
N
o �����������
	���������

� � � ���
��� ��� �"!$#%!$��&'&'�

(*)�+-,.(&0/1#2�%3"45��68793�!$: ;<�<6>=8��?�#5@ 3ACBEDGFIHKJLDGB'MNDGOQPRFSHTJLHKU5PVM0WNAXU5PVM0Y[ZR\NHC]^H_M`J$abYdcNeIDGONUfPVM0Y[ZR\NH
(�+&N/g#8�83h45��627i3�!$: =2� ; 6>�G7j�k3�?

l OmAC]nHCcoM0ACH p
q2rtsvuxwzy|{%}|~ow���� �v{ ��}T{�~L��w��
�����>�o���V���9�I���i� � ��ux{8}T���

l���� , ��� +�(�)n ¡,E¢g(R£�,¥¤�¦§($¦§(
¨ © ª «¬¯® °

] l AVBEY
PRFIY
MNA¯±²YdcNeIDGONU5P³M0Y[ZR\NH

��´¶µ�·¹¸»º9¼5��½�¾¿¸»µ�¼<3�ÀÁ¸»ºÂ¼Ã·tÄjµ�Å�¼�·ÇÆÈº|·¹ºÉ3�ÊËÅÈÌÈ¸Í7i¸»ÎiÏj¸»ºÁµ�¸»Ð<ÑÒÆÔÓ8�ÕÆÈºÂ¼�¸»º9¼
3hºjÀÁ¸�ÖI·¹ºjÌ

7�ÆÈÏS¼�¸»ºiÏj¸^×¹¸�ØiÙ�Ú c �ÃÛ (*Ü � ,.(kÝ Ú�ÚßÞ
?áàjÓÃâ»ÐãÅ�ä�·¹ÐãÀj¸»ÐåÓ�ÅÔàjàCÆÔÓ*¼Ã¸»ÏSÓ�Ð8ØU ¡æ"çn(*¢Sè'¤z,�¢é¤ � ¦¯ê¿ê�ê�ê�ê�ê�ê�ê l , �zë (�ì¥ì�(� ,] +¥(ë ¤�) � M �í� ¤�, � ê�ê¿ê�ê�ê�ê�ê�ê l , �zë (�ì¥ì�(� ,
=2¸ßänÅÈºÂ¼ã×¹Å�µ�Æ²Ê�ÊË·¹Ð�Ð*·¹ÆÈºÉÀ'/g¸�ÖIÅ²ÊË¸»ºKµ�Æ²Ê�àCÆÈÐ�î»¸%Àj¸ËØ

ï (*)í)�ð%èC(*) � ¡ìòñ l 1)n(�¤ � ê�ê l , �zë (�ì¥ì�(� , HSó ¤�Ü< 1)�¤�+¥(� ,U ¡æ"çn(*¢Sè'¤z,�¢é¤ � ¦¯ê¿ê�ê�ê�ê�ê�ê�ê l , �zë (�ì¥ì�(� , l ,.ô*ì¥ ¡¦§(*)�+] +¥(ë ¤�) � M �í� ¤�, � ê�ê¿ê�ê�ê�ê�ê�ê l , �zë (�ì¥ì�(� , O ¤zõíõ � ,ò+¥(� ,ï (�¤�)»ñ l 1(*,�,.(ÕèX,¥¤zö � (*¢é¤z ¡,ò(l , �zë (�ì¥ì�(� , HSó ¤�Ü< 1)�¤�+¥(� ,O ¡æ¿æ*¤�,�¦ � F (�)�¤z,�¦í $ê�ê�ê�ê�ê l , �zë (�ì¥ì�(� , HSó ¤�Ü< 1)�¤�+¥(� ,e ,¥¤z)íæ�(*ì¥æ � J (c ¤�+÷¤z¢1(�ê¿ê�ê l , �zë (�ì¥ì�(� , HSó ¤�Ü< 1)�¤�+¥(� ,
Ý Ú�ÚßÞ

Università degli Studi di Brescia - Facoltà di Ingegneria

Corso di Dottorato di Ricerca in Ingegneria dell’Informazione

Ciclo XVII

Dipartimento di Elettronica per l’Automazione

Tesi di Dottorato di Ricerca

Efficient Object Identification in Image Sequences

for Content Indexing

Tutor
Ch.mo Prof. Tesi di dottorato di
Riccardo Leonardi Francesca Manerba

Tutor
Prof.
Jenny Benois-Pineau

Coordinatore del dottorato
Ch.mo Prof.
Valeria De Antonellis

Anno Accademico 2004-2005

Ai miei genitori,

a Flavia,

a Giambattista

Ringraziamenti

Inizialmente non volevo scrivere queste pagine, non perché non sentissi di dover
ringraziare qualcuno, quanto piuttosto perché dopo aver passato sei mesi a scrivere,
riscrivere, cancellare e correggere, l’idea di rimettermi alla tastiera non mi piaceva
proprio per nulla! Ma credo sia comunque doveroso dire qualche parola perché ritengo
che il merito di questo traguardo non sia soltanto mio. Molti sono coloro che hanno,
bene o male, attraversato la mia vita in questi tre, anzi no, quattro anni, per cui
sarà difficile, per non dire impossibile, ringraziarli tutti; pertanto coloro che non si
trovano qui sotto considerino che comunque sono stati ringraziati più e più volte
nella mia mente se non lo sono in queste righe. E ora cominciamo.

Per prima cosa, i miei ringraziamenti vanno al Prof. Riccardo Leonardi e alla
Prof. Jenny Benois-Pineau per l’opportunità che mi è stata data. Mi rendo conto
di aver imparato molto e credo che questa co-tutela sia stata una valida esperienza,
anche se, col senno di poi, qualcosa probabilmente cambierei. Sento comunque di
dover ringraziare entrambi per la grande disponibilità.

Ringrazio inoltre, in ordine rigorosamente sparso, tutto il gruppo di lavoro, e in
particolare Sergio, per l’aiuto morale e materiale, per le correzioni e i consigli, e per
aver sopportato tutta le mie arrabbiature, che sono state tante, Marzia, per avermi
costantemente pungolata in questi anni e per la sua risata che si sente anche nel mio
ufficio (ovvero tre porte più in là), Marco, per le discussioni costruttive, Manuel

per le cene e per ‘References’, Dario, perché si lascia bistrattare senza protestare
troppo.

Un grazie anche al gruppo di lavoro d’Oltralpe: grazie a Lionel, per i botta
e risposta via mail quando il boss era in giro, grazie a Nicolas per le ‘rischiose’
imitazioni, a Laurent per il supporto tecnico e a Petra per aver condiviso le ore
piccole in ufficio. Un grazie inoltre ad Alexis e Pierre.

Grazie a coloro che sono stati la mia famiglia per un semestre: grazie a Concetta,
Luciana, Daniela e Sara. Un sentito grazie anche ad Javi, per essere stato il punto
fisso dei miei viaggi a Bordeaux, e a David, per la sua sana follia, con l’augurio che a
Cambridge possa finalmente sentirsi realizzato. E come non ringraziare Colouche,
il kebabbaro vicino all’Utopia!

Un grazie anche a coloro che dividono la corsia con me: grazie a Marco per
avermi fatto compagnia nella scrittura ad agosto, grazie ad Alessio per la sua tran-
quillità quasi esasperante, grazie a Sara per avermi insegnato che i momenti difficili
sono ben altri, grazie a Pier per le sue battute pungenti, grazie ad Ago perché
non manca mai ad una cena, grazie a Flavio e Michela per aver condiviso la bella

iii

avventura del piccolo Marco, grazie a Laura senza la quale saremmo tutti allo
sbando. Ringrazio inoltre tutti i compagni di cene e bevute ossia Massimo, Lazza,
Paolo, Lorenz, Richi, Davide e Chiara. Grazie a Elena, Marco, Stefano e al
Lazzino.

Grazie a Silvia perché anche se sono cambiate molte cose in questi anni, so che
posso sempre contare sul suo aiuto.

Grazie a Sergio perché trova sempre il modo di farmi sorridere.
Un grazie di cuore ai miei cugini: a Marco, anche se ormai non riusciamo quasi

più a vederci, a Gloria, che invece mi sa che vedrò ancora per un bel pezzo, a Giulia,
lontana ma sempre presente.

E ora i ringraziamenti davvero importanti: grazie a mio papà, compagno con-
stante di viaggio, perché ha sostenuto con entusiasmo il mio desiderio di rimanere
‘studente’ per cos̀ı tanto tempo ancora; grazie a mia mamma, per tutto ciò che rap-
presenta e per tante altre cose che non posso star qui ad elencare; grazie a Flavia,
perché ogni tanto mi serve qualcuno con cui litigare, e per aver scoperto la ‘faccina’
con la zucca; grazie a Giambattista, anche se dovrebbe essere lui a ringraziarmi
visto che sono il bersaglio costante delle sue battute; grazie a Stefania che ormai,
dopo che si è appropriata del mio posto a tavola, non posso non considerare di casa.

Grazie a mia zia Carmela per aver reso questi ultimi sei mesi più ricchi.

Francesca

iv

Perchè se si mettesse quel lavoro insieme a tutti gli altri [...]
allora lo si vedrebbe per quello che è: una voce sperduta in
un coro immenso. E tale era il canto che quel coro levava
all’unisono che il solo farne parte mi bastava.

Abstract

The advances in data capturing and storage have made large amounts of video
data available to consumer applications. However, interacting with multimedia data,
and video in particular, requires tools to describe, organize and manage video data.
Since, due to storage and diffusion problems, all multimedia documents are provided
in compressed form, no retrieval nor indexing can be performed until the documents
have been decompressed first. Besides, as often the users require their retrieval
results in the fastest possible way, extracting information in real time, even if it is
not precise, has become an important objective.

Based on the assumptions above, a new trend in analysis methods for index-
ing multimedia content has appeared which can be qualified as a “rough indexing”
paradigm. Thus many have started to work with rough data - that is data extracted
directly from an MPEG compressed stream - to perform tasks such as shot-cut de-
tection, camera motion estimation, scene grouping or foreground object extraction.

In this context of fast and rough indexing we can include our work where only
“rough data” - that is motion vectors and DC images - have been used for fine
indexing of foreground objects. In this paradigm, we propose to combine both motion
information and region-based color segmentation to extract meaningful objects from
compressed video with arbitrary camera and object motion. The first step is to
extract from P frames, using a robust camera motion estimation algorithm, the
regions that present a motion model that does not follow the camera one. We
call these regions “object masks” because it is supposed that foreground objects
can be located with high probability in these regions. Then a morphological color
segmentation algorithm is performed on I frames to refine the result of the motion
mask segmentation that can be projected onto such I frames.

It may happen that if the object movement does not differ a lot from camera
motion or the object is still, no objects get detected. But, as we can suppose that an
object cannot reasonably appear and disappear along a short sequence of frames, we
can filter the sequence of objects with I frame temporal resolution in the direction
of time and try to identify them even when no motion information is present. The
objective here is to build a rough object trajectory along the sequence of I frames
where it was detected and then to approximate the shape with a conic function in
those frames where the objects could not be detected. It means building a sort of
tube where each section gives the object position in the frame and its approximated
shape along time.

The described method gives promising results: in general the goal of detecting

vii

foreground objects at I frame resolution is achieved even if slight imprecisions exist
in object boundaries due to the reduced resolution. Isolated miss-detection or over-
detection episodes can be corrected by the proposed spatio-temporal filtering.

viii

Compendio

Negli ultimi anni si è assistito ad un notevole sviluppo della tecnologia applicata
agli strumenti atti a registrare ed immagazzinare enormi quantità di dati multi-
mediali. Elaborare tali moli di dati per estrarne informazioni utili relativamente
a un certo criterio, costituisce un processo che può risultare altamente dispendioso
in termini di tempo. A tale scopo quindi si è cominciato a sviluppare una serie di
applicazioni aventi la finalità di estrarre in maniera automatica informazioni salienti
da dati multimediali quali per esempio un video. Se a questo scenario si aggiunge
il fatto che i dati di un video vengono spesso trasmessi e immagazzinati in forma
compressa, è chiaro che una qualsiasi analisi che si voglia effettuare su di essi, implica
che tali dati vengano prima decompressi e poi elaborati. Infine, nel caso i risultati di
tali elaborazioni vengano richiesti in tempi brevi, o addirittura in tempo reale, anche
a costo di una minor precisione nei risultati, ben si comprende come lo sviluppo di
algoritmi adatti allo scopo diventi un obiettivo fondamentale di ricerca.

Sulla base di tali considerazioni, una nuova tendenza nei metodi di analisi video
è apparsa ultimamente nel panorama delle metodologie di indicizzazione e retrieval.
Tale trend, che prende il nome di “rough indexing” prevede di lavorare con dati
solo parzialmente decodificati estratti direttamente dal flusso MPEG, e quindi a
risoluzione ridotta. Questo metodo è già stato utilizzato per la realizzazione di
algoritmi per individuare gli shot-cut in un video, per stimare il moto di camera e per
estrarre gli oggetti in primo piano, sempre a partire da dati nel dominio compresso.

In questo contesto di indexing veloce e “rough” si inquadra anche questo lavoro
di tesi nel quale solo dei dati estratti dal flusso compresso (cioè vettori di moto ed
immagini a risoluzione spaziale ridotta) vengono utilizzati al fine di identificare ed
estrarre gli oggetti in primo piano. In accordo al paradigma di “rough indexing”,
le informazioni di moto vengono combinate con quelle ottenute mediante una seg-
mentazione sul colore, per identificare gli oggetti in primo piano di una sequenza
video con moto di camera e degli oggetti arbitrario. Il primo passo del metodo pro-
posto consiste nell’estrarre dai frame di tipo P, utilizzando un algoritmo di stima
del moto di camera molto robusto, le regioni che non seguono il moto di camera
stimato. A queste regioni convenzionalmente si assegna il nome di “object masks”
poiché è legittimo supporre che gli oggetti in primo piano si trovino con maggior
probabilità al loro interno. Successivamente, per raffinare le “object masks” che al-
trimenti risulterebbero troppo approssimative essendo molto sensibili al rumore che
i vettori di moto presentano per loro stessa natura, viene realizzato un algoritmo di
segmentazione in regioni sulla base del colore sui frame di tipo I.

ix

Come tutti i metodi basati su informazioni di moto noti in letteratura, dal mo-
mento che le “object masks” sono ricavate proprio a partire da questo tipo di in-
formazione, ne risulta che se il moto dell’oggetto in primo piano non si distingue
sensibilmente da quello della camera o se è fermo, nessun oggetto può essere identi-
ficato. Tuttavia dal momento che possiamo supporre che tale oggetto non possa ap-
parire e scomparire lungo una sequenza di frame, proponiamo di filtrare la sequenza
degli oggetti trovati lungo l’asse temporale, in modo da poter approssimativamente
ricavare la posizione e la forma dell’oggetto qualora l’informazione di moto non fosse
sufficiente. L’obiettivo di questo filtraggio spazio-temporale, che costituisce una as-
soluta novità rispetto a quanto proposto in letteratura, è di ricavare una traiettoria
approssimativa del baricentro dell’oggetto a partire dai frame nei quali è stato iden-
tificato e quindi di costruire una sorta di tubo che ne segua la traiettoria e la cui
sezione in ogni istante di tempo dia l’approssimazione della posizione dell’oggetto
nell’ istante stesso.

Il metodo proposto fornisce risultati molto promettenti: infatti l’obiettivo di
identificare gli oggetti in primo piano viene raggiunto nella maggioranza dei casi.
Sebbene l’approccio a risoluzione ridotta utilizzato permetta da una parte di con-
seguire risultati in tempo reale, dall’altra è responsabile di una certa imprecisione
sui bordi degli oggetti estratti. Gli episodi di miss-detection e over-detection inoltre
hanno potuto essere corretti mediante il filtraggio spazio-temporale da noi proposto.

x

Contents

Table of contents xi

Introduction 1

1 An overview of the MPEG standard family 7

1.1 Introduction . 7
1.2 MPEG2 standard for video coding 8

1.2.1 Video signal properties . 8
1.2.2 Coding methods . 9
1.2.3 Different levels of a video sequence 11
1.2.4 Spatial redundancy . 12
1.2.5 Statistical redundancy . 15
1.2.6 Temporal redundancy . 16
1.2.7 Some conclusions about MPEG2 video part 18

1.3 MPEG4 Visual part 1 . 18
1.3.1 Overview of MPEG4 visual 19
1.3.2 MPEG4 visual properties . 19
1.3.3 Coding arbitrary-shaped regions 20
1.3.4 Some conclusions on MPEG4 Visual 23

1.4 MPEG7 standard . 23
1.4.1 MPEG7 tools . 24
1.4.2 Overview of MPEG7 visual descriptors 25

1.5 Conclusions . 29

2 Object-based segmentation and indexing of video streams 31

2.1 Introduction . 31
2.2 Intraframe and motion segmentation 32
2.3 Combined approaches to object segmentation 35

xi

CONTENTS

2.4 Semi-automatic approaches . 43

2.5 Spatio-temporal video object segmentation 46

2.6 Spatio-temporal object segmentation in compressed domain 47

2.7 Real-time segmentation of video object 51

2.8 Conclusions . 58

3 Object-based segmentation of video streams for ‘Rough Indexing’ 59

3.1 Introduction . 59

3.2 Rough indexing paradigm . 60

3.3 Methodology for foreground object extraction 60

3.4 Motion mask extraction . 62

3.4.1 Camera motion estimation 62

3.5 Motion mask extraction from a single P frame 67

3.5.1 Filtering of outliers due to camera motion 71

3.5.2 3D filtering of the motion masks 73

3.6 Motion mask extraction in I frame 76

3.7 Object mask refinement by color segmentation 77

3.7.1 Pre-processing filtering . 78

3.7.2 Gradient extraction . 80

3.7.3 Region growing algorithm . 81

3.8 Merging of motion masks and color segmentation results 83

3.8.1 Flat region removal . 84

3.9 Conclusion . 85

4 Feature extraction and spatio-temporal filtering 87

4.1 Introduction . 87

4.2 Extraction of object characteristics 87

4.3 Spatio-temporal filtering . 91

4.3.1 Identification of objects at I frame resolution along the time . 92

4.3.2 Spatio-temporal tube construction 96

4.4 Conclusions . 106

5 Results 109

5.1 Introduction . 109

5.2 Results . 109

5.2.1 Evaluation method . 110

5.3 Analysis of a generic video sequence 114

xii

CONTENTS

5.3.1 “De l’arbre à l’ouvrage” . 115
5.3.2 Generic video results . 124

5.4 Cartoons . 131
5.4.1 Ferrailles . 131
5.4.2 Cartoon results . 134

5.5 Conclusions . 140

Conclusions 141

References 145

xiii

Introduction

The creation of large databases of audio-visual content in professional world and
the extensively increasing use of home multimedia devices able to store hundreds
of hours of multimedia content strongly require the development of new methods
for processing and indexing multimedia documents. The main objective consists in
extraction of meaningful information and organization of multimedia content.

New multimedia standards have been developed to produce efficient instruments
able to compress (MPEG4) and index (MPEG7) huge amounts of data. In the case
of MPEG4 new techniques have been proposed to semantically compress the content,
and in particular to distribute compression differently between objects of interest, as
foreground objects, and the less interesting parts of the scene. To this aim, according
to this content-based concept, a scene is viewed as a composition of video objects with
intrinsic spatial (shape and texture) features and motion behavior (trajectory).

The MPEG7 standard, instead, is not a compression standard, but it proposes
many detailed schemes for multimedia content indexing and description, enabling
the description of specific objects inside visual scenes. Although, the development of
algorithms to provide object-based information is out of the scope of the standard ,
so methods able to identify meaningful objects are left to the content developer.

A variety of methods has recently been developed to fulfill the objective of detect-
ing foreground objects or meaningful components in a video scene, but the problem
of object extraction from raw or compressed video still remains a challenge. The ob-
jective of this thesis work is to develop an efficient method to automatically extract
in real-time the foreground objects and some of their characteristics.

It is still not possible to have an accurate segmentation of the object boundaries
at a low computational cost. For this reason on one side some methods pursue the
objective of an accurate object segmentation and on the other side other algorithms
try to obtain a more approximate segmentation, but in real-time. It is clear that
these conflicting requirements for the precision and complexity of object extraction

1

INTRODUCTION

are very much application dependent, so the problem is far from being solved.

First approaches from an historical point of view where directed either towards
spatial segmentation or towards motion segmentation but, since both approaches
have their own difficulties, most of the video object segmentation tools integrate
both spatial and temporal segmentation techniques.

Moreover, most of these combined approaches concentrate on segmentation in
the pixel domain, suffering of high computational complexity and requiring that the
sequence is fully decoded before processing. To tackle these drawbacks of pixel-
domain approaches, a few compressed domain methods have been proposed for
spatio-temporal segmentation. These approaches, although significantly faster than
pixel-domain algorithms, cannot however be executed in real-time on today comput-
ers.

So now efforts are oriented in two different directions: the first one is devoted
to obtain foreground object extraction with the objective of MPEG4 coding; even
if performed in compressed domain, these algorithms need a refinement phase after
object extraction and the coded stream must be at least partially decoded at pixel
resolution. The second type of algorithms is instead devoted to semantic indexing
of multimedia content. For this kind of approach it can be useful to obtain the
results in real-time since this kind of approaches is often projected towards user-
dedicated applications. It becomes important to extract object information such as
its shape, its dimensions, its trajectory, and all the characteristics useful to describe
the objects themselves. In this case a lower precision in object boundaries can be
tolerated. This thesis work belongs to the second set of approaches. In fact our
objective is to extract in real-time from an MPEG2 video sequence the foreground
objects present and to obtain some useful information about them. In order to obtain
results in real-time, we decide to sacrifice perfect object boundary detection and to
work at low resolution.

For this purpose in this work we define a new paradigm of rough indexing which
means fast and approximate analysis of multimedia content at poor resolution. So
our algorithm is developed using motion and color information directly extracted
from the compressed stream, that is MPEG2 motion vectors and DC coefficients of
DCT transform.

The work is mainly organized in two parts: the first part concerns the extraction
of the foreground objects in each I frame of each GOP of the analyzed sequence; as
this extraction is performed for each GOP independently from the others, if an error
occurs, and this is quite easy due to the rough data processing, this error cannot

2

be corrected. In literature no solution is proposed to solve this problem. For this
reason we have developed a correction procedure, that is a spatio-temporal filtering
that takes into account the results along the time to correct some detection errors.

For the first part, that is the object extraction part, we have adopted a combined
motion and color based segmentation approach: first we estimate the camera motion
using a robust estimator, then we extract all the outlier macro-blocks and we filter
them to separate the outliers due to the noise from the ones due to the presence of
a foreground objects and that are part of the so called motion masks. After this
filtering we obtain the object motion masks for P and I frames.

Once the motion masks for the I frames have been extracted, color information is
used to refine the object masks. In the rough indexing context, only low resolution I
frames are taken into account. The objective is to segment the DC color image and
to overlap it to the object motion masks to finally extract the foreground objects.
As for the macro-block resolution, it is difficult to obtain a good segmentation due
to possible high gradient values between adjacent macro-blocks; thus, a pre-filtering
process is necessary. In this case the use of morphological operators can eliminate
local gradient peaks without modifying the object boundaries. Such morphological
processing flattens the interior part of objects without changing their boundaries.
Once the images have been filtered, a modified watershed algorithm is performed on
I frames to subdivide them into homogeneous color regions.

The results of color segmentation and motion analysis, if taken separately, are not
sufficient to detect foreground objects, because motion masks may be too approx-
imative and color segmentation cannot discriminate background from foreground,
but their combination can offer very good results. The outcome of this first part
are the foreground objects present for each I frame in real-time. As this process is
performed separately for each GOP, if an error occurs in the process, even if it will
not influence the process for the following GOP, the result cannot be corrected.

So the second part of the thesis work is devoted to correct the errors that can
affect the first part by implementing a spatio-temporal filter that takes into account
the global results along the sequence. Obviously, this kind of filtering has to be
performed once the object have been extracted, so it can not take place in real-time.

To filter the miss-detections or the cases of false alarm we propose to follow the
object with a sort of tube which can be built using simple quadric functions such as
cones or cylinders. The idea is to use the objects that have been correctly detected
in many frames to correct the cases when the same object, due to an error, is not
or has only been partially detected, following the principle that an object cannot

3

INTRODUCTION

suddenly disappear or instantaneously change its size and shape.

If more than one object is present for each frame it is important to establish a
correspondence between the different objects at different moments of time. To do
that, we estimate the motion of each foreground object and we project it on the
subsequent frames; the projection overlaps with detected object of such frames so
that a correct correspondence can be established. Then, the trajectory of each object
is computed by approximating with a straight line the line of the centers of mass of
the detected objects.

This straight line, that represent the trajectory of the object along the sequence,
is also considered to represent the main axes around which the quadric function is
built. In each frame with a detected object, a set of concentric ellipses centered
in the center of mass is built. Then starting from these ellipses a quadric function
that approximate the different ellipses in the different images is computed. In the
frames where no objects can be detected the section of the quadric offers the elliptic
approximation of the object.

Concluding, this algorithm helps to extract foreground objects from an MPEG2
video sequence, mainly executed in real-time thanks to rough data and low resolution
processing.

In the next the detailed description of how this work is organized is given:

Chapter 1 - An overview of the MPEG standard family. Since the
method of object extraction is performed in the compressed domain using color
and motion information from MPEG2 compressed stream, in order to understand
the nature of this data, the MPEG2 standard is first introduced. Then, MPEG4
basic principles are described and in particular its object oriented compression part.
Finally, as the context of this work is an object-based indexing of compressed streams,
the MPEG7 standard is discussed. The standard is not analyzed in all its details,
the presentation focusing mainly on shape and motion descriptors.

Chapter 2 - Object-based segmentation and indexing of video streams.
In the case of MPEG4, the approach taken for coding the video sequences may rely on
an object-based representation of the scenes and on a separation of foreground from
the background. The MPEG7 standard is also facing the same kind of challenge since
indexing and retrieval may require to structure the data in terms of objects, regions
and associated semantics. So, in this chapter, different approaches to the problem are
presented and different algorithms are discussed in details. We start from traditional
techniques of image segmentation; then we present combined approaches until the
most recent techniques realized in compressed domain including those attempts to

4

achieve the results in real-time.
Chapter 3 - Object-based segmentation of video streams for ‘Rough

Indexing’ In this chapter we propose our object extraction method and in particular
we describe in detail the object extraction part, based on joint motion and color
segmentation applied at low resolution and on rough data in a ‘rough indexing’
context: first we use motion information extracted from MPEG compressed stream
to estimate camera motion and to detect those regions that do not follow the camera
movement and we call them motion masks. Then, from the compressed stream, we
extract DC resolution color information and we perform color segmentation. Then
motion masks and color segmentation results can be merged together to obtain more
accurate foreground objects.

Chapter 4 - Feature extraction and spatio-temporal filtering. Sometimes
the algorithm at its first stage may produce some detection errors on isolated frames.
These kinds of error, specially in the miss case, can be avoided by taking into account
the results of the neighboring frames with a sort of filtering of the results along
time. In this chapter we are going to explain how we extract the trajectory of the
foreground objects and we realize our spatio-temporal filtering, in which the object
sequence along the time is approximated with a sort of ‘tube’ obtained by a quadric
function. The sections of this quadric can indicate the location of the missing object
and its approximate shape.

Chapter 5 - Results. In this chapter we present the performance of our method
on all results obtained for the analyzed video sequences. We also present some video
sequence in details, showing the intermediate steps.

5

Chapter 1

An overview of the MPEG

standard family

1.1 Introduction

As we stated in the Introduction, in this work we address the problem of fore-
ground object extraction and modelling in compressed domain. The partially de-
coded stream represents the ”rough” data for our object-extraction method. There-
fore, in order to understand the nature of this data, we will have to introduce actual
standards the most common for video broadcast and storage (MPEG1,2) we will use.

We are going to introduce such standards [1] since color and motion information
extracted from the compressed stream will be used in the work. MPEG1 is a reduced
version of MPEG2 and there are not many difference between the two data streams,
so only MPEG2 will be treated in this chapter but the same items can be formed
for MPEG1 streams.

The final goal of this work is to supply a powerful tool for object-based video
indexing. The method will be based on approaches extensively developed since last
10 years for object-based video segmentation in a coding process. Therefore, it
seems natural to present MPEG4 which has been a stimulator for the research, as it
proposes object-based coding concept [2].

Finally, as the context of this work is an object-based indexing of compressed
streams, then we will have to introduce MPEG7 [3]. MPEG7 standard supplies a
normalized multimedia content description interface. MPEG7 deals with objects but
with a description aim, that is to say that MPEG7 standardizes among other things
a way to describe the objects in video sequences. However, in both standards, no

7

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

indication is given on the method that has to be used to extract such objects. The
result is that so many independent works have addressed the issue, but the problem
has not been solved yet.

