
Résumé

Ce mémoire traite du développement de récepteurs et de techniques d’estimation de canal pour les systèmes
mobiles sans fil de type DS-CDMA multi-porteuse. Deux problèmes principaux doivent être pris en compte dans
ce cas. Premièrement, l’Interférence d’Accès Multiple (IAM) causée par d’autres utilisateurs. Deuxièmement, les
propriétés des canaux de propagation dans les systèmes radio mobiles.
Ainsi, dans la première partie du manuscrit, nous proposons deux structures adaptatives (dites détection séparée et
détection jointe) pour la mise en œuvre de récepteurs minimisant l’erreur quadratique moyenne (MMSE), fondés sur
un Algorithme de Projection Affine (APA). Ces récepteurs permettent de supprimer les IAM, notamment lorsque
le canal d’évanouissement est invariant dans le temps. Cependant, comme ces récepteurs nécessitent les séquences
d’apprentissage de chaque utilisateur actif, nous développons ensuite deux récepteurs adaptatifs dits aveugles, fondés
sur un algorithme de type projection affine. Dans ce cas, seule la séquence d’étalement de l’utilisateur désiré est
nécessaire. Quand les séquences d’étalement de tous les utilisateurs sont disponibles, un récepteur reposant sur le
décorrélateur est aussi proposé et permet d’éliminer les IAM, sans qu’une période pour l’adaptation soit nécessaire.
Dans la seconde partie, comme la mise en œuvre de récepteurs exige l’estimation du canal, nous proposons plusieurs
algorithmes pour l’estimation des canaux d’évanouissement de Rayleigh, variables dans le temps et produits dans
les systèmes multi-porteuses. A cette fin, les canaux sont approximés par des processus autorégressifs (AR) d’ordre
supérieur à deux. Le premier algorithme repose sur deux filtres de Kalman interactifs pour l’estimation conjointe
du canal et de ses paramètres AR. Puis, pour nous affranchir des hypothèses de gaussianité nécessaires à la mise
en œuvre d’un filtre optimal de Kalman, nous étudions la pertinence d’une structure fondée sur deux filtres H∞
interactifs. Enfin, l’estimation de canal peut être vue telle un problème d’estimation fondée sur un modèle à erreur-
sur-les-variables (EIV). Les paramètres AR du canal et les variances de processus générateur et du bruit d’observation
dans la représentation de l’espace d’état du système sont dans ce cas estimés conjointement à partir du noyau des
matrices d’autocorrélation appropriées.

Mot clés: DS-CDMA multi-porteuse, développement de récepteurs, filtrage adaptatif, canaux d’évanouissement
de Rayleigh, estimation du canal, processus AR, filtrage de Kalman, filtrage H∞, erreur-sur-les-variables.

Abstract

This dissertation deals with the development of receivers and channel estimation techniques for multi-carrier DS-
CDMA mobile wireless systems. Two major problems should be taken into account in that case. Firstly, the Multiple
Access Interference (MAI) caused by other users. Secondly, the multi-path fading of mobile wireless channels.
In the first part of the dissertation, we propose two adaptive structures (called separate and joint detection) to design
Minimum Mean Square Error (MMSE) receivers, based on the Affine Projection Algorithm (APA). These receivers are
able to suppress the MAI, particularly when the fading channel is time-invariant. However, as they require a training
sequence for every active user, we then propose two blind adaptive multiuser receiver structures based on a blind
APA-like multiuser detector. In that case, only the knowledge of the spreading code of the desired user is required.
When the spreading codes of all users are available, a decorrelating detector based receiver is proposed and is able to
completely eliminate the MAI without any training.
In the second part, as receiver design usually requires the estimation of the channel, we propose several training-based
algorithms for the estimation of time-varying Rayleigh fading channels in multi-carrier systems. For this purpose,
the fading channels are approximated by autoregressive (AR) processes whose order is higher than two. The first
algorithm makes it possible to jointly estimate the channel and its AR parameters based on two-cross-coupled Kalman
filters. Nevertheless, this filtering is based on restrictive Gaussian assumptions. To relax them, we investigate the
relevance of a structure based on two-cross-coupled H∞ filters. This method consists in minimizing the influence of
the disturbances such as the additive noise on the estimation error. Finally, we propose to view the channel estimation
as an Errors-In-Variables (EIV) issue. In that case, the channel AR parameters and the variances of both the driving
process and the measurement noise in the state-space representation of the system are estimated from the null space
of suitable correlation matrices.

Keywords: multi-carrier DS-CDMA, receiver design, adaptive filtering, Rayleigh fading channels, channel estima-
tion, AR processes, Kalman filtering, H∞ filtering, errors-in-variables.
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École Nationale Supérieure d’Electronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)

351 cours de la Libération - 33405 TALENCE cedex - France

– 2007 –





Dedication

Dedication

I dedicate this work to my parents,

to my wife Intesar

and to my children Hasan and Hamzah

i





Acknowledgments

Acknowledgements

I would like to sincerely thank all of those who helped me during the period of this work.

Firstly, I would like to thank Prof. Mohamed Najim for giving me the opportunity to join

his group and for his continuous support.

I would like to express my sincere gratitude to Dr. Eric Grivel for his guidance, encour-

agement, advices and insightful comments.

I would like to thank the reading committee: Prof. Nicolai Christov and Dr. Hanna Abdel

Nour for the careful reading of this thesis and for their helpful comments. I would also

like to thank the examination committee: Prof. Pierre Baylou and Dr. Nasser Hamad

for agreeing to be on the board of examiners.

I would like to thank Prof. Roberto Guidorzi for the fruitful collaboration, helpful sug-

gestions and insightful comments.

I would like to thank the members of our group for their support, advices and helpful

suggestions. More particularly, I would like to thank David Labarre, William Bobillet

and Julie Grolleau for the fruitful collaboration and the helpful discussions.

I would like to thank the Master students: Walid Hassasneh, Hutaf Ruwished and Ahmad

Abdo at the faculty of enginnering/Al-Quds university for the research work they have

carried out with me.

I would like to thank the Palestinian, Syrian and Arab friends in Bordeaux:

Iyad saadeddin, Ismail Haj-Taha, Abdelrahman Meero, Saed Raji, Amer Shaban, Omar

Abu-Sammour, Jamal Al-Sadi, Faisal Al-Mallouhi, Zakwan Qurit, Shadi Junid, Khalil

Al-Rifai, Amjad Al-Halak, Mohammad Balousha, Bashar Jubeh. Thank you all for your

support, for the nice activities and the nice memories we have in Bordeaux. Your friend-

ship has made our life abroad a lot easier. I would also like to thank my friends in

Palestine and all over the world for their concern.

I would like to thank the French Government and the consulate of France in Jerusalem

for offering me a four year scholarship. More particularly, I would like to thank Mme

Christine Laoue at the CROUS of Bordeaux.

My deep gratitude goes to my beloved family in Palestine, especially my parents for the

endless support they have provided me with during my whole life.

At last but not least, I am deeply grateful to my wife Intesar for her advices, support and

patience.

iii





Abstract

Abstract

This dissertation deals with the development of receivers and channel estimation tech-

niques for multi-carrier DS-CDMA mobile wireless systems. Two major problems should

be taken into account in that case. Firstly, the Multiple Access Interference (MAI) caused

by other users. Secondly, the multi-path fading of mobile wireless channels.

In the first part of the dissertation, we propose two adaptive structures (called separate

and joint detection) to design Minimum Mean Square Error (MMSE) receivers, based on

the Affine Projection Algorithm (APA). These receivers are able to suppress the MAI,

particularly when the fading channel is time-invariant. However, as they require a train-

ing sequence for every active user, we then propose two blind adaptive multiuser receiver

structures based on a blind APA-like multiuser detector. In that case, only the knowledge

of the spreading code of the desired user is required. When the spreading codes of all users

are available, a decorrelating detector based receiver is proposed and is able to completely

eliminate the MAI without any training.

In the second part, as receiver design usually requires the estimation of the channel,

we propose several training-based algorithms for the estimation of time-varying Rayleigh

fading channels in multi-carrier systems. For this purpose, the fading channels are ap-

proximated by autoregressive (AR) processes whose order is higher than two. The first

algorithm makes it possible to jointly estimate the channel and its AR parameters based

on two-cross-coupled Kalman filters. Nevertheless, this filtering is based on restrictive

Gaussian assumptions. To relax them, we investigate the relevance of a structure based

on two-cross-coupled H∞ filters. This method consists in minimizing the influence of the

disturbances such as the additive noise on the estimation error. Finally, we propose to

view the channel estimation as an Errors-In-Variables (EIV) issue. In that case, the chan-

nel AR parameters and the variances of both the driving process and the measurement

noise in the state-space representation of the system are estimated from the null space of

suitable correlation matrices.

Keywords: multi-carrier DS-CDMA, receiver design, adaptive filtering, Rayleigh

fading channels, channel estimation, AR processes, Kalman filtering, H∞ filtering, errors-

in-variables.
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Résumé

Ce mémoire traite du développement de récepteurs et de techniques d’estimation de canal

pour les systèmes mobiles sans fil de type DS-CDMA multi-porteuse. Deux problèmes

principaux doivent être pris en compte dans ce cas. Premièrement, l’Interférence d’Accès

Multiple (IAM) causée par d’autres utilisateurs. Deuxièmement, les propriétés des canaux

de propagation dans les systèmes radio mobiles.

Ainsi, dans la première partie du manuscrit, nous proposons deux structures adaptatives

(dites détection séparée et détection jointe) pour la mise en œuvre de récepteurs min-

imisant l’erreur quadratique moyenne (MMSE), fondés sur un Algorithme de Projection

Affine (APA). Ces récepteurs permettent de supprimer les IAM, notamment lorsque le

canal d’évanouissement est invariant dans le temps. Cependant, comme ces récepteurs

nécessitent les séquences d’apprentissage de chaque utilisateur actif, nous développons

ensuite deux récepteurs adaptatifs dits aveugles, fondés sur un algorithme de type projec-

tion affine. Dans ce cas, seule la séquence d’étalement de l’utilisateur désiré est nécessaire.

Quand les séquences d’étalement de tous les utilisateurs sont disponibles, un récepteur

reposant sur le décorrélateur est aussi proposé et permet d’éliminer les IAM, sans qu’une

période pour l’adaptation soit nécessaire.

Dans la seconde partie, comme la mise en œuvre de récepteurs exige l’estimation du canal,

nous proposons plusieurs algorithmes pour l’estimation des canaux d’évanouissement de

Rayleigh, variables dans le temps et produits dans les systèmes multi-porteuses. A cette

fin, les canaux sont approximés par des processus autorégressifs (AR) d’ordre supérieur à

deux. Le premier algorithme repose sur deux filtres de Kalman interactifs pour l’estimation

conjointe du canal et de ses paramètres AR. Puis, pour nous affranchir des hypothèses de

gaussianité nécessaires à la mise en œuvre d’un filtre optimal de Kalman, nous étudions

la pertinence d’une structure fondée sur deux filtres H∞ interactifs. Enfin, l’estimation de

canal peut être vue telle un problème d’estimation fondée sur un modèle à erreur-sur-les-

variables (EIV). Les paramètres AR du canal et les variances de processus générateur et

du bruit d’observation dans la représentation de l’espace d’état du système sont dans ce

cas estimés conjointement à partir du noyau des matrices d’autocorrélation appropriées.

Mot clés: DS-CDMA multi-porteuse, développement de récepteurs, filtrage adap-

tatif, canaux d’évanouissement de Rayleigh, estimation du canal, processus AR, filtrage

de Kalman, filtrage H∞, erreur-sur-les-variables.
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Introduction

Multi-Carrier Direct-Sequence Code Division Multiple Access (MC-DS-CDMA) is a mul-

tiplexing technique that combines the advantages of both multi-carrier modulation and

DS-CDMA [Har97]. Among them, high system flexibility, high data rate transmission,

high bandwidth efficiency and fading resilience can be pointed out. Adopted as an op-

tion for the down-link transmission in the CDMA2000 third Generation (3G) cellular

standard [CDM01], MC-DS-CDMA is also one of the potential candidates for the future

fourth Generation (4G) broadband wireless systems [Han03]. When designing receivers for

MC-DS-CDMA mobile wireless systems, two main problems must be taken into account.

Firstly, the Multiple Access Interference (MAI) caused by other active users greatly limits

the system capacity, especially when the received signal power of the desired user is less

than that of other users (i.e. the ”near-far” problem). Secondly, the multi-path fading

of mobile radio channels which highly degrades the system Bit Error Rate (BER) perfor-

mance. More particularly, due to user mobility, each carrier is subject to Doppler shifts

resulting in time-varying fading. Thus, the estimation of the fading process over each

carrier is essential to achieve optimal diversity combining and coherent symbol detection

at the receiver.

Therefore, in this dissertation, our objective is twofold. Firstly, we aim at designing new

receivers for MC-DS-CDMA systems that are able to suppress the MAI and to mitigate

the near-far problem. Secondly, as receiver design usually requires the explicit channel

estimation, we intend to develop new techniques to estimate time-varying fading channels.

In the first chapter, we provide a general presentation of MC-DS-CDMA mobile wire-

less systems in Rayleigh fading channels. Among the various combinations of DS-CDMA

and multi-carrier transmission, we focus our attention on the time-domain spreading based

MC-DS-CDMA scheme proposed by Kondo et al. [Kon96]. It should be noted that this

scheme is different from the so-called MC-CDMA which is based on frequency-domain

spreading [Har97]. Once the MC-DS-CDMA transmitter model is detailed, the channel

model is introduced. By suitably choosing the number of carriers and their spacing, each

1



Introduction

carrier is assumed to undergo independent frequency non-selective fading. In addition,

we study time-varying fading channels which is not the case in [Kon96], where the fading

channels are assumed to be time-invariant. The time-variation of the fading process over

each carrier is usually modeled by a zero-mean Wide Sense Stationary (WSS) complex

Gaussian process. In addition, according to the Jakes model [Jak74], its theoretical Power

Spectral Density (PSD) is band-limited, U-shaped and exhibits twin peaks at ±fd, where

fd is the maximum Doppler frequency. The corresponding normalized discrete-time Au-

toCorrelation Function (ACF), denoted by Rhh(n), is a zero-order Bessel function of the

first kind namely Rhh(n) = J0(2πfdTb|n|), where Tb is the bit duration.

In recent papers [Bad05] [Kom02] [Lin02], the channel has been modeled as a pth order

autoregressive process denoted by AR(p). Using low-order AR model for the channel is

debatable. On the one hand, some authors (e.g., [Kom02], [Lin02]) motivate this approx-

imation arguing for the model simplicity, especially for AR(1) or AR(2) process, and its

usefulness for channel estimation. On the other hand, from a theoretical point of view,

according to Kolmogoroff-Szego formula [Pap02], a deterministic model should be used

for the channel due to the band-limited nature of its PSD. In between solutions have also

been studied. Firstly, a sub-sampled AR Moving Average (ARMA) process followed by a

multistage interpolator has been considered for channel simulation [Sch01]. Nevertheless,

only a very high down-sampling factor leads to a PSD which is never equal to 0. Secondly,

Baddour et al. [Bad05] have suggested using high-order AR processes (e.g., p ≥ 50) for

channel simulation1. To allow the estimation of the corresponding AR parameters, they

”slightly” modify the properties of the channel by considering the sum of the theoretical

fading process and a zero-mean white process whose variance ǫ is very small (e.g., ǫ = 10−7

for fdTb = 0.01). At that stage, the AR parameters are estimated with the Yule-Walker

(YW) equations based on the modified ACF namely Rmod
hh (n) = J0(2πfdTb|n|) + ǫδ(n).

So, by taking into account the above results, an AR model whose order is high enough

will be considered in this thesis to approximate the channel fading process.

The conventional MC-DS-CDMA receiver [Kon96] consists of a correlator along each

carrier followed by a Maximal Ratio Combiner (MRC). However, this approach cannot

eliminate the MAI and, hence, is not ”near-far resistant”. In addition, the channel fading

processes are assumed to be perfectly known at the receiver, which is not the case in

practice. Therefore, our purpose in chapter 2 is to design receivers that are able to suppress

1It should be noted that this method was investigated and compared with sum-of-sinusoids based

channel simulators presented in [Den93] [Zhe03] by an ERASMUS Spanish student who was co-supervised

by Dr. E. Grivel and myself.
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the MAI and to counteract the effect of fading. More particularly, we first focus our

attention on designing adaptive Minimum Mean Square Error (MMSE) receivers. In the

framework of MC-CDMA, Kalofonos et al. [Kal03] have proposed to adaptively implement

the so-called ”MMSE per user” receiver by means of the Least Mean Square (LMS) or

Recursive Least Square (RLS) algorithms. In [Mil00b], Miller et al. have developed

the optimal MMSE receiver for asynchronous MC-DS-CDMA systems. However, as its

computational cost is very high, it may be difficult to be implemented in practice. To

reduce the computational cost, we propose two adaptive MMSE receiver structures based

on the Affine Projection Algorithm (APA) [Jam04]. The so-called ”Separate Detection”

(SD) scheme consists in using a particular adaptive filter structure for each carrier, whereas

the so-called ”Joint Detection” (JD) scheme is based on a joint structure defined by the

concatenation of the adaptive filter weights dedicated to each carrier. We carry out a

comparative study between both structures with various adaptive filters such as the RLS,

the Normalized LMS (NLMS) and the APA2.

However, these adaptive receivers require a training sequence for every active user. To

avoid them, we propose two blind adaptive multiuser receiver structures [Jam05a], where

only the spreading waveform and the timing of the desired user are required. The first

receiver provides a blind adaptive multiuser detector for each carrier followed by a post-

detection combiner, while the second receiver consists of a pre-detection combiner followed

by a single blind adaptive multiuser detector. To complete the design of these receivers,

we have proposed a blind APA-like multiuser detector [Jam05a]. This detector can be

seen as a generalization of the blind LMS-based detector [Hon95], on the basis of multiple

delayed input signal vectors. A comparative study is then carried out with existing blind

adaptive multiuser detectors based on LMS [Hon95] or Kalman filter [Zha02], initially

developed for single-carrier DS-CDMA systems.

When the spreading waveforms and the timing of all users are available, we then extend

the decorrelating multiuser detector based receiver initially developed for single-carrier

DS-CDMA [Wu00] to the multi-carrier case [Jam05b]. The resulting receiver consists

of a decorrelating detector and a Kalman filter based channel estimator followed by a

MRC [Jam05b]. It has the advantage of completely eliminating the MAI while working

in time-varying fading channels.

2It should be noted that in [Ruw06], one of the master students at Al-Quds University-Palestine,

currently under the supervision of Dr. H. Abdel Nour and myself, has proposed to study the relevance

of variable step-size NLMS and APA [Shi04] to implement the SD and JD receiver structures. These

algorithms can indeed meet the conflicting requirement of fast convergence and low misadjustment error.
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In chapter 3, as receiver design usually requires the explicit estimation of fading

channels, we aim at developing channel estimation algorithms for autoregressive time-

varying Rayleigh fading channels. More particularly, our purpose is to develop training

sequence based methods that make it possible to estimate the channel AR parameters

without any a priori information about the maximum Doppler frequency fd. Among the

existing methods, Tsatsanis et al. [Tsa96] suggest estimating the AR parameters from

the channel covariance estimates by means of a YW estimator. However, the method

results in biased estimates. Other approaches initially developed in other fields than

wireless communications can be considered. Among them, a bias-correction least-square

technique has been presented by Zheng [Zhe99], while Davila [Dav98a] has proposed to

solve the so-called noise-compensated YW equations by using a subspace based method.

Nevertheless, these methods require a long observation window and do not necessarily

provide reliable estimates when the signal-to-noise ratio is low. As an alternative, the

Expectation-Maximization (EM) algorithm which often implies a Kalman smoothing can

be used [Der94]. However, since it operates repeatedly on a batch of data, it results in

large storage requirements and high computational cost. In addition, its success depends

on the initial conditions. As an alternative, two recursive filters can be cross-coupled to

solve the so-called dual estimation issue [And79], i.e. the estimations of both the AR

process and its parameters. Each time a new observation is available, the first filter uses

the latest estimated AR parameters to estimate the signal, while the second filter uses

the estimated signal to update the AR parameters. According to Gannot et al. [Gan98],

this approach can be viewed as a sequential version of the EM algorithm. Recently, in

[Lab06b], a variant based on two interacting Kalman filters has been developed in which

the variance of the innovation process in the first filter is used to define the gain of the

second filter. Since this solution can be seen as a recursive Instrumental Variable (IV)

technique, consistent estimates of the AR parameters are obtained. Then, this technique

has been tested in the framework of speech enhancement [Lab04] [Lab06a].

In this thesis, we propose to take advantage of the two-cross-coupled Kalman filter based

structure to jointly estimate the fading channel and its AR parameters over each carrier

in MC-DS-CDMA systems [Jam05c]. It should be noted that the estimation of MC-

DS-CDMA fading channels based on Kalman filtering is also studied in [Has06]3, where

the relevance of high-order AR models is investigated. Using Kalman filtering is of in-

terest, but several assumptions must be fulfilled. Thus, Kalman filtering is optimal in

3This study was carried out by one of the master students at Al-Quds University-Palestine who was

under the supervision of Dr. H. Abdel Nour and myself.
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the H2 sense providing the underlying state-space model is accurate. In addition, the

initial state, the driving process and the measurement noise must be independent, white

and Gaussian. However, in real cases, these assumptions may no longer be satisfied. For

this reason, we propose to investigate the relevance of an alternative approach based on

H∞ filtering, initially developed in the field of control (see, e.g., [Has99]). This filtering

aims at minimizing the worst possible effects of the disturbances (e.g., the additive mea-

surement noise) on the estimation error. The approach we propose in this thesis, recently

developed in the framework of speech enhancement [Lab07], is based on two-cross-coupled

H∞ filters which makes it possible to jointly estimate the fading process and its AR pa-

rameters [Jam07b]. It should be noted that our approach is different from the approach

presented in [Cai04] where two H∞ filters are serially-connected. In the latter, a biased

estimation of the AR parameters is expected since the first H∞ filter estimates the AR

parameters directly from the noisy observations.

However, when using the two-cross-coupled Kalman and H∞ filter based channel esti-

mators, the variance and the power of the measurement noise is assumed to be known,

respectively. As an alternative, we propose to view the estimation of the channel AR

parameters as an Errors-In-Variables (EIV) issue [Jam06]. In the EIV models [Huf02],

initially developed in the fields of statistics and identification, the available data are as-

sumed to be disturbed by additive error or noise terms. The method we present in this

thesis, originally developed in the framework of control [Beg90] [Div05b] [Div05a] and

derived for speech enhancement in [Bob07], consists in searching the noise variances that

enable specific noise compensated autocorrelation matrices of observations to be positive

semidefinite [Jam06] [Jam07a]. In addition, the AR parameters can be estimated from

the null spaces of these matrices. Once these parameters are estimated, Kalman or H∞

filtering can be carried out to estimate the fading process.

It should be noted that this PhD thesis is the first one dealing with mobile com-

munication systems in the Signal and Image Group (ESI) at the UMR CNRS 5218 IMS

in Bordeaux. It results from the collaboration of both Dr. H. Abdel Nour (Al-Quds

University-Palestine) and ESI to exchange more and to address this new topic, through

two Integrated Action Projects (IAP) promoting interaction between Palestinian and

French Universities. In addition, the various approaches we proposed in chapter 3 were

the fruit of collaborations with Prof. R. Guidorzi (Bologna University-Italy), Prof. N.

Christov (Lille University-France) and PhD students D. Labarre, W. Bobillet, J. Grolleau

at the ESI under the supervision of Dr. E. Grivel and Prof. M. Najim.
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Chapter 1 – Multi-Carrier DS-CDMA Mobile Wireless Systems

1.1 Motivation

Over the past decade, the mobile wireless communication industry has experienced rapid

growth in the number of mobile subscribers and the amount of traffic. This is due to

the increasing demand for high data rate multimedia services. Therefore, the current

3G mobile wireless systems have been designed to provide a wide range of multimedia

applications such as voice, image and data transmission with different and variable bit

rates up to 2 Mbit/s. The demand for higher data rates is expected to continue for the

incoming years since more applications are emerging such as mobile wireless internet and

interactive multimedia services. To satisfy these requirements in the Beyond 3G (B3G)

and the 4G mobile wireless systems, one of the main challenges is the choice of the multiple

access technology that will efficiently share the available scarce bandwidth among a large

number of users [Han03] [Jma05].

1.1.1 Multiple access techniques from 1G to 3G mobile systems

Traditionally, mobile wireless communication systems have employed Frequency Division

Multiple Access (FDMA) and Time Division Multiple Access (TDMA) techniques to

share the available bandwidth among many subscribers [Rap01] [Stu01]. With FDMA

technique, the allocated spectrum is divided into several frequency bands where each

frequency band is assigned to a single user. Multiple users using separate frequency

bands can access the same system at the same time without significant interference from

other users concurrently operating in the system. When using TDMA, the time-domain

transmission frame is periodically divided into time slots, each assigned to a single user

to transmit data information, employing the total allocated bandwidth.

The first Generation (1G) mobile wireless systems, developed in the 1980s, used

FDMA as their multiple access scheme. These systems were analog and dedicated only to

voice applications. The Advanced Mobile Phone Service (AMPS) in USA and the Total

Access Communication System (TACS) in Europe are examples of the 1G mobile wireless

systems. In the 1990s, various second Generation (2G) mobile wireless systems were

developed such as the Global System for Mobile communications (GSM) in Europe and

the Personal Digital Cellular (PDC) system in Japan. Most of these systems employed

TDMA as their multiple access scheme. They provide both voice services and low rate

data communication services. It should be noted that TDMA is also used in the evolved

2.5G standards from the 2G GSM standard, namely the General Packet Radio Service
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(GPRS) and the Enhanced Data rates for GSM Evolution (EDGE) systems. They use

packetized data transmission and provide much higher data rates than the 2G systems.

Nevertheless, in both FDMA and TDMA techniques the number of frequency bands

or time slots is fixed for a given system, and a single frequency band/time slot is allocated

to a single user for the whole period of communications. A fixed frequency band or time

slot assignment can guarantee the service quality for real-time and constant-bit-rate voice

telephony, which was the main service at that time. However, as the number of services

is increasing from simple voice to multimedia traffic (voice, audio, data, images, video)

with different needs, fixed frequency band or time slot assignment has shown its lack of

efficiency in utilizing the scarce spectrum, especially with the exponential increase in the

number of users. To satisfy these requirements, Code Division Multiple Access (CDMA)

scheme, based on spread spectrum technology, has emerged [Vit95]. In CDMA systems

with Direct Sequence (DS) spectrum spreading (DS-CDMA), the relatively narrow-band

users information is spread into a much wider spectrum using a high chip rate spreading

code. When using different codes, multiple user information can be transmitted on the

same allocated spectrum at the same time and without significant difficulty to detect the

desired signal at the receiver. The spreading code of each user is either orthogonal to the

codes of all other users or has suitable cross-correlation properties that minimize the MAI

caused by other users. As long as the total power of the MAI is less than a threshold,

it is possible to detect the desired user signal by using his spreading code which is only

known by the intended receiver (e.g., the RAKE receiver [Pro95]). Therefore, CDMA

is a dynamic multiple access scheme that has no rigid resource allocation limitation for

individual users whereas this is not the case in TDMA and FDMA. In addition, unlike

TDMA and FDMA systems, the number of users in a CDMA system is not fixed and a

new user can be added to the system at any time. For an insightful comparative study

between these multiple access techniques, the reader may refer to [Bai96].

