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Contexte du projet

Au cours des dernières années, le développement des connaissances dans des domaines

tels que la chimie et le génie des procédés, d’une part, et la maîtrise des procédés de 

transformation, d’autre part, ont permis aux industries agroalimentaires de produire des produits

alimentaires diversifiés et de bonne qualité. Ces produits sont en général des matériaux

complexes tant au niveau de leur composition que de leurs propriétés structurales. La 

composition du produit alimentaire ne donne souvent que des informations limitées sur les 

propriétés physiques, le comportement rhéologique, la texture ou les caractéristiques sensorielles. 

Ainsi, la compréhension des propriétés de texture des produits alimentaires requiert la

connaissance d’éléments structuraux tels que les réseaux de polymères, les cristaux de glace ou 

de matière grasse et les assemblages de protéines.

Les produits alimentaires sont pour une large part des systèmes multiphasiques. Parmi

eux, les émulsions alimentaires tiennent une place importante. Il s’agit de systèmes contenant

deux liquides immiscibles dont l’un est dispersé sous la forme de petites gouttelettes (phase 

dispersée) dans une autre phase (phase continue). Les produits foisonnés constituent un autre 

groupe de systèmes dispersés alimentaires constitués de bulles d’air distribuées dans un réseau

liquide visqueux ou une matrice solide. Dans ce cas, si l’air n’est pas comptabilisé dans la

composition, il tient une place cruciale dans la mise en place des propriétés structurales du

produit alimentaire. Dans les industries agroalimentaires, la formation et la stabilisation des

diverses interfaces présentes dans les systèmes colloïdaux (air / eau, huile / eau, huile / air) 

nécessitent l’utilisation de molécules tensioactives. Bien que peu importants quantitativement

dans la formulation des produits alimentaires, les tensioactifs sont essentiels dans la mise en place 

et le maintien de la structure des produits. Deux catégories de tensioactifs sont classiquement

utilisées dans la formulation des systèmes dispersés alimentaires, des molécules de haut poids 

moléculaire comme les protéines et des émulsifiants de faible poids moléculaire. La présence

simultanée dans les formulations de ces deux types de composés amphiphiles peut favoriser des 

phénomènes d’association ou de compétition aux interfaces selon leurs propriétés et leur rapport

pondéral, de sorte que le produit fini présente des caractéristiques inattendues ou un 

comportement particulier au cours du procédé de fabrication. 

La crème glacée est une dispersion alimentaire particulièrement complexe car elle 

correspond à un système quadriphasique. Des bulles d’air sont maintenues en suspension par la

matière grasse émulsifiée et par un réseau de cristaux de glace, le tout étant dispersé dans une 

phase liquide cryo-concentrée (dite continue) contenant des substances dissoutes comme des

sucres, des protéines et des hydrocolloïdes. Ces différentes structures sont créées et mises en 

place au cours des différentes étapes du procédé de fabrication des crèmes glacées qui vont faire 
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Contexte du projet

évoluer le système d’une simple émulsion huile-dans-eau vers une mousse partiellement solide. 

La maîtrise de la création de ces différentes structures est fondée, non seulement, sur

l’application contrôlée de paramètres du process (cisaillement, température, foisonnement) mais

encore sur l’utilisation des ingrédients appropriés. La compréhension des différents mécanismes

interfaciaux mis en jeu et des propriétés des ingrédients, en tenant compte de leurs interactions,

est également nécessaire pour optimiser la fabrication et la stabilisation du produit fini. A terme, 

l’acquisition de ces connaissances devrait aider à prédire l’influence d’un changement de 

formulation sur les propriétés du produit fini. 

C’est dans le contexte d’une meilleure compréhension de la sélection des ingrédients sur

la formation et la stabilisation de la crème glacée au cours de sa fabrication que s’inscrit ce travail 

de thèse. L’objectif principal de cette thèse est donc de mieux comprendre les mécanismes

d’action des émulsifiants et des protéines qui participent à la formation, à la création et à la

stabilisation des interfaces dans une crème glacée. Une attention particulière est portée à la nature

de la matière grasse entrant dans la fabrication de l’émulsion huile-dans-eau et à son influence sur 

les propriétés texturales, rhéologiques, et sensorielles des produits finis. 

L’étude bibliographique présente, d’une part, au niveau moléculaire, l’adsorption et les

interactions des tensioactifs (protéines et émulsifiants) ainsi que leurs interactions avec les autres

ingrédients au cours du procédé de fabrication, et, d’autre part, décrit, au niveau supra-

moléculaire l’influence des ingrédients sur l’organisation microstructurale des crèmes glacées. 

Les méthodologies employées au cours de cette étude sont détaillées dans la partie Matériel et

Méthodes. La partie Résultats et Discussion comporte trois chapitres distincts. Le premier

chapitre concerne la caractérisation et la compréhension des mécanismes mis en jeu aux 

interfaces huile / eau au sein d’une émulsion. Le deuxième chapitre porte sur la caractérisation

physico-chimique du mix de crème glacée. Le troisième chapitre est centré sur l’étude des crèmes 

glacées en termes de caractérisation des interactions entre les divers constituants aux interfaces,

de microstructures et d’analyse sensorielle. Chaque chapitre de la partie Résultats et Discussion

s’appuie sur un ou deux articles publiés, précédés d’une introduction qui permet de résumer les 

principaux résultats obtenus et de les compléter par des résultats non publiés.
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General context 

For several years now, the increasing knowledge in fields like chemistry and process 

engineering, on the one hand, and transformation processes, on the other hand, allowed food 

grade industries to produce various food products with high quality. These products are usually 

complex materials when considering their composition and their structural properties. Food 

composition often provides limited data on the physical properties, the rheological behavior or 

the sensory texture. Indeed, the comprehension of the texture properties of foods requires the 

control of structural elements such as polymer networks, ice and fat crystals or protein 

assembling.

Manufactured food products are, to a large extent, multiphase systems. A significant 

proportion of these products are in an emulsified state, so that they contain two immiscible

liquids with one of the liquids being dispersed as small droplets (dispersed phase) in the other

(continuous phase). Aerated foods are another group of multicomponent systems consisting of air 

bubbles distributed in a visco-elastic liquid or a solid matrix. In this case, even if air is not 

mentioned in the food composition, the shelf life, texture and appearance of these foods are 

strongly influenced by the size, the concentration and the distribution of the bubbles they contain. 

In the food industry, the formation and stabilization of the various interfaces present in the 

colloidal systems (air / water, oil / water, oil / air) require the use of surface active compounds.

Although surface active compounds are quantitatively minor ingredients in the formulation, they

are of widespread technological importance. Indeed, they actively participate to the structure of 

the food products. Thus, in food dispersions, the formation of various interfaces intensifies the

problems related to stabilization, texture and product shelf life. Two main groups of surface 

active compounds are classically used in food formulation, i.e., large molecules, such as proteins, 

or small molecules, like low molecular weight emulsifiers. The simultaneous presence in the

formulation of these two types of amphiphilic components can lead to association or competition

mechanisms at the interfaces according to their properties and their weight ratio. This results in

specific functions in the processing and properties of the final product. 

Ice cream is a particularly complex food dispersion that can be described as a 

quadriphasic system. Both, emulsified fat and ice crystal network suspend air bubbles. The whole 

is dispersed into a cryo-concentrated liquid phase (continuous) containing dissolved substances 

such as sugars, proteins and hydrocolloids. These various structures appear during the various 

steps of ice cream processing which evolves from a simple oil-in-water emulsion to a partially

solid foam. The formation of these structures is based not only on the controlled application of

process parameters (shearing, temperature, and overrun) but also on the use of suitable 

ingredients. More fundamental information on the properties of the ingredients as well as their 
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multiple interactions is necessary to optimize the manufacture and the stabilization of the final

product. This should favor the comprehension of the dynamics of the physicochemical

phenomena that take place during the different stages of ice cream manufacture and especially of

the various interfacial mechanisms involved in ice cream processing. In the end, it should help to 

predict the impact of changes of ingredients within the formulation on the final ice cream 

properties.

This work takes place in the context of a better understanding of the ingredient selection

on the formation and stabilization of ice cream during the different stages of ice cream

manufacture, from the formation of the oil-in-water emulsion, to the mix ageing, and to the 

freezing / whipping steps leading to the final product. This work focuses on the mechanisms of 

action of low molecular weight emulsifiers and proteins which contribute to the formation of the 

oil / water interface in ice cream. A peculiar attention is also paid to the nature of the fat used in 

the initial oil-in-water emulsion and its influence on the textural, rheological, and sensory

properties of the final product.

The bibliography section presents, on the one hand, the adsorption phenomena of 

surface-active molecules (proteins and low molecular weight emulsifiers) and their interactions at 

the interfaces and, on the other hand, described the influence of the ingredients on the 

microstructural organization of ice cream. The methodologies employed during this study are 

detailed in the Materials & Methods section. The Results & Discussion section comprises three

distinct chapters. The first one is related to the characterization and the comprehension of the

mechanisms involved at the oil / water interfaces within an emulsion. The second chapter deals 

with the physicochemical characterization of the ice cream mix. The third chapter is centered on 

the study of the ice creams in terms of characterization of the interactions between the various 

components, the description of microstructures and sensory analysis. Each Results and 

Discussion chapter is based on one or two published papers introduced by a summary of the main

results including unpublished results if any.
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Food dispersions are multicomponent systems containing various ingredients (classically 

sugars, proteins and fats) associated with other organic components (hydrocolloids, low-

molecular weight emulsifiers) and inorganic components (salts) present in small amounts in the 

formulation. Besides their own properties, all these compounds may interact with each other in

different complex ways depending on pH, temperature, and processing history, all of which 

intensify the problems of the manufacturer attempting to control stability, shelf life, or product 

texture (Carrera Sánchez, et al., 2005). In addition, in the case of food dispersions in the form of 

emulsions and foams, the formation of interfaces (oil / water or air / water, for example) and their 

stabilization require the use of surfactants that show surface activity by themselves or in

association with other components (polysaccharides). Manufacturers employ two types of 

surfactants in food (Dickinson and Woskett, 1989), namely low-molecular weight emulsifiers

(mainly mono- and diglycerides) and macromolecules (proteins and peculiar hydrocolloids). Due

to their amphiphilic nature, both proteins and low-molecular weight emulsifiers show the 

potential for association, adsorption, and reorientation at fluid interfaces. However, these 

properties strongly depend on the nature of the components (Rodríguez Patino and Rodríguez 

Niño, 1999; Davies, et al., 2001; Rodríguez Patino, et al., 2001b; Dalgleish, et al., 2002) and the 

protein-emulsifier ratio(Courthaudon and Dickinson, 1991; Chen, et al., 1993; Chen and 

Dickinson, 1995; Horne, et al., 1998; Sliwinski, et al., 2003).

This chapter will focus on the interfacial behavior of peculiar surfactants, namely, milk

proteins and non-ionic lipophilic emulsifiers, since they are commonly used in ice cream 

formulation. Emphasis will be made on the surfactant adsorption / desorption mechanisms at the

different interfaces during the main steps of ice cream processing, i.e., homogenization and 

ageing of an emulsion premix, followed by aeration and freezing of this premix. Interface

composition, protein and emulsifier structure and the competition phenomenon at the interfaces 

of emulsion and foam will be considered and discussed in terms of formation and stability of ice

cream structure.
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I . A D S O R P T I O N  A N D  C O M P E T I T I V E  M E C H A N I S M  
O F  S U R F A C E  A C T I V E  M O L E C U L E S  A T  T H E  
O I L  /  W A T E R  I N T E R F A C E

A large number of studies have been carried out to examine the emulsifying behavior of 

proteins and low molecular weight emulsifiers at the oil / water interface. The objective of this 

part is, first, to point out the individual protein and emulsifier functionality as a function of their 

chemical nature. Then, the case of mixtures of protein and emulsifier is considered in order to 

enlighten the competitive mechanism that may occur at the interface between these two species.

Besides the molecular phenomena, the consequences of this competition on the emulsion stability 

are also described. 

I.1. Adsorption of surfactants at the oil / water interface

I.1.1. Adsorbed protein layer 

The formation of adsorbed protein layers is a complex process dictated by a number of

factors, including mass transport to the surface (diffusion through a partially formed adsorbed 

layer), attachment at the surface, adsorbed layer rearrangements such as reorientation of the

adsorbing protein and conformational changes (Malmsten, 1998; Carrera Sánchez, et al., 2005). 

Each stage is postulated to require an activation energy which, once overcome, results in a 

successive lowering of interfacial energy. Proteins in solution are usually described by two

extreme structures: (i) disordered flexible random coil polymers and (ii) globular tightly packed 

molecules. In the case of milk proteins, caseins have a disordered flexible structure whereas whey 

proteins have a compact globular structure (Dickinson, 2001). Depending on the protein 

concentration, the adsorption of proteins at the interface can cause changes in the conformational

state and even gradual unfolding (Figure 1). In the case of disordered flexible proteins, at low

concentration, the molecules can be represented as a succession of trains of amino acid residues 

along the interface and loops and tails protruding into each phase. As protein concentration

increases, the surface layer becomes compressed. The looped conformation of the protein creates

enough electrostatic repulsion and steric hindrance to protect the droplets against recoalescence. 
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1 2

Figure 1: Schematic representation of protein structure at a fluid interface.

The interface is shown in cross section, the aqueous inter-lamellar phase is represented in blue 

and the oil phase is represented in yellow: (1) flexible, random-coil proteins; (2) globular, highly 

structured proteins. The arrow denotes increasing protein concentration. 
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The disordered flexible proteins are more closely packed and more loops and tails are 

formed. In the case of globular proteins, a dense two-dimensional assembly of highly interacting 

particles is observed (Dickinson, 1997). The lateral interactions between the proteins are due to 

hydrogen bonding, electrostatic and hydrophobic interactions (Bos, et al., 1997). Covalent 

bonding between proteins may also occur (Bos, et al., 1997). As a consequence, the diffusion of

molecules in the adsorbed layer is inhibited. The adsorbed layer in protein-stabilized thin films is 

stiff and often shows visco-elastic or even solid-like properties. This enables the fluid interface to 

resist tangential stresses from the adjoining flowing liquids (Dickinson, 1999). At high protein 

concentration, multilayer formation can occur and serves to further mechanically strengthen the

adsorbed layer. Depending on the tertiary and quaternary structures of the protein, various 

degrees of molecular unfolding may be observed leading to a range of different interfacial

structures (Darling and Birkett, 1987). In parallel, the proteins can also be classified as “hard”

and “soft” depending on the extent of the unfolding of the macromolecule upon adsorbing 

(Malmsten, 1998; Dickinson, 1999). The soft proteins, like caseins, experience a greater loss of 

secondary and tertiary structure upon adsorption than the hard ones, like whey proteins, whose 

adsorption is accompanied by minimal or no structural changes.

Proteins are large complex amphiphilic molecules containing combination of ionic, polar 

and non-polar regions. Thus, they act as polymeric surface active molecules with multiple

encroaching sites at the interface that, together with the unfolding process, stabilize the interfacial 

layer kinetically. For random-coil proteins such as caseins, molecular unfolding is related to a

loss of internal hydrophobic interactions as surface-active residues gradually orientate themselves

at the interface. In contrast, the unfolding of globular proteins may involve a denaturation

phenomenon including a loss of the ternary structure and the rupture of hydrogen bonds (Darling 

and Birkett, 1987). In addition, partial unfolding of the monomer allows exposure of the free 

sulfhydryl group, which leads to slow polymerization of the protein in the adsorbed layer via the 

interchange between the sulfhydryl and disulfide groups (Dickinson, 1997).

The thickness of the adsorption layer can be expressed as the surface excess which is

governed by the surfactant concentration and the specific interfacial area. Table 1 presents values 

of the surface excess obtained for protein systems in emulsions. Generally speaking, a surface 

excess of about 1 mg m-2 corresponds to a monolayer of unfolded peptide chains. It is formed

when the adsorbed molecules have space to unfold at the oil / water interface. Globular proteins

adsorbed without much change in conformation give surface excess values close to 3 mg m-2. For
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Table 1: Surface excess of proteins at the interface of oil-in-water emulsions obtained

with protein systems. 

Protein type
Concentration

(wt.%)
pH Oil type

Surface excess of 

proteins (mg m-2)
Reference

0.001a 6.7 3.0

0.01a 7.1
Sunflower oil 

4.2

(Bos and van 

Vliet, 2001) 

0.4 7.0 n-Tetradecane 1.8

0.4 7.0 Soya oil 1.0

(Courthaudon

and Dickinson, 

1991)

0.4 7.0 n-hexadecane oil 3.0 (Chen, et al.,
1993)

-casein

0.4 7.0 Triglyceride oil 1.6 (Dickinson,
1997)

0.03a 6.7 Sunflower oil 3.3
(Bos and van 

Vliet, 2001) Na-caseinate

2.4 6.7 Soybean oil 3.4 (Sliwinski, et
al., 2003) 

-lactoglobulin 0.4 7.0 Hydrocarbon oil 1.4 (Chen, et al.,
1993)

-lactalbumin 0.45 7.0 n-Tetradecane 1.5 (Dickinson,
1997)

0.01a 6.7 2.4
BSA

0.001a 7.1
Sunflower oil. 

2.0

(Bos and van 

Vliet, 2001)

WP concentrate

partially

denaturated
1.0 6.7 Sunflower oil 10.5 (Sünder, et al.,

2001)

1.0 6.7 Sunflower oil 6.3 (Sünder, et al.,
2001)WP isolate 

2.4 6.7 Soybean oil 4.0 (Sliwinski, et
al., 2003) 

a Concentrations are calculated from values in g l-1 with the density of the aqueous phase taken 

equal to 1. 

BSA: Bovine Serum Albumin, WP: whey protein. 
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values higher than 5 mg m-2, molecular aggregates are generally adsorbed (Walstra, 1987). 

However, various factors influence the surface excess value:

- the protein type (molecular weight, conformation). For example, for a similar amount

of protein (0.4 wt.%), the surface excess values vary from 3.0 to 1.4 mg m-2, for -

casein and -lactoglobulin, respectively, in hydrocarbon oil-in-water emulsion. The 

influence of the protein conformation on the surface excess is particularly well 

illustrated with protein subjected to denaturation by a heat treatment (Sünder, et al.,

2001; Rodríguez Patino, et al., 2001b). This may account for an increase in surface

activity because the conformational changes of the molecules during heating may

induce further unfolding, reorganization, and aggregation of the molecules to bring 

more hydrophobic segments from the interior of the molecule to the oil / water 

interface (Rodríguez Patino, et al., 2001b); 

- the protein concentration (below the saturation surface coverage); 

- the pH and ionic strength of the solution (that in turns affect the protein 

conformation). The surface excess tends to be higher at a solution pH close to the

isoelectric point of the protein (Bos and van Vliet, 2001);

- the oil type used for the emulsion preparation. The surface excess values of -casein

vary between 1.0 and 3.0 mg m-2, for soya oil and hydrocarbon oil-based emulsions,

respectively.

In common dairy ingredients, such as sodium caseinate or whey protein concentrate, there 

is potential for competitive adsorption between the various proteins due, at least partly, to the

variation of the surface activities of the individual milk proteins (Dickinson, 1997). Table 2 

presents some examples of interfacial protein ratio at the oil-in-water emulsions for different 

initial protein mixtures. Caseins are often preferentially adsorbed at the interface compared to

whey proteins. In emulsions prepared with skim milk powder, caseins are in the highly

aggregated form of micelles. Preferential adsorption of the casein fraction is generally reported

for homogenized dairy emulsions (Dickinson, 1997). Moreover, -casein is able to displace

adsorbed s1-casein since the former is slightly more hydrophobic and surface-active than the 

latter (Dickinson, 1997). However, making an emulsion with one pure milk protein and adding a

second pure protein afterwards does not mean that the most surface-active protein will actually

finish by dominating the interface (Dalgleish, 1997; Dickinson, 1999). Indeed, the competitive

adsorption is affected by factors other than just relative affinity for the surface, e.g., the 
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Table 2: Interfacial protein composition at the interface of oil (soybean oil)-in-water

emulsions obtained with protein mixtures. 

Protein mixture

type

Initial

protein ratio 

Concentration

(wt.%)
pH

Interfacial

protein ratio
Reference

Caseinate / -lg 80 / 20 2.50 97 / 3 

Caseinate / WP 73 /27 2.75
7.0

97 / 3 

(Dalgleish, et al.,
2002)

50 / 50 88 / 12 

40 / 60 87 / 13 Caseinate / WP

90/10

2.40 6.7

50 / 50 

(Sliwinski, et al.,
2003)

-lg: -lactoglobulin; WP: whey protein. 

27



Bibliography

macromolecular mobility and flexibility at the interface (Dickinson, 1997), the irreversibility of 

the adsorption event in the case of globular proteins (Dickinson, 1999). As a rule of thumb, the

adsorbed layer will be dominated by the protein that presents itself first to the interface

(Dickinson, 1999).

I.1.2. Adsorbed low molecular weight emulsifier layer 

In this part, we will only focus on oil-soluble, non-ionic low molecular weight emulsifiers

and especially on mono- and diglyceride mixtures since they are commonly used in ice cream

formulation to improve fat network formation and the air phase stabilization.

Lipophilic emulsifiers (monoglycerides, propylene glycol esters), at low concentrations, 

form a partition between the oil phase and the interface (Krog, 1977; Kanelo, et al., 1999; Awad 

and Sato, 2002). The adsorption of monoglyceride at the oil / water interface can be described by

three consecutive or concurrent steps: (i) diffusion of whole surfactant molecules to attach the 

interface; (ii) spreading or unfolding of already adsorbed molecules; and (iii) molecular

rearrangements of the adsorbed molecules. The two latter mechanisms involve transport of 

molecular elements or surfactant segments on the surface and account for the rapid diffusion or 

migration of emulsifiers at the interface (Gibbs – Marangoni mechanism).

The adsorption of low molecular weight emulsifier to fluid interfaces modifies the

interfacial layer surface properties although the modifications depend on the intrinsic 

characteristics (lipophilic / hydrophilic properties, polymorphic behavior) of the molecule, its 

concentration, and the temperature (Table 3). It is generally admitted that emulsifiers form a 

mobile, fluid-adsorbed layer at temperature above their transition temperature (Rodríguez Patino, 

et al., 2001a). Moreover, the adsorption of low molecular weight emulsifier to the interface leads 

to a reduction of the surface tension (Wong, 1989; Carrera Sánchez, et al., 2005), monoglycerides

being more surface active than diglycerides (Wong, 1989). Concerning the polymorphic

behavior, non-ionic low molecular weight emulsifiers can be classified into two main groups: 

- emulsifiers exhibiting a lyotropic mesomorphism, like monoglycerides. In the 

anhydrous state, monoglycerides can present two polymorphic forms, namely  and ,

which differ in the way the molecules pack in the crystal structure. Depending on the 

crystallization conditions, the -metastable crystalline structure or the -state are
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Table 3: Interfacial tension values of low molecular weight emulsifier at oil (sunflower

oil) / water interface.

Interfacial tension

values (mN/m) Emulsifier type 
Concentration in 

the oil phase (%)
40°Ca 5°Cb

Reference

Propylene glycol 

monostearate
2.0 23 3 (Barfod, et al., 1989) 

0.03 28 23
(Krog and Larsson, 

1992)

0.1 23 1 (Barfod, et al., 1991) 

0.1 27 6
(Krog and Larsson, 

1992)

Glycerol monostearate

0.2 17 2
(Krog and Larsson, 

1992)

Glycerol monomyristate 0.2 18 2
(Krog and Larsson, 

1992)

Glycerol monopalmitate 0.2 17 2
(Krog and Larsson, 

1992)

Glycerol monobehenate 0.2 18 4
(Krog and Larsson, 

1992)

a Interfacial tension above the melting point;
b Interfacial tension below the melting point.
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formed (Small, 1986). In water, monoglycerides through their interaction with water 

often exhibit a complex liquid-crystalline phase behavior with the formation of 

different types of mesophases such as lamellar, cubic or reversed hexagonal 

structures, depending on the concentration of the emulsifier and the temperature

(Krog, 1977; Small, 1986; Larsson, 1994b; Bergenståhl, 1997). Under certain 

conditions, the -crystal form of monoglyceride interacting with water can lead to the

-lamellar liquid crystal form. Upon cooling, this form can transform to a so-called -

gel phase (Krog, 1977). The change from the lamellar form to the -gel phase results

in a decrease in surface area of the emulsifier of about 30 %, and the subsequent 

formation of the -crystal structure releases a large amount of water (Euston, 1997). 