1.2 MPEG2 standard for video coding

Video compression is considered a very important task and has been studied since
the beginning of the ’50s. However, only recently, the image quality - compression
ratio trade-off has increased significantly, thanks to new coding techniques and to the
better computer computational power. The MPEG1 standard has been developed
since the end of the ’80 with the objective of defining a video coding standard for
digital supports. As an outcome, in 1992 the MPEG1 standard was first introduced.
The characteristics of this standard is a reduced spatial resolution (320 × 240) of
progressive sequences with typically a bit rate of 1,5Mb/s that is a compression rate
of 100:1.

Just after the MPEG1 standardization, it was clear that there was the need
of a second standard providing better performance for progressive and interlaced
sequences. So, at the beginning of 1992, the work on MPEG2 standards for video
signal compression began.

1.2.1 Video signal properties

An analogue video signal is characterized by 25 frames per second, 625 lines per frame
and 720 pixels per line. The digitization of an analogue signal is obtained by sampling
each image and quantizing the values of the samples. The image is then reduced
to a matrix of pixels, described by their color components values. For each pixel
three components representing their visual primitive, typically Red(R), Green(G)
and Blue(B), are estimated. But, since many research works have shown that the
human eye is less sensitive to color components than to luminance components,
the RGB color space is transformed typically in a YUV space representation. In
this color space, Y represents the luminance component, while U and V represent
chrominance components.

The digital equivalent of YUV is represented by Y, Cb and Cr, in which the
two chrominance difference components Cb and Cr are less correlated than U and V
for digital ITU-R 601 sequences and so they can be coded separately. Moreover, as

1Motion Picture Expert Group

8

1.2. MPEG2 standard for video coding

Figure 1.1: Different type of ITU-R video sampling formats.

the human eye is less sensitive to these components, they can be subsampled. The
different types of subsampling employed are (see also Figure 1.1):

• 4:4:4 - this represents the canonical sampling, that is each pixel is obtained
by sampling at the same rate the three components Y, Cb, and Cr;

• 4:2:2 - Cb and Cr components are subsampled by 2 with respect to 4:4:4 in
the horizontal direction;

• 4:1:1 - Cb and Cr components are subsampled by 2 in both direction;

• 4:2:0 - Cb and Cr components are subsampled in both directions but the
location of the Cb and Cr components is not the same of the Y component in
the image plane.

1.2.2 Coding methods

The number of necessary bits to describe the information of a video sequence can be
reduced by eliminating the information redundancy. MPEG2 standardizes various
methods and tools to reduce such redundancy.

In a video sequence we can find different types of redundancies: spatial, temporal
and statistical. Spatial and temporal redundancies are a consequence of the fact that
pixels in a sequence are not independent from their neighbors, there a is correlation
between closer ones both in space and time, so their value can be estimated by
prediction.

9

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

Figure 1.2: Motion-compensated DCT coder.

Reducing the temporal redundancy means coding the images using, as a reference
image, one taken from the previous or future images. Then the redundancy is reduced
by employing some motion estimation first, then using it for motion compensation
techniques; this form of prediction enables the so called Interframe coding used in
MPEG.

For spatial redundancy the image is considered as a static one and not as a part of
a video sequence and it is coded independently from the others thanks to transform
techniques such as the DCT (Discrete Cosine Transform) followed by quantization;
this coding type is called Intraframe coding.

To eliminate the statistical redundancy tipycally entropyc coding is used.

In addition, psychovisual irrelevance present in human eye perception, can be
used so as to mash for example some coding artifacts that might occur close to edge
object boundaries present in the frame.

In Figure 1.2 an MPEG2 coder is shown. The coder subtracts the motion-
compensated prediction from the source picture to form a ‘prediction error’ picture.
The prediction error is transformed with the DCT, the coefficients are quantized and
these quantized values coded using a VLC. The coded luminance and chrominance
prediction error is combined with ‘side information’ required by the decoder, such
as motion vectors and synchronising information, and formed into a bitstream for
transmission. The single blocks of the proposed scheme will be explained in details
in the next paragraph.

10

1.2. MPEG2 standard for video coding

Figure 1.3: Level subdivision from video sequence to single pixel.

1.2.3 Different levels of a video sequence

To simplify the understanding of the coding process, transmission and decoding,
we can decompose the video sequence at different levels. Going from the finest to
the largest one we define: Blocks, Macro-Blocks, Slices, Pictures, GOP (Group of
Pictures) and Sequences (see fig. 1.3).

• A Block is a section of the image composed by 8× 8 pixels; it can be a block
of luminance values or chrominance values and it is the smallest unit that is
coded using DCT Transform;

• A Macro-Block contains, if we suppose for example a 4:2:0 subsampling pat-
tern, a section of luminance with dimensions 16×16 pixels and two chrominance
sections of 8×8 pixels. The macro-block is the basic unit taken into account for
example in motion compensation and it is composed by 4 blocks of luminance
and 2 blocks of chrominance;

• A Slice is a stripe composed by adjacent macro-blocks built from left to right
then from top to bottom. The coding of a slice can be made completely inde-
pendent from the adjacent slices. It is also used as synchronizing unit;

• A Picture, called also Frame, is composed in MPEG2 of 720×576 pixels and

11

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

is classified into three different types: Intra (I), Predicted (P) and Interpolated
(B):

– I frames - The Intra type images are coded as static images, using only
a spatial DCT transform;

– P frames - The Predicted images are coded starting from the previous I
or P frame using a predictive technique (motion compensated or not);

– B frames - The Interpolated images are coded with reference to the
previous or following frame or both of them, using a predictive technique
based on up to two reference frames, one in the past and the other in
the future. A B frame cannot serve as a reference frame by other P or B
frames;

• A GOP(Group of Picture) is formed by a fixed number of pictures, usually
12, 15 or 18, and it is the minimum unit that specifies the temporal prediction
structure. A GOP must always start with an I frame; it can contain only one
I frame and it ends with the last frame before the next I frame. The GOP
can be of two types: an open GOP uses the first frame of the next GOP for
coding the last frame; a closed GOP instead has no predictive links with the
next GOP. This type of GOP must necessarily end with a P frame. In Figure
1.4 an open GOP with 12 frames is presented. In this GOP three P frames
and eight B frames are present: each P frame is coded taking the previous I or
P frame as a reference, while the B frames present a bidirectional prediction
with reference to the previous and the following I or P frame.

• A Sequence is a series of GOPs.

1.2.4 Spatial redundancy

The first step in many compression systems consists in identifying spatial redundancy
in video pictures using DCT transform and then quantizing the result. This coding
technique is applied with different characteristics both on macro-blocks of intraframe
coded images and on macro-blocks of prediction errors in interframe coding process.

Discrete Cosine Transform

The DCT transform is a mathematically lossless process that is able to pass from
the pixel domain of an image to a frequency domain representation. The advantage

12

1.2. MPEG2 standard for video coding

Figure 1.4: An example of an open GOP.

of the DCT transform is that it can be implemented in an easy way with a simple
algorithm that can be exactly inverted. The two-dimensional DCT transform is the
following:

B(k1, k2) =
N1−1∑
i=0

N2−1∑
j=0

4A(i, j) cos
[

πk1

2N1
(2i + 1)

]
cos

[
πk2

2N2
(2j + 1)

]
(1.1)

where N1 and N2 are the image dimensions, A(i, j) is the intensity value of the pixel
(i, j) and B(k1, k2) is the resulting coefficient.

The first coefficient of the DCT is called the DC value of the block and it is pro-
portional to the average amplitude value of the different components Y, Cb and Cr
within a block. The principal characteristic of this transform is that it often concen-
trates the energy of the block in a small number of coefficients at lower frequencies,
given the typical status of static images: this means that we have the possibility to
reduce the amount of data necessary to represent an image. In fact, as we know that
the first coefficients concentrate the energy of the signal, most coefficients will tend
to be zero-valued which eases the subsequent entropy coding work.

Quantization

The quantization process consists in a discretization of the spatial frequency coeffi-
cients in image blocks after they have been transformed by DCT. This leads to good

13

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

(a) non linear quantization matrix (b) linear quantization matrix

Figure 1.5: The quantization matrix used for intraframe and interframe coding.

compression with small loss of information.

Since the human eye is very sensitive to luminance change the DC value is the
coefficient that is coded with the highest precision (even 11 bits). On the other side,
since the human eye does not perceive well the high frequencies, very few bits can be
used to represent them. Moreover, since the DCT typically leads to very low values
at high frequencies, the quantization results in a long set of zeros so that very few
bits are needed for their representation.

Depending on the target bit-rate and perceptual significance of a macro-block, a
more efficient quantization process is obtained by specifying different quantization
step sizes for each macro-block or group of macro-blocks.

In Figure 1.5 two different types of quantization matrixes are shown. The non
constant coefficient matrix is used for intraframe coding, because the DCT transform
of the signal presents high energy values in the low frequency coefficients (the top
corner at the left). The constant coefficient matrix is used instead for interframe
quantization; in fact, the DCT transform of the prediction error presents the same
distribution of values at all frequencies. For this reason the quantization will be done
using a constant coefficient matrix.

Assume that F is an unquantized DCT coefficient, QF is a quantized DCT coef-
ficient, W is the step size and S is the scale factor. For AC coefficients of intra coded
blocks, QF = [(32 × F) + (sign(F) × W × S)]/(2 × Q × W).

For all coefficients of non intra coded blocks, QF = (32 × F)/(2 × S × W).

14

1.2. MPEG2 standard for video coding

(a) (b)

Figure 1.6: Two different types of coefficient reading: a) zigzag and b) alternate.

This results in a larger encoded dead zone around 0 for the non intra case. For
DC coefficients of intra coded blocks, QF = F/k where k is a constant determined
by the selected DCT precision.

Coefficient coding

The coding order of DCT quantized coefficients is chosen to optimize the coding
process efficiency. The process starts from the DC coefficient and reads all the
coefficients that form an 8 × 8 matrix to place them in a one-dimensional vector.
These coefficients are not read line by line but following a path that maximizes the
consecutive number of zeros.

In Figure 1.6 two types of coefficient readings are shown; both are able to max-
imize the number of consecutive zeros and so they are more efficient than a raster
scanning which reads the coefficients from left to right and from top to bottom.

1.2.5 Statistical redundancy

Run-Length coding

Once the DCT quantized coefficients have been placed in a one-dimensional vector,
instead of coding each value alone, consecutive values with the same amplitude are
coded together by defining the set of couples of values (N,M) where N represents the
number of repeats of a same value M. Some couples will have N set to one. At high

15

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

frequencies, where long sequence of zeros occur, many coefficient can be combined
to form a single couple, which improves on average the coding efficiency.

VLC coding

The Variable Length Coding algorithm, is an Entropy Code, which assigns short/long
codewords to frequently/rare symbols (represented by the couples defined above),
respectively.

1.2.6 Temporal redundancy

Analyzing a video sequence we can notice that the content does not change a lot
between two adjacent frames; so the main idea to reduce temporal redundancy is
to consider that the current image can be predicted by performing local translation
in space of the past and future images. The considered motion is not equal for the
entire image but can vary between two different regions. The temporal redundancy
will be taken into account only for interframe coding, that is to say for P or B images.

The image has to be subdivided into blocks and the block dimension where the
motion compensation has to be applied is an important choice. In fact using small
blocks the estimation accuracy will grow, but in this case the computational cost
and the number of motion vectors will grow as well.

MPEG2 standard uses macro-blocks of 16×16 pixels as fundamental blocks, even
if it is possible to consider 16 × 8 pixel for interlaced sequences.

Motion compensation

The concept of motion compensation consists in building the current image using the
macro-blocks of a past or of a future image by displacing them on the basis of the
motion vectors associated to them; these macro-blocks are then corrected to fully
match the current frame.

To determine the motion vectors the algorithm attempts to displace same size
reference pixel blocks so as to best match the current frame macro-block. The
resulting displacement will be coded to form part of the bit stream. The prediction
error obtained by the difference between the pixel values of the reference macro-
blocks with respect to the current frame forms what is called the Displacement
Frame Difference (DFD).

The next step involves the computation of the DCT of the DFD, its quantization

16

1.2. MPEG2 standard for video coding

and its entropy coding; motion vectors differences with respect to previous macro-
block motion vectors are instead entropy coded and transmitted to the decoder.

Thus if we denote I(x, y, t) the original image signal at time t, (dx, dy)T the
motion vector associated to the the macro-block, then the coded and decoded version
Î(x, y, t) is computed as:

Î(x, y, t) = Î(x + dx, y + dy, t − dt) + ê(x, y, t) (1.2)

Here Î(x + dx, y + dy, t − dt) is the value of coded and decoded reference frame,
(dx, dy)T is an estimated motion vector, ê(x, y, t) is a coded and decoded error signal.
Its original version e(x, y, t) represents a difference between original frame I(x, y, t)
in the encoder and coded and decoded compensated reference frame:

e(x, y, t) = I(x, y, t) − Î(x + dx, y + dy, t − dt) (1.3)

In MPEG1,2 the error signal e(x, y, t) is DCT transformed and quantized, thus
ê(x, y, t) is obtained by inverse DCT.

Block matching

In the block matching technique the macro-block to be estimated is compared with
others blocks with same dimensions placed inside a research area in a past or fu-
ture frame; the estimation can be obtained by searching for the motion vector that
minimizes a cost function of the prediction error.

It is possible to estimate for each macro-block the prediction error variance: if
such value is lower than the one of the original image the macro-block is coded in
interframe mode, otherwise is coded as an intraframe macro-block; in the same P or
B frame it is possible to code separately macro-blocks as interframe or intraframe.

To give an example of motion compensation with a P frame we suppose to sub-
divide the current frame In into blocks and we search each block in the past frame
In−1. In this way it is possible to find a motion vector (dx, dy) for the previous frame
that represents the block movement. The estimation Ĩn of the current frame will be
obtained from the previous one translating the blocks according to their own mo-
tion vectors; then the frame In is recovered from the previous one using the motion
vectors and the prediction error.

For each macro-block of a B frame there are 4 different choices, (see 1.7):

• prediction with the previous frame as for P frames;

17

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

Figure 1.7: Motion estimation with previous and future prediction.

• prediction with the future frame;

• interpolation using previous and future frames;

• the intraframe coding.

1.2.7 Some conclusions about MPEG2 video part

In the sections above the different characteristics of the MPEG2 standard have being
presented. The scope of the standard is to remove the redundancy present in a video
sequence and take into account the human visual system perception to best reduce
the effects of quantization. We will try to use MPEG2 compressed information
to speed up the algorithm implementation of the proposed method. For example
MPEG2 motion vectors will be used as well as the DC coefficients of the DCT
transform of intraframe.

1.3 MPEG4 Visual part 1

MPEG4 Visual [4] improves the MPEG2 standard both in terms of compression
efficiency and flexibility, enabling a wider range of applications, by making use of
more advanced compression algorithms and by providing an extensive set of “tools”

18

1.3. MPEG4 Visual part 1

for coding and manipulating digital media. It supports enhanced compression effi-
ciency, reliable transmission, coding of separate shapes or ‘objects’ in a visual scene,
mesh-based compression and standardize means of facial or body animation.

1.3.1 Overview of MPEG4 visual

MPEG4 Visual provides a toolkit of coding techniques and resources making it pos-
sible to deal with different types of visual data including rectangular frames (such
as the ‘traditional’ video material), video objects of irregular shape, still images or
synthetic visual information (computer generated scenes). MPEG4 Visual provides
its functionalities through a set of tools, organized into ‘profiles’, suitable for certain
applications.

MPEG4 aims at ensuring that compliant encoders and decoders can interwork
with one another, giving the developers the freedom to optimize the encoders as long
as they generate a syntax compliant with the standard specifications.

1.3.2 MPEG4 visual properties

MPEG4 attempts to satisfy the requirements of a wide range of visual communication
applications through a toolkit-based approach to coding of visual information. Some
of the key features that distinguish MPEG4 from previous visual coding standard
include for example:

• Efficient compression of progressive and interlaced video sequences. Additional
tools are also present to further improve compression efficiency;

• Coding of video objects, that is irregular-shaped regions of a video scene. This
is a new concept for standard-based video coding and enables for examples
independent coding of foreground and background objects in a video scene;

• Support for effective transmission over practical networks;

• Coding of animated visual object such as 2D or 3D polygonal meshes, animated
faces and animated human bodies.

MPEG4 Visual provides its coding functions through a combination of tools,
objects and profiles. A tool is a subset of coding functions to support a specific
feature. An object is a video element that is coded using one or more tools; an object
can be a sequence of rectangular frames, a sequence of arbitrary-shape regions or

19

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

simply a still image. A profile is a set of object types that a codec is expected to
be capable of handling. The different profiles can handle low-complexity coding of
rectangular frames, as does the Simple Profile, or object-based coding of high quality
video with improved compression efficiency as in the case of the Core Studio Profile.

Profiles are an important mechanism for encouraging interoperability between
codecs from different manufacturers. The MPEG4 standard describes a wide range
of coding tools and it is unlikely that any commercial codec would require the imple-
mentation of all the tools. Instead, a codec designer chooses a profile that contains
adequate tools for a target application.

One of the contributions of MPEG4 Visual is that it moves from the traditional
view of a video sequence as a merely collection of frames to a collection of one or
more video objects. A video object is defined as “a flexible entity that a user is
allowed to access and manipulate” [4]. A video object (VO) is an area of the video
sequence that may occupy an arbitrarily shaped region and may exist for an arbitrary
length of time. It may also vary in size and shape over time. A VO considered at
a particular moment of time is called video object plane (VOP). In the traditional
approach of video coding instead, each VOP is a single frame while a sequence of
frame forms a VO. This traditional approach allows less flexible options in video
coding. So, for example, a video scene may be made up of a background object and
a number of separate foreground object. In Figure 1.8 two different types of video
objects are presented. In a) the video object is a sequence of frame and the video
object planes are the single frames (as in the traditional approach of MPEG1 and
2); in b) instead the approach of MPEG4 visual: the VO is a sequence of arbitrary
shaped VOPs. The approach offered by MPEG4 Visual to encode this kind of video
scene is much more flexible than the rectangular frame structure proposed by earlier
standard. Moreover the different objects may be coded with different visual qualities
and temporal resolution to underline their importance in the final scene.

As this thesis work is not concerned with MPEG4 coding tools, the different
coding profiles will not be treated in details, but we would like to describe arbitrary-
shaped object coding because objects and in particular foreground objects are one
of the key features of this thesis work.

1.3.3 Coding arbitrary-shaped regions

Coding objects of arbitrary shaped requires a number of extensions to the block-
based core CODECs [5]. Each VOP is coded using motion compensated prediction
and DCT-based coding of the residual (see section 1.2.6). Extensions to deal with

20

1.3. MPEG4 Visual part 1

Figure 1.8: a) rectangular VOP and VO and b) arbitrary shaped VOP and VO.

the special case of object boundaries are needed, because it is necessary to cope with
shape coding, motion compensation and texture coding of arbitrary shaped video
objects.

Shape Coding

The shape of a video object is defined by Alpha Blocks, each covering a 16×16 pixel
area of the scene. Each Alpha Block may be external to the object and in this case
nothing has to be coded; it can be totally internal and in this case it is encoded as
in Simple Profile (that is motion compensation and DCT of the residual) or it may
include the object boundary. In this last case it is necessary to define the shape
of the VO edge within the alpha block. The shape is defined using the concept
of transparency, where the ‘transparent’ pixel is not part of the current VOP, the
‘opaque’ pixel is part of the VOP and replaces everything underneath it whereas a
‘semi-transparent’ pixel will be partially transparent. The shape information may
be defined as binary (each pixel is either opaque, 1, or transparent, 0) or grey scale
(each pixel is defined by a value between 0, transparent, and 255, opaque). The
binary shape for a boundary macro-block is coded as a binary alpha block (BAB)
using arithmetic coding, while grey scale shape information is coded using motion
compensation and DCT coding.

21

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

Static sprite coding

Another important improvement in MPEG4 visual is the concept of static sprite. We
can imagine, for example, a sequence of video surveillance. Clearly the background
does not change along the sequence (the camera in fact is fixed). The background
can be coded as a static sprite. A static sprite is treated as a texture image that may
move or warp in certain limited ways, in order to compensate for camera movement
such as pan, tilt, rotation and zoom. The sprite can also be much larger than the
visible area in the scene and it may even have arbitrary shape. As the camera
viewpoint changes, the encoder transmits some parameters indicating how the sprite
should move and warp to recreate the appropriate visible area in the decoded scene.
As the sequence progresses, the sprite is moved, rotated and warped to appropriately
change the scene. There are two methods to transmit and manipulate sprites, basic
sprite and low-latency sprite.

In the basic sprite the first VOP (I-VOP) contains the entire sprite, encoded in
the same way as a normal I frame. The sprite can be larger than the visible display
size to accommodate the camera movements. At the decoder the sprite is placed in a
Sprite Buffer but it is not immediately displayed. All further VOPs are S-VOP. An
S-VOP contains up to four parameters that are used to move and warp the content
of the Sprite Buffer to obtain the desired background. A single parameter enables
linear translation, two or three parameters enable affine transformation of the sprite
and four parameters enable a perspective transform. In this case transmitting an
entire sprite in the first VOP may introduce a significant latency because the sprite
may be larger than the single VOP.

The low-latency sprite enables an encoder to send initially part of the sprite or
a low-quality version of the entire sprite and then to update it during the following
transmissions. The first VOP contains part of the sprite or all the sprite (at low
resolution) with the dimension of the entire sprite. Each subsequent S-VOP may
contain the warping parameters, as in basic sprite, and one or more ‘pieces’. A
sprite ‘piece’ covers a rectangular area of the sprite and contains macro-block data
that construct part of the sprite that has not previously been decoded (static-sprite-
object piece) or improves the quality of part of the existing sprite (static-sprite-
update piece). In the first case the sprite macro-blocks are encoded as intra macro-
blocks, while in the second case they are encoded as inter macro-blocks using forward
prediction from the previous content of the sprite buffer.

22

1.4. MPEG7 standard

1.3.4 Some conclusions on MPEG4 Visual

As it has been explained in the sections above, MPEG4 defines in details how to
encode a scene as foreground and background, and proposes different tools to deal
with arbitrarily-shaped objects, but it assumes that the segmentation of the scene
into objects has already been achieved. So the problem to segment the scene is left
to the developers. This is is the reason why in these last years many developers tried
to design new techniques for object extraction and scene segmentation.

1.4 MPEG7 standard

The MPEG7 project, formally called Multimedia content description interface [6],
has the objective to specify a way to describe different types of multimedia contents,
in order to facilitate an efficient retrieval and management of the relevant information
[7]. Like the other members of the MPEG family, MPEG7 is a standard represen-
tation of multimedia information but it is quite different from its predecessors. In
fact, while MPEG1, MPEG2 and MPEG4 reproduce the content of the multimedia
documents, MPEG7 represents information about the content and the way to de-
scribe it. As ultimate objective, MPEG7 tries to create an environment where tools
from different providers can work together in order to create an infrastructure for
transparent management of multimedia content.

Some of the guiding principles of MPEG7 standard are the following [7]:

• Wide application base: MPEG7 must be applicable to any domain, real-time
generated or not. The content may be stored and may be made available
on-line, off-line or streamed;

• Relation with content : MPEG7 allows the creation of descriptions to be used
stand-alone, multiplexed with the content itself or linked to one or more version
of the content;

• Wide array of data types: MPEG7 considers a wide variety of data types such
as video, speech, audio, image, synthetic images, etc.;

• Media independence: MPEG7 is applicable independently to the medium that
carries the content (film, tape, CD, hard disk, etc.);

• Object-based : MPEG7 allows to describe object-based representations of the
content, i.e. the content can be described as a composition of multimedia

23

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

objects while allowing to separately access the information related to each
object;

• Format independence: MPEG7 should be applicable independently of data
format type, analog, digital compressed or uncompressed. However there is a
special relation between MPEG7 and MPEG4 [8] [9], since both are built using
an object-based data model, they complement each other very well allowing
very powerful applications to be created;

• Abstraction level : MPEG7 includes description capabilities from low-level fea-
tures, often statistical feature that can be extracted automatically, to high-
level features with semantic meaning that are often extracted manually or
semi-automatically.

As for MPEG4, in order to allow industrial competition, MPEG7 standardizes
only the minimum necessary and this implies that only the description format, syntax
and semantics, and its decoding is standardized. Elements that are explicitly not
standardized are algorithms for extraction and encoding. The specification of content
analysis tools, automatic or semi-automatic, is out of the scope of the standard and
is left the industry.

1.4.1 MPEG7 tools

A number of tools are needed to achieve the objectives of the standard. This tools
are descriptors, description schemes, a description definition language (DDL) and
some System tools [10].

A Descriptor (D) is a representation of a feature, where a feature is a distinctive
characteristic of the audio-visual information; it defines a syntax and the semantics
of a the feature representation. The value of a descriptor represent the evaluation of
the corresponding feature and it is possible to have several descriptors representing
the same feature (for example to address different functionalities). An example for a
descriptor can be a time code for representing duration, a string code for representing
a title or, in our case, it can be the number of the objects in foreground, their shape
or their trajectories along the sequence.

A Description Scheme (DS) specifies the relationship between its components
which can be both descriptors or other description schemes. It describes multimedia
content in terms of structure and semantics. An example of a description scheme for

24

1.4. MPEG7 standard

a movie, structured in scenes and shots, including textual descriptors at the scene
level and color, motion and amplitude descriptors at the shot level.

The Description Definition Language (DDL) is a language to create new descrip-
tion schemes and descriptors. It also allows the extension and modification of new
existing description schemes, and specifies the syntax of each existing one so that
they can be instantiated correctly.

There are also some System Tools related to the synchronization, transportation
and storage of the descriptions. All these forms are the so called Normative Tools.
In fact, if these tools are implemented they have to be realized according to the
standardized specification to guarantee interoperability.

A description consists of one or more description schemes which can be fully or
partially instantiated, that means that the values may be set for all or just some of
the descriptors [10].

1.4.2 Overview of MPEG7 visual descriptors

The main objective of MPEG7 visual descriptors is to provide a standard description
of streamed or stored images to help users to access and identify images and videos.
These descriptors describe basic visual content on the basis of visual information.
For example, for videos, the content may be described by the shape of objects,
object size, color, object movements and so on. The general visual descriptors are
subdivided in four classes: color descriptors, texture descriptors, shape descriptors
and motion descriptors.

Color is the most widely used visual feature because it is robust to viewing angle,
translation and rotation of the regions of interest.

Texture refers to the visual patterns that may have property of homogeneity or
not, caused by the presence of multiple colors or intensities in the image.

The shape of visual objects provides a powerful clue for similarity matching
in retrieval algorithms; MPEG7 provides region and color descriptors suitable for a
variety of applications such as for example queries on images with written characters,
pre-segmented object contours, trademarks, etc.

All the features described above can be employed to index images or retrieve
relevant objects in video sequences. The description of motion features in video
sequences can provide even more powerful clues regarding its content. With respect
to this feature class, the dominant characteristics are provided by camera motion and
object motion descriptors. Now we are going to introduce in details shape descriptors
and motion descriptors.

25

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

Shape descriptors

To cover the important domain of shape descriptors, MPEG7 provides contour-based
shape and region-based shape tools.

The region-based SD expresses pixel distribution within a 2D object or region.
Since it is based on both boundary and internal pixels, it can describe complex
objects consisting of multiple disconnected regions as well as simple objects with
or without holes. This descriptor works by decomposing the shape into a number
of orthogonal 2D basis functions (complex-valued), defined by the Angular Radial
Transform (ART). The normalized and quantized of coefficients are used to describe
the shape.

The ART coefficients are defined by:

Fnm =
∫ 2π

0

∫ 1

0
V ∗

nm(ρ, θ)f(ρ, θ)ρ dρ dθ (1.4)

where Fnm is an ART coefficient of order n and m, f(ρ, θ) is an image function in
polar coordinates and Vnm(ρ, θ) is the ART basis function that is separable along
the angular and radial direction, that is:

Vnm(ρ, θ) = Am(θ), Rn(ρ) (1.5)

with

Am(θ) =
1
2π

exp(jmθ) (1.6)

and

Rn(ρ) =

{
1 n = 0
2 cos(πnρ) n �= 0

(1.7)

The descriptor is then defined as a set of normalized magnitudes of complex ART
coefficients.

The contour SD is based on the Curvature Scale-Space (CSS) representation of
the contour. Objects for which characteristic shape features are contained in their
contour are described efficiently by the contour SD.

The concept of CSS representation is based on an observation that when compar-
ing shapes, humans tend to decompose shape into concave and convex sections. The
CSS representation also decomposes the contour into convex and concave sections by
determining the inflection points. This is done in a multiresolution fashion, where

26

1.4. MPEG7 standard

the contour is analyzed at various scales, obtaining a smoothing process.
Extraction of the CSS representation involves calculation of the curvature of a

contour, while progressively smoothing the contour. The curvature of a contour is
defined as the derivative of the tangent angle to the contour. Let us assume that
the contour C is represented by a parametric vector equation: C(u) = [x(u), y(u)],
where x, y are the coordinates of the pixel belonging to the contour and u is a
parameter. The curvature can be calculate as:

k(u) = ẋ(u)ÿ(u) − ẍ(u)ẏ(u) (1.8)

where ẋ(u), ẍ(u) are the first- and second-order derivatives of the x with respect to
the parameter u (and similarly ẏ(u), ÿ(u)). The smoothing is performed iteratively
and after each iteration, the inflexion points are computed. The filtering process
continues until a convex contour results, that is until there are no more inflexion
points.