CDMA, originally used for military applications, was first used for civilian mobile

communications by Viterbi Qualcomm Inc. This led to the IS-95 2G digital mobile stan-

dard [IS-95] in USA. With the exponential increase in the number of users for mobile

communications, CDMA, with its proven capacity enhancement over TDMA and FDMA

[Bai96], has been chosen as the main multiple access scheme for 3G mobile cellular sys-

tems. Examples of such systems are the Universal Mobile Telecommunications System

(UMTS) in Europe and the CDMA2000 [CDM01] in USA, both members of the Inter-

national Mobile Telecommunications-2000 (IMT-2000). They are designed to provide a

wide range of broadband multimedia services with variable bit rate up to 2Mbit/s.

10



Chapter 1 – Multi-Carrier DS-CDMA Mobile Wireless Systems

Table 1.1: Evolution of mobile wireless systems.

Generation Services Multiple access Standard Data rate

1G analog voice FDMA AMPS, TACS 1.9 Kbit/s

2G digital voice, TDMA, GSM, 14.4 Kbit/s

short messages CDMA IS-95

2.5G high capacity TDMA, GPRS, EDGE 384 Kbit/s

packetized data CDMA

3G broadband data, WCDMA, UMTS, 2 Mbit/s

multimedia MC/CDMA CDMA2000

B3G/ interactive multimedia, ”to be defined” ”to be defined” 100 Mbit/s

4G mobile internet

A summary on the evolution of mobile wireless systems is presented in Table 1.1. For

more details about the early mobile generations, the reader may refer to the survey paper

[Han98] and references therein. For later mobile generations, the reader may read [Tac03].

It should be noted that the data rates indicated in Table 1.1 are for fixed terminals. The

status of current wireless systems when taking into account terminal mobility and data

rates is depicted in Figure 1.1. As an example, the 3G UMTS wireless system provides 2

Mbit/s for indoor fixed or very slow terminals, 384 Kbit/s for outdoor mobile terminals

traveling at speeds less than the vehicular speed (120Km/h), and up to 144 Kbit/s for

fast mobile terminals traveling at speeds more than the vehicular speed.

According to Figure 1.1, the current data rates of 3G systems for high speed mobile

terminals are insufficient. Therefore, providing high data rates to high speed mobile

terminals is a major challenge for the future B3G and 4G mobile wireless systems. These

systems, to be defined in the coming few years, are expected to offer up to 100 Mbit/s for

stationary terminals and up to 20 Mbit/s for vehicular speed mobile terminals. Such high

data rates are necessary to provide services like interactive multimedia, mobile wireless

internet, etc.
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Figure 1.1: Mobility versus data rate for current mobile wireless systems.

1.1.2 Multi-carrier DS-CDMA as a candidate for future mobile

systems

To support the requirements of the new emerging high data rate multimedia services,

several techniques have been studied for the last years. One of these techniques is the

combination of CDMA with Orthogonal Frequency Division Multiplexing (OFDM), re-

ferred to as multi-carrier CDMA [Har97] [Wan00]. OFDM [Bin90] is a parallel data

transmission scheme in which high data rates can be achieved by the simultaneous trans-

mission over many orthogonal carriers. This multi-carrier transmission scheme makes it

possible to convert the severe wide-band frequency-selective fading channel into a large

number of frequency non-selective flat fading sub-channels1.

Thus, the combination of CDMA with OFDM makes it possible to get benefit from

the advantages of both schemes [Har97] [Han03]. High system flexibility, high data rate

transmission, high spectral efficiency, fading resilience and narrow-band interference sup-

pression capability are some of these adavantages. Various combinations of CDMA with

OFDM have been proposed simultaneously and independently by several authors in the

year 1993 [Kon93] [Faz93b] [Faz93a] [Yee93] [Cho93] [Das93] [Van93]. In [Har97], the

authors have compared these various combinations. They have identified three different

1These types of fading will be illustrated in subsection 1.3.1.
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Figure 1.2: (a) MC-CDMA: frequency-domain spreading. (b) MC-DS-CDMA: time-

domain spreading. {fm}m=1,··· ,M denote the carrier frequencies.

structures. Namely, Multi-Carrier CDMA (MC-CDMA) using frequency-domain spread-

ing [Faz93b] [Faz93a] [Yee93] [Cho93], Multi-Carrier Direct-Sequence CDMA

(MC-DS-CDMA) using time domain-spreading [Kon93] [Das93] and Multi-Tone CDMA

(MT-CDMA) [Van93].

Based on their signal spreading mode, multi-carrier CDMA schemes can now be

categorized into three types, as follows:

• MC-CDMA scheme using frequency-domain spreading

This scheme combines OFDM and frequency-domain spreading [Faz03]. A data

symbol is first replicated into several parallel copies. Each copy is then multiplied

by a chip from a spreading code and modulates one carrier frequency as shown in

Figure 1.2(a). The number of carriers M is equal to the code length.

• MC-DS-CDMA scheme using time-domain spreading

In the MC-DS-CDMA system proposed by Kondo et al. [Kon93] [Kon96], the data
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sequence multiplied by a spreading code of length N modulates several band-limited

carriers (see Figure 1.2(b)). The signal transmitted over each carrier is similar to

that of the conventional narrow-band single-carrier DS-CDMA scheme. To guaran-

tee independent flat fading on each carrier, the number of carriers and their spacing

have to be carefully chosen.

Another MC-DS-CDMA scheme which first performs serial-to-parallel conversion

on the input data stream before spreading has been studied in [Das93] [Das94]

[Sou96]. In this scheme, the original data stream is first serial-to-parallel converted

into several low-rate streams. Then, each of these low-rate streams is spread in the

time-domain and modulates several carriers. This scheme is more general than the

previous one [Kon96] and can provide higher data rates.

In [Han03], Hanzo et al. have carried out a comparative study between single-carrier

DS-CDMA, MC-CDMA and MC-DS-CDMA schemes when designing a broadband

multiple access systems. According to their study, MC-DS-CDMA provides a trade-

off between single-carrier DS-CDMA and MC-CDMA in terms of the system archi-

tecture and performance. Thus, MC-DS-CDMA requires lower chip rate spreading

codes than single-carrier DS-CDMA since multiple carriers are employed. In ad-

dition, as time-domain spreading over each carrier signal is used, it needs a much

lower number of carriers than MC-CDMA. Furthermore, MC-DS-CDMA guaran-

tees that each carrier signal undergoes independent fading and, hence, maximizes

the frequency diversity gain. This is not the case when using MC-CDMA where

the carrier signals might be correlated. Moreover, compared with single-carrier DS-

CDMA and MC-CDMA, MC-DS-CDMA has more parameters that can be adjusted

such as the chip-duration of the time-domain spreading code, the number of bits

involved in the serial-to-parallel conversion and the spacing between two adjacent

carriers. Therefore, by adjusting these parameters, the MC-DS-CDMA scheme can

support ubiquitous broadband wireless communications [Yan03a].

• MC-DS-CDMA scheme using Time-domain and Frequency-domain spread-

ing (TF-domain spread MC-DS-CDMA)

The TF-domain MC-DS-CDMA system [Yan03a] [Yan03b] [Han03] spreads the in-

put data stream using two signature codes, where one of the signature codes cor-

responds to the time-domain spreading, while the other is dedicated to frequency-

domain spreading. Therefore, this system can be seen as a hybrid of MC-CDMA

and MC-DS-CDMA schemes. Hence, it has the advantages of both.
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Thus, due to the attractive features of MC-DS-CDMA, it has been adopted as an option

for the down-link transmission in the CDMA2000 3G mobile cellular standard [CDM01].

The so-called MC mode in CDMA2000 has been considered to provide an evolution path

form existing IS-95 systems, where three carriers (known also as 3X mode), each having

the same characteristics as the IS-95 (1X mode) carrier, are involved. It should be noted

that MC-DS-CDMA is still one of the promising candidates for the 4G broadband mobile

wireless systems [Yan03a]. Therefore, this thesis will focus on MC-DS-CDMA systems

and more particularly on the MC-DS-CDMA system presented in [Kon96].

In the following sections, we will study the transmitter model, the channel model

and the conventional receiver of this system.

1.2 Transmitter model

In this section, we adopt the transmitter model of the MC-DS-CDMA system presented

in [Kon96]. In this model, a binary data sequence multiplied by a spreading sequence

modulates M carriers, as shown in Figure 1.3. Assuming that there are K simultaneous

users in the system, the transmitted signal of the kth user can be expressed as follows:

sk(t) = Re

(
+∞∑

n=−∞

M∑

m=1

√
2Pkdk(n)ck(t − nTb)e

j2πfmt

)
(1.1)

where Pk is the transmitted power for each carrier of the kth user signal, dk(n) ∈ {±1} is

the nth Binary Phase Shift Keying (BPSK) modulated data bit of the kth user, Tb is the

bit duration and fm is the mth carrier frequency. In addition, the spreading waveform of

the kth user is given by:

ck(t) =
N−1∑

i=0

ckiψ(t − iMTc) (1.2)

where ψ(t) is the the chip pulse shape, Tc is the chip duration of a wide-band single-carrier

system occupying the same bandwidth as the multi-carrier system, MTc is the chip du-

ration of the multi-carrier system, N = Tb/MTc is the processing gain, cki ∈ {±1/
√

N} de-

notes the normalized ith chip of the kth user spreading code ck = [ ck0 ck1 · · · ck(N−1) ]T .

The spreading codes {ck}k=1,2,··· ,K , known also as Pseudo-Noise (PN) sequences, are char-

acterized by their lengths, autocorrelation and cross-correlation properties [Din98]. They

are designed to have very low cross-correlations either between the codes themselves or

their shifted versions. This enables the receiver to separate different user signals and to

reduce the MAI. The most known spreading codes are the maximal-length or m-sequences,
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Figure 1.3: The MC-DS-CDMA transmitter of user k.

Gold and Kasami sequences [Din98]. In this thesis, we will use the Gold code sequences

as they provide very low cross-correlation between different codes. In addition, they make

it possible to generate a larger set of spreading sequences than the m-sequences2.

In (1.2), the chip pulse shape ψ(t) is normalized to have a unit energy. In addition, it is

assumed to be band-limited to [−WM/2,WM/2] and satisfies the Nyquist criterion, where

WM is the bandwidth of each carrier signal (see Figure 1.4(a)). This implies that there

will be no inter-chip interference at the receiver.

In a multi-carrier system, the carrier frequencies are usually selected to be orthogonal to

each other after spreading [Han03], as follows:

∫ MTc

0

ej2πflt · ej2πfmtdt = 0, for l 6= m (1.3)

This is done so that the signal in the lth frequency band does not cause interference on the

mth frequency band at the receiver. Given (1.3), the minimum frequency spacing between

two adjacent carriers satisfies:

∆f = fm+1 − fm = 1/(MTc) (1.4)

2It should be noted that each Gold sequence in a set is generated from two m-sequences by the

modulo-2 addition of one m-sequence with another cyclically shifted m-sequence.
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Figure 1.4(a) shows the spectrum of an orthogonal multi-carrier narrow-band DS-CDMA

signals each with bandwidth WM given by:

WM =
W0

M
= (1 + χ)

1

MTc

(1.5)

where 0 < χ ≤ 1 and W0 = (1 + χ)(1/Tc) is the bandwidth of a wide-band single-carrier

DS-CDMA system occupying the same bandwidth as the multi-carrier system.

In a multi-carrier system, the over-all bandwidth W0 is divided into M equal width

frequency bands as shown in Figure 1.4. Hence, by using multi-carrier modulation, a

wide-band DS-CDMA signal can be replaced by several narrow-band DS-CDMA signals.

Consequently, if the processing gain of a wide-band single-carrier system is N0 = Tb/Tc,

the processing gain of each carrier signal is then N = Tb/MTc and the composite process-

ing gain of this multi-carrier system is MN = N0.Â ¿Â ¿ Â ¿
· · · · · ·

-f
f1 f2 fM

6 6 6

-¾ ∆f -¾ WM

(a)

Â ¿
-f

f0

6

(b)

-¾ W0

Figure 1.4: (a) PSD of multi-carrier DS-CDMA signal. (b) PSD of wide-band single-

carrier DS-CDMA signal.

This multi-carrier system has the following main advantages. Firstly, it has a narrow-band

interference suppression capabilities. Secondly, as the entire bandwidth of the system is

divided into M equal width frequency bands, lower chip rate is required for each band.

Therefore, the multi-carrier system requires a lower speed parallel-type of signal process-

ing, in contrast to a fast serial-type of signal processing in the wide-band single-carrier

system. This may be helpful when designing a low-power consumption devices. Thirdly,

the multi-carrier system is robust to multi-path fading by providing a frequency diversity

gain equal to the number of carriers. This diversity gain is achieved by converting the

severe frequency-selective fading encountered in the wide-band single-carrier DS-CDMA

system to independent frequency non-selective flat fading over each carrier in the multi-

carrier DS-CDMA system. These types of fading will be discussed in the next section.
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Figure 1.5: Multi-path fading in CDMA systems.

1.3 Channel characteristics and modeling

In mobile communications, the transmitted signal arrives at the receiver from a number

of different propagation paths, referred to as multi-paths as shown in Figure 1.5. These

paths arise due to reflection, diffraction, and scattering of the transmitted electromagnetic

wave from objects such as buildings, hills, trees, etc. that lie in the vicinity of the mobile

station and/or base station. Multi-path propagation results in a received signal that is

a superposition of several delayed and attenuated copies of the transmitted signal. This

gives rise to frequency-selective fading which spreads the transmitted signal in time and,

hence, leads to the so-called Inter-Symbol Interference (ISI). When all multi-paths arrive

at the receiver within the symbol duration, the resulting fading is called frequency non-

selective fading or flat fading. In addition to multi-path fading, due to the relative motion

between the transmitter and the receiver and/or the movement of surrounding objects,

the received signal is subject to Doppler shifts. This gives rise to time-varying fading.

Hence, the transmitted signal through a mobile wireless channel may be generally affected

by time-varying frequency-selective fading.

A simple way to model the fading phenomenon was introduced by Bello [Bel63],

where he proposed the notion of Wide-Sense Stationary (WSS) uncorrelated scattering.

In that model, the transmitted signal propagates through a large number of paths. Each

is characterized by its own random amplitude, phase and delay. The signal variations
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arriving from these paths with different delays are WSS and uncorrelated. With such a

model, Bello [Bel63] was able to define functions that can describe the fading channel in

time as well as in frequency. The main functions are the Doppler power spectrum and the

delay power spectrum (also known as power delay profile). The Doppler power spectrum

gives the average power of the channel output as a function of the Doppler frequency,

whereas the delay power spectrum provides the average power of the channel output as a

function of the delay. These functions are characterized by some parameters. One of these

is the maximum delay spread, denoted by Tm and defined as the range of values over which

the delay power spectrum is non-zero. Another important parameter is the maximum

Doppler spread or frequency, denoted as fd and defined as the range of values over which

the Doppler power spectrum is non-zero. Moreover, the channel coherence time T0 is

inversely proportional to the maximum Doppler frequency, i.e. T0 = 1/fd. It is a measure

of how rapidly the channel impulse response varies with time. The channel coherence

bandwidth Bc is the width of the band of frequencies which are similarly affected by the

channel. Thus, this parameter provides a measure of the channel frequency selectivity.

It should be noted that the channel coherence bandwidth is inversely proportional to the

channel maximum delay spread:

Bc ≈ 1/Tm (1.6)

The types of fading experienced by a signal propagating through a mobile radio

channel depend on the nature of the transmitted signal and the characteristics of the

channel [Pro95] [Rap01]. While multi-path delay spread leads to time dispersion and

frequency-selective fading, Doppler spread leads to frequency dispersion and time-selective

(time-varying) fading. Both dispersion mechanisms are independent of one another. These

types of fading are investigated in the next subsections.

1.3.1 Frequency-selective versus frequency non-selective fading

The classification of the fading channel as frequency-selective or frequency non-selective

depends on the relationship between the transmitted signal bandwidth W and the channel

coherence bandwidth Bc. Thus, the fading channel is called frequency-selective when W is

much larger than Bc, i.e. W ≫ Bc. In that case, the different frequency components of the

transmitted signal will experience different gains and phase shifts. The impulse response

of the frequency-selective channel consists of multiple-taps (i.e., resolvable multi-paths).

The multi-path components are resolvable if they are separated in delay by 1/W . In that

case, replicas of the transmitted signal arrive at the receiver over a number of different
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resolvable paths resulting in ISI. This is the case when dealing for instance with wide-

band single-carrier DS-CDMA signal (see Figure 1.4(b)) whose bandwidth is much greater

than the channel coherence bandwidth, i.e. W0 ≫ Bc or equivalently Tc ≪ Tm. Thus, the

complex low-pass equivalent representation of the fading channel impulse response can be

written as follows:

h(t) =

Lp−1∑

l=0

|hl(t)|ejφl(t)δ(t − lTc) (1.7)

where Lp denotes the number of resolvable multi-path components, which is given by:

Lp =

⌊
Tm

Tc

⌋
+ 1 (1.8)

In addition, the lth resolvable path is characterized by its time-varying envelope |hl(t)|
and its time-varying phase φl(t).

The frequency-selective fading channel reduces to frequency non-selective flat fading

channel when Lp = 1 or equivalently when the transmitted signal bandwidth is less than

the coherence bandwidth of the channel, i.e. W ≤ Bc. This is the case for instance when

dealing with the M narrow-band DS-CDMA signals (see Figure 1.4(a)), each having a

bandwidth WM ≤ Bc or equivalently MTc ≥ Tm. Therefore, frequency-selective fading

can be converted to frequency non-selective fading by using multi-carrier transmission.

For this purpose, according to [Kon96], the number M of carriers is chosen to meet two

conditions:

• Each carrier undergoes frequency non-selective flat fading, which means that the

normalized delay spread Tm/MTc satisfies:

Tm/MTc ≤ 1 (1.9)

• All carriers are subject to independent fading, implying that:

WM ≥ Bc (1.10)

Given (1.5) and (1.6), the above two conditions are satisfied if:

Tm

Tc

≤ M ≤ (1 + χ)
Tm

Tc

(1.11)

The left inequality of (1.11) is satisfied by choosing M = Lp, while the right inequality is

satisfied by choosing χ ≥ Tc/Tm.

Thus, by carefully selecting the number of carriers M to satisfy (1.11), each carrier will
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be affected by independent frequency non-selective flat fading. In that case, the complex

low-pass equivalent impulse response of the channel over the mth carrier is given by:

hm(t) = |hm(t)|ejφm(t)δ(t) (1.12)

where |hm(t)| and φm(t) respectively denote the time-varying envelop and phase.

1.3.2 Doppler spread and time-varying fading

Channel time-variation are due to the relative motion between the base station and the

mobile and/or the motion of the surrounding which in turn results in a Doppler spread.

The Doppler spread is a measure of the relative frequency shift between the transmitted

signal and the received signal. Consider a mobile moving at a constant speed υ while

receiving a signal whose angle of arrival ϕ, as illustrated in Figure 1.6. The resulting

Doppler shift fD in Hertz is given by:

fD =
υfc

c
cos(ϕ) (1.13)

where fc is the central carrier frequency and c the light speed. The maximum Doppler

frequency fd is obtained from (1.13) when the angle of arrival is set to zero, as follows:

fd =
υfc

c
(1.14)

HH©© h h
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¡
¡

¡
¡

¡
¡

¡¡ª

signal source

-υ

6

?
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Figure 1.6: Illustration of the Doppler effect.

In a wide-band multi-path fading channel, the transmitted signal arrives at the

receiver along Lp resolvable paths (equal to the number of carriers M in the multi-carrier

system as in equation (1.11)). However, each resolvable path consists of a superposition

of a large number Ls of local uncorrelated scatterers that arrive at the receiver almost

simultaneously with a common propagation delay. Each of these scatterers is characterized

by its own random amplitude and random phase. Thus, according to [Cla68] [Jak74], the
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frequency non-selective fading process over the mth carrier can be modeled as a sum of

Ls weighted complex exponentials:

hm(t) =
Ls∑

l=1

gmle
j(2πfdt cos ϕml+ϑml) (1.15)

where gml, ϕml and ϑml are, respectively, the random scatterer amplitude, angle of arrival

and initial phase associated with the lth scatterer and the mth carrier.

When there are a large number of scatterers, hm(t) can be approximated as a complex

Gaussian process hm(t) = |hm(t)|ejφm(t) according to the central limit theorem [Pap02]. In

an environment with no direct line-of-sight path between the transmitter and the receiver,

the fading process hm(t) will have zero-mean. In that case, its phase φm(t) is uniformly

distributed over [0, 2π) and its envelope at any time ~ = |hm(t)| has a Rayleigh probability

density function defined as follows:

f~(~) =

{
~

σ2
h

e−~
2/2σ2

h , ~ ≥ 0

0, otherwise
(1.16)

where σ2
h = E[|hm(t)|2] denotes the average power of the fading process. Note that the

carrier subscript is dropped, assuming that the fading processes over all carriers have the

same statistics.

A typical Rayleigh fading envelop and phase of a time-varying fading process hm(t) is

shown in Figure 1.7, with fd = 50 Hz, fc = 1800 MHz (GSM carrier), υ = 30 Km/h and

Tb = 200µs. Deep fades result from destructive addition of the scatterers while peaks

result from their constructive addition.

The time-variation of the fading channel is often characterized by the fading process ACF.

This second-order statistic generally depends on the propagation geometry, the velocity of

the mobile and the antenna characteristics. A common assumption is that the propagation

path consists of a two dimensional isotropic scattering with a vertical monopole antenna

at the receiver [Jak74]. Thus, given the fading model described in equation (1.15), the

ACF of the mth carrier fading process can be obtained as follows:

Rhh(τ) = E[hm(t + τ)h∗
m(t)]

=
Ls∑

l=1

Ls∑

i=1

E
[
gmle

j(2πfd(t+τ) cos ϕml+ϑml)gmie
−j(2πfdt cos ϕmi+ϑmi)

] (1.17)

Under the wide-sense stationary uncorrelated scattering assumption suggested by Bello

[Bel63], the different scattering rays are uncorrelated, such that E[gmlgmi] = E[g2
ml]δ(l−i).

22



Chapter 1 – Multi-Carrier DS-CDMA Mobile Wireless Systems

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−30

−25

−20

−15

−10

−5

0

5

10

E
nv

el
op

e 
(d

B
)

Time (ms)

  Deep fades

Peak 

(a) Rayleigh envelop of the fading process.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−4

−3

−2

−1

0

1

2

3

4

P
ha

se
 (

ra
d)

Time (ms)

(b) Phase of the fading process.

Figure 1.7: The envelope and phase of Rayleigh fading channel.

Hence, the ACF can be written in the following manner:

Rhh(τ) =
Ls∑

l=1

E[g2
ml]E[ej2πfdτ cos ϕml ] (1.18)

Then, assuming that the scattered signals arrive from any direction with equal probability,

the ACF is given by:

Rhh(τ) =
σ2

h

2π

∫ 2π

0

ej2πfdτ cos ϕmldϕml

= σ2
hJ0(2πfdτ)

(1.19)

where J0(.) is the zero-order Bessel function of the first kind and σ2
h =

∑Ls

l=1 E[g2
ml].

It should be noted that the real and imaginary portions of hm(t), denoted respectively as

h
(r)
m (t) and h

(i)
m (t), are uncorrelated and have the same autocorrelation function [Stu01]:

R
h
(r)
m h

(r)
m

(τ) = R
h
(i)
m h

(i)
m

(τ) =
σ2

h

2
J0(2πfdτ) (1.20)

R
h
(i)
m h

(r)
m

(τ) = R
h
(r)
m h

(i)
m

(τ) = 0 (1.21)

The Doppler power spectrum can therefore be obtained by taking the Fourier transform of

the ACF. The resulting Doppler power spectrum of hm(t) is band-limited and U-shaped.

Moreover, it exhibits twin peaks at ±fd, as follows [Jak74]:

Ψ(f) =





σ2
h

πfd

√
1−(f/fd)2

, |f | ≤ fd

0, else-where
(1.22)
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Figure 1.8: Channel ACF and Doppler power spectrum. fd = 50 Hz and fd = 150 Hz.

The channel ACF and Doppler power spectrum are shown in Figure 1.8 for maximum

Doppler frequencies fd = 50 Hz and fd = 150 Hz. Thus, with fc = 1800 MHz, we notice

that increasing the mobile speed from 30 Km/h to 90 Km/h results in a wider Doppler

spectrum bandwidth. Therefore, the higher the mobile speed the higher the fading rate,

and accordingly the faster the time-variation of the channel. In addition, as the channel

ACF is real valued, the corresponding PSD is symmetric around f = 0.

By sampling the continuous-time channel model (1.15) and ACF (1.19) at symbol rate

1/Tb, a discrete-time model and ACF can be respectively obtained as follows :

hm(n) =
Ls∑

l=1

gmle
j(2πfdTbn cos ϕml+ϑl) (1.23)

and

Rhh(n) = σ2
hJ0(2πfdTb|n|) (1.24)

where fdTb denotes the Doppler rate.

In the following subsection, we will see how the theoretical channel model can be

simulated by using sum-of-sinusoids models.

1.3.3 Sum-of-sinusoids simulation models

Based on the theoretical model of the channel (1.15), and by selecting the following values

for the scatterer amplitude gml, angle of arrival ϕml and initial phase ϑml associated with

the lth scatterer and the mth carrier:

gml =
1√
Ls

(1.25)
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ϕml =
2πl

Ls

, l = 1, 2, · · · , Ls (1.26)

ϑmn = 0 (1.27)

Jakes derived the well-known sum-of-sinusoids simulation model for Rayleigh fading chan-

nels [Jak74]. However, the simplifying relationships forced in (1.25), (1.26) and (1.27)

make this model deterministic and wide-sense non-stationary [Pop01]. Therefore, var-

ious modifications of the Jakes’ simulator have been proposed in the literature. Thus,

Pop et al. [Pop01] have proposed an improved simulator by introducing random phase

shifts in the sinusoids to address the stationarity issue. In [Den93], a modified model

has been proposed to generate multiple independent fading processes by using orthogonal

Walsh-Hadamard codewords3. In the latter model, to provide quadrantal symmetry for

all Doppler shifts leading to equal power oscillators, the arrival angles ϕml are modified

as follows:

ϕml =
2π(l − 0.5)

Ls

, l = 1, 2, · · · , Ls (1.28)

Thus, the fading process along the mth carrier can be generated as follows:

hm(n) =

√
2

Lo

Lo∑

l=1

qm(l)[cos(πl/Lo) + j sin(πl/Lo)] cos(2πfdTbn cos ϕml + ϑml) (1.29)

where Lo = Ls/4 is the number of oscillators,
√

2/Lo a normalization factor,

qm(l) ∈ {±1}, l = 1, · · · , Lo the mth Walsh-Hadamard codeword. Randomizing ϑml

provides different waveform realizations.