This phase behavior is accompanied by a large decrease in the interfacial tension

below the melting point (Barfod, et al., 1989; Barfod, et al., 1991) (Table 3). Several 

hypotheses have been proposed to explain this phenomenon: (i) a more effective 

packing or an increased density of polar groups of the emulsifier near the 

crystallization point; (ii) the crystallization of a monomolecular layer of emulsifier

adsorbed at the interface; (iii) micelle formation near the interface; 

- non-polymorphic emulsifiers, so-called -tending emulsifiers, such as propylene 

glycol monostearate, acetylated monoglycerides, or lactylated monoglycerides. -

Tending emulsifiers can only form an hydrated gel phase structure ( -crystalline

form) below the melting temperature of the hydrocarbon chains and are practically

insoluble in water (Westerbeek, 1991). 

Although the competitive adsorption of binary mixtures of protein is a well-documented

phenomenon (§ A.I.1.1), binary mixtures of oil-soluble low molecular weight emulsifiers are

poorly investigated. However, it seems that a competitive adsorption may also occur for this type

of surfactants. The final composition of a mixture of low molecular weight surfactants at the

interface would be affected by: (i) the binding capacity for the surface of each molecule; (ii) the

bulk concentration of the surfactants; (iii) the molecule-molecule interactions, and (iv) the size

ratio of each species (Pugnaloni, et al., 2004).
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I.2. Composition of the interfacial protein / emulsifier film at oil / water
interface

Food emulsions are generally prepared using mixtures of both proteins in soluble and 

dispersed form and low molecular weight emulsifiers. These various surfactants contribute to 

both short-term (at the time of formation) and long-term (for product shelf-life) stability (Darling 

and Birkett, 1987). Differences in the properties of oil-in-water emulsions arise largely from the

differences in structure and composition of the absorbed protein and / or low molecular weight 

emulsifier layers at the surface of the fat globules.

During emulsion formation, the surfactant molecules become rapidly adsorbed at the 

surface of the newly formed oil droplets leading to competition and / or interactions between the 

different molecular species. The basic principles of competitive adsorption and displacement of 

proteins by emulsifiers are well understood for water-soluble (Tween, etc.) low molecular weight 

emulsifiers (Pugnaloni, et al., 2004; Wilde, et al., 2004). They can be summarized as follows: at 

low emulsifier concentration, small pools of surfactant develop in the defects of the protein 

monolayer. With increasing surfactant bulk concentration, these surfactant domains grow, 

compressing the protein film. Beyond a critical surface pressure, the protein film starts buckling

into the bulk phase and consequently increasing the film thickness. As surfactant molecules

continue adsorbing, the surfactant domains start to coalesce and parts of the protein film detach 

from the interface. Finally, a continuous surfactant phase develops at the interface, leaving just a 

few disconnected protein areas adsorbed, which eventually also detach from the interface. This

mechanism has led to the description of the competitive displacement process as “orogenic

displacement”.

Relatively little research has been performed on oil-soluble emulsifiers although they are 

commonly used in food application. In this chapter, we will only present the competitive

adsorption and displacement of proteins by oil-soluble low molecular weight emulsifiers.

I.2.1. Adsorbed layer from mixtures of proteins and emulsifiers 

Different mechanisms may account for the composition of the interfacial layer when both 

proteins and low molecular weight emulsifiers are present:

- a control of the adsorbed layer either by the protein or by the emulsifier. This

mechanism corresponds to the fact that one type of surfactant is more surface-active

than the other. In a solution containing both protein and emulsifier, emulsifier is likely 
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to prevail at the interface, after equilibration, if both species are present at high

enough bulk concentrations. This is due to the fact that emulsifiers are much smaller

in size than proteins, so they can reduce the interfacial tension more efficiently by

adsorbing a much larger number of molecules within the same surface area (Bos and 

van Vliet, 2001; Pugnaloni, et al., 2004); 

- a competitive adsorption between proteins and low molecular weight emulsifiers

at the interface. The adsorbed layer characteristics are found intermediately between 

those of pure protein and emulsifier films. The adsorption of the protein is affected by 

the binding of the emulsifier to the protein itself and/or the fluid interface (Dalgleish,

1997; Bos, et al., 1997; Dickinson, 1999; Dickinson, 2001; Pugnaloni, et al., 2004). 

The competition mechanism results in the disruption of the interfacial protein-protein

interactions by the emulsifier (Bos and van Vliet, 2001) and, thus, in the decrease of

the equilibrium surface concentration of protein (Darling and Birkett, 1987);

- a cooperative adsorption at the interface. Protein and emulsifier can interact in

solution to form complexes that have different properties from those of pure protein. 

In particular, protein / emulsifier complexes can themselves be surface active and

compete for the interface with the emulsifier and protein molecules (Bos and van

Vliet, 2001). Non-ionic emulsifiers may bind strongly to proteins, but this is a highly

specific effect involving a small number of hydrophobic sites per protein molecule

(Bos and van Vliet, 2001). At low emulsifier concentration, the presence of oil-

soluble emulsifier at the oil / water interface would tend to drag more protein 

molecules to the interface due to the interactions between the emulsifier and protein 

molecules.

Table 4 presents the mechanisms proposed for some oil-in-water emulsions prepared with

mixed solutions of proteins and oil-soluble emulsifiers.

The structures and composition of the interfacial mixed protein - low molecular weight

emulsifier layer encountered depend on numerous parameters:

- the type of protein (disordered or globular, bond-forming or weakly interacting) and 

its concentration (whether or not the interface is saturated by the protein);

-  the type and concentration of the emulsifier. At high concentration, emulsifiers

usually lead to a lower equilibrium surface tension than proteins (Euston, et al.,

2001);

- the protein / emulsifier ratio. Milk proteins exhibit a greater thermodynamic affinity 

for the adsorbed state and saturate fluid interfaces at much lower concentrations than
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Table 4: Behavior of protein-emulsifier films adsorbed at the oil / water interface 

(ambient temperature).

Protein mixture Emulsifier
Adsorption

mechanism
Reference

Type Concentration

(wt.%)

Type Concentration

(wt.%)

Short

time a

Long

timeb

1.10-4 A AMonopalmitin
1.10-3 A B
1.10-4 A B

1.10-2

Monoolein
1.10-2 C C
1.10-4 C CMonopalmitin
1.10-3 D D
1.10-4 C C

WPI

1.10-4

Monoolein
1.10-2 C C

(Rodríguez

Patino, et al.,

2001a)c

1.10-2 1.10-1

        0.36
D
DSodium

caseinate
8.10-2

Monooleyl-
glycerol 1.10-1

        0.36
C
D

(Heertje, et
al., 1996)d

a: Time lower than approximately 10 h. 
b: Time higher than approximately 15 h. 
c: Trisun oil / water interface. 
d: Sunflower seed oil / water interface.

A: Adsorbed layer controlled by the adsorption of protein. 

B: Cooperative adsorption in the mixed solution. 

C: Competitive adsorption in the mixed solution.

D: Adsorbed layer dominated by the adsorption of the emulsifier.

WPI: whey protein isolate. 
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do small molecule emulsifiers like monoglycerides (Dickinson, 1999; Euston, et al.,

2001) (Dickinson, 1999; Euston, et al., 2001). Thus, at the same low (molar) bulk 

protein concentration, proteins induce a greater lowering of the equilibrium interfacial 

tension than small molecule amphiphiles (Dickinson, 1999). However, a converse 

situation occurs at high bulk concentration, where the small molecule emulsifier gives 

a lower tension and a more densely packed layer (Dickinson, 1999). Thus, high

concentrations of emulsifier are required to displace proteins from emulsion droplets

(Rodríguez Patino, et al., 2001a; Wilde, et al., 2004); 

- the surface properties, i.e., the nature of the fluid interface. However, the influence 

of the fat phase on protein-lipid mixed films at the oil / water interface at positive

temperature is poorly documented;

- the adsorption time. The characteristic adsorption time (in diffusion limited

conditions) of proteins is much longer than the characteristic adsorption time for small

amphiphiles, due to the larger molecular mass of the proteins (Kilara and Keeney, 

1989);

- the temperature. The influence of this parameter is detailed in the next paragraph (§ 

A.I.2.2.) since it is crucial in the ice cream process. 

In ice cream mixes, where protein concentration is high, it is generally admitted that, at 

temperature above the crystallization temperature of the emulsifier, proteins and emulsifiers both 

occupy the fat globule surface, with the lipophilic emulsifier having a relatively small effect on

the protein surface coverage (Buchheim, 1991; Dickinson, 1996b; Euston, 1997; Pelan, et al.,

1997). For example, interfacial tension measurements achieved on propylene glycol 

monostearate-based whippable emulsions, show that both protein and emulsifier are located at 

the oil / water interface above 20°C (Barfod, et al., 1989). Thus, the oil-soluble emulsifiers are 

not able or inefficient in displacing proteins from the oil / water interface. Besides the argument

of the difference in surface activity, this could mean that the adsorbed protein layers are, to a

large extent, positioned close to the interface in the water phase, rather than equally distributed at 

both sides of the interface or at the oil side interface (Bos and van Vliet, 2001). In other words,

oil soluble emulsifiers adsorb to the interface from the oil phase and wet the oil phase

preferentially. Consequently, only a small part of the molecule may enter the aqueous phase and 

have the potential to interact with protein molecules (Euston, et al., 2001). However, emulsifiers

present at too low concentration to cause protein displacement can affect the adsorbed protein 

layer by modifying inter-protein interactions (Euston, et al., 2001).
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I.2.2. Effect of temperature decrease on the interfacial protein / emulsifier

film composition of oil-in-water emulsion

Surface activity of oil-soluble non-ionic emulsifiers is strongly temperature-dependent

(Barfod, et al., 1989; Gelin, et al., 1995). For example, the interfacial tension of a sunflower oil 

containing monostearin is drastically reduced on cooling between 30 and 0°C (from 7 to 95 % 

depending on the emulsifier concentration) (Krog and Larsson, 1992). The temperature

dependence of emulsifier surface activity can be explained in terms of their phase behavior in an 

aqueous solution (§ A.I.1.2.). Depending on the amphiphile concentration, both monoglycerides

and -tending emulsifiers gel at low temperature but the stability of the -gel phase of 

monoglycerides is relatively poor in contrast to that of -tending emulsifiers that are stable

below the crystallization temperature of the hydrocarbon chain. In the case of -tending

emulsifier, this stability may account for the hydration of the polar head group. It has been

hypothesized that the phase transition of the adsorbed monoglycerides from a water-containing 

lamellar liquid-crystalline phase into the -gel phase and, then, into the stable -crystalline state,

is responsible, at least partly, for the protein desorption from the fat globule interface (Berger,

1976) (Figure 2). This crystallization includes: (i) a reorientation of the polar groups towards

the interface just before the start of crystallization following the adsorption of the emulsifier from 

the bulk of the oil phase. The increased hydrophobicity of the oil / water interface weakens the 

hydrophobic lipid-protein binding initiating protein desorption from the interface (Barfod, et al.,

1989). Because of the high water-binding capacity of emulsifier at low temperature, water 

penetrates into the emulsifier multi-layers in the fat phase, accelerating protein desorption; and

(ii) the formation of crystals at the interface. These crystals were identified for monoglycerides

(Krog and Larsson, 1992; Larsson, 1994a), diglycerol esters (Holstborg, et al., 1999), and their 

mixtures with proteins. They are called “surface active crystals” since they expose the methyl

end group towards the oil phase and the polar head towards water.

Another parameter that may favor protein desorption is the change in the physical state 

of the oil that begins to crystallize when temperature is decreased. Indeed, in cooled mix

prepared without emulsifier, the protein load at the fat globule surface is slightly reduced 

(Barfod, et al., 1991; Krog, 1998). This reduction is due partly to the crystallization of the fat

globules. Because emulsifiers are known to influence fat crystallization in emulsion  (Barfod, et

al., 1991; Euston, 1997; Abd El-Rahman, et al., 1997), they can participate indirectly to protein 
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T > Tc 

T < Tc 

Figure 2: Schematic diagram showing the possible effect of temperature on the protein 

layer at the interface of oil-in-water emulsion.

Part of oil droplet is shown in cross section, the aqueous interlamellar phase is represented in 

blue and the oil phase is represented in yellow. TC: crystallization temperature of the emulsifier. 

36



Bibliography

desorption. Fat crystallization appears to be correlated to the interfacial effects of

monoglycerides at low temperature (Barfod, et al., 1991). Monoglycerides are known to be

initiators of fat crystallization (Barfod, et al., 1991; Davies, et al., 2001). Such a template effect 

of monoglycerides should greatly influence the triglyceride surface crystallization kinetic and, 

possibly, polymorph. Emulsifiers containing saturated hydrocarbon chains are better at initiating

fat crystallization than those with unsaturated hydrocarbon chains (Barfod, et al., 1991; Davies, 

et al., 2001). If there is a match in saturation and number of carbon atoms in the fatty acid chains, 

it is assumed that monoglyceride will more readily incorporate into growing triglyceride crystals.

If there is a slight mismatch in the number of carbon atoms or if there is a kink in the carbon

chain due to a double bound, the monoglyceride will fit less well with the oil triglyceride.

Several studies on oil-in-water emulsions (Barfod, et al., 1989; Dickinson and Tanai,

1992; Davies, et al., 2001) and ice cream mix (Barfod, et al., 1991) indicate a displacement of 

protein from the oil / water interface by emulsifiers at temperatures between 4 and 10°C. Tables 

5 and 6 present the adsorbed protein amount at the fat globule surface found in oil-in-water 

emulsions and ice cream mixes, respectively, when temperature is reduced to typically around 

5°C. It appears that protein desorption is function of numerous factors: 

- the ageing period (Barfod, et al., 1991; Gelin, et al., 1994; Gelin, et al., 1996; Abd 

El-Rahman, et al., 1997; Krog, 1998). Most of the studies show that the amount of 

adsorbed protein at the fat globule surface in ice cream mix decreases during the

ageing period. However, opposite results are also found (Abd El-Rahman, et al.,

1997). Interestingly, the effect of monoglycerides on protein load is reversible (Krog, 

1998). If a mix is reheated after being kept at low temperature for a given period, the 

protein load will regain the value it had before it was cooled; 

- the emulsifier type (unsaturation degree and fatty acid chain length) and 

concentration (Pelan, et al., 1997; Davies, et al., 2000; Bolliger, et al., 2000a; Davies, 

et al., 2001). Variations in the effect of saturated and unsaturated monoglycerides 

regarding protein desorption have been reported. Some works are in disagreement

(Davies, et al., 2001) or were not able to confirm (Pelan, et al., 1997) the reported 

findings (Goff and Jordan, 1989; Barfod, et al., 1991) which suggest that unsaturated 

monoglycerides are more effective at displacing milk proteins than saturated 

monoglycerides. Concerning the chain length, palmitic acid based monoglyceride

leads to higher milk protein desorption than stearic acid based monoglyceride 

(Davies, et al., 2001); 
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Table 5: Values of apparent protein surface coverage ( ) for some proteins and

protein mixtures in oil-in-water emulsions. 

Protein mixture Emulsifier

Type
Conc.

(wt.%)
Type % MG

Conc.

(wt.%)

Oil type 

Ageinga

time

(h)
(mg.m-2)

Reference

0 1.08
0.8 0.45Na-

caseinate 1 GMO 100
1.3

Groundnut oil + 
tristearin 1

0.20

(Davies, et
al., 2000) 

GMS 100 0.8 1 0.17Na-
caseinate 1

GMP 100 0.8

Groundnut oil + 
tristearin 1 0.05

(Davies, et
al., 2001) 

a ageing corresponds to an incubation of the samples around 5°C. 

Conc.: concentration; GMO: glycerol monoolein; GMS: glycerol monostearate; GMP: 

glycerol monopalmitate.
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Table 6: Values of apparent protein surface coverage ( ) for some proteins and

protein mixtures in ice cream mixes. 

Protein mixture Emulsifier

Type
Conc.

(wt.%)
Type

%

MG

Conc.

(wt.%)

Oil type 

Ageinga

time

(h)
(mg.m-2)

Reference

0.1 14.5
0.3 10.1GMP 50
0.5 8.1
0.12 12.9
0.3 7.4Saturated 100
0.5 5.8
0.12 10.1
0.3 7.0

13

Partially
unsaturated

(70 %) 
100

0.5

Butter oil 2

7.4

(Pelan, et
al., 1997) 

/ 0 14.2
GMS 0.2 12.511.5
GMO

100
0.2

Hardened
coconut fat 2

7.4

(Barfod, et
al., 1991) 

/ 0 11.0
GMS 0.2 7.011.5
GMO

100
0.2

Hardened
coconut fat 24

4.7

(Barfod, et
al., 1991) 

0 11.4
0.075 8.810 Saturated MDG 40
0.15

Anhydrous
milk fat 24

9.0

(Bolliger,
et al.,
2000a)

SMP

10 Saturated MDG 60 0.3 Hydrogenated
palm kernel oil 24 10.1

(Sourdet,
et al.,
2002)

Milk
protein 4 GMS 100 0.2 Coconut fat

0
1
2
24

10.5
7.7
7.0
3.0

(Krog,
1998)

SMP/WPI 6.7 10.2

WPI 3.5
Saturated MDG 60 0.3 Hydrogenated

palm kernel oil 24 4.4

(Sourdet,
et al.,
2002)

a ageing corresponds to an incubation of the samples around 5°C. 

Conc.: concentration; MDG: mono- and diglyceride mixture, SMP: skim milk powder; WPI:

whey protein isolate, GMO: glycerol monoolein; GMS: glycerol monostearate; GMP: glycerol 

monopalmitate.
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the protein type (Sourdet, et al., 2003), concentration (Sourdet, et al., 2003), and 

conformation (Relkin, et al., 2003b). The proportion of proteins adsorbed at the fat 

globule surface, at the end of the ageing period, seems to be more important with

decreasing casein-to-whey protein ratio (Sourdet, et al., 2002; Sourdet, et al., 2003). 

Variations in the conformation of proteins, such as the increase of surface 

hydrophobicity by heat treatment for whey proteins, lead, in some cases, to higher 

proportion of adsorbed proteins (Sourdet, et al., 2003; Relkin, et al., 2003b); 

- the oil type. For example, after the ageing step, low melting milk fat fraction leads to

higher adsorbed proteins than cream, anhydrous milk fat, and very high melting

fraction (Abd El-Rahman, et al., 1997). 

Although there is substantial evidence that protein desorption occurs during the ageing 

process and that it is affected by numerous physicochemical parameters, the results presented in

the various studies are hardly comparable. This accounts for differences in formulation (purity of 

the raw materials, proportions of the various ingredients), the ageing conditions (time and 

temperature), and analytical methods (extraction and protein dosage).

I.3. Consequences of the adsorption / desorption phenomena on ice 
cream mix characteristics

Ice cream process begins with a homogenization step. The mix passes through one or two 

homogenizing valves, creating fat globules, the size of which ranges from 0.5 to 2.0 m (Berger, 

1976). Homogenization results in a large increase in the area of the oil / water interface by 

adsorption of surface-active components from the oil and aqueous phases. At this stage,

adsorption of surfactant material occurs in order to rapidly reduce the interfacial tension (Segall 

and Goff, 1999). Indeed, it is crucial to avoid coalescence of the dispersed droplets. Although 

low molecular weight emulsifiers diffuse more rapidly to the newly created interface than milk

proteins, proteins serve as the principal emulsifying agents in stabilizing the dispersed oil 

droplets (Doxastakis, 1989). The role of proteins is to form a mechanically strong interfacial film

on the surface of the oil droplets. Protein coating on the fat droplets is relatively thick due to the

excess protein available in the system. Indeed, the concentration in a standard mix is more than

that required to stabilize the fat droplets in an emulsion. As a result, the droplets are stable and 

the system is stabilized against immediate coalescence (Krog, 1977).
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Different protein blends in ice cream mixes cause the emulsion to behave differently to

stabilization (Dickinson, 1997). For example, micellar caseins produce a much larger quantity of 

adsorbed material per surface area than globular whey proteins (Goff, 1997). The presence of 

caseins in the micellar form, at the surface of oil droplets, creates a steric stabilizing layer that

maintains the repulsion between fat globules and protects the droplets against destabilization 

(Berger and White, 1971). In contrast, due to their compact globular structures, whey proteins 

form close-packed protein monolayers, described as dense-dimensional assemblies of highly 

interacting deformable particles (Dickinson, 2001). This molecular arrangement may prevent a

sufficient protein surface loading. In addition, the use of whey proteins partially denatured by 

heat treatment, may favor the association of polymers at the oil / water interface through weak 

interactions and the formation of condensed aggregates due to disulphide groups between protein 

molecules (bridging flocculation) (Segall and Goff, 1999). The extent of bridging flocculation 

depends on the size, conformation and chemistry of the absorbing species (Darling and Birkett, 

1987; Dickinson, 2001).

In the formation of ice cream, the emulsifiers (typically, mono- and diglycerides), are 

added to break the adsorbed layer of protein during the ageing step at low temperature (Goff, 

1997). The competitive adsorption and / or displacement between emulsifiers and proteins at

fluid / fluid interfaces should occur during / or after this step. Because protein molecules are 

considerably larger than the emulsifier molecules, the decrease in the adsorbed protein amount at

the fat globule surface causes the actual membrane to become weaker (Goff, 1997). However, a

certain level of protein depletion must be exceeded in order to significantly weaken the fat

globule membrane system (Bolliger, et al., 2000a). The adsorption of the protein is affected by 

the binding of the surfactant to both the protein and the fluid interface. Thereby, the balance of 

protein-protein, protein-emulsifier and emulsifier-emulsifier interactions, both at the interface

and in the bulk solution is modified (Dalgleish, 1997; Dickinson, 2001). A mixed protein /

emulsifier film induces a higher molecular mobility in the adsorbed layer (Krog, 1998). The

disruption of the protein-protein interactions by the emulsifier gives a drop in the interfacial

shear viscosity and interfacial shear modulus to values characteristics of low molecular weight 

emulsifiers (Dalgleish, 1997; Bos and van Vliet, 2001; Rodríguez Patino, et al., 2001a). The 

surfactant-induced disruption of protein layers can promote or enhance destabilization in ice

cream emulsions (Dickinson, 1997). It is worth noting that the destabilization due to protein 

desorption may not be readily revealed at a supra-molecular level. Indeed, the ageing of ice

cream mix does not cause any change in droplet size distribution (Gelin, et al., 1994). The
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absence of fat globule coalescence is observed for different casein-to-whey protein ratios

(Barfod, et al., 1991; Gelin, et al., 1994; Bolliger, et al., 2000a; Sourdet, et al., 2002; Sourdet, et

al., 2003). Saturated mono- diglycerides and casein-based ice cream mixes resist aggregation due 

to a specific adsorption of casein molecules (Sourdet, et al., 2002).

On the whole, low molecular weight emulsifiers do not play a major role in ice cream mix

stabilization just after homogenization at high temperature, due to an excess of protein in the mix

formulation. The stabilization of the fat globules against coalescence is achieved thanks to the

presence of sufficient protein to cover fully the droplet surface. The resulted emulsions normally

retain good stability towards coalescence during quiescent storage, even in the presence of 

competitively adsorbing emulsifiers (Dickinson, 2001). However, as a function of the protein 

type, i.e., disordered or globular, some flocculation may occur. In contrast, low molecular weight 

emulsifiers play a major role after homogenization during the ageing step in causing a 

subsequent protein desorption. Nevertheless, the fat globule size characteristics are hardly 

affected by the changes in the interfacial composition.

I I . P A R T I A L  C O A L E S C E N C E  P H E N O M E N O N  O F  F A T  
G L O B U L E S

In ice cream formulation, oil-soluble emulsifiers (typically mono- and diglycerides) are 

added to favor the emulsion destabilization during the freezing step. Emulsifier crystallization is

accompanied by a drop in the interfacial tension. As a result, protein is displaced from the fat 

surface. Because emulsifier breaks the adsorbed layer of protein, it diminishes the effective film

thickness (Darling and Birkett, 1987) and the membrane becomes more susceptible to subsequent 

destabilization (Goff, 1997). The emulsifier is unable to maintain the fat in an emulsified state on 

its own, probably due to the decreased steric stabilization (Barfod, et al., 1989). In particular, the 

fat globules with adsorbed emulsifier membranes become much less able to remain individual. 