The contour-based approach is suitable for types of shape in characteristic fea-
tures are conveyed in the contour. Thinking for example about a fork, the region-
based approach tends to confuse it with other elongated objects that expand at one
end, for example spoons, while the contour-based can correctly describe it. On the
other end, region-based approach is used for example in case of objects with convex
shape where contours carry very littler characteristic information or in case of shapes
altered by cuts or holes.

Motion descriptors

The main aim of motion-based indexing is to capture essential motion characteristic
into concise and effective descriptors. In this paragraph we will describe in details the
four motion descriptors standardized by MPEG7: Motion Activity, Camera Motion,
Motion Trajectory and Parametric Motion.

A human watching a video or animation perceives it as a slow sequence, fast-
paced sequence, action sequence and so forth. The Motion Activity descriptor
captures this intuitive notion of intensity of action or pace of action in a video
segment. Motion Activity includes the following attributes:

• intensity of activity : this is expressed by an integer lying in the range [1-5].
A high value of intensity indicates high activity while a low value of intensity
indicates low activity;

• direction of activity : it expresses the dominant direction of the activity if any;

27

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

• spatial distribution of activity: it indicates whether the activity is spread across
many regions or restricted to one large region; it is an indication of the number
and size of active regions in a frame;

• temporal distribution of activity: it expresses the variation of activity over the
duration of the video segment or shot.

The Camera Motion descriptor supports all camera translations, rotations and
changes of focal length together with the possible combination of these. The eight
basic camera operations usually defined are panning (horizontal rotation), track-
ing (horizontal transverse movement), tilting (vertical rotation), booming (vertical
transverse movement), zooming (change of focal length), dollying (translation along
the optical axis), rolling (rotation around the optical axis) and finally absence of
operation (fixed camera). The core of the description includes timing information
(that is start time and duration), the camera motion type and the amount of motion.

The Motion Trajectory describes the displacement of object in time, an ob-
ject being defined as any spatiotemporal region whose trajectory is relevant in the
context in which it is used. The trajectory model is a first- or second-order piecewise
approximation of the spatial positions of the representative point along time, for
each spatial dimension:

• first-order approximation:

x(t) = xi + vi(t − ti) with vi =
xi+1 − xi

ti+1 − ti
(1.9)

• second-order approximation:

x(t) = xi+vi(t−ti)+
1
2
ai(t−ti)2 with vi =

xi+1 − xi

ti+1 − ti
− 1

2
ai(ti+1−ti) (1.10)

and similarly for the other dimensions y and z. With such a model, vi and ai do
correspond to the object’s speed and acceleration respectively, considered constant
on [ti, ti+1], xi and xi+1 are the positions at times ti and ti+1.

On the basis of this model, the core of the description is a set of key points
representing the successive spatiotemporal positions of the described object.

The Parametric Motion descriptor represents the motion and/or deformation
of a region or image by following classical parametric motion models:

28

1.5. Conclusions

• translational (2 parameters):

vx(x, y) = a1

vy(x, y) = a2

• rotation/scaling (4 parameters):

vx(x, y) = a1 + a3x + a4y

vy(x, y) = a2 − a4x + a3y

• affine (6 parameters):

vx(x, y) = a1 + a3x + a4y

vy(x, y) = a2 + a5x + a6y

• perspective (8 parameters):

vx(x, y) = (a1 + a3x + a4y)/(1 + a7x + a8y)

vy(x, y) = (a2 + a5x + a6y)/(1 + a7x + a8y)

• quadratic (12 parameters):

vx(x, y) = a1 + a3x + a4y + a7xy + a9x
2 + a10y

2

vy(x, y) = a2 + a5x + a6y + a8xy + a11x
2 + a12y

2

where vx(x, y), and vy(x, y) represent the x and y displacement components of the
pixel at coordinates (x, y).

The core of this description specifies which motion model is used among the
ones listed above, the time interval on which it is used, the information about the
coordinate system and finally the value of each parameter ai.

1.5 Conclusions

In conclusion, in this chapter we have introduced the MPEG family and in partic-
ularly, MPEG2, MPEG4 and MPEG7. We have presented the MPEG2 standard
and discussed its characteristics since, from MPEG2 stream, “rough” data for our

29

CHAPTER 1. AN OVERVIEW OF THE MPEG STANDARD FAMILY

object-extraction method will be extracted and for this reason it is important to
understand the nature of this data.

Then we have presented MPEG4 and in particularly the object-based coding
techniques proposed. These object-oriented coding concepts have stimulated the
development of new methods to extract objects and segment video sequences.

Finally, as the context of this work is an object-based indexing of compressed
streams, we have introduce MPEG7 standard which standardizes among other things
a way to describe the objects in video sequences.

As a result of these standardizations, in the last decade, different methods have
been proposed to efficiently separate a video sequence into independent objects; some
of this techniques will be presented and discussed in the next chapter.

30

Chapter 2

Object-based segmentation and

indexing of video streams

2.1 Introduction

The problem of objet extraction from video streams is essential both for coding and
indexing purposes. The recent MPEG4 (see 1.3) and MPEG7 (see 1.4) standards
propose a new approach to compress and describe multimedia data. In the case of
MPEG4 the approach taken for coding the video sequences may rely on the content-
based visual representation of the scenes. In this kind of approach, the concept
of object may be essential. The MPEG7 standard is also facing the same kind of
challenge, in fact indexing and retrieval requires to structure the data in terms of
objects, regions and associated semantics. For this reason, different approaches are
present in the literature to efficiently extract objects for MPEG4 coding or MPEG7
description.

However, extracting objects from digital video is still a challenging task among
the video processing community. There is still no single and reliable technique for
video object detection.

In this chapter different approaches to the problem will be presented, starting
from traditional techniques of image segmentation, until the most recent techniques
including those attempt to achieve the result in real time.

31

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

2.2 Intraframe and motion segmentation

Approaches to video object segmentation we can find in literature can be broadly
classified as:

• intraframe segmentation;

• motion-based segmentation.

In the first family of approaches each frame of the video sequence is segmented
independently into regions of homogeneous intensity or texture using traditional im-
age segmentation techniques such as [11] [12] [13] and [14]. In [15], for example, a 2D
k-means clustering is used using color information, and then appropriate luminance
values are associated to these clusters using the k-means algorithm. In [16] artificial
neural networks are used to merge homogeneous regions based on the information
provided by luminance, chrominance differences, region proximity and size. These
methods subdivide the image into homogeneous regions, but they can not detect
objects since objects are often composed by different regions of different colors. For
example they can detect a car as an object since it is often made of a single region
with a uniform color, but they cannot detect a man as a single object since usually it
is a composition of differently colored regions (head, trousers and shirt for example).

These methods, in general, suffer from oversegmentation and segmentation using
intensity only or texture still remains a problem. Moreover intraframe segmentation
alone cannot provide certain types of some information about the same object along
the sequence such as for example its trajectory or size and shape change.

Another family of approaches is the motion segmentation one: it is based on
the hypothesis that a moving object can be very well characterized by its motion
consistency over time. In this case a dense motion field is used for segmentation
and the pixels with homogeneous motion field are grouped together (see for example
[17], [18], [19], [20] and [21]). In [17] an affine-clustering-based algorithm is pre-
sented; in [18], instead of using optical flow, a method to estimate motion models
and their layer supports is proposed. In [22] another motion segmentation algorithm
is proposed: the image is partitioned into rectangular regions and affine motion pa-
rameters are computed for each region; these motion parameters are then clustered
to form homogeneous regions with similar motion parameters. In [21] an algorithm
to track an object based on the multi-resolution estimation of an affine model from
the motion model of the motion field inside the object is proposed.

32

2.2. Intraframe and motion segmentation

The drawbacks of all these methods lies in estimating a reliable dense motion
vector which is computationally very demanding and difficult to estimate; more-
over they concentrate on detecting moving objects and cannot track objects with
intermittent motion (e.g people that walk and then stop and then start walking
again). Furthermore, due to the accuracy limitation of motion estimation, motion
segmentation may not provide precise object boundaries.

Remaining in the motion segmentation field, deformable models have been stud-
ied to track non-rigid objects. Active contours (snakes) [23] are one of the basic
energy-minimizing elastic contour models. As this method can handle only slow mo-
tion and is sensitive to textured image regions, many improvements ([24] and [25])
have been developed.

One significant defeat of motion-based object extraction methods comes out of
inherent defeats of estimated optical flow (motion field). As it is shown in [26], the
problem of motion estimation is ill-posed. Indeed motion estimation is based on
the hypothesis of intensity conservation. It means that the intensity of a pixel is
constant along its trajectory in time, if there is no noise or changing in lightening.

Mathematically, this hypothesis can be expressed as follows: let us denote I(x, y, t)
a spatio-temporal image function and �d(x, y) = (dx, dy)T the displacement vector of
a pixel (x, y); let us denote DFD(x, y, t+dt) the Displaced Frame Difference defined
as:

DFD(x, y, t + dt) = I(x + dx, y + dy, t + dt) − I(x, y, t) (2.1)

The hypothesis of intensity conservation is then expressed as:

DFD(x, y, t + dt) = 0 (2.2)

Let us now consider the development of I(x+dx, y +dy, t+dt) in a Taylor series
around the point (x, y, t) up to first order. Then if we suppose the linearity of image
gradients ∂I

∂x , ∂I
∂y , ∂I

∂t , we have:

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt (2.3)

From 2.1 and 2.2 it follows:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
= −∂I

∂t
(2.4)

or

33

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Ixu + Iyv = −It (2.5)

where u and v are the components of velocity vector of pixel (x, y). This equation
is called OFE (Optical Flow Equation); it links velocity field or optical flow with
gradient of intensity. Let us now consider this equation in vector form:

∇�I · �w = −It (2.6)

with �w = (u, v)T . Let us now present �w as �w = �w‖ + �w⊥. Here we denote �w⊥
the component orthogonal to the local image contour, that is parallel to the image
gradient ∇�I; �w‖, on the contrary, is the component parallel to the local contour and
thus orthogonal to the gradient, that is �w‖ · �w⊥ = 0. The 2.6 becomes:

∇�I · (�w‖ + �w⊥) = −It (2.7)

From the distributive property it can be deduced that:

∇�I · �w‖ + ∇�I · �w⊥ = −It (2.8)

The first term in the left-side sum is always 0. This means that only the com-
ponent �w⊥ of vector �w can be estimated. This is the reason why motion vectors on
the border of many objects estimated by pixel-wise methods are very noisy.

Let us consider estimators based on the criteria derived from (2.1) minimizing the
DFD or DFD-based quality measures. Such are the block-based motion estimators
used for standards MPEG which we will consider in the following chapters. They
proceed by matching blocks of the current frame I(x, y, t) with reference frames as
it is illustrated in Figure 2.1 minimizing criterion C(DFD) defined on a block.

Then, the ill-poseness of motion estimation is expressed by the so-called “aper-
ture” problem. The corresponding position is searched inside a window. The window
is limited, then the risk is as well the estimation of a wrong displacement vector:
only �w⊥ can be estimated as it is illustrated in Figure 2.2.

Finally, the estimation is disturbed by noise and texture present in real video
sequences. All these factors make the estimation of optical flow on the borders of
objects very noisy, thus motion-based segmentation techniques often lead to very
noisy object borders. This is why combined techniques based both on motion esti-
mation and intra-frame colour/intensity based frame segmentation became popular.

34

2.3. Combined approaches to object segmentation

Figure 2.1: Block-matching motion estimation.

Figure 2.2: Illustration of “aperture” problem.

2.3 Combined approaches to object segmentation

Since both approaches have their own drawbacks, most of the video object segmen-
tation tools integrate both spatial and motion segmentation techniques ([27], [28],
[29], [30], [31], [32], [33], [34] and [35]). In fact it can be difficult to group pixels into
objects based on similarity of their optical flow vectors, so it seems to be inevitable
that additional information such as color or texture must be included to accurately
detect boundaries of moving objects.

[30] presents an algorithm based on two different parts: a temporal segmentation
to localize moving parts of objects in the image and a spatial segmentation to divide

35

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Figure 2.3: in a) the scheme of the algorithm presented in [30] and in b) the spatial
segmentation scheme.

the image into semantic regions with precise object boundaries. The combination of
the two results produces an accurate segmentation of the moving objects. In Figure
2.3a) is presented the scheme of the algorithm.

First step is global motion estimation and compensation. For the global motion
estimation, an affine motion model is adopted, thus the elementary displacement
vector can be modelled as:

�d(x, y) =

(
dx(x, y)
dy(x, y)

)
=

a1 + a2x + a3y

a4 + a5x + a6y
(2.9)

First, local motion vectors are calculated with a block-matching algorithm, then
least square method is used to estimate the six affine model parameters. A global
motion compensation is then performed to remove the camera motion. To perform
the temporal segmentation and extract moving objects, differences of intensity val-
ues between two successive image frames are taken to find moving objects in space
through time evolution.

While temporal segmentation subdivides the images in term of motion charac-
teristics, spatial segmentation splits the entire image into homogeneous regions in
term of intensity. Here, the segmentation is implemented as in the framework of
morphological approach [12]. Segmentation process is subdivided in four parts: im-
age simplification, gradient calculation, Watershed segmentation and region merging

36

2.3. Combined approaches to object segmentation

(a) (b)

(c) (d)

Figure 2.4: Some results obtained in [30]: in a) and c) the original images and in b)
and d) the extracted objects.

(see 2.3b)). For image simplification, erosion and dilation are used to build a filter
that removes regions that are smaller than a given size but preserves the contours of
the remaining objects in the image.

Through the image simplification, the inside of each homogeneous region has
small gradient, but large gradients are induced along the region boundaries sepa-
rating different homogeneous regions in the image. So morphological gradient is
calculated to partition the image into homogeneous intensity regions. The gradient
image is used as input for the Watershed algorithm. A modified Watershed segmen-
tation is applied to obtain small regions homogeneous in terms of luminance and
color. But as Watershed segmentation often produces oversegmented results, a re-
gion merging process is further applied. This region merging step uses a graph-based
clustering: small regions are recursively merged with their neighbors on the basis
of their spatio-temporal similarity. Spatial segmentation and temporal segmenta-
tion are then merged together to discriminate foreground objects from background
regions. In Figure 2.4 some results are presented.

Different authors have proposed other combined approaches that merge the re-
sults of motion and spatial segmentation. In [36] the approach is divided in three

37

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Figure 2.5: Block diagram of the bottom-up strategy for the construction of the
hierarchy.

steps, region simplification, region-growing and motion-based region fusion. In [34]
an approach is presented to combine motion segmentation using image subtraction
with static color segmentation; in [35] an algorithm is developed to match edge de-
tection and line approximation results with motion segmentation to determine object
boundaries. In [37] a method is proposed which allows to take into account both
global camera motion and local motion homogeneity of adjacent regions in image
plane. The method proceeds by estimation of global camera motion and identifi-
cation of areas which do not follow the global model. The goal of this work is to
construct a set of representations for the same video sequence which are character-
ized by different degrees of detail. Each representation is a segmentation map of an
image plane, that is a partition of the image plane into a set of regions.

The goal of the segmentation process proposed in [37] is to construct a hierarchy
L of content representations from the very beginning of an image sequence, using
a limited number of frames. Two strategies are proposed to develop this hierarchy.
The first one is a purely bottom-up approach, which uses a local homogeneity with
regard to gray-level and motion-based criteria. The second approach uses a global
information of the scene composition, which is extracted by a dominant motion
analysis, to guide a bottom-up approach locally.

The bottom-up approach starts with the lowest level of hierarchy (i = 0) corre-
sponding to the gray-level based spatial segmentation of the second frame of moving
sequence (see Figure 2.5). The image is segmented into regions Ri

k (in this case

38

2.3. Combined approaches to object segmentation

Figure 2.6: Block diagram for the combined strategy of hierarchy construction.

i = 0 because it is the lowest level of the hierarchy) and for each region motion
parameters θi

k are calculated. An ordered discrete set of values of some parameter
s is introduced: s = {si}; 1 ≤ i ≤ n; s1 < s2 < · · · < sn; si > 0. For each value of
this parameter si, a level li in the hierarchy L is matched. Given a current level of
the hierarchy li, the next level li+1 is constructed by a successive merging of couples
of adjacent regions Ri

q, Ri
p in such a way that the variation of the quality of motion

compensation on each region in a pair is controlled by the value si+1 (see Figure
2.5).

When si+1 ≤ 1, then such a merging corresponds to a better motion compensa-
tion in a merged region. This situation is possible as the quality of motion compen-
sation on the spatially homogeneous regions can be poor. If si+1 ≥ 1, it means that
regions with similar motions are merged.

If the set of values of s is chosen properly and the moving scene contains objects
with similar motions which differ strongly from the dominant motion in the scene,
then such a strategy leads to the correct segmentation of a scene into objects and
background at the highest level of the hierarchy. But in more complex situations
are rather possible, for example a low difference in motion magnitude of objects and
background, and also, strongly different motion magnitude of objects. In these cases
the merging proposed in the bottom-up approach is not sufficient.

For this reason, a second approach based on a global analysis of motion in the

39

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

scene is proposed as well (see Figure 2.6). This analysis is done by a motion esti-
mation on the whole frame. Here a robust motion estimator with outlier rejection is
used. Such an estimator allows the extraction of a set of pixels in the frame which
do not follow a dominant motion in the scene. This set of pixels called “motion
mask” M indicates the location of objects having a different motion (motion masks
will be also analyzed in the next chapter). As the motion mask does not exactly
correspond to the outlines of objects, the goal of a further local analysis is to exactly
define objects and to construct the hierarchy inside them. The motion mask M is
superposed to the spatial segmentation map {Ri

k} at the first level of hierarchy i = 0.
At this step, spatial regions are classified into three classes. Regions which contain a
small relative number of outliers are assigned to the ‘dominant motion’ class. Those
containing a strong number of outliers are assigned to the ‘object’ class. Finally,
regions with an intermediate percentage of outliers are classified as ‘uncertain’ ones.
The result of this classification step guides further steps of the method which are
realized in a bottom-up manner.

Pixels belonging to the ‘dominant motion’ class represent a motion homogeneous
area which, in most cases, corresponds to connected components in the background
of the scene. This is why the superposed spatial regions are simply merged into
connected components of the background (see Figure 2.6). With regards to the
‘object’ class, as it can contain objects with different motions and objects with non-
homogeneous motions inside them, then the regions of this class are merged in a
bottom-up manner according to the specified quality of motion estimation inside
‘object’ areas. After that, the ‘uncertain’ class regions are assigned to their best
neighbors according to quality of motion compensation. Then using a tracking tech-
nique this representation of the content can be refined along the time.

Instead of using purely spatial homogeneous regions, the method builds a hierar-
chy of motion-based segmentation; it proceeds by progressively merging regions ac-
cording to motion-based criteria. Despite [37] does not use morphological approach,
very much satisfactory results are obtained. In fact, in the context of combined
‘spatio-temporal’ methods the requirements to spatial segmentation algorithm are
very strong. The reason of this is that it is natural to suppose that the motion
border of moving object coincides with a luminance border in image frame. Counter
examples are known in literature, but they are very much artificial for natural video.
This is why morphological methods are so popular: giving a strong oversegmenta-
tion, they eliminate the risk to bypass motion borders when color-based or grey-level
based segmenting a video frame.

40

2.3. Combined approaches to object segmentation

In [27] the assumption is that objects of interest are not homogeneous with re-
spect to low-level features such as color, intensity or optical flow and so conventional
low-level semantic concept will fail to obtain correct partitions. The problem is for-
mulated as a separation of the background from the foreground objects based on
motion information (in fact physical objects are often characterized by a coherent
motion that is different from that of the background). The main hypothesis underly-
ing this approach is the existence of a dominant global motion that can be assigned
to the background. Areas that do not follow this background motion then indicate
the presence of independently moving objects. Two different methods are used to
separate foreground objects from the background. The first approach is based on a
morphological motion filtering and it can be applied to sequences where the objects
present very slow motion (for example head-and-shoulder sequences): in this case
the first step of the algorithm is to compute a dense optical motion field and, start-
ing from it, to calculate the global motion parameters. Then a filter is applied to
obtain the independently moving components (IMC). The second approach instead
is based on change motion masks and it is more suitable for sequences where objects
move fast. The change motion masks are based on the hypothesis that the differ-
ence of grey level between two consecutive frames indicate objects that are moving
or changing their shape. So these masks are extracted by calculating the absolute
difference between two frames and filtering it to remove the noise. The drawback of
this last method is that it can be used only with static camera. The results obtained
by the two methods are then merged with the edge pixels of the object detected by
the Canny operator [38] to derive a two-dimensional binary model for the object of
interest. Once the model is initialized, it is tracked along the sequence.

From each motion model the corresponding foreground object is extracted with
a two-step method. First the closed object boundary is approximated by a filling-in
technique: it starts by assigning for each row the pixels between the first and last
model point to the object. This procedure is repeated for each column and one more
for each row. After this first step each wrong boundary is corrected separately. The
wrong boundary is removed and a gap is left in the otherwise closed contour. The
correct boundary between the two points of the gap is then determined using the
Dijkstra’s algorithm [39], assigning a weight to the different type of pixels.

This algorithm needs some inputs from humans in choosing the method to extract
the motion masks and requires hand-tuning for some critical parameters.

In Figure 2.7 some results from two head-and-shoulder sequences are presented;
in a) and c) two frames extracted from the original video sequence are shown while

41

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

(a) (b)

(c) (d)

Figure 2.7: Some results obtained from two head-and-shoulder sequences [27]; a), c)
original frames, b), d) segmentation result.

(a) (b)

(c) (d)

Figure 2.8: Some results obtained with the method of change motion masks presented
in [27].

42

2.4. Semi-automatic approaches

in b) and d) the obtained result is shown. In Figure 2.8 other results are presented;
in this last case, the objects in the sequence are characterized by higher motion and
so the method of change motion masks is used; in a) e c) the original frame and in
b) and d) the extracted objects are shown.

In [40], [41] and [42] an object segmentation method based on region-based active
contours is presented. This method gives very good result but is computationally
very expensive. For this reason in [40], to improve numerical efficiency, a multires-
olution approach is proposed; this approach is based on making the active contour
evolve first on a low resolution image. The final contour obtained for this reduced
image are used as an initial curve for the real size image.

In [29] a semantic object tracking system using mathematical morphology is
proposed. In [31] the algorithm is based on luminance information and motion
parameters: the luminance is filtered using a morphological operator as well and
then clustered using k-means algorithm; at the end regions with similar motion
are merged. In [43] spatio-temporal similarity is used as a merging criterion: spatial
similarity is obtained from the test statistic of the gradient value along the boundary
of the regions; the temporal similarity is derived from test statistic of the residual
distribution and motion parameters.

We will see in the following of this work, how a morphological segmentation is
used in our object extraction scheme.

2.4 Semi-automatic approaches

To get more reliable results, some authors propose some semi-automatic approaches
that use human help to tune some parameters or to select regions of interest. One of
the work presented above [27] may also be classified as a semi-automatic approach, in
fact human help is needed to select the correct methodology for the video sequence
to analyze.

Another semi-automatic approach is presented in [28]. Here the user identifies a
semantic object. The input is a polygon whose vertices and edges are approximatively
along the desired object boundary. User can also specify a set of parameters to start
the tracking process or stop the tracking process at any frame, modify the object
boundary that is being tracked, then restart the tracking process from the modified
frame.

The segmentation process starts with the generation of three feature maps: the
color map, obtained from the original image filtered to remove noise, the edge map,

43

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Figure 2.9: Object segmentation as described in [28].

generated by applying the Canny edge-detection algorithm [38] and the motion field
generated by a hierarchical block matching algorithm [44]. Region segmentation is
performed by a modified merge-and-split method where edge information is fused
directly in the color merging process. It is an interactive spatial-constrained method
based on color distances between adjacent regions and edge information.

First, a color-pixel labelling process is applied to the color map: one label is
assigned to a group of neighboring pixels with the same (or very similar) color. To
prevent assigning one label to two regions with the same color but separated by
edge pixels, only non-edge pixels are labelled in the process. This process generates
an initial group of regions. Then, color distances between two connected regions
are computed, and they are merged if the color distance between them is smaller
than a given threshold and if it is smaller than all the other distances between these
two regions and their neighbors. Once a new region is generated from two adjacent
regions, its mean color is computed by taking weighted average of the mean colors
of the old regions. The merging is iterated until color distances between every two
connected regions are above the color threshold.

Then the segmentation result is compared with the initial object boundaries from
the user input and regions are labelled as foreground or background regions. Last,
affine motion parameters of all regions, including both foreground and background,
are estimated by a linear regression process over the dense optical flow inside each
region.

Once the first frame has been segmented, the tracking process starts: segmented
regions from the previous frame are first projected onto the current frame using their
individual affine motion models. Even for the current frame the three feature maps
are computed. Then the projected regions are used in the segmentation process as
seeds in another color-based region growing process. Regions are then aggregated

44

2.4. Semi-automatic approaches

(a) (b) (c)

Figure 2.10: The results obtained with the semiautomatic method proposed in [28].

to compose foreground objects. Region aggregation include two inputs: the ho-
mogeneous region and the estimated object boundary. The module implements an
iterative region grouping and boundary alignment algorithm based on the estimation
object boundary as well as the edge and motion features of the region. The aggre-
gation and boundary alignment process is iterated multiple times to handle possible
motion projection errors, especially for fast motion.

In Figure 2.10 the results obtained with this method are presented. We can
notice that the objects of interest are detected very precisely, but the drawback of
this method is that human help is strongly required to manually detect the object
boundaries in the first frame of each sequence.

It is possible to find other semi-automatic algorithms in the literature: for ex-
ample in [45] and [46] a user initially has to select objects in the scene by manual
segmentation. Then the objects are tracked and updated along the sequence; in [47]
instead user interaction is necessary to directly tune some crucial parameters or to
select an area containing the objects of interest where these critical parameters can
be more easily estimated by the proposed algorithm. In [48] a segmentation ap-
proach with minimal interaction is proposed; in this algorithm to extract object to
be tracked a spatial color based segmentation of a video frame is applied. The spatial
segmentation is the result of a morphological method based on modifies watershed.
Once the frame has been segmented the regions must be semantically labelled and
tracked. But automatic motion-based labelling is possible only for simple scenes,
where a strong difference of the dynamic range and of the textural characteristic
of objects and the background is observed. In general case, instead, an object can
be partly static and thus, it cannot be distinguished from the background based on
motion difference. Therefore user interaction is required to completely extract the
object: the user creates an object masks on the first frame by encircling objects in

45

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

foreground.

The reason for interactive segmentation methods expansion in 1999-2001 can
be explained very simply. None of automate methods is able to precisely estimate
object borders with pixel accuracy. It may often result in a strong segmentation
noise. This is also one of the reasons why today MPEG4 is not popular. It is
impossible to precisely extract object for encoding without human interventions. In
coding applications (VOP coding of MPEG4), the precision on the object borders is
a must, as the boundary pixels yield the strongest motion error. On the contrary, in
indexing context (MPEG7), segmentation errors are not so crucial. This is due to
the fact that when retrieving objets by color, shape, motion criteria, some tolerance
is admissible. Obviously, the similarity measure (or distance) have to be sufficiently
robust against small segmentation errors.

Therefore, fully automatic methods can be employed for object extraction. This
allows for processing of huge video data such as regular TV programs, sports or
artistic video content.

2.5 Spatio-temporal video object segmentation

Interactive or automatic spatio-temporal segmentation has proven to give the best
results with respect to video object segmentation because it can overcome the prob-
lems of purely spatial or motion-based approaches, nevertheless maintaining their
advantages.

Nevertheless it is not possible to unambiguously define an objective function for a
semantic video object, an object can be well characterized by its motion information.

Though much work has been done in the area of motion-based video object
segmentation in the pixel domain [49] [50] [51] [52] [53] (see section 2.2 and 2.4 as
well), little work has been carried out in compressed domain. Pixel domain motion
segmentation is based on the motion information at each pixel location, obtained for
example by optical flow estimation, which is computationally very demanding. The
uncompressed pixel domain provides these algorithms with the potential to estimate
object boundaries with pixel accuracy, but also requires that the processed sequence
is fully available before segmentation can be performed. As a result, the usefulness
of such approaches is usually restricted to non real-time applications; this is due to
the high computational complexity resulting from the large number of pixels that
have to be processed. Real-time pixel domain methods [54] are usually applicable
only on head-and-shoulder sequences for video conference applications or are based

46

2.6. Spatio-temporal object segmentation in compressed domain

on the assumption that the background is uniformly colored, which is not always
valid in practice.

