim is to scan all the boundary nodes in

a shape according to a predefined order, such that all nodes in the boundary

of any arbitrary 3D shape are scanned once and only once. During the scan,

we will append the (innovative part of the) SEC of each node to a chain

code, very much in the way of the compact 2D SCC. The chain code thus

constructed can later be decoded to reconstruct the boundary of the original

shape, just by rebuilding the local neighbourhood of the boundary nodes

using the SEE information contained in the chain.

For this purpose, the same scanning scheme is used in the coding and

decoding of the chain, hybrid boundary traversal (HBT), which is just an

adaptation of the hybrid labelling algorithm to scan nodes instead of pix-

els/voxels, using boundary bond connectivity. By boundary bond connec-

tivity I refer to the following connectivity criterion: Two adjacent nodes are

connected if the edge linking them belongs to both at least a background

voxel and a foreground voxel (i.e. a boundary edge). Thus we are allowed to

go from a node to one of the adjacent nodes if in the set of the four voxels

which they share there is at least one foreground and one background voxel.

This information is contained in the SEC of any of the nodes under inspec-

tion, the source node and the potential destination node, and it is all the

information hybrid boundary traversal needs.

Algorithm 19 shows pseudocode for constructing the 3D SEE chain code

of any arbitrary shape using hybrid boundary traversal. The assumptions

are that the 3D image has already been processed to discriminate the voxels

obeying A from those not, and then the SEC of all nodes in the image have

been computed (see Algorithm 10).
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Algorithm 19 3D SEE (Hybrid boundary traversal) chain code

initialize Code
scan all x, y, z until cx,y,z 6= 0
if cx,y,z 6= 0 Encode(x, y, z)

Encode(x, y, z)
m← x
b← cx,y,z

while 0 < b3b2b1b0 < 0Fh {decrease x, b← cx,y,z ← 0, b3b2b1b0 ⇒ Code}
b← cm,y,z ← 0
while 0 < b7b6b5b4 < 0Fh {increase m, b← cm,y,z ← 0, b7b6b5b4 ⇒ Code}
do

b← cx,y−1,z

if 0 < b7b6b3b2 < 0Fh {b5b4b1b0 ⇒ Code, Encode(x, y − 1, z)}
b← cx,y+1,z

if 0 < b5b4b1b0 < 0Fh {b7b6b3b2 ⇒ Code, Encode(x, y + 1, z)}
b← cx,y,z−1

if 0 < b6b5b2b1 < 0Fh {b7b4b3b0 ⇒ Code, Encode(x, y, z − 1)}
b← cx,y,z+1

if 0 < b7b4b3b0 < 0Fh {b6b5b2b1 ⇒ Code, Encode(x, y, z + 1)}
increase x

while x ≤ m
end of Encode

A comparison with Algorithm 4 (section 2.2) will easily reveal how closely

the hybrid boundary transversal algorithm underlying the encoding scheme

is related to hybrid labelling. Instead of labelling voxels, now the SEC of the

visited nodes are set to zero, after their innovative part has been extracted

to be added to the chain. Also the mere inspection of the voxels has been

replaced by the condition of boundary bond connectivity, which requires at

least one foreground and one background voxel in the four voxels sharing the

edge under inspection. Note that nibbles (half a byte) to be added to the

chain are denoted as streams of four bits selected from a byte (a whole 3D

SEC), where the subscripts indicate the position of the bits in the original

byte. The expression b5b4b1b0 ⇒ Code denotes bits 0, 1, 4, and 5 to be
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added to the chain (Code), the l.s.b. on the right. The SEC of node (x, y, z)

is denoted by cx,y,z.

Hybrid boundary traversal in Algorithm 19 can also be used for fast

extraction of the outer surface of any arbitrary 3D shape, just by deleting all

references to Code.

Algorithm 20 shows pseudocode for the reconstruction of the shape from

the corresponding 3D SEE chain code, using hybrid boundary traversal. The

structure of the algorithm is the same of Algorithm 19. It goes through all

boundary nodes using hybrid boundary traversal, with the peculiarity that

it builds the SEC of the traversed nodes on the fly, using information from

the previous nodes and the current nibble in the chain. At the same time, it

uses the SEC of the current node to find its way along the boundary surface

according to hybrid boundary traversal. The notation is the same as above,

except that now nibbles are extracted from the chain (c ⇐ Code), and the

SEC are built from streams of eight bits, coming from the current chain

nibble and the SEC of a neighbouring node (denoted b).

All SEC are initialized to zero, such that later they can be used to avoid

revisiting nodes. Thus the condition of entry for reconstruction with hybrid

boundary traversal is that the candidate node to be entered has SEC zero

and the edge linking it to the current node is a boundary edge, i.e. it belongs

to at least a foreground and a background voxel. Every time a new node

is visited (and only new nodes are visited) the four pixels corresponding to

the innovation in its SEC (the current nibble in the chain) are set, according

to the information in the nibble. Which pixels are these, depends on which

direction are we entering the node from. The edge linking the previous node

to the new node defines the direction, the pixels to be set are those sharing

the next edge along that direction. The correspondence between the pixels

and the nibble bits is given by the SEE weight assignment (see Figure 3.5

for the assignment corresponding to Algorithm 20).

Note that hybrid boundary traversal in spite of its recursive nature main-

tains all the advantages of hybrid labelling regarding stack use (see end of

section 2.4.2 for performance data), with the advantage that only the surface
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Algorithm 20 Reconstruction from a 3D SCC (Hybrid boundary traversal)

set all cx,y,z to 0
px0,y0,z0

← 1, cx0,y0,z0
← 40h

Decode(x0, y0, z0)

Decode(x, y, z)
m← x
b← cx,y,z

while 0 < b3b2b1b0 < 0Fh

decrease x
c⇐ Code, cx,y,z ← b3b2b1b0c3c2c1c0

px−1,y−1,z−1 ← c0, px−1,y−1,z ← c1, px−1,y,z ← c2, px−1,y,z−1 ← c3

b← cm,y,z

while 0 < b7b6b5b4 < 0Fh

increase m
c⇐ Code, cm,y,z ← c3c2c1c0b7b6b5b4

pm,y−1,z−1 ← c0, pm,y−1,z ← c1, pm,y,z ← c2, pm,y,z−1 ← c3

do
b← cx,y,z

if (cz,y−1,z = 0) and (0 < b5b4b1b0 < 0Fh)
c⇐ Code, cx,y−1,z ← b4b5c3c2b0b1c1c0

px−1,y−2,z−1 ← c0, px−1,y−2,z ← c1, px,y−2,z−1 ← c2, px,y−2,z ← c3

Decode(x, y − 1, z)
if (cz,y+1,z = 0) and (0 < b7b6b3b2 < 0Fh)

c⇐ Code, cx,y+1,z ← c3c2b6b7c1c0b2b3

px−1,y+1,z ← c0, px−1,y+1,z−1 ← c1, px,y+1,z ← c2, px,y+1,z−1 ← c3

Decode(x, y + 1, z)
if (cz,y,z−1 = 0) and (0 < b7b4b3b0 < 0Fh)

c⇐ Code, cx,y,z−1 ← c3b7b4c2c1b3b0c0

px−1,y−1,z−2 ← c0, px−1,y,z−2 ← c1, px,y−1,z−2 ← c2, px,y,z−2 ← c3

Decode(x, y, z − 1)
if (cz,y,z+1 = 0) and (0 < b6b5b2b1 < 0Fh)

c⇐ Code, cx,y,z+1 ← b6c3c2b5b2c1c0b1

px−1,y−1,z+1 ← c0, px−1,y,z+1 ← c1, px,y−1,z+1 ← c2, px,y,z+1 ← c3

Decode(x, y, z + 1)
increase x

while x ≤ m
end of Decode
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of the 3D shape is scanned, not the entire volume, therefore further reducing

stack use and time. Note also that the auxiliary additional local variables

with respect to hybrid labelling (i.e. not m) in Algorithms 19 (b) and 20 (b

and c) are there just for readability, and they can be either suppressed or

given a global scope, because they do not have to keep their values for each

instance of the recursion, and therefore they do not increase stack use.

Also note that this encoding scheme is general, in the sense that it can be

extended to any arbitrary number of dimensions, given that both SEE and

hybrid boundary traversal can be naturally extended too.