Coalescence refers to a decrease in the number and an increase in the size of individual globules. 

This phenomenon is controlled by the thinning and rupture of liquid films between two colliding

globules. Then, the fat generally flows together, causing the loss of identity of the original 

particles and creating a larger one. Simultaneously to fat droplet coalescence occurring due to the

protein replacement by the low molecular weight emulsifier at the interface, spontaneous fat 
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crystallization occurs. This last phenomenon prevents the total fusion of the colliding particles

and leads to the so-called partial coalescence phenomenon.

II.1. General description of the partial coalescence phenomenon

Numerous papers dealing with partial coalescence of fat globules are available in

literature (Walstra, 1987; Boode and Walstra, 1993; Goff, 1997; Rousseau, 2000). This 

phenomenon is of peculiar importance in the food industry, and particularly in dairy products, 

where many triglyceride emulsions are manufactured and stored at temperatures at which fat is in 

a crystallized state. The mechanism called partial coalescence occurs with fat globules containing 

a solid network of fat crystals. It results in the formation of fat irregularly shaped clumps. The

crystal network in the globules prevents their complete coalescence into bigger ones. It is worth 

noting that partially coalesced droplets are stable as long as there is a solid fat network to support 

the shape but when the solid fat is melted, the partially coalesced droplets collapse and merge to

form a larger droplet through true coalescence (Vanapalli and Coupland, 2001; Palanuwech and 

Coupland, 2003).

The partial coalescence phenomenon is often described as a three stage process (Berger,

1976; Boode and Walstra, 1993; Rousseau, 2000; Vanapalli and Coupland, 2001): (i) droplet

contact favored by the presence of fat crystals that protrude through the interfacial membrane.

This implies that crystals are actually present at the interface and that they are correctly

orientated towards the surface of the droplet; (ii) interdroplet piercing. Crystals are believed to 

occasionally puncture the thin film separating two colliding droplets on approach of other 

droplets through application of shear forces. This induces fat / fat contact. A prerequisite for

piercing to occur is that the distance between globules is small enough; (iii) oil mixing that

corresponds to the flow out of residual liquid oil to wet the crystal linkage. This tightens the link 

between the two droplets. As soon as a crystal touches the oil phase of another globule, partial 

coalescence is inevitable because the crystal is better wetted by oil than by water. However, in 

spite of the oil flow, the mechanical strength of the internal crystal network limits the merging of

the oil and is sufficient to maintain the droplet shape. This implies that there is a sufficient

amount of solid fat.

As a consequence, the partial coalescence phenomenon and the extent of fat globule 

instability are greatly influenced by numerous factors such as the amount of crystallized
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matter, the size and shape of the fat crystals, the orientation of the crystals at the interface, 

the surfactant type and concentration (Goff and Jordan, 1989; Barfod, et al., 1991; Pelan, et

al., 1997; Bolliger, et al., 2000b; Palanuwech and Coupland, 2003), droplet diameter (Boode 

and Walstra, 1993; Thomsen and Holstborg, 1998), and shear rate (Boode and Walstra, 1993; 

Rousseau, 2000). A recent study (Thanasukarn, et al., 2004) also points out that the formation of 

ice crystals could enhance partial coalescence. The ice crystal role is based on differences in oil 

behavior upon cooling observed when the temperature is reduced to -10°C (only oil 

crystallization) and -20°C (oil and water phase crystallization). Water crystallization could 

adversely affect emulsion stability through a variety of mechanisms, including freeze-

concentration, penetration of membrane by ice crystals, cold-denaturation of proteins and 

emulsifier dehydration. 

II.2. Influence of fat 

Fat crystals in the oil droplets play an important role in the destabilization of the 

emulsion. The ability of triglyceride crystals to protrude from the droplet surface and pierce the

thin film between globules depends on the solid fat content, the particle microstructure and the 

surface tension.

The solid fat content is a factor in the emulsion stability (Boode and Walstra, 1993; Abd 

El-Rahman, et al., 1997; Davies, et al., 2001). Crystals can flocculate into a large continuous 

network enhancing the likelihood of partial coalescence occurring when the solid fat content

approximately ranges between 10 and 50 % (Walstra, 1987). Below this value, there are not

sufficient crystals present to form a continuous network and therefore the system may maintain

stability or normal coalescence may occur. When the majority of fat is solid, the droplets will not

coalesce (Boode and Walstra, 1993; Davies, et al., 2000). 

The microstructure implies fat polymorphism and crystal morphology (Rousseau,

2000; Davies, et al., 2001). The change in microstructure influences the droplet coverage and fat 

crystal contact angle. The rigid crystals are more able to overcome the bending imposed by the

surface (Coupland, 2002). It is generally admitted that triglycerides can present three

polymorphic forms, , ’ and  polymorphs, differing in their stability.  Crystals contain fatty 

acids in a more disordered arrangement. The resulting fat crystals are softer, more able to deform

and they follow the contours of the fat droplet more easily. Consequently, they are less likely to 

protrude from the surface. The -crystalline structure is a true solid, with the fatty acid molecules
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arranged in ordered arrays. The  crystals exhibit a greater mechanical strength and are able to

distort the shape of the fat droplets. This leads to their bursting out of the droplet surface into the

aqueous phase (Euston, 1997; Coupland, 2002).

The surface tension is developed at the interface between crystal and oil, crystal and 

water, and oil and water. The surface tension determines the wettability of the crystals at the 

interface, i.e., the location of the fat crystals towards the interface. If the fat crystals are

completely wetted by the oil phase, they become fully dispersed in the oil phase and no effect on 

emulsion coalescence is observed (Rousseau, 2000).

II.3. Influence of tensioactive molecules at the interface 

Because the composition of the fat globule interface plays an important role in partial

coalescence, the influence of surface-active molecules such as protein and low molecular weight

emulsifier has received considerable research attention. 

II.3.1. Influence of protein 

Protein may influence the partial coalescence mechanism at two levels: (i) protein amount 

involved in the coverage of the fat droplet and (ii) thickness of the protein layer at the interface. 

Some studies show that lower value of protein surface load is associated with higher degree of 

fat droplet coalescence (Bolliger, et al., 2000a; Relkin, et al., 2003b). Penetration of the droplet 

surface by fat crystals inside droplets becomes easier when less protein is present at the interface.

Moreover, surfactants that form thicker interfacial membranes are more effective at preventing

partial coalescence (Goff, 1997; Palanuwech and Coupland, 2003; Thanasukarn, et al., 2004). 

Emulsions stabilized by caseins are less susceptible to partial coalescence than emulsions

stabilized by whey protein. As already mentioned (§ A.I.1.1.), caseins are largely random coil 

proteins which form a thick interfacial layer (approximately 8 nm). This thick layer can prevent 

fat crystals from protruding from the droplet surface. In contrast, whey protein isolate forms a 

relatively thin interfacial layer (approximately 2 nm) that may favor partial coalescence. Even

when whey protein isolate stabilized-emulsion is denatured, presumably leading to interfacial

polymerization and increased interfacial visco-elasticity, the thin layer remains vulnerable to

partial coalescence (Palanuwech and Coupland, 2003).
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II.3.2. Influence of low molecular weight emulsifier

Emulsifiers (such as mono- and diglycerides, polysorbates) play a critical role in the 

promotion of partial coalescence in partially crystalline emulsions. It is suggested that the low 

molecular weight emulsifier changes the physical properties and behavior of the fat globule in ice 

cream due to protein desorption and the impact on fat crystallization.

We have already mentioned (§ A.I.2.2.) that, upon cooling, emulsifier displaces part of 

the protein from the surface of the homogenized fat globules. With protein displacement, the 

membrane becomes thinner because protein molecules, particularly caseins, are considerably

larger than the emulsifier. Thus, emulsifiers constitute a thinner oil-water interfacial layer that

can be easily penetrated by fat crystals (Barfod, et al., 1991; Abd El-Rahman, et al., 1997; 

Davies, et al., 2001; Palanuwech and Coupland, 2003; Thanasukarn, et al., 2004). In addition, 

emulsifiers, by way of their surface activity, alter the surface tension, and this may result in the 

crystals being able to penetrate further into the aqueous phase. Finally, mixed interfacial films

exhibit reduced visco-elastic properties compared to a pure protein film. This would make it 

easier for the triglyceride crystals within the droplets to penetrate the oil-water interface and to 

connect to other droplets (Davies, et al., 2000). The direct relationship between protein, at the fat 

globule surface, resulting from displacement by emulsifiers, and partial coalescence depends on

the nature of the protein and emulsifier. For example, in agreement with unsaturated mono-

diglycerides being more effective in displacing protein from the fat globule interface than 

saturated mono- diglycerides, the addition of unsaturated mono- diglycerides induced greater 

partial coalescence than the saturated ones (Barfod, et al., 1991; Pelan, et al., 1997; Barfod, 

2001).

An emulsifier may promote partial coalescence by contributing to fat crystallization but 

few studies demonstrate the direct correlation between partial coalescence and fat crystallization 

(Krog and Larsson, 1992; Davies, et al., 2000). The emulsifier could play a role at two levels; (i) 

by its adsorption onto the triglyceride crystals. Consequently, the mechanical strength of the

crystal network may be affected, bringing crystals close to the interface and so increasing the 

likelihood of penetration of the droplet surface by crystals (Davies, et al., 2000); and (ii) by 

increasing the amount of triglyceride crystals formed so that they are directed towards the oil-

water interface which is a favorable condition for partial coalescence to occur (Davies, et al.,

2000). Indeed, crystallization is promoted by the presence of the emulsifier at the fat globule 
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interface as revealed by an increase in solid fat content in a stabilized emulsified system (Krog 

and Larsson, 1992). Recent studies clearly show that some emulsifiers play the role of a catalytic

template for the heterogeneous nucleation of the oil when the hydrophobic tails of the emulsifier

solidify early on cooling. This was actually observed in the case of the addition of 

diacylglycerols with behenic, stearic and palmitic acid moieties (Awad, et al., 2001). These 

emulsifiers modify the crystallization behavior of n-hexadecane in oil-in-water emulsions. In 

particular, the nucleation process is accelerated by the emulsifier concentration. Similarly,

sucrose oligoesters having palmitic and stearic moieties accelerate the rate and extent of the

crystallization of palm kernel oil in an emulsion system but retarded the crystal growth of palm 

kernel oil (Awad and Sato, 2002). These results were generalized to polyglycerol fatty acid esters 

used in emulsified systems based on various vegetable fats (Sakamoto, et al., 2004). 

II.4. Influence of the process parameters 

A very important feature of partial coalescence is the role of shear (Goff, 1997). The 

velocity gradient in liquid emulsions containing partially crystallized fat globules increased the

rate of partial coalescence by a factor 106 (van Boekel and Walstra, 1981a; van Boekel and 

Walstra, 1981b). The shear rate mainly influences the initial coalescence efficiency. A minimum

shear rate is necessary to obtain a film thickness that is smaller than the protrusion distance of a 

crystal into the aqueous phase (Boode and Walstra, 1993). Shear leads to greater tendency 

towards partial coalescence by increasing the rate of collisions between droplets (Palanuwech 

and Coupland, 2003) and by removing mixed films from the fat surface since they have a looser 

adherence to the surface than a pure protein film (Krog, 1998). Shear-induced destabilization

occurs at a certain critical shear stress, dependent on the emulsifier concentration and the 

concentration of triglyceride crystals (Davies, et al., 2000). The homogenization pressure and

selective homogenization processes also affect fat agglomeration (Koxholt, et al., 2001). Indeed, 

the partial coalescence phenomenon and the extent of fat globule instability is influenced by the 

droplet diameter  (Boode and Walstra, 1993; Thomsen and Holstborg, 1998). The coalescence 

efficiency increases with the globule size. 

In the case of ice cream manufacture, the sequential process of partial coalescence during

freezing is well investigated (Goff and Jordan, 1989; Goff, et al., 1999; Bolliger, et al., 2000b; 

Koxholt, et al., 2001; Relkin, et al., 2003b). The incorporation of air alone or the shearing action 

alone, independently of freezing, are not sufficient to cause the same degree of destabilization as 
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when the ice crystallization occurs concomitantly (Goff, et al., 1995). The freezing process 

causes an increase in concentration of the mix components, such as proteins and mineral salts, in 

the unfrozen water phase. Besides their role in the penetration of fat membrane due to their

physical shape already mentioned, ice crystals contribute to the shearing action on the fat 

globules through a freeze-concentration mechanism that also leads to enhanced destabilization 

(Thanasukarn, et al., 2004). When emulsions freeze, the lipid droplets become progressively

concentrated into the freeze-concentrate phase thereby coming into close contact with one

another in the unfrozen aqueous channels between the ice crystals. The concentration of the lipid

droplets in these narrow channels could promote aggregation, flocculation and/or coalescence 

during the freeze-thaw process (Thanasukarn, et al., 2004). Moreover, low temperature extrusion 

process (-15°C), batch freezing and high back pressure continuous freezing lead to more fat

destabilization in ice cream product in comparison with conventional continuous freezing (Goff, 

et al., 1999; Bolliger, et al., 2000b).

I I I . A I R  B U B B L E  F O R M A T I O N  A N D  S T A B I L I Z A T I O N

III.1. Surfactant adsorption at the air / water interface

Proteins are able to adsorb at the air / water interface. The mechanisms involved in this 

adsorption are very similar to those described in the case of water / oil interface (A.I.1.1.) 

including multiple anchoring sites and an unfolding process. Briefly, the adsorption can be

described by a three-step mechanism: (i) the protein moves from the bulk phase to the sub-

surface (a layer immediately adjacent to the interface) by diffusion and / or convection; (ii) the

protein adsorbs and unfolds at the interface, and (iii) the previously adsorbed amino-acid

segments slowly rearrange at the interface (Damodaran, 1997; Rodríguez Patino and Rodríguez 

Niño, 1999). Thus, the protein interfacial behaviour is dependent on the structure and rigidity of 

the molecule. All of the individual caseins, except -casein, show a strong tendency to adsorb the

air / water interface (Carrera Sánchez and Rodríguez Patino, 2005). Since caseins are flexible and

disordered macromolecules, their adsorption results in the formation of a film with a very low

visco-elasticity (Rouimi, et al., 2005). This contrasts with the high rigid film formed by the whey 
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proteins (especially -lactoglobulin) that can be attributed to the high packing density and strong 

intermolecular interactions (Rouimi, et al., 2005).

During the protein adsorption, the surface tension of air / fluid interfaces decreases. The 

surface tension measured for protein depends on numerous factors:

- the protein concentration. At low concentration, the protein spreads at the interface 

forming a monolayer. The protein may retain elements of the native structure, with 

incomplete unfolding at the interface. As protein concentration increases, part of the

protein can be displaced towards the bulk phase and / or unfolding may occur. At a 

given surface concentration, the film properties change significantly. The protein

collapses and amino-acid segments are extended into the aqueous solution (Rodríguez

Patino and Rodríguez Niño, 1999; Carrera Sánchez and Rodríguez Patino, 2004); 

- the protein molecular size and structure. Disordered, small and flexible proteins 

like -casein reduce the surface tension earlier and faster than ordered, rigid and

larger proteins (Bos, et al., 2003); 

- the aqueous phase pH. For example, the -casein film structure was more condensed 

at pH 5. This behavior could be attributed to a reduction in the repulsive interactions

between negative amino-acid residues at the isoelectric pH (Rodríguez Patino and 

Rodríguez Niño, 1999); 

- the temperature. Depending on authors, the equilibrium surface pressure for -

casein is affected (Rodríguez Patino and Rodríguez Niño, 1999) or not (Carrera 

Sánchez, et al., 2005) by temperature. For whey protein isolate, equilibrium surface 

pressure increases with temperature (Carrera Sánchez, et al., 2005). 

It is worth noting that, as already mentioned in the case of water / oil interface, protein

competitive adsorption exists at the air / water interface. A competitive adsorption is shown 

between -casein and s1-casein (Carrera Sánchez and Rodríguez Patino, 2005). Moreover, in the 

case of a protein mixture, some phase separations may be observed in the mixed film due to 

protein incompatibility. This is the case for bovine serum albumin / -casein / water ternary

system at the air / water interface. The mixed monolayer film shows distinct phase-separated

bovine serum albumin-rich regions and -casein-rich regions coexisting with inhomogeneous

mixed regions (Sengupta and Damodaran, 2000). 

Low molecular weight emulsifiers adsorb strongly to air / water interface giving close

molecular packing at the interface to produce low surface tensions. Mono- and diglycerides 
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spread on water can exist in different monolayer states, such as liquid-expanded, liquid-

condensed, solid, or collapse phase. Only the gaseous phase is not observed (Rodríguez Patino 

and Rodríguez Niño, 1999). A decrease in temperature produces transitions towards more

condensed structures or monolayer collapse (Rodríguez Patino and Rodríguez Niño, 1999). In 

contrast, some studies show that the equilibrium surface pressure of monoglycerides is not 

affected by temperature (Carrera Sánchez, et al., 2005). 

The interfacial characteristics of mixed protein and low molecular weight emulsifier 

films at air / water interfaces depend at least on the interfacial composition and on the protein / 

emulsifier ratio (Carrera Sánchez, et al., 2005). For an equimolar ratio of whey protein isolate 

and monopalmitin, and at surface pressures lower than that for whey protein isolate collapse, 

protein and monoglyceride domains are present at the interface in the mixed film, but with few 

interactions between them. In the region near and after the protein collapse, it is suggested that

monopalmitin is able to displace protein residues from the interface towards a sub-layer beneath

the emulsifier monolayer. Near to the collapse of the mixed films, monopalmitin predominates at

the interface and imposes its structural and topographical characteristics to the mixed film

(Carrera Sánchez and Rodríguez Patino, 2004). Similar results are obtained for the whey protein 

isolate and monoolein system (Carrera Sánchez and Rodríguez Patino, 2004). These results 

suggest that whey protein isolate and monopalmitin or monoolein are practically immiscible with 

regions of emulsifier or protein alternating at the air / water interface, at the highest surface

pressures (Carrera Sánchez and Rodríguez Patino, 2004). It is worth noting that this notion of 

immiscibility stresses the importance of the experimental conditions. Thus, differences in whey 

protein isolate displacement by monoglycerides (monopalmitin or monoolein) are observed in the

absence or in the presence of shear (Carrera Sánchez and Rodríguez Patino, 2004). Shear may

induce heterogeneity in the microstructure of the mixed monolayer and could favor the 

displacement of the protein by the monoglyceride (Carrera Sánchez and Rodríguez Patino, 2004). 

Protein displacement by surfactant is heterogeneous and not a simple exchange

mechanism (Leser and Michel, 1999). A mechanism describing the protein displacement induced 

by the emulsifier addition has been proposed (Gunning, et al., 1999). The so called “orogenic” 

mechanism is divided into three stages: 

(i) The emulsifier adsorbs and penetrates into the polar lipid – protein mixed film either

within defects in the protein network or at the polar lipid locations. The emulsifier forms separate

adsorbed domains. In the case of water-insoluble emulsifiers, a displacement front of emulsifier

domains is produced. Further adsorption of emulsifier into the emulsifier domains reduces the
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local surface tension. Due to emulsifier adsorption, the protein surface area decreases but the film

thickness does not increase. The increased surface pressure difference between the surfactant and 

protein domains leads to compression of the protein network without displacement of the 

proteins from the surface, reflecting probably, a denser packing of the proteins within the

network;

(ii) When the protein film can no longer be compressed, a buckling of the monolayer is 

observed. Reordering of the molecules occurs that may include a dissociation of at least some of

the proteins from the surface but not from the film itself. In response to the decreasing surface 

coverage, the protein film gets thicker;

(iii) At sufficiently high surface pressures, the protein network begins to fail allowing

individual molecules or small protein aggregates to desorb from the interface.

The final failure depends on the type of protein structure, the extent of unfolding upon 

protein adsorption, and the type and strength of intermolecular interactions at the surface, related

to the miscibility, topography and molecular structure of the proteins and emulsifiers. The more

elastic whey protein isolate film is more resistant to displacement than the less elastic -casein

films (Carrera Sánchez, et al., 2005). Caseinate film spread at the air / water interface can be

displaced by monoglyceride (monopalmitin, monoolein and monolaurin) (Carrera Sánchez, et al.,

2005). Monoolein has a lower capacity than monopalmitin for protein displacement (Carrera 

Sánchez, et al., 2005). 

III.2. Foam formation and stabilization

We have previously described the process of surfactant adsorption to the air / water

interface on a flat surface. However, in food industry, the air interface is created by a whipping

process. This dynamic process introduces new variables in the constitution of the interface. 

Moreover, in the case of ice cream process, a freezing step also modifies the air / water interface 

characteristics.

III.2.1. Foamed systems

In a protein solution, foam formation occurs when air is mechanically incorporated. Air 

bubbles are thought to be first surrounded by a proteinaceous membrane similar to that discussed 

in an emulsion system (Brooker, 1993; Goff, 1997; Goff, et al., 1999). The major
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thermodynamic driving force of protein to adsorb and concentrate at fluid / fluid interfaces is

relative to the removal of non-polar amino acid sequences from the unfavorable environment of 

the bulk aqueous solution. Moreover, protein plays an important role in the stabilization of air 

bubbles since during the formation of the foam system, the adsorbed protein prevents the 

recoalescence of the initially formed bubbles. This is achieved by reinforcing the repulsive forces 

between the air cells, forming a steric barrier and increasing viscosity in the aqueous solutions in

the lamella (Wong, 1989). During the protein adsorption, the surface tension of the interface 

decreases. This allows the optimization of the input energy involved in the foaming process 

(Thakur, et al., 2005) and, finally, small bubble sizes are obtained which is an important factor 

for the stability of the dispersed system.

The tendency of proteins to adsorb onto the fluid interfaces determines the quality of their

good foaming properties. More precisely, the foamability of a protein solution is determined by 

the rate at which the protein can reduce the interfacial tension as new interfacial area is being 

continuously created during whipping. Close relationships exist between foaming and the rate of 

diffusion of caseinate to the air / water interface (Carrera Sánchez and Rodríguez Patino, 2005).

The rigidity of the protein is an important factor because protein with high molecular weight and

rigid structure does not adsorb and unfold sufficiently fast enough at the interface to produce 

much foam (Damodaran, 1997). All caseins ( -casein, s1-casein, -casein and s2-casein) exhibit

foaming properties (Zhang and Goff, 2004; Carrera Sánchez and Rodríguez Patino, 2005). 

Adsorption of -casein into foam phases occurs if partial dissociation of the casein micelles is 

achieved (Zhang and Goff, 2004). -casein is considered to be the most surface-active protein of

the caseins, due to its high mean residue hydrophobicity and its unordered structure. Studies on 

foaming properties of -casein, bovine serum albumin, and lysozyme showed that relative

foamability of these proteins followed the order -casein > bovine serum albumin > lysozyme,

which is the same order in which they undergo conformational change and affect the rate of 

decay of surface tension in model systems (Damodaran, 1997). In foams made of incorporating

caseinate, the individual caseins seem to be adsorbed at fluid interfaces in proportion to their 

incorporation in solution. However, a distinction exists between caseinate and mixtures of 

purified individual caseins, since the latter show competitive adsorption between -casein and 

s1-casein (Carrera Sánchez and Rodríguez Patino, 2005). Competitive milk protein adsorption to

air / water interfaces in aqueous foam is also demonstrated when foams are made by whipping 

protein solutions containing skim milk powder and whey protein isolate (Zhang and Goff, 2004). 
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The lower enrichment ratio of whey proteins in the foam phase can be explained by their rigid 

structures and relative low surface hydrophobicity (Zhang and Goff, 2004).