However, in the above simulators, the autocorrelations and cross-correlations of the real

and imaginary parts do not match the desired correlation properties given by equations

(1.20) and (1.21), even if the number of sinusoids tends to infinity. For this reason, Zheng

et al. [Zhe03] have proposed a simulation model whose second order statistics correspond

to the desired ones even if a few sinusoids are used. This is achieved by properly intro-

ducing randomness to gml, ϕml and ϑml as required by the theoretical model rather than

using deterministic values as in equations (1.25)-(1.28).

Nevertheless, these sum-of-sinusoids models are dedicated to channel simulation and

cannot be used in practice to design channel estimation algorithms due to the following

reasons.

• Firstly, these models are non-linear.

3The mth Walsh-Hadamard vector qm(l) ∈ {±1}, l = 1, · · · , Lo in a set of M vectors gives zero inner

product value with the others, i.e. qT
mqn = 0, ∀m 6= n.
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• Secondly, in addition to fd, the sum-of-sinusoids models usually involve three para-

meters (i.e., gml, ϕml and ϑml) to be defined for each scatterer. Thus, for a typical

scenario of Ls = 400 scatterer, there will be a huge number of parameters.

• Thirdly, the estimation of these parameters will not be an easy task.

In [Gia98], to reduce the number of parameters to be estimated when designing a chan-

nel estimator, the channel is modeled as a superposition of few time-varying complex

exponential basis functions with time-invariant coefficients. However, this so-called basis

expansion model is deterministic while the theoretical model of the channel is stochastic.

As an alternative to the sum-of-sinusoids models, we will investigate the relevance of AR

models in the next subsection.

1.3.4 Autoregressive channel modeling

The AR model is widely used in many digital signal processing applications to approx-

imate discrete-time random signals of interest [Kay88]. Such application areas include

speech coding [Che92], speech enhancement [Gri02] [Lab06a], sea clutter modeling in

radar application [Nog98], digital communications [Bad05] and biomedical applications,

to just name a few. Indeed, this model is simple, linear and contains few parameters that

can be easily estimated.

In recent papers [Kom02] [Lin02] [Bad05], the fading process hm(n) has been approxi-

mated by a pth order AR process, denoted by AR(p) and defined as follows:

hm(n) = −
p∑

i=1

aihm(n − i) + um(n) (1.30)

where {ai}i=1,...,p are the AR model parameters and um(n) denotes the zero-mean complex

white Gaussian driving process with variance σ2
u.

The corresponding PSD of the AR(p) process has the rational following form [Kay88]:

ΨAR(fn) =
σ2

u

|1 +
∑p

i=1 aiexp (−j2πfni) |2 (1.31)

where fn is the normalized frequency.

The AR model can be used to either simulate fading channels as in [Bad05], or to design

an estimation algorithm as in [Tsa96] [Lin02] [Kom02]. However, in both cases, two

issues have to be investigated. Firstly, the selection of the AR model order p that best

approximates the fading channel. Secondly, the estimation of both the AR parameters

{ai}i=1,...,p and the driving process variance σ2
u.
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In [The92], several criteria (e.g., Akaike information criterion) to select the AR model

order are discussed. However, these criteria work well only for true AR processes, which

is not the case when dealing with band-limited Doppler fading processes.

In the following, the selection of the AR model order and the determination of the AR

parameters are investigated.

1.3.4.1 Determination of the AR parameters

The relationship between the AR parameters and the fading process ACF is given by the

well-known YW equations [Kay88]:

Rhhθ = −rh (1.32)

where Rhh is the fading channel autocorrelation matrix of size p × p, defined as follows:

Rhh =




Rhh(0) Rhh(−1) · · · Rhh(−p + 1)

Rhh(1) Rhh(0) · · · Rhh(−p + 2)
...

...
. . .

...

Rhh(p − 1) Rhh(p − 2) · · · Rhh(0)




(1.33)

and θ is a p × 1 vector storing the AR parameters:

θ =
[

a1 a2 · · · ap

]T

(1.34)

In addition, rh =
[

Rhh(1) Rhh(2) · · · Rhh(p)
]T

is the p × 1 channel autocorrelation

vector. Moreover, by using (1.30), the variance of the driving process can be expressed in

the following manner:

σ2
u = Rhh(0) +

p∑

i=1

aiRhh(−i) (1.35)

Providing that the Doppler frequency fd is known, Rhh(n) defined in (1.24) is known and

hence the AR parameters could be computed by solving the YW equations (1.32). It

should be noted that, to avoid the inversion of Rhh, the YW equations can be efficiently

solved by using the Levinson-Durbin recursion4 with complexity O(p2) instead of O(p3).

Once the AR(p) parameters of the fading process are estimated, the autocorrelation func-

tion of the resulting AR(p) process has the following form [Kay88]:

R̂hh(n) =

{
Rhh(n), 0 ≤ n ≤ p

−∑p
i=1 aiR̂hh(n − i), n > p

(1.36)

In the following, we will study the relevance of low and high-order AR models.

4See the MATLAB function levinson for a possible implementation.
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1.3.4.2 Poor approximation of low-order AR models

For the special case of AR(1) model, the YW solution for the AR(1) parameter and the

driving process variance are given by:

{
a1 = −J0(2πfdTb)

σ2
u = (1 − a2

1)σ
2
h

(1.37)

Although AR(1) model is very simple, it results in a poor approximation of the Jakes

model as its PSD can provide only one peak at fd = 0 Hz, which is only the case for static

terminals.

In [Lin95] [Wu00] [Lin02], the authors have modeled the fading channel by an AR(2)

model with poles5 located close to the unit circle in the z-plane, at an angle 2πfdTb√
2

. The

AR(2) parameters are then given by:





a1 = −2rd cos
(

2πfdTb√
2

)

a2 = r2
d

(1.38)

where rd ∈ [0.9, 0.999] is the pole radius that corresponds to the steepness of the peak of

the power spectrum.

The above choice of the AR(2) parameters is motivated by the quasi-periodic behavior

of the Rayleigh fading process (see figure 1.7(a)). Indeed, for small time-lags n, the

Bessel autocorrelation function of the channel J0(2πfdTb|n|) is similar to that of a sinusoid

with unit-amplitude, frequency fo and a uniformly distributed phase on [0, 2π), given

by cos(2πfoTb|n|). To illustrate it, let us consider the Taylor series expansion of both

J0(2πfdTb|n|) and cos(2πfoTb|n|), as follows:

{
J0(2πfdTb|n|) = 1 − (2πfdTb|n|)2

22 + (2πfdTb|n|)4
2242 − (2πfdTb|n|)6

224262 + · · ·
cos(2πfoTb|n|) = 1 − (2πfoTb|n|)2

2!
+ (2πfoTb|n|)4

4!
− (2πfoTb|n|)6

6!
+ · · ·

(1.39)

If we consider the first two expansion terms in equation (1.39), the two autocorrelation

functions are equal for fo = fd√
2
. Thus, the peak frequency of an AR(2) model fitting the

fading process is at fd√
2

instead of fd.

Figure 1.9 shows the PSD and the pole locations inside the unit circle in the z-plane of

an AR(2) process that should fit the Jakes model with fc = 1800 MHz, Tb = 400µs and

different maximum Doppler frequencies (i.e., fd = 100 Hz, fd = 250 Hz and fd = 500 Hz).

The corresponding AR(2) parameters are obtained by solving the YW equations and are

5H(z) = 1
1+

∑
i
aiz−i = 1

Πi(1−piz−1) , where pi is the so-called pole.
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Figure 1.9: PSD and poles of an AR(2) process fitting the Jakes Doppler spectrum with

fd = 100 Hz, fd = 250 Hz and fd = 500 Hz. The poles are respectively equal to

0.9960e±j0.0565π, 0.9748e±j0.1406π and 0.8926e±j0.2762π.

Table 1.2: The AR(2) parameters for a mobile wireless system with fc = 1800 MHz,

Tb = 400µs and different maximum Doppler frequencies.

mobile speed Doppler frequency Doppler rate a1 a2 σ2
u

υ (Km/h) fd (Hz) fdTb

60 100 0.04 -1.9608 0.9921 0.0005

150 250 0.1 -1.7625 0.9503 0.0178

300 500 0.2 -1.1544 0.7967 0.2145

summarized in Table 1.2. It is evident that an AR(2) process results in a spectral peak

at fd√
2
. In addition, decreasing the maximum Doppler frequency results in adjacent poles

that are very close to the unit circle in the z-plane.

From the above discussion, it is clear that low-order AR models (e.g., AR(1), AR(2))

yield poor approximation of the fading channel statistics. This motivates us to study the

relevance of high-order AR models to better approximate the Jakes model.

1.3.4.3 Relevance of high-order AR models

Although several authors (see, e.g., [Tsa96], [Wu00], [Che01], [Lin02], [Kom02]) suggest

using AR(1) and/or AR(2) processes to model the fading channel arguing for model sim-

plicity, these processes are not well suited to approximate a band-limited spectrum.
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Increasing the AR model order will provide a better approximation of the theoretical

model. Nevertheless, when solving the YW equations in that case, one has to pay atten-

tion to the condition number of the autocorrelation matrix Rhh as it will determine the

accuracy of the solution. In that case, the value of the driving processes variance σ2
u plays

a key role. Indeed, σ2
u can be seen as the MMSE of the one-step predictor of order p for

the fading process h(n). This prediction error is given by the Kolmogoroff-Szego formula

(see [Pap02] pp. 600):

σ2
u = exp

(
1

2π

∫ π

−π

ln ΨAR(ω)dω

)
(1.40)

where ω = 2πfn is the normalized angular frequency. It is known that the prediction

error σ2
u is a non-increasing function of the model order p (see [Pap02] pp. 600). From

(1.40), if the asymptotic PSD of the AR process is zero over some frequency interval, the

asymptotic prediction error is zero (i.e., σ2
u → 0 as p → ∞).

To investigate how fast σ2
u converges to its asymptotic value, we present in Figure 1.10

the behavior of σ2
u as a function of the AR model order for various values of Doppler rate

fdTb. From Figure 1.10, the rate of decay of σ2
u is very fast and is inversely proportional

to the Doppler rate. In addition, σ2
u goes to zero at small AR model orders for Doppler

rates fdTb ≤ 0.1.
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Figure 1.10: Driving process variance versus AR model order for various Doppler rates.

A measure of singularity of the channel autocorrelation matrix Rhh can be provided by

the driving process variance as follows [Bad05]:

det[Rhh] =

p−1∏

i=0

σ2
i (1.41)
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where σ2
i is the driving process variance corresponding to an AR(i) model of the fading

process. Thus, Rhh becomes singular when
∏p−1

i=0 σ2
i = 0. In addition, it is observed that

the eigenvalue spread of Rhh is very large, which results in an ill-conditioning problem.

In that cases, errors in the calculated AR parameters are expected when solving the YW

equations (1.32) for all but very small AR model orders.

To overcome the band-limitation of the fading process and the resulting deterministic

model, two solutions have recently been proposed [Sch01] [Bad05], in the framework of

channel simulation.

On the one hand, in [Sch01], a sub-sampled ARMA process followed by a multistage

interpolator has been considered. Indeed, when down-sampling, the normalized maximum

Doppler frequency moves towards 1/2 such as the PSD is never equal to 0. Nevertheless,

this requires a very high down-sampling factor.

On the other hand, Baddour et al. [Bad05] have suggested to ”slightly” modify the

properties of the channel by considering the sum of the theoretical fading process and an

additive zero-mean white process whose variance ǫ is very small. In that case, the PSD

of the resulting process is no longer band-limited and the corresponding ACF becomes:

Rmod
hh (n) = σ2

hJ0(2πfdTb|n|) + ǫδ(n) (1.42)

Adding the spectral bias ǫ reduces the condition number of Rhh and, hence, overcome

the ill-conditioning problem when solving the YW equations. In addition, the resulting

AR(p) process is a nondeterministic regular process whose driving process variance σ2
u no

longer decays to zero when increasing the order p. Indeed, σ2
u can now be expressed as:

σ2
u = exp

(
1

2π

∫ π

−π

ln(ΨAR(ω) + ǫ)dω

)
(1.43)

Therefore, for the asymptotic case of AR(∞), the driving process variance σ2
u will be

lower bounded by ǫ. It was observed in [Bad05] that the value of the added bias ǫ which

results in the most accurate AR parameters computation depends mainly on the Doppler

rate fdTb. Typical values of ǫ, which represent a tradeoff between the improved condition

number of Rhh and the bias introduced in the model, are given in Table 1.3. These values

were empirically obtained in [Bad05].

As the band-limitation issue can be solved by the above method, using high-order AR

models to approximate the fading channel becomes possible. Thus, increasing the AR

model order leads to a better fit between the statistics of the resulting AR process and

the realistic Jakes channel. This is illustrated in Figure 1.11 where we present the ACF
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Table 1.3: Typical values of the added bias ǫ for different Doppler rates.

Doppler Rate fdTb added bias ǫ

0.001 10−5

0.005 10−6

0.01 10−7

0.05 10−8

0.1 10−9

and PSD of the Jakes model and that of the fitted AR process whose order is 1, 2, 5

and 20. According to this figure, the AR(20) model provides much better approximation

to the theoretical Jakes model than low-order AR models. In [Bad05], Baddour et al.

have used a very high-order AR models (e.g., p ≥ 50) to accurately model and simulate

fading channels. However, in the framework of channel estimation based on Kalman

or H∞ filtering, such a model order results in an estimation algorithms with very high

computational cost. Therefore, a compromise between the modeling approximation and

the computational cost has to be found in that case.
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Figure 1.11: ACF and PSD of the Jakes fading channel and that of the fitted AR processes

whose order is 1, 2, 5 and 20. fdTb = 0.05.

Following the above discussion, an AR model whose order is high enough will be considered

in this thesis to approximate the channel fading process either in the field of channel

simulation or estimation.
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1.4 Conventional receiver

The transmitted multi-carrier signal of the kth user (1.1) propagates through a frequency-

selective Rayleigh fading channel. Providing that the number M of carriers, the carrier

spacing and the bandwidth of the chip pulse shape ψ(t) are suitably chosen [Kon96], each

carrier can be assumed to undergo independent flat fading (see subsection 1.3.1). In addi-

tion to the fading, the transmitted signal at the mth carrier is also disturbed by an Additive

White Gaussian Noise (AWGN) process ηm(t). The noise processes {ηm(t)}m=1,2,...,M are

assumed to be mutually independent and identically distributed, with equal variance σ2
η.

Hence, the continuous time received signal on the systems uplink (i.e., the asynchronous

case) at the mth carrier in its complex analytic form is given by:

rm(t) =
+∞∑

n=−∞

K∑

k=1

√
2Pkdk(n)ck(t − nTb − τk)hmk(n)ej2πfmt + ηm(t) (1.44)

where τk ∈ (0, Tb) is the delay of the kth user signal. The fading processes

{hmk(n) = |hmk(n)|ejφmk(n)}m=1,2,··· ,M ;k=1,2,··· ,K are mutually independent and identically

distributed complex Gaussian random processes. Indeed, as mentioned in subsection

1.3.2, hmk(n) is zero-mean with a uniformly distributed phase φmk(n) on [0, 2π) and a

Rayleigh distributed envelop |hmk(n)|. The variances of {hmk(n)}m=1,2,··· ,M ;k=1,2,··· ,K are

all assumed equal to σ2
h. Here, the fading is assumed to be time-varying whereas it is

assumed to be time-invariant in [Kon96].

To retrieve the desired symbol sequence of the first user d1(n), from the received sig-

nals {rm(t)}m=1,2,...,M , let us consider the conventional correlator (matched-filter) based

MC-DS-CDMA receiver proposed by Kondo et al. in [Kon96]. This receiver is illus-

trated in Figure 1.12 and operates as follows. Firstly, the received multi-carrier signal is

demodulated over M carriers. It should be noted that the multi-carrier modulation and

demodulation steps depicted in Figures 1.3 and 1.12 can be efficiently implemented by us-

ing the Inverse FFT (IFFT) and FFT techniques, respectively [Bin90]. The demodulated

signal over the mth carrier is then processed with a chip-matched filter, which consists of

an integrator with duration MTc. The samples from a chip-rate 1/MTc sampler are then

stored during a one-bit interval, resulting in the following N × 1 vector:

xm(n) =
K∑

k=1

√
Pkhmk(n)[dk(n)fk + dk(n − 1)gk] + ηm(n) (1.45)

where fk and gk depend on the left and right cyclic shifts of the spreading code ck of the

kth user. In addition, ηm(n) is an N × 1 vector of AWGN samples with zero-mean and

covariance matrix σ2
ηIN .
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Figure 1.12: Conventional MC-DS-CDMA receiver structure for user 1.

For the systems down-link (i.e., the synchronous case), all users are synchronized, i.e.

{τk = 0}k=0,1··· ,K . In addition, all user signals over the mth carrier are affected by the

same fading process hm(n) = |hm(n)|ejφm(n). Therefore, in that case, the received N × 1

vector is given by:

xm(n) =
K∑

k=1

√
Pkdk(n)hm(n)ck + ηm(n) (1.46)

The received vector at the mth carrier xm(n) is then correlated with the spreading code

of the first user c1, resulting in de-spreading the information of the first user as follows:

ym(n) = cT
1 xm(n) =

√
P1d1(n)hm(n) +

K∑

k=2

√
Pkdk(n)hm(n)cT

1 ck + cT
1 ηm(n) (1.47)

where the output of the first user correlator consists of three parts:

• the first part
√

P1d1(n)hm(n) is due to the information of the desired user,

• the second part
∑K

k=2

√
Pkdk(n)hm(n)cT

1 ck is due to the MAI caused by other users,

• the third part cT
1 ηm(n) with variance σ2

η is due to the AWGN.

The MAI part in the right hand side of (1.47) is imposed by the cross-correlation of

the spreading codes of different users. The spreading codes cross-correlations, defined

as ρij = cT
i cj with i 6= j, are usually designed to be very small compared to their

autocorrelations ρii = cT
i ci = 1. However, as the number of users K or their powers Pk

increases, the MAI becomes substantial.
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It should be noted that the correlator detector in (1.47) follows a single-user detection

strategy in which each user is detected separately without regard for other users. In

addition, the MAI term is assumed to be approximated as a Gaussian noise which can be

then added to the additive noise. This approximation is justified [Pap02] from the central

limit theorem when the number of active users is very high.

To counteract the effect of fading, the frequency diversity inherent in the MC-DS-CDMA

system can be exploited by using a diversity combining technique such as the MRC

[Pro95]. Therefore, the conventional receiver uses the MRC to compensate for the fading

by coherently add the contribution of all carriers, as follows:

yMRC(n) =
M∑

m=1

h∗
m(n)ym(n) (1.48)

Thus, by multiplying with h∗
m(n) = |hm(n)|e−jφm(n), the output of the correlator over each

carrier is co-phased and weighted by a factor that is proportional to the signal amplitude.

Thus, carriers with strong signal are further amplified, while carriers with weak signal

are attenuated. In that sense, the MRC is an optimal diversity combining technique that

maximizes the SNR.

Finally, a decision about the desired user data symbol can thus be obtained as follows:

d̂1(n) = sgn

(
Re

(
M∑

m=1

h∗
m(n)ym(n)

))
(1.49)

where the fading processes {hm(n)}m=1,2,··· ,M are assumed to be available at the receiver.

However, the conventional MC-DS-CDMA receiver [Kon96] has two drawbacks.

• Firstly, the fading processes over all carriers are assumed to be available at the

receiver, which is not the case in practice.

• Secondly, as this receiver uses the spreading code of the desired user in the form of

a correlator to de-spread his information, it cannot eliminate the MAI caused by

other users.

Indeed, when the number of users is increased, the amount of the MAI will also increased

and, hence, the BER performance of the receiver will deteriorate. In addition, this receiver

cannot work well in a near-far scenario, where far users from the base station receive lower

power than users who are near the base station. This is because the near-far problem will

result in more severe MAI.
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Figure 1.13: Effect of the MAI and the near-far problem on the BER performance of the

conventional correlator based MC-DS-CDMA receiver.

The effects of the MAI and the near-far problem on the BER performance of the conven-

tional receiver can be illustrated by the following simulation example. Let us consider a

MC-DS-CDMA system with BPSK modulation, three carriers M = 3 and K = 10 active

users. In the simulation, three near-far scenarios are investigated:

• Near-far scenario # 1: the desired user (i.e., k = 1) signal has the same power as

all other interfering user signals (i.e., P1 = P2 = · · · = PK , perfect power control

case). Let us define the Interference-to-Signal Ratio (ISR) as follows:

ISR = 10 log10

(
Pk

P1

)
, 2 ≤ k ≤ K (1.50)

Thus, in the perfect power control case ISR=0 dB.

• Near-far scenario # 2: the interfering users (i.e., k 6= 1) have 10 dB power advantage

over the desired user (i.e., ISR=10 dB).

• Near-far scenario # 3: the interfering users have 15 dB power advantage over the

desired user (i.e., ISR=15 dB).

Figure 1.13 confirms that the BER performance of the correlator based receiver is limited

by the MAI and the near-far problem.
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1.5 Conclusions

MC-DS-CDMA is a promising multiple access technique that combines the advantages

of both multi-carrier modulation and DS-CDMA. It can support the requirements of the

new emerging high data rate interactive multimedia services in the B3G and 4G mobile

wireless systems.

In this chapter, we have presented the transmitter model, the channel model and

the conventional receiver of MC-DS-CDMA based mobile wireless system. This system

is designed to provide high data rate transmission to high mobility users. High data rate

transmission leads to severe frequency-selective fading. Thus, when the number of carri-

ers and their spacing are suitably chosen, each carrier is assumed to undergo independent

frequency-flat fading. In addition, due to user mobility, each carrier is subject to Doppler

shifts resulting in time-varying fading. Therefore, the channel over each carrier is char-

acterized as frequency-flat and time-varying. We study the relevance of AR modeling for

these channels where low-order and high-order models are evaluated. As low-order AR

models yield poor approximation of the fading channel, we propose to consider an AR

model whose order is high enough to approximate the fading channel.

When considering the conventional MC-DS-CDMA receiver, the fading process over

each carrier is assumed to be available, which is not the case in practice and should be esti-

mated. In addition, this receiver is severely limited by the MAI and the near-far problem.

Therefore, in the next chapter, we propose several receiver structures that can partially

or completely remove the MAI while working in Rayleigh fading channels. Moreover, in

chapter 3, we introduce several channel estimation schemes that can effectively estimate

and track AR fading channels.
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2.1 State of the art

Despite the various advantages of CDMA systems, the MAI and the near-far effect are

two problems to be addressed. Therefore, in the last two decades, significant efforts have

been made to develop multiuser detection receivers to suppress the MAI and to mitigate

the near-far problem. See [Ver98] and references therein. Most of these receivers were

developed for single-carrier DS-CDMA systems in AWGN channels. In these cases, one

or more of the following items are assumed to be known at the receiver:

1. the spreading waveform (code) of the desired user,

2. the spreading waveforms (codes) of the interfering users,

3. the timing (propagation delay) of the desired user,

4. the timing (propagation delay) of each of the interfering users,

5. the received amplitudes of all users,

6. the training data sequence of every active user.

The RAKE receiver, as implemented in the IS-95 standard [IS-95], requires the spreading

waveform and the timing of the desired user. However, this receiver cannot eliminate

the MAI and is ”limited” by the near-far problem. To avoid the near-far effect, the

IS-95 system is based on stringent closed loop power control which, however, decreases

the system capacity. The optimal multiuser receiver proposed by Verdú in [Ver86] con-

sists of a bank of matched filters, one for each user, followed by a Viterbi algorithm to

carry-out Maximum Likelihood (ML) sequence estimation. It can completely eliminate

the MAI and can solve the near-far problem. However, its computational complexity

increases exponentially with the number of users. In addition, it requires the knowl-

edge of the spreading waveforms, the timing and the amplitudes of all users. To reduce

the computational cost of the optimal receiver, several linear multiuser receivers have

been proposed [Ver98]. They can result in similar performance1 as the optimal receiver

while having a linear complexity in the number of users. Thus, the decorrelating receiver

[Lup89] [Lup90] requires the spreading waveforms and the timing of all users to achieve

optimal near-far resistance and to completely eliminate the MAI. As an alternative, the

MMSE receiver (see, e.g., [Mad94], [Hon00]) has been proven to be as near-far resistant as

1In terms of MAI suppression, near-far resistance and BER.
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the decorrelating receiver while more suitable for adaptive implementation. The adaptive

MMSE receivers (see, e.g., [Mil95], [Woo98], [Hon00], [Mil00a]) are usually implemented

with adaptive filters such as the LMS or the RLS [Hay02]. Besides, the NLMS and the

APA algorithms have been tested to design MMSE receivers for WCDMA systems [Tri03].

These adaptive receivers make it possible to suppress the MAI and can implicitly com-

pensate for the effect of the fading channel. In addition, they offer an attractive trade-off

between performance, complexity and the need for side information (i.e., spreading codes,

timing for all users, etc.). The only overhead of these receivers is that they need a training

sequence for every active user. To avoid the use of training sequences, a blind2 LMS-based

multiuser receiver was proposed by Honig et al. [Hon95]. This type of receiver is based

on the minimization of the Mean Output Energy (MOE) of the receiver subject to a cer-

tain code-aided constraint3 to guarantee no cancelation of the desired signal. It requires

only the knowledge of the spreading sequence and the timing of the desired user. Blind

adaptive multiuser detectors based on the RLS [Poo97] and the Kalman filter [Zha02]

algorithms have also been developed. Indeed, they make it possible to improve the con-

vergence features and tracking capabilities when compared with the LMS-based detector.

In [Muc04], the authors have proposed a derived version of the blind LMS-based detector

[Hon95], which makes it possible to operate in a time-varying multi-path fading chan-

nels. It should be noted that blind adaptive receivers can also be implemented by using

subspace approaches [Wan98] and high-order statistics based methods. The reader may

refer to [Mad98] for a tutorial survey about these techniques. Other multiuser detection

techniques include the non-linear multistage and decision-feedback receivers [Mos96].

In this chapter, our purpose is to design receivers for MC-DS-CDMA mobile wireless

systems in Rayleigh fading channels. The conventional correlator based MC-DS-CDMA

receiver [Kon96] presented in the previous chapter cannot eliminate the MAI caused by

other users and, hence, is not near-far resistant. In addition, the fading processes over

all carriers are assumed to be available at the receiver, which is not the case in practice.

Therefore, several approaches have recently been developed to suppress the MAI and/or

to estimate and counteract the effect of fading.