Some chains

To illustrate the description of the method, the HBT codes of a few very

simple and —for obvious reasons— small 3D shapes follow. The HBT chain

code of a 4× 4× 4 cube is (hex):

44 40 46 66 04 66 60 46 66 00 22 20 43 33 0C CC 0C CC 08 CC

C0 CC C0 33 30 43 33 0C CC 0C CC 00 88 80 89 99 08 99 90 89

99 00 11 10 33 33 33 33 30

It is made up of 97 nibbles, i.e. a total length of 388 bits (49 bytes). The

same cube without one of the voxels in the middle of its upper face yields

the chain:

44 40 42 66 04 46 60 46 66 00 22 20 43 33 0C CC 0C CC 08 CC

C0 CC C0 33 30 43 33 0C CC 0C CC 00 88 80 89 99 08 99 90 89

99 00 11 10 33 33 33 33 3F FF F0

made up of 101 nibbles, i.e. 404 bits or 51 bytes. If instead of deleting a

voxel we add one on top of the upper face, we get the chain:

00 0F 06 60 8E 66 00 44 40 8C CC 0C CC 03 33 00 22 20 86 66

03 33 30 CC C0 CC C0 33 30 43 33 0C CC 0C CC 00 88 80 89 99

08 99 90 89 99 00 11 10 33 33 30
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with the same length as the previous one (404 bits). This is explained by

the fact that the length of the HBT chain in nibbles is equal to the number

of free voxel faces plus one (four times this in bits). A 4 × 4 × 4 cube has

6 × 16 = 96 free voxel faces. Deleting one of the voxels from the surface of

the cube adds 4 free faces (the lateral faces of the “hole”, the old face on the

surface already accounted for the free face in the bottom of the hole), making

a total of 100 free voxel faces. Whereas placing a new voxel on the surface

of the original cube adds 4 free faces (the lateral faces of the “bump”, this

time it is the free face on top of the bump which was accounted for the face

now under the new voxel), i.e. again 100 free faces.

This is a relevant (even if not unexpected at all) characteristic of HBT

chains: The length of the chain depends on the surface area of the shape being

encoded, not the volume. This is important because, whereas a 4×4×4 cube

can be held into a 4× 4× 4 binary matrix, thus occupying just 64 bits, the

corresponding chain weights a formidable 388 bits. And this would not speak

in favour of HBT chains were it not for the fact that a 100× 100× 100 cube

fills a 100 × 100 × 100 binary matrix (1 Mbit), whereas the corresponding

HBT chain is 240 004 bits long, i.e. 24%, and a 1000×1000×1000 cube needs

1 Gbit where the corresponding HBT chain uses 24 Mbit, less than 2.5%. In

general, the ratio for a L× L× L cube is 4× (6L2 + 1)/L3 = O(6/L) which

is favourable to the HBT chain for L > 6, and decreases with L.

If compared to the obvious alternative, storing a list of the coordinates

of the boundary voxels, we get that the number of free voxels in a L×L×L

cube is 6L2 − 12L + 8, while the number of free voxel faces is 6L2. For L as

low as 10, we get that we would need to store 488 pairs of coordinates, which

would make 976 bytes if only one byte was used to store each coordinate,

whereas HBT requires 601 nibbles (301 bytes). Things only get better when

L grows, because then one byte does not suffice to store each coordinate.

What about the straightforward scheme introduced above, using hybrid

labelling on the boundary voxels? For a 10×10×10 cube, the direct scheme

requires 1139 3-bit codes, while HBT uses 601 4-bit codes. This is 3 417 bits

versus 2 404 bits, in favour of HBT, as expected. The direct scheme uses
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more than two 3-bit codes per boundary voxel, O(2 × 3 × 6L2) in regular

cubes, while HBT uses one 4-bit code per boundary voxel, O(4× 6L2).

Therefore, HBT is more efficient in what regards chain length. Moreover,

if the shape being encoded is not specially rugged, HBT tends to generate

long constant sequences allowing strong lossless compression of the chain. As

a simple example, the HBT chain for a 10× 10× 10 cube is 601 nibbles long

(301 bytes), but it only takes 134 bytes if a run length encoding scheme is

used, where chain nibbles are embedded in bytes with the upper four bits

indicating the amount of redundancy (up to 15 repetitions):

84 00 04 86 00 04 86 00 04 86 00 04 86 00 04 86 00 04 86 00

04 86 00 04 86 00 04 86 00 04 86 10 82 00 04 83 00 8C 00 8C

00 08 8C 00 8C 00 83 00 04 83 00 8C 00 8C 00 08 8C 00 8C 00

83 00 04 83 00 8C 00 8C 00 08 8C 00 8C 00 83 00 04 83 00 8C

00 8C 00 08 8C 00 8C 00 83 00 04 83 00 8C 00 8C 00 00 88 00

08 89 00 08 89 00 08 89 00 08 89 00 08 89 00 08 89 00 08 89

00 08 89 00 08 89 10 81 00 F3 F3 F3 F3 F3 03 00
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3.4 Very fast machine vision for controlled

environments

When it comes to object inspection in machine vision under given strict, but

not unusual, constraints, SEE provides a better tool than chain codes. These

constraints are fixed views of rigid objects from a known finite set whose

features are preserved after binarization, but this includes, for instance, inline

backlit inspection of machined parts, a common machine vision application.

If the SEE codes (SEC) are accumulated into a histogram, the resulting

vector can be used for object recognition, defect detection, and pose estima-

tion. Obviously, the SEC histogram is not unique. Different objects may

have equal SEC histograms4. However, if enough image resolution is used,

such that a sufficient dynamic margin in the SEC is assured, and the set of

objects to be handled by the application is finite and known, ambiguities can

be resolved beforehand and do not pose a serious objection to the use of SEC

histograms.

The advantages of SEC histograms as feature vectors for shape-based

object inspection are 1) very fast and 2) very simple 3) integer computation.

Algorithm 21 shows how to obtain the SEC histogram of an image px,y at

the same time that obtains and stores the SEC of all nodes. It is a subtle

modification of Algorithm 10 that takes advantage of the fact that in the

computation of the SEE codes, nodes in the upper left corner of pixels (first

corner in scan order) are not disturbed by the forthcoming computation with

the pixels not yet scanned. The SEC histogram, HSEC, is a vector in N
16

(R16 when normalized). SEC 0 denotes a node embedded in the background

and thus HSEC0 measures the extent of background in the image. SEC

15 denotes a node embedded in foreground pixels, and therefore HSEC15

4The proof is trivial, SEC histograms do not preserve information about location.
The local configurations of two nodes in the contour of the object can be exchanged, thus
changing the shape of the object without affecting the SEC histogram. Note, however, that
SEC codes are redundant, and the local configuration of a node cannot be changed without
affecting any of its neighbouring nodes. This is avoided by exchanging the location of two
blocks of more than four pixels in the contour of an object with the same configurations
along their borders.
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measures the extent of foreground in the image. SEC ∈ {1, . . . 14} denote

contour nodes with different configurations.

Algorithm 21 2D SEC and histogram HSEC

for all (x, y) 0→ cx,y

for all (x, y)
if px,yobeys A

(1 9 cx,y)
(2 9 cx+1,y)
(4 9 cx,y+1)
(8 9 cx+1,y+1)

Increase HSECcx,y

If only the SEC histogram is needed, there is no need to store the SEC of

the image, as the histogram can be computed on the fly, see Algorithm 22.

The drawback is that pixels are visited several times. This can be solved by

using a temporary array with the size of a row to store partial codes until

the next row is scanned, in a memory-speed trade off.

Algorithm 22 2D SEC histogram HSEC without storage of SEC

for all (x, y)
0→ c
if px,y obeys A (1 9 c)
if px−1,y obeys A (2 9 c)
if px,y−1 obeys A (4 9 c)
if px−1,y−1 obeys A (8 9 c)
Increase HSECc
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3.4.1 Some tests

To demonstrate the potential of SEC histograms, I performed several tests

with the leaf images in Figure 3.4. First, I trained a multilayer perceptron

(MLP) to distinguish the five original leaves (upper row) with different rota-

tion angle α ∈ [0◦, 45◦] in steps of 0.5◦. The choice of multilayer perceptrons

is not restrictive, SEC histograms can be used with any method using feature

vectors, for instance k-NN. Anyhow, if the MLP is able to learn to recognize

the five different objects for any rotation angle α with the SEC histograms

as only input, then the SEC histograms contain enough information for the

discrimination.
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Figure 3.6. Typical learning curve showing the evolution of the percentage of
misclassified samples. The curve shown corresponds to a MLP with 12 hidden
nodes trained with momentum 0.2 and learning rate 0.8.

I trained several two layer MLP with 8 to 12 hidden nodes, 12 input

nodes (corresponding to the 12 contour SEC, excluding SEC 6 and 95), and

5 sigmoidal outputs, each one corresponding to each of the leaf types in the

upper row of Figure 3.4. The class assigned to the input is that of the higher

5All pixels in the leaf images have neighbours in their 4-neighbourhoods, i.e. there have
no nodes with configuration type 6 or 9.
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output. For the training process I used backpropagation with momentum, in

order to attenuate the effect of local minima.

A B C D E
A 89 1 0 0 0
B 4 86 0 0 0
C 0 0 90 0 0
D 0 0 0 90 0
E 0 0 0 0 90

Table 3.8. Typical confusion matrix in the MLP learning of five leaf shapes
in 90 different rotations with their SEC histograms as input.

The results were fairly similar, with slight variations due to the stochastic

nature of the learning process. After 600 to 1 500 iterations in which the SEC

histograms of the 90 different rotation angles α for each of the five leaf images

were shown to the MLP, see Figure 3.6 for a typical learning curve and Table

3.8 for a typical confusion matrix, all MLP were able to correctly classify

93.4% of the 450 images, with average accuracy 98.7%. The errors were

concentrated in the Poinsettia leaf (B), where the MLP used to mistook for

a Fig leaf (A) 4 of the 90 differently rotated Poinsettia leaf images (6.67%),

and the Fig leaf (A), where the MLP mistook for a Poinsettia leaf (A) 1 to

2 of the 90 different rotated Fig leaf images (1.11% to 2.22%). The Birch

(C), Lemon (D), and Fern (E) leaves were correctly classified for all rotation

angles α in all tests.