On the other and, in a compressed domain, the motion information available in
an MPEG stream is only one motion vector per macro-block, which is too sparse and
may not be very reliable to perform motion segmentation. So most of the compressed
domain methods have only been based on spatial information such as color or edge
information [55].

2.6 Spatio-temporal object segmentation in compressed

domain

As we stated before, the hope that indexing of multimedia content will systemat-
ically happen at the encoder and simultaneously with encoding processes has not
been realized up today. The technology of coding due to regularity of color ap-
proaches (block-based) of actual standard, made easy a batch encoding of tremen-
dous amount of video data. Therefore, the problem of indexing is just transferred to
the compressed domain. It is obvious that compressed video content can be indexed
after a full decoding has been done.

Nevertheless, since the decoding is a relatively expensive process, segmenting the
objects and extracting their features directly from the compressed domain would be
an effective way to achieve fast and efficient algorithm for searching a large database
and indexing objects. In fact it is less expensive to directly process in the compressed
domain rather than decoding the video in the spatial domain. The block structure
of the compressed domain data also drastically condenses the amount of data to be
processed.

In addition to reduced computational complexity, there are several other advan-
tages of performing the analysis in the compressed domain such as, for example, that
motion information is readily available without incurring in the cost of estimating the
motion field. But compressed domain analysis have limitations as well. The Discrete
Cosine Transform (DCT) removes the spatial correlation among the pixels within
a block, thus the precision of the segmentation degrades with the block dimension.
Moreover, since the goal of motion compensation is to provide a good prediction but
not to find a physical motion field, the motion vectors are often contaminated with
estimation errors.

Even if various segmentation approaches have been investigated, most of them
are based on examining the images in pixel domain and only few researchers have

47

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

proposed some segmentation algorithms in the compressed domain. For example, in
[56] JPEG documents are segmented into specific regions such as those containing
text using the encoding cost map (ECM) based segmentation; in [57] a fast algorithm
to automatically detect faces starting from MPEG compressed video is presented:
the method is based on skin-tone statistics, shape constraints and energy distribution
of the luminance DCT coefficients. In [58] p-adic distance is used on DCT coefficients
of colour frames. It uses both DC and AC coefficients, thus exploring local textural
components inside blocks. P-adic metric, which is a ultrametric, allows for a very
fast segmentation by clustering.

Despite compressed segmentation methods have appeared since late 90’s, the
methods cannot be considered as a simple transposition of previous spatio-temporal
segmentation methods onto compressed domain. The most recent compressed-domain
methods for objet extraction use both color and motion information and propose so-
lution to overcome noisiness of this information in a compressed stream.

One of the first methods that perform object segmentation starting directly from
MPEG2 flow is the one proposed in [59]; in this case a system is proposed to in-
corporate the motion information corresponding to few frames on either sides of the
current frame to enrich motion information, which would otherwise be too sparse in
compressed domain to correctly detect objects with proper motion. The first step
is a motion accumulation step which takes the compressed video sequence as input
and decode the motion vectors from the intercoded (P and B) frames of an MPEG
stream. In the process of accumulating motion vectors, the motion vector obtained
from the current macro-block of the current frame n is assigned to the center pixel
(k, l) of that macro-block. Let mkl

x (n−c) and mkl
y (n−c) represent the motion vectors

along the horizontal and vertical directions for the macro-block centered at (k, l) in
the frame (n− c). Then, the new position for this macro-block in the current frame
can be estimated as:

(k̂, l̂) = (k, l) +
n−c∑

f=n−1

(mkl
x (f),mkl

y (f)) (2.10)

The motion vector (mkl
x (n − c),mkl

y (n − c)) in the (n − c)th frame is assigned to
the new position (k̂, l̂) with respect to the current frame. Motion accumulation is
also done by tracking frames in the forward direction from the current frame. In
the forward tracking, the motion vectors are accumulated according to the following
equation:

48

2.6. Spatio-temporal object segmentation in compressed domain

(k̂, l̂) = (k, l) −
n+c∑

f=n+1

(mkl
x (f),mkl

y (f)) (2.11)

where the motion vector (mkl
x (n+ c), mkl

y (n+ c)) in the (n+ c)th frame is assigned to
the new position (k̂, l̂) with respect to the current frame. This motion accumulation
is performed over few frames on either side of the current frame. The accumulated
data is further processed to remove the noisy motion information. A two-dimensional
median filter is used to remove the noise from the accumulated sparse motion vec-
tors. This filter operates individually on nonzero elements of horizontal and vertical
motion data. The set of motion vectors obtained by the above process is sparse
and nonuniformly spaced. Thus a Delaunay triangle-based surface interpolation [60]
scheme is used to get the dense motion field for the current frame. This interpolation
technique fits the surface that passes through the given data points. The dense mo-
tion field obtained is further processed by a Gaussian filter to get a smoother dense
motion field. At the end of these steps, a motion vector for each pixel is obtained.

The dense motion vectors and the number of motion models are given as input to
the segmentation module. Since each video object can be characterized by the motion
information, an affine parametric motion model is used to describe the corresponding
object region. First, the static object (usually the background) is segmented by
assigning the pixels with zero motion to a single layer. The remaining pixels with
motion are segmented into different layers by applying the EM algorithm, which is an
iterative technique that alternatively estimates and refines the segmentation. Given
the number of motion models N0, extracted from each nonoverlapping square region
of the dense motion field whose variance is less then a predefined threshold, and
the corresponding initial motion hypothesis expressed in terms of affine parameters
vectors {a1, a2, . . . aN0} (each ai is a six-dimensional vector), the EM algorithm
alternates between the E-step and M-step until convergence. The E-step computes
the probabilities associated with the classification of each pixel p as belonging to the
kth class with motion parameters ak. Let

R2
k(p) = (uk(p, a) − v(p))2 (2.12)

be the square residual between the predicted motion uk(p, a) and the interpolated
motion v(p) at pixel location p, then the likelihood of p belonging to kth class is
given by:

49

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Lk(p) =
e−

R2
k(p)

2σ2

∑N0
j=1 e−

R2
j
(p)

2σ2

(2.13)

where σ2 controls the fidelity of the affine model fit to the dense motion vectors.
Then the M-step refines the motion model estimates given the new classification
arrived at E-step. The motion model parameters are refined by minimizing an error
function using a weighted least-square estimation. The function to be minimized is:

J(ak) =
∑
p∈R

Lk(p)R2
k(p) (2.14)

where p represents the position of the pixel within the square region R with respect
to a common origin. After few iterations between E-step and M-step (typically four
to six), the final video object plane is obtained.

Once the initial segmentation of the objects is obtained, the following frames
are further tracked temporally to generate a sequence of video objects. The same
motion parameters obtained after the segmentation of the initial frame are used for
tracking in the future frames. However, this tracking technique holds good only
when no objects enter or leave the frame; in such a case the number of object has
to be determined again, prior to segmentation. After the segmentation step, the
obtained video objects are further processed to perform an edge refinement phase,
where the pixels belonging to edge regions can be assigned to correct objects. In fact
the results obtained from the EM algorithm suffer from poor edge localization, and
whereas for MPEG4 video objects it is essential to get good edge localization. So
the blocks belonging to the edges and their eight connected neighbors are completely
decoded and each pixel is assigned to one object or to the other on the basis the
motion direction.

Even if this method [59] starts working with motion vectors extracted from an
MPEG2 stream, for the segmentation step it works with dense motion vectors and
in the pixel domain; moreover partial decoding of the stream video is also needed
to perform the edge refinement phase; so, even if it is faster and more efficient than
pixel domain methods it cannot be implemented in real-time.

With this example we have seen that, if the “standard” goal, such as a precise
segmentation of object from compressed stream is searched for, then an efficient use
of motion and color information from compressed stream is not so advantageous as it
could be expected. The segmentation method requires local decoding, heavy filtering

50

2.7. Real-time segmentation of video object

and tricky combination of compressed and pixel domain video processing. Hence,
the real-time for such methods is still impossible. Nevertheless, the need to process a
huge amount of video data, specifically on the decoder and with low power hardware
(such as home multimedia devices or mobile devices) requires real-time methods.

2.7 Real-time segmentation of video object

Using of already available motion information from compressed stream allows for
reduce computational cost for the most heavy operations such as motion estimation.
Therefore, real-time methods can be implemented.

A real-time algorithm to track moving object using macro-block motion vectors
is presented in [61], but this is a semi-automatic algorithm because the region to be
tracked has to be manually identified from the user.

In [55] a fast algorithm to detect and segment objects in MPEG compressed do-
main is proposed. The algorithm is organized in two distinct parts: the first part
proposes a method to approximately extract the objects directly from compressed
domain, while the second part extracts object details to better define object bound-
ary. The main advantage of this algorithm is that for a fast low-level indexing only
the first part can be used, obtaining thus some first results in real-time. If a pre-
cise detection of boundaries is needed, then second part of the algorithm can be
performed; in this case small portions of the video frame are decoded.

The first step in this algorithm is an initial segmentation generated from 3D
spatial information based on the DC image and AC energy information. Color and
energy information is used to cluster the image using sequential leader clustering
to form homogeneous regions without knowing the number of clusters in advance.
The sequential leader clustering uses a threshold to decide whether the input data
should be in the existing cluster or a new cluster should be created. After having
obtained a number of clusters, adaptive k-means clustering is applied iteratively to
the image until no more changes occur in each cluster. The clustered regions with
areas less than a threshold are then merged into their neighbors using luminance
and ac energy distance. The result of this process is the set of initial regions to be
used in spatio-temporal segmentation.

Both spatial and temporal information are used as criteria of the region-merging
algorithm and when two adjacent regions are combined into a single value, both
spatial and temporal similarities are measured; in fact spatial information ensures the
boundary of the objects, while temporal information provides the temporal change

51

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

(a) (b) (c)

(d) (e) (f)

Figure 2.11: The results of the method proposed in [55].

characteristics.

For spatial similarity, the entropy of the ac energy from the luminance informa-
tion is calculated. For temporal similarity instead, a 3D Sobel filter is applied along
the (x,y,t)-axes. The spatio-temporal similarities are calculated and used to create a
similarity graph between regions. Then an iterative clustering process is performed
until the minimum number of regions is reached. The result of spatio-temporal
segmentation is then applied for foreground-background classification in order to
separate the objects from the background. The classification decision is based on
the average temporal changes of regions. Even though these features extracted in
compressed domain are coarse, they can be useful for fast video indexing. If detailed
features, such as contours, are required, it is possible to decode DCT coefficients
around the boundary of objects and obtain the detailed edges in the pixel-domain
using Canny edge detection [38] algorithm only in the neighborhood at the object
borders.

In Figure 2.11 some results are presented. In figures 2.11 a) and d) two of the
analyzed frames are presented; in b) and e) it is possible to see the extracted objects.
We can notice that object borders are not well defined; in fact these first results have
been obtained using DC coefficients without decoding the MPEG sequence, so the
results are obtained at the DC resolution. Working with low spatial resolution allows

52

2.7. Real-time segmentation of video object

to obtain these results in real-time. In case more precise contours are needed, as in
the case of VOP extraction for MPEG4 coding, it is possible to further decode the
sequence and segment object boundaries with pixel accuracy. The results of this last
process are shown in figures 2.11 c) and f).

This method [55] is very important because it introduces a new concept: a coarse
result obtained in real-time, for a certain type of application can be more important
than a detailed result obtained off-line. The real-time result is obtained thanks to
the use of Sobel filtering applied in time to estimate similarity instead of a com-
plex motion model calculation as precedent works. The use of this filter is less
computationally intensive than a motion estimation algorithm, but it is also less
reliable. However the proposed method have some limitations: it requires several
preset thresholds and the value of the sequential clustering threshold is crucial to
determine the number of objects. Besides, k-means clustering needs appropriate
weights for the block coordinates, DCT coefficients and motion information.

The main drawback of the method is an inefficient use of motion information.
Indeed, if the motion of object in video is strong, then the 3D (x,y,t) approach could
not be efficient as object masks will be disconnected along t axis.

To address the shortcoming of the above approaches, [62] proposes a different real-
time algorithm that blends motion and frequency information (in Figure 2.12 the
flow diagram of the algorithm is presented). After parsing the MPEG flow into DCT
coefficients and motion vectors, a frequency-temporal data structure is constructed
for multiple GOPs between two scene-cuts. The DCT coefficients and motion vectors
of the GOPs are assembled into a 3D data where each element corresponds to the
attributes of an 8 × 8 block. The components of the feature vector include some
DCT coefficients (dc coefficients of the Y,U and V channels, selected ac components
of the Y channel), an energy term E and the forward-predicted motion vector.

Starting from this frequency-temporal feature representation, a volumetric region-
growing algorithm is performed. In order to choose the seeds to start the growing
process the gradient volume for the Y channel is calculated. Starting from the seed
with minimum gradient value, the volume grows including all neighbor vectors that
full within a certain distance from the seed. As these vectors contain different terms
the following distance metric is used:

δ(f i, f) = ωdcδdc(f i, f) + ωacδac(f i, f) + ωmvδmv(f i, f) (2.15)

where

53

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Figure 2.12: Flow diagram of the segmentation algorithm presented in [62].

δdc(f i, f) = |f i(dcy) − f(dcy)| + |f i(dcu) − f(dcu)| + |f i(dcv) − f(dcv)| (2.16)

δac(f i, f) =
3∑

k=1

|f i(ac, k) − f(ac, k)| (2.17)

δmv(f i, f) =
√

(f i(mvx) − f(mvy))2 + (f i(mvx) − f(mvy))2 (2.18)

where ωdc, ωac, ωmv are the weights of the corresponding distances. These weights
determine how much each attribute contributes to the distance metric. If the color
distance is less than a predefined threshold the vector f is included in the volume.

Once a volumetric region stops to grow, another seed is chosen to determine
the growth of another region. After volume growing, the obtained parts of the
video are consistent in terms of their DCT coefficients and translational motion
distribution. The next step is to fit a motion model to each volume. This is obtained
by first estimating the affine motion parameters of the regions of a volume in the
corresponding layers, then averaging the set of individual parameters over all the
layers. The last step is to cluster the segmented volumes into objects using their

54

2.7. Real-time segmentation of video object

(a) (b) (c)

(d) (e) (f)

Figure 2.13: Some results of the real-time algorithm proposed in [62].

motion parameters; this is accomplished by merging the regions with the most similar
parameters and then updating the motion parameters.

In Figure 2.13 some of the results of the method proposed in [62] and discussed
above are shown. In figures 2.13 a), b) and c) three frames extracted from different
sequences are presented. In figures 2.13 d), e) and f) the images are presented sub-
divided into homogeneous regions both in terms of color and motion characteristics.

We have to notice that the results are given on test sequences with very slow
object motion on a static background. The paper rises an interesting problem of how
to merge both spatial and motion information in a unique feature space in which
classical segmentation approaches can be performed. This question still remains
open, as the results presented analyze video scenes with limited typology.

To allow efficient indexing of large video databases, another algorithm for real-
time, unsupervised spatio-temporal segmentation of video sequences in the com-
pressed domain is proposed in [63]. In this method, only I and P frames are exam-
ined, since they contain all the information that is necessary for the algorithm; this
is also the case for most other compressed-domain algorithm [62].

The first step of the algorithm proposed in [63] consists in information extraction
from the compressed domain. Motion vectors are extracted from the P-frames and
are used for foreground/background segmentation and for the subsequent identifi-

55

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

Figure 2.14: The segmentation algorithm presented in [63].

cation of different foreground objects. In order to derive motion information for I
frames, averaging of the motion vectors of the P frames that are temporally adjacent
to the I frame is performed. Then, in order to segment the background into its
constituent objects the use of color information is essential. For this purpose, DC
coefficients of the macro-block, corresponding to the Y, Cb, Cr components of the
MPEG color space, are extracted.

The proposed algorithm for moving object extraction is based on exploiting the
motion information of the macro-blocks. An iterative macro-block rejection is per-
formed in a frame-wise basis to detect macro-blocks with motion vectors deviating
from the single rigid plane assumption that are supposed to be part of a foreground
object. Then the temporal consistency of the foreground object macro-blocks is ex-
amined by temporal tracking of foreground macro-blocks using their motion vectors.
Foreground macro-blocks are later clustered to form connected regions and a filter
is applied to detect and remove single-macro-block objects. The method exposed in
[63] is based on iteratively estimating the global motion model and rejecting those
blocks whose motion vectors result larger than average estimation errors. But in this
case the underlying assumption is that the background is significantly larger than
the area covered by the moving objects, and this can not always be true.

The iterative method to detect foreground macro-blocks is fast and simple, but
it is not very reliable. In fact there may be inaccurate estimation of motion vectors
from the compressed stream or inability of the motion model to accurately capture
the undergoing global motion.

56

2.7. Real-time segmentation of video object

(a) (b) (c)

(d) (e) (f)

Figure 2.15: The results of the method proposed in [63]: in the first row, the original
frames; in the second row, the result obtained at DC resolution, and in the third row
the results presented after boundary refinement at pixel resolution.

Thus foreground objects at macro-block resolution are obtained. For certain
applications this level of resolution may not be sufficient. In this case, pixel-domain
processing of a partially decompressed sequence may be required to extract object
mask with pixel accuracy. This can be achieved using the color features of pixels
in the area of each moving object and a classifier for two-class separation (moving
object/background) to reclassify all pixels in that area or a portion of them.

Background segmentation is also performed based on classifying the remaining
macro-blocks (assigned to the background) to one of a number of background objects.
The background segmentation starts from the first I frame applying the Euclidean
distance to the DC color coefficients in the YCbCr color space to identify radically
different colors; these indicate the presence of different background spatio-temporal
objects. The number of estimated objects obtained and their corresponding colors
are used to start the clustering process. The background segmentation is obtained
thanks to the k-means algorithm, where k is set to the number of objects calculated
in the previous step. In the case of P frames, since color components are not available
temporal tracking is performed.

In Figure 2.15 some results are presented; in a) and d) the original frames are

57

CHAPTER 2. OBJECT-BASED SEGMENTATION AND INDEXING OF VIDEO
STREAMS

shown and in b) and e) we can see the extracted objects at DC spatial resolution. In
this case object boundaries are not clear and precise, but they can again be refined
with a pixel domain process (see Figure 2.15 c) and f)).

2.8 Conclusions

In conclusion to this chapter we have presented different approaches to the problem
of object extraction from a video sequence; we have started from first approaches to
video segmentation, performed frame by frame (intraframe segmentation) to more
complex algorithms which require to carry out spatial segmentation and optical flow
estimation. Afterwards these algorithms, because of their computational complex-
ity, were substituted with faster, but less precise, methods able to directly extract
from compressed stream all color and motion information to perform object seg-
mentation. In the last years, the obtained algorithms constitute a good compromise
between computational complexity and quality of the results, reading to reliable ob-
ject segmentation in real-time with a good level of accuracy. We also have seen that
despite the opportunity to use motion and low resolution information from com-
pressed stream, a precise object segmentation requires decoding of video frames to
fulfill pixel-wise analysis. In this case, the complexity of methods grows very quickly
and a real-time object segmentation is not possible. We also stated that several au-
thors propose a coarse object segmentation, which to our mind is a promising issue
for video indexing.

Thus, remaining in the indexing context, we will introduce in the next chapter our
object extraction method and a new associated paradigm we call “Rough indexing”.

58

Chapter 3

Object-based segmentation of

video streams for ‘Rough

Indexing’

3.1 Introduction

As we have seen in the previous chapter, the state of the art research in object-based
analysis of video content is very rich, starting from very fine pixel-wise methods up
to analysis at a coarse resolution in a real-time context. Our work is indeed devoted
to the development of latter methods. Here we make an attempt non only to develop
‘yet another method’, but to introduce a new concept in a general video indexing
domain. We call it ‘rough indexing’. This chapter is organized as follows: in section
3.2 we will introduce this paradigm and in the next sections we will describe an
object extraction method developed in the context of this paradigm operating on
MPEG-compressed video streams.

Thus in section 3.3 the basic philosophy of the work is proposed. The first step
is to extract from P frames, by using a robust camera motion estimation algorithm
(section 3.4), the regions that present a motion model that does not follow the camera
motion. In sections 3.5 and 3.6 the way to extract this motion information and build
the object masks is presented. Then a morphological color segmentation algorithm
is performed on I frames to refine the result of the mask segmentation (section 3.7).
Finally in section 3.8 we will explain how the results of motion segmentation are
combined with rough low-resolution color segmentation of I frames to refine object
shape and capture meaningful objects at I frame temporal resolution.

59

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

3.2 Rough indexing paradigm

Recently, as also presented in chapter 2, a new trend in analysis methods for in-
dexing multimedia content has appeared which can be qualified as ‘rough indexing’
paradigm. Many authors [64] [62] [63] (see also section 2.7) are interested in fast
and approximate analysis of multimedia content at poor (or intentionally degraded)
[64] resolution. Coded multimedia streams give a rich background for development
of these methods, as low resolution data can be easily extracted from MPEG com-
pressed streams without complete decoding. Thus many authors dealt with ex-
traction of moving foreground objects from MPEG2 compressed video with still
background [65], while numerous works [66] have been devoted to the estimation of
global camera model from compressed video. Thus the ‘rough data’ - that is noisy
motion vectors and DC images - have been used for fine indexing. Our ‘rough in-
dexing’ paradigm can be expressed as ‘the most complete model’ on rough data and
at rough resolution (both spatial and temporal).

Due to noisiness of input data and missing information, ‘rough indexing’ does not
aim at a full recovering of objects in video. The idea here is to extract them at most
salient time moments, that is when object differs very much from the background
scene. The detection results will be used to build a rough spatio-temporal model
of objects. This model will capture the most salient features of the object: its
trajectory, its surface with regards to the frame surface, its dominant color. The
lack of detection can be compensated by the model, which will help to interpolate
object location along the time.

In some sense, ‘rough indexing’ is the concept adopted to a fast browsing of the
video content, when the attention is focused only on the most salient features of
video scenes.

In this paradigm we follow a spatio-temporal approach combining both motion
information - the complete first order camera motion descriptor of MPEG7 standard
- and region-based color segmentation to extract meaningful objects from compressed
video with arbitrary camera and object motion.

3.3 Methodology for foreground object extraction

Figure 3.1 displays the global scheme of our approach. Our method is composed
by a motion analysis of the sequence and color segmentation of the I frames. With
respect to the motion analysis, the first step is camera motion estimation of P frames

60

3.3. Methodology for foreground object extraction

Figure 3.1: Global scheme of the proposed system.

using a robust estimator. In this first step we can separate all the ‘outlier blocks’
that is all the macro-blocks which do not follow the estimated camera motion. These
blocks are not only part of the foreground objects but they are also due to noise,
camera motion and ‘flat zones’, that is zones with very low gradient; so a filtering is
necessary to separate the macro-blocks part of the the foreground objects from the
others. So second step of our motion analysis consists in filtering of outliers. Then,
the third step consists in the extraction, in correspondence of I frames, of the so
called ‘object masks’ where we suppose that foreground objects can be located with
high probability.

As the result of motion analysis can be quite approximative a color segmentation
process is necessary to refine the motion results. So, from the I frame, we extract
color information, applying a color segmentation algorithm to the DCT coefficients
of the I frame to subdivide the image into homogeneous color regions. As we work
with reduced spatial resolution, a preprocessing step is necessary to make the DC
images more homogeneous. After that we can compute the gradient and apply a
modified Watershed segmentation.

Once obtained, color and motion information are merged together in correspon-
dence to I frames to extract the foreground objects.

61

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

3.4 Motion mask extraction

The idea here is to extract foreground blocks which do not follow global camera
motion in each P frame and then to apply a 3D segmentation on a whole GOP in
order to extract a 3D ‘motion shape’. So, first of all, the camera motion is extracted
and, using this information, foreground blocks are separated from background blocks
which usually follows the camera motion, then 3D segmentation is performed and
from the cross-section of this 3D motion shape the object masks related to each P
frame are extracted. Starting from the obtained masks, foreground moving regions
can be extracted for I frames for which we have no motion information in the MPEG2
flow. In the following sections all these steps are going to be described in detail.

3.4.1 Camera motion estimation

In order to detect ‘foreground blocks’ which do not follow the global camera motion,
we have to estimate this motion first. Here we consider a parametric affine motion
model with six parameters as admissible in MPEG7 ‘parametric motion’ descriptor.
It is defined as follows:

{
dxi = a1 + a2xi + a3yi

dyi = a4 + a5xi + a6yi

(3.1)

where (xi, yi) is the position of the ith macro-block center in the current image and
(dxi, dyi)T is the motion vector pointing from the current position to correspond-
ing macro-block in the previous image, as here only P frames are used for motion
estimation. The obtained estimation vector is θ = (a1, a2, a3, a4, a5, a6)T where ai

parameters allow to model different camera movements (pan, tilt, zoom, rotation).
If the camera is static, all the parameters are supposed to be zero, but in reality,
due to noise, they are not strictly equal to zero. To estimate the camera motion pa-
rameters from an MPEG2 macro-block resolution optical flow we have used a robust
weighted least-square estimator [67], taking the MPEG2 macro-block motion vec-
tors as measures. The robustness of the method is based on a good outlier rejection
scheme.

The outlier rejection scheme we implement follows the approach proposed in [67].
First of all we explicitly use the architecture of MPEG2 standard and the par-

ticularities of block-based motion estimation block of the encoder. As we stated in
chapter 1, in P frames two ways of encoding macro-block are used. For macro-blocks,

62

3.4. Motion mask extraction

for which the quality Q of motion compensation is considered acceptable, a motion
vector is encoded. In block-based estimators, MAD is one of the employed criteria,
that is:

MAD(BT) =
∑

(x,y)∈BT

|I(x, y, t) − I(x + dx, y + dy, t − dt)| (3.2)

Here BT denotes a block in video P frame at current moment of time t and t−dt is a
reference moment of time. The mean square error (MSE) is also very much popular:

MSE(BT) =
1

N × M

∑
(x,y)∈BT

(I(x, y, t) − I(x + dx, y + dy, t − dt))T (3.3)

where N ×M stands for the block size. Finally the PSNR criterion can also be met:

PSNR(BT) = 10 log10

MAX2

MSE
(3.4)

where MAX is the maximum pixel range value. Mathematically in block-based
motion estimations the acceptability of motion compensation quality is expressed by
the inequality:

Q(BT) < Th. (3.5)

Here Th. is a threshold for the chosen criterion.
In case the condition 3.5 does not hold, the encoder selects intracode for macro-

block encoding. In this case the original luminance and color signal is intra-frame
encoded by blocks of 8 × 8 pixels. A specific flag is then set in the coded stream.
Thus the intracoded macro-blocks have to be rejected as their motion is surely ill-
estimated.

The macro-blocks situated on the borders of video frames represent the second
source of outliers. Indeed, if there is a weak camera motion such as zoom-out or pan
or tilt, then the blocks on the frame borders do not have matching areas in reference
frame. In this case estimated motion vectors are erroneous.

Another source of outliers in video frames are moving objects animated with
proper motion. These outliers represent a source of information for object extraction
and thus should be properly labelled. Such a labelling of outliers is an inherent part
of so-called robust motion estimators. These estimators, built with robust statistical
methods were in the focus of recent research in motion estimation. Their principle

63

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

is based on limited influence functions, which are derivatives of a cost function to be
minimized.

The general principle of this estimators consists in the following. Given a set
of measures D = d(x, y) and the model θ = (θ1, . . . , θn) the problem consists in
estimating the model parameters θ̂ such that the function ρ(r) of residuals

r = d(x, y) − dθ̂(x, y) (3.6)

is minimal. Here dθ̂(x, y) demotes a measure conform to a model. If we take a
usual least-square estimator ρ(r) = r2, then random distribution of r will make
the estimator instable. The stability, or influence of errors, is characterized by the
derivative of the estimator ρ′(r). In the case of least square estimator:

ρ′(r) = r (3.7)

It is therefore unlimited. Thus the family of robust estimators with limited deriva-
tives has been proposed. In [68] and [69] various estimation methods are presenting
starting from simple ones to more complex criteria. In the context of motion esti-
mation with OFE, Bouthemy and Odobez [70] proposed to use Tuckey estimator.

The first step consists in explicit outlier rejection of macro-blocks on the borders,
where MPEG2 motion compensation method does not give good results, and of
intracoded macro-blocks; the second step is based on the use of the Tuckey bi-weight
estimator [71] which uses the cost function ρ(r) instead of classical cost function
ρ(r) = r2, where r is the residual between the measured values and those obtained
by the model. The Tuckey’s bi-weight function ρ(r, C) and its derivative ψ(r, C) are
defined as follows:

ρ(r, C) =

{
r6

6 − 2C2r4

4 + C4r2

2 if |r| < C
C6

6 otherwise
(3.8)

ψ(r, C) =

{
r(r2 − C2)2 if |r| < C

0 otherwise
(3.9)

where C is a constant value.