Low molecular weight emulsifier is able to stabilize dispersed air bubbles. However, in 

contrast to protein that stabilizes bubbles by forming a rigid layer of interlinked molecules at the

interface, emulsifier forms a densely packed but much less rigid monomolecular layer, which is

stabilized by dynamic processes (i.e. Gibbs-Marangoni effect), whereby if local thinning occurs, 

emulsifier rapidly diffuses into the depleted area, sweeping liquid in with it, to re-thicken the

thinned region. Foam formed in presence of small molecule surfactants is well known for its 

instability due to the lack of the desired rheological properties compared to that of protein foam.

When proteins and emulsifiers are mixed, they may lead to an antagonistic effect on 

foam formation due to the "orogenic" mechanism already discussed for the flat air / water 

interface. Systems of protein and emulsifier can be unstable, as the surfactant dilutes the proteins 

and prevents their interlinking, while the proteins interfere with the rapid surface diffusion of the

emulsifier (Bos, et al., 1997). As a consequence, collapse of protein foam in the presence of 

emulsifier may result from the interrupted interaction between proteins and the consequent loss

of desired rheological properties (Rodríguez Patino and Rodríguez Niño, 1999; Zhang and Goff, 

2004).

III.2.2. Foamed and frozen systems 

Some food products, like ice cream, are aerated and frozen. On an industrial scale, 

aeration, cooling and freezing are generally carried out simultaneously under steady state 

conditions in scraped surface heat exchangers with high dasher rotational speed and attached 

surface-scraping knives. Such exchangers are usually called freezers. As freezing begins, a

reduction in maximum air cell size is observed due to the increased shear stress applied to disrupt 

the air cells (Chang and Hartel, 2002a). 

In ice cream, the gas phase volume is generally found around 50 % (Walstra and 

Jonkman, 1998) but can be as low as to 10–15 % (Goff, 2002). During freezing, several 

processes occur simultaneously. Air bubbles are beaten in and broken up into smaller ones. 

Coalescence of bubbles also occurs until an approximately steady state is reached (Walstra and 

Jonkman, 1998). As a result, air is distributed in the form of numerous small air bubbles. In 

conventional frozen ice cream, the air bubble size often ranges from 20 to 50 m (Turan, et al.,

1999; Bolliger, et al., 2000b; Goff, 2002; Sofjan and Hartel, 2004) but air cell size and 
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distribution are dependent on process parameters: low-temperature extruder (Bolliger, et al.,

2000b; Thakur, et al., 2005), level of emulsification (Bolliger, et al., 2000b), temperature (Chang 

and Hartel, 2002a; Caillet, et al., 2003), overrun (Chang and Hartel, 2002a; Sofjan and Hartel, 

2004). The smallest air bubble size distributions could result from longer residence times in the 

scraped surface freezer (Goff, 2002). Minimization of air cell size distributions have also been

claimed to be a benefit at low temperature extrusion (Bolliger, et al., 2000b; Thakur, et al.,

2005).

Aeration and freezing involve numerous physical changes in the structure and the texture 

of frozen dairy foams that determine the formation of a stable foamed product: the adsorption of 

proteins on the gas interface; protein desorption from fat globule surface by low molecular

weight emulsifiers; partial coalescence of fat droplets; ice crystallization (Goff, 1997). During 

the aeration and freezing process, protein acts as foaming agent in forming and stabilizing the

foam phase (Walstra and Jonkman, 1998; Goff, et al., 1999; Goff, 2002; Zhang and Goff, 2005). 

Low molecular weight emulsifiers are added to achieve different purposes: (i) they can break 

down and displace the adsorbed layer of protein at the air interface (Carrera Sánchez, et al.,

2005; Zhang and Goff, 2005), (ii) they allow the adsorption of fat to the surface of the air bubble 

(Buchheim, 1991; Pelan, et al., 1997; Thomsen and Holstborg, 1998; Goff, et al., 1999; Zhang 

and Goff, 2004; Carrera Sánchez, et al., 2005; Zhang and Goff, 2005); (iii) they increase the 

stability of the air bubbles (Turan, et al., 1999; Barfod, 2001; Zhang and Goff, 2005). 

The effects of formulation (protein, fat, emulsifier types) on development and stability of 

air cells have been widely investigated (Pelan, et al., 1997; Chang and Hartel, 2002c; Zhang and 

Goff, 2004; Zhang and Goff, 2005). The different roles of the low molecular weight emulsifier in 

protein desorption, fat partial coalescence and foam stabilization is well pointed out in ice creams

prepared without emulsifiers. These ice creams are characterized by low concentration of fat 

droplets at the air cell interface (Buchheim, 1991; Goff, et al., 1999) and by the presence of large 

air cells, some of which have coalesced (Pelan, et al., 1997). The coalescence indicates poor air 

stability, which is probably related to the lack of fat droplets at the air interface. Saturated

monoglyceride reduces the air cell size more than unsaturated monoglyceride. A possible 

explanation is that unsaturated monoglyceride causes too much fat globule destabilization and 

therefore ultimately air cell coalescence, whilst saturated monoglyceride promotes adsorption of

fat droplets at the air cell interface but does not lead to extensive fat aggregation (Pelan, et al.,

1997). However, another study that underlined the impact of the emulsifier type on bubble size 

(Thakur, et al., 2005), showed that, for similar protein and fat types, unsaturated mono-

diglycerides always permit the development of smaller bubbles compared to saturated 
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emulsifiers. In a recent study on ice cream (Zhang and Goff, 2005), the compositions of the air 

interface were quantified for different protein mixtures and emulsifiers used in the formulation.

When whey protein is used as the only source of protein, fat globules do not adsorb to the air 

interface of ice cream to the extent that they do when skim milk powder is the protein source.

When ice cream is made from skim milk powder and glycerol monostearate, casein micelles, -

casein and -lactoglobulin are all detected at the air interface. Glycerol monooleate strongly

displaces caseins from the fat interface, introduces more partially coalesced fat adsorbed to the 

air interface and seems to displace more proteins from the air interface (Zhang and Goff, 2005).

Some studies show that the fat level and emulsifier content have no effect on the air cell (Chang 

and Hartel, 2002c). 

The foam structure is also stabilized by partial coalescence of the fat droplets (Walstra,

1987; Brooker, 1993; Goff, 1997; Euston, 1997; Thomsen and Holstborg, 1998; Goff, et al.,

1999; Leser and Michel, 1999; Koxholt, et al., 2001; Goff, 2002; Chang and Hartel, 2002b; 

Chang and Hartel, 2002c). Increased levels of fat destabilization are associated with an increased 

concentration of discrete fat globules at the air interface and increased coalescence and clustering 

of fat globules both at the air interface and within the serum phase (Goff, et al., 1999). Partial

coalescence of the fat emulsion causes both adsorption of fat at the air interface and formation of 

fat globule clusters that stabilize the lamellae between air bubbles. When the fat globules and 

agglomerates reach sizes in the range of the width of the foam lamellae, they block them and 

impede the drainage of the serum. Additionally, they form loose bridges between air bubbles and 

prop them up against each other which leads to a mechanically stable, mousse-like foam matrix

(Koxholt, et al., 2001). Air bubbles in stable ice creams are not only stabilized by partially 

destabilized fat agglomerates. There are also areas of the air bubbles that are covered with small

and intact fat globules (Walstra and Jonkman, 1998) and other areas where no fat can be found. 

The fat-free regions must be stabilized by proteins and emulsifiers (Koxholt, et al., 2001). 

Moreover, the coalescing fat interacts with the proteins at the air bubble membrane (Goff, 1997;

Koxholt, et al., 2001). There does not seem to be significant fat spreading or continuous fat 

layers at the air interface, even with the highest levels of fat destabilization (Goff, et al., 1999). 

III.3. Foam evolution

Aqueous foams are thermodynamically unstable and can be subjected to three main

physical mechanisms of destabilization: disproportionation (Ostwald ripening), coalescence and 
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drainage (Dickinson, 1996a; Rodríguez Patino, et al., 1997; Chang and Hartel, 2002c). These 

mechanisms are to some extent interdependent.

Disproportionation occurs due to differences in Laplace pressure between two air 

bubbles of different sizes, i.e., different curvatures of the surface. The Laplace pressure

difference induces a concentration gradient in the liquid layer surrounding the bubbles, which 

causes different concentrations of gas between the smaller to the larger bubble. Consequently, 

smaller bubbles disappear at the expense of large bubbles, and the foam becomes coarser with 

time. In ice cream, disproportionation results in a bimodal distribution with both small and large 

air cells being present. In the early stages of disproportionation, a net decrease in mean size may

be observed. As more air cells disappear, however, a gradual increase in the mean size is

observed over time.

Coalescence of air cells in close proximity leads to a loss of two small bubbles and the

formation of a single, larger bubble. Thus, foam that undergoes coalescence also becomes

coarser over time. This instability leads to formation of a bridge between two bubbles, which 

eventually leads to the two bubbles growing together into a single larger bubble. Coalescence

may be promoted by the presence of hydrophobic solid particles (fat crystals for example) that 

connect two air bubbles at an obtuse angle, causing the film to break.

Drainage is the liquid flow from the foam as a result of gravity and capillary forces, at 

the same time that buoyancy forces cause a rise in the air cell. The larger the air cell, the faster it 

rises. Drainage by itself does not change the air cell distribution; rather it changes the film 

thickness between the air cells and promotes coalescence. The drainage forces are governed by 

the interfacial tension of the air cell, the viscosity of the fluid matrix and the height of the foam

system.

In ice cream products, the three different instability processes may take place either 

during ice cream production, i.e., freezing and hardening, or during storage of the final product. 

It is worth noting that when coalescence occurs during storage, the loss of discrete nature of the

gas bubbles and channeling may occur, leading to a continuous network of coalesced bubbles. 

This results in a product collapse or shrinkage. A better understanding of the stability of the air 

phase has been obtained by studies based on examining the response of frozen ice cream to 

fluctuation pressure (Turan, et al., 1998; Turan, et al., 1999) or temperature (Chang and Hartel, 

2002c; Sofjan and Hartel, 2004). During short periods of storage, the mechanisms that increase 

the air cell size distribution are dependent on the storage temperature. Disproportionation and 
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coalescence occur at the same time when temperatures are below 10°C. However, only 

coalescence occurred at 20°C (Sofjan and Hartel, 2004). For extended storage time, the main

mechanism of size increase is coalescence, as significant interconnection and channeling between 

air cells are observed (Turan, et al., 1998; Turan, et al., 1999; Chang and Hartel, 2002c; Sofjan 

and Hartel, 2004).

Whether these different instability processes take place, and at what rate, depends on the 

physical properties of both the continuous liquid phase and the gas phase. It is possible to 

increase foam stabilization: (i) by decreasing air bubble size (increase in surfactant surface 

coverage) to limit disproportionation; (ii) by forming a thick film on the surface of the air cells

via adsorption of solid particles to gas cells. This would reduce drainage and disproportionation. 

The internal semi-continuous fat network created in the frozen product by entrapping air within 

the coalesced fat, offers resistance to collapse during meltdown (Goff, 1997); (iii) by increasing 

the viscosity of the serum phase (decrease of the diffusion rate of gas between bubbles, inhibition 

of the mobility of air cells and decrease of the ripening due to drainage) using stabilizer (Stanley,

et al., 1996; Leser and Michel, 1999; Bolliger, et al., 2000b; Chang and Hartel, 2002a; Chang 

and Hartel, 2002b; Chang and Hartel, 2002c); (iv) by decreasing temperature; (v) by increasing

the density of ice crystals. Generation and growth of ice crystals serve to stabilize air cells

(Sofjan and Hartel, 2004); (vi) by decreasing the storage temperature (product hardening); (vii)

by acting on the formulation. For example, disproportionation of air cells is inhibited by addition 

of emulsifiers (Chang and Hartel, 2002c).

In conclusion, the creation and the setting of the fat network and foam structure in ice 

cream result from different interconnected processes due to a combination of air, applied shear 

stress, freeze concentration of the premix and ice formation. These processes include emulsifier

adsorption at the oil / water or air / water interfaces, protein desorption from the different

interfaces, partial coalescence of fat globules, significant concentration of discrete fat globules

and clusters at the air interface, clustered fat extending away from the air interface into the serum 

phase, cluster fat and ice crystals in the serum phase independent of the air interface. 

The different networks determine the properties of ice creams such as the shelf-life and

textural and organoleptic characteristics. In particular, the melting resistance of ice cream is 

related to the breakdown of the foam structure in the product (Pelan, et al., 1997; Sofjan and 

Hartel, 2004) and to the amount of partially coalesced fat product (Pelan, et al., 1997; Sofjan and 

Hartel, 2004; Zhang and Goff, 2005). Moreover, the creation of a matrix of fat throughout the 

product results in the beneficial properties of a smooth-eating texture in the frozen dessert (Goff, 
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1997; Thomsen and Holstborg, 1998). The amount of air incorporated and the distribution of 

sizes of the air cells in ice cream provides a smooth texture (Thomsen and Holstborg, 1998; Goff, 

2002). The cooling sensation perceived by the consumers when eating ice creams is largely 

conditioned by the distribution, the size and the morphology of the ice crystals. In particular, 

organoleptic evaluation of ice cream has shown that small air cells and ice crystals are associated

with increased creaminess and reduced iciness (Turan, et al., 1999). 

I V . S C I E N T I F I C  G O A L

The bibliography section clearly demonstrates that the formation of ice cream structure 

results from complex physicochemical phenomena during the different stages of ice cream

manufacture, from the oil-in-water formation, to the maturation of the mix and, then, to the 

freezing and whipping steps. Although the impact of the nature of the ingredients used in ice 

cream formulation is well established, comparison between the different studies of the literature

is often difficult. Indeed, variations in purity, sources, and proportions of the different 

ingredients, added to different experimental set-ups and/or conditions often prevent the accurate

comparison of the results. Moreover, most studies focus on the role of the proteins and low

molecular weight emulsifiers on the ice cream structure formation and textural resulting 

properties. Only few works deal with the influence of the fat sources used in the preparation of

ice cream emulsion, although numerous studies agree with the effects of fat destabilization on ice

cream quality.

The present work was based on the characterization of the behavior of surface-active 

molecules which take part in the formation and the stabilization of the oil /water interface in ice 

cream. The aim of this study was to understand and control the mechanisms of action of the 

emulsifiers during the different steps of ice cream manufacture. Indeed, even if it is clearly

established that emulsifiers are of technological importance in ice cream structure, a better 

comprehension of the interactions between the different ingredients present in the formulation

will facilitate the design of ice creams with required characteristics. Thus, we focused on two

mono- and diglyceride mixtures usually used in ice cream application and comprising different 

unsaturation degree. Because the low molecular weight emulsifiers are, in general, combined

with other stabilizing molecules such as proteins, two protein sources were also investigated. The 
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protein mixtures differed by the whey proteins / caseins ratio and by their interfacial properties.

We hypothesized that this ingredient selection would allow the development of different 

emulsifier - protein interactions. Although commercial ice cream includes hydrocolloids of 

various sources, in this study, the impact of hydrocolloids was minimized by using a constant

blend of guar gum - locust bean gum (50/50 v/v) known to poorly interact with proteins. Besides 

the selection of the surfactant molecules, four sources of fat were chosen to highlight the 

emulsifier - fat and protein - fat interactions. These fats varied in the composition in fatty acids,

i.e., unsaturation degree and chain length. The study took into account the various steps in ice 

cream process and supported the whole ice cream structure. Thus, three systems were studied,

i.e., oil-in-water emulsion, ice cream mix and ice cream, to investigate the behavior of surface-

active molecules (protein and emulsifier), and their interactions, between each other and with fat.
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Materials and Methods

I . E M U L S I O N  A N D  I C E  C R E A M  P R E P A R A T I O N

I.1. Products

Different fats, originated from vegetable sources, i.e., hydrogenated and refined coconut 

oils (SIO), refined palm oil (SIO), high oleic sunflower oil (Lesieur) and animal source i.e.,

anhydrous milk fat (France Beurre) were used. Physicochemical characteristics of the fats are 

presented in Table 7. Milk solids-non-fat was either skim milk powder (SMP) provided by 

Coopérative d’Isigny Sainte-Mère or functional dairy protein (FDP) (Bel Industries). The 

functionalization consisted in a partial protein denaturation by a heat treatment performed by the 

supplier. The chemical composition of the two protein mixtures is presented in Table 8. 

Emulsifiers, i.e., saturated and partially unsaturated MDG (60% alpha monoglycerides) were 

given by Degussa Food Ingredients. Physicochemical characteristics of the low molecular weight

emulsifiers are presented in Table 9. Sucrose and corn syrup solids (40 DE, 80 Brix solid content)

were purchased from Eurosucre and Cerestar, respectively. Stabilizers (guar gum and locust bean 

gum) were donated by Degussa Food Ingredients.

I.2. Emulsion preparation

The emulsions were prepared using a two-step homogenizer (SA 1200 AB, Manton 

Gaulin) operating at a pressure of 17.5 MPa in the first stage, 3.0 MPa in the second stage, at 

90°C. Initially, two premixes, one containing the fat and the emulsifier, the other the aqueous

protein mixture solution, were prepared and preheated separately at 70°C. Immediately, they

were mixed, brought under continuous stirring to 90°C and maintained at this temperature for 5 s. 

After homogenization, the emulsions were first cooled down to 20°C then to 4°C and aged for 24 

h at 4°C whilst stirring.

Each oil-in-water emulsion was based on one type of fat, one type of emulsifier and one 

type of protein mixture chosen among the various ingredients presented in Table 10. The 

proportions used are also indicated in Table 10. It is worth noting that similar proportions of

protein mixture (SMP or FDP) were used although these mixtures did not contain the same
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Table 7: Physicochemical characteristics of the fats used.

Hydrogenated

coconut oil 

Refined

coconut oil

Refined

palm oil 

Anhydrous

milk fat

Sunflower

oil

Solid fat content (%) 

5°C

10°C

15°C

20°C

91.6a

89.1

78.0

51.3

86.4a

78.8

64.5

36.3

54.5a

52.6

45.9

30.6

71b

60

40

13

Wt.% of total fatty acidsc

4:0

6:0

8:0

10:0

12:0

14:0

16:0

18:0

18:1

18:2

-

6

6

45

19

10

13

0

0

-

-

6

6

45

19

11

3

8

0

-

-

0

0

0

1

44

5

38

10

2

2

1

3

3

11

32

12

22

2

-

-

0

0

0

0

5

4

43

46
a Determined by pulsed nuclear magnetic resonance of proton (§ B.IV.); b Data given by France 

Beurre; c Determined by gas chromatography (§ B.II.); -: not determined.
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Table 8: Chemical characteristics of the two protein mixtures used. 

Composition (wt.%) SMP FDP

Proteins

Caseins

Whey proteins

35a

28a

7a

20a

8a

12a

Moisture

Fat

Lactose

Ashes

4.0b

1.5b

52.0b

8.1b

3.5c

1.5c

62.0c

8.5c

Calcium

Potassium

Sodium

Phosphorus

Chlorides

1.30b

1.55b

0.60b

1.05b

1.10b

1.01c

2.31c

0.56c

0.79c

1.47c

a Determined by denaturing polyacrylamide gel electrophoresis and densitometry; b Data given by 
Coopérative d’Isigny Sainte-Mère.; c Data given by Bel Industries. 

Table 9: Physicochemical characteristics of the mono- and diglyceride mixtures

(MDG).

Saturated MDG Partially unsaturated MDG 

Solid fat content (%)a

15°C

25°C

35°C

45°C

55°C

96.0

95.7

95.5

94.1

72.9

91.9

88.0

75.9

43.9

8.2

Wt% of total fatty acids (%)b

16:0 56 49

18:0 42 26

18:1 0 20

18:2 0 3
a Determined by pulsed nuclear magnetic resonance of proton (§ B.IV.); b Determined by gas 
chromatography (§ B.II.). 
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Table 10: Compounds and proportions used to formulate the different oil-in-water

emulsions and ice cream mixes.

System Compound
Proportion

(wt.%)a Type

Fat * 8

Hydrogenated coconut oil

Refined coconut oil

Refined palm oil 

Anhydrous milk fat 

Emulsifier* 0.3
Saturated MDG

Partially unsaturated MDG

Oil-in-

water

emulsion

Protein mixture* 10
SMP

FDP

Sugar
12

6

Sucrose

Corn syrup solids 

Ice

cream

mix

Hydrocolloids 0.2 Guar gum, locust bean gum

* Each oil-in-water or mix formulation contained only one type of fat, one type of emulsifier

and one type of protein mixture; a Proportions are completed to 100% with water. MDG:

mono- and diglyceride mixture; SMP: Skim milk powder; FDP: Functional dairy protein. 
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protein amount (Table 8). It was not possible to hold the amount of proteins constant because in 

the case of mixes based on FDP, they exhibited high viscosity that made them difficult to handle. 

I.3. Ice cream preparation

The different ice cream mixes were prepared based on compounds and proportions 

presented in Table 10. The manufacturing process of the ice cream involved the steps described 

in Figure 3. The fat, the corn syrup solids and a fraction of water were introduced into a tank with 

a double layer (20 N0, Guédu), whilst stirring, at 40°C for 10 min. The protein mixture, sucrose, 

hydrocolloids and emulsifiers were dry blended, mixed with water separately for 10 min and 

immediately blended at 65°C with the melted fat phase, for 15 min (pre-heating step). 

Homogenization was performed with a double piston, two stages homogenizer (1st stage: 17.5 

MPa, 2nd stage: 3.0 MPa) (Lab 60, APV France) on batches of ice cream mix of 20 L. The mix

was pasteurized (APV Junior, APV France) (85°C, 30 s), and immediately cooled at 4°C. Ageing 

took place at 4°C for 16 h, whilst slow stirring in a water bath. A sample of the mix was taken at 

4°C before and after the ageing period for mix analysis. At the end of the ageing period, the

vanilla flavor (LAB 15359, Degussa Food Ingredients) was dispersed into the mix. The freezing 

step was carried out using a continuous freezer (WCB ice cream CS 100, Waukesha Cherry 

Burrell). Before introducing the mix into the freezer, the flushing of the apparatus with sweetened

solution (24 wt.% sucrose, 6 wt.% dextrose, 0.7 wt.% hydrocolloids adjusted to 100 wt.% with 

water) made it possible to reach the operating conditions of temperature, air pressure and number

of revolutions of the blades. The air (nitrogen, 20 mPa) was injected into the mix at the entrance

of the freezer. The temperature of the evaporating gas in the freezer double layer was about

-40°C. The outlet temperature was close to -5°C. The final product expansion was expressed by 

the ratio:

creamiceofvolumesametheofmass
creamiceofvolumesametheofmassmixofvolumeaofmass

100

The overrun was pre-fixed at 100% m/m. At the exit of the freezer, the semi-solid product was

packaged. Hardening was carried out by a hardening tunnel (Fouchard) with cold air circulation 

(-40°C, 30 min). Ice cream products were stored in a freezer at -20°C before analysis.
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Ambient T° 
10 min 

Sucrose Hydrocolloids Protein mixture

Fat

DISPERSION
in water

PASTEURIZATION

PRE-HEATING

HOMOGENIZATION

DISPERSION
in corn syrup

COOLING

AGEING

HARDENING

Water Corn syrup 

40°C, 10 min

Water
Dry blending 

MDG

FREEZING

4°C

-40°C, 30 min

Outlet temperature: -5°C 
Overrun: 100% (v/v) 

4°C, 16 h 

70°C17.5 MPa first stage 
3.0 MPa second stage

85°C, 30 s 

65°C, 15 min 

Ice cream

Mix

Figure 3: Diagram of ice cream fabrication 
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I I . L I P I D  A N A L Y S I S

The Vigneron technique was used to prepare fatty acid methyl esters (FAME) from oils

and fats (Vigneron, et al., 1973). Forty mg of lipids were mixed with 3 ml of hexane and 0.2 ml

of a methanolic sodium hydroxide solution (2N). The mixture obtained was vigorously mixed for 

10 s, then heated in a water bath at 50°C for 30 s. This step (agitation/heating) was repeated 

twice. Then, 0.2 ml of hydrochloric methanol (2N) was added to acidify the solution. The hexane

phase was taken after centrifugation and washed with 1 ml of distilled water. The FAME in 

hexane solution was analyzed directly by gas chromatography (GC). 