Error
Fig leaf 0.13◦ ± 0.70◦

Poinsettia leaf 0.14◦ ± 0.72◦

Birch leaf 0.15◦ ± 0.84◦

Lemon leaf 0.21◦ ± 0.72◦

Fern leaf 0.07◦ ± 0.95◦

Table 3.9. Results of MLP learning of the rotation angle of leaf shapes,
α ∈ [0◦, 45◦] in steps of 0.5◦, using SEC histograms.

I also trained an MLP to estimate the angle α for each leaf image sepa-

rately. I used the same 12 input nodes corresponding to the SEC histogram,
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(a) Fig leaf, A.
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(b) Poinsettia leaf, B.
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(c) Birch leaf, C.
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(d) Lemon leaf, D.
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(e) Fern leaf, E.

Figure 3.7. Results of MLP learning of the rotation angle of leaf shapes,
α ∈ [0◦, 45◦] in steps of 0.5◦, using SEC histograms.
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3 hidden nodes, and a single linear output node to estimate α. The results

are summarized in Figure 3.7 and Table 3.9.

The leaf images in Figure 3.4 are not specially “easy” shapes when com-

pared to typical machined parts in industrial machine vision environments.

Figure 3.8 and Table 3.10 show the results of the same test with two simple

geometrical forms and a synthetic machined part (“Piece”).
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(a) Square.
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(b) Rounded square.
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(c) Piece.

Figure 3.8. Results of MLP learning of the rotation angle of some shapes,
α ∈ [0◦, 45◦] in steps of 0.5◦, using SEC histograms.

Note that all images (shadowed regions in the graphs) are 256 × 256,

i.e. resolution is very low. Thus, for instance, the square shape in Figure

3.8(a) is 120 pixels long. This means that 0.5◦ accuracy in the determina-
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Error
Square 0.03◦ ± 0.22◦

Rounded square 0.08◦ ± 0.55◦

Piece 0.06◦ ± 0.40◦

Table 3.10. Results of MLP learning of the rotation angle of some shapes,
α ∈ [0◦, 45◦] in steps of 0.5◦, using SEC histograms.

tion of the rotation angle around the centre of the square corresponds to a

maximum displacement of 120/
√

2 · sin(0.5◦) = 0.74 pixel.

The accuracy of SEC histograms can be compared to that of the standard

method to obtain the rotation angle of a binary shape, the angle of the

principal eigenvector of the central moment matrix,

α =
1

2
arctan

(

2
µ11

µ20 − µ02

)

. (3.1)

However, moments cannot be applied to shapes without a clear principal

axis, such as the square or the rounded square in Figure 3.8. I compared the

SEC histogram results with the moment method on a 120 × 80 rectangle.

Figure 3.9 and Table 3.11 summarize the results.

Error
SECH MLP 0.04◦ ± 0.20◦

Central moments 0.31◦ ± 0.20◦

Table 3.11. SEC histogram MLP vs. central moments for the estimation of
the rotation angle of a 120× 80 rectangle, α ∈ [0◦, 45◦] in steps of 0.5◦.

Additionally, Table 3.12 compares the results of the moment method with

those of the SEC histogram MLP for the leaf shapes in Figure 3.4. For a fair

comparison, moment results have been corrected according to the moment

based estimation of rotation angle for the original images.

Moments show higher average error, but lower standard deviation. The

variance in the SEC histogram MLP is due to the MLP itself, and its ability

to model the underlying function. The higher average error in the moment
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(a) MLP with SEC histogram.

0
o

5
o

10
o

15
o

20
o

25
o

30
o

35
o

40
o

45
o

0
o

5
o

10
o

15
o

20
o

25
o

30
o

35
o

40
o

45
o

E
st

im
a
te

d
 a

n
g

le

True angle

(b) Central moments.
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(c) Error curves.

Figure 3.9. SEC histogram MLP vs. central moments for the estimation of
the rotation angle of a 120× 80 rectangle, α ∈ [0◦, 45◦] in steps of 0.5◦.

Error Moments SECH MLP
Fig leaf 0.30◦ ± 0.19◦ 0.13◦ ± 0.70◦

Poinsettia leaf 0.28◦ ± 0.17◦ 0.14◦ ± 0.72◦

Birch leaf 0.14◦ ± 0.72◦ 0.15◦ ± 0.84◦

Lemon leaf 0.64◦ ± 0.19◦ 0.21◦ ± 0.72◦

Fern leaf 0.31◦ ± 0.19◦ 0.07◦ ± 0.95◦

Table 3.12. Comparison of central moments and SEC histogram MLP for the
estimation of the rotation angle of the leaf shapes in Figure 3.4, α ∈ [0◦, 45◦]
in steps of 0.5◦.

method is due to the low accuracy induced by the low resolution of the im-

ages. The SEC histogram MLP is more immune to this, because as long as

there are differences in the images between different angles, the problem is re-

duced to being able to partition the input space in accordance to the training
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labels. The moment method, however, is based on geometry, and digitiza-

tion inaccuracies due to the discrete nature of the image are unavoidably

transferred to the final result.

Last, I measured similarities between all leaf images in Figure 3.4. This

goes beyond the intended scope for the application of SEC histograms, but

the results serve to show the potential of SEC histograms when the con-

straints mentioned above are relaxed. Tables 3.13 show the pairwise cor-

relation (product moment) between all leaf images in Figure 3.4. Tables

3.14 show all the pairwise Kullback-Leibler distances [137]. Note that the

Kullback-Leibler distance KL(p, k) =
∑

i pi log(pi/ki) is not symmetric (it is

not a proper metric).

ρ A B C D E
a 98.6% 97.7% 97.4% 88.7% 59.7%
b 97.8% 98.7% 97.6% 86.2% 61.4%
c 98.0% 97.9% 98.5% 81.6% 69.0%
d 80.0% 79.4% 74.5% 99.7% 12.8%
e 61.2% 61.0% 67.3% 15.6% 100.0%

ρ A B C D E
A 99.6% 99.1% 99.6% 82.5% 66.6%
B 98.7% 99.3% 99.2% 81.4% 67.6%
C 98.1% 98.2% 99.0% 79.9% 66.5%
D 75.3% 75.0% 70.9% 95.1% 21.8%
E 59.1% 59.4% 65.3% 14.2% 99.6%

ρ A B C D E

a 99.0% 98.3% 99.3% 78.7% 65.3%
b 98.0% 99.4% 99.3% 77.8% 66.3%
c 97.3% 97.8% 99.2% 76.0% 65.2%
d 83.9% 82.3% 78.5% 96.0% 19.9%
e 56.5% 59.0% 66.3% 10.0% 99.5%

Table 3.13. Matching the downscaled shapes (small letters), the warped
shapes (slanted letters), and the original leaf shapes (capital letters) in Fig-
ure 3.4 with product moment correlation between SEC histograms. Bold: Row
winners.

With correlation the only error arises when matching the downscaled



162 Stöhr Edge Encoding

shapes to the warped shapes, where the downscaled Fig leaf (a) is wrongly

assigned the warped Birch leaf (C), or, the other way around, where the

warped Birch leaf (C) is wrongly assigned the downscaled Fig leaf (a). Oth-

erwise, the results are quite convincing, as they do not only find the correct

template, but also show a behaviour coherent with the visual inspection of

the shapes, such that the three first shapes (Fig, Poinsettia and Birch leaves)

are quite similar, and the Fern leaf is the most dissimilar to any other.

KL A B C D E
a 0.035 0.041 0.028 0.142 0.204
b 0.056 0.035 0.036 0.162 0.184
c 0.060 0.055 0.037 0.195 0.140
d 0.215 0.211 0.234 0.008 0.617
e 0.264 0.255 0.211 0.588 0.000

KL A B C D E
A 0.014 0.019 0.007 0.198 0.200
B 0.036 0.022 0.018 0.199 0.170
C 0.038 0.035 0.018 0.212 0.188
D 0.258 0.239 0.237 0.100 0.328
E 0.283 0.268 0.227 0.579 0.002

KL A B C D E

a 0.008 0.020 0.016 0.271 0.209
b 0.013 0.004 0.009 0.261 0.179
c 0.018 0.019 0.011 0.280 0.197
d 0.119 0.113 0.119 0.078 0.341
e 0.188 0.171 0.135 0.637 0.003

KL a b c d e
A 0.008 0.013 0.017 0.140 0.227
B 0.022 0.004 0.020 0.141 0.200
C 0.016 0.009 0.011 0.151 0.158
D 0.199 0.197 0.214 0.078 0.642
E 0.179 0.157 0.178 0.395 0.003

Table 3.14. Matching the downscaled (small letters), warped (slanted letters),
and original (capital letters) leaf shapes in Figure 3.4 with Kullback-Leibler
pairwise distances between SEC histograms. Bold: Row winners.
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Kullback-Leibler, on the other hand, shows also a behaviour fairly coher-

ent but fails to find the right winner in more cases than the simple product

moment correlation. It is true that the failures are not by big margins, and

that the second closest match is always the right guess in all errors, but

clearly the product moment correlation outperforms the Kullback-Leibler

distance in this case. Somehow the behaviour of the Kullback-Leibler dis-

tance and the correlation are complementary, Kullback-Leibler shows better

results where the correlation fails, and vice versa. This is probably due to

the normalization implicit in the Kullback-Leibler distance (histograms are

treated as probability distributions with unit area), which may help when

matching shapes at different scales, but not when matching shapes at the

same scale. However, no matter the specific method used for the matching,

the potential of SEC histograms is clearly demonstrated.