In [67], Durik and Benois follow the method [71] and pose the problem of motion
estimation as a weighted least square method. The problem here is to minimize the
sum of estimator values, which can be expressed as:

64

3.4. Motion mask extraction

∑
ri=di−dθi

ρ(ri) =
1
2

∑
wir

2
i (3.10)

Here di and dθi represent the ith measure from input data and conform to the un-
derlaid model.

Deriving (3.10) according to each parameter aj with j = 1, . . . , 6, we will have

∑
i

ψ(ri)
∂ri

∂aj
=
∑

wiri
∂ri

∂aj
= 0 (3.11)

Here ψ(ri) is the derivative of the estimator ρ, that is ψ(r, C) in our case (3.8). Then
from (3.11) we will have:

wi =
psi(ri)

ri
(3.12)

Finally from (3.8) and (3.12):

wi =

{
(r2 − C2)2 if |r| < C

0 otherwise
(3.13)

Bouthemy and Odobez [70] consider as residuals the residual in the OFE:

r =
(
∇Ix

∂u

∂x
+ ∇Iy

∂u

∂y
+ ∇It

)
(3.14)

In this case r is a scalar value. In [67], the input measures for the model estimators
are residual vectors: �r(x, y) = (�dx − �dθx, �dy − �dθy). Nevertheless, according to
(3.13), only squared norm of vectors con be used. Therefore, this estimation scheme
is consistent.

The authors of [67] propose an x, y rejection scheme with an independent choice
of the constants Cdx and Cdy. Let us consider the square norm:

‖�r‖2 = r2
dx + r2

dy (3.15)

in (3.13) with rdx = dx − dθx and rdy = dy − dθy. We then loose the information
about which coordinate of the input motion vector yields strong errors with regards
to the model. Therefore, the equation (3.13) is considered in a vector form, with two
independent constants Cx and Cy as follows:

65

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

�wi =

(
widx

widy

)
=

{
(r2

dx − C2
dx)2 if |rdx| < Cdx

0 otherwise{
(r2

dy − C2
dy)

2 if |rdy| < Cdy

0 otherwise

(3.16)

Furthermore, all weights are normalized in the interval [0, 1] such as:

w′
idx

=
widx

C4
dx

w′
idy

=
widy

C4
dy

(3.17)

In the following we will always use normalize weights, thus we will omit ′ in the
notation.

The authors of [67] propose a close form solution for the weighted least square
scheme, such that:

θ̂ = (HT WH)−1HT WY (3.18)

Here H is the observation matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 xi yi 0 0 0
...

...
1 xN yN 0 0 0
0 0 0 1 xi yi

...
...

0 0 0 1 xN yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.19)

with macro-block centers conform to the affine motion model:

dx = a0 + a1x + a2y

dy = a3 + a4x + a5y
(3.20)

where Y is the vector of measures, that is of N coordinates of macro-block motion
vectors

Y = (dx1, . . . , dxN , dy1, . . . , dyN) (3.21)

66

3.5. Motion mask extraction from a single P frame

and W is the weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1dx 0 · · · 0

0
. . . 0

... wNdx
...

w1dy

0
0 · · · 0 wNdy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.22)

The authors of [67] propose a multi-resolution estimation scheme, which allows to
tune the constants Cdx and Cdy between resolution levels proportionally to standard
deviation of residuals σdx and σdy. Thus, for a given resolution level l, the constants
C are calculated as:

Cl =
(k · σl + Cl−1)

2
l ≥ 3 (3.23)

For the lowest resolution level all measures are accepted, that is c1 = ∞, for the
second layer C2 = k · σ2.

In Figure 3.2 an example of camera motion extraction is shown; in Figure 3.2 a)
a P frame and in 3.2 b) the corresponding MPEG2 motion vectors are presented; in
Figure 3.2 c) the camera motion vectors extracted with the algorithm explained are
shown.

3.5 Motion mask extraction from a single P frame

Once the estimation of camera motion model is fulfilled, the problem of object extrac-
tion can be formulated as the separation of the macro-blocks with motion irrelevant
to the estimated model. Hence macro-blocks belonging to objects endowed with
own motion can be detected. They are characterized by weights equal or close to
zero according to the motion estimation method we presented above. The object
extraction step is organized in three steps:

• conversion of the estimated model weights into a grey level image and thresh-
olding;

• camera motion filtering;

• 3D segmentation.

67

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

The aim of the first step is to convert the measure of weights extracted from
the camera motion estimation into a grey level image and to apply a threshold to
distinguish low weights caused by outliers from high weights probably caused by
noise effects. The second step filters the outliers due to camera motion and then
the third step applies a 3D morphological segmentation to filter the image along the
time axis. In the following paragraphs these steps will be described in details.

68

3.5. Motion mask extraction from a single P frame

(a)

(b)

(c)

Figure 3.2: En example of camera motion extraction from a P frame.

69

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

(a) (b) (c)

Figure 3.3: Creation of a grey level map and of macro-block weights and thresholding
operation to remove noise.

Creation of a grey level image

The weights extracted from camera motion estimation are used to separate macro-
blocks that are part of the background from macro-blocks that are supposed to
be part of a foreground object. The number of weight values may not correspond
exactly to the total macro-block number. As we presented in our explicit first step
outlier rejection scheme, a P frame, even if it is coded in inter-frame mode, may have
some macro-blocks coded in intra-frame mode when the encoder is not able to attain
satisfactory quality of motion compensation; in this case, for the intra-coded macro-
blocks, no weight values are produced. But these intra-coded macro-blocks can also
be included in the set of “irrelevant” measures as they correspond to the failure of
MPEG block-based motion estimator: so we can assign them a value of weight wi

close to 0 because we can suppose that the motion vectors of these macro-blocks do
not follow the camera model. Let us consider a grey-level image Ix,y of resolution
N/MacroBlockSize*M/MacroBlockSize defined as follows:

Ix,y = [(1 − max(wdx, wdy)) · 255] (3.24)

Here the brighter pixels correspond to macro-blocks with low weights and thus
would belong to the objects that do not follow the global movement. Pixels of Ix,y

with low values correspond to low weights scattered throughout the P frame due to
texture and local motion deformation.

In Figure 3.3 the grey level map (3.3 b) obtained from a P frame (3.3 a) is shown;
it is possible to see that foreground objects are not clear because of the noise due to
motion vectors errors. Thus in order to get relevant pixels well representing objects

70

3.5. Motion mask extraction from a single P frame

(a) (b) (c)

Figure 3.4: Extraction of a binary image from a P frame.

with proper motion, a binary image Ib
x,y will be now computed by thresholding:

Ib
x,y =

{
1 if Ib

x,y < s

0 otherwise
(3.25)

The threshold s is based on typical “low value” of weights and was tested on
various sequences in the range [7,10]. In fact a threshold lower than 7 still leaves a
lot of isolated macro-blocks that are probably due to noisy motion vectors, while a
threshold higher than 10 can delete macro-blocks that are part of some connected
region (so probably part of an object).

The result is a binary image as in Figure 3.4 where the relation between the
motion vectors and the region where the objects are located is shown. Figure 3.4
a) shows a P frame taken from a video sequence where the objects of interest are
constituted by two women walking tracked by the camera whereas Figure 3.4 b)
indicates its associated motion vectors. It is possible to see in the middle of the
motion vector field two regions with motion vectors completely different from the
others due to the object presence and in an area on the right border some other
“outliers” due in this case to camera motion (a right pan in this case). In Figure 3.4
c) the obtained binary image Ib

x,y is shown.

3.5.1 Filtering of outliers due to camera motion

As we can see from 3.4 some outliers appear in the binary image in the opposite
direction of camera movement. These outliers are due to new macro-blocks entered
in the frame. In fact, the pixels of original video frame in these macro-blocks do not
have their antecedent in the reference frame. Therefore, motion vectors resulting

71

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

Figure 3.5: Outliers due to camera motion in a video sequence.

from the MPEG2 decoding process are erroneous and do not follow the camera
motion in most cases. In this case we have high irrelevance weight on these zones
even if no object is present (see Figure 3.3 c), 3.4 c) and Figure 3.5).

In order to filter the outliers on the frame border the estimated camera motion
model is used (see Figure 3.6). In fact with forward prediction motion coding, the
displacement vector d = (dx, dy)T of a macro-block in the current frame is related to
the coordinates of pixel (xc, yc)T in a current frame and its reference pixel (xp, yp)T

in the reference frame as follows:

{
dx = xp − xc

dy = yp − yc

(3.26)

Now using the model (3.1) we can solve it for xc and yc taking as reference pixels
the corners of the reference frame. Thus the reference frame result to be warped
to the current frame. Thus we can obtain the geometry of the zone entered in the
frame: if some “outliers” are present in that zone we can suppose that they are due
to camera motion and we do not consider them when searching for object masks.

Repeating the method described above for all P frames inside a single video shot
we obtain motion masks for foreground objects in the shot. This method requires pre-
liminary segmentation of video content into shots, since at shot boundaries, MPEG

72

3.5. Motion mask extraction from a single P frame

Figure 3.6: High weight values caused by outliers on the frame borders.

motion vectors are likely to be massively erroneous and the estimated camera motion
does not correspond to the reality.

We have described how to obtain a first guess of objects at reduced temporal
resolution which constitutes our rough indexing paradigm. Nevertheless masks in
each pair of P frames were obtained independently from each other. This is why
they remain noisy in time.

3.5.2 3D filtering of the motion masks

In order to improve the detection we take advantage of the temporal coherence of
moving objects and thus smooth the detection along the time. To do this we model
a video segmentation as a conjunction of 3D volumes in (x, y, t) space. Here, the
indexing function of the various objects f(x, y, t) is assumed to be known for values
of t corresponding to P frames. Let us consider two consecutive GOPs from an
MPEG2 stream both belonging to the same shot. To smooth f(x, y, t) along the
time we apply a 3D segmentation algorithm to such pairs of GOPs (see Figure 3.7
a)). The result of this segmentation is a 3D volumetric mask that highlights the
region inside where a foreground object is probably located and moves. In this work
we use a 3D morphological segmentation algorithm developed in [72]. The algorithm
follows a usual morphological scheme, applying these operations in the following
order:

• a 3D morphological filtering;

• a modified gradient computation;

73

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

(a) (b)

Figure 3.7: a) 3D segmentation along the volume composed by P frames; b) the
6-connected element used for morphological filtering and segmentation.

• a region growing by watershed in a 3D space.

In all applied morphological operations, the 3D 6-connected structuring element
as shown in Figure 3.7b) has been used.

Filtering of the noise

Although we apply a threshold on each image, we notice that in some parts of the
volume there are still some isolated macro-blocks that, even if not following the
global motion, don’t represent any foreground objects. So we filter the volume to
eliminate these isolated blocks using a 8-connected structuring element to investigate
macro-blocks: if we find a white macro-block that has all his neighbors of black color
we turn it into a black one (see Figure 3.8). In the same way, if we find a black macro-
block with all white neighbors, we turn it into a white one. This allows to eliminate
isolated noise whereas it avoids holes in the foreground objects.

Computation of the modified gradient

Once the noise and the outliers due to camera movement have been filtered out, we
calculate a modified morphological gradient. The morphologic gradient is defined in
the literature as the difference between the pixel dilation applied on the image and
its erosion, i.e:

Gδε(x) = δ(x) − ε(x) (3.27)

74

3.5. Motion mask extraction from a single P frame

Figure 3.8: The filter used to remove noisy isolated macro-blocks.

where the dilation δ(x) is the maximum value of difference between a pixel and
its neighbors while the erosion ε(x) is the minimum difference. In our work, we
have used a modified gradient, as explained in the following: after having applied
the threshold and after the noise filtering process, we obtain binary images, where
background pixels present zero value and the foreground ones have been assigned
a 255 value. In this case all pixels inside the objects have the same dilation and
erosion values since both the maximum value (δ(x)) and the minimum one (ε(x))
are 255. For the pixels on the boundaries instead, the maximum value is represented
by the pixels in the internal part of the object (255) while the minimum is given by
the pixels outside the baundaries (0 value). So we decide to calculate the gradient
as the maximum difference between a pixel and its neighbors:

G(x) = max
i

|Ixy − Ixiyi | i = 1, . . . , 6 (3.28)

where (xi, yi) are the coordinate of the pixel neighbors.

Region growing algorithm

Once we have calculated the gradient volume we search for the connected 3D regions
inside the volume. For this purpose we employ a 3D region growing algorithm.
Foreground objects usually exhibit low internal gradient and high gradient values
on their boundaries. Due to the fact that a foreground object doesn’t follow the
global movement, it is usually characterized by low weight values in the macro-
block matrix of camera movements because these blocks do not contribute in camera
motion estimation (see section 3.4.1). So the strategy foresees to start the region
growing algorithm from the regions with both low gradient value and low weights

75

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

(a) (b)

Figure 3.9: a) Creation of the mask for the I-frame by interpolation of two P-frames;
b) the 4-connected structuring element used in morphological 2D operation.

and expanding them to reach a given gradient barrier. At the end, we obtain a mask
for each P frame of the sequence we have analyzed; This 3D segmentation process
allows for smoothing of initial noisy characteristic function of objects. Considering
the volume slices Ĩb

x,y we obtain a 2D mask for each P-frame we have analyzed.

3.6 Motion mask extraction in I frame

The extracted motion masks represent a good guess to the object shape in P frames.
Nevertheless, the sole motion information is not sufficient for a robust object ex-
traction. Thus we propose to merge the motion masks with the results of color-
based intra-frame segmentation of I frames. In the framework of the rough indexing
paradigm we only use DC images of original I frames. Since motion masks have been
obtained only for P frames, we have to build the corresponding mask for the I frame
in order to overlap it to a color-based segmentation. As the MPEG2 decoder does not
give motion vectors for the I frame we cannot build the mask starting from MPEG2
motion information directly. Looking to the structure of the MPEG2 compression
standard it can be seen that, considering two consecutive groups of pictures (GOP),
the I frame is located between two B frames, or, if we consider only P frames, as in
the case of this work, between two P frames. Therefore, in order to calculate the
mask for the I frame, we can consider the two P frames surrounding the I frame of
interest and then to interpolate the two images (3.9 a)).

Usually the interpolation process can be fulfilled by two different approaches, i.e.:

• a motion based approach [73];

76

3.7. Object mask refinement by color segmentation

(a) (b) (c)

(d) (e) (f)

Figure 3.10: On the first row a sequence of I frames and on the second row the
extracted object masks.

• a spatio-temporal segmentation without use of motion.

For the sake of low computational cost we decide to use a spatial interpolation, using
a morphological filter. As a result, the binary mask in I frame Ĩb

x,y(t) is computed
as:

Ĩb
x,y = min(δĨb

x,y(t − 1), δĨb
x,y(t + 1)) (3.29)

Here δ denotes the morphological dilation with 4-connected structural elements of
radius 1 (as shown in Figure 3.9 b)). In this way we obtain the mask for the I frame
that exhibits the approximate position of the objects. Figure 3.10 depicts some I
frames extracted from a MPEG2 video stream and the corresponding masks obtained
using the motion-based approach proposed before.

3.7 Object mask refinement by color segmentation

As we described in the previous section motion masks interpolated for I frames
indicate likely the position of objects having their own motion. Now, using the
color information of I frames inside the masks, we can refine the object shapes and

77

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

estimate their textural and color parameters. Hence, in order to index the video
content by spatial features at I frame temporal resolution, we implement a color
segmentation process to subdivide the I frame into regions. Then regions belonging
to moving objects are selected by overlapping the I frame with the motion mask we
have calculated before. The resulting set of the overlapped regions form the objects
of interest. Remaining in the rough indexing paradigm framework, we use only DC
coefficients of I frames shaped into “DC images” [74], since DC coefficients are easy
to extract from the MPEG2 stream without a complete decoding.

We apply a morphological framework for the color segmentation. The imple-
mented segmentation method is organized in these steps:

• first a pre-processing filtering is applied;

• then the gradient of the DC image is extracted to obtain the objects boundaries;

• finally, a region growing algorithm by modified watershed is performed in the
YUV space.

3.7.1 Pre-processing filtering

The aim of the filtering is to delete some information in the image that is not useful
for segmentation and makes the image too noisy. Our goal is to obtain an image
with reduced noise so as to keep only the useful information for segmentation, in
order to apply the gradient extraction algorithm. For this purpose we take the
three components Y, U and V and first we apply to them a morphologic filter called
partial reconstruction opening filter (OF) and then a partial reconstruction closing
filter (CF) using the erosion (ε) and dilation (δ) operators. These operations are
performed with a 4-connected structuring element as shown in Figure 3.9.

- Erosion

The morphologic erosion of a function f with a structuring element M is defined
as:

ε(f(x)) = min{f(x + k), k ∈ M} (3.30)

where f is the DC image and M is the 4-connected element. Thus this operator
modifies each pixel value as a function of itself and its neighbors identified by the
structuring element M .

78

3.7. Object mask refinement by color segmentation

- Dilation

The morphologic dilation of a function f with a structuring element M is defined
as:

δ(f(x)) = max{f(x − k), k ∈ M} (3.31)

Composing the two operators it is possible to obtain the following morphologic
filters:

- Morphologic closing

The morphologic closing is the application of a dilation followed by an erosion
with the same structuring element:

φ = ε(δ) (3.32)

- Morphologic opening

The morphologic opening is the application of an erosion followed by a dilation
with the same structuring element:

γ = δ(ε) (3.33)

The partial reconstruction filter implemented in this work is obtained by applying
to the YUV component an opening filter followed by a closing filter. The used
opening filter is:

γm,n = δm(εn(I)) = δ(. . . δ(δ(εn(I))))︸ ︷︷ ︸
m

(3.34)

where εn means that the operator ε is applied n times

In our case the choice of n = 2 and m = 3, means that we apply three times a
dilation filter on the twice eroded image. In Figure 3.11 we want to show the effects
of the opening filter: after having applied the operator described in (3.34), we obtain
a Y component as shown in Figure 3.11 b); all the small objects that present high
luminance values have disappeared because of the effect of the erosion filter, leading
to a more homogeneous image.

Starting from the obtained result we then apply a closing filter to delete all
isolated blocks that present low luminance value, i.e.:

79

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

(a) (b)

Figure 3.11: a) Y component of a DC image; b) the same DC image after the
application of the opening filter.

φm,n = εm(δn(I)) = ε(. . . ε(ε(δn(I))))︸ ︷︷ ︸
m

(3.35)

3.7.2 Gradient extraction

The extraction of the morphologic gradient is the next step in 2D color segmentation
process. We compute the gradient for all the three YUV components of the image
we have obtained from the DC image, so obtaining the vector:

Gδε =

⎛
⎜⎝ δ(Y) − ε(Y)

δ(U) − ε(U)
δ(V) − ε(V)

⎞
⎟⎠ (3.36)

After this we build the gradient image using a scalar gradient Gδε :

Gδε = max(Gδε(Y), Gδε(U), Gδε(V)) (3.37)

In this image the homogenous regions, typically the regions inside the objects,
appear with low values of gradient because their neighboring pixels have close values,
while boundary pixels of a region have high gradient values because since luminance
and chrominance values of pixels across boundaries have large differences. Morpho-
logic filters like opening and closing filters (presented in equations (3.34) and (3.35))
lead to more homogenous regions so that gradient information becomes more reliable
for the objective at hand.

The next step is to discard all gradient values below a given threshold so as to

80

3.7. Object mask refinement by color segmentation

(a) (b)

Figure 3.12: a) An I frame at DC resolution and b) the gradient image Gδε with a
threshold of 20.

get a binary image, i.e.:

Ib(x, y) =

{
0 if ‖Gx,y(x, y)‖ ≤ threshold

255 otherwise
(3.38)

In such binary images regions with homogenous color present pixels with zero
value inside, whereas boundary pixels are set to white. In Figure 3.12 b) the gradient
calculated for the DC image in 3.12 a) is shown. In this case a threshold equal to
20 has been applied to the gradient image. From our tests performed on different
video genres we have seen that the best threshold ranges between 15 and 20 for
generic video material, while it is usually lower for cartoons (around 10), since they
are naturally less textured.

3.7.3 Region growing algorithm

After the threshold has been applied to the morphological gradient, all the black
connected regions present in the image are filled and labelled separately. For each
region the average color value is calculated. A color region map is obtained with
some uncertainty zones corresponding to the zones with high gradient, typically
in the neighborhood of objects boundaries. In order to assign these zones to the
corresponding connected regions, an iterative region growing algorithm with a region-
adaptive threshold is used [75].

The threshold is calculated as a function of the average luminance of the region
m̄ and of a parameter Δi that grows with the iteration i:

81

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

threshold = F (m̄)g(Δi) (3.39)

where F (m̄) = |m̄ − 127| + 128 and Δi = Δi−1 + 0.01.

The function shows that the threshold depends on the mean grey level of the
considered region. This function is derived from the “function of visual sensitivity”
which indicates that the difference between two grey level values is perceived less
when the values are at the extremities of the range.

The function g(Δi) is an incremental term used to progressively relax the thresh-
olds for merging boundary pixels with the adjacent region. The initial value Δ0 is
computed as 1/F (127) and it is used to compute the first threshold value; so for
regions in the middle of luminance range the threshold corresponds to only one level
of luminance difference. In this first step the macro-blocks that differ from the adja-
cent region by a value smaller than this threshold are included in the region. When
no macro-blocks can be added to any region the value of the threshold is recalcu-
lated using the incremented parameter Δi. The threshold is relaxed until all the
uncertainty zones are assigned to a region.

Until now we have only talked of luminance values. But the algorithm we have
explained can be also applied to color components. In such case we process the
three components (luminance Y, chrominance U and chrominance V). In this case
the average color is used, namely:

mCOL
j =

mY
j + mU

j + mV
j

3
(3.40)

where mY
j , mU

j and mV
j are the average values of respectively luminance and

chrominance components of the region with label j. The adaptive growing procedure
is changed as follows in this case. A pixel is included in region j at the ith iteration,
if the following relationship is satisfied:

|fY (x, y) − mY
j | + |fU (x, y) − mU

j | + |fV (x, y) − mV
j | < α (3.41)

where:

α = 3 × F (mCOL
j)g(Δi) (3.42)

and fY (x, y), fU (x, y) and fV (x, y) are respectively the luminance and chrominance
values of the pixel we want to include in the region.

In Figure 3.13 the result of this segmentation process is presented: the DC image

82

3.8. Merging of motion masks and color segmentation results

(a) (b)

Figure 3.13: in a) a DC frame and in b) the spatial segmentation obtained. Each
region has been represented with its average color.

has been subdivided into homogeneous regions, where each region has been associ-
ated the average color.

3.8 Merging of motion masks and color segmentation

results

What we have obtained until now is:

• a mask for each P frame of the analyzed video sequence using a 3D segmenta-
tion;

• a mask for each I frame by interpolating the results from the P frames;

• a 2D color segmentation for the I frame of the sequence.

Now if we superpose the motion mask to the color segmented image we can see which
regions obtained from the segmentation process are included in the mask. Actually,
as long as it is possible that a region is not completely included in the mask, we
consider that, if:

pixels of a region included in the mask
total number of the pixels in the same region

≥ threshold (3.43)

The threshold is typically set to 80%: this means that the majority of the pixels
of the region are included in the mask, the whole region is considered to be part of
the foreground objects. In Figure 3.14 the result of a foreground object extraction
is presented. In 3.14 a) and b) the original DC image and the corresponding motion

83

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

mask are shown. In 3.14 c) the motion mask has been superposed to the DC image.
In d) the objects is extracted according to the method exposed in equation (3.43).
Note that some regions that are not part of the foreground object are still present.
Since the background contain little regions some of them have been included in the
motion mask.

(a) (b) (c) (d)

Figure 3.14: a) the original DC image; b) the extracted motion mask; c) merging of
the two results and d) the foreground object obtained with this method.

3.8.1 Flat region removal

Once the objects have been extracted, it is usually necessary to apply a gradient-
based filtering to delete possible flat zones. A flat zone is a region in the color image
characterized by very low color gradient value (for example the sky is a typical flat
region). In no-gradient regions, motion estimation typically fails since a lot of macro-
blocks share the same color. Thus macro-blocks belonging to a flat region may be
associated with motion vectors that do not follow the camera motion so that they
are erroneously detected as moving objects.

In Figure 3.15 a) an I frame with a flat zone is presented. In this case the flat zone
is represented by the sky. As it is shown in Figure 3.15 b) the presence of constant
color zones can lead to motion vectors with incoherent direction and magnitudes.
Consequently the motion mask may incorporate them even when no objects are
present (3.15 c)). After the superposition of the motion mask with a color based
segmentation of the DC image, the flat zone is recognized as a foreground object
(3.15 d)). The approach we adopt to remove it consists in computing the average
gradient energy Ē(R) within a region R per macro-blocks: (3.44)

Ē(R) =
1

card(R)

∑
‖Ḡ(R)‖2 (3.44)

where card(R) represents the number of macro-blocks contained in the region. All

84

3.9. Conclusion

(a) (b)

(c) (d) (e)

Figure 3.15: a) I frame at DC resolution with a flat zone (the sky); b) the correspond-
ing map of motion vectors; c) the object mask for the frame; d) objects obtained
after the superposition of the mask and color the segmented I-frame; e) the final
result after flat zone removal.

connected components which have an average gradient energy below a predefined
threshold are declared “flat zone” and can thus be excluded. As a result only ob-
jects with a heterogeneous color content are preserved. In fact, an object is usually
composed of more than one region with constant color and so its mean gradient
energy value is higher that the one of a region composed by a single homogeneous
region.

The Figure 3.15 e) shows the benefits of the filtering process on the final results.
It can be noticed that even if, in this case, the objects of interest present a quite
homogeneous color, its gradient values are not as low as the one of a flat region and
so they are preserved.

3.9 Conclusion

Thus in this chapter we introduced a new concept, such as ‘rough indexing paradigm’
and proposed a spatio-temporal foreground object segmentation method. We fol-

85

CHAPTER 3. OBJECT-BASED SEGMENTATION OF VIDEO STREAMS FOR
‘ROUGH INDEXING’

lowed the leading edge research methodology by combining both motion information,
2D + t information and color information in a combined spatio-temporal segmenta-
tion approach. Its key parts were:

• robust estimation of global (camera) affine motion;

• morphological segmentation applied to binary outlier masks and to color frames.

These techniques rather popular for video analysis in uncompressed domain, are
very seldom combined for compressed streams with partial decoding. In the ‘rough
indexing’ context we showed how these approaches complete each other in a difficult
condition of motion directly recovered from coded streams. Nevertheless, the method
is not stable in the sense that it requires the presence of proper motion of objects
captured by any industrial encoder. Now to complete object extraction in case of lack
of motion, how to index the behavior of objects? This question will find an answer
in the next chapter where we will propose a new rough spatio-temporal model of
foreground objects.

86

Chapter 4

Feature extraction and

spatio-temporal filtering

4.1 Introduction

In chapter 3 we have explained how we extract foreground objects from a sequence at
I frame temporal resolution and DC spatial resolution. It can be useful to extract also
some information about the objects, such as for example their approximative shape,
trajectory or color, to produce a sort of “rough indexing” of the sequence. Moreover
sometimes due to the low resolution of original frames and lack of relative motion of
camera and objects, some detection errors may be present in isolated frames. Due to
the final goal of our work, such object-based indexing of video content, miss-detection
or partial detection of objects is more annoying then over-detection in frames. These
kinds of error, specially the miss-detection, can be avoided taking into account the
results of the neighbor frames with a sort of filtering of the results along the time.

In this chapter we are going to explain how we have extracted the shape and
the trajectory of the foreground objects and we are going to explain how we have
realized our spatio-temporal filtering to smooth the detection in time. Taking into
account the rough indexing context the core of two approaches is a spatial and
spatio-temporal filtering of detection results.

4.2 Extraction of object characteristics

Once foreground objects are obtained, the objective is to describe each object. So
for each object we calculate its area, its perimeter and its bounding box, that is the

87

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

Figure 4.1: A bounding box of an extracted object.

smallest rectangular box that totally include the object, built using the coordinates
(xmin, ymin) and (xmax, ymax) as in Figure 4.1.

The bounding box is a very rough approximation of object shape. Nevertheless
we cannot use MPEG7 shape descriptors, which is a standard way to index con-
text today. The reason here is that the segmentation results are very noisy. Thus
we propose to index the extracted objects by their approximative shape. We use
an approximation with an elliptic function. Hence our purpose now is to find the
parameters of a generic cartesianly oriented ellipse that can best approximate the
contours of the objects in the frame we are considering.

We consider z(x, y), a normalized gaussian function centered in the object barycen-
ter (xc, yc) and with variance values set accordingly to object bounding box:

z = exp
(
−1

2

(
(x − μx)2

σ2
x

+
(y − μy)2

σ2
y

))
(4.1)

with:

μx = xc

μy = yc

and

88

4.2. Extraction of object characteristics

0

20

40

60

80

100

0

20

40

60

80

100
−1

−0.5

0

0.5

1

xy

z

Figure 4.2: A gaussian function and different ellipses obtained cutting the gaussian
function along the axis z.