The first approach consists in designing a MMSE receiver. Two structures are

proposed in [Mil00b]: the first one consists in carrying out a Wiener filter along each

2The adjective ”blind” in this context means that the receiver does not require training sequences for

MAI suppression and multiuser detection.
3The spreading code of the desired user, always available at the receiver, is orthogonal to the adaptive

part of the detector responsible about MAI suppression (see equations (2.26)-(2.28)).
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carrier, whereas the second one is defined by the joint optimization of the filter weights

of all carriers. In both structures, the Wiener filtering is performed using the least-square

estimated fading processes. However, as these receivers require the estimation and the

inversion of the received signal autocorrelation matrix, their computational cost is high.

Hence, they may be difficult to implement in practice. In [Gro06], Grolleau et al. have

proposed a reduced-rank MMSE receiver based on a matrix polynomial expansion of the

inverse of the received signal autocorrelation matrix. This receiver makes it possible to

get a compromise between the computational cost and the performance in terms of BER.

Its asymptotic version (i.e., when the spreading code length and the number of active

users goes to infinity with their ratio being constant) is also derived by using the so-called

random matrix theory. In the framework of MC-CDMA, Kalofonos et al. [Kal03] have

studied two types of MMSE detectors in Rayleigh fading channels. Firstly, to carry out the

so-called ”MMSE per carrier” detector, the fading processes are estimated by means of the

LMS or the RLS algorithm. The authors also examine the relevance of Kalman filtering

for channel estimation. Secondly, the so-called ”MMSE per user” detector is adaptively

implemented by using LMS or RLS algorithms and no explicit channel estimation is

required.

Blind MMSE receivers have also been studied. Thus, in [Lok99], Lok et al. have pro-

posed a blind adaptive receiver for MC-DS-CDMA systems in Rayleigh fading channels.

Instead of using the MRC after despreading, a blind stochastic gradient algorithm similar

to the LMS is carried out, maximizing the signal to noise-plus-MAI ratio. Their method

can be viewed as a form of MMSE multiuser detection in the frequency-domain. Nev-

ertheless, the authors did not use the existing ”time-domain” blind multiuser detection

techniques (e.g., [Hon95] [Poo97], [Zha02]) to effectively suppress the MAI. In [Nam00], a

subspace-based MMSE receiver for a MC-DS-CDMA system was proposed. The orthog-

onality between the noise subspace and the desired signal vector is exploited to blindly

estimate the channel required for the construction of the linear MMSE detector.

Other approaches have also been considered. Thus, in [Liu01], the authors have

proposed a class of spreading codes that allows the correlator-based receiver [Kon96]

to yield BER performance close to that of the optimal MMSE receiver for slowly fading

channels. In [Xu01], the receiver provides a RAKE for each carrier to mitigate the effect of

frequency-selective fading. The outputs of the RAKEs are then combined by using a MRC.

However, in this receiver, the fading processes are assumed to be available. In addition,

it cannot suppress the MAI. In [Wan04], the authors have proposed an adaptive Parallel

Interference Cancellation (PIC) multiuser detection scheme that operates in slowly fading
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channels. This scheme provides an adaptive MAI estimation algorithm before the PIC

stage to improve the accuracy of the MAI cancelation.

In the following, we present five new MC-DS-CDMA receiver structures. Thus, in

section 2.2, to reduce the computational cost of the optimal MMSE receiver presented in

[Mil00b], we propose two adaptive MMSE receiver structures based on the APA [Jam04].

A comparative study is then carried out with other adaptive algorithms such as the NLMS

and the RLS. In section 2.3, to avoid the use of a training sequence for every active user,

we propose two blind adaptive multiuser detection receiver structures based on a blind

APA-like multiuser detector [Jam05a]. In that case, only the spreading waveform and

the timing of the desired user are required. A comparative study is then carried out

with existing blind adaptive multiuser detectors based on LMS [Hon95] or Kalman filter

[Zha02], initially derived for single-carrier DS-CDMA systems. In section 2.4, when the

spreading waveforms and timing of all users are available, we propose to extend the

decorrelating multiuser detector based receiver originally developed for single-carrier DS-

CDMA in [Wu00] to the multi-carrier case [Jam05b].

2.2 Adaptive MMSE receivers

In this section, we propose two adaptive MMSE receiver structures based on the APA

[Jam04]. The so-called ”Separate Detection” (SD) structure consists in using a particular

adaptive filter structure for each carrier, whereas the so-called ”Joint Detection” (JD)

structure is based on a joint structure defined by the concatenation of the adaptive fil-

ter weights dedicated to each carrier. We carry out a comparative study between both

structures with various adaptive filters such as RLS, NLMS and APA.

2.2.1 Receiver structure with separate detection

The proposed adaptive MMSE receiver for asynchronous MC-DS-CDMA systems with

the separate detection of the received signals over M carriers is shown in Figure 2.1.

Thus, to retrieve the symbol sequence of the desired user d1(n) from the received signals

{rm(t)}m=1,2,··· ,M given in (1.44), let us first recall the N × 1 discrete-time received vector

over the mth carrier given in (1.45), as follows:

xm(n) =
K∑

k=1

√
Pkhmk[dk(n)fk + dk(n − 1)gk] + ηm(n) (2.1)
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Figure 2.1: Adaptive MMSE receiver structure with separate detection.

Here, the fading coefficients {hmk = |hmk|ejφmk}m=1,2,··· ,M ;k=1,2,··· ,K are assumed to be

time-invariant in a given transmission frame4, but might be time-varying from one frame

to another. In addition, the receiver is assumed to be synchronized5 with the desired user,

i.e. f1 = c1 and g1 = 0. Thus, equation (2.1) can be re-written in the following manner:

xm(n) =
√

P1hm1d1(n)c1 +
K∑

k=2

√
Pkhmk[dk(n)fk + dk(n − 1)gk] + ηm(n) (2.2)

where the first part of (2.2) is due to the information of the desired user, the second part

is due to the MAI caused by other asynchronous interfering users and the third part is

the additive noise.

At that stage, the MMSE receiver consists in defining the impulse response of the filter:

wm(n) =
[

wm(1) wm(2) · · · wm(N)
]T

(2.3)

that minimizes the following Mean Square Error (MSE) criterion:

JMSE[wm(n)] = E
[
|em(n)|2

]
= E

[∣∣d1(n) − wH
m(n)xm(n)

∣∣2
]

(2.4)

4A frame is a data structure that consists of fields predetermined by a protocol for the transmission

of user information symbols and pilot/training symbols.
5It should be noted that receiver synchronization is not an easy task (see, e.g., [Str96] [Cai02]).

However, this topic is outside the scope of this thesis.
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This leads to the well known Wiener-Hopf solution [Hay02]:

wm(n) = R−1
m (n)pm(n) (2.5)

where, Rm(n) = E[xm(n)xH
m(n)] denotes the autocorrelation matrix of the mth carrier-

output vector and pm(n) = E[d∗
1(n)xm(n)] the cross-correlation vector between desired

symbol of the first user and the mth carrier-output vector.

Nevertheless, instead of solving the Wiener-Hopf equation given in (2.5) which requires

the estimation and the inversion of Rm(n), an adaptive approach can be considered and

has the advantage of reducing the computational cost O(N3). In addition, the spreading

waveform and the fading coefficients are not required at the receiver. Once the training

period is over, the filter weights can either be locked for a stationary environment or track

channel variations in a decision directed manner. At that stage, the training sequence is

replaced by the estimated data symbol of the desired user along each carrier, obtained as

follows:

d̂1m(n) = sgn
(
Re

(
wH

m(n)xm(n)
))

(2.6)

The final symbol decision of the desired user is achieved by combining the contributions

from the adaptive filter outputs as follows:

d̂1(n) = sgn

(
Re

(
M∑

m=1

wH
m(n)xm(n)

))
(2.7)

As an alternative to the separate detection based receiver, a joint detection based one is

considered in the next subsection.

2.2.2 Receiver structure with joint detection

One can derive the adaptive MMSE receiver with the joint detection of the received signals

over M carriers (see Figure 2.2), by replacing in the above separate detection approach:

• the vector xm(n) by a MN × 1 vector xcon(n) concatenating the M discrete-time

outputs:

xcon(n) =
[

xT
1 (n) xT

2 (n) · · · xT
M(n)

]T

(2.8)

• the vector wm(n) by a MN × 1 vector wcon(n) concatenating the M filter weights:

wcon(n) =
[

wT
1 (n) wT

2 (n) · · · wT
M(n)

]T

(2.9)
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Figure 2.2: Adaptive MMSE receiver structure with joint detection.

In that case, we aim at minimizing the following MSE criterion:

JMSE[wcon(n)] = E
[∣∣d1(n) − wH

con(n)xcon(n)
∣∣2

]
= E

[
|d1(n) − z(n)|2

]
(2.10)

The final symbol decision of the desired user is then given by:

d̂1(n) = sgn
(
Re

(
wH

con(n)xcon(n)
))

(2.11)

It should be noted that equation (2.11) reduces to that in (2.6) when M = 1.

2.2.3 Adaptive implementation

To simplify matters, we introduce x(n) and w(n) to respectively denote:

• the input vector xm(n) and the filter weights wm(n) when using the separate detec-

tion scheme,

• the concatenated input vector xcon(n) and the concatenated vector weights wcon(n)

when considering the joint detection scheme.

2.2.3.1 The NLMS algorithm

When considering the LMS [Hay02], the weights w(n) are updated with a correction

proportional to the input vector x(n), which may however lead to gradient noise ampli-
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fication problem. For this reason, we consider the regularized normalized version of this

algorithm. The weight update equation of the NLMS is given by [Hay02]:

w(n + 1) = w(n) +
µN

δ + ‖x(n)‖2
x(n)

(
d̃1(n) − wH(n)x(n)

)∗
(2.12)

where

d̃1(n) =

{
d1(n), in the training mode

d̂1(n), in the decision directed mode
(2.13)

In addition, the normalized step-size µN ∈ (0, 2) controls the adaptation speed and δ is

introduced to increase stability when ‖x(n)‖2 is too small.

It should be noted that the NLMS suffers from slow convergence when the input

data are correlated. This is the case for instance when dealing with CDMA systems where

correlations between users codes result in severe MAI. To improve the convergence speed

in that case, the affine projection algorithm can be used.

2.2.3.2 The APA algorithm

The APA has been extensively exploited in applications involving speech and acoustics,

especially for acoustic echo cancelation of voice [Gay95] [Hay03]. Nevertheless, its appli-

cations in mobile wireless communications are still limited.

The APA can be formulated as the minimization of the squared Euclidean norm of the

change in the weight vector [Hay02]:

min‖∆w(n + 1)‖2 = min‖w(n + 1) − w(n)‖2 (2.14)

subject to L constraints:

xH(n)w(n + 1) = d̃1(n)

xH(n − 1)w(n + 1) = d̃1(n − 1)

...

xH(n − L + 1)w(n + 1) = d̃1(n − L + 1)

(2.15)

If we define:

X(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]

(2.16)

d(n) =
[

d̃1(n) d̃1(n − 1) · · · d̃1(n − L + 1)
]T

(2.17)

e(n) = d(n) − XH(n)w(n) (2.18)
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then, the solution of the above optimization problem (2.14)-(2.15) using the method of

Lagrange multipliers leads to the APA weight update equation [Hay02]:

w(n + 1) = w(n) + µNX(n)
[
δIL + XH(n)X(n)

]−1
e∗(n) (2.19)

where µN ∈ (0, 2) is the step-size and δ is a small positive constant used for regularization.

It should be noted that when L = 1, the weight update equation of the APA (2.19) reduces

to that of the NLMS algorithm (2.12). Indeed, whereas the NLMS updates the weights

w(n) by using the current input vector x(n), the APA updates the weights by using the

current and the L − 1 delayed input vectors. Therefore, the APA can be viewed as a

generalization of the NLMS [Mor96].

In both APA and NLMS algorithms, the step-size µN that governs the convergence rate

and the steady state excess mean square error must be carefully adjusted. To meet the

conflicting requirement of fast convergence and low steady state excess mean square error,

Ruweished et al. [Ruw06] have proposed to study the relevance of variable step-size NLMS

and APA algorithms recently developed in [Shi04]. They showed that the variable step-

size algorithms can provide better convergence features and can yield lower BER results

than the fixed step-size algorithms.

2.2.3.3 The RLS algorithm

The RLS algorithm aims at minimizing the weighted least square error [Hay02] [Naj06]:

JRLS =
n∑

i=0

λn−i|e(i, n)|2 =
n∑

i=0

λn−i
∣∣∣d̃1(i) − wH(n)x(i)

∣∣∣
2

(2.20)

where 0 < λ < 1 is the exponential forgetting factor.

The RLS algorithm operates in three steps at each recursion:

k(n + 1) =
P(n)x(n + 1)

λ + xH(n + 1)P(n)x(n + 1)
(2.21)

w(n + 1) = w(n) + k(n + 1)
(
d̃1(n + 1) − wH(n)x(n + 1)

)∗
(2.22)

P(n + 1) =
1

λ

(
P(n) − k(n + 1)xH(n + 1)P(n)

)
(2.23)

with P(0) = δ−1IN , where δ is a small positive constant.
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Table 2.1: Computational cost of the various adaptive filters when considering two design

structures for the receiver. Usually, L ≪ N .

Adaptive filter Separate Detection (SD) Joint Detection (JD)

NLMS O(MN) O(MN)

APA O(MNL2) O(MNL2)

RLS O(MN2) O(M2N2)

2.2.3.4 Computational cost of the various implementations

Table 2.1 summarizes the computational complexity of the SD and JD receiver structures

when implemented with the various adaptive filters (NLMS, APA and RLS). While the

NLMS algorithm has the lowest complexity, the APA algorithm has a scalable complexity

by changing the scalable parameter L. Thus, the complexity of the APA reduces to that

of the NLMS when L = 1 and approaches that of the RLS when L is high. The parameter

L is usually selected to be much less than the filter order (i.e., L ≪ N).

In addition, the order of complexity of the SD and JD receiver structures are the same

when considering either the NLMS or the APA, but this is not the case when using the

RLS algorithm where the JD structure has higher complexity than the SD structure.

Therefore, using the APA in a JD receiver structure is a priori preferable.

2.2.4 Simulation results

In this subsection, we carry out a comparative study between NLMS, APA and RLS

when they are used to implement the SD or JD receiver structure. In addition, the BER

performance of these receivers is compared with that of the correlator based receiver

proposed in [Kon96].

An asynchronous uplink transmission scenario is considered with K = 6 active users

and M carriers. The spreading sequences of all users are gold codes of length N = 31.

The desired user is the first one (i.e., k = 1), and all other users are interferers on

the desired user with ISR defined by equation (1.50). The delays are chosen to satisfy

τk = 2(k − 1)MTc, 1 ≤ k ≤ K. As a Rayleigh fading is considered, the channels

{hmk}m=1,2,··· ,M ;k=1,2,··· ,K are generated according to the complex Gaussian distribution

with zero-mean and unit-variance. In all of the simulations, a training period of 500

symbols is used for the various adaptive algorithms. This long training period is usually

available at the start of the transmission [Tsa96].
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Figure 2.3: Convergence characteristics of NLMS, APA and RLS for the JD receiver

structure. The SNR of the desired user is assigned to 20 dB. ISR=10 dB and M = 3.

Our simulations confirm that the higher L, the higher the convergence speed of the

APA algorithm. In Figure 2.3, APA converges faster than the NLMS. Satisfactory MSE

convergence is also observed in around 200 iterations, compared to about 550 for the

NLMS. Nevertheless, the RLS algorithm converges more quickly. From Figure 2.4 and

Figure 2.5, the JD receiver outperforms the SD one with the three adaptive algorithms,

when considering the BER. In addition, both receivers outperform the correlator based

receiver which is saturated when the ISR=10 dB. Furthermore, increasing L in the APA

yields much better BER performance than that of the NLMS and comparable performance

with that of the RLS. Besides, APA makes it possible to reduce the computational cost

when compared with the RLS, especially with the JD receiver structure (see Table 2.1).

For the various reasons mentioned above, APA in the JD receiver structure corresponds

to a trade-off between BER performance and complexity.

Figure 2.6 shows the effects of the number of carriers on the BER performance of the

various receivers. We can notice that a significant frequency diversity gain is obtained

when increasing the number of carriers from M = 1 to M = 3. In addition, the SD and

JD receivers provide the same performance when M = 1. Figure 2.7 shows the effects

of the ISR on the BER performance of the various receivers. When increasing the ISR,

the performance of the correlator based receiver degrade greatly, whereas the SD and JD

receivers are near-far resistant and yield much better BER than the correlator based one.
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Figure 2.4: BER performance of the SD receiver structure with the various adaptive filters

compared with that of the correlator based receiver [Kon96]. ISR=10 dB and M = 3.
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Figure 2.5: BER performance of the JD receiver structure with the various adaptive filters

compared with that of the correlator based receiver [Kon96]. ISR=10 dB and M = 3.
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Figure 2.6: BER performance of the various receivers for number of carriers equal to

M = 1 and M = 3. ISR=10 dB.
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Figure 2.7: Effects of the interference to signal ratio (ISR) on the BER performance of

the various receivers. M = 3 and SNR=15dB.
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Although the adaptive MMSE receivers provide significant results, they require a

training data sequence for every active user. As an alternative, we propose to investigate

blind adaptive multiuser detection receivers in the next section.

2.3 Blind adaptive multiuser detection receivers

Unlike the adaptive MMSE receivers, blind adaptive interference suppression receivers do

not require training sequences. It has been shown in the original work by Honig et al.

[Hon95] that, by knowing only the spreading code and the timing of the desired user,

the MMSE multiuser receiver can be implemented blindly. They have developed the first

blind LMS-based multiuser detection receiver in the absence of multi-path fading. It is

based on the minimization of a MOE criterion by using a stochastic gradient approach.

However, this method is not convenient in a time-varying environment. For this reason,

other approaches have been proposed.

• On the one hand, blind detectors based on RLS [Poo97] and Kalman filter [Zha02]

algorithms make it possible to improve the convergence features and tracking capa-

bilities in a dynamic environment, such as in the case of birth or death of interferers.

• On the other hand, Mucchi et al. [Muc04] have proposed a derived version of the

pioneering blind LMS-based detector [Hon95], which makes it possible to operate

in a time-varying frequency-selective multi-path fading channels. For this purpose,

they first complete channel compensation and time alignment on the signal replicas

along each independent path and then combine the resulting signals before or after

multiuser detection, resulting in two receiver schemes. The first scheme is called the

RAKE blind adaptive multiuser detection receiver where combining is performed

after multiuser detection. The second scheme is called pre-detection combining

blind adaptive multiuser detection receiver where combining is performed before

multiuser detection. The pre-detection combining based receiver has the advantage

of using only one detector for the combined replicas instead of one detector for each

signal replica. In addition, according to [Muc04], this yields a remarkable complexity

reduction, more reliable decision variable and more robust convergence procedure.

However, the above blind adaptive multiuser detection techniques were only developed for

single-carrier DS-CDMA systems. In this section, our purpose is to design blind adaptive

multiuser detection receivers for synchronous MC-DS-CDMA systems in Rayleigh fading
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channels. For this purpose, we first reformulate the ideas presented in [Muc04] to design

two blind adaptive receivers for MC-DS-CDMA systems. Namely:

• the first receiver provides a blind adaptive multiuser detector for each carrier fol-

lowed by a post-detection combiner,

• the second receiver consists of a pre-detection combiner followed by a single blind

adaptive multiuser detector.

To implement them, we have proposed a blind APA-like multiuser detector [Jam05a].

The proposed detector can be seen as a generalization of the blind LMS-based detector

[Hon95], on the basis of multiple delayed input signal vectors. A comparative study is then

carried out with existing blind LMS [Hon95] and Kalman filter [Zha02] based multiuser

detectors initially developed for single-carrier DS-CDMA systems.

2.3.1 Receiver structure with post-detection combining

In this subsection, we propose a blind adaptive multiuser receiver with post-detection

combining for synchronous MC-DS-CDMA systems in time-varying fading channels (see

Figure 2.8). Thus, to retrieve the symbol sequence of the first user d1(n), we first recall

the N × 1 discrete-time received vector over the mth carrier given in (1.46), as follows:

xm(n) =
√

P1d1(n)hm(n)c1 +
K∑

k=2

√
Pkdk(n)hm(n)ck + ηm(n) (2.24)

Here, as our goal is to suppress the MAI, we assume that the fading processes

{hm(n)}m=1,2,··· ,M are available at the receiver6. Thus, channel compensation over the

mth carrier can be performed in the following manner:

xm(n) = Re (h∗
m(n)xm(n))

=
√

P1d1(n)|hm(n)|2c1 +
K∑

k=2

√
Pkdk(n)|hm(n)|2ck + Re (h∗

m(n)ηm(n))
(2.25)

where the multiplication with h∗
m(n) = |hm(n)|e−jφm(n) compensates for the phase and

weights the signal amplitude by a positive time-varying factor |hm(n)|2.

6The estimation of the channel fading processes will be investigated in the next chapter.
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Figure 2.8: Blind adaptive receiver structure with post-detection combining.

After channel compensation, the resulting vector xm(n) over the mth carrier defines the

input to a blind adaptive multiuser detector whose canonical linear representation for

user 1 was firstly established in [Hon95], as follows:

wm(n) = c1 + am(n) (2.26)

subject to the constraint:

cT
1 am(n) = 0 (2.27)

or equivalently, since cT
1 c1 = 1:

cT
1 wm(n) = 1 (2.28)

where c1 is the normalized spreading vector of the first user and am(n) is the adaptive

part of the detector. Thus, the practical implementation of this detector is achieved by

means of two orthogonal filters (see Figure 2.9): the spreading code of the desired user c1

and the adaptive part am(n) that is used to eliminate the MAI.

The detector wm(n) is designed to minimize the MOE cost function:

JMOE[wm(n)] = E
[
|wT

m(n)xm(n)|2
]

(2.29)
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Figure 2.9: Blind adaptive multiuser detector wm(n) = c1 + am(n).

It should be noted that the MOE criterion given by (2.29) is related to a ”scaled” version

of the MSE criterion given by (2.4) as follows:

JMSE[wm(n)] = E

[∣∣∣
√

P1d1(n) − wT
m(n)xm(n)

∣∣∣
2
]

= JMOE[wm(n)] − P1

(2.30)

where it is assumed that E[|hm(n)|2] = σ2
h = 1. As P1 is a constant, minimizing the MOE

criterion will also minimize the MSE criterion. Hence, the MOE multiuser detector is

equivalent to the MSE based one [Hon95]. Since the MOE criterion does not depend on

the data symbol d1(n), there will be no need for training sequences. Therefore, this leads

to the blind adaptive implementations that will be presented in subsection 2.3.3.

The outputs of the blind adaptive detectors over all carriers are finally combined by a

post-detection combiner resulting in the following decision about the desired user data

symbol:

d̂1(n) = sgn

(
M∑

m=1

wT
m(n)xm(n)

)
(2.31)

In the next subsection, as the post-detection based receiver structure requires M blind

adaptive multiuser detectors, we propose a blind adaptive receiver based on pre-detection

combining which requires only one multiuser detector.

2.3.2 Receiver structure with pre-detection combining

The proposed blind adaptive MOE receiver with pre-detection MRC is shown in

Figure 2.10. Thus, after channel compensation and time alignment, the resulting vec-

tors {xm(n)}m=1,2,··· ,M given by (2.25) are combined before detection as follows:

xtot(n) =
M∑

m=1

xm(n) (2.32)
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The combined vector xtot(n) is then processed with a single blind adaptive multiuser

detector w(n) = c1 +a(n) as in (2.26), in order to minimize the following MOE criterion:

JMOE[w(n)] = E
[
|wT (n)xtot(n)|2

]
(2.33)

where a(n) is the adaptive part of the detector which satisfies cT
1 a(n) = 0.

Finally, the symbol decision of the desired user can be obtained as follows:

d̂1(n) = sgn
(
wT (n)xtot(n)

)
(2.34)

where the detector w(n) will be implemented adaptively in the next subsection.

It should be noted that the pre-detection combining receiver structure has the advantage

of reducing greatly the computational cost by using only one detector for the combined

vector instead of a detector for each carrier.
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Figure 2.10: Blind adaptive receiver structure with pre-detection combining.

To implement the post-detection and pre-detection based blind adaptive receivers, various

blind adaptive algorithms are considered in the next subsection.
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2.3.3 Blind adaptive implementation

To use unique notations, let x(n) and w(n) respectively denote :

• the received vector xm(n) and the filter weights wm(n) when considering the post-

detection receiver structure,

• the combined received vector xtot(n) and the filter weights w(n) when using the

pre-detection receiver structure.

2.3.3.1 Normalized blind LMS based multiuser detector

By using a stochastic gradient approach, Honig et al. [Hon95] have proposed to derive an

adaptive implementation for the detector (2.26) that minimizes the MOE criterion (2.29).

Thus, they first evaluated the unconstraint gradient of the MOE cost function (2.29) as

follows:

∇JMOE[w(n)] = ∇E
[
|wT (n)x(n)|2

]
= 2

[
wT (n)x(n)

]
x(n) (2.35)

The projected gradient, orthogonal to c1 is then obtained:

∇JMOE[w(n)]
c1

= 2
[
wT (n)x(n)

] [
x(n) −

(
cT

1 x(n)
)
c1

]
(2.36)

Therefore, a stochastic gradient blind algorithm to update the adaptive part of the de-

tector can be written as follows [Hon95] :

a(n) = a(n − 1) − µ∇JMOE[w(n − 1)]
c1

= a(n − 1) − µz(n) [x(n) − zMF(n)c1]
(2.37)

where z(n) = wT (n− 1)x(n) is the output of the detector, zMF(n) = cT
1 x(n) is the output

of the conventional matched-filter, and µ is the step-size that controls the adaptation

speed.

To avoid the gradient noise amplification problem, a normalized version of this algorithm

(as the NLMS algorithm) can be written as follows [Wen01]:

a(n) = a(n − 1) − µN

δ + ‖x(n)‖2
z(n) [x(n) − zMF(n)c1] (2.38)

where µN ∈ (0, 2) is the normalized step-size and δ is a small positive regularization

constant that insures stability when ‖x(n)‖2 is too small.
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2.3.3.2 Blind APA-like multiuser detector

To improve the convergence features in high MAI environments and time-varying fading

scenarios, we propose to generalize the algorithm in (2.38) by using L delayed input signal

vectors [Jam05a]. Toward this end, we first define the following received and code matrices

of L column each:

X(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]

(2.39)

C1 =
[

c1 c1 · · · c1

]
(2.40)

In addition, the MOE cost function in (2.29) is modified to account for L delayed input

signal vectors:

JMOE[w(n)] = E
[
‖XT (n)w(n)‖2

]
(2.41)

Taking the unconstraint gradient of the MOE cost function:

∇JMOE[w(n)] = ∇E
[
‖XT (n)w(n)‖2

]
= 2X(n)

[
XT (n)w(n)

]
(2.42)

The projected gradient, orthogonal to C1 satisfies:

∇JMOE[w(n)]
C1

= 2
[
X(n) − C1

(
CT

1 X(n)
)] [

XT (n)w(n)
]

(2.43)

Then, a stochastic gradient algorithm that updates the adaptive part of the detector

(2.26) can be written as follows:

a(n) = a(n − 1) − µ∇JMOE[w(n − 1)]
C1

(2.44)

where µ is the step-size.