The Morrison technique (Morrisson and Smith, 1964) was used for emulsifier fatty acid

analysis. It is worth noting that before FAME preparation, MDG was purified according to the 

Folch method (Folch, et al., 1957) using a chloroform/methanol mixture (2/1; v/v) at a rate of 20 

volumes per volume of material. After the two aqueous washings of the lipid phase, several 

additional washings with methanol were performed to limit crystallization of the emulsifiers. The 

preparation of FAME from the MDG mixture was carried out at 90°C in the presence of a 

mixture (1.5 ml) composed in equal parts (0.5 ml) of hexane, methanol and a solution of 10 % 

boron trifluoride in methanol. The trans-methylation required 60 min. The FAME was extracted,

after addition of 1 ml of distilled water, by 2 ml of hexane, repeated three times. The connected 

hexane phases were concentrated and after washing with 1 ml of distilled water were stored at -

20°C before GC analysis.

The FAME composition was established by GC under the following conditions: 

chromatograph Hewlett Packard (HP 5890) equipped with a capillary column BPX (length = 60 

m, internal diameter = 0.25 mm). The temperatures of the injector and the detector were both 

equal to 250°C; the pressure of the carrier gas (hydrogen) was 0.1 MPa. The analysis was 

performed in "Split" injection mode. The temperature programs used for the different fats and 

oils are presented in Table 11. The chromatograms were obtained and analyzed using an 

integrator (Hewlett Packard). The identification of FAME was obtained by a comparison of the

retention times with those of standards (Sigma) analyzed using the same chromatographic

conditions.
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I I I . I N T E R F A C I A L  T E N S I O N  M E A S U R E M E N T S

The interfacial tension at the oil/water interface was measured by the weighed drop

method (Harkins and Brown, 1919). When the volume of the growing drop exceeds its maximum

possible value (i.e. if the drop weight exceeds the forces acting vertically upward on the drop),

the drop (volume V and mass m) falls from the needle tip. The forces are found at the level of the 

triple contact between the needle tip and the two fluids (water and oil), due to the interfacial 

tension . The assessment of the forces is given by:

mgmgr
huile

eau
int (2

where g is the gravity acceleration, rint the internal radius of the needle and  the volume mass.

This leads to the expression of the interfacial tension :

eauint

eau

2
(

r
mg huile

This equation is an approximation that does not take into account the lengthening of the drop 

under the gravity effect. To take this phenomenon into account, a corrective factor f is introduced.

This factor f is dependent on the ratio 
3
1
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r

V
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The method proves to be accurate if the diameter of the needle and the conditions of damping are 

well defined. Moreover, an equilibration period is necessary to leave sufficient time for the 

emulsifier to adsorb at the interface. 

The experimental setup used in this work consisted in a set of syringe / needle of known 

and constant diameter (r = 0.406 mm), and a micro-metric screw allowing delivery of the

syringe’s content in a controlled way. Interfacial tension measurements were carried out in a two

phase system: a dense phase (distilled water) and a less dense phase (oil). The emulsifier

(saturated or partially unsaturated MDG) was incorporated at 0.3 wt.% in 10 g of oil phase as its 

hydrophilic-lipophilic balance (HLB) was low. The oil phase was either high oleic sunflower oil
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Table 11: Temperature programming of the gas chromatography analysis. 

Lipid Step
Initial

temperature (°C)

Speed

(°C/min)

Final

temperature (°C)

Temperature holding 

time (min) 

1 120 1.3 200 0

2 2.5 230 6Butter

3 20.0 245 15

1 150 1.3 200 0

2 1.5 230 6

Vegetable

fats and 

MDG 3 20.0 245 10
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or a mixture of high oleic sunflower oil and vegetable fat incorporated at a level of 20 wt.%. The

protein mixture (SMP) was dissolved in water (10 wt.%). The different aqueous and lipid 

mixtures were heated for 15 min at 70°C in a water bath. Then, the temperature of the mixtures

was brought back to the required temperature. The aqueous phase was placed into the syringe and 

the oil phase into a weighted tube. Three to five drops were weighed in order to obtain a

significant result. The interfacial tension was measured at temperatures ranging from 45 to 4°C. 

The temperature control of the solutions was carried out with a water bath. Measurements at 4°C 

were performed in a cold room.

I V . S O L I D  F A T  C O N T E N T  D E T E R M I N A T I O N

The solid fat content (SFC) of fats was obtained by the measurement of the signal of the 

nuclear magnetic resonance of the proton (1H-NMR) as a function of temperature. The

measurements were carried out by the French Institute for Fats and Oils (ITERG) on a pulse low-

resolution NMR spectrometer (Minispec PC20, Bruker Spectrospin) operating at 20 MHz for

protons. SFC analysis of the raw vegetable fats and MDG mixtures was performed according

to the normalized method ISO 8292. SFC was also determined on emulsions after 

homogenization at 20 and 4°C and after ageing (24 h at 4°C). In emulsions, solid + liquid signal 

amplitude (s + l) 11 s after end pulse, and liquid signal amplitude (l) 70 s after end of pulse 

were used. To compensate for the dead time of the receiver circuit, a corrector factor, f, was used 

to obtain the initial solid signal level (fs). SFC in the emulsions was calculated as described in 

(Barford, et al., 1991): 

)8.0(
100%

"0" 2Hllfs
fsSFC

The liquid signal from the “H2O” sample was subtracted from the total signal of the 

emulsion to obtain a more realistic value of the liquid oil signal. The liquid signal was multiplied

by 0.8, since about 8 % of fat was present in the emulsion.
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V . F A T  P A R T I C L E  S I Z E  A N A L Y S I S

The size and the particle distribution of the fat globules in the emulsions, mixes and ice 

creams were measured by light scattering. The method is based on the theory of Mie. A laser 

beam which interacts with a particle is not only diffracted, but also reflected and diffused. The 

diffracted light was measured on the level of a central detector composed of 31 concentric 

sectors: the intensity measured on a sector was representative of a class of sizes, particles with

lower diameters scattering at higher diffraction angle.

In this type of measurement, the preliminary knowledge of the refractive indexes of the 

dilution medium and of the dispersed particles is required: the values of 1.456 for the lipid 

droplets and 1.330 for water were used. The value of adsorption was 0.003. No correction was

carried out when the sodium dodecyl sulfate (SDS) was used as dilution medium. Measurements

were performed on two different particle-measurement instruments, a Mastersizer 2000 for 

emulsion and a Mastersizer S for mix and ice cream (Malvern). The volume weighted average 

diameter of the fat globules (d4,3) as well as the particle size distribution were obtained.

V.1. Measurement of fat globule size in emulsion and mix

Two dilution media were used in order to make the distinction between the "apparent" 

droplet size (measurements in non-dissociating conditions, tap water, ambient temperature) and

the "real" droplet size (after aggregate dispersion in a powerful anionic detergent solution of SDS 

1 wt.%). Emulsions were analyzed after homogenization (20°C) and rapid cooling (4°C) and after 

the ageing step (24 h, 4°C). Mixes were analyzed after homogenization and cooling (4°C) and 

after the ageing step (16 h, 4°C). The sample volume was about 1 ml. The dilution factor of the 

sample was approximately 1/1000. For all samples, at least two measurements were carried out.

V.2. Measurement of fat globule size in ice cream

The method used to measure the droplet size in ice cream consisted in a direct defrosting

of a sample in the dilution medium (water or SDS solution 1 wt.%). The application of 

ultrasounds (frequency = 27 KHz, maximum power = 50 W) made it possible to get rid of the air 

bubbles in the sample. The scale of ultrasounds was characterized by a quantity of heat applied

per volume unit (Ws.l-1 = J.l-1). This scale was composed of 4 stages: 1 measurement without 
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ultrasounds, three measurements at 100 % of the maximum power, two measurements at 30 % of 

the maximum power then, and seven measurements at 50 % of the maximum power. This 

procedure ensured that the size of the globules or of the aggregates remained intact (Gelin, 1995).

For all samples, at least two measurements were carried out.

V I . V I S C O S I T Y  M E A S U R E M E N T S

Viscosity measurements are based on the determination of the torque necessary to the 

rotation of a cone at the surface of the studied material. The viscosity ( ) is the relationship

between the tangential force exerted on the surface of the cone ( , shear stress) and the angular

velocity ( ˙). It is given by: 

˙

VI.1. Analysis of emulsion

Viscosity measurements were recorded on a Physica Modular Compact Rheometer 300 

(Anton-Paar) with a cone (7.5 cm diameter, 0.992° angle, 0.05 mm gap) and a plate geometry

with smooth surfaces. Viscosity measurements were performed on emulsions at 20°C (after

homogenization) and at 4°C (after the 24 h-ageing period). Samples were transferred onto the

rheometer plate set at the working temperature, and left 5 min in the rheometer before beginning

the experiment. Viscosity was recorded at a shear rate of 1 s-1 and measured for 3 min. For all 

samples, at least two measurements were carried out. 

VI.2. Analysis of mix

The apparent viscosity of ice cream mix taken after homogenization and after maturation

was measured using a rotary viscosimeter Brookfield (model RVT). Temperatures of 

measurement were close to 4°C after homogenization and ageing. The samples (500 ml) were 

carried out in glass beaker. The value was taken after ten revolutions of the cylinder.
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V I I . D Y N A M I C  R H E O L O G I C A L  C H A R A C T E R I Z A T I O N

Dynamic rheological measurements are based on the application of a control stress on the 

sample. The elastic (G') and viscous (G'') moduli were determined. The damping factor 

'
''tan

G
G  was calculated.

VII.1. Analysis of aged emulsion

Measurements were carried out using a controlled stress rheometer (Physica MRC 300, 

Anton-Paar) provided with a plate geometry with smooth surfaces and a cone module of 7.5 cm

diameter and 0.992° angle (CP-50-1). The gap between the plate and the module was 0.05 mm. A 

deformation of 0.5 % was used. The amplitude was chosen on the basis of the determination of 

the linear visco-elastic regime of an emulsion by a deformation amplitude test carried out at 4°C. 

Approximately 2 ml of an aged emulsion were placed in the center of the plate. The sample was 

protected from the evaporation phenomena by placing oil around the geometry. G' and G’’ were 

measured according to a frequency sweep test between 5 and 0.05 Hz, at 4°C. For all samples, at 

least two measurements were carried out. 

VII.2. Analysis of ice cream

Rheological profiles of ice creams were obtained in the temperature range from -10 to 

60°C (0.5°C.min-1) with the Physica MCR300 rheometer equipped with streaked parallel plates. 

The streaked plates (4 cm diameter) avoided any phenomenon of slip. A gap of 1 mm was 

selected in order to take into account the heterogeneity of the product but also its change of state 

during measurement. The starting temperature of -10°C was selected as a compromise between a 

correct implementation of the sample into the apparatus and a limited evolution of the product as 

ice cream characteristics started to change above -20°C. Ice creams were stored for 2 h at -10°C 

before going to the rheometer. They were placed on the lower level of the geometry, then,

crushed between the two plates. Oil with a low crystallization temperature was used to prevent 

the evaporation phenomena during the experiment. Moreover, one lid was laid out around the

geometry in order to avoid the formation of white frost or condensation onto the geometry. After

setting, the sample was left 15 min at -10°C before the beginning of the measurement in order to
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allow the stabilization of the product. G', G'' and tan  were measured as a function of temperature

at 1 Hz and at a deformation amplitude of 0.05 % between -10 and 5°C and 0.1 % between 5 and

60°C. These amplitudes were chosen on the basis of the linear visco-elastic regime of ice cream

by a deformation amplitude sweep test at various temperatures. At 5°C, before the change in 

deformation amplitude and at 60°C at the end of measurements, a frequency sweep test from 5 to 

0.5 Hz at a percentage of deformation of 0.1 % was carried out. At the end of measurements, at 

60°C, a deformation amplitude sweep test (0.1 to 100 %) was also performed. For all samples, at 

least two measurements were carried out. 

V I I I . I C E  C R E A M  M E L T I N G  T E S T

Ice cream samples, with a mass of 270 g ± 10 g each, were removed from their packaging 

and placed on horizontally mesh fixed grids (mesh size: 1 cm  1 cm), located above balances

(Metter PJ 600). The melting test was carried out in a temperature controlled room at 29°C, under 

constant hygrometry. The mass of the product passing through the screen was uninterrupted and

weighed for 2 h. The layout of the melting curves was obtained: mass melted according to time.

The average time at the end of which 10 then 30 g of product melted (T10 and T30) was

determined.

I X . D I F F E R E N T I A L  S C A N N I N G  C A L O R I M E T R Y

In order to characterize the thermal behavior of fat in the mix and ice cream, differential 

scanning calorimetry (DSC) was used. This technique is based on maintaining at the same

temperature, the sample and a reference (often air) placed in different pans, during a given 

temperature program. The electric output necessary for the compensation between the different

pans corresponds to a calorimetric effect. This latter can be endothermic (fusion phenomenon) or 

exothermic (crystallization phenomenon).

The DSC experiments were performed in collaboration with A. Schöppe (Degussa Food 

Ingredients) using a MDSC 2920 (V2.6A) (TA Instruments). Samples of mix (  10 mg) aged at 

4°C for 16 h were sealed in aluminum pans. The samples were first rapidly heated to 60°C. Heat 
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flow was recorded as a function of decreasing temperatures from 60 to -20°C at 5°C.min-1. Since 

the size of fat droplets might influence the crystallization process (Palanuwech and Coupland, 

2003), for each formulation, the absence of fat globule size evolution as a function of temperature

was checked in the conditions of the thermal analysis. Samples of ice cream (  80 mg) stored at 

-20°C were equilibrated at –30°C for 10 min in the DSC instrument. Eighty mg of ice cream 

corresponded approximately to the complete filling of the pan that allowed a good heat exchange 

between ice cream and the surface of the cell and avoided the artifact phenomenon caused by the 

presence of air bubbles. Heat flow was recorded as a function of increasing temperatures from –

30 to 65°C at 1°C.min-1.

The thermograms allowed the determination of the enthalpy for the various peaks. The 

temperature of crystallization or of melting corresponded to the temperature at which the peaks 

were at maximum. However, because this value varied with the mass sample, the onset and offset 

temperatures were also determined and defined as the beginning of the crystallization and fusion 

peaks, respectively, by the intersection of the tangent to the peak with the base line. For each mix

and ice cream preparation, the experiment was conducted at least in duplicate.

The percentage of the crystallized matter (fat and MDG) in the ice cream and the mix was 

determined from the enthalpy of the peaks associated with the fat fraction related to the enthalpy

associated with the initial fat present in the formulation. This calculation was based on the 

hypothesis that no other event than fat melting or crystallization occurred in the temperature

range considered.

X . Q U A N T I F I C A T I O N  O F  P R O T E I N  P A R T I T I O N I N G  I N  
E M U L S I O N  A N D  I C E  C R E A M

X.1. Spectrophotometric method

The protein partitioning determination was based on the quantification of the amount of 

proteins present in the aqueous phase, i.e., non-adsorbed at the different interfaces. Measurements

concerned emulsion and ice cream systems. This method required a preliminary separation of

the emulsified fat phase and, in the case of ice cream, of the aerated phase from the aqueous 

phase.
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Samples, 25 g of emulsion (fresh and aged) or 20 g of melted ice cream (one night at 

4°C), were placed in centrifugation tubes (Nalgene 3139-0050, 50 ml) and were centrifuged at 15

000 g, 30 min, at 20 or 4°C for emulsion and at 4°C for ice cream product (Suprafuge 22 - 

Heraeus Sepatech). The aqueous phase consisted in the subnatant and the protein solid base. 

Samples were frozen at -20°C until analysis.

The quantification of the amount of total proteins in the aqueous phase was done using the 

Bradford method (Bradford, 1976). This method is based on fixing the Coomassie dye to the 

aromatic and basic amino-acid residues of the proteins (arginine, phenylalanine, and tyrosine). 

The complex formation modifies the initial brown color of the reagent in blue. The optical 

density was read with a Lamba Bio-20 spectrophotometer (Perkin Elmer) at 595 nm and was

compared with that of a standard bovine serum albumin (BSA) solution (from 50 to 800 g.ml-1)

to obtain the protein concentration. The samples were diluted at 1/100 in distilled water, then 50 

l were taken and added to 1500 l of Coomassie reagent in to micro-cells at ambient

temperature. The calculation of the protein concentration at the surface of the fat globules is 

presented in Appendix 1. The final results were expressed as a percentage of proteins adsorbed at 

the fat globule surface in the case of emulsion and as a percentage of proteins present in the 

aqueous phase in the case of ice cream.

X.2. Determination of the protein types in the aqueous phase

A separative technique was used to determine, in a qualitative way, the various protein

types present in the aqueous phase. The quantitative determination of each protein fraction was 

obtained by densitometry on the various separated fractions. This determination was only

performed on the aqueous phases recovered after the centrifugation of fresh and aged emulsions.

The technique of polyacrylamide gel electrophoresis in a SDS medium (SDS-PAGE) was 

used for the separation of the protein types present in the aqueous phase on the basis of the 

molecular mass of the different species. The association of a powerful anion detergent, a reducing

agent and an elevated temperature made it possible to break the electrostatic and disulfide

connections between the proteins. The reducing agent used (2-mercaptoéthanol) caused a cut of 

the disulfide bridges by a nucleophilic substitution mechanism taking place in neutral or basic

medium. The temperature (100°C, 5 min) allowed accelerating the dissociation reactions.

SDS-PAGE separation of the protein types present was carried out on acrylamide pre-cast 

gel at 15% of acrylamide (Bio-Rad). The migration buffer used was made of tris-glycine SDS. 
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The samples from the aqueous phase defrosted beforehand were diluted at the 1/40 for SMP and 

at 1/15 for FDP in a buffer (Tris 50 mM, NaCl 100 mM, pH 7.5). The samples were then heated

(100°C, 5 min). The applied volume of the samples was of 10 l corresponding to a protein 

concentration of about 1mg.ml-1. A suspension of 10 standard proteins of molecular weights from 

10 to 250 kD (Precision Plus Protein Standards: unstained, BioRad) was used in order to identify

the various protein types separated by the electrophoresis. The migration was carried out at 80 V 

for 30 min, then at 100 V until the end of the migration (approximately 1 h). After protein

separation, the gel was stained by a Coomassie blue D mixture (0.2 % m/v), diluted in a 

methanol/water solution (1/1 v/v) with 7.5 % of acetic acid, for at least 2 h. Discoloration was 

done in a methanol/water/acetic acid solution (30/62.5/7.5 v/v/v): several successive baths were 

used until the desired discoloration was achieved. The gel was then vacuum dried (gel dryer) for 

at least 1 hour. 

The densitometric analysis of the electrophoresis gels used a Gel-Doc 2000 apparatus 

(BioRad). The surface values corresponding to the different protein types were calculated. On 

this basis and knowing the total amount of proteins interacting with the oil interface, the

percentage of protein types adsorbed at the fat globule surface was calculated.

X.3. Fluorescence method

Fluorescence measurements were related to the presence of tryptophan residues (Trp) 

naturally occurring in the protein mixtures used. Fluorescence measurements were performed on 

diluted emulsions, that is without a centrifugation step. 

Fluorescence measurements were carried out using a fluorimeter SPEX Fluorolog 3 

(Jobin Yvon, Horiba group) equipped with a charge-coupled device (CCD) camera that allowed 

instant emission spectra registration. The fluorimeter was equipped with a front-surface 

accessory. The reflected angle was set at 22.5°. This device allowed investigation of the 

fluorescence of powdered, turbid and concentrated samples in order to limit the problems of light 

diffusion. The emission spectra of Trp of proteins were recorded between 300 and 365 nm at an 

excitation wavelength of 290 nm. The slits of excitation and emission were fixed at 0.4 and 1 nm,

respectively. Measurements were carried out whilst stirring at a specific temperature, maintained

thanks to the temperature controlled sampler (Neslab RTE-7 Digital plus, Thermo Neslab). 

Measurements were performed at 20°C on fresh emulsions and at 4°C on aged emulsions.

Moreover, a SMP solution (3 mg.ml-1) prepared with the same procedure as that used for
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emulsion preparation was diluted (0 - 0.5 mg.ml-1) and analyzed. One spectrum of each sample

(emulsions and SMP solutions) resulted from ten accumulated spectra.

Previous studies have pointed out that front-face fluorescence allowed distinguishing

between Trp in hydrophilic and hydrophobic environments (Rampon, et al., 2001; Rampon, et

al., 2004). This distinction was not possible directly with the fluorescence spectra. Only the 

fourth-derivative of the spectra allowed distinguishing between the two types of Trp. The 

mathematical treatment of the fluorescence emission spectra was performed in collaboration with

J. Toutain (TREFLE UMR 5508, ENSAM, ENSCPB, Bordeaux 1 University). Each 

experimental fluorescence spectrum was composed of 1024 measurements for the wavelengths

varying from 300 to 365 nm. The noise distribution was considered to be Gaussian. Based on the 

hypothesis that the spectrum and its derivatives with respect to the wavelength were continuous 

functions, the fluorescence spectrum was first smoothed. The smoothing (or filtering) algorithm

was derived from the approximation theory by feed-forward neural network with a single hidden 

layer and a linear output layer on noisy scattered data. Any continuous function may be closely

approximated as a linear combination of sigmoids, defined by the following equation: 
N
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This so-called Tikhonov regularization problem consisted in minimizing a target function Z of 

parameters a, b and c, expressed by:
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thanks to an experimental data set at every experimental wavelength i. This led to a least-square 

problem that was solved by a Levenberg-Marquardt algorithm, known to be efficient and robust. 

The resulting fourth-derivative of the spectra revealed several peaks characterized by a 

wavelength, and an area corresponding to the different Trp environments. The peak at 334 nm 

was assumed to be correlated with Trp in a hydrophilic environment, i.e., with the amount of 

proteins in the aqueous phase. 

Whey proteins contain, on average, more Trp residues than caseins (casein  = 2 residues,

caseins  and  = 1 residue,  lactoglobulin = 2 residues,  lactalbumin = 4 residues and BSA = 

2 residues). The calculation of the Trp content of the different milk proteins leads to 1.0 g Trp / 

100 g of total protein and 0.44 g Trp / 100 g of total protein, for caseins and whey proteins, 
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respectively. The weight ratio caseins / whey proteins in SMP is 80 / 20 and the ratio Trp in 

caseins / Trp in whey proteins is 70 / 30. Thus, protein quantification using Trp residue

fluorescence slightly underestimates the casein fraction compared with whey protein fraction. 

X I . I C E  C R E A M  F L U O R E S C E N C E  A N A L Y S I S

Fluorescence measurements on ice cream were carried out as previously described for mix

samples (§ B.X.3.) The samples stored at -20°C were directly placed in a quartz cell. For each 

sample, 3 spectra were measured. Measurements were carried out at 1°C, maintained thanks to 

the temperature controlled sampler. The fluorescence emission spectra were smoothed to

facilitate statistical multivariate analysis. The smoothing algorithm was similar to that used in the

case of the emulsion analysis. 

X I I . I C E  C R E A M  S E N S O R Y  A N A L Y S I S

The sensory analysis aimed at characterizing the organoleptic properties (texture) of ice 

creams in order to highlight possible differences between the various compositions. It consisted

in making taste coded samples of a product under fixed conditions using a list of descriptors. The 

development of this list by the group of tasters proceeded in 5 stages (Depledt and Strigler, 

1998): 1. Research of the greatest number of descriptors; 2. Qualitative selection; 3. Quantitative

selection; 4. Statistics selection using a hierarchical ascendant clustering (HAC) and a

correspondence analysis (CA); 5. Drive of the group to the use of the reduced list.

In the case of ice cream, four descriptors were defined and studied:

- the "airiness" of the product, quantified by the evaluation of the quantity of air 

present in ice cream by observing the porosity, the air cells, and the weight of the 

product;

- the "unctuousness" (creaminess) characteristic, determined by the evaluation of the

aptitude of ice cream to cover the palate, by the melting time in the mouth as well as

by the sensation of fattiness that the product may cause; 

- the perception of "coldness", evaluated by the time of diffusion of the cold sensation

right behind the teeth; 
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- the “firmness” in mouth, defined as the compressive force necessary to crush the ice 

cream sample in the mouth between the tong and the palate. 