σx = xc − xmin

σy = yc − ymin

In Figure 4.2 a gaussian function is shown. The values used to build the function
are μx = μy = 50, σx = 10 and σy = 5. At the bottom of the image the section of
the image at different values of axis t are shown.

In fact, by fixing the value of z, the gaussian function provides a set of concen-
tric ellipses with different extent. This operation is equivalent to cut the gaussian
function with a plane of equation z = z0. So, to choose the value of z that gives the
best approximation of the shape for the selected object we cut the gaussian function
in 4.1 for different values of z and we minimize the function:

S(z) = min
z

∑
(x,y)

δ(x, y, z) z ∈ [0, 1] (4.2)

89

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

where

δ(x, y) =

{
1 if (x, y) ∈ ((ellipse ∪ mask) − (ellipse ∩ mask))
0 otherwise

(4.3)

(a) (b) (c)

Figure 4.3: Object shape approximation with an ellipse.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

S
(t

)

t

Figure 4.4: An example of the function S(z).

In Figure 4.3 en example of this shape extraction is proposed. In Figure 4.3a) a
DC frame is proposed and in b) the foreground object extracted with the algorithm
proposed in chapter 3 is shown. In Figure 4.3c) we have approximated the object
shape with an ellipse.

In Figure 4.4 the function S(z) for the object in Figure 4.3 is shown.

90

4.3. Spatio-temporal filtering

Figure 4.5: Construction of a tube that follows the objects along the sequence.

4.3 Spatio-temporal filtering

Once color and motion information have been merged, foreground objects at I frame
temporal resolution are obtained. As I frames have been processed independently
one from the others, no information about object variations in time is provided.
Furthermore it may happen that if the object movement does not differ a lot from
camera motion or the object is still, no moving objects are detected. But, as we
can suppose that an object cannot reasonably appear and disappear along a short
sequence of frames, we can filter the sequence of the objects at I frame temporal
resolution in the direction of time and try to find it even if the motion based detection
failed. The objective here is to build the object trajectory along the sequence of I
frames where it was detected and then to approximate the shape with a conic function
in those frames where objects have not been detected. It means building a sort of
tube where each section provides the object position in the frame along the time (see
Figure 4.5).

In fact, it is difficult to avoid annoying effects such as blinking of segmentation
[76], especially when low resolution measures are used as in our work. It means
that some part of objects can disappear or that some objects fail to be detected for
several I frames. We can see for example as in Figure 4.5 that in the second frame
the bottom half of the object is missing because of a segmentation error.

When building conic tubes for objects, we remain in the rough indexing paradigm.

91

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

In any case we will not seek for an exact matching of extracted object borders to the
tube. On the contrary, the tube sections at each moment of time will approximate
the object shape and can be used in correspondence to the I frames to become part of
the whole segmentation process. Thus the object shape can be extracted by merging
of color and the cross-section. The visualization of the tube along the time gives an
idea of the temporal behavior of objects.

As a natural video sequence can contain several objects sufficiently closed one to
an other, the preliminary step for tube construction consists in the identification of
the scene object from the detected masks in the sequence at I frame resolution. The
whole scheme of spatial-temporal filtering can be described as follows:

• identification of the same object in the sequence of object masks from the I
frames;

• spatio-temporal tube construction;

• merging of cross section of the tube and color-based segmentation of I frames
with poor detection.

In the following sections we are going to explain each one of these steps in details.

4.3.1 Identification of objects at I frame resolution along the time

The objective here is to track the objects extracted independently in each I frame
(see Figure 4.6); that means to follow each object along the sequence. To do this, we
estimate motion of each object detected and forward project the object mask from
the I frame at the time t to the I frame at t + Δt. Then if the result of projection
overlaps with the result of the detection in I frame at time t + Δt, the object is
identified for the considered pair of frames.

To realize the object projection, first the object motion has to be estimated.
Given the context, a global, “rough”, object motion is considered with a rigid ob-
ject assumption. Therefore we suppose that the motion of each object Ok can be
sufficiently well described by the affine model for a pair of I frames at t and t + Δt:

dxi = a1 + a2xi + a3yi (4.4)

dyi = a4 + a5xi + a6yi

92

4.3. Spatio-temporal filtering

Figure 4.6: Projection of object masks along the sequence.

Basically we work with the same hypothesis as for the camera model estimation
we presented in chapter 2. The observations (dx, dy)i are motion vectors of MPEG
macro-blocks which are covered by extracted object mask. The difference from the
approach we used for camera model estimation is that for the objects there is no
use to apply robust motion scheme with outliers rejections. Macro-blocks in object
are very few, therefore we will use all these motion vectors and apply classical least
square scheme we will briefly resume below.

The object motion vectors d̄i,k will be used by a least square estimator [77] as an
initial guess to estimate the global object motion model θk.

Here we describe the least-square method [77] for affine model parameters esti-
mation. Suppose to have a function y(t):

y(t) = a1y1(t) + a2y2(t) + . . . + anyn(t) (4.5)

where yi are different measures effectuated and y(t) is a linear combination of these
measures weighted by ai.

If a vector notation is used we can write the equation (4.5) as follow:

Y(t) = HT (t) · θ (4.6)

where H(t) represents the measure matrix while θ represents the parameters vector.
The solution of the system represented in (4.6) is given by:

93

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

θ = H−1(t)Y(t) (4.7)

if H is invertible. But, in general, the output is affected by a noise V(t) so that (4.6)
has to be written as:

Y(t) = H(t) · θ + V(t) (4.8)

so the problem is to estimate the parameters of the system function starting from
noisy observations of the output. This means that the solution system (4.7) becomes:

θ = H−1(t)Y(t) −H−1(t)V(t) (4.9)

The real vector θ cannot be estimated because the noise value is unknown so the
problem of determining the parameter vector becomes a problem of estimation of
the vector θ̃ that can constitutes the best approximation of θ following a given
optimization criterion. Usually the used criterion is the least square one, namely:

J (θ) =
∑

(single errors)2 (4.10)

If ε(t+i) is the error present on the observation y(t+i) and if we consider N measures
on the function y, the criterion J (θ):

J (θ) =
N∑

i=1

ε2(t + i) = ε2(t + 1) + ε2(t + 2) + . . . + ε2(t + N) (4.11)

We can write the function ε(t + i) as a vector E so that the error function J (θ)
becomes:

J (θ) = ET (t)E(t) = (Y(t) − Ŷ(t))T (Y(t) − Ŷ(t)) (4.12)

where Ŷ(t) are the estimated values while Y(t) are the measured values.

The optimality condition is reached when:

∂J (θ)
∂θ

∣∣∣∣
θ=θ0

= 0 (4.13)

∂J
∂θ̂

= −2HT (Y − Hθ̂) = 0

HT Y − HT Hθ̂ = 0
θ̂ = (HT H)−1HT Y

94

4.3. Spatio-temporal filtering

This method can be applied only if the matrix (HT H) is not singular.

In our case the vector Y is formed by (dxi, dyi) of the motion vectors of the
macro-blocks which are part of the foreground object, while H is build from the
coordinates (x, y) of the corresponding macro-blocks. The estimated vector given by
θ̃ = (a0, a1, a2, a3, a4, a5)T describes the object movement.

Once we have calculated the object motion for all the P frames we have to
calculate the one for the I frame. To determine motion model for I frames where we
have no motion vectors in MPEG stream, we interpolate the motion models of closer
P frames. Here we use linear interpolation in the parameter space. An interpolated
parameter θi in intermediate moment can thus be computed as:

θP1(1 − α) + θP2α where α ∈ [0, 1] when t ∈ [t(P1), t(P2)] (4.14)

where α ∈ [0, 1] when t ∈ [t(P1), t(P2)]. Taking into account that the temporal
distances between P1 and I frame and I frame and P2 are the same, this interpolation
is a simple mean.

If we call θ̃P1 the estimated vector of the P frame before the I frame and θ̃P2 the
estimated vector of the P frame after the I frame, the motion vector θ̃I calculated
for the I frame, is:

θ̃I [i] =
1
2
θ̃P1[i] +

1
2
θ̃P2[i] ∀i ∈ [0, ..., 5] (4.15)

Motion models θ we obtain from MPEG2 correspond to the “forward prediction
mode” of the standard. This means that the model-based motion vector for each
pixel in frame at t gives its position in the past reference frame at t−Δtref . In our
case we have to project the object mask in the future.

To realize this forward projection we have to invert the backward motion model,
in fact in our case we have to obtain the object macro-blocks (xc, yc) of the current
frame knowing the position of the object macro-blocks (xp, yp) in the precedent frame
and the object global motion θ = (a0, . . . , a5). The backward motion model between
current frame C and precedent frame P is the following:

dx = xp − xc = a0 + a1xc + a2yc

dy = yp − yc = a3 + a4xc + a5yc (4.16)

Therefore the coordinates of pixels of object macro-blocks in the current frame

95

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

(xc, yc) can be calculated as:

yc =
(

yp − a3 − a4xp

1 + a1
+

a4a0

1 + a1

)
· 1 + a1

(1 + a1)(1 + a5) − a4a2

xc =
xp − a0 − a2yc

1 + a1
(4.17)

If the object projection from the precedent I frame and the object of the current
I frame have a non empty intersection, then we can suppose that the object is the
same. In this way, the object label LO is propagated from the starting I frame to
the following I frame in the sequence and we establish a correspondence between the
same object in the different frames along the sequence.

It is clear that this reasoning which we illustrate in Figure 4.6 is hold in case
where there is no occlusion between objects. That is object masks do not overlap
along the time. To cope with occlusions we will need more sophisticated methods to
determine which of objects is closer to the camera. This analysis can be found on
the method proposed in [73] and is in the perspective of our work.

In Figure 4.7 we shaw the result of the matching processing. In the first column
five consecutive I frames at DC resolution are presented. In the second column the
extracted foreground objects are shown. In the third column, we show the result of
the mask matching process: the object masks have different color corresponding to
the associated labels.

4.3.2 Spatio-temporal tube construction

The construction of the spatio-temporal tube has the objective to smooth objects
shape along the time. We propose to center the tube on the trajectory of the center
of mass of object mask in the sequence. In order to use a reasonably complex model
for the tube construction remaining in the framework of “rough indexing” paradigm
we will suppose that this trajectory is linear. We note that a piece-wise linear
approximation can be proposed in a more complex case. Based on this assumption
we assume that the tube model is adequately represented by a quadric function in a
three dimensional (2D + t) space.

Generally speaking, a quadric equation in an n-dimensional space can be written
as follows [78], [79]: ∑

1≤i≤j≤n

aijxixj +
∑

1≤i≤n

bixi + c = 0 (4.18)

96

4.3. Spatio-temporal filtering

Figure 4.7: Matching of object masks along the time for isolated objects. Sequence
“De l’arbre à l’ouvrage”, SFRS�.

97

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

where aij , bi, c are coefficients and at least one of the aij must be different from
zero; in the particular case of n=3 the function is called quadratic surface. Quadratic
surfaces are also called quadrics, and there are 17 standard-form types. In Figure
4.8 some quadrics are plotted.

(a) ellipsoid (b) elliptic cone (c) elliptic paraboloid

(d) hyperbolic paraboloid (e) parabolic cylinder (f) hyperboloid of one sheet

Figure 4.8: Some examples of quadratic functions.

Our purpose now is to find the coefficient aij of a generic quadric as in (4.19) that
can best approximate the contours of the objects in the sequence we are considering.

a11x
2 + a22y

2 + a33t
2 + a12xy + a13xt + a23yt + a14x + a24y + a34t + a44 = 0 (4.19)

As it was shown from construction method of the object masks from rough data,
we cannot expect very precise detections and therefore we cannot use the exact (x, y)
coordinates to estimate the coefficients in equation 4.19.

Therefore we will smooth the object shape by introducing a probabilistic charac-
teristic function of the object shape z as we described in 4.2. We define the function
z(x, y) as a gaussian function centered on the object center of mass. In the section
4.2) the center of mass was the object center, while in this case, we compute the
trajectory and we will take this line as the center of mass line as we will explain next

98

4.3. Spatio-temporal filtering

(see equation (4.20)).

z = exp
(
−1

2

(
(x − μx)2

σ2
x

+
(y − μy)2

σ2
y

))
(4.20)

Now the quadric equation can be written as:

z = a11x
2 + a22y

2 + a33t
2 + a12xy + a13xt + a23yt + a14x + a24y + a34t + a44 (4.21)

We note that in such formulation we have a linear model for the unknown parameters
(a11 . . . a44). Knowing the sequence of coordinates (x, y, t) and the values of z, we
can therefore obtain the estimation of parameters by least square approximation.
It is clear that the resulting parameters will strongly depend on the quality of the
observation z. In practice relative to equation 4.20 we have to identify (μx, μy) and
(σx, σy).

As it may happen that the objects are not correctly detected or occluded, the
object center of mass can be different from the mask one. In Figure 4.9 a) and b) two
DC frames are shown; in the second one the object at the left is partially covered by
the background and for this reason it is only partially detected (see Figure 4.9 c))
where the object masks are presented). In this case using the object center of mass
to compute the object trajectory may create some bias.

We suppose that the object motion does not change along the sequence and we
suppose that the object center of mass follows a straight line trajectory. In most cases
this is not true because of the detection errors caused by working with “rough data”,
so an approximation of trajectory is needed to reduce the influence of the object
detection errors. To obtain the approximation of the object center of mass line we
use again a least-square estimation , and the problem becomes the approximation of
a set of points (the object centers of mass) with a line in a 3D space (x, y, t).

In the 3D space a straight line is the solution of a linear system representing the
intersection of two different planes:{

a1x + a2y + a3t + a4 = 0
b1x + b2y + b3t + b4 = 0

(4.22)

As it is always possible to write one equation in an explicit form and then operate
a substitution in the second one, we can obtain a system where one of the two

99

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

(a) (b) (c)

Figure 4.9: Example of wrong object center of mass caused by a partial object
detection.

equations depends only on two variables:{
y = k1x + k2

t = k3x + k4y + k5

(4.23)

It means that from all the possible planes we choose one of the two as a plane that
is parallel to one of the space axes (4.23).

In Figure 4.10 we show an example of approximation of object barycenters by a
straight line for the sequence ‘Hiragasy’ (SFRS�). Here the projections on ty plane
is shown.

We note that such an approach helps in case the object mask is not detected in
a given frame, such as when there is no relative motion between object and camera
in P frames or some errors occurred.

Once the straight-line parameters (k1 . . . k5) have been estimated, the new opti-
mal coordinates (xc, yc) of the object center of mass for any frame along the sequence
can be obtained. In Figure 4.9 c) the difference between the object center of mass
and the one given by least square estimation. The little circle represents the cen-
troid of the object mask, while the cross represents the estimated center of mass.
The frames before the image shown in 4.9 b) lead all to a whole object detection and
for this reason the estimated center of mass and the object extent indicate that the
real object is in reality larger than the detected one.

This coordinates are also used in (4.20) as μx = xc, μy = yc for a given moment
of time t. The standard deviations (σx, σy) are represented by the maximum dis-
tance between the optimal center of mass (xc, yc) and the bounding box in the two
directions x, y as shown in Figure 4.11.

Once the function z(x, y) has been computed for all the images along the time

100

4.3. Spatio-temporal filtering

1 1.5 2 2.5 3 3.5 4 4.5 5
30

32

34

36

38

40

42

44

46

48

50

time

y

object center
approximated line

Figure 4.10: Least square approximation of the trajectory of object barycenters

axis, we can approximate the sequence of such functions with a quadric given by
(4.19). Our purpose is to obtain a set of quadric functions with the same axis and to
choose the one that better approximates the sequence of object shapes. For example,
in case of a zoom sequence where the object change its dimension because the camera
goes closer to it, an elliptic cone can be the quadric function that best approximates
object changes, while in the case of an horizontal camera movement (called pan) an
elliptic cylinder may be more adequate.

Equation (4.19) represents a generic quadric function, but for our aim we can

Figure 4.11: Sigma values used to compute the gaussian function in (4.20).

101

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

(a) (b)

Figure 4.12: A cone and a cylinder can approximate object shape changes in case of
zoom and pan sequences respectively.

simplify it and consider only some constrained cases. As we are not interested in an
arbitrary 3D volume but only in the volume slices taken along the t axis, to simplify
the computation we can locate all the centers of mass along an axis parallel to the
t axis (see Figure 4.13). In this way we will avoid terms in xy, xt or yt in the final
equation.

Figure 4.13: Translation of the barycenter line to an axis parallel to the t axis.

Furthermore we can suppose that as the object motion is uniform along the
sequence, we can add to (4.21) some constraints on the parameters to obtain at
the end a volume with shape like a cone, a cylinder or an hyperboloid. These
constraints permit to reduce the total number of parameters we have to compute
and to avoid a degeneration of the quadric function (such as for examples couple
of planes) imaginary quadrics (for example imaginary cones or cylinders) or other
quadrics, real and not degenerate (see for example Figure 4.14), that are impossible

102

4.3. Spatio-temporal filtering

(a) hyperbolic paraboloid (b) hyperbolic cylinder

Figure 4.14: Example of real and not degenerate quadrics that are not useful for our
purposes.

in our case.

Such constraints applied to (4.21) lead to:

z = a11x
2 + a22y

2 + a33t
2 + a14x + a24y + a34t + a44 (4.24)

For convenience we center the function in the center of the image (x0, y0). As we
consider only a limited set of possible quadrics, we can also add some additional
constraints to (4.24). In particular from the canonic form of a conic centered in
(x0, y0, t0) and in case of positive z we get:

z = a11x
2 + a22y

2 + a33t
2 − 2a11x0x − 2a22y0y + a34t + a44 (4.25)

with the following constraints: ⎧⎪⎨
⎪⎩

a11 > 0
a22 > 0
a33 ≤ 0

(4.26)

The next step is then to estimate the five parameters in (4.25) to obtain the function
which best approximates the evolution of object shape and dimensions along the
sequence.

Given a vector of measures z = [z1, . . . , zN]T and given the set of bounding
coordinates (x1, y1, t1), . . . , (xN , yN , tN), we can write the (4.25) in a matrix form as:

103

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

z = Hβ (4.27)

under the constraint:

AT β ≥ 0 (4.28)

Here

H =

⎡
⎢⎢⎣

x2
1 − 2x0x1 y2

1 − 2y0y1 t21 t1 1
...

...
x2

N − 2x0xN y2
N − 2y0yN t2N tN 1

⎤
⎥⎥⎦ (4.29)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 −1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.30)

Let us denote e(β) = z−Hβ the error with respect to the model 4.27. We will solve
the following optimization problem:

min 1
2e

Te

under constraint AT β ≥ 0
(4.31)

This is a quadratic programming problem.

Generally speaking, if a problem of quadratic programming it can be rewritten
in the form:

min 1
2x

TGx + gTx

under constraint ATx − b ≥ 0
(4.32)

then it possible to define the dual problem ([80]):

max 1
2x

TGx + gTx − λT (ATx − b)
under constraint Gx + g −Aλ = 0 with λ ≥ 0

(4.33)

where λ is a Lagrange multiplier. Equation (4.33) can then be simplified:

104

4.3. Spatio-temporal filtering

max −1
2λT (ATG−1A)λ + λT (b + ATG−1g) − 1

2g
TG−1g

under constraint λ ≥ 0
(4.34)

This is still a quadratic programming problem in λ, but it is easier to solve. Once
the value of λ has been found, the value of x is obtained by (4.33).

In our case, developing (4.31) for e = z −Hβ, we obtain:

min −1
2βT (HTH)β − zTHβ + 1

2z
Tz

under constraint AT β ≥ 0
(4.35)

This problem is of the same form of (4.33) that can be solved in the form of (4.34)
where G = HTH and g = −HTz. The vector λ is obtained by deriving with respect
to (4.34):

λ = − [AT (HTH)−1A] [AT (HTH)−1HTz
]

(4.36)

and then the vector β can be obtained from (4.33) setting β to x, G to HTH and g

to −HTz:
β =

(HTH)−1 (Aλ + HT z
)

(4.37)

Now with these optimal parameters, varying z, we can obtain a family of quadrics
with the same central axis. To compute the conic function that best fits all the object
masks we have to fix the value of z. In Figure 4.15 we see above some DC frames
extracted from a video sequence; we can observe that the object on the left, changes
its dimension because at the end of the sequence it is covered by the background. In
Figure 4.15 below we can observe the quadric calculated for this sequence of frames.
The three quadrics are described by the same equation, but they vary for the value
of z.

In Figure 4.16 another example is presented: a quadric of different shape is
calculated with different values of z, while the other five parameters remain the
same.

To choose the value of z that gives the best approximation of the quadrics for
the object masks of a sequence we minimize the following function for each quadric
section (in all the case an ellipse or a circle) for different values of z = z0:

min
∑
(x,y)

δ(x, y) ∀t = 1, . . . , N (4.38)

105

CHAPTER 4. FEATURE EXTRACTION AND SPATIO-TEMPORAL FILTERING

(a) (b) (c)

0

20

40

60

80

0

20

40

60

80

100
1

2

3

4

5

6

7

8

9

10

(d)

20

40

60

80

0

20

40

60

80
1

2

3

4

5

6

7

8

9

10

(e)

0

20

40

60

80

100

20

40

60

80
1

2

3

4

5

6

7

8

9

10

(f)

Figure 4.15: Above three DC frames of a sequence. Below the quadric that approx-
imates the shape changes for the object at the left.

δ(x, y) =

{
1 if (x, y) ∈ ((ellipse ∪ mask) − (ellipse ∩ mask))
0 otherwise

(4.39)

To minimize this function we have first to translate each section of the quadric
to the line of the center of masses computed earlier. In Figure 4.17 an example of
the obtained result is shown.

4.4 Conclusions

In conclusion, in this chapter we have presented how we extract foreground object
characteristics after have extracted the object from the video sequence.

At the same time, we proposed a filtering of the detection results. Taking into
account rough data and noisy segmentation results, we proposed a smoothed solution
for object-based indexing. First the object shape in each I frame is smoothed by
Gaussian minimizing miss-matching criterion and resulting in optimal elliptic shape
in I-frame. Then the trajectory of the center of mass of the ellipses have been
approximated by optimal straight lines by least square linear regression. Finally,

106

4.4. Conclusions

0

20

40

60

80

0

20

40

60

80
1

2

3

4

5

6

7

8

9

10

(a)

20

40

60

80

20

40

60

80
1

2

3

4

5

6

7

8

9

10

(b)

0

20

40

60

80

100

20

40

60

80
1

2

3

4

5

6

7

8

9

10

(c)

Figure 4.16: Another example of three quadrics built with the same five parameters
but different z values.

Figure 4.17: a) The quadric calculated and b) the section of the function that ap-
proximate the object shape and position

based on the ellipse shape and the approximated trajectory of the centers of mass,
we proposed a spatio-temporal tube for each object. This tube captures object
motion along the time and also gives a feed-back to the segmentation method. In
case the object has not been detected at intermediate moment of time, this tube
sections will approximately show the locus of the object in a video frame.

All these three models can serve as object descriptors in the context of rough
indexing paradigm. They give a user an overview of approximate shape and object
behaviors.

In the next chapter more results will be presented summarizing in this way all
the work done.

107

Chapter 5

Results

5.1 Introduction

In chapter 3 and chapter 4 we have presented the method we propose to extract
the foreground objects from a video sequence. In this chapter the results tested on
different sequences will be presented. First of all, we will present a general discussion
on the results and our evaluation method. Then, in section 5.3 we will present a
sequence of a generic MPEG2 video and we will show step by step how we extract
the foreground objects; then we will summarize the results for a set of generic videos.
In section 5.4 we will do the same with cartoons: we will present the results step by
step for a single cartoon and then we will summarize the results of the test on a set
of cartoons.

5.2 Results

The motion and color based approach we have presented in this thesis work has been
tested on different sequences from a set of natural video content and cartoons. We
have considered feature documentaries “De l’Arbre à l’Ouvrage”, “Hiragasy”, “Aqua-
culture”, “Chancre” (SFRS �), and the cartoons “Au bout du monde”, “Ferrailles”,
“La bouche”, “Le moine et le poisson” (Channel+ �), “Casa”, “François le vaillant”,
“Le trop petit prince”, “Petite escapade” (Folimage �), “Le chat d’appartement”
(Canal+ and Channel4 �) and “Le roman de mon ame” (Channel4 and La Sept-
Arte �). We suppose that segmentation of the videos into shots has already been
performed, so we randomly select shots amongst those containing foreground ob-
jects. As far as camera motion is concerned for the set of processed content, pan,

109

CHAPTER 5. RESULTS

tilt, zoom and hand carried camera motion artefacts have been observed. In section
5.3.1 an entire sequence extracted from “De l’arbre à l’ouvrage” is presented and all
the steps necessary to obtain the foreground objects are presented. The same has
been done for the cartoon “Ferrailles” in section 5.4.

The reason for the choice of these two types of content are the follows. In this
work we tackle a difficult problem of processing of artistic content. No model for
such a content is available on the contrary to the soccer games. No assumption on
the color of the background (such as play field in soccer) can be done. The only
assumption is that the objects are animated with their proper motion with regard to
the background motion (camera). From this point of view, the method will work if
proper motion areas can be isolated by the method. In natural content it is mainly
the case. Due to the natural texture and high frequency details in natural shootings,
the input of our method, i.e. MPEG motion vectors, carry sufficient information thus
allowing for satisfactory performance of the method. The failure of the method could
be expected when objects are too small, i.e. less then the macro-block size. In this
case the proper motion cannot be captured by MPEG motion estimators. Another
situation when several objects can be mixed together is when their projection into
the image plane are close, that is their relative distance is less then a macro-block
size. In this case the method will be able to separate only the global objects areas
from the background.

Another form of artistic content, cartoons, represent a challenging content for
the method. The images present in cartoons are very different form natural ones. In
fact the colors are often uniform both for foreground object and for the background.
In addiction there is not the color diversity present in nature. This means that
each frame has many flat zones with motion vectors that are independent from the
camera motion. If this flat zones cover most part of the image, the estimated camera
motion is not correct. The consequence is that all extracted motion masks are often
inadequate, so that no object can be extracted. We will show some example extracted
from some cartoons we have analyzed.

In the next section we will explain the method we have used to evaluate the
results.

5.2.1 Evaluation method

The results have been validated by visual comparison with manually segmented im-
ages. Usually, in segmentation methods, the validation methods include the compar-
ison of automatic with respect to manual segmentation in terms of detected pixels,

110

5.2. Results

missed pixels and wrongly detected pixels. In our case it is not possible to adopt
such approach. In fact, as we work with rough data and reduced spatial resolution,
our results will be rough as well. Even manual segmentation may be difficult when
working at macro-block resolution.

Thus we propose a visual comparison between the detected foreground objects
and the original I frame. When we will show the results we will show a table with the
percentage of detected objects with respect to objects present in the sequence; we
will also show the cases of miss-detections and over-detections. By “miss-detection”
we mean objects that have not been detected, while by “over-detection” we refer to
the objects that have been detected but include a large portion of the background.
Therefore as far as foreground objects are concerned, the percentage of detected
objects, missed objects or over-detected objects will be listed.

We will show the same results at the frame level: that is, we will consider the
percentage of correctly processed frames with respect to the total number of frame
in the sequence. This ratio will be the same as the number of correctly detected
foreground objects only if the frames contain a single object; otherwise they will
differ. We will also describe in such cases the number of miss-detections (all object
not detected or one object not detected) and over detections (background detected
as moving object).

Performance evaluation as a visualization platform

To accelerate the evaluation process, we propose to use a tool able to visualize one or
more characteristics of the extracted objects while displaying at the same time the
original video sequence. We have designed for this purpose a simple visual interface
that is shown in Figure 5.1.

In Figure 5.2 a simple use of the visualization tool is shown. In this case at the
top of the visualization tool the graph of the desired feature (the object number) is
presented. On the graph it is possible to see a vertical line; this line identifies the
time stamp: while the video is playing, the line shifts from left to right. It is very
simple to establish this way a correspondence between the algorithm result and what
happens in the video.

Thanks to the vertical line, it is possible to navigate along the video and instan-
taneously view the result at any given location. In Figure 5.3 we have found an error,
in fact in the video no object is present while in the visualization tool an object has
been found.

Another example is presented in Figure 5.4 where two objects have been detected

111

CHAPTER 5. RESULTS

Figure 5.1: The tool used to visualize the results.

Figure 5.2: The visualization tool.

112

5.2. Results

Figure 5.3: An error on the object extraction method occurred: in the graph, where
the results of the extraction method are represented, it is possible to see that the
extraction method has found an object; this is not true as it appears in the corre-
sponding frame of the video sequence.

113

CHAPTER 5. RESULTS

Figure 5.4: The graph shows that our detection algorithm has found two objects in
the video sequence. The result is correct in fact in the video sequence we can see
two men walking.

from our extraction method and two objects are indeed present in the video.