To recapitulate, the aim of this section was not the design of a machine

vision system, but to show that an MLP is able to learn to distinguish among

several objects, and able to estimate the rotation of different objects with

SEC histograms as only input. Therefore, to demonstrate that SEC his-

tograms as feature vectors contain enough information for this kind of dis-

crimination, and to show their potential for the fulfillment of common tasks in

industrial machine vision applications in constrained environments (produc-

tion lines of rigid objects), such as shape control, rotation control, inspection

of presence/absence of features such as holes, drills, or notches, or automated

classification. With the advantage that SEC histograms can be obtained with

very low computational effort, in just a single raster scan of the image or re-

gion of interest within the image, requiring just a few integer increments.

The method used to map the feature space of SEC histograms into an out-

put space of knowledge, decision, or action, can be any of the many in the

literature able to cope with a feature space with 12 to 15 dimensions, and will

determine the total overhead of the system. If the mapping method is not

computationally very heavy, such as, for instance, a simple product moment

correlation, or an MLP trained off-line with a few hidden nodes, very high

frame rates can be achieved in systems where the binarization process is very

simple, such as backlit inspection.
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Another relevant characteristic of SEC histograms is that they can be

computed on the fly, thus reducing storage requirements to a minimum —

two image lines at most, or even the equivalent to a single line plus one pixel.

This, together with their computational simplicity, renders them specially ap-

pealing for dedicated hardware implementations for very fast machine vision.
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3.5 Texture analysis

SEE can be used as a textural feature vector by applying a convenient bi-

narization method to the original image and obtaining the SEC histogram.

Used in that way, SEC histograms resemble the Local Binary Patterns (LBP)

of Ojala and Pietikäinen [189], with a few notable differences. LBP are ob-

tained by constructing a binary word with the pixels adjacent to the pixel

of interest, which are assigned the binary value 1 if they have a graylevel

higher than the central pixel and value 0 if lower. Thus, LBP implicitly

include a local binarization method, where 3 × 3 windows are binarized by

thresholding with the graylevel of the central pixel. After the binarization,

the local configuration is encoded in a 8-bit binary array by unwinding the

pixels surrounding the central pixel. This produces 256 different codes, but

the authors suggest accumulating them according to a criterion of uniformity,

where binary arrays with none or one bit transition are considered uniform,

and assigned a uniform code equal to the number of consecutive ones in

the original LBP, therefore in the range [0, 8], and all other are considered

non uniform LBP and are assigned the code 9. This produces the uniform

LBPu
8 distribution, which has been shown to be a useful tool for texture

classification and segmentation [151, 190, 198]. The LBP concept has been

later extended to include a set of rotational invariant texture features by in-

creasing the neighbourhood size using interpolation, at the cost of increased

computational overhead [191].

SEC histograms, on the other hand, do not include implicitly any given

binarization method, and therefore anyone can be used depending on the

characteristics of the original images or the application. For purposes of

comparison, in the following I will use the same local binarization method

implicit in the LBP. After binarization, the SEE codes represent the spatial

configuration of 2 × 2 windows, instead the 3 × 3 windows of LBP, and no

“uniformization” procedure is carried on, such that all the different possible

configurations are preserved in the SEC histogram. This is possible without

a notable increase in the feature space dimension —16 possible SEC vs. 10

possible LBPu
8— due to the smaller window size implicit in SEE.
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Figure 3.10. A representative of each of the 20 Brodatz textures used in the
tests.

I performed some tests with samples from the Brodatz album [37], to

compare the performance of SECH and LBPu
8 for texture analysis, namely

Nearest Neighbour (k-NN) classification [2, 66, 76] of texture samples. I also

mapped the SECH of Brodatz samples into a SOFM 2D [130–134]. Figure

3.10 shows 20 128 × 128 samples from 20 different Brodatz textures. The

Brodatz album was composed in 1966 for artistic purposes, but since then it

has been used as a source of benchmark texture samples by many authors.

The photographs in the Brodatz album depict very different natural materials

under diverse illumination conditions. Only some of the photographs in the

Brodatz album can be used as sources of textures, and even these present a

high heterogeneity within the frame due to both the targets and nonuniform

illumination. I chose 20 different Brodatz images, digitized at 640 × 640,
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and extracted from each of them 25 non overlapping 128 × 128 samples, to

build a test set with 500 samples belonging to 20 different texture classes.

The chosen textures cover a wide range of materials while keeping a certain

degree of similarity among them. A representative of each class can be seen

in Figure 3.10, where they have been somehow arranged with a criterion of

similarity, and Figure 3.11 shows some representatives of some of the classes

to show the degree of variability within classes, due to the differences in

illumination and the heterogeneity of the materials. The samples were fed

into the classifiers as such, with no preprocessing to equalize the graylevel

within classes, nor rotations or translations to match spatial differences.

Figure 3.11. Four representatives of some of the textures used in the tests,
showing the within class variations due to non uniform illumination and the
heterogeneity of the materials.

Tables 3.15 to 3.18 show the results of classifying the entire sample set

(500 samples from 20 different classes) with 1-NN and voting 3-NN, using

SECH and LBP, with a leave-one-out scheme [139]. In a leave-one-out clas-
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sification experiment, each sample is used in turn as test set and all the rest

as training set. This scheme is particularly convenient in this case, because

the number of samples available is low, such that dividing them among a

training set and a test set (holdout scheme) would yield too small sets, and

we are dealing with a lazy classifier, such that there is no cost associated to

entirely retraining the classifier for each sample in the set. Note also that

leave-one-out yields a pessimistic error bound —in fact, an upper bound for

the Bayes error [85]— when compared to resubstitution, as the probability

of misclassification is increased because the sample set of the test class has

one sample less in the training set than the rest of classes.

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 92 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 96 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
3 4 0 84 0 0 0 0 0 0 8 0 4 0 0 0 0 0 0 0 0
4 0 0 0 92 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
5 0 0 0 0 80 8 0 0 0 0 0 0 0 8 0 0 4 0 0 0
6 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 4
7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 4 0 0 0 0 8 88 0 0 0 0 0 0 0 0 0 0 0 0
9 8 0 0 0 0 4 0 0 84 0 0 0 0 0 4 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 96 0 0 4 0 0 0 0 0 0
12 0 0 0 4 0 0 0 0 0 0 0 76 0 0 8 4 0 0 8 0
13 0 0 0 0 0 0 0 0 0 0 0 0 96 4 0 0 0 0 0 0
14 0 0 0 0 8 0 0 0 0 0 0 0 8 84 0 0 0 0 0 0
15 20 0 0 0 0 0 0 0 0 4 0 4 0 0 72 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 12 4 4 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 96 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 68 28 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 20 76 0
20 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 88

Table 3.15. Confusion matrix in the classification of the Brodatz set (N =
500, C = 20) using 1-NN with SECH. Overall accuracy: 87.2%, κ: 86.5%.

The classification results with 1-NN are very different for SECH and LBP.

SECH yields an overall accuracy above 87% whereas LBP does not reach the

50% mark. κ values are not better for LBP, 46.7% versus 86.5%. The bigger

difficulties (accuracy below 80%) for SECH are with textures 18 and 19 (the
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% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 32 4 0 0 16 0 20 0 0 0 0 4 0 0 0 0 0 12 0 12
2 0 60 0 0 20 0 0 0 4 0 0 0 0 0 8 4 4 0 0 0
3 0 0 88 0 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 0
4 0 0 0 68 0 20 0 0 0 0 0 0 4 8 0 0 0 0 0 0
5 8 20 0 0 28 0 0 8 0 0 0 8 0 0 20 4 4 0 0 0
6 0 0 0 20 0 44 0 0 0 0 0 0 16 20 0 0 0 0 0 0
7 20 0 0 0 0 0 56 0 0 0 0 4 0 0 0 0 0 8 0 12
8 4 0 0 0 8 0 0 40 0 0 0 8 0 0 16 4 12 0 0 8
9 0 8 0 0 0 0 0 0 88 0 0 4 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 96 4 0 0 0 0 0 0 0 0 0
11 0 0 4 0 0 0 0 0 0 4 80 0 0 8 0 0 0 0 4 0
12 8 4 0 0 8 0 4 8 4 0 0 24 0 0 12 8 4 4 0 12
13 0 0 0 0 0 28 0 0 0 0 0 0 48 12 0 0 0 4 8 0
14 0 0 0 12 0 24 0 0 0 0 16 0 8 40 0 0 0 0 0 0
15 0 8 0 0 8 0 0 16 0 0 0 8 0 0 8 12 20 4 4 12
16 0 4 0 0 4 0 0 4 0 0 0 8 0 0 16 48 16 0 0 0
17 0 4 0 0 4 0 0 8 0 0 0 8 0 0 32 20 20 0 0 4
18 16 0 4 0 0 0 0 0 0 0 4 0 4 0 4 0 0 40 28 0
19 4 4 4 0 0 0 0 0 0 0 4 0 16 0 0 0 0 40 28 0
20 4 0 0 0 4 0 8 4 0 0 0 8 0 0 16 0 4 0 0 52

Table 3.16. Confusion matrix in the classification of the Brodatz set (N =
500, C = 20) using 1-NN with LBP. Overall accuracy: 49.4%, κ: 46.7%.

direct and inverse versions of the loose tissue in the third row of Figure

3.10, see several samples in Figure 3.11), 15 and 1 (the brick wall and the

thick wire fence), and 12 (the backlit coffee beans, also with a high internal

variability, see Figure 3.11). On the other hand, all samples of textures 7 and

10 are correctly classified (see Figure 3.11 for a glimpse of the within class

variability of texture 10 due to nonuniform illumination), and textures 2, 6,

11 (another class with large within class variability due to the illumination),

13, and 17 are classified with accuracy above 95%.