The assessors must note the intensity of the various descriptors by coding the intensity on 

a horizontal scale. The establishment of the texture sensory profile of ice creams was evaluated

on the selected criteria, thanks to a scale broken up into six levels (0 to 5), by the 16 assessors 

and in an individual way. The frozen samples, conditioned in a constant serving size (50 ml

plastic packaging placed in isothermal boxes), were maintained at a constant and identical

temperature during all the test duration. The products were presented in an identical packaging

and were coded. The subjects received, in each session, four samples, all together in order to be 

able to return to one of the samples during analysis. The evaluation followed a defined test plan 

(each taster received a randomized order for tasting) and the definitions of the different attributes

were always available during the session.

X I I I . S T A T I S T I C A L  A N A L Y S I S

Analysis of variance of all data, using Fisher’s least significant difference (LSD) 

procedures (Stat Graphic Plus software, Manugistics), was carried out on the different parameters

of each analysis among the different formulations. Different parameters were correlated with the 

response variables of the different emulsions, mixes or ice creams, by linear regression. 

Correlation coefficients (r²) were determined from the regression line.

Two kinds of statistical treatments were applied to the emission fluorescence spectra:

principal component analysis (PCA) and partial least squares (PLS) discriminant analysis. PCA 

and PLS discriminant analysis were run on The Unscrambler® v8.0 (Camo Process AS, Oslo,

Norway). PCA (Jolliffe, 1986) allows investigating the main differences between formulations in

terms of fluorescence emission. PCA is a factorial method for exploratory statistics which can 

easily summarize great amounts of multidimensional data by means of simple 2-D 

representations called similarity maps. In the present application, these representations showed 

what kind of ice cream formulations were best discriminated by fluorescence data.

PLS discriminant analysis was chosen to investigate the ability of fluorescence data to

distinguish between the different ice cream ingredients, i.e., proteins, fats and emulsifiers. PLS

regression techniques (Martens and Naes, 1989; Tenenhaus, 1998; Esbensen, 2001) have been 

initially designed in the context of modelisation and prediction of quantitative variables when 
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strong relationships exist between endogenous variables. For this reason, PLS regression was 

well-adapted to the case of fluorescence spectra since a strong correlation existed between the

consecutive emission wavelengths. PLS discriminant analysis (Tenenhaus, 1998) is an adaptation

of PLS regression in the case of categorical variables. In our case, the categorical variables were 

the dummy variables describing the membership of the formulations with the different categories: 

protein mixture (SMP or FDP); fat (hydrogenated coconut oil, refined coconut oil, refined palm 

oil or anhydrous milk fat) and emulsifier (saturated MDG or partially unsaturated MDG). PLS 

discriminant analysis consisted of finding models for the dummy variables. These models, called 

discriminant functions, were the linear combinations of the endogenous variables (i.e. the

wavelength responses) that best modeled the dummy variables. As a result of PLS discriminant

analysis, spectral patterns that represented the regression coefficients of the designed

discriminant functions were obtained. These spectral patterns showed the emission wavelengths

that best discriminated each protein mixture, each fat or each emulsifier. In order to carry out 

PLS discriminant analysis, a large amount of data was required. For this purpose, for each ice 

cream formulation, three different productions were carried out. Among each production, three 

samples were analyzed by fluorescence. The fluorescence emission spectra were split into a 

calibration set and a validation set. For the 3 fluorescence spectra recorded corresponding to the 

three different samples, two spectra were assigned to the calibration set, and the third one was

assigned to the validation set. The calibration set was used to derive the PLS discriminant

functions of all protein, fat and emulsifier categories. The validation set was used to produce 

classification matrices that allowed the verification of the relevance of the models in order to 

determine the discrimination of the different ingredients.

For sensory analysis, it was first necessary to undertake a statistical study in order to 

select relevant and discriminating attributes. A HAC was carried out in order to determine groups 

of attributes with similar meanings. Then, a CA was performed to determine the most relevant

and discriminating attribute in each group. These tests were carried out using the software 

StatBox version 6.22. In a second step, the analysis of the sensory data aimed to provide 

information on the assessors’ performance, the characterization of the products or the connection

between the sensory data. One of the methods usually used to this end is the generalized

procrustes analysis (GPA) (Gower, 1975). We applied the method suggested by Kunert and 

Qannari (Kunert and Qannari, 1999; Qannari and Meyners, 2001). The latter is presented like a 

simpler alternative of the GPA in terms of its ease of setup. This method consisted of two stages. 

Initially the data were pretreated in order to be free from the differences between the assessor
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notation methods. It acted to some extent as a standardization of the individual configurations. 

Then, a PCA was carried out on the corrected data. 

In summary, the different analysis performed on the different systems, i.e., raw materials,

model systems, emulsions, mixes and ice creams, are reported in Table 12.
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Table 12: Summary of the analysis carried out on the different systems. 

Methods Data obtained
Raw

material

Model

system
Emulsion Mix

Ice

cream

Gas

chromatography

Composition of fat and 

emulsifiers

Spectrophotometry
Protein partitioning at the 

oil in water interface 

Interfacial tension
Interfacial behavior of 

proteins and emulsifiers

1-H-NMR
Fat and emulsifier

crystallization

Viscosity
Measurement of the 

fluid’s resistance to flow

Dynamic rheology 
Textural properties, 

structural networks 

Light scattering Fat droplet size evolution

Melting time Melting behavior 

DSC
Fat and emulsifier thermal

behavior

Fluorescence
Molecular data on protein 

environment

Sensory analysis Map making
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Results and discussion

The characteristics of ice cream structure are important to know since they condition the 

textural and sensory properties of the final product. These characteristics are influenced, at least 

partly, by the ingredient selection. This work focused on the roles of surface-active molecules on

ice cream formation and properties. The interactions of proteins and low molecular weight

emulsifiers between each other and with other ingredients, such as fat, were also investigated. We

have considered the product in the different steps of processing and, in particular, before and after

the homogenization steps, during the ageing period and after freezing. However, because some

ice cream mix properties could be difficult to characterize due to the presence of sugars and 

polysaccharides, simplified systems such as oil-in-water emulsions were also studied. It is worth

noting that, regardless the system considered, i.e., oil-in-water emulsion, ice cream mix or ice 

cream product, the same apparatus and process parameters were used. Likewise, the same

ingredients were chosen. They present an industrial interest for their wide use in food industry 

and especially in ice cream formulation. Thus, the purpose of this work was to master the

influence of the formulation, i.e., the protein mixture, the nature of the low molecular weight

emulsifier and / or the fat characteristics on the physicochemical properties of the three systems

studied. Correlations between the different methods of characterization were assayed.

I . O I L - I N - W A T E R  E M U L S I O N

I.1. Résumé

L'étude des émulsions huile dans eau permet d’appréhender le comportement de la crème

glacée dans ses premières étapes de fabrication et, en particulier, la mise en place et l’évolution

de l’interface formée autour des gouttelettes d’huile. Pour réaliser cette étude, nous considérons 

différentes émulsions à base de deux mélanges protéiques (poudre de lait écrémé (SMP) et 

protéines laitières fonctionnalisées (FDP)), deux types de mono- et diglycérides (MDG) (saturé et 

partiellement insaturé), trois matières grasses (deux huiles de coprah, l’une hydrogénée et l’autre

raffinée, et une huile de palme raffinée). Cette sélection d’ingrédients devrait mettre en évidence

les interactions se produisant entre la phase grasse, les émulsifiants de faible poids moléculaire et 

les protéines. Les émulsions sont caractérisées par le diamètre des globules gras, des paramètres

rhéologiques et la couverture protéique à l’interface des globules gras. Deux méthodes différentes 
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sont utilisées pour la quantification des protéines adsorbées à la surface des globules gras : une 

méthode dite « classique » de centrifugation suivie d’un dosage colorimétrique et une méthode

utilisant la fluorescence du tryptophane présent dans les protéines.

Après homogénéisation, le diamètre des globules gras mesuré pour les émulsions à base 

de FDP est élevé et reflète la présence d'agrégats. Avec ce type de protéines, les caractéristiques 

de taille des globules gras dépendent de la nature de la matière grasse et des émulsifiants présents

dans la formulation. En revanche, les émulsions à base de SMP sont caractérisées par de faibles 

proportions de particules agrégées quelle que soit la formulation. L’étape de maturation (24 h à 

4°C) entraîne un phénomène de désagrégation des globules dans les formulations à base de FDP, 

alors que les émulsions à base de SMP sont stables. Les paramètres rhéologiques (viscosité,

modules élastique et visqueux) varient très faiblement avec la composition du système et ne

dépendent pas d'un ingrédient spécifique de la formulation. 

Après l'étape d'homogénéisation, la quantité de protéines adsorbées à la surface des 

globules gras varie en fonction de la nature de la matière grasse et/ou du type d'émulsifiant. Une 

adsorption sélective des caséines par rapport aux protéines de lactosérum est mise en évidence

dans le cas des formules à base de FDP. L’étape de maturation favorise le phénomène de 

désorption protéique de la surface des globules gras, suggérant une rupture des interactions 

interfaciales entre les protéines. Cette désorption protéique est plus nettement prononcée dans les 

émulsions à base de SMP comparée à celle observée dans les émulsions à base de FDP. Dans les 

deux cas, ce phénomène est plus ou moins influencé par la nature de l'émulsifiant et de la matière

grasse. Ces résultats de désorption protéique sont corrélés aux mesures de tension interfaciale.

Par exemple, dans le cas d’un système à base de SMP et de MDG saturé, tant que la température

de 20°C n’est pas atteinte, la protéine impose sa tension interfaciale. Quand la température

décroît (ce qui correspond à l’étape de maturation), l’émulsifiant en cristallisant impose sa 

tension interfaciale au système. Ces résultats suggèrent fortement un phénomène de compétition

de l’émulsifiant et de la protéine pour l’interface.

I.2. Introduction

The study of oil-in-water emulsions allows the consideration of the ice cream product in 

the first step of processing and, in particular, the characterization of the adsorbed layer formed

around the fat droplets in the emulsions. During the homogenization step, the preparation is 

subjected to high shear. This results in the disruption of the fat phase into small oil droplets.

Surface-active components of the emulsion adsorb onto the nascent interface, lowering the
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interfacial tension and, thus, stabilizing the droplets. As already mentioned (§ A.I.1.), the exact 

composition of the interfacial layer depends on the proportions of each type of surface-active

component and their relative surface activities. Moreover, proteins that initially adsorb at the fat 

droplet interface are partially squeezed out from the surface during the low temperature ageing

step, through the competition with low molecular weight emulsifiers (§ A.I.2.2.).

The purpose of this first part was to characterize some physicochemical properties of oil-

in-water emulsions. Physical properties were assayed through fat particle size and viscosity

measurements. The amount of proteins and the protein types adsorbed onto the fat globule 

surface was quantified thanks to different methods. In particular, a direct method of protein

quantification in emulsified systems that avoided the use of centrifugation, namely front-face 

fluorescence, was developed. The stress was put on the behavior of protein and low molecular

weight emulsifier at the oil-water interface and their interactions with the fat used. Interfacial 

surface activity measurements of protein and low molecular weight emulsifier were performed to

interpret the surfactant behavior as a function of temperature.

The competitive adsorption between milk proteins and low molecular weight emulsifiers

was first investigated through interfacial tension measurements as a function of different 

vegetable fats (oleic oil, hydrogenated and refined coconut oils, and refined palm oil) at oil / 

water interface. The surface active molecules considered were two MDG (saturated and partially 

unsaturated), and SMP. The obtained results (Granger et al., 2003, Appendix 2) suggested that,

at room temperature, the interfacial tension value was influenced, at least partly, by both the 

chain length and the unsaturation degree of the oil phase fatty acids (Table 13). Some interactions 

between the oil and the lipid emulsifier would occur through the hydrophobic parts of the 

molecules. Thus, surface activity could be favored when the fatty acid chain length of the fat 

fitted that of the emulsifier, as in the case of refined coconut oil and MDG. In contrast, increasing

the unsaturation degree of the oil phase fatty acids, like in refined palm oil, reduced the

possibility of interaction since the cis double bond created a bend in the fatty acid structure that 

would enable the rest of the molecule to interact with the emulsifier. However, these hydrophobic 

interactions only explained partly the results obtained. For instance, irrespectively of the MDG 

used, systems based on hydrogenated and refined coconut oils were characterized by significantly 

different surface tension values, although these two oils only differed by 8 % of oleic acid. Thus, 

the behavior of the systems with different oil phases could also be relevant of different 

crystallization behavior of the fats. Indeed, responses to changes in interfacial tension could be
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Table 13: Effect of fat type and emulsifier nature on interfacial tensions of oil / water

interfaces.

Interfacial tension (mN/m) 1

Mono- diglycerides Fat 2 20°C

Hydrogenated coconut oil 6.6

Refined coconut oil 3.3Saturated

Refined palm oil 4.6

Hydrogenated coconut oil 5.0

Refined coconut oil 2.9Partially unsaturated

Refined palm oil 4.1
1 Each listed value is the average of, at least, triplicate sets of measurements  standard deviation.
2 Each fat is a mixture of sunflower oil with the fat listed in the table at a ratio of 80/20.
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associated with morphology of the fat crystals (Ogden and Rosenthal, 1997). In the case of the 

combination of hydrogenated coconut oil and partially unsaturated MDG, the formation of

platelet fat crystals that behave very differently from the other crystallized globular fat (Goff, 

personal communication) could account for the specific behavior of this fat. Thus, each fat would 

lead to specific interfacial value dependent on the MDG. Results of interfacial tension obtained 

with SMP mixed with emulsifiers showed that, as long as the temperature of 20°C was not

reached, SMP imposed its interfacial tension. Upon cooling, the interfacial activity of MDG

dominated.

It is known that monoglycerides destabilize protein-based emulsions, i.e., monoglycerides 

squeeze out proteins from the interface at or below the critical temperature for monoglyceride

crystallization (Krog and Larsson, 1992). Thus, in order to correlate the variation of the surface 

activity of the emulsifier with temperature and with the protein load at the fat globule surface, the 

amount and types of adsorbed proteins were quantified before and after the ageing process 

(Granger et al., 2003, Appendix 2; Granger et al., 2005a, § C.I.3.). At 20°C, after the 

homogenization step, emulsions were mostly stabilized by proteins. A displacement of the

proteins adsorbed onto the oil droplet interface by the lipid surfactant was a consequence of the 

ageing step, suggesting a disruption of the interfacial protein interactions. This disruption was 

more marked with SMP than with FDP and, in both cases, was more or less influenced by the

emulsifier and fat natures. A competitive adsorption of caseins over whey proteins was 

demonstrated in the case of FDP but not in the case of SMP. Because, the quantification of the 

protein load at the fat globule surface required a step of centrifugation that could induce artifacts 

in the protein partitioning, we developed a direct technique of characterization that avoided the 

use of centrifugation (Granger et al., 2005b, § C.I.4.). Front-face fluorescence spectroscopy

allows investigation of turbid samples like emulsions. The protein coverage of oil-in-water

emulsions was followed through the presence of intrinsic tryptophan residues in proteins.

However, because the variations in the emission spectra with the emulsion formulation were too

small to allow the accurate discrimination of proteins at the interface or in the aqueous phase, we 

investigated the fourth derivative spectra. Indeed, it was reported (Rampon, et al., 2001; Rampon,

et al., 2003), that the fourth derivative tryptophan emission spectrum differentiated tryptophan in 

hydrophobic and hydrophilic environments. The mathematical treatment of the fluorescence 

emission spectra developed in collaboration with J. Toutain (Bordeaux 1 University, ENSAM, 

ENSCPB, Trefle UMR 5508) allowed the quantification of the amount of proteins non adsorbed 
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onto the fat globules. This amount was well correlated with that found after centrifugation and a 

classical spectrophotometric method of protein quantification (r² = 0.91, p<0.05).

In parallel, the physical characterization of the emulsions pointed out that, at 20°C, after 

the homogenization step, the fat globule size was mostly dependent of the protein mixture used,

i.e., low mean diameter and low aggregation for SMP-based emulsions and high diameter and 

high aggregation phenomenon for FDP-based emulsions. Only for FDP-based formulations, the 

fat globule size characteristics were dependent on the emulsifier and fat types present in the

formulation. While for SMP-based formulation the ageing period (24h at 4°C) had no effect on

the mean diameter characteristics, some disaggregation was observed in the case of FDP 

emulsions.
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I.3. C. Granger, P. Barey, P. Veschambre, M. Cansell (2005a).
Physicochemical behavior of oil-in-water emulsions. Influence of milk 
protein type, glycerol ester mixtures and fat characteristics. Colloids 
and Surfaces. B: Biointerfaces, 42, 235-243.1

1 Reprinted from Colloids and Surfaces. B: Biointerfaces, 42, C. Granger, P. Barey, P. Veschambre, M. 

Cansell, Physicochemical behavior of oil-in-water emulsions. Influence of milk protein type, glycerol ester mixtures

and fat characteristics., 235-243, Copyright (2005), with permission from Elsevier.
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I.4. C. Granger, P. Barey, J. Toutain, M. Cansell (2005b). Direct 
quantification of protein partitioning in oil-in-water emulsion by front-
face fluorescence: avoiding the need for centrifugation. Colloids and 
Surfaces. B: Biointerfaces, 43, 157-161.2

2 Reprinted from Colloids and Surfaces. B: Biointerfaces, 43, C. Granger, P. Barey, J. Toutain, M. Cansell,

Direct quantification of protein partitioning in oil-in-water emulsion by front-face fluorescence: avoiding the need

for centrifugation, 157-161, Copyright (2005), with permission from Elsevier.
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I.5. Conclusion

The results obtained on oil-in-water emulsions suggested that not only the surfactant

molecules, i.e., emulsifier and protein, but also the fat used in the formulation participated in the

development of the characteristics of the oil droplet interface and of the rheological emulsion

properties. Several methods characterizing the fat globule size distribution, the amount of protein 

adsorbed at the fat globule surface and some rheological parameters were used to assess the oil-

in-water emulsion properties. Each method enlightened on the role of one or more specific

ingredients (protein mixture, emulsifier type, fat nature) or of a process parameter (ageing time or 

temperature). As a result, no correlation could be found between the different methods used, for 

the entire set of formulations studied. However, for selected formulations like those based on 

FDP, protein desorption was correlated with the variation in mean diameters of fat globules, 

desorption being all the more important than the decrease in size was marked. Thus, it seemed

necessary to cross different methods in order to better characterize the oil-in-water emulsion on 

the whole.

As expected from the chemical composition and the heat treatment, the two protein

mixtures were well discriminated. Although the protein amount was not held constant for SMP-,

and FDP-based formulations, the values obtained for the total adsorbed proteins at the fat globule 

interface showed that protein amount was not limiting with FDP for fat globule coverage. Thus,

the differences between FDP and SMP were more likely to be due to different protein network

formation. For SMP-based formulations, protein desorption during the ageing period was 

influenced by both the emulsifier type and the fat nature. Regardless of the fat used, partially 

unsaturated MDG was more effective at displacing milk proteins from the droplet surface than

the saturated emulsifier. However, as the fatty acid unsaturation degree of the fat increased, the 

influence of the emulsifier type on protein desorption tended to vanish. This suggested that SMP

allowed the development of fat/emulsifier interactions at the expense of fat/protein interactions.

For FDP-based formulations, the protein network limited the apparent protein desorption 

phenomenon during ageing. It could be hypothesized that the protein/protein interactions 

prevailed over the protein/emulsifier or protein/fat interactions. It is worth noting that some

formulations exhibited unexpected behaviors. Formulation based on hydrogenated coconut oil / 

saturated MDG showed significant lower amount of adsorbed protein at the fat globule surface.

The formulation based on refined coconut oil / partially unsaturated MDG developed a high

viscosity.
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I I . I C E  C R E A M  M I X E S

II.1. Résumé

Au niveau de sa composition, le mix de crème glacée se différencie de l’émulsion huile 

dans eau par la présence de sucres et de polysaccharides. En revanche, les proportions

d'émulsifiant, de protéine et de matière grasse restent inchangées comparées à celles des 

émulsions. Etant donné que le process de fabrication du mix de crème glacée comprend un

refroidissement rapide à 4°C après pasteurisation, les analyses sur le mix sont réalisées 

uniquement à 4°C, et non plus à 20°C comme dans le cas des émulsions. Les mixes sont 

caractérisés par la distribution granulométrique des globules gras et leurs propriétés rhéologiques. 

La cristallisation de la matière grasse du mix est étudiée par analyse thermique différentielle.

Pour les mixes à 4°C, la nature du mélange protéique (SMP ou FDP) est le facteur 

déterminant la distribution granulométrique des globules gras. Les formulations à base de SMP

sont caractérisées par des globules gras de plus petite taille et un pourcentage plus faible de 

particules ayant un diamètre supérieur à 2 m que les formulations à base de FDP qui présentent

des proportions de particules agrégées élevées. De plus, le temps de maturation (jusqu'à 16 h) 

n'influence pas de manière significative les paramètres de taille des globules gras pour les 

formulations à base de SMP indiquant que les mixes sont stables. Les mixes à base de FDP 

maturés présentent des évolutions variables selon les formulations, i.e., une agrégation persistante

voire amplifiée ou une désagrégation partielle. De manière générale, pour une matière grasse

donnée, les formulations contenant le MDG insaturé contiennent des globules gras de plus grand 

diamètre que celles préparées avec le MDG saturé. De plus, quel que soit l’émulsifiant, les

matières grasses composées d’acides gras saturés, i.e., huiles de coprah hydrogénée et raffinée 

conduisent à des tailles de globules gras plus importantes.

A 4°C, les mixes développent de faibles viscosités apparentes, entre 69 et 118 cP, quelle 

que soit la composition du mix. Aucune influence significative du type de matière grasse,

d'émulsifiant ou de protéine n'est mise en évidence. Après maturation, la viscosité apparente

augmente, généralement, de 20 % par rapport à la valeur à 4°C. Cependant, les mixes composés

d'huiles de coprah, de MDG partiellement insaturé et de FDP présentent un comportement

particulier avec une augmentation de la viscosité d’un facteur 10 au minimum.
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L'émulsification de la matière grasse entraîne une modification des profils de

cristallisation par rapport à la matière grasse en phase continue. La dispersion de la matière

grasse dans les mixes de crème glacée conduit à l’apparition d’un nouveau pic de cristallisation

au-dessus de 30°C qui pourrait correspondre à la cristallisation du MDG en association avec la 

matière grasse. Pour certaines formulations notamment à base de SMP, une diminution de la 

température du pic principal de cristallisation est observée par rapport à la cristallisation de la

phase continue. Le remplacement des protéines du lait natives par des protéines fonctionnalisées 

augmente généralement la proportion de matière grasse cristallisée et lisse les différences de 

comportement entre la matière grasse sous forme dispersée et en phase continue.

II.2. Introduction

Ice cream mixes only differed from oil-in-water emulsions by the presence of sugars and 

polysaccharides. The proportions between emulsifier, protein and fat remained unchanged 

compared with emulsion systems. As ice cream process consisted of a rapid cooling at 4°C after 

pasteurization, the analyses were performed only on mix at 4°C, and no more at 20°C as for 

emulsions. Mixes were characterized by droplet size distribution and rheological properties. Mix 

crystallization was also investigated using DSC. The purpose if this second part, was to study a 

system that was actually implied in ice cream processing, and to assay the differences if any

between mix and emulsion with the aim to use simplified emulsion systems instead of real 

systems.

For mixes at 4°C, it is clear from Tables 14 and 15, that the protein mixture (SMP or 

FDP) was the main factor determining the droplet size distribution in ice cream mixes

composed of various fat, emulsifier, and protein combinations. Concerning the influence of the

protein mixture, compared with FDP, the presence of SMP in the formulations led to smaller

droplet sizes and a lower percentage of d > 2 m. With SMP, the droplet size distribution 

followed unimodal distribution with droplet sizes ranging from 0.03-10 m. The presence of FDP

in the mix formulation revealed the existence of two overlapping fat globule populations between 

0.03-2 m and 2-20 m. After dispersion of the aggregates with an SDS solution, the particle size

distribution displaced towards lower sizes close to those found for SMP-based formulations.

Thus, the high particle sizes found for FDP-based systems could correspond to flocculated fat 

droplets. Concerning the influence of the fat nature or the emulsifier type, in the case of SMP-

based systems, only small variations were observed, suggesting that, the homogenization
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Table 14: Effect of milk protein mixture, emulsifier and fat types on particle mean 

diameter ( m) of ice cream mixes before and after ageing (16 h-storage at 4°C). 