Substituting (2.43) in (2.44) and introducing a factor [δIL + XT (n)X(n)]−1 similar to

that in the APA, a new blind algorithm (APA-like) to update a(n) can be expressed by

[Jam05a]:

a(n) = a(n − 1) − µN [X(n) − C1ZMF(n)]
[
δIL + XT (n)X(n)

]−1
z(n) (2.45)

where z(n) = XT (n)w(n − 1), ZMF(n) = CT
1 X(n), µN ∈ (0, 2) and δ is the regularization

constant.

To insure that the orthogonally condition cT
1 a(n) = 0 is satisfied at each iteration, we

replace a(n) by its orthogonal projection onto c1:

a(n) = a(n) −
(
cT

1 a(n)
)
c1 (2.46)

It should be noted that when L = 1, the blind APA-like multiuser detector (2.45) reduces

to the normalized blind LMS multiuser detector (2.38).
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2.3.3.3 Blind multiuser detection based on Kalman filtering

In [Zha02], Zhang et al. have proposed to use an alternative standard representation for

the blind adaptive multiuser detector:

w(n) = c1 − A1a(n) (2.47)

where the columns of the N × N − 1 matrix A1 span the null space of c1, i.e.:

cT
1 A1 = 0 (2.48)

It should be noted that A1 can be pre-computed off-line via one of many orthogonalization

procedures such as the Gram-Schmidt orthogonalization. Unlike (2.26), the adaptive part

a(n) in (2.47) is now of size (N − 1) × 1 and has the advantage of being unconstraint.

Let us define the output of the detector as follows:

z(n) = wT (n)x(n) (2.49)

then z(n) has zero-mean and its variance is given by (due to equations (2.29) and (2.30)):

E[|z(n)|2] = JMOE[w(n)] = JMSE[w(n)] + P1 (2.50)

Thus, when the detector is optimal (i.e., JMSE[w(n)] attains its MMSE value), the vari-

ance of z(n) corresponds to the minimum MOE and is dominated by the power of the

desired user P1.

Substituting (2.47) in (2.49) results in the following measurement equation:

zMF(n) = dT (n)a(n) + z(n) (2.51)

where zMF(n) = cT
1 x(n) and dT (n) = xT (n)A1.

If the detector is assumed to be time-invariant, one can write:

a(n) = a(n − 1) (2.52)

As (2.51) and (2.52) define a state-space representation of the adaptive part of the detec-

tor, Kalman filtering makes it possible to recursively update a(n) [Zha02].

2.3.3.4 Computational cost of the various algorithms

Here, we provide the computational cost of the various blind adaptive multiuser detectors

when used to implement the post-detection and pre-detection combining receiver struc-

tures. According to Table 2.2, the pre-detection combining receiver structure with the
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Table 2.2: Computational complexity of the various blind adaptive multiuser detectors

when considering the post-detection and pre-detection combining receiver structures.

Blind adaptive detector Post-detection combining Pre-detection combining

LMS based detector [Hon95] O(MN) O(N)

APA-like detector O(MNL2) O(NL2)

Kalman based detector [Zha02] O(MN2) O(N2)

various blind adaptive detectors has the advantage of greatly reducing the computational

cost when compared with the post-detection combining based one. In addition, the pro-

posed blind APA-like detector has the advantage of providing a scalable complexity by

adjusting the parameter L which is usually much less than the filter length (i.e., L ≪ N).

The scalable complexity of the APA-like detector can be traded with the performance

as we will see in the simulation results presented in the next subsection. Therefore, the

APA-like detector with the pre-detection combining scheme is a priori preferable to design

the receiver.

2.3.4 Simulation results

In this subsection, we first carry out a comparative study between the following blind

adaptive multiuser detectors:

• the normalized version of the standard blind LMS multiuser detector [Hon95],

• the proposed blind APA-like multiuser detector,

• the blind Kalman filter based multiuser detector [Zha02],

when they are used to implement the pre-detection and post-detection combining receiver

structures.

In addition, we compare the performances of the proposed blind APA-like detector with

the training based APA filter presented in subsection 2.2.3.

A synchronous MC-DS-CDMA system with K active users and M = 4 carriers is

considered. The spreading sequences used are gold codes of length N = 31. The fading

processes {hm(n)}m=1,2,··· ,M are generated according to the complex Gaussian distribution

with zero-mean and unit-variance. User 1 is assumed to be the desired user with SNR

per transmitted carrier kept constant at 10 dB.
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In the first example, a high MAI scenario is assumed with 14 multiple-access in-

terfering users (i.e., K = 15), among which five users have ISR (see equation 1.50) of

10 dB each, five users have ISR of 20 dB each, two users have ISR of 30 dB each and

two other users have ISR of 40 dB each. According to Figure 2.11, the pre-detection

combining receiver slightly outperforms the post-detection receiver with the various blind

adaptive detectors, when considering the BER performence. In addition, the proposed

blind APA-like detector provides much better BER performance and convergence features

than the normalized blind LMS detector. Nevertheless, the blind Kalman detector yields

the best BER performance and convergence features, but at the price of increased compu-

tational cost (see Table 2.2). Figure 2.12 demonstrates the average Signal to Interference-

plus-Noise Ratio (SINR) performance of the various blind detectors in the pre-detection

combining receiver. The average SINR is defined as follows:

SINR(n) =

∑loop
l=1 |wT (n)(

√
P1d1(n)c1,tot)|2∑loop

l=1 |wT (n)[x(n) −
√

P1d1(n)c1,tot]|2
(2.53)

where

c1,tot =
M∑

m=1

|hm(n)|2c1 (2.54)

and the average is performed over loop = 300. The SINR improvement of the proposed

APA-like detector is better than that obtained with the normalized blind LMS detector

and approaches that of the blind Kalman detector, when L is getting higher.

Therefore, for the various reasons mentioned above, we recommend to use the blind APA-

like detector with the pre-detection combining scheme to design the receiver.

To illustrate the advantages of the blind adaptive MOE detectors over the train-

ing based adaptive MMSE filters presented in the previous section, we consider a high

MAI scenario with 8 interfering users for which the ISR=20 dB (this hence corresponds

to a severe near-far scenario). Figure 2.13 shows the SINR performance improvement of

the proposed APA-like detector and the training based APA filter in the pre-detection

combining receiver. According to this figure, the blind detector yields better SINR per-

formance improvement than the training based filter which suffers from slow convergence

in this severe near-far scenario. This is due to the fact that the blind detector uses the

code sequence of the desired user in addition to an adaptive part, whereas the training

based filter starts adaptation from a zero initial weight vector. Thus, in a high MAI

environment, it is recommended to use a blind adaptive detector to efficiently suppress

the MAI and to mitigate the near-far problem.
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Figure 2.11: BER performance of the pre-detection and post-detection receivers with the

various blind adaptive multiuser detectors.
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Figure 2.13: SINR improvement of the proposed blind APA-like detector and the training

based APA filter in the pre-detection combining receiver.

2.4 Receiver design based on decorrelation detection

As an alternative to the MMSE multiuser receivers, the decorrelating multiuser detector

based receivers are designed to completely eliminate the MAI caused by other users, using

the spreading sequences of all users [Ver98]. In this section, we first present the state of the

art on single-carrier DS-CDMA receiver design based on the decorrelating detector. Then,

we propose a MC-DS-CDMA receiver structure consisting of a decorrelating detector, a

Kalman filter based channel estimator and a MRC [Jam05b].

2.4.1 Decorrelation detection for single-carrier DS-CDMA

Given the spreading codes of all active users {ck}k=1,··· ,K , the decorrelating multiuser

detector for user 1 can be written in the following form [Ver98]:

w1 =
K∑

k=1

[R−1]1kck (2.55)

where R = [ c1 c2 · · · cK ]T [ c1 c2 · · · cK ] is the normalized cross-correlation ma-

trix of the spreading vectors and [R−1]ij denotes the (i, j)th element of the inverse of the

matrix R.
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Such decorrelating multiuser detector satisfies:

wT
1 c1 = 1 (2.56)

and

wT
1 ck = 0, k = 2, · · · , K (2.57)

Equations (2.56) and (2.57) can be verified as follows :

wT
1 ck =

K∑

i=1

[R−1]1ic
T
i ck

=
K∑

i=1

[R−1]1i[R]ik

= [R−1R]1k

= [I]1k

=

{
1, k = 1

0, k = 2, · · · , K

(2.58)

It is obvious from (2.57) that the decorrelating detector is orthogonal to the subspace

spanned by the spreading sequences of all interfering users. Therefore, the decorrelating

detector can completely eliminate the MAI and can achieve optimal near-far resistance

what ever the ISR of the interfering users. It should be emphasized that the decorrelating

detector does not require the knowledge of the power of all users.

The decorrelating detector based receiver for synchronous DS-CDMA systems is first

proposed by Lupas and Verdú [Lup89]. The generalization to asynchronous DS-CDMA

systems is then reported in [Lup90]. However, only AWGN channels are considered. Since

then, the extension of these receivers to operate in fading channels has been extensively

studied by several authors. Thus, Zvonar et al. [Zvo94] have analyzed the performance of

the decorrelating detector in slowly time-varying flat-fading channels. Nevertheless, the

fading processes are assumed to be available at the receiver. In [Kaw95], Kawahara et

al. have proposed to combine decorrelation multiuser detection with channel estimation

for asynchronous DS-CDMA systems in multi-path slowly fading channels. The fading

processes are estimated by using a training based RLS algorithm. In [Sto99], a decorrelat-

ing detector based receiver structure is considered for application in rapidly time-varying

Rayleigh fading channels where the fading processes are estimated adaptively using the

LMS or the RLS algorithm. Recently, in [Wu00], Wu et al. have compared the per-

formances of a Kalman filter based channel estimator combined with various multiuser
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detectors, such as the decorrelating detector, the decision-feedback detector, the paral-

lel and successive interference cancelation. According to their study, the decorrelating

detector is the most robust detector against the MAI and the near-far problem.

2.4.2 MC-DS-CDMA receiver based on decorrelation detection

Although decorrelation multiuser detection have been extensively used for single-carrier

DS-CDMA systems, few approaches are developed for MC-DS-CDMA systems. Thus,

Yang et al. [Yan06] have proposed several decorrelation multiuser detection schemes for

TF-domain spreading MC-DS-CDMA systems in AWGN channels. However, they did

not investigate these schemes in fading channels. In [Rhe03], the authors have devel-

oped a multichannel joint detection scheme for MC-DS-CDMA systems in time-invariant

frequency-selective fading channels. The scheme consists of a decorrelating detector fol-

lowed by a RAKE multi-path combiner for each carrier. Nevertheless, perfect channel

knowledge is assumed at the receiver.

Here, we propose to extend, to the multi-carrier case, the combination of decorrela-

tion multiuser detection and Kalman channel estimation scheme presented in [Wu00]. In

particular, our scheme [Jam05b] operates in three steps (see Figure 2.14):

1. the decorrelating multiuser detector is carried out along each carrier to completely

eliminate the MAI,

2. the fading channel responses, modeled by AR processes, are estimated by using

Kalman filtering,

3. the fading processes estimates are fed into a frequency diversity MRC rule to obtain

the data symbol estimate.

Thus, to retrieve the desired symbol sequence of the first user d1(n) from the received

signal, let us recall the N × 1 discrete time received vector over the mth carrier given in

(1.46), as follows:

xm(n) =
√

P1d1(n)hm(n)c1 +
K∑

k=2

√
Pkdk(n)hm(n)ck + ηm(n) (2.59)

where the fading processes {hm(n)}m=1,2,··· ,M are assumed to be rapidly time-varying.

At that stage, the received vector at the mth carrier xm(n) is processed by the decorrelating
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Figure 2.14: MC-DS-CDMA receiver structure with decorrelation detection for user 1.

detector w1 given by (2.55). By taking into account (2.56) and (2.57), the decorrelating

detector yields the following observation:

ym(n) = wT
1 xm(n) =

√
P1d1(n)hm(n) + vm(n) (2.60)

where vm(n) = wT
1 ηm(n) is a zero-mean Gaussian noise with variance σ2

v = σ2
η[R

−1]11.

From equation (2.60), the decorrelating detector is able to completely eliminate the MAI

caused by other users, but at the expense of slightly enhancing the additive noise.

Based on the observations {ym(n)}m=1,··· ,M and by using an AR model for the fading

processes, Kalman filtering can be carried out to provide an estimation of the fading

processes {ĥm(n)}m=1,2,...,M [Jam05b] [Jam05c]. The estimation of AR fading channels

based on Kalman filtering will be investigated in chapter 3. This also includes the de-

velopment of several channel estimation techniques that can be directly applied to the

proposed receiver in Figure 2.14.

Finally, MRC makes it possible to provide the estimate of the desired user data symbol

as follows:

d̂1(n) = sgn

(
Re

(
M∑

m=1

h∗
m(n)ym(n)

))
(2.61)

2.4.3 Simulation results

In this subsection, we first carry out a comparative simulation study between the proposed

decorrelating detector based receiver and the correlator based one presented in [Kon96].
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A synchronous MC-DS-CDMA system is considered with M carriers and K active users,

each using a gold code of length N = 31 to spread his information. The fading processes

{hm(n)}m=1,2,...,M are generated according to the modified Jakes model [Den93] given by

equation (1.29), with Lo = 16 oscillators and Doppler rate fdTb = 0.05. Here, to focus our

attention on the effect of the MAI on both receivers, the fading processes are assumed to

be available at the receiver. The performance of the decorrelating detector based receiver

when the fading processes are estimated by various approaches will be presented in the

next chapter.

Figure 2.15 shows the effects of the ISR on the BER performance of both receivers for

number of carriers equal to M = 1 and M = 3. On the one hand, the BER of the

decorrelating detector based receiver does not depend on the ISR and, hence, it is near-

far resistant. On the other hand, the BER of the correlator detector based receiver is

highly dependent on the ISR, where degradation of the BER can be noticed starting

at low ISR. In addition, for the decorrelating detector based receiver, a high frequency

diversity gain is obtained when increasing the number of carrier from M = 1 to M = 3.

This is not the case for the correlator based receiver when the ISR is high.

According to Figure 2.16, increasing the number of users greatly increases the BER of the

correlator based receiver. On the other hand, the decorrelating detector based receiver is

insensitive to the number of users. This is due to the fact that, contrary to the correlator

based receiver, the decorrelating detector based receiver can completely eliminate the

MAI caused by other users.

Here, we also present a simulation example that illustrates the performance of the

proposed decorrelating detector based receiver compared with that of the adaptive re-

ceivers proposed in the previous sections. Namely, the training based SD receiver with

APA and the post-detection combining receiver with blind APA-like detector. To focus

on the MAI suppression capabilities of these receivers, we consider only AWGN chan-

nels (without the effect of fading) with K = 10, M = 3, SNR=5 dB and ISR=15 dB.

According to Figure 2.17, the decorrelating detector based receiver provides the lowest

BER results without the need for any training period. This is due to the fact that it

uses the spreading codes of all users and, hence, can completely eliminate the MAI. The

blind APA based receiver has faster convergence than the training APA based one, but

it results in higher steady state BER. To take the advantages of both adaptive receivers,

their combination can also be considered. Thus, the blind APA-like detector is first car-

ried out up to iteration number 500. As the blind APA-like detector uses the spreading

code of the desired user, this will ensure the fast suppression of high amount of MAI.
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Figure 2.15: BER performance versus ISR for the proposed receiver and the correlator

based one [Kon96]. Number of carriers considered are M = 1 and M = 3. K = 10 and

SNR=15 dB.
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Figure 2.16: BER performance versus number of active users K for the proposed receiver

and the one in [Kon96]. Number of carriers considered are M = 1 and M = 3. ISR=10

dB and SNR=15 dB.
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At that stage, starting from the final filter weight values provided by the blind APA-like

detector (at iteration 500), a training based APA can then be used to continue eliminating

the residual MAI and can provide a BER performance close to that of the decorrelating

detector based receiver.

2.5 Conclusions

In this chapter, we have proposed five MAI suppression receivers for MC-DS-CDMA

systems in Rayleigh fading channels [Jam04] [Jam05a] [Jam05b].

We first presented two adaptive MMSE receiver structures based on adaptive filters

such as NLMS, APA and RLS [Jam04]. The so-called SD structure consists in considering

a particular adaptive filter for each carrier, whereas the so-called JD structure is defined

by the concatenation of the adaptive filter weights dedicated to each carrier. Simulation

results show that the JD structure provides lower BER than the SD structure. In addition,

the order of complexity of both structures are the same when considering the APA, but

this is not the case for the RLS filter where the JD structure has higher computational

cost than the SD one. Therefore, APA in the JD structure corresponds to a trade-off

between performance and computational cost.

However, as adaptive receivers require training sequences, we have proposed two
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blind adaptive MOE receivers based on an APA-like multiuser detector [Jam05a], where

only the spreading sequence and the timing of the desired user are required. The so-called

post-detection combining based receiver structure provides a blind adaptive detector for

each carrier where combining is performed after detection. The so-called pre-detection

combining based receiver structure uses a single blind adaptive detector after combining

the signals of all carriers. Therefore, the computational cost of the pre-detection com-

bining based receiver is much less than that of the post-detection combining based one.

Simulation results show that the pre-detection combining based receiver provides slightly

lower BER results than the post-detection combining based one. In addition, the com-

parative study we carried out with existing blind LMS and Kalman filter based detectors

shows that the proposed APA-like detector can provide a trade-off between performance

and computational cost. Furthermore, the proposed blind APA-like detector is shown

to outperform the training based APA in severe near-far scenarios, when considering the

BER and SINR improvement.

When the spreading codes of all active users are available, we propose a receiver

structure based on the decorrelating detector which includes also a Kalman channel esti-

mator and a MRC [Jam05b]. The comparative simulation study we have carried out shows

that, while the correlator based receiver is highly sensitive to the MAI and the near-far

problem, the proposed receiver can completely eliminate the MAI and is insensitive to the

near-far problem. In addition, the proposed receiver can provide approximately the same

BER performance as the adaptive receivers without the need of any training sequences

for MAI suppression.

Nevertheless, the design of receivers usually requires the explicit estimation of the

fading process over each carrier to achieve optimal diversity combining and coherent

symbol detection. For this reason, we will focus our attention on channel estimation in

the next chapter.
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Chapter 3 - Estimation of Autoregressive Fading Channels

3.1 Introduction

Current mobile wireless systems are designed to provide high data rates at high terminal

speeds. High data rate transmission usually leads to severe frequency-selective fading,

which can be transformed to frequency-flat fading by using multi-carrier modulation such

as in MC-DS-CDMA or OFDM systems. In addition, due to terminal mobility, the re-

ceived signal is subject to Doppler shifts resulting in time-varying fading. Thus, estimating

the time-varying frequency-flat fading channels is essential to achieve optimal diversity

combining and coherent symbol detection at the receiver.

Channel estimation techniques can be roughly classified into three basic categories:

training sequence/pilot aided techniques, blind techniques and semi-blind techniques.

A survey about these estimation techniques can be found in [Tug00], where the Maximum-

Likelihood (ML) channel estimator is also derived for each technique.

Training sequence/pilot aided channel estimation techniques make it possible to es-

timate the channel from the received noisy signal given known training symbols that are

multiplexed with the transmitted data symbols. The number of training symbols, the

power allocated for each training symbol and the locations of these symbols in the data

stream affect the system performance. For a review paper about pilot-assisted wireless

transmission, the reader can refer to [Ton04] and references therein. Although the trans-

mission of training symbols/pilots is bandwidth and power consuming, most of mobile

standards use training sequence/pilot schemes to estimate the channel.

When dealing with the blind techniques, the channel is estimated from the received

signal without embedding training symbols into data transmission (see, e.g., [Mou95]

[AM97] [Gia98] [Lou00]). Their major advantage over training based techniques is the

improved bandwidth exploitation. However, as they require longer observation window

than training based methods, they are more suited for slowly time-varying channels.

Semi-blind techniques [Las03] are obtained by combining training-based and blind

techniques. These methods aim at estimating the channel by using not only the known

training symbols and the corresponding noisy observations, but also the observations cor-

responding to the transmitted information symbols. The use of semi-blind estimation

techniques is motivated from the fact that, in current standards, there are always some

known training symbols. Nevertheless, the computational cost of these semi-blind meth-

ods is higher than those of training or blind techniques.

In this thesis, we will focus our attention on training based channel estimation

techniques. They may be designed with or without a priori modeling of the fading channel.
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On the one hand, the fading channel can be estimated based on the linear Least

Squares (LS) criterion without any a priori modeling of the channel. Thus, in [Mil00b],

the MC-DS-CDMA fading channels are estimated by a LS estimator. To reduce the com-

putational cost of the LS estimator, various adaptive implementations can be considered

[Hay02]. Therefore, in [Ewe94], the authors have carried out a comparative study between

the LMS, RLS and sign algorithms to track time-varying channels. In [Kal03], Kalofonos

et al. have proposed to estimate the fading process over each carrier in a MC-CDMA

system based on the LMS or RLS algorithms. Note that these adaptive estimators do not

exploit the channel statistics given by its ACF (1.19) and PSD (1.22).

On the other hand, the stochastic properties of the channel can be exploited by

using a suitable model for the fading channel. For this purpose, a pth order AR model has

been used in many recent works (see, e.g., [Lin95], [Tsa96], [Wu00], [Kom02], [Bad05],

[Sad06]). Thus, in [Tsa96] [Wu00] [Kom02], the authors employ first and/or second order

AR models to design channel estimation algorithms based on Kalman filtering. To reduce

the computational cost O(p3) of the estimation algorithm, Lindbom et al. [Lin02] have

proposed the so-called Wiener LMS algorithm. It exploits low-order AR models (up

to AR(3)) with known parameters to track time-varying fading channels. Nevertheless,

as low-order AR models result in poor approximation of narrow-band fading processes,

Baddour et al. [Bad05] have proposed to use very high-order AR models (e.g., p ≥ 50)

to better approximate fading channels. Although their approach is dedicated to channel

simulation, it can also be used as a basis for the design of channel estimation algorithms.

Therefore, in this chapter, by taking into account the work of Baddour et al. [Bad05]

and the discussion about AR channel modeling in subsection 1.3.4, we propose to use AR

models whose order is high enough (e.g., p ≥ 5) to simulate and estimate fading channels.

In section 3.2, we present the Kalman filtering based channel estimator and compare

it with the LMS and RLS channel estimators. To avoid the restrictive Gaussian assump-

tions required by Kalman filtering, we then study the relevance of H∞ filtering [Has99] in

section 3.3. In that case, the estimation criterion is to minimize the worst possible effects

of the noise disturbances on the estimation error. As both Kalman and H∞ filtering re-

quire the estimation of the AR parameters, a state of the art on AR parameter estimation

from noisy observations is provided in section 3.4. This includes the LS estimator used

for instance in [Tsa96] and the two-serially-connected Kalman or H∞ filter based estima-

tors [Cai04]. However, as these estimators yield biased estimates, the noise-compensated

LS techniques (e.g., [Wu97], [Dav98a], [Zhe99], [Zhe05]) and methods based on the EM

algorithm (e.g., [Der94], [Gan98], [Gan03]) are also reviewed. As an alternative, in
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section 3.5, we propose to take advantage of the two-cross-coupled Kalman filter based

structure [Lab06b] to design a new channel estimation algorithm [Jam05c]. One Kalman

filter is used to estimate the fading AR process while the second one makes it possible to

estimate the corresponding AR parameters from the estimated fading process. In section

3.6, a two-cross-coupled H∞ filter based structure, recently developed in the framework

of speech enhancement [Lab06b] [Lab07], is reformulated to estimate time-varying fading

channels and their corresponding AR parameters [Jam07b]. Then, in section 3.7, we pro-

pose to take advantage of the EIV models, initially developed in the framework of control

[Beg90] [Div05b] [Div05a] and derived for AR parameter estimation in [Bob07], to esti-

mate the fading channel AR parameters [Jam06] [Jam07a]. The proposed method consists

in searching the noise variances that enable specific noise compensated autocorrelation

matrices of observations to be positive semidefinite. In addition, the AR parameters can

be estimated from the null space of these matrices. In section 3.8, a comparative study

on the estimation of MC-DS-CDMA fading channels is carried out between the various

channel estimators.

3.2 On-line least squares channel estimation

Let us consider a BPSK1 signal propagating through a time-varying frequency-flat Rayleigh

fading channel. After demodulation, the signal is passed through the matched-filter and

sampled at symbol rate 1/Tb. The resulting discrete-time received signal can be repre-

sented as follows:

r(n) = h(n)d(n) + v(n) (3.1)

where d(n) ∈ {−1, 1} is the nth transmitted data bit, h(n) is the fading process and v(n)

is assumed to be a complex AWGN process with zero-mean and variance σ2
v .

It should be noted that the received signal in (3.1) is similar to the signal in (2.60) with

P1 = 1, which is the output of the decorrelating detector over the mth carrier in a MC-DS-

CDMA system. Thus, although we focus our attention on the BPSK transmission over

time-varying frequency-flat Rayleigh fading channels, the approaches we develop in the

following could be directly applied to the estimation of MC-DS-CDMA fading channels

using the receiver structure given in Figure 2.14.

1Although we deal only with BPSK (i.e., d(n) ∈ {−1, 1}) for the sake of simplicity, the methods we

introduce in the following can also work with any linearly modulated signal.
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3.2.1 Review about LMS and RLS based channel estimators

Given the noisy received signal (3.1), we aim at estimating the fading process h(n). For

this purpose, the LMS channel estimator provides the estimate ĥ(n) of the fading process

h(n) by minimizing the following mean square error:

MSE = E
[
|r(n) − h(n)d(n)|2

]
(3.2)

Thus, the new channel estimate at time n + 1 using information available up to time n is

given by [Kal03]:

ĥ(n + 1) = ĥ(n) + µ(r(n) − ĥ(n)d(n))d(n) (3.3)

where µ is the LMS step-size and ĥ(0) = 0.

To improve the convergence features and the tracking capabilities, a RLS estimator

with a forgetting factor λ can be used. The RLS channel estimator [Kal03] calculates the

estimate of the channel by minimizing the weighted LS criterion:

JLS =
n∑

i=0

λn−i |r(i) − h(i)d(i)|2 (3.4)

where 0 < λ < 1 is the exponential forgetting factor.

It should be noted that the data symbols d(n) involved in the LMS and RLS channel

estimators are assumed to be available in the so-called training mode. In that mode, the

data symbols d(n) are called training symbols or training sequence which are available

both at the transmitter and the receiver. Once the training period is over, the receiver

can track channel variations in a decision directed manner. In the decision directed mode,

the training symbols are replaced with the decisions d̂(n) (e.g., from (2.61) for instance).