To comment the results with LBP we have to use different thresholds,

because 80% of the texture classes did not reach the 80% mark, and only

one surpassed 95% accuracy. LBP presents the bigger difficulties (accuracy

below 30%) with textures 5, 12, 15, 17, and 19. These include one of the

texture classes, 17, where SECH scored above 95%. The best results (above
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75%) of LBP are with textures 3, 9, 10, and 11. These include two of the

textures, 10 and 11, with good results also for SECH, even if SECH yields

better figures. Textures 3 (with a huge within class variability, see Figure

3.11) and 9 are the only two where LBP outperformed SECH, both by 4%

(88% vs. 84%). The performance of SECH was clearly superior to that of

LBP. SECH’s worst and second worst results were 68% and 72%, whereas

LBP’s were 8% and 20%. On the other hand, SECH scored full accuracy in

two textures, whereas LBP’s best and second best were 96% and 88%.

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 88 0 0 0 0 8 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 0 88 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 4
3 4 0 64 0 0 0 0 0 0 16 4 4 0 0 8 0 0 0 0 0
4 0 0 0 92 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
5 0 0 0 0 64 16 0 0 0 0 0 0 0 8 0 0 8 0 0 4
6 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 4 0 0 0 0 8 88 0 0 0 0 0 0 0 0 0 0 0 0
9 4 4 0 0 0 4 0 0 84 0 0 0 0 0 4 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 88 0 0 12 0 0 0 0 0 0
12 0 0 0 4 0 0 0 0 0 0 0 72 0 0 0 4 0 4 16 0
13 0 0 0 0 0 0 0 0 0 0 0 0 96 4 0 0 0 0 0 0
14 0 0 0 0 4 0 0 0 0 0 0 0 12 84 0 0 0 0 0 0
15 12 0 0 0 0 0 0 0 0 4 0 4 0 4 76 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 12 4 4 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 96 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 40 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 84 0
20 0 0 0 4 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 84

Table 3.17. Confusion matrix in the classification of the Brodatz set (N =
500, C = 20) using 3-NN with SECH. Overall accuracy: 84.4%, κ: 83.6%.

Using a voting 3-NN classifier, where each test sample is assigned the

class of the majority of its three nearest neighbours, or that of the nearest

neighbour in case of tie, things do not change much. SECH loses some

advantage, 2.8% in overall accuracy down to 84.4%, and 2.9% in κ down to

83.6%, whereas LBP improves a little bit its results, 1.8% in overall accuracy

up to 51.2% and 1.9% in κ up to 48.6%.
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% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 32 4 0 0 8 0 24 0 0 0 0 0 0 0 0 0 0 8 12 12
2 0 48 0 0 36 0 0 0 4 0 0 4 0 0 0 4 4 0 0 0
3 0 0 80 0 0 0 0 0 0 12 0 4 0 0 0 0 0 0 4 0
4 0 0 0 48 0 28 0 0 0 0 0 0 8 16 0 0 0 0 0 0
5 8 20 0 0 32 0 0 8 0 0 0 4 0 0 20 4 4 0 0 0
6 0 0 0 20 0 40 0 0 0 0 0 0 20 20 0 0 0 0 0 0
7 8 0 0 0 0 0 76 0 0 0 0 4 0 0 0 0 0 8 0 4
8 4 0 0 0 8 0 0 44 0 0 0 4 0 0 4 0 24 0 0 12
9 0 4 0 0 0 0 0 0 92 0 0 4 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 84 16 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 8 76 0 0 8 0 0 0 4 4 0
12 8 4 0 0 8 0 4 8 4 0 0 8 0 0 12 20 4 4 0 16
13 0 0 0 0 0 24 0 0 0 0 0 0 56 12 0 0 0 0 8 0
14 0 0 0 8 0 12 0 0 0 0 16 0 12 52 0 0 0 0 0 0
15 0 4 0 0 12 0 0 16 0 0 0 8 0 0 8 4 28 4 4 12
16 0 4 0 0 0 0 0 4 0 0 0 4 0 0 8 52 28 0 0 0
17 0 4 0 0 4 0 0 4 0 0 0 0 0 0 12 20 48 0 0 8
18 8 0 4 0 0 0 4 0 0 0 4 0 4 0 4 0 0 32 40 0
19 4 4 4 0 0 0 0 0 0 0 4 0 8 0 0 0 0 16 60 0
20 4 0 0 0 0 0 12 4 0 0 0 4 0 0 16 0 4 0 0 56

Table 3.18. Confusion matrix in the classification of the Brodatz set (N =
500, C = 20) using 3-NN with LBP. Overall accuracy: 51.2%, κ: 48.6%.

Figure 3.12 shows a mapping of the SECH feature vectors into a R
2 map

using a discrete SOFM. The ellipses represent the principal components of

the feature vectors of each class mapped in R
2. The ellipses in the 2D map

show the variance of each texture class after transformation, oriented along

the principal axis. Due to the topology preservation characteristic of the

SOM, this is a convenient way of visualizing the relations among texture

classes according to SECH, even when we will probably be loosing some

information, because we cannot assure that the SECH vectors are contained

into a 2D manifold in the feature space. Anyway, we see a good correlation

between the map in Figure 3.12 and the k-NN results in Tables 3.15 and

3.17.

Again, I have not intended the design of an optimum classifier for texture

discrimination in digital images, I have just shown that SECH vectors can be
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Figure 3.12. Nonlinear mapping of the SECH feature vectors of the 20 Bro-
datz textures into a R

2 map using a SOFM.

useful for texture analysis and classification, through a classification example

and the visualization of a reduced dimension mapping of the SECH feature

space for a benchmark dataset, which demonstrate a coherent behaviour

of the SECH vectors as simple and fast texture descriptors, with a better

behaviour in the case at hand than the well known uniform local binary

patterns.
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3.6 SEE in the numerical method

We have just seen a number of applications to image processing and computer

vision of the SEE local configuration scheme. To finish, we will see how SEE

is of use in the numerical model for the analysis of the effective response of

nonhomogenous media framing this report.

Recall the equivalent image representation (EIR) of the inclusion/matrix

model of the nonhomogeneous media under study (see 1.3). We have to

solve the potential for all nodes on boundaries inclusion/matrix (all object

boundary nodes in the IER), and then perform numerical integration of the

potential to obtain the effective field in each inclusion (see 1.2.2). SEE allows

clean and efficient implementations of these computations.

3.6.1 Interpolation and random walks

No matter what method is used to solve the potential, the set of sν coefficients

in (1.5), six in 3D systems (four in 2D), has to be determined for each node

in the mesh. The determination of these coefficients requires the inspection

of all eight (four) neighbour elementary cells of each node to determine their

permittivity, as in (1.6). This could be done once per iteration, with the

corresponding overhead, or only once before beginning the iterations if a six

(four) dimensional array is used to store the coefficients of each of the L3

(L2) nodes in the mesh, which would take a considerable amount of memory.

SEE provides an efficient solution by encoding the local configuration of

the elementary cells surrounding each node with very low cost (see 3.2), such

that later, during the iterative computations, the code associated to each

node will determine the coefficients from a predefined finite set of possibilities

stored in a look-up table (LUT).

Thus, for instance, in the 2D case the coefficients sx+(c), sx−(c), sy+(c),

sy−(c) for each possible SEE code c ∈ [0, 15] are computed as in (1.6) and

stored in four arrays, indexed by the corresponding code, thus configuring a
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Figure 3.13. 3D SEE: (left) A voxel with weights assigned to each ver-
tex; (right) A node (black dot) surrounded by 8 voxels and 6 neighbour nodes
(grayed dots). Each foreground voxel is represented by a 1 in the indicated bit
(bi) of the SEE codeword.

LUT of coefficients. Then, expressions such as sx+(cx,y) will automatically

provide the corresponding coefficients for node (x, y).