As a future perspective, we plan to extend this visualization tool so as to be
able to visualize two or more properties of the video sequence (e.g. areas of the
detected objects) at the same time. This visualization can further help to extract
other characteristics of the object behavior that cannot be automatically extracted.

5.3 Analysis of a generic video sequence

In this section we will present an example of a generic video sequence that we have
analyzed to extract the foreground objects. We will show all the steps of our method
with some intermediate results; we want to detail this way the problems that have
been found during the sequence analysis and how they could be overcome. A table
will summarize the results. Some images will also be displayed to show the extracted
foreground objects for some of the analyzed sequences.

114

5.3. Analysis of a generic video sequence

5.3.1 “De l’arbre à l’ouvrage”

“De l’arbre à l’ouvrage” is a video sequence that presents indoor and outdoor scenes
whit different types of illumination and color; it presents also different types of
camera movements.

Now we present a sequence chosen from this video. The length of the sequence
is 40 GOP. Since in this case each GOP is composed by 15 frames, its length is of
600 frames, that is 24 seconds. The I frames of this sequence are displayed in Figure
5.5.

115

CHAPTER 5. RESULTS

116

5.3. Analysis of a generic video sequence

Figure 5.5: I frames from the analyzed sequence of “De l’arbre à l’ouvrage”.

117

CHAPTER 5. RESULTS

Figure 5.6: Extraction of motion masks in P frames.

As we have explained in chapter 2 the first step of our rough object extraction
method requires a camera motion estimation from P frame motion information.
Incoherent motion vectors with respect to the camera motion model provide an
estimate of moving objects through motion masks.

In Figure 5.6 we show some DC images and the motion masks extracted from the
P frames that precede the I frames. In the first row the extracted masks correspond
quite well to the corresponding DC image, but this is not always the case. Even
in a sequence where there are not the so called “flat zones” it is very common to
have detection errors and motion masks that do not correspond to the DC images,
as we can see in the second row of Figure 5.6. For this reason we cannot directly
use these masks to identify the foreground objects but it is necessary to filter them
with the methods we have presented in chapter 2. These methods of filtering and
interpolation lead us to obtain more accurate motion masks for I frames, as we show
in Figure 5.7; in fact it is possible to see that even in those case where the P frames
masks were very noisy the filtering operations have led to good results.

Once object motion masks interpolated on the I frames, we have to combine them
with the color segmentation of such I frames. So the first step is to process the I
frame with a morphological filter as explained in chapter 2. In Figure 5.8 we show
the result of this filtering process. In 5.8 a) a DC image is presented and in b) the
sole Y component of the image. In the 5.8 c) the filtered image is presented, and it
is possible to see that the filtering process has produced a much more homogeneous
image and consequently the segmentation process will be more accurate. In Figure
5.8 d) we present the result of color segmentation process where each region has been

118

5.3. Analysis of a generic video sequence

Figure 5.7: In the first row some DC images are presented, in the second row the
motion mask extracted from a P frame and in the third row the motion masks
obtained for the I frames.

substituted with its average color value.

Once we have extracted both motion and color information we can merge them to
obtain foreground objects. In Figure 5.9 we show the extracted objects. The result is
good, in fact if we compare the extracted objects with the sequence of DC images we
can see that the moving objects are completely detected. Some imprecisions at the
object boundaries exist but this is a consequence of working at reduced resolution. In
the first rows of Figure 5.9 we can see that the objects are partially detected, in this
case often only the top part of the body is detected. The reason is that the people

(a) (b) (c) (d)

Figure 5.8: The result of the process of morphological filtering and color segmenta-
tion.

119

CHAPTER 5. RESULTS

are mainly still since they only move their arms so that only these are detected. So,
in this case, even if the people have been partially detected there is no error in the
algorithm since the moving parts of the objects have been correctly detected.

120

5.3. Analysis of a generic video sequence

121

CHAPTER 5. RESULTS

122

5.3. Analysis of a generic video sequence

Figure 5.9: The extracted foreground objects for the sequence presented in Figure
5.5.

123

CHAPTER 5. RESULTS

In Figure 5.10 we show a sequence where an object is partially detected. In this
case the object motion was well detected and the motion mask was perfect, but an
error in the segmentation process occurred so, combining the results of the motion
and static segmentation processes we obtained the result indicated in the second row
of Figure 5.10.

Figure 5.10: A sequence where an object is not correctly detected due to an incon-
sistency occurred in the segmentation process.

In this case the temporal filtering with the quadric function can help to correct
the result in the case of wrong detection. So we compute the center of mass of the
foreground objects and we approximate them with a straight line, then we approxi-
mate the masks with a quadric elliptic section that is function of object dimensions.
In Figure 5.11 the result is shown. In Figure 5.11 a) the foreground objects are shown
before the temporal filtering; Figure 5.11 b) shows the quadric that approximates
the object along time and Figure 5.11 c) indicates the section of the quadric at the
moment of time corresponding to the frame displayed in a). In this way it is not
possible to have precise object boundaries but it is possible to have an approximation
of object position in time and a better coverage of it.

5.3.2 Generic video results

We have analyzed other video sequences and in this section we propose a table to
summarize the results (see table 5.1).

In the sequence ‘arbre �3’ two different situations are present. In the first part
of the sequence two men are walking in the forest. In this case we have no problem

124

5.3. Analysis of a generic video sequence

(a)

20

40

60

80

0

20

40

60

80
1

1.5

2

2.5

3

3.5

4

x
y

t

(b) (c)

Figure 5.11: Approximation of object position and shape using the quadric based
spatio-temporal interpolation.

Sequence % detected objects missd. overd. % correct frames missd. overd.
arbre �1 48/59 (81%) 10/59 1/59 32/40 (80%) 8/40 0
arbre �2 21/26 (81%) 4/26 0 16/19 (84%) 3/19 0
arbre �3 47/71 (66%) 5/71 19/71 42/63 (67%) 1/63 20/63
arbre �4 6/10 (60%) 2/10 2/10 6/11 (54%) 0 5/11
arbre �5 10/16 (63%) 6/16 0 23/29 (79%) 6/29 0
arbre �6 15/22 (68%) 5/22 2/22 15/22 (68%) 5/22 2/22
arbre �7 22/64 (34%) 42/64 0 15/32 (47%) 17/32 0
arbre �8 53/64 (83%) 11/64 0 22/24 (92%) 2/24 0
hiragasy �1 3/30 (10%) 0 27/30 3/30 (10%) 0 27/30
hiragasy �2 26/26 (100%) 0 0 13/13 (100%) 0 0
hiragasy �3 7/11 (64%) 0 4/11 7/11 (64%) 0 4/11
hiragasy �4 6/8 (75%) 2/8 0 6/8 (75%) 2/8 0
hiragasy �5 8/10 (80%) 0 2/10 4/5 (80%) 0 2/10
chancre 18/18 (100%) 0 0 9/9 (100%) 0 0
aqua 36/60 (60%) 24/60 0 14/29 (48%) 15/29 0

Table 5.1: Results of the tests on generic video sequences.

125

CHAPTER 5. RESULTS

to detect them and we had a perfect extraction of the two objects. In the second
part instead, the men go out of the forest and they walk with the sky in the back-
ground. In this case, the motion vectors of the background are not uniform and it
is not possible to correctly estimate the camera motion and consequently it is not
possible to correctly extract the motion masks and the foreground objects. In the
sequence ‘hiragasy �1’ an error occurred in the camera motion estimation; in addition
the object present is very small and the outliers generated by its movement in the
sequence cannot be distinguished from the normal noise associated to the sequence
motion vectors. In the sequence ‘aqua’ the detected objects have been found at the
beginning of the sequence: in fact, in this sequence the camera zoom out and the
objects become very small, so in this sequence, the objects at the beginning of the
sequence were correctly detected but when their dimensions are the same of the ones
of few macro-blocks they could not be detected.

We have noticed, by evaluating the obtained results that our algorithm gives very
good results in general, but if, for any reason the motion vectors of the background
are too noisy, it becomes impossible to correctly estimate the camera motion and
consequently extract the foreground objects.

In the following pages other results extracted from the analyzed video sequences
are presented. In each group of images the total number of processed frames for each
sequence is presented; the computation time is given as well: to compute these times
we have considered the entire process including partially decoding, camera motion
estimation and all the foreground object extraction process except for the filtering
with quadric surfaces. In fact, this last step cannot be executed in real time because
it needs all the sequence computed before.

For one of the sequences proposed, we compute also the 3D shape with the
quadric function to show that it is possible to use it even when all the objects have
been detected to obtain the object approximate elliptic shape (see Figure 5.16).

126

5.3. Analysis of a generic video sequence

Figure 5.12: Some results from the video ‘De l’arbre à l’ouvrage’ (3600 frames, 140
seconds of processing time).

127

CHAPTER 5. RESULTS

Figure 5.13: Some results from the video ‘aquaculture’ (435 frames, 16.9 seconds of
processing time).

Figure 5.14: Some results from the video ‘chancre’ (135 frames, 5.25 seconds of
processing time).

128

5.3. Analysis of a generic video sequence

Figure 5.15: Some results from the video ‘hiragasy’ (1575 frames, 61.3 seconds of
processing time).

129

CHAPTER 5. RESULTS

(a) (b) (c) (d)

20

40

60

20
30

40
50

60
1

1.5

2

2.5

3

3.5

4

4.5

5

(e)

Figure 5.16: An example of tube construction for one of the sequences ‘hiragasy’. In
a)-d) the section of the computed quadric is overlapped to the sequence I frames; in
e) the 3D shape is presented.

130

5.4. Cartoons

5.4 Cartoons

To test our algorithm we have also applied our method to some cartoons. This kind
of video is very different from what we have called generic video sequences. In fact
cartoons and most of the artificial video sequences present many flat zones and so
too many motion vectors are erroneously estimated and sometimes the estimated
camera motion becomes very different from the real one. In Figure 5.17 we propose
an example of these noisy motion vectors: in a) the motion vectors corresponding
to the P frames in b) are shown; in c) the macro-blocks that differ from estimated
camera motion are represented; it is possible to see that, starting from these macro-
blocks, it is not possible to obtain reliable motion masks, and the consequence is
that we are not able to separate the foreground from the background.

In the cartoons that we have analyzed, we have found some cartoons that are
textured like a generic video but for the most part they are not. We will present the
results of our analysis as we have done for generic video sequences.

In the following section we will show the result from a cartoon sequence.

5.4.1 Ferrailles

In this section we will analyze a sequence extracted from the cartoon “ferrailles”
(Canal+ �). In Figures 5.18 the I frame of the sequence are presented at DC
resolution.

This is an indoor sequence and it is well textured, many details are present and
there are no flat zones, so we can imagine that it will not be difficult to correctly
estimate camera motion and obtain a performance of the algorithm similar to the
one shown for the videos presented in table 5.1. In Figure 5.19 we show the outliers
found in some of the P frames of this sequence. We can see that even if there is
noise, it is possible to identify the foreground objects. The subsequent process of
filtering will contribute to eliminate this noise.

After all the processing of filtering and interpolation we extract the object masks
for the I frames. In Figure 5.20 some of these object masks are presented. Even if
in the outlier masks of the P frames some noise was present, our filtering processes
allow to correctly eliminate this noise without affecting the foreground object masks.
In Figure 5.21 the DC images with the motion masks overlapped in transparency
are proposed to show that moving objects have been correctly detected.

Now that we have extracted object masks for the sequence, we have to segment
DC images to refine the result as we have already shown previously. In Figure 5.22

131

CHAPTER 5. RESULTS

(a)

(b) (c)

Figure 5.17: in a) the motion vectors extracted from a P frame of the cartoon ‘Le
chat d’appartement’, in b) the P frame and in c) the outliers corresponding to the
motion vectors in a).

132

5.4. Cartoons

Figure 5.18: A sequence extracted from the cartoon ‘ferrailles’.

Figure 5.19: The extracted outliers from some P frames.

Figure 5.20: Extracted object masks from some I frames.

133

CHAPTER 5. RESULTS

Figure 5.21: The sequence of DC images with object masks in transparency.

we show, this time for the cartoon sequence, all steps of proposed color morphological
segmentation algorithm. In Figure 5.22 a) an I frame from the cartoon sequence is
presented; in 5.22 b) the luminance component of the DC image is shown. In Figure
5.22 c) the same luminance component after the preprocessing filtering is shown; it
is possible to see that the processed image is more homogeneous and so it will be
easier to segment. Finally in 5.22 d) the segmentation result is proposed.

After having segmented all the DC frames, the foreground objects are obtained by
merging this segmentation result with the motion masks. In Figure 5.23 we present
the foreground objects extracted from the sequence.

5.4.2 Cartoon results

We can see that in the case of the cartoon ‘ferrailles’, the objects have been correctly
detected, but this is in general not true for all type of cartoons. In fact we have
analyzed many other cartoons and we have seen that in general our method does
not give good results for this kind of videos. In table 5.2 we summarize the results

134

5.4. Cartoons

Figure 5.22: Color segmentation process for an I frame of the sequence.

135

CHAPTER 5. RESULTS

Figure 5.23: Extracted foreground objects from the sequence ‘ferrailles’.

for a set of cartoons.
Analyzing the table we can conclude that our method does not perform well in

the case of cartoons; the reason is that many flat zones are present and in these cases
many motion vectors are erroneous. Moreover, as our spatiotemporal filtering can
correct isolated errors, it cannot be used in this case because of the large number of
initial wrong detection.

Even if objects are detected, there often is a high number of imprecise object
boundaries due to the presence of large flat zones.

In the following pages we propose further results extracted from the set of car-
toons.

136

5.4. Cartoons

Sequence % detected objects missd. overd. % correct frames missd. overd.
ferrailles 9/11 (82%) 2/11 0 9/11 (82%) 2/11 0
escapade 8/10 (80%) 1/10 1/10 8/10 (80%) 1/10 1/10
boutdumonde 0/12 (0%) 10/12 2/12 0/12 (0%) 10/12 2/12
casa 11/50 (22%) 35/50 4/50 0/24 (0%) 24/24 0
françois 7/26 (27%) 17/26 2/26 7/26 (27%) 17/26 2/26
bouche 13/20 (65%) 7/20 0 13/20 (65%) 7/20 0
chat 2/12 (17%) 6/12 4/12 2/12 (17%) 6/12 4/12
moine 7/26 (27%) 17/26 2/26 2/14 (14%) 10/14 2/14
roman �1 15/50 (30%) 6/50 29/50 15/50 (30%) 6/50 29/50
roman �2 13/24 (54%) 6/24 5/24 13/24 (54%) 6/24 5/24

Table 5.2: Result of the application of the method on cartoon sequences.

Figure 5.24: Some results from the cartoon ‘Petite escapade’ (150 frames, 5.8 seconds
of processing time).

Figure 5.25: Some results from the cartoon ‘Le moine et le poisson’ (210 frames, 8.2
seconds of processing time).

137

CHAPTER 5. RESULTS

Figure 5.26: Some results from the cartoon ‘Le trop petit prince’ (255 frames, 9.9
seconds of processing time).

138

5.4. Cartoons

Figure 5.27: Some results from the cartoon ‘le roman de mon ame’ (1110 frames,
43.2 seconds of processing time).

139

CHAPTER 5. RESULTS

5.5 Conclusions

In this chapter we have presented the results obtained with our method. The se-
quences used for the tests are of two types: generic video sequences, that is natural
videos or films, and cartoons. In the first type of videos the method performs very
well. Generally speaking, for a generic video sequence, our goal of detection of
moving objects in I-frames is attained. The method shows some imprecision in the
object boundaries due to the rough data used and the macro-block resolution. A
slight over-detection can be observed due to the presence of false MPEG2 vectors in
the case of strongly textured image. In all I and P frames, the outliers due to camera
motion on the frame borders were correctly removed even if the camera motion was
not a pure translation. The algorithm has also been tested under limit conditions,
that is to say with objects so near to the camera that they cover a large part of the
background (30%) and in the absence of foreground objects. In the first case the
robustness of the motion detection algorithm has led to a correct extraction of the
camera motion parameters and consequently to a correct detection of the objects
in the foreground. In the second case, even if the noise present on MPEG2 motion
vectors has caused the presence of some outliers, the flat zone filtering has permitted
to classify these outliers as pure noise.

We obtain good results without the spatio-temporal filtering, that is in real time,
and in many cases the spatiotemporal filtering can help to improve the performance
further. In case of cartoons instead, our method does not perform well; the reason
is that the motion vectors extracted from the MPEG2 decoder are very noisy due to
numerous flat zones. In this case the estimated camera motion is not reliable and so
the computed object motion mask. In this case the spatio-temporal filtering cannot
help to obtain better results since to use it efficiently, it is necessary to start from
some good results. In this case, to have better results it is necessary to change the
processing method and to use a segmentation algorithm that is not based on motion
characteristics as in our method. Nevertheless, while the compressed streams in this
case do not supply a reliable motion information, in the perspective of this work,
a specific motion re-estimation on uncompressed stream can be performed. As we
proposed a method for filtering of flat areas, then we can re-estimate in a frame
adaptive manner on frame containing a lot of flat zones.

140

Conclusions

In this thesis work we have presented our approach to foreground moving object
extraction. The problem of object extraction, background/foreground separation
and region characteristic extraction has been faced by many researchers in the last
10 years. In fact the new standards MPEG4 and MPEG7 proposed new concepts for
compressing and indexing the multimedia content. MPEG4 for example, besides the
traditional segmentation methodology that compresses information by subdividing
the image into blocks, introduces new standardized methods to compress the images
by subdividing them into objects they are part of. Moreover it allows different
degrees of compression between foreground objects and background.

MPEG7, instead, is not a compression standard but it defines among other things
the way to describe regions and objects in a video or image. For example it stan-
dardizes how to describe the shape of an object, its motion, its trajectory, its color
and many other things.

As both standards do not give any indication on how extract the foreground
objects or their characteristics, many works have developed different methods to
achieve the result. Many of these works have the objective to extract the foreground
objects to obtain foreground/background separation necessary to use some of the
compression techniques proposed by the MPEG4 standard. In this case precise ob-
ject boundaries are needed so these works perform object segmentation in the pixel
domain with high computational cost. Other works instead, oriented towards index-
ing and retrieval rather than coding, try to extract foreground objects characteristics
useful to be included for example in a platform dedicated to indexing and retrieval
tools. In this case, if the object extraction algorithm is included in the retrieval
platform, it becomes necessary to extract object information quite rapidly. So these
algorithms are real-time oriented, that means that a reduced execution time be-
come one of the most important things, in particular with respect to a very accurate
boundary detection.

141

CONCLUSIONS

Our work belongs to these second family of algorithms. Our objective was to
extract foreground objects and their characteristics from an MPEG2 video sequence
and to reach the objective in real-time. For this purpose, we have decided to work
in a “rough indexing” context. This means that we have used rough data, in our
case MPEG2 motion vectors and reduced resolution images, to reduce the computa-
tional cost. This has reduced consequently the total processing time since our rough
data can be directly extracted from the compressed bit-stream without decoding the
sequence.

The segmentation algorithm can be classified as a combined motion and color
based approach. In fact, we have first performed a foreground/background sepa-
ration based on motion information and then applied a color refinement to extract
foreground objects, at I frame resolution.

We have used motion vectors from an MPEG2 compressed stream to compute the
global camera motion. It has been possible to estimate the camera motion without a
dense vector field thanks to a robust estimation algorithm. Once the camera motion
model has been estimated, we have separated the macro-block that presented motion
vectors inconsistent with the camera motion model. But many regions did not reflect
the correct object position and dimension; this may not necessarily be due to errors
in the camera motion estimation algorithm. It may be a consequence of inadequate
motion estimation by the MPEG2 encoder. We have reduced the problem by an
appropriate filtering process and a segmentation of the motion masks.

After having obtained the post-processed motion masks, motion masks have been
interpolated for I frames, since only color information is available for such frames. By
spatial interpolation we have enabled motion masks to be merged with the results of
a color segmentation applied to the I frames. For the color segmentation process, we
had to perform a preprocessing as well, since given the low resolution data, the image
quality was not so good and many regions exhibited high gradient values so that
appropriate object boundaries detection using the color gradient information was
difficult to achieve. After the preprocessing stage, a modified watershed algorithm
enabled to subdivide the image into homogeneous color regions. This result was then
used to refine the interpolated motion masks given by the motion analysis.

Thanks to the used rough data and the low resolution, the algorithm we have
described can be executed in real-time, independently from the number of present
objects. This part of the algorithm has been tested on two types of video, classified
as general video sequences and cartoons.

In the case of general video sequences the results are promising because more

142

than 80% of objets are detected. The motion masks are, in the majority of cases,
very precise thanks to the robustness of the camera motion estimation. At the same
time the preprocessing performed on the DC images before the color segmentation
stage guarantees a good level of accuracy in color segmentation. Sometimes, errors
in color segmentation may appear but these represent isolated cases. The cases of
mismatch we have found were due, in the majority of cases, to the lack of motion.
In this case in fact the foreground object presented the same motion model of the
camera one and thus would not be detected. Another cause of error in detection
could also be a sudden luminance change. In this case the motion vectors of MPEG2
coding stream are erroneous and consequently also the result we obtain. In both
cases no changes in the algorithm can prevent this type of errors, because it is due
to erroneous input data.

In the case of cartoons instead, the results are very different because it is very
difficult to have correct motion masks. In fact, in cartoons all the objects lack
textured areas, so that the motion vectors extracted from compressed streams are
very often erroneous. Consequently, as the MPEG2 motion vectors are not reliable,
even if the camera motion estimation algorithm is very robust, it fails to provide the
corrected results. This applies in general also to computer generated scenes. In all
these cases no post processing can fix the problem.

On the contrary, in the case of general video sequences where errors appear
most often in isolated frames, we have developed a spatio-temporal filtering that
can correct the object considering the neighbouring results in time. This filter is a
sort of tube, for example a cylinder or a cone or another generic quadric function,
whose sections correspond to the ellipses that approximate the object shapes. In
this case we are not able to exactly extract the missing object, but we can get the
ellipse that best approximates it, by observing the tube section at the moment of
time corresponding to the frame of interest. This kind of filtering technique is very
reliable if isolated errors are present in a sequence where the majority of objects have
been successfully detected. It is clear that if, for any reason, the MPEG2 motion
vectors are very noisy and all the sequence is affected with errors this processing
technique will not be not sufficient to fix the problem.

This kind of process cannot be executed in real-time since it is necessary to have
all the extracted objects. Moreover as it builds a quadric function for every object,
the processing time depends on the number of objects.

In conclusion the proposed method is very promising since, thanks to the robust-
ness of motion camera estimation and of the combined motion and color segmenta-

143

CONCLUSIONS

tion, it has a high success rate. Without considering the spatio-temporal filtering,
working in compressed domain and using rough data allows to obtain very good
results in real-time.

To obtain better results and to complete the method making it appropriate for
MPEG7 oriented applications, we suggest some possible improvements or some ap-
plications of the proposed algorithm:

• The presented algorithm produces results for only I frames, but all the motion
masks are calculated for P frames as well, so it can be reasonable to think to
extend this algorithm also to P frames. Moreover by increasing the number
of results, more objects will be available to perform better spatio-temporal
filtering, thus making it more reliable;

• this work did not consider the case of overlapping objects, but the information
necessary to establish which object is closer to the camera is available, and this
information can also make the spatio-temporal filtering process more reliable.

• a visualization platform can be implemented developing the instrument that
we have used to validate the results. Many descriptors can be visualized along
time and it could be interesting to find a few descriptors which, when visualized
jointly, may bring some further semantic understanding of the context.

• as the temporal filtering is expensive in terms of execution time, a solution can
be to execute the filtering only for the sequences where we need it. So it can
be useful to integrate the filtering processing in the visualization system that
we used as a validation method in chapter 5. In this case during the evaluation
of the result if an error is detected the spatio-temporal filtering may be used
to try to fix the problem.

144

References

[1] “Information technology: generic coding of moving pictures and associated au-
dio information,” 1995. MPEG Requirements Group, ISO/IEC 13818.

[2] I. Richardson, H.264 and MPEG-4 Video Compression. Video Coding for next-
generation code. Wiley, 2003.

[3] B. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG-7. Multime-
dia Content Description Interface. Wiley, 2002.

[4] “Information technology: coding of audio-visual objects- part 2: Visual,” 2001.

[5] N. Brady, “Mpeg-4 standardized methods for the compression of arbitrarily
shaped video objects,” IEEE Trans. Circuits and Systems for Video Technology,
pp. 1170–189, 1999.

[6] “Introduction to mpeg7.” MPEG Requirements Group, Doc. ISO/MPEG
N4325, July 2001. MPEG Meeting, Sidney.

[7] “Mpeg7 overview.” MPEG Requirements Group, Doc. ISO/MPEG N4317, July
2001. MPEG Meeting, Sidney.

[8] “Mpeg4 overview.” MPEG Requirements Group, Doc. ISO/MPEG N4316, July
2001. MPEG Meeting, Sidney.

[9] F. Pereira, “Mpeg4: why, what, how and when? tutorial issue on the mpeg4
standard,” Signal Processing: Image Communication, vol. 15, pp. 271–279,
1999.

[10] “Mpeg7 requirements.” MPEG Requirements Group, Doc. ISO/MPEG N4320,
July 2001. MPEG Meeting, Sidney.

145

REFERENCES

[11] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1190–1203, June
1997. San Juan, Puerto Rico.

[12] P. Salembier and F. Marques, “Region-based representations of image and video:
segmentation tools for multimedia services,” IEEE Transaction on Circuits and
Systems for Video Technology, vol. 9, pp. 1147–1169, December 1999.

[13] E. Saber, A. Takalp, and G. Bozdagi, “Fusion of color and edge information for
improved segmentation an edge linking,” in Proc. of International Conference
on Acoustics, Speech and Signal Processing, (Atlanta, GA), pp. 2176–2179, May
1996.

[14] M. Tabb and N. Ahuja, “Multiscale image segmentation by integrated edge and
region detection,” IEEE Transaction on Image Processing, vol. 6, pp. 642–655,
May 1997.

[15] L. Lucchese and S. Mitra, “Unsupervised segmentation of color images based
on k-means clustering in the chromaticity planes,” in Proc. of Content-based
Access of Image and Video Libraries, pp. 74–78, 1999.

[16] S. Ji and H. Park, “Image segmentation of color image based on region co-
herency,” in Proc. of International Conference on Image Processing, vol. 1,
pp. 80–83, 1998.

[17] J. Wang and E. Adelson, “Representing moving imaging with layers,” IEEE
Transaction on Image Processing, vol. 3, pp. 625–638, September 1994.

[18] S. Ayer and H. Sawhney, “Layered representation of motion video using robust
maximum liklihood estimation of mixture models and mdl encoding,” Proc.
5th International Conference on Computer Vision, pp. 777–784, June 1995.
Cambridge, MA.

[19] T. Darrell and A. Pentland, “Cooperative robust estimation using layers of
support,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, pp. 474–487, May 1995.

[20] G. Borshukov, G. Bozdagi, Y. Altunbasak, and A. Tekalp, “Motion segmenta-
tion by multistage affine classification,” IEEE Transaction on Image Processing,
vol. 9, pp. 1259–1268, December 1999.

146

REFERENCES

[21] F. Meyer and P. Bouthemy, “Region based tracking using affine motion models
in long image sequences,” CVGIP: Image Understanding, vol. 60, pp. 119–140,
September 1994.

[22] L. Torres, D. Garcia, and A. Mates, “A robust motion estimation and seg-
mentation approach to represent moving images with layers,” in International
Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. 2981–2984,
1997.

[23] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,”
International Journal on Computer Vision, vol. 7, pp. 321–331, 1988.

[24] B. Bascle, P. Bouthemy, R. Deriche, and F. Meyer, “Tracking complex primi-
tives in image sequence,” in Proc. of 12th International Conference on Pattern
Recognition, pp. 426–431, 1994.

[25] A. Blake, R. Curwen, and A. Zisserman, “A framework for spatiotemporal con-
trol in the tracking of visual contours,” International Journal on Computer
Vision, vol. 11, no. 2, pp. 127–145, 1993.

[26] A. M. Tekalp, Digital Video Processing, ch. 3. Prentice Hall, 1995.

[27] T. Meier and K. Ngan, “Video segmentation for content-based coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 9, pp. 1190–
1203, December 1999.

[28] D. Zhong and S. Chang, “An integrated approach for content-based video object
segmentation and retrieval,” IEEE Transations on Circuits and Systems for
Video Technology, vol. 9, pp. 1259–1268, December 1999.

[29] C. Gu and M. Lee, “Sematic video object segmentation and tracking using
mathemtical morphology and perspective motion model,” in IEEE International
Conference on Image Processing, vol. 2, (Santa Barbara, California), pp. 514–
517, October 1997.

[30] M. Kim, J. Choi, D. Kim, H. Lee, M. Lee, C. Ahn, and Y. Ho, “A vop generation
tool: automatic segmentation of moving objects in image sequences based on
spatio-temporal information,” IEEE Transaction on Circuits Systems and Video
Technology, vol. 9, pp. 1216–1226, December 1999.