Such a decision directed approach has been used in [Kal03], where the authors assume

that the decisions of the previous data symbols are all correct, i.e. d̂(n) = d(n). In our

work hereafter, we will follow the same decision directed approach.

3.2.2 Kalman filtering based channel estimator

Since our purpose is to estimate the fading sequence h(n), modeled by a pth order AR(p)

process as in (1.30), the p × 1 state vector is defined as follows:

h(n) =
[

h(n) h(n − 1) · · · h(n − p + 1)
]T

(3.5)
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Thus, the resulting state-space representation of the fading channel system (3.1) and

(1.30) is given by:
{

h(n) = Φh(n − 1) + gu(n)

r(n) = dT (n)h(n) + v(n)
(3.6)

where Φ =




−a1 −a2 · · · −ap

1 0 · · · 0
. . .

...

0 · · · 1 0




is the transition matrix, g = [ 1 0 · · · 0 ]T is

the input vector and d(n) = [ d(n) 0 · · · 0 ]T is the observation vector. In addition,

the variances of v(n) and u(n) are respectively denoted by σ2
v and σ2

u. Furthermore, v(n)

and u(n) are assumed to be uncorrelated with each others and with the elements of the

initial state vector h(0).

Based on the state-space representation (3.6) of the fading channel system, Kalman filter-

ing can provide the optimal linear least mean squares estimate of the state vector h(n).

More specifically, let ĥ(n/n− 1) denote the a priori estimate of h(n) given n− 1 observa-

tions {r(1), r(2), · · · , r(n−1)} while ĥ(n/n) denotes the a posteriori estimate of h(n) given

n observations {r(1), r(2), · · · , r(n)}. Then, the corresponding a priori and a posteriori

error covariance matrices are P(n/n−1) = E[(h(n)−ĥ(n/n−1))(h(n)−ĥ(n/n−1))H ] and

P(n/n) = E[(h(n) − ĥ(n/n))(h(n) − ĥ(n/n))H ], respectively.

Thus, Kalman filtering is designed to minimize the trace of P(n/n). The Kalman filtering

algorithm can be summarized as follows [And79] [Naj06]:

ĥ(n/n − 1) = Φĥ(n − 1/n − 1) (3.7a)

P(n/n − 1) = ΦP(n − 1/n − 1)ΦH + gσ2
ug

T (3.7b)

ν(n) = r(n) − dT (n)ĥ(n/n − 1) (3.7c)

K(n) = P(n/n − 1)d(n)(dT (n)P(n/n − 1)d(n) + σ2
v)

−1 (3.7d)

ĥ(n/n) = ĥ(n/n − 1) + K(n)ν(n) (3.7e)

ĥ(n) = ĥ(n/n) = gT ĥ(n/n) (3.7f)

P(n/n) = P(n/n − 1) − K(n)dT (n)P(n/n − 1) (3.7g)

where K(n) is the Kalman gain and ν(n) the innovation process.

When Kalman filtering is optimal, the innovation process ν(n) is a zero-mean white noise

with variance:

C(n) = E[ν(n)ν∗(n)] = dT (n)P(n/n − 1)d(n) + σ2
v (3.8)
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It should be noted that when there is no a priori knowledge about the initial state vector

and the initial error covariance matrix, they can be assigned to zero vector and identity

matrix respectively, i.e. ĥ(0/0) = 0 and P(0/0) = ςIp where ς is a positive constant.

Large values of ς reflect lack of knowledge whereas small values reflect confidence.

Thus, in the training mode, as the data symbol d(n) involved in the observation vector

d(n) is available, the Kalman filtering algorithm can be carried out to provide the estimate

ĥ(n/n) of the fading process h(n). Once the training period is over, the joint estimation

problem of both the fading process h(n) and the data symbol d(n) should be addressed.

This joint estimation problem can be decomposed into the estimation of the data symbol

at time n and then the prediction of the fading process at time n + 1. For this purpose, a

predicted version ĥ(n + 1/n) of the fading process h(n + 1) can be obtained from (3.7a)

and (3.7e)-(3.7f), as follows:

ĥ(n + 1/n) = Φĥ(n/n) = Φĥ(n/n − 1) + ΦK(n)ν(n) (3.9a)

ĥ(n + 1) = ĥ(n + 1/n) = gT ĥ(n + 1/n) (3.9b)

where ĥ(0/ − 1) = 0 and P(0/ − 1) = ςIp.

More particularly, as a decision of the data symbol d̂(n) has been made at time n, it can

then be used to predict the fading process at time n + 1 as in (3.9). The predicted fading

process ĥ(n + 1) is then employed to obtain a decision about the data symbol at time

n + 1.

Using Kalman filtering is of interest, but several assumptions must be fulfilled.

Indeed, Kalman filtering is optimal in the MMSE sense providing the underlying state-

space model is accurate. Moreover, the driving process and the additive measurement

noise must be independent, white and Gaussian. However, these assumptions do not

always hold in practice due to the two following reasons:

1. The AR model does not fit exactly the fading process especially for low-order AR

models (see subsection 1.3.4). This results in model uncertainty that we have to

take into account.

2. The noise variances and the AR parameters are usually unknown and must be

estimated. This also results in model parameter uncertainties.

Therefore, for practical systems, the performance of the Kalman estimator may suffer

degradation. For this reason, we propose to investigate an alternative approach based on

H∞ estimation techniques [Has99] in the next section.
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3.3 Relevance of H∞ filtering for channel estimation

In this section, we will study the relevance of H∞ filtering for channel estimation. The

estimation criterion is to minimize the worst possible effects of the disturbances (i.e., the

initial state, the driving process and the measurement noise) on the estimation error. This

criterion requires no a priori knowledge about the noises, except that they have bounded

energies. In that sense and according to Hassibi et al. [Has99], H∞ filtering is more robust

against the noise disturbances and modeling uncertainties than Kalman filtering.

3.3.1 State of the art

The H∞ theory was initially developed in the framework of control [Zam81]. The first

solution of the H∞ estimation problem is based on polynomial decomposition techniques

[Gri90]. However, they lead to formulas with high computational cost that cannot be

used in practical cases. Besides, state-space based approaches have emerged and can be

classified into two categories:

• The first one is based on the solution of a convex optimization problem under linear

matrix inequality constraints [Ger99]. However, its computational cost is high.

• The second approach is based on the solution of a quadratic Riccati-type equation

[Sha92]. The resulting algorithm is easy to implement and has lower computational

cost than the above approaches.

Other approaches based on the so-called game theory have been proposed [Yae92]

[She97]. According to the game theory, the H∞ filter can be seen as a player prepared for

the worst strategy that the other player can provide. This approach can also be viewed

as a minimax problem, whose solution corresponds to an equilibrium point between the

filter and the nature. It should be noted that the solution obtained by the game theory

approaches is similar to that obtained by the Riccati-type equation. In particular, the

game theory approach presented in [She97] shows that the H∞ filter exists if there exits

a stabilizing solution to a given Riccati-type equation.

Although the H∞ theory has been extensively exploited in the framework of con-

trol, its applications in signal processing and more particularly in communications are

still scarce. Thus, Shen et al. [She99] have proposed a speech enhancement approach,

where the speech signal is modeled by an AR process. However, as the AR parameters are

estimated directly from the noisy observations, this approach results in biased AR para-

meter estimates. In [Lab05], Labarre et al. have studied the relevance of H∞ filtering for
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speech enhancement. To avoid the problem of biased AR parameter estimates, they have

developed a structure based on two mutually interactive H∞ filters for the dual estimation

of the speech signal and its AR parameters [Lab07]. In the framework of digital commu-

nications, Erdogan et al. [Erd00] have proposed to investigate the significance of the H∞

approach to the linear equalization of communication channels. However, the authors did

not consider the performance of their approach in realistic fading channels. In [Zhu99],

an adaptive H∞ filtering algorithm ”similar” to the RLS algorithm is introduced to re-

cursively update the tap-coefficient vector of a decision feedback equalizer for the purpose

of adaptive equalization of time-varying fading channels. Nevertheless, this approach did

not explicitly estimate the channel and, hence, cannot work in high Doppler rate envi-

ronments. In [Cai04], Cai et al. have used the H∞ filter proposed in [She97] to develop a

channel estimation scheme for OFDM wireless communication systems, where the fading

channels are modeled by AR processes. The scheme involves two-serially-connected H∞

filters. The first one is used for AR parameter estimation and the second one for fading

process estimation. Nevertheless, a biased estimation of the AR parameters is expected

since the first H∞ filter estimates the AR parameters directly from the noisy observations.

This may lead to poor estimation of the fading process.

In this thesis, we propose to study the relevance of H∞ filtering for the estimation

of time-varying fading channels. More particularly, we will take advantage of the two mu-

tually interactive H∞ filter based approach [Lab07] to jointly estimate the fading channel

and its AR parameters [Jam07b].

3.3.2 Estimation of the fading process based on H∞ filtering

Given the fading channel state-space model (3.6), the H∞ filtering makes it possible to

focus on the estimation of a specific linear combination of the state vector components as

follows:

z(n) = lh(n) (3.10)

where l is a 1×p linear transformation operator. Here, as we aim at estimating the fading

process h(n), this operator is selected to be l = [ 1 0 · · · 0 ].

Given (3.6), (3.10) and Figure 3.1, the H∞ filtering provides the estimation of the fading

process ĥ(n) = lĥ(n), by minimizing the H∞ norm of the transfer operator T that maps

the noise disturbances u(n), v(n) and the initial state error e0 = h(0) − ĥ(0) to the
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T - e(n)

-

P
−1/2
0 e0

-

Q
−1/2
u u(n) -

R
−1/2
v v(n)

Figure 3.1: Transfer operator T .

estimation error e(n) = h(n) − ĥ(n) = l(h(n) − ĥ(n)), as follows:

J∞ = sup
u(n),v(n),h(0)

∑Ns−1
n=0 |e(n)|2

eH
0 P−1

0 e0 +
∑Ns−1

n=0 (Q−1
u |u(n)|2 + R−1

v |v(n)|2)
(3.11)

where Ns denotes the number of available data samples. In addition, P0 > 0,

Qu > 0 and Rv > 0 are weighting parameters which are tuned by the designer to achieve

performance requirements.

However, as a closed-form solution to the above optimal H∞ estimation problem does not

always exist, the following suboptimal design strategy is usually considered:

J∞ < γ2 (3.12)

where γ > 0 is a prescribed level of disturbance attenuation.

At that stage, there exists an H∞ channel estimator ĥ(n) for a given γ > 0 if there

exists a stabilizing symmetric positive definite solution P(n) to the following Riccati-type

equation:

P(n + 1) = ΦP(n)C−1(n)ΦH + gQug
T , P(0) = P0 (3.13)

where:

C(n) = Ip − γ−2lT lP(n) + d(n)R−1
v dT (n)P(n) (3.14)

This leads to the following constraint:

P(n)C−1(n) > 0 (3.15)

If the condition (3.15) is fulfilled, the H∞ channel estimator exists and is defined by:

ĥ(n) = lĥ(n) (3.16)

with:

ĥ(n) = Φĥ(n − 1) + K(n)ν(n), ĥ(0) = 0 (3.17)

where the so-called innovation process ν(n) and the H∞ filter gain K(n) are respectively

given by:

ν(n) = r(n) − dT (n)Φĥ(n − 1) (3.18)
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and

K(n) = P(n)C−1(n)d(n)R−1
v (3.19)

It should be noted that the matrix P(n) can be seen as an upper bound of the error co-

variance matrix in the Kalman filter, i.e. E[(h(n)− ĥ(n))(h(n)− ĥ(n))H ] ≤ P(n) [Yae92].

Moreover, the H∞ channel estimator (3.13)-(3.19) has similar observer structure as the

Kalman’s one. However, due to (3.14), the H∞ channel estimator has a computational

cost slightly higher than Kalman’s one. If the weighting parameters Qu, Rv and P0 are

respectively chosen to be σ2
u, σ2

v and the initial error covariance matrix of h(0), then as

γ −→ +∞ the H∞ estimator reduces to a Kalman one.

It should be noted that the selection of the disturbance attenuation level γ is not an easy

task. Here, it is carefully adjusted to satisfy the condition in (3.15).

Nevertheless, carrying out Kalman or H∞ filtering to estimate h(n) requires the AR

parameters that are involved in the transition matrix Φ and the variances of both the

driving process σ2
u and the measurement noise σ2

v (or equivalently the weighting para-

meters Qu and Rv in the case of H∞ filtering). In subsection 1.3.4, the AR parameters

and the driving process variance are obtained by solving the YW equations providing

the maximum Doppler frequency fd is available. However, fd is not available in practical

cases and should be estimated, which is not a trivial task (see, e.g., [Tep01] and references

therein). Therefore, our goal in the next sections is to develop channel estimation tech-

niques that make it possible to estimate the AR parameters and the variances of both the

additive noise and driving process from the available noisy observations.
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3.4 State of the art on AR parameter estimation

from noisy data

In this section, we will present a brief2 state of the art on the estimation of the AR para-

meters from noisy observations. More particularly, our purpose is to estimate the channel

AR parameters from the received noisy signal (3.1), using a training based approach.

Thus, in the time interval allocated to the transmission of the training sequence, the data

modulation can be wiped out by multiplying the received signal samples with the training

symbols, as follows:

y(n) = d∗(n)r(n) = h(n) + b(n) (3.20)

where b(n) is a zero-mean additive white noise whose variance satisfies σ2
b = σ2

v .

By combining the AR model of the channel (1.30) with the observation equation (3.20),

one can obtain:

y(n) = −yT
p (n − 1)θ + ζ(n) (3.21)

where

yp(n − 1) =
[

y(n − 1) y(n − 2) · · · y(n − p)
]T

(3.22)

and

ζ(n) = u(n) + b(n) +

p∑

i=1

aib(n − i) (3.23)

As Ns observation samples are obtained during the transmission of a training sequence,

equation (3.21) can be then written in a matrix form as follows:

yNs
(n) =




−yT
p (n − 1)

−yT
p (n − 2)

...

−yT
p (n − Ns)




θ +




ζ(n)

ζ(n − 1)
...

ζ(n − Ns + 1)




= YNs
(n)θ + ζNs

(n) (3.24)

Therefore, the LS estimate θ̂LS of θ satisfies the following relationship:

θ̂LS =
[
YH

Ns
(n)YNs

(n)
]−1

YH
Ns

(n)yNs
(n) (3.25)

and the corresponding LS estimation error is given by:

θ̂LS − θ =
[
YH

Ns
(n)YNs

(n)
]−1

YH
Ns

(n)ζNs
(n) (3.26)

2For a more exhaustive state of the art on AR parameter estimation from noisy observations, the

reader may refer to [Lab06a] [Naj06].
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It should be noted that the LS solution (3.25) can be written in the form of the YW

equations applied to the noisy observations, as follows:

θ̂LS = −R̂−1
yy r̂y (3.27)

where R̂yy denotes the estimation of the p × p autocorrelation matrix Ryy of the obser-

vations y(n) and r̂y is the estimation of the p× 1 correlation vector ry between yp(n− 1)

and y(n). However, as the expectation of the estimator (3.27) satisfies:

E
[
θ̂LS

]
= −R−1

yy ry 6= −R−1
hhrh = θ (3.28)

the LS estimator of the AR parameters is biased. Indeed, the AR spectrum estimated

from the noisy signal is flatter than the AR spectrum estimated from noise-free signal

[Kay79]. In addition, since y(n) is correlated with {ζ(i)}i=1,2,··· ,n, the estimation error

(3.26) does not go to zero when Ns −→ ∞. So, in that case, the LS estimator is not

consistent.

The bias estimation problem of the channel AR parameters is noticeable in [Tsa96]

[Cai04]. Indeed, in [Tsa96], Tsatsanis et al. suggest estimating the AR parameters from

the channel covariance estimates by means of a YW estimator. In [Cai04], the authors

have proposed a channel estimation scheme for OFDM systems based on two-serially-

connected Kalman or H∞ filters (see Figure 3.2). The first one is used for AR parameter

estimation and the second one for fading process estimation. The AR parameters are

directly estimated from the available noisy observations based on the following state-

space representation:

{
θ(n) = θ(n − 1)

y(n) = −yT
p (n − 1)θ(n) + ζ(n)

(3.29)

In that case, the H∞ filtering is more appropriate than the Kalman filtering since no

a priori modeling of the colored noise process ζ(n) is required. Nevertheless, the AR

parameter estimates in both cases are biased since the observation noise ζ(n) in the state-

space representation of the system (3.29) is correlated with the AR parameters [Lab05].

To counteract the bias estimation problem, several approaches have been proposed,

mostly in other fields than wireless communications. These approaches can be classified

as on-line or off-line approaches. Let us first focus on off-line LS estimation approaches.

Thus, Kay [Kay80] has proposed the so-called Noise-Compensated YW (NCYW) equa-

tions:

θ̂LSC = −
(
Ryy − σ2

b Ip

)−1
ry (3.30)
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y(n) -
Kalman or H∞ filter #1

for
AR parameter estimation

{âi}i=1,...,p-
Kalman or H∞ filter #2

for
fading process estimation

-ĥ(n)

?

r(n) d(n)

?

Figure 3.2: Two-serially-connected Kalman or H∞ filters.

However, as the variance of the additive noise σ2
b has to estimated, the problem becomes

nonlinear. Therefore, the joint estimation problem of the AR parameters and the additive

noise variance was addressed by several authors. On the one hand, Zheng [Zhe99] [Zhe05]

has proposed to estimate iteratively and alternatively the AR parameter vector θ and the

noise variance σ2
b using a bias correction LS scheme. On the other hand, Davila [Dav98a]

has suggested solving the NCYW equations (3.30) by viewing this issue as a quadratic

eigenvalue decomposition problem. Although the above schemes aim at compensating the

noise influence, they may provide a set of AR parameter estimates which correspond to

AR poles outside the unit circle in the z-plane [Lab06b].

On-line LS methods based on adaptive filters have also been developed. Thus,

when using the so-called γ-LMS filter [Tre79], the updated tap-weight vector depends on

the previous tap-weight vector multiplied by a factor γ defined from the variance of the

additive noise and the LMS step-size. In [Wu97], the authors propose a method based

on the so-called ρ-LMS filter. The idea is to update the AR parameters using the LMS

filter on enhanced observations. Nevertheless, in the γ-LMS and ρ-LMS algorithms, the

additive noise variance is assumed to be available. For this reason, Zhang et al. [Zha00]

have proposed to estimate both the AR parameters and the noise variance based on the

so-called β-LMS, resulting in unbiased estimation of the AR parameters. However, the

convergence rate of these LMS based methods is low and the step-size should be carefully

adjusted.

As an alternative, the EM algorithm, which is an iterative optimization algorithm

producing ML estimates [Dem77], can be used [Der94]. It iterates between two steps: the

expectation step (E-step) allows the computation of the expected log-likelihood function

given current parameter estimates while the maximization step (M-step) makes it possi-

ble to update the estimates by maximizing the log-likelihood function. It often implies

a Kalman smoothing. Nevertheless, since the EM algorithm operates repeatedly on a

batch of data, it results in large storage requirements and high computational cost. In
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addition, its success depends on the initial conditions. To overcome these disadvantages,

two recursive filters (such as Kalman or RLS) can be cross-coupled to solve the so-called

dual estimation issue [And79], i.e. the estimations of both the AR process and its para-

meters. Each time a new observation is available, the first filter uses the latest estimated

AR parameters to estimate the signal, while the second filter uses the estimated signal

to update the AR parameters. According to Gannot et al. [Gan98] [Gan03], this method

can be viewed as a sequential version of the EM algorithm. In addition, it avoids a non-

linear approach such as the Extended Kalman Filter (EKF). Coupling recursive filters

was already developed for instance in the framework of speech enhancement [Dob98] and

has also been used in [Dav98b] to complete the equalization of fast fading channels. Re-

cently, in [Lab06b], a variant based on two interacting Kalman filters has been developed

in which the variance of the innovation process in the first filter is used to define the gain

of the second filter. Since this solution can be seen as a recursive IV technique, consistent

estimates of the AR parameters are obtained [Lab06b]. This approach has been tested in

the framework of speech enhancement [Lab04] [Lab06a].

3.5 Two-cross-coupled Kalman filter based estimator

In this section, we propose to adjust the two-cross-coupled Kalman filter based approach

developed in [Lab06b] for the joint estimation of fading channels and their corresponding

AR parameters [Jam05c] as shown in Figure 3.3.

Thus, at time instant n, the first Kalman filter uses the training sequence d(n), the

received noisy signal3 r(n) and the latest estimated AR parameters {âi}i=1,...,p to provide

the estimation ĥ(n) of the fading process h(n) as in equation (3.7), while the second

Kalman filter uses the estimated fading process ĥ(n) to update the AR parameters. At

the end of the training period, the receiver stores the estimated AR parameters and uses

them in conjunction with the observation r(n) and the decision d̂(n) (e.g., using equation

(2.61) for instance) to predict the fading process h(n + 1) in a decision directed manner

using equation (3.9).

It should be noted that the two Kalman filters are highly interactive since the

variance of the innovation of the first filter is used to drive the gain of the second filter

and to define the estimation of the driving process variance. This will be illustrated in

the following subsections.

3Note that r(n) corresponds to y(n) when the training symbols are removed (see equation (3.20)).
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Figure 3.3: Proposed two-cross-coupled Kalman filter based channel estimator.

3.5.1 Estimation of the AR parameters from the estimated fad-

ing process

To estimate the AR parameters from the estimated fading process ĥ(n), equations (3.7e)

and (3.7f) are firstly combined to express the estimated fading process as a function of

the AR parameters:

ĥ(n) = gTΦĥ(n − 1) + gTK(n)ν(n)

= −ĥT (n − 1)θ(n) + w(n)

= dT
θ
(n − 1)θ(n) + w(n)

(3.31)

where θ(n) = [ a1 a2 · · · ap ]T , ĥ(n−1) = [ ĥ(n − 1) ĥ(n − 2) · · · ĥ(n − p) ]T and

dT
θ
(n − 1) = −ĥT (n − 1). In addition, the variance of the process w(n) = gTK(n)ν(n) is

given by:

σ2
w(n) = gTK(n)C(n)KH(n)g (3.32)

When the channel is assumed to be stationary, the AR parameters are time-invariant and

satisfy the following relationship:

θ(n) = θ(n − 1) (3.33)

As relations (3.31) and (3.33) define a state-space representation for the estimation of

the AR parameters, a second Kalman filter can be used to recursively estimate θ(n) as

follows:

θ̂(n) = θ̂(n − 1) + K
θ
(n)w(n) (3.34)
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where the Kalman gain K
θ
(n) and the update of the error covariance matrix P

θ
(n) are

respectively given by:

K
θ
(n) = P

θ
(n − 1)d∗

θ
(n − 1)

(
dH

θ
(n − 1)P

θ
(n − 1)d

θ
(n − 1) + σ2

w(n)
)−1

(3.35)

and

P
θ
(n) = P

θ
(n − 1) − K

θ
(n)dT

θ
(n − 1)P

θ
(n − 1) (3.36)

with initial conditions θ̂(0) = 0 and P
θ
(0) = ςIp.

The estimated AR parameters θ̂(n) = [ â1 â2 · · · âp ]T are then fed into the first

Kalman filter (3.7) to estimate the fading process at time n + 1 as shown in Figure 3.3.

According to (3.32) and (3.35), the two-cross-coupled Kalman filters are all the more

mutually interactive as the variance of the innovation process of the first filter is used to

drive the gain of the second.

Remark 1: The two-cross-coupled Kalman filter based channel estimator is a com-

pact complex algorithm which estimates the complex fading process and its AR parame-

ters. Instead of using the complex algorithm, an alternative approach would consist in

decomposing the estimation of the complex fading process h(n) into the separate estima-

tion of its real part h(r)(n) = Re(h(n)) and its imaginary part h(i)(n) = Im(h(n)). Indeed,

according to the fading process statistical properties given by equations (1.20) and (1.21),

the real and imaginary parts of the complex fading process are uncorrelated and have

the same ACF as the complex process. This implies that their AR parameters are the

same. Thus, to estimate h(r)(n) and its AR parameters, we can apply a real version4 of

the proposed complex algorithm to the real part of the observations r(r)(n) = Re(r(n))

given by:

r(r)(n) = h(r)(n)d(n) + v(r)(n) (3.37)

where v(r)(n) is the real part of v(n) with variance σ2
v(r) = 1

2
σ2

v .

In the same manner, we can apply this approach to the imaginary part of the observations

r(i)(n) = Im(r(n)) to estimate h(i)(n) and its AR parameters.

Therefore, while the complex algorithm has the advantage of estimating the complex

fading process and its AR parameters in a compact manner, its real version can reduce

the computational cost when estimating the AR parameters form either the real or the

imaginary part of the complex fading process.

4A real version of the complex algorithm can be obtained by replacing the Hermitian operation (·)H

with the Transpose operation (·)T and removing the complex conjugate operation (·)∗.
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3.5.2 Estimation of the driving process variance

To estimate the driving process variance σ2
u, the Riccati equation is first obtained by

inserting equation (3.7b) in (3.7g) as follows:

P(n/n) = ΦP(n − 1/n − 1)ΦH + gσ2
ug

T − K(n)dT (n)P(n/n − 1) (3.38)

Taking into account the variance of the innovation process (3.8) and the fact that

P(n/n − 1) is a symmetric hermitian matrix, one can rewrite the Kalman filter gain

equation (3.7d) in the following manner:

dT (n)P(n/n − 1) = C(n)KH(n) (3.39)

By combining equations (3.38) and (3.39), σ2
u can be expressed as follows:

σ2
u = f

[
P(n/n) − ΦP(n − 1/n − 1)ΦH + K(n)C(n)KH(n)

]
fT (3.40)

where f =
[
gTg

]−1
gT = gT is the pseudo-inverse of g.

Thus, we propose to estimate σ2
u recursively as follows :

σ̂2
u(n) = λσ̂2

u(n − 1) + (1 − λ)fM(n)fT (3.41)

where M(n) = P(n/n) − ΦP(n − 1/n − 1)ΦH + K(n)|ν(n)|2KH(n), |ν(n)|2 is the in-

stantaneous power of the innovation process that replaces its variance C(n) and λ is

the forgetting factor. It should be noted that λ can be either constant or time-varying

(e.g., λ(n) = (n − 1)/n).

3.5.3 Simulation results

In this subsection, we first provide preliminary experimental results to illustrate the per-

formance of the proposed two-cross-coupled Kalman filter based channel estimator. A

comparative simulation study is then carried out on AR parameter estimation between

the proposed approach and two other approaches:

1. the two-serially-connected Kalman filters [Cai04] shown in Figure 3.2,

2. the YW estimator, used for instance in [Tsa96], which can be implemented by using

the MATLAB function aryule.