Therefore a 16 × 4 LUT stores the sν coefficients of (1.5) using SEE

codes, saving both memory and computation overhead. But the LUT has to

be built, i.e. the sν coefficients still have to be computed for every possible

local configuration, in the fashion of (1.6). As there are 16 such different

configurations in 2D they can be precomputed one by one and hard coded

into the program. But this is entirely out of question in the 3D case, with

256 different configurations.

Conveniently, SEE codes do not only provide an efficient mean of identi-

fying node configurations, but also keep an internal binary encoding of the

configuration of the nodes, which greatly facilitates the construction of the

coefficients in (1.5). Once a given assignment of weights has been decided

for the corners of the EIR pixels or voxels, we have seen that each SEE

codeword can be viewed as a binary codification of the presence/absence of

foreground pixels or voxels in the neighbourhood of the node, see Figure 3.13.

The local constraints of conservation of the normal component of ~D and of

the tangential component of ~E are reduced to formulas depending only on
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the permittivity of the cells surrounding each node, as in (1.6), which corre-

sponds to code 3 in Figure 3.2. Every node has as many coefficients as edges

linking it to neighbouring nodes, six in the 3D case.

Let nn(c) be the number of foreground voxels surrounding a type c node,

where c ∈ {0, · · · , 255} is a SEE code, and let nv(c) be the number of fore-

ground voxels surrounding the edge linking the node to one of its neighbours

v ∈ {x+, x−, y+, y−, z+, z−}. Then the corresponding coefficient sv(c) can be

computed as

sv(c) =
1

3

nv(c)ǫi + [4− nv(c)]ǫm

nn(c)ǫi + [8− nn(c)]ǫm

(3.2)

where nn(c) is the total number of 1’s in the binary representation of c, and

nv(c) is the number of 1’s in four specific bits of c. Which four bits, depends

on what coefficient we are interested in. For instance, in the SEE assignment

of Figure 3.13, bits b4, b5, b6, and b7 of the SEE code c would provide nz+(c)

for sz+(c), while bits b0, b3, b4, and b7 would provide nx+(c) for sx+(c).

Counting bits in an octet is fast and easy6. The LUT of coefficients in

(1.5) can thus be constructed for the 256 SEE codes just by counting bits

in the SEE codewords and applying (3.2) to get the six coefficients for each

local configuration.

3.6.2 Numerical integration

The same reasoning can be used to solve the integrals in the right hand

side of (1.8) in 1.2.2. To evaluate the contribution of a node to each of the

components of the corresponding integral, we have to determine to how many

free facets of occupied cells (EIR boundary voxels), normal to each direction,

belongs the node. This depends on its local configuration, and again can be

efficiently determined counting bits in the corresponding SEE codeword.

Thus, for instance, resorting again to the SEE assignment of Figure 3.13,

if le is the length of an elementary cell, a node of type c with known potential

6Think, for instance, on Kernighan’s brilliant C method to count the 1’s in c: int n;

for(n=0;c;n++,c&=--c); If only the 1’s at certain positions are needed, masking c with
the appropriate mask will do the job.
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U would contribute +1
4
l2eU to the y component of the potential integral in

(1.8) for each pair of bits (b0, b3), (b4, b7), (b5, b6), and (b1, b2) in c satisfying

(b, b̄). And it would contribute −1
4
l2eU for each of those pairs satisfying (b̄, b).

Two similar sets of pairs of bits can be straightforwardly derived for the other

two components of the potential integral.







Appendix A

Analytical formulation for the
computation of the effective
permittivity of a composite

If your wish is to become really a man of science
and not merely a petty experimentalist,

I should advise you to apply to every branch of natural philosophy,
including mathematics.

We consider inclusions at mesoscopic scale, what allows to analyze the

microstructure of the material preserving the intensive magnitudes of the con-

stituents, as these can be defined only for sizes above a given minimum [154].

A minimum size of 10 Å has been reported for the validity of the Maxwell

Garnett approach in the optical regime for embedded nanocrystallites [266].

We model the macroscopic system as a periodic array of unit cells enclos-

ing a volume VC, which represents the minimum volume that preserves the

macroscopic homogeneity according to the EMA.

The effective response of the unit cell can be obtained by equating the

macroscopic electric displacement to the ergodic mean of the local fields in

the cell. The macroscopic field in the unit cell is

~E0 =
〈

~E(~r)
〉

VC

=
1

VC

∫

VC

~E(~r) d3r. (A.1)
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And the mean value of the field in each connected domain d, with volume

Vd, is

~Ed =
1

Vd

∫

Vd

~E(~r) d3r. (A.2)

Averaging the local displacement field over the unit cell,

↔

ǫeff
~E0 = ~D0 =

〈

~D(~r)
〉

VC

=
〈

ǫ(~r) ~E(~r)
〉

VC

=

=
1

VC

∫

VC

ǫ(~r) ~E(~r) d3r =
∑

d

pdǫd
~Ed (A.3)

where the summation is extended over all d domains, each with known per-

mittivity ǫd and occupying a volume fraction pd = Vd/VC. Analogously, (A.1)

and (A.2) lead to

↔

ǫeff
~E0 =

↔

ǫeff
1

VC

∫

VC

~E(~r) d3r =
↔

ǫeff

∑

d

pd
~Ed. (A.4)

Therefore
↔

ǫeff
~E0 =

∑

d

pd
↔

ǫeff
~Ed =

∑

d

pdǫd
~Ed. (A.5)

Each of the constituents is treated as isotropic, but the effective complex

permittivity
↔

ǫeff is, in general, a tensor. If the local ~Ed fields are aligned

mutually and with ~E0 = E0ê, i. e. ~Ed = Edê, (A.5) leads to

ǫeff =

∑

d

pdǫdEd

∑

d

pdEd

(A.6)

from which some of the mixing rules can be derived. For instance, if the local

fields are approximately equal to the effective macroscopic field, i.e. highly

homogeneous unit cell or stratified inclusions parallel to the macroscopic

field, the upper Wiener bound follows, ǫeff =
∑

pdǫd. In the case of stratified

inclusions in series with the macroscopic field, given that ǫeffE0 = ǫiEi =

ǫjEj ∀ i, j, we obtain the lower Wiener bound, ǫeff = (
∑

pdǫ
−1
d )−1.

Under our assumptions ~∇× ~E ∼= 0, and we can use the Divergence The-

orem to prove that
∫

V

~∇U(~r) d3r =

∫

�
�

�
�

∫

S

U(~r) d~S. (A.7)
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We will prove the validity of (A.7). The Divergence Theorem [179] relates

the volume integral of the divergence of a vector field and its surface integral

over the boundary of the volume:
∫

V

(~∇ · ~F )d3r =

∫

�
�

�
�

∫

δV

~F · d~S. (A.8)

If the vector field ~F = v ~c, with ~c 6= 0 a constant vector, then
∫

�
�

�
�

∫

S

~F · d~S = ~c ·
∫

�
�

�
�

∫

S

v d~S (A.9)

and, knowing that
~∇ · (v ~c) = (~∇v) · ~c + v(~∇ · ~c), (A.10)

for any scalar field v and vector ~c, we get
∫

V

(~∇ · ~F ) d3r =

∫

V

~∇ · (~c v) d3r =

=

∫

V

(~∇v · ~c + v~∇ · ~c) d3r = ~c ·
∫

V

~∇v d3r. (A.11)

Equating (A.9) and (A.11) according to (A.8), we get

~c ·
∫

�
�

�
�

∫

S

v d~S = ~c ·
∫

V

~∇v d3r (A.12)

so

~c ·
(∫

�
�

�
�

∫

S

v d~S −
∫

V

~∇v d3r

)

= 0. (A.13)

But ~c 6= 0, and ~c · ~f(v) must vary with v, so that ~c · ~f(v) cannot always be 0.

Therefore:
∫

�
�

�
�

∫

S

v d~S =

∫

V

~∇v d3r. (A.14)

Therefore, we can write (A.5) using the potential U(~r) at the domain

boundaries as

↔

ǫeff
~E0 =

↔

ǫeff
1

VC

∫

�
�

�
�

∫

SC

U(~r) d~S = (A.15)

=
∑

d

pdǫd
1

Vd

∫

�
�

�
�

∫

Sd

U(~r) d~S =
∑

d

1

VC

ǫd

∫

�
�

�
�

∫

Sd

U(~r) d~S
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where the integral on the left is extended to the boundary of the unit cell,

whereas those on the right are extended to the boundary of each connected

domain d. This equation can be solved for the three orthonormal spatial

directions to obtain the nine components of the effective permittivity.

If we consider N inclusions with the same permittivity ǫi, each occupying

a volume enclosed by the surface Sn, embedded in a host matrix with per-

mittivity ǫm, subjected to an unitary field in the direction ê, (A.15) becomes:

↔

ǫeff ê =
1

VC

[

ǫi

N
∑

n

∫

�
�

�
�

∫

Sn

U(~r) d~S+ (A.16)

+ǫm

(

∫

�
�

�
�

∫

SC

U(~r) d~S −
N
∑

n

∫

�
�

�
�

∫

Sn

U(~r) d~S

)]

.