Particle mean diameter1 ( m)
Protein MDG Fat

     4°C - 0h        4°C - 16h 

AMF 0.6 0.1 0.6 0.0

HCO 0.7 0.0 0.7 0.0

RCO 0.7 0.0 0.7 0.0
Saturated

RPO 0.6 0.0 0.6 0.0

AMF 0.8 0.1 0.8 0.1

HCO 0.7 0.1 1.7 0.9

RCO 0.8 0.0 0.7 0.0

SMP

Partially

unsaturated

RPO 0.9 0.1 1.0 0.1

AMF 7.2 0.4 6.7 1.0

HCO 11.0 1.71 12.9 1.8

RCO 8.4 2.3 13.7 1.1
Saturated

RPO 13.8 1.2 9.6 0.8

AMF 14.2 0.8 12.9 1.3

HCO 8.0 0.4 21.9 7.0

RCO 11.8 0.5 24.9 0.3

FDP

Partially

unsaturated

RPO 16.6 0.4 14.2 0.7

1 Values are means of  SD (n=6).

MDG: mono- and diglyceride mixture; AMF: anhydrous milk fat; HCO: hydrogenated coconut 

oil; RCO: refined coconut oil; RPO: refined palm oil; SMP: skim milk powder; FDP: functional 

dairy proteins. 
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Table 15: Effect of milk protein mixture, emulsifier and fat types on the proportion of 

particles with diameters higher than 2 m (d > 2 m) (%) in ice cream mixes before and 

after ageing (16-h storage at 4°C). 

 d > 2 m1 (%) 
Protein MDG Fat

    4°C - 0h   4°C - 16h 

AMF 4.8 0.5 4.3 0.5

HCO 5.3 0.3 4.7 0.7

RCO 4.4 0.3 4.4 0.0
Saturated

RPO 4.5 0.3 4.6 0.2

AMF 5.9 1.1 5.1 0.8

HCO 5.9 0.8 9.5 3.2

RCO 5.6 0.3 4.4 0.1

SMP

Partially

unsaturated

RPO 4.6 0.3 4.0 0.5

AMF 89.4 8.4 77.7 2.9

HCO 99.9 0.1 87.6 2.2

RCO 89.8 4.6 84.4 2.3
Saturated

RPO 87.1 1.7 73.9 1.3

AMF 98.4 3.4 98.0 0.4

HCO 99.8 0.1 90.4 0.2

RCO 93.9 1.9 92.0 0.1

FDP

Partially

unsaturated

RPO 86.7 0.8 79.2 1.1

1 Values are means of  SD (n=6).

MDG: mono- and diglyceride mixture; AMF: anhydrous milk fat; HCO: hydrogenated coconut 

oil; RCO: refined coconut oil; RPO: refined palm oil; SMP: skim milk powder; FDP: functional 

dairy proteins. 

111



Results and discussion

pressure was the dominating factor in ice cream mix formation that determined the droplet size 

distribution. In the case of FDP-based formulations, mean diameters ranged from 7.2 to 24.9 m

and, in all cases, more than 74 % of the particles were involved in flocculated aggregates. For

freshly prepared ice cream mixes containing FDP, the apparent droplet size varied without any 

specific influence of the fat and emulsifier types. The ageing time (until 16 h) did not influence 

significantly the size parameters for SMP-based formulations indicating that the ice cream mixes

were well stabilized. This stability suggested that the entire oil-water interface was covered by a 

sufficient amount of surfactants so that, upon time, aggregation and coalescence of the fat 

globules were prevented. In contrast, for aged mixes containing FDP and for a given fat, partially 

unsaturated emulsifier-based formulations led to higher fat globule sizes than saturated ones.

Moreover, the more saturated the oils (refined and hydrogenated coconut oils), the higher mean

diameters observed, regardless of the emulsifier type used.

Viscosity was measured on the ice cream mixes before and after the ageing step. Before

ageing, at 4°C, mixes exhibited low apparent viscosities, between 69 and 118 cP, regardless of

their compositions (Table 16). No significant influence of fat, emulsifier or protein mixture was

found. With the ageing time, the apparent viscosity increased by 20  5 % in average, for almost

all formulations. However, it was worth noting that the mixes composed of FDP-partially

unsaturated MDG-coconut oils exhibited a peculiar behavior with a high apparent viscosity after 

ageing. Apparent viscosity was increased by a factor 10.1 and 12.7 for hydrogenated coconut oil

and refined coconut oil, respectively. Considering the ageing time, the viscosity values were 

neither correlated with the oil droplet size of the ice cream mixes nor with the percentage of d > 

2 m that reflected aggregation.

The crystallization behavior of the different fats used was studied by DSC in bulk 

samples and in aged mixes. Rapid cooling conditions were applied to mimic the thermal events 

that occurred during ice cream processing. Compared with bulk fat, emulsification led to a 

modification of the DSC profiles in the case of SMP- and FDP-based formulations (Figure 4). All 

the mix thermograms were characterized by a small additional crystallization event above 30°C 

(peak 2) that was not present in the bulk samples. Table 17 presents the onset temperature and 

enthalpy values determined on peaks 1 and 2, for SMP or FDP and saturated MDG-based mixes.

Results concerning SMP-based formulations are presented in Granger et al., 2005c (§ C.II.3.).
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Table 16: Effect of milk protein mixture, emulsifier and fat types on apparent viscosity 

(cP) of ice cream mixes before and after ageing (16 h-storage at 4°C). 

Apparent viscosity1 (cP)
Protein MDG Fat

  4°C - 0h    4°C - 16h 

AMF 88 11 108 3

HCO 76 16 101 4

RCO 85 0 115 0
Saturated

RPO 73 4 85 0

AMF 106 27 131 36

HCO 80 0 124 1

RCO 84 5 125 0

SMP

Partially

unsaturated

RPO 74 5 104 1

AMF 69 2 79 4

HCO 96 34 108 3

RCO 75 7 93 10
Saturated

RPO 74 2 80 3

AMF 74 5 91 9

HCO 86 9 875 45

RCO 118 4 1495 115

FDP

Partially

unsaturated

RPO 71 1 114 6

1 Values are means of  SD (n=2).

MDG: mono- and diglyceride mixture; AMF: anhydrous milk fat; HCO: hydrogenated coconut 

oil; RCO: refined coconut oil; RPO: refined palm oil; SMP: skim milk powder; FDP: functional 

dairy proteins. 
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Figure 4: Exothermic peaks obtained by DSC during cooling of refined coconut oil in 

the bulk phase (              ) and in emulsions based on saturated mono- and diglyceride 

mixture and functional dairy proteins (   ) and skim milk powder (              ). 
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Table 17: Effect of fat type and protein mixture on crystallization temperatures and 

enthalpies of DSC cooling curves of saturated MDG-based aged mixes.

Peak 1 b Peak 2 b

Fat / Physical form 
Crystallized

matter (%) a

Onset

temperature

(°C) c

End of 

peak (°C) c
Area

(J.g-1) c 

Onset

temperature

(°C) c

Area

(J.g-1) c

Refined coconut oil 

Bulk

Emulsified
SMP

FDP

34  4 

37  0 

10.0  1.8 

7.9  0.4 

9.0  0.0 

–18.5  1.0

–14.8  3.3

–19.1  3.3

97.81  2.90 

2.65  0.39 

2.92  0.08 

-

36. 1  0.2 

38.1  1.2 

-

0.18  0.01

0.12  0.03

Hydrogenated coconut oil 

Bulk

Emulsified
SMP

FDP

29  4 

49  6 

19.3  1.1 

16.7  2.8 

21.5  0.1 

–22.2  1.5

–14.6  3.1

–18.7  0.4

103.07  1.90 

2.61  0.55 

4.00  0.49 

-

36.3  0.9 

39.0  0.9 

-

0.15  0.02

0.09  0.01

Refined palm oil 

Bulk

Emulsified
SMP

FDP

57  6 

64  3 

20.7  0.0 

22.6  0.5 

24.1  0.6 

–25.3  0.0

–16.0  1.2

–17.4  0.0

50.62  3.80 

2.00  0.25 

2.25  0.11 

-

38.9  0.3 

42.2  0.9 

-

0.14  0.00

0.08  0.02

Anhydrous milk fat

Bulk

Emulsified
SMP

FDP

60  4 

57  1 

18.0  0.0 

20.9  0.6 

21.6  0.2 

–26.1  0.0

–16.6  1.1

–13.2  0.7

59.76  0.70 

2.57  0.16 

2.41  0.04 

-

41.3  1.8 

40.9  0.2 

-

0.14  0.01

0.10  0.00

a The percentage of crystallized fat contained in mixes was calculated according to:

100
08.0)1(

)1(
peakfatbulkofarea

peakfatemulsifiedofarea

8 % fat content in the formulations. The amount of fat associated with MDG crystallization (peak

2) was neglected. 
b Peaks 1 and 2 are defined as in figure 4 and in Granger et al., 2005c (§ C.II.3.)
c Values are means of  SD (n=2).

SMP: skim milk powder; FDP: functional dairy proteins. 
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In the following, we focus on the influence of the protein mixture on the mix thermal behavior. 

Expect in the case of anhydrous milk fat, the presence of FDP enlarged the principal peak of

crystallization (peak 1) and was therefore associated with an increase in the amount of

crystallized matter. This was especially the case for the formulation based on the totally saturated 

fat (hydrogenated coconut oil). Crystallization always occurred at a higher temperature for the 

FDP-based mixes compared with the SMP ones. The supercooling effect observed with 

emulsified refined and hydrogenated coconut oils and SMP was less observed with FDP. This

agrees with the hypothesis put forward for emulsions that FDP interacted poorly with fat and,

thus, influenced to a lesser extent fat crystallization in the emulsified state. However, the 

differences found in crystallization onset temperature as a function of protein mixture used in

mixes may also account for higher fat droplet aggregation (higher values of particle mean

diameter and % of particles d > 2 m) in the case of FDP-based mixes (Tables 14 and 15), as 

droplet-droplet interaction may influence fat crystallization (Relkin, et al., 2003a).

The additional exotherm (peak 2) found in all emulsified systems could be attributed 

principally to MDG crystallization. Indeed, MDG crystallize themselves at higher temperatures

than the fats used in this work (59 and 46°C for onset crystallization temperatures for the

saturated MDG and partially unsaturated MDG, respectively). The fact that the characteristics of

this peak both in terms of temperature and areas varied with the ingredient formulation strongly 

suggested the occurrence of fat/emulsifier and/or fat/protein interactions. The influence of the

MDG type in SMP-based formulation is presented in Granger et al., 2005c (§ C.II.3.). 

Fat/protein interactions were revealed by the analysis of peak 2 characteristics when the protein

mixture was varied. For saturated MDG-based formulations, the onset temperatures of peak 2 

ranged from 36 to 41°C with SMP and from 38 to 42°C with FDP (Table 17). For a given fat,

compared with SMP, FDP-based mixes presented higher onset temperature of peak 2 (except for 

anhydrous milk fat) and lower crystallized matter. These results suggested once again that FDP

poorly interacted with fat, and that, when these interactions occurred, they should involve lower 

amount of triacylglycerols than in SMP mix.
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II.3. C. Granger, A. Schöppe, A. Leger, P. Barey, M. Cansell (2005c). 
Influence of formulation on the thermal behavior of ice cream mix and 
ice cream. JAOCS, 82, 427-431.3

3 Reprinted from JAOCS, 82, C. Granger, A. Schöppe, A. Leger, P. Barey, M. Cansell, Influence of 

formulation on the thermal behavior of ice cream mix and ice cream., 427-431, Copyright (2005), with permission

from AOCS press.
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II.4. Conclusion

As reported in the case of oil-in-water emulsion study, the necessity of confronting

different methods for an overall characterization of the mix was pointed out since no correlation 

was found between particle size distribution, viscosity measurements and DSC analysis. It is

worth noting that DSC proved to be a powerful method to investigate the fat/emulsifier and 

fat/protein interactions during crystallization through the variations of the onset temperatures and 

enthalpy areas when the mix formulations were varied.

Similarities in the behavior of ice cream mix and emulsion were found in: i) the 

droplet size stability of SMP-based ice cream mixes in the presence of competitively adsorbing

surfactants and the flocculation phenomenon found in the case of mixes containing FDP. In

particular, our results agreed with the fact that oil droplets were less aggregated in systems

containing the highest proportion of caseins (Berger and White, 1971; Sourdet, et al., 2002). In 

contrast, whey proteins partially denatured by heat treatment may favor the formation of

polymers at the oil-water interface through bridging flocculation (Segall and Goff, 1999) and

may also lead to a higher water binding capacity (Sünder, et al., 2001); ii) the increase in

viscosity after the ageing period. In particular, the association of FDP, partially unsaturated MDG

and coconut oils led to high viscous emulsions and ice cream mixes. Viscosity values resulted not 

only from one parameter (droplet size, crystallized fat matter) but were rather the consequence of

complex protein-emulsifier-fat interactions. It can be hypothesized that the fatty acid chain length 

and unsaturation degree of refined coconut oil would fit well with the characteristics of the 

partially unsaturated emulsifier (fatty acid chain length and unsaturation degree) at the fat globule 

interface. In presence of this peculiar association, refined coconut oil-partially unsaturated MDG, 

FDP would be able to interact more with the fat globules through non-covalent bonds than with 

other fat-emulsifier combination and would lead to a strong gel structure.

However, differences in the behavior of ice cream mix and emulsion were also pointed 

out in: i) the disaggregation phenomenon observed in the case of emulsion systems during the 

ageing period for the FDP-based formulations that was not revealed in all ice cream mixes. This 

may account, at least partly, for a different reference temperature before ageing (20°C and 4°C

for emulsions and mixes, respectively) so that protein desorption might have already begun in the 
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case of mix. The presence of hydrocolloids in the aqueous phase may also influence the colloidal

stability (Dickinson, 2003). Hydrocolloids can modify the interfacial characteristics either by 

adsorption at the interface or by complexation with proteins. This could result in difference in

stability with respect to aggregation when emulsion and mix are compared; ii) the rheological

behavior of some formulations. Samples that exhibited higher viscosities in the emulsion system

were even more individualized in the ice cream mix system. For example, after the ageing period,

the viscosity of the mix based on FDP, hydrogenated coconut oil and partially unsaturated MDG

was three times higher than that of the corresponding emulsion. When hydrogenated coconut oil 

was replaced by refined coconut oil, the viscosity was multiplied by a factor 16 in the mix

compared with the corresponding emulsion. 

On the whole, the results obtained on ice cream mixes provided evidence that oil-in-water

emulsions could not always simulate the phenomena occurring in more complex systems, so that 

both systems were worth studying. 

I I I . I C E  C R E A M

III.1. Résumé

Les étapes concomitantes de foisonnement / congélation constituent les dernières étapes

du procédé de préparation de la crème glacée et permettent le développement final de la structure 

et des propriétés organoleptiques du produit. La diminution de la température à -5°C entraîne la 

formation de petits cristaux de glace de sorte qu’environ 50 % de l'eau se trouve sous forme

cristallisée. Cette cristallisation s’accompagne d’un phénomène de cryo-concentration de la phase 

aqueuse. La diminution de la température permet également à la cristallisation de la matière

grasse et de l'émulsifiant, qui a commencé pendant l'étape de maturation, de se poursuivre. 

L'incorporation d'air entraîne une expansion en volume du produit. Les étapes de foisonnement /

congélation s’effectuent sous cisaillement, ce qui favorise la collision des globules gras. En 

conséquence, de nouvelles interfaces (cristaux de glace / phase aqueuse, air / globules gras, air / 

phase aqueuse), et des réseaux (gras, protéique, de cristaux de glace partiellement fusionnés) sont 
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formés. Il est important de maîtriser la formation de ces structures parce qu'elles influencent les 

propriétés texturales de la crème glacée.

Ce troisième chapitre est centré sur l’influence de la nature de la phase grasse, du type 

d’émulsifiant de faible poids moléculaire et du type de protéine sur les différentes structures

présentes dans les crèmes glacées. Pour réaliser cette étude, seize formulations, correspondant à 

quatre types de matière grasse (huiles de coprah hydrogénée ou raffinée, huile de palme raffinée 

et beurre), deux mélanges de MDG (saturé et partiellement insaturé) et deux types de mélanges

protéiques (SMP et FDP) sont sélectionnées pour présenter a priori des caractéristiques 

structurales différentes. Les crèmes glacées sont caractérisées par des techniques

physicochimiques classiques telles que la distribution en taille des globules gras, et la quantité de 

protéines présente dans la phase aqueuse. D’autres techniques ont demandé une mise au point

comme l’analyse thermique ou la caractérisation rhéologique des crèmes glacées pour pouvoir 

analyser les produits de manière reproductible aux températures négatives. Les spectres de 

fluorescence du tryptophane sont enregistrés directement à partir des échantillons de crème

glacée. La capacité discriminante des données est étudiée par une analyse en composantes

principales et par une analyse discriminante des moindres carrés partiels. Enfin, les études de 

résistance à la fonte et l’analyse sensorielle permettent de répondre aux attentes du 

consommateur. Les objectifs de ce chapitre donc sont multiples. Il s’agit : i) de déterminer

l’influence d’un type d’ingrédient sur une ou plusieurs caractéristiques du produit fini ; ii) de 

savoir si il est possible de prédire les propriétés des crèmes glacées connaissant celles du mix ; ii) 

d’établir d’éventuelles corrélations entre les différentes méthodes d’analyse effectuées.

De manière générale, les formulations de crèmes glacées à base du MDG insaturé 

contiennent un plus grand pourcentage de globules gras agglomérés, sont plus fermes (valeurs 

élevées du module élastique) et sont caractérisées par un temps de fonte long. Quelques 

formulations présentent des comportements spécifiques, notamment celle à base d’huile de

coprah raffinée, de MDG partiellement insaturé et de FDP (temps de fonte et module élastique 

particulièrement élevés). L’étude rhéologique des crèmes glacées met bien en évidence

l’influence d’un type d’ingrédient dans une plage de température définie, ce qui permet

d’individualiser les formulations les unes par rapport aux autres. L’analyse en composantes

principales des spectres de fluorescence du tryptophane réalisés sur les crèmes glacées permet

une discrimination claire entre les deux mélanges protéiques. De plus, en considérant chaque 

mélange protéique séparément, l’analyse discriminante des moindres carrés partiels met en

évidence une discrimination en fonction du type de matière grasse. Par contre, aucune
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discrimination n'est trouvée en fonction du type d'émulsifiant. Les caractéristiques de texture des 

crèmes glacées évaluées par l’analyse sensorielle permettent d’obtenir une cartographie des

produits finis. Seule l’influence du mélange protéique est révélée par cette analyse.

III.2. Introduction

The next stage of ice cream structure development occurs during the concomitant

whipping and freezing steps. Decreasing the temperature down to -5°C allows the formation of 

small ice crystals. In ice cream, about 50 % of the initial water is in the form of ice. This results 

in the cryo-concentration of the aqueous phase. The temperature decrease leads also to fat and

emulsifier crystallization although this crystallization has already begun during the ageing step.

Air incorporation leads to a volume expansion of the extruded product while shearing favored fat

globule collision. As a result, new interfaces, i.e., aqueous phase / ice crystals, fat globules / air, 

aqueous phase / air, and networks of partially coalesced fat, proteins and ice crystals are formed.

All these structures are important to control because they are determining factors influencing ice 

cream structure and texture as well as ice cream time stability. For example, it is well known that 

the fat globule network obtained during the freezing stage is involved in ice cream dryness

(Kloser and Keeney, 1959), shape retention after scraped surface freezing, slowness of meltdown

(John and Sherman, 1962) and smooth eating textural properties after hardening (Berger and

White, 1971).

In this third chapter, the different phases present in ice cream were characterized using

different methods. Classical methods such as fat globule mean diameter and melting time were 

used. Some methods, like thermal analysis and rheological characterization were adapted to the 

ice cream product. Front-face fluorescence was applied to ice cream and multivariate analysis of

the fluorescence spectra was developed thanks to the collaboration with J.-P. Da Costa (ENITA 

de Bordeaux). Finally, ice creams were evaluated through sensory analysis. Correlation between 

physicochemical characteristics and consumer perception was assayed. 

Fat globule size distribution and melting times of ice creams pointed out the influence 

of the emulsifier, and, to a lesser extent, the influence of the fat type (Granger et al., 2005d, § 

C.III.3. and Granger et al., 2005e, § 0.). Saturated MDG led to lower fat globule mean diameter,

fat agglomeration and melting time values compared with the corresponding ice creams based on 

partially unsaturated MDG. For a given MDG, small differences in particle size distribution and

melting time were observed when the fat type varied. The protein mixture used in ice cream
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formulation had no significant effect on the physical characteristics of ice cream although the

formulation based on partially unsaturated MDG, refined coconut oil and FDP led to a peculiar

high melting time value.

Ice creams were characterized by the storage modulus (G’) and the damping factor (tan ).

This rheological analysis allowed the underlining of the different structures present in the ice 

cream product when considering specific temperature ranges. Thus, –10 to –2°C was relevant of 

the melting of ice crystals, 17 to 30°C of the fat globule network and 43 to 55°C of the protein

network destruction (Granger et al., 2004, Appendix 3, and Granger et al., 2005d, § C.III.3.). In

particular, for temperatures between 17 to 30°C, G’ variations were dependent on the fat nature 

so that G’ decrease was less pronounced when the melting temperature range of the vegetable fats

used was extended. Partially unsaturated MDG-based formulations were associated with higher 

initial G’ values than saturated MDG-based ones. Since G’ may be interpreted in terms of system

rigidity, firmer ice creams should be obtained when partially unsaturated MDG was used. 

Moreover, the presence of the partially unsaturated emulsifier in the formulation was revealed by

two peaks of the damping factor observed at 20-21 and 27°C, while only the peak at 27°C was

observed when the saturated MDG was used. Additional experiments performed on ice cream 

based on the two protein mixtures consolidated the use of rheology to characterize the protein

network (Figures 5 a and b). Between 5 and 20°C, FDP led to higher G’ values compared with 

SMP-based samples. Above 45°C, the storage modulus values of FDP-based formulations were 

higher than that of SMP, suggesting that some structural network remained in the corresponding 

heated product. FDP-based ice creams seemed more resistant to temperature increase than SMP-

based ones, especially when the saturated MDG was present.

Thermal properties of ice cream were analyzed upon heating. Although the water peak 

interfered with the fat peak, melting DSC curves of ice creams allowed the discrimination

between the fat types used in the formulation but were not significantly influenced by the

emulsifier type (Granger et al., 2005c, § C.II.3). After the whipping and freezing steps 

(hardening at -40°C and storage at -20°C), the fat globules in ice cream regained the thermal

properties of the bulk fat.

The front-face fluorescence data were analyzed through the fourth derivative tryptophan 

emission spectrum as already performed on emulsions. It was not possible to differentiate 

tryptophan in hydrophilic and hydrophobic environments probably due to the complexity of the 

final product. There could be an overlapping of the tryptophan responses corresponding to each
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Figure 5: Storage modulus (G’) of ice cream product based on refined coconut oil as a 

function of the temperature (  = 1 Hz, heating rate = 0.5°C/min). a: Ice cream based

on skim milk powder; b: Ice cream based on functional dairy protein. Saturated 

mono- and diglyceride mixture (light symbols) and partially unsaturated mono- and 

diglyceride mixture (dark symbols).
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type of interface present in ice cream. Thus, the discriminant ability of the fluorescence spectra 

was investigated by PCA and PLS discriminant analysis. The spectral patterns associated with the 

first axis of PCA pointed out that the wavelengths involved in the discrimination of the different

fat type formulations were different from that found for protein discrimination. Thus, besides the 

identification, at a molecular level, of different protein structures, the statistical approach of the 

fluorescence data allowed the underlining of different interactions occurring between one type of 

protein mixture and the various fats (Granger et al., 2005e, § 0.).
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 Sensory analysis

The way in which the consumer perceives a product depends on a number of factors. 

Visual aspect and aroma are perhaps the paramount factors, but the role of texture must not be 

underestimated. In the case of ice cream, four textural descriptors, i.e., coldness, airiness, 

firmness and unctuousness, were evaluated using sensory profile. The statistical analysis of the

results was performed thanks to the collaboration with J.-P. Da Costa (ENITA de Bordeaux).