In all of our simulations below, the fading process h(n) is generated according to

the autoregressive channel simulator [Bad05] with order varying from 2 to 20 and a given
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Doppler rate fdTb. It is normalized to have a unit variance, i.e. σ2
h = 1. A zero-mean

complex white Gaussian noise v(n) with variance σ2
v is then added to h(n)d(n) as in

equation (3.1). Thus, the SNR is defined as follows:

SNR = 10 log10

(
σ2

h

σ2
v

)
= 10 log10

(
1

σ2
v

)
(3.42)

Here, it is assumed that the additive noise variance σ2
v is available.

According to the preliminary tests we have carried out, the performance of the

proposed algorithm depends on the SNR, the number of available samples Ns, the Doppler

rate fdTb and the AR model order p. In general, significant results are obtained when

the SNR is not less than 5 dB while Ns is not less than 300 samples. The Doppler rate

fdTb defines the locations of the AR model poles inside the unit circle in the z-plane.

Thus, when dealing with high Doppler rates (i.e., fdTb > 0.1), the corresponding poles of

the AR process are well separated and far from the unit circle (see, e.g., Figure 1.9). In

these cases, our approach works very well. However, as the Doppler rate decreases, the

corresponding poles become close to each other as well as to the unit circle. This results

in AR parameters that are close to the boundary of the stability region in the z-plane.

Therefore, the accurate estimation of these parameters becomes difficult. In addition, the

convergence of the algorithm is slower.

Figure 3.4 and Figure 3.5 show the results obtained when the fading process h(n) is

generated from an AR(2) model with fdTb = 0.25, SNR=15 dB and Ns = 300. The AR(2)

parameters are a1 = −0.7890, a2 = 0.6770 and σ2
u = 0.4218. The corresponding poles are

at 0.8228e±j0.3408π. According to Figure 3.4, which shows the convergence characteristics

of the proposed complex algorithm, the estimated AR(2) parameters converge close to

the true values after approximately 200 symbols.

To compare the performance of the complex algorithm with its real version applied to

the real or imaginary part of the observations, we present in Figure 3.5 the overlay

plot of 10 realizations of the estimated AR(2) PSD and poles. One can notice that

the estimates obtained from the real part, the imaginary part or the complex data

are approximately the same. In addition, these estimates are very closed to the de-

sired AR(2) spectrum and poles. The average estimated poles over 1000 realizations are

(0.8259±0.00071)e±j(0.3430±0.000081)π from the real part, (0.8247±0.00072)e±j(0.3435±0.000083)π

from the imaginary part and (0.8252± 0.00041)e±j(0.3426±0.000083)π from the complex data.

These estimates, as expected, are approximately the same.

In the following, we will only provide results obtained from the real version of the proposed

complex algorithm applied to the real part of the observations.

92



Chapter 3 - Estimation of Autoregressive Fading Channels

0 100 200 300
−1

−0.5

0

R
e(

 a
 1

 )

 

 

0 100 200 300
−0.5

0

0.5

Im
( 

a  1
 )

0 100 200 300
0

0.5

1

R
e(

 a
 2

 )

0 100 200 300
−0.5

0

0.5

Im
( 

a  2
 )

0 50 100 150 200 250 300

0.5

1

1.5

2

Symbols

σ u 2

True value
Estimated

Figure 3.4: Estimation of the AR(2) parameters and the driving process variance using

the complex algorithm. True values are a1 = −0.7890, a2 = 0.6770 and σ2
u = 0.4218.

fdTb = 0.25, SNR=15dB and Ns = 300.
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tions are plotted. fdTb = 0.25, SNR=15dB and Ns = 300.
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Figure 3.6: Estimations of AR(2) PSD and corresponding poles in the z-plane obtained

by using the different methods. 10 realizations are plotted. fdTb = 0.1, SNR=10dB and

Ns = 500.

According to Figure 3.6, Figure 3.7 and Figure 3.8 which respectively show the

estimation of the PSD and poles of AR(2), AR(3) and AR(20) processes that model the

Jakes spectrum, the proposed two-cross-coupled Kalman filter based method provides

closer estimates to the desired AR spectrum and poles than the other approaches. In

addition, the YW estimator [Tsa96] and the two-serially-connected Kalman filter based

approach [Cai04] result in biased estimates and smoothed spectrum at low SNR (see

Figures 3.6 and 3.7). Furthermore, the later approach may result in pole estimates outside

the unit circle in the z-plane (see Figure 3.8). Moreover, increasing the AR model order

yields a better fit between the spectra of the resulting process and the Jakes model. It

should be noted that for every method and when the model order is getting higher (for

instance p = 20), the accurate estimation of all the AR parameters becomes difficult

even at high SNR and with a high number of observation samples (see Figure 3.8 where

SNR=40dB and Ns = 2000 are used). This is due to the U-shaped low-pass band-limited

nature of the channel spectrum or equivalently, to the positions of the corresponding AR

poles which are close to the unit circle in the z-plane. Therefore, in these cases, the

selection of the AR model order corresponds to a trade-off between the accuracy of the

model and the difficulty in estimating its parameters.
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Figure 3.7: Estimations of AR(3) PSD and corresponding poles in the z-plane obtained

by using the different methods. 10 realizations are plotted. fdTb = 0.2, SNR=12dB and

Ns = 500.
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Figure 3.8: Estimations of AR(20) PSD and corresponding poles in the z-plane obtained

by using the different methods. 10 realizations are plotted. fdTb = 0.2, SNR=40dB and

Ns = 2000.
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3.6 Two-cross-coupled H∞ filter based estimator

In this section, we propose to take advantage of the two-cross-coupled H∞ filter based

structure recently developed in the framework of speech enhancement [Lab07] to design a

channel estimation algorithm [Jam07b] as shown in Figure 3.9. One H∞ filter is used to

estimate the fading process as in equations (3.13)-(3.19), while the second one makes it

possible to estimate the corresponding AR parameters from the estimated fading process

as we will see in the next subsection.

H∞ filter #2
AR parameter estimation

{âi}i=1,...,p

H∞ filter #1
fading process estimation

ĥ(n)

r(n) -

d̂(n)
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Figure 3.9: Proposed two-cross-coupled H∞ filter based channel estimation scheme.

3.6.1 Estimation of the AR parameters from the estimated fad-

ing process

Here, we propose to estimate the AR parameters from the estimated fading process ĥ(n)

obtained by the first H∞ filter (3.13)-(3.19). Thus, by following the same procedure as in

subsection 3.5.1, the state-space representation for the estimation of the AR parameter

vector θ can be written as follows:

{
θ(n) = θ(n − 1)

ĥ(n) = dT
θ
(n − 1)θ(n) + w̃(n)

(3.43)

where dT
θ
(n − 1) = −[ ĥ(n − 1) ĥ(n − 2) · · · ĥ(n − p) ] and w̃(n) = lK(n)ν(n).

By defining the estimation error due to the estimation of the AR parameters as

eθ = dT
θ
(n − 1)

(
θ(n) − θ̂(n)

)
, a second H∞ filter can therefore be used to recursively
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estimate θ as follows:

θ̂(n) = θ̂(n − 1) + K
θ
(n)w̃(n), θ̂(0) = 0 (3.44a)

K
θ
(n) = P

θ
(n)C−1

θ
(n)d

θ
(n − 1)R−1

w̃ (3.44b)

C
θ
(n) = Ip − γ−2

θ
d

θ
(n − 1)dH

θ
(n − 1)P

θ
(n) + d

θ
(n − 1)R−1

w̃ dH
θ

(n − 1)P
θ
(n) (3.44c)

P
θ
(n + 1) = P

θ
(n)C−1

θ
(n), P

θ
(0) = P

θ0
(3.44d)

where γ
θ

> 0 is the disturbance attenuation level. In addition, Rw̃ > 0 and P
θ0

> 0 are

the weighting parameters.

It should be noted that our approach is different from the one in [Cai04] where

two-serially-connected H∞ filters are used to estimate the fading process and its AR

parameters (see Figure 3.2). On the one hand, the approach in [Cai04] estimates the AR

parameters directly from the noisy observations which yields biased values and may have

a bad influence on the estimation of the fading process. On the other hand, our approach

can provide reliable estimates by estimating the AR parameters from the estimated fading

process.

3.6.2 Tuning the weighting parameters

The weighting parameters Qu and Rv in the first H∞ filtering algorithm (3.13)-(3.19)

correspond respectively to the instantaneous power of the sequences u(n) and v(n). In

[Cai04], Cai et al. have mentioned that for practical wireless communication systems the

weighting parameters Qu and Rv can be chosen respectively as the variance of the driving

and additive sequences (i.e., Qu = σ2
u and Rv = σ2

v). Thus, by analogy with the Kalman

filter theory, the weighting parameter Qu can be recursively tuned by taking into account

equation (3.41), as follows:

Q̂u(n) = λQ̂u(n − 1) + (1 − λ)fM(n)fT (3.45)

where M(n) = P(n)−ΦP(n−1)ΦH+K(n)|ν(n)|2KH(n), f = [gTg]−1gT = [ 1 0 · · · 0 ]

and λ is the forgetting factor.

In addition, the parameter Rv is assigned to σ2
v . Furthermore, the parameter Rw̃ in the

second H∞ filter (3.44) is tuned by taking into account equation (3.32), as follows:

Rw̃ = lK(n)
(
dT (n)P(n)d(n) + Rv

)
KH(n)lT (3.46)

Moreover, as we have no a priori knowledge about the initial state error, the weighting

matrices P0 and P
θ0

are assigned to the identity matrix (i.e., P0 = P
θ0

= Ip).
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It should be noted that, although the selected values of the weighting parameters

might not correspond to the true values (instantaneous powers of the corresponding se-

quences), the H∞ filtering by its nature is robust to these deviations [Has99].

3.6.3 Simulation results

In this subsection, we carry out a comparative simulation study on the estimation of the

fading channel AR parameters between several methods:

1. the proposed two-cross-coupled H∞ filters,

2. the proposed two-cross-coupled Kalman filters presented in section 3.5,

3. the two-serially-connected Kalman or H∞ filters [Cai04] shown in Figure 3.2,

4. the YW estimator used for instance in [Tsa96].

Here, we consider the same simulation protocol as in subsection 3.5.3. In addition, the

results are obtained by applying real versions of the proposed two-cross-coupled channel

estimators to the real part of the observations (see remark 1 in section 3.5).

Table 3.1 shows the average AR(2) parameter estimates of the various approaches

when fdTb = 0.1 and Ns = 500. From this table, the two-cross-coupled H∞ filter based

approach provides approximately the same results as the two-cross-coupled Kalman filter

based one. In addition, both approaches yield much better estimates than the other

approaches, especially at low SNR. In that case, the YW estimator and the two-serially-

connected Kalman or H∞ filter based estimators result in biased estimates. According to

Figure 3.10, the two-cross-coupled H∞ filter based approach yields much better estimates

than the two-serially-connected H∞ filter based one which results in smoothed spectrum.

In addition, the two-cross-coupled H∞ filter based estimator provides approximately the

same estimates as the two-cross-coupled Kalman filter based one. Moreover, based on

the various simulation tests we have carried out using high-order AR models, the two-

cross-coupled Kalman and H∞ filter based channel estimators yield approximately the

same results. Therefore, although the two-cross-coupled H∞ filter based approach does

not provide better results than the two-cross-coupled Kalman filter based one, it has the

advantage of relaxing the Gaussian assumptions required by Kalman filtering.

Nevertheless, in both two-cross-coupled Kalman and H∞ filter based channel estima-

tors, the additive noise variance is assumed to be known, which is not the case in practice

and should be estimated. Therefore, as an alternative to the cross-coupled estimators, we

propose to view the channel estimation as an EIV issue in the next section.
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Table 3.1: Average AR(2) parameters and driving process variance estimates based on

1000 realizations. The true values are a1 = −1.7625, a2 = 0.9503 and σ2
u = 0.0178.

Ns = 500 and fdTb = 0.1.

SNR 10 dB 15 dB 20 dB 40 dB

Proposed two-cross-coupled â1 -1.4908 -1.6348 -1.7001 -1.7557

Kalman filters â2 0.6991 0.8326 0.8926 0.9434

σ̂2
u 0.0682 0.0344 0.0280 0.0167

Proposed two-cross-coupled â1 -1.4878 -1.6746 -1.7400 -1.7576

H∞ filters â2 0.6975 0.8724 0.9336 0.9454

Q̂u 0.0882 0.0192 0.0066 0.0031

Two-serially-connected â1 -1.0274 -1.4018 -1.6184 -1.7567

H∞ filters [Cai04] â2 0.2601 0.6043 0.8107 0.9443

Two-serially-connected â1 -1.0293 -1.4009 -1.6177 -1.7560

Kalman filters [Cai04] â2 0.2616 0.6033 0.8100 0.9436

Yule-Walker [Tsa96] â1 -1.0318 -1.3958 -1.6031 -1.7359

routine aryule of â2 0.2647 0.5995 0.7970 0.9249

MATLAB 7.1 σ̂2
u 0.3284 0.1506 0.0704 0.0252
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Figure 3.10: Estimations of AR(2) PSD and corresponding poles in the z-plane obtained

by using the different methods. 10 realizations are plotted. fdTb = 0.1, SNR=10dB and

Ns = 500.
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3.7 Errors-in-variables approach for AR parameter

estimation

In this section, we first provide the principles of the EIV models and the state of the art

in that field. We then propose to identify the channel AR parameters and the variances of

both the additive measurement noise and the driving process based on an EIV approach

[Jam06] [Jam07a]. Finally, a comparative simulation study is carried out between the

proposed method and other existing approaches.

3.7.1 Principles of EIV models

EIV is a modeling technique which assumes that every variable is disturbed by an additive

error or noise term. The EIV models, originally developed in the framework of statistics,

are now used in applications such as system identification, control, signal processing, etc.

[Huf02] [Sod02] [Bob07].

Given a generic process described by κ variables {xi}i=1,··· ,κ, the formulation of an

EIV estimation problem consists in determining, on the only basis of noisy observations

{yi = xi + bi}i=1,··· ,κ, the set of κ-tuple {ξi}i=1,··· ,κ that satisfies:

ξ1x1 + ξ2x2 + · · · + ξκxκ = 0

[x1 x2 · · · xκ][ξ1 ξ2 · · · ξκ]
T = 0 (3.47)

or equivalently,

Rx

[
ξ1 ξ2 · · · ξκ

]T

= 0κ (3.48)

where Rx is the covariance matrix of {xi}i=1,··· ,κ.

When each noise term bi is assumed to be zero-mean, independent of every other noise

term and every variable xi, one has:

Rx = Ry − Rb (3.49)

where Ry and Rb respectively denote the covariance matrix of {yi}i=1,··· ,κ and of {bi}i=1,··· ,κ.

At that stage, the so-called Frisch scheme [Beg90] consists in searching for the diagonal

matrices Rb which enable Ry − Rb to be positive semidefinite:

Ry − Rb ≥ 0κ (3.50)

Recently, Diversi et al. [Div05a] [Div05b] have proposed to take advantage of some

theoretical results concerning the Frisch scheme [Beg90] to develop a new estimation
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approaches for AR models in presence of noise. Their approaches consist in estimating

the null space of specific autocorrelation matrices and have the advantage of providing

estimates of the AR parameters and the variances of both the additive noise and the

driving process in a congruent manner. Meanwhile, these approaches were analyzed and

evaluated in the framework of speech dereverberation [Bob05] and speech enhancement

[Bob06] [Bob07]. In [Jam06] [Jam07a], we have proposed to reformulate these approaches

for the identification of time-varying Rayleigh fading channels.

In the next subsection, we will see how the channel AR parameter estimation can

be mapped into an EIV problem.

3.7.2 EIV formulation of the channel AR parameter estimation

Given the channel AR model (1.30), our purpose is to estimate the channel AR para-

meters {ai}i=1,...,p and the noise variances (i.e., σ2
b and σ2

u) from Ns observation samples,

{y(n)}n=1,...,Ns
given by (3.20), obtained during the transmission of a training sequence.

For this purpose, let us define the following four (p + 1) × 1 vectors:

θp+1 =
[
ap · · · a1 1

]T

(3.51)

y(n) =
[
y(n − p) · · · y(n − 1) y(n)

]T

(3.52)

h(n) =
[
h(n − p) · · · h(n − 1) h(n)

]T

(3.53)

b(n) =
[
b(n − p) · · · b(n − 1) b(n)

]T

(3.54)

Thus, equations (1.30) and (3.20) can be respectively written in vector form as follows:
[
h(n − p) · · · h(n − 1) (h(n) − u(n))

]
θp+1

= (hT (n) − [ 0 · · · 0︸ ︷︷ ︸
p

u(n) ])θp+1 = 0 (3.55)

and

y(n) = h(n) + b(n) (3.56)

Given (3.56) and under the assumption of statistical independence between the additive

noise and the fading process, the observation autocorrelation matrix satisfies:

Rp+1
yy = E[y(n)yH(n)] = Rp+1

hh + σ2
b Ip+1 (3.57)

where Rp+1
hh = E[h(n)hH(n)].

Then, pre-multiplying (3.55) by h(n) and applying the expectation operator result in the
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following equation:

(Rp+1
hh − diag[ 0 · · · 0︸ ︷︷ ︸

p

σ2
u ])θp+1 , R̄p+1

hh θp+1 = 0p+1 (3.58)

Hence, R̄p+1
hh is the positive semidefinite correlation matrix of the vector

[ h(n − p) · · · h(n − 1) (h(n) − u(n)) ]T . Given (3.57) and the definition of R̄p+1
hh in

(3.58), it is possible to write:

R̄p+1
hh = Rp+1

yy − diag
[
σ2

b Ip, σ
2
s

]
≥ 0p+1 (3.59)

where

σ2
s = σ2

b + σ2
u (3.60)

It should be noted that (3.55), (3.58) and (3.59) are respectively similar to (3.47), (3.48)

and (3.50). Indeed, the κ-tuple {ξi}i=1,··· ,κ in equation (3.47) correspond to the AR

parameters θp+1 = [ap · · · a1 1]T . The EIV formulation of the channel AR parameter

estimation is illustrated in Figure 3.11.

1
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Figure 3.11: (a) AR channel model disturbed by AWGN. (b) corresponding EIV scheme.

By referring to the EIV based methods [Beg90] [Div05b], the actual point

Oa = (σ2
s , σ

2
b ) belongs to the set of solutions O = (α, β) making the following matri-

ces positive semidefinite:

R̄p+1
hh (O) = Rp+1

yy − diag [βIp, α] ≥ 0p+1 (3.61)

This set is the convex curve S(Rp+1
yy ) belonging to the first quadrant of the (αβ)-plane5,

and whose concavity faces the origin (see Figure 3.12). In addition, every point O can be

5 α corresponds to σ2
s and stands for the abscissa, while β corresponds to σ2

b and stands for the

ordinate.
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Figure 3.12: Typical shapes of S(Rp+1
yy ) and S(Rp+2

yy ).

associated with a parameter vector θp+1(O) satisfying (3.58) as follows:

R̄p+1
hh (O)θp+1(O) = 0p+1 (3.62)

Therefore, the above procedure provides a family of solutions. To extract the true one,

we carry out the same procedure using a (p + 1)th order AR process. Thus, by extending

the right hand side of the vectors in (3.52), (3.53) and (3.54) with a new value at time

n+1, one obtains the (p+2)× 1 vectors y(n+1), h(n+1) and b(n+1). It follows that:

R̄p+2
hh (O) = Rp+2

yy − diag [βIp+1, α] ≥ 0p+2 (3.63)

and

R̄p+2
hh (O)θp+2(O) = 0p+2 (3.64)

where the correlation matrices Rp+2
yy and R̄p+2

hh are now of size (p + 2) × (p + 2).

When O = Oa, one has more particularly:

R̄p+2
hh (Oa)

[
0

θp+1(Oa)

]
= 0p+2 (3.65)

Given (3.63) and (3.65), it can be verified that the convex curve S(Rp+2
yy ) lies under

S(Rp+1
yy ) [Beg90]. In addition, the actual point Oa belongs to both S(Rp+1

yy ) and S(Rp+2
yy )
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convex curves. Therefore, determining the point Oa and then extracting the parameter

vector θp+1 from the null space of R̄p+1
hh (Oa) using (3.62) result in a solution of the channel

identification problem.

However, in all practical cases that rely on limited sequences of data, the EIV

assumptions do not hold. Hence, no point Oa belongs to both S(Rp+1
yy ) and S(Rp+2

yy ). For

this reason, several criteria have been proposed so that the EIV scheme can be applied to

these cases [Div05a] [Div05b].

3.7.3 Application of the EIV scheme in practical cases

In this subsection, we will consider two criteria that allow the EIV scheme to be applied

in practical cases.

3.7.3.1 Shift relation criterion

The Shift Relation (SR) criterion, proposed in [Div05b], is based on the shift-invariant

property of dynamic systems described by (3.65). Thus, the search for Oa = (σ2
s , σ

2
b )

along S(Rp+1
yy ) is based on minimizing the following SR criterion:

JSR(O1, O2) =

[
0

θp+1(O1)

]H

R̄p+2
hh (O2)

[
0

θp+1(O1)

]
(3.66)

where O1 = (α1, β1) and O2 = (α2, β2) are defined as the intersections of the line from

the origin with S(Rp+1
yy ) and S(Rp+2

yy ) (see Figure 3.12), such as:

β1

α1

=
β2

α2

(3.67)

The cost function defined in (3.66) exhibits the following properties:

1. JSR(O1, O2) ≥ 0

2. JSR(O1, O2) = 0 ⇐⇒ O1 = O2 = Oa

Based on the SR criterion, the following identification algorithm can be considered.
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Algorithm 1:

1. Compute the estimates of Rp+1
yy and Rp+2

yy as follows6:

R̂p+1
yy =

1

Ns − p

Ns∑

n=p+1

y(n)yH(n) (3.68)

R̂p+2
yy =

1

Ns − p − 1

Ns−1∑

n=p+1

y(n + 1)yH(n + 1) (3.69)

2. Start from generic points O1 = (α1, β1) on S(R̂p+1
yy ) and O2 = (α2, β2) on S(R̂p+2

yy )

such as β1

α1
= β2

α2
(see Figure 3.12). Note that this is a solvable generalized eigenvalue

problem [Gui95],

3. Compute R̄p+1
hh (O1), R̄p+2

hh (O2) and θp+1(O1) by using relations (3.61), (3.63) and

(3.62) respectively,

4. Compute the SR cost function JSR(O1, O2) from (3.66),

5. Search on S(R̂p+1
yy ) for the variances of both the additive noise and the driving

process which minimize JSR(O1, O2).

3.7.3.2 HOYW equations based criterion

The second criterion, based on the so-called HOYW equations, was recently proposed in

[Div05a]. To obtain this criterion, let us first define the following two q × 1 vectors:

y
q
(n) =

[
y(n − p − q) · · · y(n − p − 2) y(n − p − 1)

]T

(3.70)

hq(n) =
[

h(n − p − q) · · · h(n − p − 2) h(n − p − 1)
]T

(3.71)

where q > p. It follows that:

Σq
hh = E[hq(n)hH(n)] =




Rhh(q) Rhh(q + 1) · · · Rhh(q + p)

Rhh(q − 1) Rhh(q) · · · Rhh(q + p − 1)
...

...
. . .

...

Rhh(1) Rhh(2) · · · Rhh(p + 1)




(3.72)

6It should be noted that, due to the finite length computations and the imperfect channel simulations,

the estimated autocorrelation matrices may be complex with very small imaginary parts. To guarantee

that the AR parameters are real, we propose to replace the estimated matrices with their real parts (i.e.,

R̂p+1
yy = Re(R̂p+1

yy ) and R̂p+2
yy = Re(R̂p+2

yy )).
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Since the matrix Σq
hh does not contain the zero lag term Rhh(0) and hence does not involve

the additive noise variance σ2
b , one can write:

Σq
yy = E[y

q
(n)yH(n)] = Σq

hh (3.73)

Thus, the set of q HOYW equations can be written in the following manner:

Σq
hhθp+1 = Σq

yyθp+1 = 0q (3.74)

The HOYW criterion is hence defined as the square norm of Σq
yyθp+1 as follows:

JHOY W (O1) = ‖Σq
yyθp+1(O1)‖2 = θH

p+1(O1)(Σ
q
yy)

HΣq
yyθp+1(O1) (3.75)

By taking q > p, JHOY W (O1) will exhibits the following properties:

1. JHOY W (O1) ≥ 0

2. JHOY W (O1) = 0 ⇐⇒ O1 = Oa

Therefore, the second identification algorithm can be formulated as follows.

Algorithm 2:

1. Compute the estimate of Rp+1
yy from (3.68) and the estimate of Σq

yy as follows7:

Σ̂q
yy =

1

Ns − p − q

Ns∑

n=p+q+1

y
q
(n)yH(n), (3.76)

2. Start from a generic point O1 = (α1, β1) on S(R̂p+1
yy ). Note that this is a solvable

generalized eigenvalue problem [Gui95],

3. Compute R̄p+1
hh (O1) and θp+1(O1) by using relations (3.61) and (3.62) respectively,

4. Compute the cost function JHOY W (O1) from (3.75),

5. Search on S(R̂p+1
yy ) for the variances of both the additive noise and the driving

process which minimize JHOY W (O1).

7To guarantee that the AR parameters are real, we propose to replace the estimated matrices with

their real parts (i.e., R̂p+1
yy = Re(R̂p+1

yy ) and Σ̂q
yy = Re(Σ̂q

yy)).
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3.7.4 Fading process estimation combining EIV with Kalman or

H∞ filter

Once the channel AR parameters {ai}i=1,...,p and the variances of both the additive mea-

surement noise σ2
u and the driving process σ2

u are estimated by using the EIV based

approach, the estimation of the fading process h(n) can be carried out by means of the

Kalman filtering algorithm (3.7). To avoid the restrictive Gaussian assumptions imposed

by Kalman filtering, H∞ filtering can be used instead (3.13)-(3.19). The combination of

the EIV based approach with either Kalman or H∞ filtering for the estimation of the

fading process and its AR parameters is shown in Figure 3.13. This structure operates

as follows. During the training mode, the EIV based approach estimates the channel

AR parameters and the noise variances from Ns data samples {y(n)}n=1,··· ,Ns
. Once the

training mode is over, the estimated parameters are stored and used in conjunction with

the observations r(n) and the decision d̂(n) (e.g., using (2.61) for instance) to predict the

fading process in a decision directed manner.

y(n) -
EIV based approach

for
AR parameter estimation

{âi}i=1,...,p

σ̂2
u, σ̂2

b

-
Kalman or H∞ filter

for
fading process estimation

-ĥ(n)

?

r(n)

?
@@

d(n) d̂(n)º-

Figure 3.13: Combining EIV based approach with either Kalman or H∞ filtering for

channel estimation.
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3.7.5 Simulation results

In this subsection, we carry out a comparative simulation study on the identification of

AR fading channels between several methods:

1. the proposed EIV based approach using either the SR or HOYW criterion,

2. the proposed two-cross-coupled H∞ filters presented in section 3.6,

3. the proposed two-cross-coupled Kalman filters presented in section 3.5,

4. the two-serially-connected Kalman or H∞ filters [Cai04] shown in Figure 3.2,

5. the standard YW estimator used for instance in [Tsa96].