147

REFERENCES

[31] F. Dufaux, F. Moscheni, and A. Lippman, “Spatiotemporal segmentation based
on motion and static segmentation,” in Proc. IEEE Conference on Image Pro-
cessing, vol. 1, pp. 306–309, October 1995.

[32] M. Gelgon and P. Bouthemy, “A region level graph labeling approach to mo-
tion based segmentation,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition, (San Juan, Puerto Rico), pp. 514–519, June 1997.

[33] I. Patras, E. Hendriks, and R. Lagendijk, “Video segmentation by map labeling
of watershed,” tech rep. ict -00-01, Delft University of Technology, November
2000.

[34] M. Dubuisson and A. Jain, “Contour extraction of moving objects in complex
outdoor scenes,” International Journal of Computer Vision, vol. 14, pp. 83–105,
1995.

[35] K. Zhang, M. Bober, and J. Kittler, “Motion based image segmentation for
video coding,” in Proc. International Conference on Image Processing, (Los
Alamitos, CA), pp. 476–479, 1995.

[36] J. Choi, S. Lee, and S. Kim, “Video segmentation based on spatial and tempo-
ral information,” in International Conference on Acoustics, Speech and Signal
Processing, vol. 4, pp. 2661–2664, 1997.

[37] J. Benois-Pineau, F. Morier, D. Barba, and H. Sanson, “Hierarchical segmenta-
tion of video sequences for content manipulation and adaptive coding,” Signal
Processing: special issue on Video sequence segmentation for content processing
and manipulation, no. 66, pp. 181–201, 1998.

[38] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679–698, November
1986.

[39] E. Dijkstra, “A note on two problems in connection with graphs,” Journal of
Numerical Mathematics, vol. 1, pp. 269–271, 1959.

[40] S. Jehan-Besson, M. Barlaud, and G. Aubert, “DREAM2S: Defomable regions
driven by an eulerian accurate minimizationmethod for image and video seg-
mentation,” International Journal of computer vision, no. 53, pp. 45–70, 2003.

148

REFERENCES

[41] S. Jehan-Besson, M. Barlaud, and G. Aubert, “A 3-step algorithm using region-
based active contours for video objects detection,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2002, pp. 572–581, june 2002.

[42] S. Jehan-Besson, M. Barlaud, and G. Aubert, “Region-based active contours
for video object segmentation with camera compensation,” in Proc. of IEEE
International Conference on Image Processing, (Barcelone), September 2003.

[43] F. Moscheni, S. Bhatacharje, and M. Kunt, “Spatiotemporal segmentation based
on region merging,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20, pp. 897–915, September 1998.

[44] M. Bierling, “Displacement estimation by hierarchical block matching,” in Proc.
of SPIE Visual Communication and Image Processing, vol. 1001, pp. 942–951,
1988.

[45] J. Choi, M. Kim, M. Lee, and C. Ahn, “User-assisted video object segmen-
tation by multiple object tracking,” tech. rep., ISO/IEC JTC1/SC29/WG11
MPEG98/m3349, Tokyo, Japan, March 1998.

[46] C. Gu and M. Lee, “Semiautomatic segmentation and tracking of semantic video
objects,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 8, pp. 572–584, September 1998.

[47] S. Colonnese and G. Russo, “User interaction modes in semi-automatic segmen-
tation: development of a flexible graphical user interface in java,” tech. rep.,
ISO/IEC JTC1/SC29/WG11 MPEG98/m3320, Tokyo, Japan, March 1998.

[48] A. Mahboubi, J. Benois-Pineau, and D. Barba, “Tracking of objects in video
scebes with time varying content,” EURASIP Journal on applied signal process-
ing, vol. 6, pp. 582–593, 2002.

[49] N. Brady and N. O’Connor, “Object detection and tracking using an em-based
motion estimation and segmentation framework,” in Proc. IEEE International
Conference on Image Processing, pp. 925–928, 1996.

[50] D. Elias, The motion based segmentation of image sequences. PhD thesis, Trinity
college, University of Cambridge, August 1998.

[51] N. Vasconcelos and A. Lippman, “Empirical bayesian em-based motion segmen-
tation,” in Proc. IEEE CVPR, pp. 527–532, 1997.

149

REFERENCES

[52] P. Torr, R. Szelisky, and P. Anandan, “An integrated bayesan approach to layer
extraction from image sequences,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, pp. 297–303, March 2001.

[53] G. Wu and T. Reed, “Image sequence processing using spatiotemporal seg-
mentation,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, pp. 798–807, August 1999.

[54] E. Izquierdo and M. Ghanbari, “Ket components for an advanced segmentation
system,” IEEE Transactions on Multimedia, vol. 4, pp. 97–113, March 2002.

[55] O. Sukmarg and K. Rao, “Fast object detection and segmentation in mpeg
compressed domain,” in Proc. IEEE TENCON, (Kuala Lumpur, Malaysia),
September 2000.

[56] R. D. Queiroz, “Processing jpeg-compressed images and documents,” IEEE
Transactions on Image Processing, vol. 7, pp. 1661–1672, December 1998.

[57] H. Wang and S. Chang, “A highly efficient system for automatic face region
detection in mpeg video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 7, pp. 615–628, August 1998.

[58] J. Benois-Pineau and A. Khrennikov, “Image segmentation in compressed do-
main by clustering methods with euclidean and p-adic metrics,” in Proc. IPMU,
(Annecy, France), July 2002.

[59] R. V. Babu and F. Ramakrishnan, “Video object segmentation: a compressed
domain approach,” IEEE Transactions on Circuits and Systems for Video Tech-
nologies, vol. 14, no. 4, pp. 462–474, 2004.

[60] D. Sandwell and T. David, “Biharmonic spline interpolation of geos-3 and seasat
altimeter data,” Geophysical Research Letters, vol. 14, no. 2, pp. 139–142, 1987.

[61] L. Favalli, A. Mecocci, and F. Moschetti, “Object tracking for retrieval ap-
plications in mpeg2,” IEEE Transactions on Circuits and Systems for Video
Technologies, pp. 427–432, April 2000.

[62] F. Porikli, “Real-time vido object segmentation for mpeg encoded video se-
quences,” tech. rep., Mitsubishi Electric Research Laboratories, Cambridge,
USA, March 2004.

150

REFERENCES

[63] V. Mezaris, I. Kompatsiaris, N. Boulgouris, and M. Strintzis, “Real-time
compressed-domain spatiotemporal segmentation and ontologies for video in-
dexing nad retrieval,” IEEE Transactions on Circuits and Systems for Video
Technologies, vol. 14, pp. 606–621, May 2004.

[64] J. Faquier and N. Boujemaa, “Region-based retrieval: coarse segmentation with
fine signature,” Proc. of IEEE International Conference on Image Processing,
2002.

[65] N. AbouGhazaleh and Y. ElGamal, “Compressed video indexing based on object
motion,” Proc. of Visual Communication and Image Processing, pp. 986–993,
June 2000. Perth, Australia.

[66] Y. Tan, D. Saur, S. Kulkarni, and P. Ramadge, “Rapid estimation of camera
motion from compressed video with application to video annotation,” IEEE
Transaction on Circuits and Systems for Video Technology, vol. 1, pp. 133–146,
2000.

[67] M. Durik and J. Benois-Pineau, “Robust motion characterisation for video in-
dexing based on mpeg2 optical flow,” in Proc. of Content Based Multimedia
Indexing, (Brescia, Italy), September 2001.

[68] C. Stiller and J. Konrad, “Estimating motion in image sequences: a tutorial on
modeling and computation of 2d motion,” IEEE Signal Processing Magazine,
vol. 16, pp. 70–91, July 1999.

[69] F. Dufaux and J. Konrad, “Robust, efficient and fast global motion estimation
for video coding,” IEEE Transaction on Image Processing, vol. 9, pp. 497–501,
March 2000.

[70] J.-M. Odobez and P. Bouthemy, “Estimation robuste multi-échelle de modèles
paramétrés de mouvement sur des scènes complexes,” in Reconnaissance des
Formes et Intelligence Artificielle, RFIA’94, January 1994.

[71] P. Bouthemy, M. Geldon, and F. Ganasia, “A unified approach to shot change
detection and camera motion characterisation,” IEEE Circuits and Systems for
Video Technology, vol. 9, pp. 1030–1044, October 1999.

[72] S. Benini, E. Boniotti, R. Leonardi, and A. Signoroni, “Interactive segmenta-
tion of biomedical images and volume using connected operators,” in Proc. of
International Conference on Image Processing, Sep 2000. Vancouver, Canada.

151

REFERENCES

[73] J. Benois-Pineau and H. Nicolas, “A new method for region based depth order-
ing in a video sequence: application to frame interpolation,” Journal of Video
Communication and Video Representation, vol. 13, pp. 363–385.

[74] B.-L. Yeo and B. Liu, “On the extraction of dc sequence from mpeg compressed
video,” in Proc. Of International Conference on Image Processing, vol. 2, (Wash-
ington DC), 1995.

[75] A. Mahboubi, J. Benois-Pineau, and D. Barba, “Suivi et indexation des ob-
jets dans des séquences vidéo avec la mise-à-jour par confirmation retrograde,”
CORESA’2001, November 2001. Dijon, France.

[76] C. Erdem, F. Ernst, A. Redert, and E. Hendriks, “Temporal stabilisation of
video object segmentation for 3d-tv applications,” in Proc. of International
Conference on Image Processing, (Singapore), October 2004.

[77] M. Najim, Modélisation et identification en traitement du signal, ch. 2, pp. 35–
47. Masson Ed., 1988.

[78] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, The Second-
Order Surfaces, ch. 3, pp. 12–19. New York: Chelsea, 1999.

[79] R. Mollin, Quadrics. CRC Press, 1995.

[80] A. Agnetis, “Introduzione all’ottimizzazione vincolata,” Università di Siena.

[81] “Mpeg7 interoperability, conformance testing ad profiling.” MPEG Require-
ments Group, Doc. ISO/MPEG N4039, Mar 2001. MPEG Meeting, Singapore.

[82] D. Zhong and S. Chang, “Content-based video object segmentation and re-
trieval,” IEEE TRansactions on Circuits and Systems for Video Technology,
vol. 9, pp. 1259–1268, December 1999.

[83] A. Dempster, N. Laird, and D. Rubin, “Maximum-likelihood from incomplete
data via the em algorithm,” J. Roy. Stat. Soc. B, vol. 39, pp. 1–38, 1997.

[84] R. Wang, H.-J. Zhang, and Y.-Q. Zhang, “A confidence measure based moving
object extraction system built for compressed domain,” Proc. of IEEE Interna-
tional Symposium on Circuits and Systems, vol. 5, pp. 21–24, 2000.

[85] “www.mathworld.wolfram.com.” Wolfram Research.

152

REFERENCES

153

We don’t need no education
We don’t need no thought control [...]
All in all it’s just another brick in the wall.
All in all you’re just another brick in the wall.

���������
	���������
���������
	���������� ���"!#	
�"	$��%&�#'(�*)��
+-,��
	����
.0/1!32546!#	����
	7���8	�����9:��	�'

;=<?>A@�B�<DC�EGF1H3IKJLINM�O1P1F1H FQM=RSINT�UWVQX�F�Y[Z\ILO1]_^`UWH�UaT�UWbLMcFQTdY`F�H�T�b_O"efINghF7Y`F1H Y`bLM`M�P1F1H bLM_T O1bLM�Y�^`UaT3ikjlIkY�UWH�mnbNo
M`Uap`UajaUaT�PqY`F�gfX"INM�Y`F1H�prILH"F1H-Y`FqY`bLM`M�P1F1H�J_UWY`P1b=M_^�RsPtX�Ua]_^�F1H�mnbL^`X�juZ ^`T�UajaUWH"INT�FQ^`X:gfX"INM�Y8oum`^`p`jaUWOfvGw�PKINM`RsbLUaM�H
juZ UaM_T�FQX"ILOQT�UWbLMxIKJ?F1O-jWF1H3Y`bLM`M�P1F1H#R�^`jaT�UaRsP1Y�UlIsFQT3J8UWY`P1bqFQMcmrINX�T�UWOQ^`jaUWFQX(M�P1O1F1H�H�UaT�F:Y`F1H3bL^`T�UajWH(Y`F�Y`F1H�OQX�Uam`T�UWbLMGy
bLX�g?INM`UWH"INT�UWbLMDFQT#ghF1H�T�UWbLMzY`F:O1F1H#Y`bLM`M�P1F1H(J_UWY`P1b`v�E�I{RSI}|�bLX�UaT�P:Y`F1H(Y`b_Ot^�RsFtM8T�H#R�^`jaT�UaRsPQY`UWISH�bLM_T#m`X�b_Y�^`UaT�H
H�bL^�H#~�bLX�RsFkO1bLRqm`X�F1H"H�P1Ffv��-F:m`ja^�H�O1bLRqRsFkjWF1H7^`T�UajaUWH"INT�FQ^`X�H�Y`FQRSINM�Y`FQM_T�Y`F1H(X�PQmnbLM�H�F1H-iqjWFQ^`X7X�F1]_^��QT�F1H7jWF1H
m`ja^�H�X"INm`UWY`F1HdmnbfH�H�Uap`jWFfy_juZ�Ft�8T�X"ILOQT�UWbLMcY[Z UaM�~�bLX�RSINT�UWbLMcFQM=T�FQRqm�H�X�P1FQjnRs�QRsF�H�U�O1FQjajWFto�OQUnMGZ�F1H�T�mrILH�T�X�V1H�m`X�P1OQUWH�F
F1H�T(Y`FQJhFQM_^�F:^`MzbLp�|�F1OtT�U�~
UaRqmnbLX�T"INM_TKv��3ILH�P1F:H�^`X#Y`F1H#�_�8mnbLT���V1H�F1H3~�bLX�R�^`jWP1F1H(OQU�o�Y`F1H�H�^�HKy`^`M�F�M�bL^`J?FQjajWF�T�FQM�o
Y�INM�O1F�FQMDRSINT�UWVQX�F�Y[Z\INMrINja�8H"F:mnbL^`X�juZ U�MrY`Ft�`INT�UWbLMxR�^`jaT�UaRsP1Y�UlI=F1H�T(mrINX�^�FfynFQjajWFkmnFQ^`T��QT�X�F�]?^rINjaU��rP1F�O1bLRqRsF
mrINX"ILY�UagfRsFSY`FD��X�bL^`gf��UaM�Y`Ft��UaM`gx�xbL^���UaM�Y`Ft��INT�UWbLM�gfX�bfH"H�UWVQX�F��hv[w�bL^�H�mnbL^`JhbLM�H:UaM�OQja^`X�FqM�bLT�X�FqT�X"IKJLINUaj
Y�INM�H�O1FQT�T�F�RsbL^`JfINM�O1F=Y[Z UaM�Y`Ft�`INT�UWbLM�X"INm`UWY`F=FQT{INm`m`X�bK��UaRSINT�UaJ?F=Y�INM�H�jlIL]_^�FQjajWF�^`M`UW]?^�FQRsFQM_T{jWF1H�Y`bLM`M�P1F1H
UaRqm`X�P1OQUWH�F1H�T�FQjajWF1H�]_^�F#jWF1H�JhF1OQT�FQ^`X�HdY�^SRsbL^`J?FQRsFQM_TdFQT�jWF1H�UaRSINghF1Hd�:��H�bLM_T�Ft�8m`jWbLUaT�P1F1H�mnbL^`X�m`X�b_Y�^`UaX�F(^`M�F
UaM�Y`Ft��INT�UWbLMD��M�F�Y`F1H�bLp�|�FQT�H�FtM�IKJLINM_T�oum`jlINMGv��-INM�H�O1FkmrINX"ILY�UagfRsF�M�bL^�H7m`X�bLmnbfH"bLM�H�Y`F�O1bLR�p`UaM�FQX:isjlIq~�bLUWH
jWF1H�UaM�~�bLX�RSINT�UWbLM�H3Y�^�RsbL^`J?FQRsFQM_T FQTdjlIkH"FQgfRsFQM_T"INT�UWbLM�prILH�P1Fto�O1bL^`jWFQ^`X mnbL^`X Ft��T�X"INUaX�F7jWF1HdbLp�|�FQT�H�mnFQX�T�UaM�FQM_T�H
Y`F1H#��^���J8UWY`P1b�O1bLRqm`X�F1H�H�P1HKv���j�mnFQ^`T-INX�X�UaJhFQX�]_^�F:jWFkRsbL^`JhFQRsFQM_T-Y[Z ^`MxbLp�|�FQT�H�bLUaT(T�X�V1H�H�UaRqUajlINUaX�F�IN^DRsbL^�o
J?FQRsFQM_T{Y`F�jlIDOKINRsPtX�IDbL^�]_^�FSjuZ�bLp�|�FQT{H"bLU�T{H�T"INT�UW]_^�Ffy�IN^�OQ^`M�bLp�|�FQT�M�F=H�FQX"IxINjWbLX�H{Y`PQT�F1OQT�Pfv�w�PKINM`RsbLUaM�HKy
O1bLRqRsF-^`McbLp�|�FQT M�F�mnFQ^`T X"INUWH"bLM`MrINp`jWFQRsFQM_T#mrILH#INm`mrINX"I}�WT�X�F:FQT3Y�UWH�mrINX"INUaT�X�F�Y�^`X"INM_T3^`M�F�O1bL^`X�T�F�H�P1]?^�FQM�O1F
Y[Z UaRSINghF1HKyGM�bL^�H�m`X"bLmnbfH�bLM�HkY`F{��jaT�X�FQX:jWF1H:H"PQ]_^�FQM�O1F1HkY[Z�bLp�|�FQT�H:jWFqjWbLM`gzY`F{juZ\I}�`FqT�FQRqmnbLX�FQjuv� �bL^`XkO1F{~uINUaX�F
M�bL^�H-m`X�bLmnbfH�bLM�H�^`M�F�Rsb_Y`PQjaUWH"INT�UWbLM¡Y`F�jlI=H�P1]_^�FQM�O1F{Y`F1H�bLp�|�FtT"H�mrINX�^`M�F{H�^`mnFQX�o�]_^rILY�X�UW]?^�FfvGE�I�RsPQT���b_Y`F
m`X�bLmnbfH�P1FsY`bLM`M�FqY`F1H�X�P1H�^`jaT"INT�H�m`X�bLRsFQT�T�FQ^`X�H�¢njWF1H�X"INT�P1H:Y`F{jWI�Y`PQT�F1OQT�UWbLM£bL^¤jWF1H:H�^`X�o�Y`PQT�F1OQT�UWbLM�H:mnFQ^`J?FQM_T
�QT�X�F:O1bLX�X�UaghP1H#mrINX#jlI{RsPQT���b_Y`FkY`F���jaT�X"INghFkH�mrINT�UWbNouT�FQRqmnbLX�FQj�m`X�bLmnbfH�P1Ffv
¥�¦§>K¨?¦§©�ª§¦�«�¬¤C[��M�~�bLX�RSINT�UW]?^�F
¯®�°K>Q±1²�ª§¬?³�>xC�F1H�T�UaRSINT�UWbLM�Y�^xRsbL^`J?FQRsFtM8T�H�^`X�Y`F1H7��^��DO1bLRqm`X�F1H�H"P1HKynH�FQgfRsFQM_T"INT�UWbLM�H�mrINT�UWbNouT�FQRqmnbLX�FQjajWFfy
Rsb_Y`PQjaUWH"INT�UWbLMzmrINX(Y`F1H(H�^`X�~uILOQF1H(]?^rILY�X�UW]_^�F1HKv

���������
	���������
���������
	���������� ���"!#	
�"	$��%&�#'(�*)��
+-,��
	����
.0/1!32546!#	����
	7���8	�����9:��	�'

´�µ >1°K¶N·`¨f°£C
¸ ��F�ILY�JfINM�O1F1H:UaM£Y�INT"I�OKINm`T�^`X�UaM`g¤INM�Y�H�T�bLX"INghFq�rIAJhFqRSILY`FsjlINX�ghF�INRsbL^`M_T�H�bN~ J8UWY`F1b�Y�INT"I
IKJfINUajWINp�jaFk~�bLX�O1bLM�H�^`RsFQX�INm`m`jaUWOKINT�UWbLM�HKv�¹7bAºdFQJ?FQXKyrUaM_T�FQX"ILOQT�UaM`g�º3UaT��DR�^`jaT�UaRsF1Y�UlI=Y�INT"I�y�INM�YzJ8UWY`F1bSUaMDmrINX�o
T�UWOQ^`jlINXKy�X�F1]?^`UaX�F1H{T�b_bLjWH{T�b¤Y`F1H�OQX�UapnFfy�bLX�g?INM�U�»KF�INM�Y¼RSINMrINghF�J8UWY`F1b¤Y�INT"I�v�¸ ��F=RSI}|�bLX�UaT��£bN~7R�^`jaT�UaRsF1Y�UlI
Y`b_OQ^`RsFQM_T�H�UaH½m`X�bAJ8UWY`F1YsUaMSO1bLRqm`X�F1H�H"F1Yq~�bLX�R�vh� F1H�UWY`F1HAy?ILH½T���F3^�H�FQX�H½X�F1]_^`UaX�F3T���FQUaX�X�FQT�X�UWFQJfINjrUaMsT���F ~uILH�T�F1H�T
º IK�?y�Ft�8T�X"ILOQT�UaM`g�UaMc~�bLX�RSINT�UWbLMDU�MzX�FKINjGT�UaRsFfyrFQJ?FQM�U�~�UaT#UWH#M�bLT#m`X�F1OQUWH�Ffy��rILH#pnF1O1bLRsF�INM�UaRqmnbLX�T"INM_T�bLp�|�F1Oto
T�UaJ?Ffv�� ILH�F1Y£bLM¼T���F=ILH�H�^`Rqm`T�UWbLM�HqINpnbAJhFfy�I�M�FQº¾T�X�FQM�Y£UaM�INMrINja�8H�UWH�RsFQT���b_Y`H�~�bLXkUaM�Y`Ft��UaM`gxR�^`jaT�UaRsF1Y�UlI
O1bLM_T�FQM_T(�rILH7INm`mnFKINX�F1Y�º3�`UWO"�DOKINM�pnF:]?^rINjaU��rF1YDILH7I�X�bL^`gf�zUaM�Y`Ft�8UaM`gSmrINX"ILY�UagfR�v���McT��`UWH(O1bLM_T�Ft��T#ºdF:OKINM
UaM�OQja^�Y`F#bL^`X
ºdbLX�e�º3��FQX�F#bLM`ja��X�bL^`gf�sY�INT"I�o[T��rINT
UWH�RsbLT�UabLMsJ?F1OQT�bLX�H�INM�Yq���£UaRSINghF1H�oG�rIKJ?FdpnF1FQMq^rH�F1Y�~�bLX
��M�F�UaM�Y`Ft��UaM`g�~�bLX�~�bLX�FQgfX�bL^`M�Y�bLp�|�F1OQT�HKv���MxT��`UWH-mrINX"ILY�UagfR�ºdF�m`X�bLmnbfH�F{T�b�O1bLR�p`UaM�F{RsbLT�UWbLM�U�M`~�bLX�RSINT�UWbLM
INM�Y¼O1bLjWbLX�o�prILH"F1Y¼H�FQgfRsFQM_T"INT�UWbLM�T�bxFt��T�X"ILOQT�RsFKINM`UaM`gL~�^`jd~�bLX�FQgfX�bL^`M�Y�bLp�|�F1OQT�H�~�X�bLR¿O1bLRqm`X�F1H�H�F1Y¼J_UWY`F1b
H�T�X�FKINRsHKv?��T
RSIK�{�rINm`mnFQM�T��rINT�T���F#bLp�|�F1OQT�RsbLT�UWbLMSUWH½J?FQX���R�^�O"��H�UaRqUajlINX�T�b:T��rINT�bLM�F#bN~[T���F#OKINRsFQX"I�y?T��rINM
M�b�bLp�|�F1OQT�H-ghFQT�Y`FQT�F1OQT�F1Y[vG¸�b�bAJ?FQX�O1bLRsF�T��`UWHKynºdF�m`X�bLmnbfH�F{T�b���jaT�FQX�T���F{H�F1]_^�FQM�O1F1H�bN~dbLp�|�F1OQT�HkINjabLM�g�T���F
T�UaRsF7I}�8UWHAvf¸�bkY`b�T��`UWH�ºdF3m`X�bLmnbfH"F3T�b:Rsb_Y`FQjrT���F(H�F1]?^�FQM�O1F(bN~[bLp�|�F1OQT�H½p8�qI�H�^`mnFQX�o�]_^rILY�X�UWOfv_¸ ��F#m`X�bLmnbfH�F1Y
RsFQT���b_Y�gfUaJ?F1H�m`X�bLRqUWH�UaM`g�X�F1H�^`jaT�H�¢?UWH�bLjlINT�F1Y�RqUWH�H�o�Y`FQT�F1OQT�UWbLM�bLXdbAJ?FQX�o�Y`FQT�F1OQT�UWbLM�FQm`UWH"b_Y`F1HdOKINM�pnF7O1bLX�X�F1OQT�F1Y
p_�=m`X�bLmnbfH�F1Y�H�mrINT�UWbNouT�FQRqmnbLX"ILjG��jaT�FQX�UaM`g�v
¥�¦§>K¨?¦§©�ª§¦�«�¬¤C��dbLRqm`^`T�FQX�oÁÀ8O1UWFQM�O1F
Âc¬?Ã[Ä�®r¶NÅ�>�C8RsbLT�UWbLM�F1H�T�UaRSINT�UWbLMSbLMSO1bLRqm`X�F1H�H�F1YsH�T�X�FKINR�yfH�mrINT�UWbNouT�FQRqmnbLX"INj�H�FQgfRsFQM_T"INT�UWbLMGy?Rsb?Y�FtjajaUaM`gkp8�
H�^`mnFQX�o�]_^rILY�X�UWO1HKv

E�IL� Æ(�ty
Ç7M`UaJhFQX�H�UaT�P:� bLX�Y`FKIN^���Èfy

ÉfÊ È�O1bL^`X�H(Y`F�jlIqE[UapnPQX"INT�UWbLMGy
ÉfÉNË?ÌfÊ ¸�INjWFQM�O1F��dF1Y`Ft��Í�Î�Æ7Ï7w��dÐ�Ñtv

	Couverture
	Ringraziamenti
	Abstract
	Compendio
	Contents
	Introduction
	Chapter 1 An overview of the MPEG standard family
	1.1 Introduction
	1.2 MPEG2 standard for video coding
	1.2.1 Video signal properties
	1.2.2 Coding methods
	1.2.3 Different levels of a video sequence
	1.2.4 Spatial redundancy
	1.2.5 Statistical redundancy
	1.2.6 Temporal redundancy
	1.2.7 Some conclusions about MPEG2 video part

	1.3 MPEG4 Visual part 1
	1.3.1 Overview of MPEG4 visual
	1.3.2 MPEG4 visual properties
	1.3.3 Coding arbitrary-shaped regions
	1.3.4 Some conclusions on MPEG4 Visual

	1.4 MPEG7 standard
	1.4.1 MPEG7 tools
	1.4.2 Overview of MPEG7 visual descriptors

	1.5 Conclusions

	Chapter 2 Object-based segmentation and indexing of video streams
	2.1 Introduction
	2.2 Intraframe and motion segmentation
	2.3 Combined approaches to object segmentation
	2.4 Semi-automatic approaches
	2.5 Spatio-temporal video object segmentation
	2.6 Spatio-temporal object segmentation in compressed domain
	2.7 Real-time segmentation of video object
	2.8 Conclusions

	Chapter 3 Object-based segmentation of video streams for ‘Rough Indexing’
	3.1 Introduction
	3.2 Rough indexing paradigm
	3.3 Methodology for foreground object extraction
	3.4 Motion mask extracti
	3.4.1 Camera motion estimation

	3.5 Motion mask extraction from a single P frame
	3.5.1 Filtering of outliers due to camera motion
	3.5.2 3D filtering of the motion masks

	3.6 Motion mask extraction in I frame
	3.7 Object mask refinement by color segmentation
	3.7.1 Pre-processing filtering
	3.7.2 Gradient extraction
	3.7.3 Region growing algorithm

	3.8 Merging of motion masks and color segmentation results
	3.8.1 Flat region removal

	3.9 Conclusion

	Chapter 4 Feature extraction and spatio-temporal filtering
	4.1 Introduction
	4.2 Extraction of object characteristics
	4.3 Spatio-temporal filtering
	4.3.1 Identification of objects at I frame resolution along the time
	4.3.2 Spatio-temporal tube construction

	4.4 Conclusions

	Chapter 5 Results
	5.1 Introduction
	5.2 Results
	5.2.1 Evaluation method

	5.3 Analysis of a generic video sequence
	5.3.1 “De l’arbre `a l’ouvrage”
	5.3.2 Generic video results

	5.4 Cartoons
	5.4.1 Ferrailles
	5.4.2 Cartoon results

	5.5 Conclusions

	Conclusions
	References
	Résmé/Abstract