From (A.1) and (A.7) we have

ê =
1

VC

∫

�
�

�
�

∫

SC

U(~r) d~S (A.17)

and thus (A.16) is reduced to

↔

ǫeff ê = ǫmê +
ǫi − ǫm

VC

N
∑

n

∫

�
�

�
�

∫

Sn

U(~r) d~S. (A.18)

Particularizing the macroscopic unit field ê for the three orthonormal direc-

tions in space, we get from (A.18) nine equations for the nine components of
↔

ǫeff . All we need is the potential at the boundaries of the N inclusions.

Our problem is reduced to the determination of the detailed potential

at the boundary of the inclusions within the unit cell. This problem lacks

general analytical solution. However, obtaining an arbitrarily good approx-

imation for any given configuration is possible through numerical methods.

Several models exist for the numerical estimation of specific configurations.

The Helmholzt problem for the potential within the unit cell does not specify

the fringing potentials at the transverse boundaries. Many of the methods in

the literature subject the cell to a potential U0 and impose a reflecting bound-

ary potential (∂U/∂n = 0) on the free boundaries. This forces a tangential
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electric field at the boundaries, which is only valid for some symmetrical con-

figurations, depends on the choice of the unit cell, and excludes the possibility

of fringing fields. The fringing fields depend on the spatial configuration of

the cell, and should not be carelessly disregarded.

We tessellate the system with unit cells enclosed in parallelepipedic ele-

ments. In such a tessellation the effective permittivity tensor must be trans-

lation invariant. A plane wave propagating in the system satisfies the Bloch–

Floquet [26,78] conditions for the electric and magnetic fields, and under the

LWA this leads to periodic Born–Von Karman fields at the boundaries [36].





Appendix B

Monte Carlo solution of elliptic
PDE

We will treat the 2D case. Higher dimensional cases follow straightforwardly.

Let

afxx + 2bfxy + cfyy + dfx + efy + F = 0 (B.1)

be a partial differential equation (PDE) defined over a region R with bound-

ary ∂R. The factors a, b, c, d, e, and F and the unknown function f are

time-independent functions of (x, y), and b2 − ac < 0 in R, i.e. (B.1) is

elliptical.

We want to solve (B.1) subject to the boundary condition

f(x, y) = φ(x, y) if(x, y) ∈ ∂R (B.2)

and possibly some local constraints.

The region R is divided into a regular mesh of step size h. Each interior

point P0 of the mesh has four neighbours P1, P2, P3, and P4. Let Wi be the

random walk starting at P0 and ending at the boundary point Qi, constructed

by moving away from P0 following random directions generated by a random

number generator until an absorbing point Qi is hit. Absorbing points are

the boundary points with fixed solution in (B.2). The probabilities governing

the random walk depend on the local constrains on f .
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Let

r(P ) = 2 [a(P )− b(P ) + c(P )] + h [e(P ) + d(P )] (B.3)

for any point P = (x, y) inside R, and let

Z(Wi) = φ(Qi) + h
∑

Pj∈Wi

F (Pj)

r(Pj)
(B.4)

be the primary estimator of f(P0). The Monte Carlo solution of the el-

liptic equation (B.1) at point P0 subject to (B.2) consists in generating a

sequence of N independent random walks starting at P0 and ending at dif-

ferent absorbing points, Wn. Then Z(Wn) is evaluated for all n, and f(P0)

is approximated by the secondary estimator

θ =
1

N

N
∑

n=1

Z(Wn). (B.5)

Proof that θ is a good approximation of f can be found in [212].
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Exodus Monte Carlo

Estimating the potential at the boundaries of the inclusions in the unit cell

can be a costly procedure. Just think of a body centered cubic (BCC) unit

cell (see Appendix E) with cubic inclusions occupying a volume fraction

p = 10%, covered with a 1003 mesh. Nearly 17 000 nodes (1.64%) are situ-

ated on inclusion boundaries. If Monte Carlo random walk is used, it implies

17 000 nodes sourcing N random walkers each. N determines the precision

of the estimations and should be high enough. If we choose N = 106 walkers,

we would need 1.7×1010 random walks for each direction, i.e. 5.1×1010 ran-

dom walks to get the three equations like (1.8). Each random walk requires

following a random walker from node to node according to the probabilities

(1.5) until it reaches a fixed potential node. This may take a long walk,

depending on the spatial configuration of the unit cell and the distance from

the source node to the fixed potential cell facets. This renders a straightfor-

ward implementation of the Monte Carlo solution too costly for more than a

very few boundary nodes.

The alternative is substituting the N sequential random walks sourcing

from each boundary node by a single run of the Exodus method, first pro-

posed by Emery and Carson [73]. Exodus is a probabilistic Monte Carlo

method not subjected to randomness, and thus has the additional advantage

of not needing a pseudo-random number generator, producing implementa-

tion independent solutions at least as accurate as those provided by finite

differences and finite elements methods [213].
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The idea is very simple: Instead of tracking a single random walker at a

time, the whole population of N random walkers moves at once. From an

initial state in which all of the N walkers are concentrated at the node of

interest, a proportion of walkers equal to the corresponding probability of

transition moves in each iteration from the current node to each neighbour.

This requires scanning the whole mesh in each iteration, distributing the

walkers in each node between its neighbours according to the probabilities sν

in (1.5), except for the fixed potential nodes k, which act as sinks. Walkers

entering fixed potential nodes get trapped.

The procedure goes on until a preestablished proportion η → 1 of the

initial N walkers has been trapped into fixed potential nodes. Thus we get

the nk in (1.7) for a given source node i in the same number of iterations

that would need a single walk of length ηE{lmax}, with lmax the longest of N

random walks sourcing from node i. The number of iterations to obtain the

potential at node i decreases by a factor of η
N

E{lmax}
µl

, where N ≫ η < 1 and

E{lmax} > µl, the average length of one random walk sourcing from node i.

Note that the dependence of the speed of Exodus on N is indirect, through

the effect of sample size on the expected value of lmax.

The impressive reduction in the number of iterations per node is coun-

terbalanced by the fact that now each iteration requires scanning the whole

mesh to redistribute the entire population of walkers, while with typical

Monte Carlo each iteration requires the generation of a pseudorandom num-

ber to move only one walker from a node to one of its neighbours. Therefore,

Exodus is an efficient alternative to traditional random walk if N is greater

than L3, the number of nodes in the mesh, at least one order of magnitude

more than the expected value of the longest walk is greater than the aver-

age walk. Provided that N depends on L, because it has to assure average

significant values of nk in (1.7) for all 2L2 nodes in the fixed potential faces,

the above assumption ultimately depends on the size of the mesh, L3, and on

the spatial arrangement of the inclusions, which govern the random walks.
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Explicit algorithms for the
computation of chain codes
with SEE

But in the detail which he gave you of them
he could not sum up the hours and months of misery

which I endured wasting in impotent passions.

Algorithm 23 Robust 4-neighbourhood SEE Chain Code (R-SCC4)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

if c = 6 {if d = 0 c← 2, else if d = 1 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 3 c← 1}
append c to Code
if (c ∧ 05h) = 01h {d← 0, increase x}
else if (c ∧ 0Ah) = 08h {d← 1, decrease x}
else if (c ∧ 03h) = 02h {d← 2, increase y}
else if (c ∧ 0Ch) = 04h {d← 3, decrease y}

while (x, y) 6= (xi, yi)
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Algorithm 24 Robust 8-neighbourhood SEE Chain Code (R-SCC8)

initialize Code
d← 0
x← xi + 1, y ← yi

do
append cx,y to Code
if (cx,y = 6 and p = 0) {d← 3, decrease y}
else if (cx,y = 9 and p = 3) {d← 1, decrease x}
else if (cx,y ∧ 05h) = 01h {d← 0, increase x}
else if (cx,y ∧ 0Ah) = 08h {d← 1, decrease x}
else if (cx,y ∧ 03h) = 02h {d← 2, increase y}
else if (cx,y ∧ 0Ch) = 04h {d← 3, decrease y}

while (x, y) 6= (xi, yi)

Algorithm 25 4-neighbourhood Crack Code using SEE

initialize Code
d← 0
x← xi, y ← yi

do
c← cx,y

if c = 6 {if d = 1 c← 2, else if d = 3 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 0 c← 1}
if (c ∧ 05h) = 01h {d← 1, increase x}
else if (c ∧ 0Ah) = 08h {d← 3, decrease x}
else if (c ∧ 03h) = 02h {d← 2, increase y}
else if (c ∧ 0Ch) = 04h {d← 0, decrease y}
append d to Code

while (x, y) 6= (xi, yi)
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Algorithm 26 8-neighbourhood Crack Code using SEE

initialize Code
d← 0
x← xi, y ← yi

do
if (cx,y = 6 and p = 1) {d← 0, decrease y}
else if (cx,y = 9 and p = 0) {d← 3, decrease x}
else if (cx,y ∧ 05h) = 01h {d← 1, increase x}
else if (cx,y ∧ 0Ah) = 08h {d← 3, decrease x}
else if (cx,y ∧ 03h) = 02h {d← 2, increase y}
else if (cx,y ∧ 0Ch) = 04h {d← 0, decrease y}
append d to Code

while (x, y) 6= (xi, yi)