The fading process h(n) is generated according to the autoregressive channel simulator

[Bad05] with order vary from 2 to 20 and a given Doppler rate fdTb.

In all simulations, real versions of the proposed algorithms are applied to the real part of

the observations to obtain the results.

According to our preliminary simulation results, the proposed EIV based approach

provides reliable estimates of the AR parameters even at low SNR (e.g., SNR=5dB)

and/or when the number of samples are limited (e.g., Ns = 200), which are not the cases

when dealing with the other approaches. In addition, it was noticed that the EIV based

approach is less sensitive to the variations in the Doppler rate fdTb and the AR model

order p than the other approaches. Moreover, the EIV based approach can provide an

estimation of the measurement noise variance, which is not the case for the other methods.

Table 3.2 shows the average AR(2) parameters and noise variances estimates of the

various approaches when fdTb = 0.14 and Ns = 200. From this table, the proposed

EIV based approach with the SR criterion provides approximately the same results as

that using the HOYW criterion. In addition, the EIV based approaches outperform the

other approaches, especially at low SNR ratios. Furthermore, they have the advantage of

providing reliable estimates of the additive noise variance. On the other hand, the two-

cross-coupled estimators yield better estimates than the serially-connected ones which

result in biased estimates at low SNR ratios.

In the following, as the SR criterion yields approximately the same results as the HOYW

criterion, we will only consider the SR criterion in the EIV based approach.

According to Figures 3.14, 3.15 and 3.16, which respectively show the estimation of

the PSD and poles of AR(2), AR(5) and AR(20) processes that model the Jakes spectrum,
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Table 3.2: Average AR(2) parameters and noise variances estimates based on 1000 real-

izations. The true values are a1 = −1.5513, a2 = 0.9018 and σ2
u = 0.0625. Ns = 200 and

fdTb = 0.14.

SNR 5 dB 10 dB 15 dB 20 dB

σ2
b = 0.3162 σ2

b = 0.1 σ2
b = 0.0316 σ2

b = 0.01

Proposed EIV based approach â1 -1.5360 -1.5421 -1.5443 -1.5440

(HOYW criterion with q = 4) â2 0.8855 0.8925 0.8938 0.8945

σ̂2
u 0.0666 0.0629 0.0615 0.0621

σ̂2
b 0.3139 0.0996 0.0319 0.0099

Proposed EIV based approach â1 -1.5229 -1.5437 -1.5446 -1.5435

(SR criterion) â2 0.8738 0.8941 0.8941 0.8941

σ̂2
u 0.0793 0.0624 0.0615 0.0625

σ̂2
b 0.3098 0.0995 0.0319 0.0098

Proposed two-cross-coupled â1 -1.1977 -1.3565 -1.4549 -1.5030

Kalman filters â2 0.5979 0.7330 0.8174 0.8595

σ̂2
u 0.2545 0.1406 0.1046 0.0988

Proposed two-cross-coupled â1 -1.1615 -1.3181 -1.4561 -1.5133

H∞ filters â2 0.5706 0.7002 0.8221 0.8729

Q̂u 0.5395 0.2637 0.1075 0.0660

Two-serially-connected â1 -0.7099 -1.0759 -1.3396 -1.4691

H∞ filters [Cai04] â2 0.1668 0.4643 0.7017 0.8238

Two-serially-connected â1 -0.7125 -1.0789 -1.3406 -1.4702

Kalman filters [Cai04] â2 0.1678 0.4667 0.7026 0.8248

Yule-Walker [Tsa96] â1 -0.7059 -1.0726 -1.3248 -1.4489

routine aryule of â2 0.1632 0.4626 0.6896 0.8064

MATLAB 7.1 σ̂2
u 0.7717 0.3798 0.1941 0.1182

the EIV based approach provides closer estimates to the true spectrum and poles than

the two-cross-coupled Kalman filter based method. In addition, increasing the AR model

order allows for a better fit between the PSD of the resulting process and the theoret-

ical Jakes one. Furthermore, due to the U-shaped low-pass band-limited nature of the

channel Doppler spectrum, high SNR is required to better estimate high-order AR model

parameters (see Figure 3.16 where SNR=40dB is used).

Based on the various tests we have carried out, the proposed EIV approach is a

promising technique for the estimation of the fading channel AR parameters and the

additive noise variance.
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Figure 3.14: 10 overlay plots of the estimation of AR(2) PSD and corresponding poles in

the z-plane. fdTb = 0.1, SNR=5dB and Ns = 300.
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Figure 3.15: 10 overlay plots of the estimation of AR(5) PSD and corresponding poles in

the z-plane. fdTb = 0.2, SNR=25dB and Ns = 300.
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Figure 3.16: 10 overlay plots of the estimation of AR(20) PSD and corresponding poles

in the z-plane. fdTb = 0.2, SNR=40dB and Ns = 1000.

3.8 Application to the estimation of MC-DS-CDMA

channels

In this section, we consider the estimation and equalization of MC-DS-CDMA8 fading

channels based on the receiver structure introduced in section 2.4. This receiver, shown

in Figure 2.14, consists of a decorrelating detector along each carrier followed by a MRC.

The decorrelating detector is used to eliminate the MAI caused by other users leading to

an observation similar to (3.1). The MRC is used to compensate for the effect of fading

by using channel estimates from the channel estimators proposed in the previous sections.

A down-link MC-DS-CDMA system with BPSK modulation, M carriers and K = 10

active users is considered. The spreading sequences of all users are gold codes of length

N = 31. The MC-DS-CDMA fading processes {hm(n)}m=1,··· ,M are generated according

to the modified Jakes model given by equation (1.29) with Lo = 16 oscillators and a

predetermined value of the Doppler rate fdTb. In all of our simulations, the training

period for channel estimation is limited to Ns = 300 symbols9. Besides, like in [Kal03],

8Although we focuss our attention on the estimation of MC-DS-CDMA fading channels, the proposed

channel estimation techniques can also be applied for other systems such as OFDM.
9This long training period is necessary to estimate the channel dynamics. It is usually available at

the start of the transmission [Tsa96].
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correct decisions are assumed to be used to derive the various channel estimators in the

decision directed mode, i.e. d̂(n) = d(n).

We carry out a comparative simulation study on channel estimation and equalization

between the following channel estimators:

1. the proposed EIV based approach combined with either Kalman or H∞ filters,

2. the proposed two-cross-coupled H∞ filters presented in section 3.6,

3. the proposed two-cross-coupled Kalman filters presented in section 3.5,

4. the two-serially-connected H∞ filters proposed in [Cai04] and shown in Figure 3.2,

5. the LMS and RLS channel estimators used for instance in [Kal03].

In all simulations, the proposed complex algorithms are applied to the complex data to

obtain the results.

According to Figure 3.17, which shows the estimated real and imaginary parts of

the fading process h1(n) over the first carrier, the two-cross-coupled Kalman filter based

estimator with AR(5) model provides much better channel estimates than the LMS and

RLS estimators.

Figures 3.18 and 3.19 show the BER performance versus either the SNR or the

Doppler rate of the two-cross-coupled Kalman filter based estimator with various order

AR models. Thus, exploiting the channel statistics by using AR models in the proposed

estimator results in significant performance improvement over the LMS and RLS based

ones which tend to an error floor at high SNR. In addition, increasing the AR model

order will improve the BER performance with the amount of improvement decreases as

the model order increases. Although high-order AR models (e.g., AR(20)) can provide

better modeling approximation than low-order AR models (see Figure 1.11), the amount

of BER improvement in that case is small compared with the resulting computational

cost O(p3) of the estimation algorithm. Therefore, to reduce the computational cost, an

AR(5) is recommended.

In Figure 3.19, for very low Doppler rates (e.g., fdTb = 0.001), comparable BER per-

formances can be noticed for the various estimators. However, for high Doppler rates

fdTb > 0.01, the proposed estimator performs much better than the others especially for

high-order AR models. Therefore, the proposed estimator is appealing for high Doppler

rate environments.

According to Figure 3.20, the two-cross-coupled H∞ filter based estimator provides

approximately the same BER results as the Kalman based one. Nevertheless, the H∞

filtering has the advantage of relaxing the restrictive Gaussian assumptions imposed by
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Figure 3.17: Estimation of the real and imaginary parts of the fading process h1(n) over

the first carrier. fdTb = 0.1, SNR=20dB.

Kalman filtering. In addition, a significant frequency diversity gain is obtained when

increasing the number of carriers from M = 1 to M = 3. In Figure 3.21, the proposed

two-cross-coupled H∞ filter based estimator outperforms the two-serially-connected H∞

filter based one. This is due to the fact that the later approach results in biased AR

parameter estimates which has a bad influence on the estimation of the fading process.

The BER performance of the MC-DS-CDMA system when considering the combi-

nation of the EIV based approach with Kalman filtering is illustrated in Figure 3.22 and

Figure 3.23. Thus, according to Figure 3.22, this combination outperforms the LMS and

RLS estimators, especially for high-order AR models and high Doppler rates. In addition,

increasing the AR model order beyond 5 will not improve much the BER performance.

Thus, an AR(5) process can provide a trade-off between the accuracy of the model, the

computational cost of the estimation algorithm and the subsequent BER. According to

Figure 3.23, the EIV approach combined with a Kalman filter yields slightly lower BER

than the two-cross-coupled Kalman filter estimator. In addition, the former approach

can provide an estimation of the additive noise variance which is not the case for the

later approach. Besides, the combination of the EIV approach with either Kalman or H∞

filtering yield approximately the same BER results.

According to the various simulations we have carried out, the EIV approach com-

bined with either Kalman or H∞ filtering is more recommended than the other channel

estimation techniques.
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Figure 3.18: BER versus SNR for the MC-DS-CDMA system with the various channel

estimators. fdTb = 0.05 and M = 2.
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Figure 3.19: BER versus Doppler rate fdTb for the MC-DS-CDMA system with the various

channel estimators. SNR=20dB and M = 2.
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Figure 3.20: BER performance of the two-cross-coupled Kalman and H∞ channel es-

timators with AR(5) model. Number of carriers considered are M = 1 and M = 3.

fdTb = 0.05.
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Figure 3.21: BER performance of the two-cross-coupled and the two-serially-connected

H∞ filter based channel estimators with AR(2) model. Number of carriers considered are

M = 1 and M = 3. fdTb = 0.05.
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Figure 3.23: BER performance of the Kalman filter + EIV channel estimator and the two-

cross-coupled Kalman filter based one with AR(5) model. Number of carriers considered

are M = 1 and M = 3. fdTb = 0.05.
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In this thesis, we have proposed five receiver structures for MC-DS-CDMA systems in

Rayleigh fading channels [Jam04] [Jam05a] [Jam05b]. In addition, as receiver design

usually requires the explicit estimation of the channel fading processes, we have proposed

new training-aided channel estimation techniques based on a priori AR modeling of fading

channels [Jam05c] [Jam07b] [Jam06] [Jam07a].

In the first chapter, we have motivated the selection of MC-DS-CDMA system and

pointed out its relevance for the future 4G mobile wireless systems, where one of the major

challenges is to provide high data rates to high speed mobile terminals. High mobility

results in Doppler shifts and time-varying fading over each carrier. The time-variation

of fading processes are approximated by AR models. As low-order AR models result in

poor approximation, we have studied the relevance of high-order AR models. In that

case, due to the band-limited nature of Doppler fading processes, a deterministic model

should be considered. To avoid this problem, we follow Baddour’s work [Bad05], initially

developed in the framework of channel simulation, where they have ”slightly” modified

the properties of the channel by considering the sum of the theoretical fading process and

a zero-mean white process whose variance is very small. This enables us to consider AR

models whose order is high enough to better approximate the channel.

When considering the conventional MC-DS-CDMA receiver [Kon96], the fading

processes are assumed to be available at the receiver. In addition, the BER performance

of this receiver is shown to be limited by the MAI and the near-far problem. To avoid

these drawbacks, we have proposed five receivers in chapter 2. Thus, to reduce the com-

putational cost of the MMSE receiver [Mil00b], two adaptive MMSE receiver structures

based on the APA are first introduced [Jam04]. The SD structure consists of a particular

adaptive filter for each carrier, whereas the JD structure is defined by the concatenation

of the adaptive filter weights dedicated to each carrier. Simulation results show that the

JD structure outperforms the SD one. Moreover, the two structures have the same order

of complexity when considering the APA, but this is not the case for the RLS filter where
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the JD structure has higher complexity than the SD one. Hence, APA in the JD structure

corresponds to a trade-off between performance and complexity.

To avoid the use of a training sequence for every active user, we have then proposed

two blind adaptive MOE receivers based on APA-like multiuser detector [Jam05a], where

only the spreading code and the timing of the desired user are required. The post-detection

combining based receiver consists of a blind adaptive detector along each carrier followed

by a post-detection combiner, whereas the pre-detection combining based receiver consists

of a MRC followed by a single blind adaptive detector. According to the simulation study

we have carried out, the pre-detection combining based receiver provides slightly lower

BER results than the post-detection combining based one. In addition, the comparative

simulation study we have carried out with existing blind LMS and Kalman filter based

detectors [Hon95] [Zha02] shows that the proposed APA-like detector in the pre-detection

combining based receiver can provide a trade-off between performance and complexity.

Moreover, the proposed blind APA-like detector is shown to outperform the training based

APA in high MAI environments, in terms of SINR improvement and BER.

When the spreading sequences of all active users are assumed to be available, we have

proposed a receiver structure which consists of a decorrelating detector, a Kalman channel

estimator and a MRC [Jam05b]. Simulation results show that the proposed receiver can

completely eliminate the MAI and is insensitive to the near-far problem. In addition, it

provides approximatly the same BER performance as the adaptive receivers without the

need of any training period.

In chapter 3, we have proposed several channel estimation schemes based on a

priori AR modeling for time-varying fading channels. The first scheme makes it possible

to jointly estimate the fading process and its AR parameters based on two-cross-coupled

Kalman filters [Jam05c]. One Kalman filter is used to estimate the fading process while

the second one makes it possible to estimate the corresponding AR parameters from the

estimated fading process. The two Kalman filters are all the more mutually interactive

as the variance of the innovation of the first filter is used to drive the gain of the second.

Simulation results show that the proposed approach can provide reliable estimates of the

AR parameters, especially when the Doppler rate is high fdTb ≥ 0.1.

Nevertheless, Kalman filtering is optimal in the MMSE sense providing the initial

state, the driving process and the measurement noise in the state-space representation

of the system are independent, white and Gaussian. However, these assumptions do not

always hold in practice. For this reason, we have proposed to investigate an alternative ap-

proach based on H∞ estimation techniques, where no statistical assumption are required.
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The estimation criterion is to minimize the worst possible effects of the noise distur-

bances on the estimation error. More particularly, the method we have proposed is based

on two-cross-coupled H∞ filters which allow the fading process and its AR parameters

to be jointly estimated [Jam07b]. Simulation results show that the proposed two-cross-

coupled Kalman and H∞ filter based approaches provide approximately the same results.

In addition, these approaches outperform the approaches based on two-serially-connected

Kalman or H∞ filters proposed in [Cai04] which result in biased estimates of the AR

parameters.

As an alternative to the two-cross-coupled Kalman or H∞ filter based estimators,

we have proposed to view the channel AR parameter estimation as an EIV issue [Jam06]

[Jam07a]. The proposed approach consists in estimating the null space of specific auto-

correlation matrices and has the advantage of providing the estimation of the channel AR

parameters and variances of both the additive noise and driving process in the state-space

representation of the fading channel system. The proposed EIV based approach is com-

bined with either Kalman or H∞ filters to estimate the channel fading process. The com-

parative simulation study we have carried out on AR parameter estimation shows that

the proposed EIV based approach outperforms the other approaches ([Tsa96], [Cai04],

[Jam05c], [Jam07b]), especially in the presence of high amount of noise (e.g., SNR=5

dB). In addition, unlike the other approaches, it has also the advantage of providing an

estimation of the measurement noise variance.

Furthermore, for all the channel estimation techniques we have proposed, increasing

the AR model order allows a better fit between the PSD of the resulting process and the

PSD of the Jakes model. However, when the model order is getting higher (for instance

p = 20), the accurate estimation of all the AR parameters becomes difficult even at high

SNR and with a high number of observation samples. This is due to the U-shaped low-

pass band-limited nature of the channel spectrum or equivalently, to the positions of the

corresponding AR poles which are close to the unit circle in the z-plane. Therefore, in

these cases, the selection of the AR model order corresponds to a trade-off between the

accuracy of the model and the difficulty in estimating its parameters.

The comparative simulation study we have carried out on the estimation of

MC-DS-CDMA fading channels shows that the proposed channel estimators provide much

lower BER than the LMS and RLS based ones, especially in high Doppler rate environ-

ments. In addition, the two-cross-coupled Kalman and H∞ filter based channel estimators

yields approximately the same BER results. Furthermore, the EIV approach combined

with Kalman or H∞ filters provide slightly better BER results than the two-cross-coupled
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Kalman or H∞ filter based estimators. Moreover, an AR(5) model corresponds to a

trade-off between the BER performance and the computational cost of the estimation

algorithm.

It should be noted that some assumptions have been made in this thesis. To avoid

them, the following suggestions for future work can be pointed out:

• Firstly, we have assumed that the fading processes over all carriers are uncorrelated

and, hence, they are estimated separately. However, correlation among multi-carrier

fading processes might arise due to the existence of a significant Doppler spread for

instance. To exploit these correlations, the joint estimation of the fading processes

can be addressed based on a vector (multi-channel) AR model. Therefore, the

extension of the proposed channel estimation techniques to account for a vector AR

model is a possible direction for future work.

• Secondly, the separate estimation of the transmitted data symbol and the fading

channel is studied based on a decision directed approach where we have assumed

that the decisions of previous data symbols are all correct. Nevertheless, this ap-

proach might result in bursts of opposite decisions in the cases of deep fades. To

avoid this problem, the joint estimation of the transmitted symbol and the fading

channel can be addressed based on a nonlinear filtering approach such as particle

filtering. In particular, the relevance of the so-called Rao-Blackwellized particle fil-

tering techniques can be investigated. Indeed, cross-coupling these techniques with

Kalman filtering to jointly estimate the transmitted symbols and both the channel

and its AR parameters is currently under investigation by one of the PhD students

in our group.

• Finally, when designing receivers, we have assumed that they are synchronized with

the desired user and/or all users. One might relax this assumption by developing

estimation techniques to estimate the delays of all user signals.

In addition, the relevance of the channel estimation techniques we have proposed

in chapter 3 can be investigated for other systems than MC-DS-CDMA. Indeed, the

estimation of OFDM fading channels is currently under investigation by one of the master

students at Al-Quds University who is actually under the joint supervision of myself and

Dr. H. Abdel Nour.
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Acronyms and Abbreviations

1G First Generation Mobile Wireless Systems

2G Second Generation Mobile Wireless Systems

3G Third Generation Mobile Wireless Systems

4G Fourth Generation Mobile Wireless Systems

ACF AutoCorrelation Function

APA Affine Projection Algorithm

AR AutoRegressive

ARMA AutoRegressive Moving Average

AWGN Additive White Gaussian Noise

B3G Beyond 3G

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

DS Direct-Sequence

DS-CDMA Direct-Sequence Code Division Multiple Access

EDGE Enhanced Data rates for GSM Evolution

EIV Errors-In-Variables

EKF Extended Kalman Filter

EM Expectation Maximization

FDMA Time Division Multiple Access

FFT Fast Fourier Transform

GPRS General Packet Radio Service

GSM Global System for Mobile communication

HOYW High Order Yule-Walker

IFFT Inverse Fast Fourier Transform

IMT-2000 International Mobile Telecommunications - 2000

IS-95 Interim Standard - 95

ISI Inter-Symbol Interference

ISR Interference to Signal Ratio

IV Instrumental Variables
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Acronyms and Abbreviations

JD Joint Detection

LMS Least Mean Square

LS Least Square

MAI Multiple Access Interference

MC Multi-Carrier

MC-CDMA Multi-Carrier Code Division Multiple Access

MC-DS-CDMA Multi-Carrier Direct-Sequence Code Division Multiple Access

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MOE Mean Output Energy

MRC Maximal Ratio Combining

MSE Mean Square Error

MT-CDMA Multi-Tone Code Division Multiple Access

MYW Modified Yule-Walker

NCYW Noise Compensated Yule-Walker

NLMS Normalized Least Mean Square

OFDM Orthogonal Frequency Division Multiplexing

PIC Parallel Interference Cancellation

PSD Power Spectral Density

RLS Recursive Least Square

SD Separate Detection

SINR Signal to Interference-plus-Noise Ratio

SNR Signal to Noise Ratio

SR Shift Relation

TDMA Time Division Multiple Access

TF Time-Frequency

UMTS Universal Mobile Telecommunications System

WCDMA Wide-band CDMA

WLAN Wireless Local Area Network

YW Yule-Walker

122



Notations

Notations

E[·] expectation operator

diag[·] diagonal matrix

det[·] determinant

sgn(·) signum function

Re(·) real part

Im(·) imaginary part

exp(·) exponential function

ln(·) natural logarithm

log10(·) logarithm of base 10

J0(·) zero-order Bessel function of the first kind

δ(·) dirac delta function

‖ · ‖ Euclidean norm

| · | absolute value

O(·) order of multiplication complexity

min(·) minimum

sup supremum

(·)∗ complex conjugate

(·)T transpose

(·)H hermitian (complex conjugate transpose)

(·)−1 inverse

⌊x⌋ largest integer smaller or equal to x

∇ gradient

j
√
−1

x̂ estimate of x

σ2
x variance of x

x vector x

X matrix X

0p zero vector of size p × 1

Ip identity matrix of size p × p

rm(t) received signal at the mth carrier
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xm(n) received vector at the mth carrier in the nth bit interval

xm(n) received vector after channel compensation

ηm(n) AWGN vector at the mth carrier in the nth bit interval

hm(n) complex fading process at the mth carrier in the nth bit interval

h
(r)
m (n) real part of the fading process

h
(i)
m (n) imaginary part of the fading process

gml random amplitude associated with the lth scatterer and the mth carrier

ϕml random angle of arrival associated with the lth scatterer and the mth carrier

ϕml random initial phase associated with the lth scatterer and the mth carrier

qm the mth Walsh-Hadamard codeword

dk(n) the nth data bit of the kth user

ck spreading code of the kth user

fk left cyclic shift of the kth user spreading code ck

gk right cyclic shift of the kth user spreading code ck

R cross-correlation matrix of the spreading codes {ck}k=1,··· ,K

[R]ij the (i, j)th element of the matrix R

Pk power of the kth user signal

τk time delay of the kth user signal

w(n) adaptive filter weights at time n

a(n) adaptive part of the blind multiuser detector at time n

µ step-size in the LMS algorithm

µN normalized step-size in the NLMS and APA

λ forgetting factor in the RLS algorithm

δ regularization constant in the NLMS and APA

ǫ very small positive constant

ς positive constant (large value: lack of knowledge, small value: confidence)

γ disturbance attenuation level in the H∞ algorithm

L block length in the APA

M number of carriers in a MC-DS-CDMA system

K number of active users in a MC-DS-CDMA system

Ns number of available data samples
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Tb bit duration

Tc chip duration of wide-band single-carrier DS-CDMA system

MTc chip duration of MC-DS-CDMA system

N processing gain (code length) for each carrier in a MC-DS-CDMA system

N0 processing gain (code length) of wide-band single-carrier DS-CDMA system

W signal bandwidth

WM bandwidth of each carrier signal in MC-DS-CDMA system

W0 bandwidth of wide-band single-carrier DS-CDMA system

Lp number of resolvable paths in multi-path fading channel

Ls number of scatterers in frequency-flat fading channel

Bc channel coherence bandwidth

T0 channel coherence time

Tm channel maximum delay spread

fd maximum Doppler frequency

fc central carrier frequency

fm mth carrier frequency

fdTb Doppler rate

υ mobile speed

c light speed

r(n) received noisy signal from time-varying frequency-flat fading channel

y(n) received noisy observations after removing the training symbols

p AR model order

{ai}i=1,··· ,p AR model parameters

θ AR parameter vector

θp+1 AR parameter vector of size (p + 1) × 1

Φ Companion matrix containing the AR parameters

ĥ(n/n − 1) a priori estimate of h(n) given n − 1 observations

ĥ(n/n) a posteriori estimate of h(n) given n observations

K(n) Kalman filter gain at time n

P(n/n − 1) a priori covariance matrix of the state vector error

P(n/n) a posteriori covariance matrix of the state vector error
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K(n) H∞ filter gain at time n

P(n) positive definite matrix in the H∞ filter

ν(n) innovation process

σ2
b = σ2

v measurement noise variance

σ2
u driving process variance

σ2
h fading process variance

Rv power of the measurement noise

Qu power of the driving process

Rhh(n) ACF of the channel

Ψ(f) PSD of the channel

ΨAR(f) PSD of the AR process

Rhh channel autocorrelation matrix

Rp+1
yy observation autocorrelation matrix of size (p + 1) × (p + 1)

R̄p+1
hh positive semidefinite correlation matrix of size (p + 1) × (p + 1)
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2006.

[Lab06b] D. Labarre, E. Grivel, Y. Berthoumieu, E. Todini, M. Najim. – Consistent

estimation of autoregressive parameters from noisy observations based on two

interacting Kalman filters. Signal Processing, vol. 86, October 2006, pp. 2863–

2876.

[Lab07] D. Labarre, E. Grivel, M. Najim. – Dual H∞ algorithms for signal process-

ing, application to speech enhancement. Accepted to IEEE Trans. on Signal

Processing, 2007.

[Las03] S. Lasaulce, P. Loubaton, E. Moulines. – A semi-blind channel estimation

technique based on second-order blind method for CDMA systems. IEEE Trans.

on Signal Processing, vol. 51, July 2003, pp. 1894–1904.

[Lin95] L. Lindbom. – A Wiener filtering approach to the design of tracking algorithms

with applications in mobile radio communications, PHD dissertation, Depart-

ment of Technology, Uppsala University, Uppsala, Sweden, 1995.

[Lin02] L. Lindbom, A. Ahlen, M. Sternad, M. Falkenstrom. – Tracking of time-

varying mobile radio channels. II: a case study. IEEE Trans. on Communi-

cations, vol. 50, January 2002, pp. 156–167.

[Liu01] H. Liu, H. Yin. – Receiver design in multicarrier direct-sequence CDMA com-

munications. IEEE Trans. on Communications, vol. 49, August 2001, pp. 1479–

1487.

[Lok99] T. Lok, T. Wong, J. Lehnert. – Blind adaptive signal reception for MC-CDMA

systems in Rayleigh fading channels. IEEE Trans. on Communications, vol. 47,

March 1999, pp. 464–471.

[Lou00] P. Loubaton, E. Moulines. – On blind multiuser forward link channel estima-

tion by the subspace method: identifiability results. IEEE Trans. on Signal

Processing, vol. 48, August 2000, pp. 2366–2376.
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