Algorithm 27 Compact 4-neighbourhood SEE Chain Code (SCC4)

initialize Code
d← 0
x← xi + 1, y ← yi

do
c← cx,y

if c = 6 {if d = 0 c← 2, else if d = 1 c← 4}
else if c = 9 {if d = 2 c← 8, else if d = 3 c← 1}
if d = 0 {n← c ∧ 01h, n← n ∨ ((c >> 1) ∧ 01h)}
else if d = 1 {n← (c >> 1) ∧ 01h, n← n ∨ ((c >> 2) ∧ 02h)}
else if d = 2 n← c ∧ 03h
else if d = 3 {n← (c >> 2) ∧ 03h}
append n to Code
if (c ∧ 05h) = 01h {d← 0, increase x}
else if (c ∧ 0Ah) = 08h {d← 1, decrease x}
else if (c ∧ 03h) = 02h {d← 2, increase y}
else if (c ∧ 0Ch) = 04h {d← 3, decrease y}

while (x, y) 6= (xi, yi)
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Algorithm 28 Compact 8-neighbourhood SEE Chain Code (SCC8)

initialize Code
d← 0
x← xi + 1, y ← yi

do
if d = 0 {n← cx,y ∧ 01h, n← n ∨ ((cx,y >> 1) ∧ 01h)}
else if d = 1 {n← (cx,y >> 1) ∧ 01h, n← n ∨ ((cx,y >> 2) ∧ 02h)}
else if d = 2 n← cx,y ∧ 03h
else if d = 3 {n← (cx,y >> 2) ∧ 03h}
append n to Code
if (cx,y = 6 and p = 0) {d← 3, decrease y}
else if (cx,y = 9 and p = 3) {d← 1, decrease x}
else if (cx,y ∧ 05h) = 01h {d← 0, increase x}
else if (cx,y ∧ 0Ah) = 08h {d← 1, decrease x}
else if (cx,y ∧ 03h) = 02h {d← 2, increase y}
else if (cx,y ∧ 0Ch) = 04h {d← 3, decrease y}

while (x, y) 6= (xi, yi)



Appendix E

Some numerical results of the
estimation of effective
responses

I was required to exchange
chimeras of boundless grandeur

for realities of little worth.

To exemplify the effectivity of the method underlying this report, and the

application of the techniques developed for cluster labelling (connected com-

ponent labelling) and local configuration characterization, some examples of

the estimation of the effective permittivity of 2D and 3D regular composites

follow.

E.1 2D models

The effective permittivity of a 2D arrangement of elliptical inclusions with

ǫi = 10 regularly distributed in vacuum (ǫ0 Fm−1) with constant volume

fraction p = 0.20 was obtained, using a 3002 mesh for the unit cell enclos-

ing one ellipse. Fig. E.1 shows how the component of
↔

ǫeff in the direction

of the macroscopic field ~E0 varies with the aspect ratio of the ellipses for

a set of different orientations: aligned (0◦), oblique (45◦), and transverse
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Figure E.1. Longitudinal component of the effective permittivity of an ellip-
tical inclusion (ǫi = 10) in vacuum with varying aspect-ratio (log scale).
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Figure E.2. Different unit cells (light gray) in two different 2D configura-
tions.

(90◦) with respect to ~E0. The results are in agreement with the expected

values. First, the perfect symmetry validates the implementation. Second,

the more elongated the inclusions in the direction of the field, the higher the

permittivity, as expected from a configuration that approaches longitudinal

percolation [69], when the permittivity tends to the upper Wiener bound

(parallel arrangement of stratified inclusions).

The method was also applied to a set of regular 2D arrangements, Fig. E.2,

of inclusions (ǫi = 6) in vacuum, to study the effect of fractional volume, unit

cell, spatial arrangement, and inclusion shape. The effective response of a

nonhomogeneous medium should be independent of the selection of the unit

cell. Fig. E.2 shows several different square unit cells for two different 2D

arrangements. Fig. E.3 details the unit cells shown in Fig. E.2, with circular

inclusions. Fig. E.4 shows the effective permittivity of each arrangement with

circular inclusions occupying fractional volumes from 0.05 to 1.00, obtained

with the different unit cells, using a 3002 mesh. As expected, no perceptible

variation between unit cells in each configuration was found.

Fig. E.4 also shows the Hashin–Shtrikman (H-S) bounds, and the perco-

lation threshold pth for each of the configurations. I use the term percolation

threshold in the sense of Stauffer [233]: The critical threshold of lattice cells
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Figure E.3. Different units cells in the 2D arrangements of Fig. E.2 with
circular inclusions.

that must be filled to create a continuous path of nearest neighbours from

one side to another. A somewhat different, but related, definition of per-

colation threshold can be found in the literature [227]: The abrupt change

in the behavior of a certain parameter in a random medium as the volume

fraction changes. The samples here are not random, and thus the latter is

not applicable. However, percolation induces the same kind of behavior in

our samples. Its effect on the effective permittivity is clearly shown in the

graph, as reflected by the different behavior of configurations with different

percolation thresholds (pth = 0.58 for arrangement A and 0.78 for B, with

circular inclusions). The effective permittivity moves from the lower H-S

bound to the upper H-S bound with increasing fractional volume, with a

greater slope in the region of the percolation threshold. Recall that the H-S

lower bound is the Maxwell Garnett formula, exact for low concentrations

of spheres. Simulations above the percolation threshold are possible because

inclusions are allowed to overlap and form a single cluster. The computation

of the volume fraction is made with the real occupancy, not with the volume

of individual, overlapped inclusions.

Fig. E.5 shows the influence of inclusion shape on the permittivity of

configuration B. Again percolation seems to be the major factor affecting
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out the corresponding percolation thresholds.
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Figure E.6. The shape of the inclusions influences the percolation threshold
in the same 2D arrangement. From left to right: 0.50, 0.78, and 1.00.

permittivity, as the different percolation thresholds (pth = 0.50 for squares,

0.78 for circles, and 1.00 for rhombuses, see Fig. E.6) determine the transit

from the lower to the upper H-S bound.

E.2 3D models

The method was also tested on a Body Centered Cubic (BCC) and a Face

Centered Cubic (FCC) 3D configuration (see Figs. E.7 and E.8). In Fig. E.7,

the unit cell on the left contains 1
8

of inclusion in each corner plus a whole

inclusion in the center. The unit cell on the right contains 1
4

of inclusion in

each of four parallel edges, and a half inclusion in each of the two opposite

faces. In Fig. E.8, the unit cell on the left contains 1
4

of inclusion in each

edge, plus a whole inclusion in the center. The unit cell on the right contains
1
8

of inclusion in each corner plus a half inclusion in each face.

The results shown in Figs. E.9 and E.10 were obtained using a 503 mesh

for the unit cells in Figs. E.7 and E.8, for a range of volume fractions between

0.01 and 1.00. Again no difference between unit cells in each arrangement

was found. The corresponding percolation thresholds with cubic inclusions

are 0.25 and 0.50 for the BCC and the FCC arrangement, respectively. The

permittivity curves follow the same behavior as that of the 2D arrangements.

The BCC arrangement, with lower pth, grows faster at the beginning than

the FCC curve. The change in the FCC curve happens later, but it is more
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Figure E.7. A BCC configuration and two different unit cells. Inclusions in
different layers have been rendered with different color.
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Figure E.8. A FCC configuration and two different unit cells. Inclusions in
different layers have been rendered with different color.
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Figure E.9. Effective permittivity of a BCC and a FCC 3D arrangement of
cubic inclusions with the unit cells of Figs. E.7 and E.8. The vertical arrows
point out the corresponding percolation thresholds.

abrupt, and, as a result, the permittivity of the FCC configuration is slightly

greater for volume fractions above 0.50. Both configurations leave the lower

H–S bound quite soon, in support of the hypothesis that the percolation

threshold strongly affects this transition. The curve of the 2D arrangement

A of circular inclusions in Fig. E.4, and that of the 2D arrangement B of

square inclusions in Fig. E.5, which have the lower of the 2D percolation

thresholds (pth = 0.58 and 0.50, respectively) are also the first leaving the

lower H–S bound. Note the remarkable similarity between the curve with

square inclusions in Fig. E.5 and the FCC curve in Fig. E.9. This is in

agreement with the similarity between the B arrangement in Fig. E.2 and a

FCC(100) surface plane.
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Figure E.10. Effective permittivity of a BCC and a FCC 3D arrangement of
spheric inclusions with the unit cells of Figs. E.7 and E.8. The vertical arrows
point out the corresponding percolation thresholds.

Results in Fig. E.10 are similar. The percolation thresholds with spheres

are pth = 0.68 and 0.74 for the BCC and the FCC arrangement, respectively.

They are quite close, and both curves run quite near to each other. Again

at the higher volume fractions, the FCC arrangement seems to have slightly

higher permittivity. The FCC curve again resembles very closely that of the

B arrangement, this time with circular inclusions, in Fig. E.5. There is also

an excellent agreement with the Maxwell Garnett formula at low volume

fractions. Recall that the lower H–S bound is exact for sparse arrangements

of spheres.
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’I have, doubtless, excited your curiosity,
as well as that of these good people;

but you are too considerate to make inquiries.’

’Certainly; it would indeed be very impertinent and inhuman of me
to trouble you with any inquisitiveness of mine.’