Figure 6, representing the correlation circle on PC 1 and 2, shows a projection of the 

initial variables in the factor space. Components 1 and 2 represented 30 % and 17 % of the total 

variance, respectively. Because the variables were far from the center and not close to each other,

they were meaningful and not correlated. The correlation circle indicated that PC 1 was linked to

unctuousness and coldness and PC 2 to airiness. Figure 7 shows the mapping defined by principal

components 1 and 2 of PCA performed on sensory analysis of ice creams. This mapping

separated the ice creams according to the protein mixture, so that two distinct clusters containing

FDP- and SMP-based formulations were distinguished. Ice creams could not be discriminated

with the fat or the emulsifier types. The discrimination with the protein mixture seemed to be 

independent of the product firmness. FDP-based products developed more airiness and coldness 

than SMP-ones. Moreover, the replacement of SMP by FDP led to poorly unctuous products.

Some formulations exhibited specific behaviors so that they could not be classified in a group. 

This was the case for: i) the formulation based on refined coconut oil, FDP and partially 

unsaturated MDG that did not match the behavior of the other formulations containing this type 

of protein mixture; ii) the formulation based on SMP, partially unsaturated MDG and

hydrogenated coconut oil that developed higher unctuousness than the other formulations.

III.6.  Conclusions

Ice creams were characterized by different methods. Each method was relevant of the 

impact of one or more ingredients on the property tested as summarized in Table 18. It is clear 

from this table that correlation between methods could not be expected when one method is 

influenced by the emulsifier while the other is more sensitive to the fat, for example. However,

for a specific fat, i.e., refined coconut oil, it was found that fat agglomeration, melting times and 

storage modulus at 20°C were positively correlated (Figures 8a and b) . This would imply that
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Figure 6: Plot of descriptive attributes for the principal components 1 and 2 analyzed

by principal component analysis performed of sensory analysis of ice creams. 

Unctuousness ( ), firmness ( ), coldness ( ) and airiness ( ).
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Figure 7: Similarity map for the principal components 1 and 2 of the principal 

component analysis performed on sensory analysis of ice creams. Saturated mono- 

and diglyceride mixture ( , ), partially unsaturated mono- and diglyceride mixture

( , ), skim milk powder ( , ), functional dairy protein ( , ). RP: Refined 

palm oil; RC: Refined coconut oil; HC: Hydrogenated coconut oil; AMH:

Anhydrous milk fat.
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Table 18: Summary of the impact of an ingredient type on ice cream characterization 

obtained by a specific method. 

Ingredient
Fat globule 

distribution

Melting

time
Rheology DSC

Front-face

fluorescence

Sensory

analysis

Emulsifier (1)

Protein mixture

Fat

(1) significant influence of the ingredient.

DSC: differential scanning calorimetry.
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Figure 8: Correlation between storage modulus (G’) at 20°C and a: the percentage of 

particle > 2 m in ice cream and b: time to melt 30 g of product (min) for refined 

coconut oil-based formulations. Saturated mono- and diglyceride mixture ( , ),

partially unsaturated mono- and diglyceride mixture ( , ),

skim milk powder ( , ), functional dairy protein ( , ).
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ice cream structuring was mainly due to fat globule aggregation size relevant of the presence of

emulsifiers and proteins. When three different fats (hydrogenated and refined coconut oils and 

refined palm oil) were considered, the correlation between the storage modulus measured at 20°C 

and the melting time was still found (r² = 0.91) (Granger et al., 2005d, § C.III.3.). However, the

correlation between the melting time and the fat globule distribution was lost (r2 = 0.42) 

(Granger et al., 2005d, § C.III.3.). Since the melting time was not simply correlated to the fat 

globule diameters, this suggested that other parameters, such as globule interactions and/or fat 

crystallization, may also influence the melting behavior of ice cream mixes. Similar results were 

found when the values relative to anhydrous milk fat-based samples were added. In particular, the

correlation between the melting time and the storage modulus was maintained (r² = 0.86) (Figure 

9), since no correlation was found between fat agglomeration, melting times and storage modulus

at 20°C. Even if the rheological and fluorescence studied suggested that different microstructures

were developed as a function of the protein mixture (§ C.III.2. and Granger et al., 2005e, 0.) no 

correlation were found between these two methods. . 

Similarity in the behavior of ice cream mix and ice cream product was found in 

rheological behavior as, in all cases, FDP-based formulations led to higher elastic modulus values

than SMP-based ones. In particular the mixes based on hydrogenated and refined coconut oil and

partially unsaturated MDG that were characterized by high viscosity values after ageing 

corresponded to ice creams that exhibited the higher G’ values . 

However, differences in the behavior of ice cream mix and ice cream product were

also pointed out in: i) the absence of significant effect of the protein mixture used in ice cream

formulation on the particle size distribution of ice cream, although, before the freezing stage, in 

mixes, FDP led to high fat globule flocculation (§ C.II.2.). Moreover, the influence of the 

emulsifier and fat types on particle size distribution was revealed in the case of ice cream

product whereas these ingredients poorly influenced the globule size parameter in the case of 

mix; ii) thermal properties, as the differences observed between the emulsified fat and bulk fat

melting profiles were quite small in the case of ice cream product, although emulsification in mix

led to the modification of the main crystallization peak and to an additional exotherm.
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Figure 9: Correlation between storage modulus (G’) at 20°C and melting time of 30 g of 

product for the different ice cream formulations based on skim milk powder,

saturated or partially unsaturated mono- and diglyceride mixtures, and 

hydrogenated coconut oil, refined coconut oil, refined palm oil or anhydrous milk 

fat.
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Conclusions and perspectives

When an ice cream formulation is depicted, it appears as a complex mixture of

ingredients. Each ingredient plays an important role during the manufacture of ice cream and in 

the textural and organoleptic properties of the final product. The selection of the ingredients must

take into account several requirements such as technological and economical constraints, 

marketing demand for new product design, consumer taste, and more and more nutritional 

purpose. In the face of the development of the ingredient market, the choice of the appropriate 

ingredients that match these requirements is an important challenge. Thus, it is worth

understanding the roles of the various ingredients during the ice cream manufacture and in the 

final product properties. We have focused our attention on the impact of the fat nature since this 

parameter is certainly the less investigated, although the role of fat in the development of the ice

cream characteristics and in particular its sensory properties is well known.

First, our work agreed with the competitive adsorption / desorption phenomenon

occurring between proteins and low molecular weight emulsifiers especially during the ageing 

period, already demonstrated by others. However, the systematic analysis of the different ice 

cream formulations allowed some tendencies to be brought out: i) protein denaturation by heat 

treatment that would allow the formation of a protein network around the fat droplets prevented

protein desorption during ageing; ii) the unsaturation degree of the MDG enhanced the protein 

desorption phenomenon. However, these results had to be modulated by the nature of the fat used 

for the initial oil-in-water emulsion. This strongly suggested that interactions between the

tensioactive molecules and fat are taking place leading to specific behavior of the oil-in-water

emulsions after the homogenization step and during ageing. 

Second, the influence of the formulation was also revealed on the final product especially 

when the melting time or the sensory perception were investigated. However, when all the

formulations were considered, no obvious tendency concerning the influence of the unsaturation

degree of the emulsifier or the chain length and the unsaturation degree of the fat could be stated.

Indeed, some formulations revealed specific association between ingredients. The random

behavior of the resulting ice cream prevented the prediction of the ice cream properties just by 

considering its formulation. On the whole, only a mapping of the different ice creams as a 

function of their formulation could be obtained. As already mentioned, it is worth noting that the

characteristics of the ice creams, melting time or textural properties, could not be completely

predicted by using the physicochemical characterizations of the oil-in-water emulsion or of the 

mix. For example, the protein desorption phenomenon observed in emulsions that is assumed to

be essential for fat agglomeration to occur during the freezing step, was not highly correlated to

the percentage of fat agglomerates in ice cream products. In other words, although the 
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understanding of oil / water interface created in the first step of ice cream processing is of major

importance to manage the manufacture of a good quality ice cream product (no protein 

desorption or high fat coalescence before the freezing step lead to defective products), the

emulsion or the mix characteristics are not sufficient to entirely describe the final product 

properties.

Finally, during this study, numerous methods were used to characterize the different 

systems, i.e., emulsion, ice cream mix and ice cream. We have searched correlation between the

different results obtained and considered that a correlation exists between two methods when the

regression coefficient was higher than 0.8. By selecting specific formulations, some correlations 

could be found. However, when all the formulations were considered correlations may be lost. 

The lack of correlation between most of the methods used leads to several comments: i) to be 

correlated, methods have to reveal the influence of, at least, one same component of the 

formulation. For example, DSC and sensory analysis results could not be correlated since they 

are influenced by the fat nature and the protein type, respectively; ii) it is important to cross

various methods of characterization in order to get a widespread vision of the ice cream

properties; iii) some methods were appropriate to probe one system but could not be accurate to

characterize another system. This was the case for front-face fluorescence. In the emulsion sytem,

fluorescence measurement allowed discriminating and quantifying the proteins in two distinct 

environment, i.e., in the aqueous phase and adsorbed at the fat globule surface and thus could be 

correlated with the spectrophotometric method. In contrast, in ice cream product, the presence of 

numerous interfaces prevented the accurate quantification of the proteins loaded at the different

interfaces and dispersed in the cryo-concentrated phase. In this case, although fluorescence data

allowed a mapping of the different products, this technique could no be correlated with another 

one.

In this work, we have clearly demonstrated that fat, emulsifier and protein interacted 

differently as a function of their physicochemical characteristics. It would be of great interest to

further investigate these interactions. This could go through, the use of new techniques.

Applications of atomic force microscopy (AFM) and scanning near-field optical microscopy

(SNOM) to study protein-surfactant interactions at air / water and oil / water interfaces has 

revealed new unexpected generic models for surfactant-induced destabilization of protein-

stabilized foams and emulsions. AFM confirmed the existence of protein networks at the 

interface. Moreover, the mechanism by which surfactant displaces protein was also illustrated by 

this method (Morris, 2004). As ice cream contains a mixture of proteins and emulsifiers at the 
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interfaces, there is a need of identify the structure of mixed films and to study the behavior of this 

structure upon decreasing temperature. In this case, it is necessary to label different proteins in 

order to determine their location at the interface. Preliminary studies on BSA-Tween 20 films at 

air / water interfaces have shown that it is possible to label BSA with fluorescent tags without 

significantly altering the displacement process. The small size of the surfactant domains during 

the early stages of displacement requires the use of SNOM to visualize mixed protein / surfactant

films (Gunning, et al., 2001). Moreover, dynamic interfacial tension measurements could be also 

of great interest to provide information on the adsorbed layers at the interface. The behavior of

proteins and low molecular weight emulsifiers at continuously expended or compressed

interfaces can be used to determine the type of interactions between adsorbed molecules, and the 

effect of protein adsorption on interfacial rheological properties (shear and dilational) (Bos and

van Vliet, 2001). 

We have focused this work on the oil / water interface. However, the control of the 

formation and the stabilization of air bubbles is also crucial for a good quality ice cream. Here 

again, the ingredient selection should influence the air phase structure and stability. Few

techniques enable the monitoring of the air phase in food samples. We have started the air

phase analysis through the study of ice creams differing in the emulsifier nature (saturated or

partially unsaturated MDG), the protein mixture (SMP or FDP), and/or the fat type (anhydrous 

milk fat, refined palm oil, hydrogenated or refined coconut oils). Ice creams were analyzed 

just after being manufactured and after being submitted to heat chocks to simulate one year

ageing. Air bubble size was visualized under an optical microscope placed in a refrigerated 

chamber. Air phase structure was evaluated based on the ability of an aerated ice cream to

change in volume as a result of external pressure change. This analysis developed in 

collaboration with J. Renoir (Degussa Texturant Systems, Baupte) was performed via a 

pressure/depressure response method. This technique allowed the measurement of gas

channeling in ice cream samples. Such channeling was expected to be involved in the 

shrinkage behavior of ice cream upon storage and so to be implicated in the final product 

quality. The first results suggested that the shrinkage phenomenon was correlated neither to 

the air cell initial size nor to the structural stability as evaluated by fat globule size distribution

and melting behavior. Moreover, the shrinkage capacity seemed to be dependent on the ice

cream formulation. Air phase analysis is still under investigation.
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La crème glacée est constituée d’un mélange complexe d’ingrédients. Chacun d’eux joue

un rôle important dans la fabrication du produit et conditionne, en partie, ses propriétés texturales 

et organoleptiques. Le choix des ingrédients doit prendre en compte plusieurs critères tels que les 

contraintes technologiques et économiques, la demande marketing pour la conception de 

nouveaux produits, le goût du consommateur, et de plus en plus l’aspect nutritionnel du produit. 

Face au développement du marché des crèmes glacées, la sélection des ingrédients appropriés 

répondant à ces multiples conditions constitue un défi important. C’est dans ce contexte que nous

avons étudié l’influence de divers ingrédients sur la mise en place des structures de la crème

glacée au cours de la fabrication et sur les propriétés du produit fini. Nous avons porté une 

attention particulière à la matière grasse car l’impact de la nature de cet ingrédient est 

certainement un des moins étudiés, bien que son importance dans le développement des 

caractéristiques des crèmes glacées et, en particulier, des propriétés sensorielles soit reconnu.

Dans un premier temps, un phénomène compétitif d’adsorption / désorption aux interfaces

a été mis en évidence, dans les émulsions, entre les protéines et les émulsifiants de faible poids

moléculaire, notamment pendant la période de maturation. L'analyse systématique des différentes

formulations a permis de dégager les tendances suivantes : i) la dénaturation partielle des 

protéines par traitement thermique permettrait la formation d'un réseau protéique autour des 

gouttelettes d’huile limitant la désorption protéique pendant la maturation ; ii) le degré 

d’insaturation des MDG augmente le phénomène de désorption protéique. Cependant, ces 

résultats doivent être modulés en fonction de la nature de la matière grasse utilisée pour formuler

l'émulsion huile-dans-eau. Ceci suggère fortement que des interactions entre les molécules

tensioactives et la matière grasse existent et conditionnent un comportement spécifique des 

émulsions après l'étape d'homogénéisation et pendant la maturation.

Dans un deuxième temps, une étude a porté sur l'influence de la formulation sur les 

propriétés des crèmes glacées. Quand toutes les formulations sont prises en considération, aucune 

tendance nette tant au niveau de l'influence du degré d’insaturation de l'émulsifiant ou de la

longueur de la chaîne grasse et du degré d’insaturation de la matière grasse n’a pu être mise en

évidence. En effet, quelques formulations se sont distinguées et ont révélé une association 

spécifique entre ingrédients. La réponse aléatoire des crèmes glacées à une variation de 

formulation empêche la prévision des propriétés des produits finis en considérant uniquement les

ingrédients présents. De ce fait, seule une cartographie des différentes crèmes glacées en fonction

de leur formulation a pu être établie. De plus, il est intéressant de noter que les caractéristiques 

des crèmes glacées (temps de fonte ou propriétés organoleptiques …) ne sont pas prévisibles sur 

l’unique base des caractéristiques physico-chimiques de l'émulsion huile-dans-eau ou du mix. Par
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exemple, le phénomène de désorption protéique observé dans les émulsions, considéré comme

essentiel pour que l’agglomération de la matière grasse se produise pendant l'étape de 

foisonnement / congélation, n'a pas été entièrement corrélé avec le pourcentage de globules gras 

agglomérés dans les crèmes glacées.

Au cours de cette étude, de nombreuses méthodes ont été employées pour caractériser les 

différents systèmes : émulsion, mix et crème glacée. Nous avons recherché les corrélations entre 

les différents résultats obtenus en considérant que deux méthodes étaient corrélées quand le 

coefficient de régression linéaire était supérieur à 0,8. En choisissant certaines formulations,

quelques corrélations ont été trouvées. Cependant, quand toutes les formulations sont prises en

compte, certaines corrélations sont perdues. Le manque de corrélation entre la plupart des 

méthodes employées entraîne plusieurs commentaires : i) pour être corrélées, les méthodes

doivent mettre en évidence l'influence d’au moins un même composant de la formulation. Par 

exemple, les résultats de DSC et d’analyse sensorielle ne peuvent pas être corrélés puisqu'ils sont 

influencés, respectivement, par la nature de la matière grasse et par le type de protéine ; ii) il est 

important de croiser diverses méthodes de caractérisation afin d'obtenir une vision globule des

propriétés des crèmes glacées ; iii) certaines méthodes appropriées pour suivre un système ne le 

sont pas pour caractériser un autre système. C’est le cas de la fluorescence. Dans le cas des 

émulsions, la mesure de fluorescence a permis de distinguer et de quantifier la présence de 

protéines situées dans deux environnements distincts (dans la phase aqueuse et adsorbées à la 

surface des globules gras). Cette technique a pu être corrélée à une méthode de dosage 

spectrophotométrique. En revanche, dans les crèmes glacées, la présence de nombreuses

interfaces a vraisemblablement empêché la quantification précise des protéines adsorbées aux

différentes interfaces et dispersées dans la phase cryo-concentrée. Dans ce cas, bien que les 

données de fluorescence aient permis d’obtenir une cartographie des différents produits, cette

technique n’a pas pu être corrélée avec une autre.

Dans ce travail, nous avons clairement démontré que la matière grasse, les émulsifiants et 

les protéines interagissaient différemment en fonction de leurs caractéristiques physico-

chimiques. Il serait donc intéressant d'étudier plus en détail ces interactions. Ceci pourrait se faire 

par l'utilisation de nouvelles techniques. Les applications de la microscopie à force atomique

(AFM) et de la microscopie optique en champ proche (SNOM) pour étudier les interactions 

protéine / émulsifiant aux interfaces air / eau et huile / eau ont abouti à l’élaboration de nouveaux 

modèles génériques pour décrire la déstabilisation protéique induite par les émulsifiants dans les 

mousses et émulsions. L'AFM a confirmé l'existence de réseaux de protéines aux interfaces. De 

plus, le mécanisme par lequel les émulsifiants déplacent les protéines a été également illustré par 
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cette méthode (Morris, 2004). Comme la crème glacée contient un mélange de protéines et 

d’émulsifiants aux interfaces, il est utile d’identifier la structure des films mixtes et d’étudier le 

comportement de cette structure lors de la diminution de température. Dans ce cas, il est 

nécessaire de marquer les différentes molécules afin de déterminer leur emplacement à l'interface.

Les études préliminaires sur des films mixtes composés de BSA-Tween 20 aux interfaces air / 

eau ont prouvé qu'il était possible de marquer la BSA avec des molécules fluorescentes sans 

changer de manière significative le processus de déplacement. La petite taille des domaines

formés par les émulsifiants dans les premiers temps du déplacement protéique exige l'utilisation

de la méthode SNOM afin de visualiser ces films mixtes (Gunning, et al., 2001). Les mesures

dynamiques de tension interfaciale peuvent être également d’un grand intérêt pour fournir des 

informations sur les couches adsorbées à l'interface. Le comportement des protéines et des 

émulsifiants aux interfaces expansées ou comprimées sans interruption, peut permettre de

déterminer le type d'interactions entre les molécules adsorbées, et l'effet de l'adsorption protéique

sur les propriétés rhéologiques interfaciales (cisaillement et dilatation) (Bos and van Vliet, 2001).

Nous avons concentré nos études sur l'interface huile / eau. Cependant, le contrôle de la 

formation et de la stabilisation des bulles d'air est également un élément crucial pour obtenir une

crème glacée de bonne qualité. Ici encore, le choix des ingrédients devrait influencer la structure

et la stabilité de la phase aérée. Peu de techniques permettent l’observation de cette phase dans 

les échantillons alimentaires. Nous avons commencé l'analyse de la phase aérée par l'étude de

crèmes glacées formulées à partir de différents MDG (saturé ou partiellement insaturé), de 

différents mélanges protéiques (SMP ou FDP), et/ou de différentes matières grasses (beurre

concentré, huiles de coprah hydrogénée ou raffinée et huile de palme raffinée). Les crèmes

glacées ont été analysées juste après fabrication et après avoir été soumises à des chocs 

thermiques pour simuler un vieillissement d'un an de stockage dans des conditions normales. La

taille des bulles d'air a été observée sous un microscope optique placé dans une chambre

frigorifiée. La structure de la phase aérée a été évaluée à partir de la capacité des bulles d’air à 

changer de volume en fonction des variations de pression externe. Cette analyse a été développée

en collaboration avec J. Renoir (Degussa Texturant Systems, Baupte). Cette technique permet de 

mesurer le phénomène de cavernage (coalescence partielle des bulles d’air) présent dans les 

échantillons de crèmes glacées. Ce phénomène semble être corrélé à la rétractation du produit au

cours du stockage et ainsi est impliqué dans la qualité du produit fini. Les premiers résultats

suggèrent que la rétractation n’est corrélée ni à la taille d'initiale des bulles d'air ni aux

caractéristiques structurales du produit (évaluées par la distribution granulométrique des globules 

gras ou le comportement à la fonte). En revanche, la capacité de rétractation semble dépendre des 
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ingrédients présents dans la formulation des crèmes glacées. Une étude plus approfondie de la 

phase aérée est actuellement en cours.
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Appendixes

Appendix 1: Calculation of the protein concentration at the surface of the fat globules

Emulsion = aqueous phase + oil phase

1-Composition of the emulsion:

817g of water 
     917g of aqueous phase   917ml

100g of protein mix

80g of fat 
83g of fat phase    75,86ml

3g of MDG 

2-Total protein dosage
X mg of protein / ml of emulsion

d = 1

d = 0,914 

X mg de protein / ml of emulsion  volume emulsion
   = x mg of protein / ml of aqueous phase 

volume of aqueous phase 

   = x mg of protein / mg of aqueous phase 
   = x % de initial total protein

2-Composition of the emulsion after centrifugation:
y mg of protein / ml of aqueous phase = y mg of protein / mg of aqueous phase 
y % of protein in the aqueous phase after treatment

If it is considered that the volume (or mass) of the aqueous phase was equal in the initial 
emulsion and after centrifugation, then, the quantity of protein in the fat phase is the difference
between the 2 in percent.

The percentage of adsorbed protein at the fat globule surface is: 

100 – (y/x) Z% of protein in the fat phase (with x et y in mg/ml)
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Appendix 2: C. Granger, P. Barey, N. Combe, P. Veschambre, M. Cansell (2003). Influence 

of the fat characteristics on the physicochemical behavior of oil-in-water

emulsions based on milk protein-glycerol esters mixtures. Colloids and

Surfaces. B: Biointerfaces, 32, 353-363.6

6 Reprinted from Colloids and Surfaces. B: Biointerfaces, 32, C. Granger, P. Barey, N. Combe, P. 

Veschambre, M. Cansell, Influence of the fat characteristics on the physicochemical behavior of oil-in-water

emulsions based on milk protein-glycerol esters mixtures, 353-363, Copyright (2003), with permission from

Elsevier.
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Appendix 3: C. Granger, V. Langendorff, N. Renouf, P. Barey, M. Cansell (2004). Impact of 

formulation on ice cream microstructures: an oscillation thermo-rheometry study. 

Journal of Dairy Science, 87, 810-812.7

7 Reprinted from Journal of Dairy Science, 87, C. Granger, V. Langendorff, N. Renouf, P. Barey, M.

Cansell , Impact of formulation on ice cream microstructures: an oscillation thermo-rheometry study, 810-812,

Copyright (2004), with permission from American Dairy Science Association.
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Résumé 

 

Les émulsifiants et les protéines participent à la création et à la stabilisation des différentes 
interfaces formées au cours de la fabrication des crèmes glacées qui fait évoluer le système d’une 
simple émulsion huile-dans-eau vers une mousse partiellement solide. La compréhension des 
mécanismes mis en jeu aux interfaces et la connaissance des propriétés des ingrédients sont 
nécessaires pour optimiser la fabrication et la stabilisation du produit fini. C’est dans ce contexte 
que différents systèmes, émulsion huile-dans-eau, mix de crème glacée et crèmes glacées ont été 
fabriqués à partir de quatre types de matières grasses différentes et stabilisés par deux types de 
mono- et diglycerides et deux sources protéiques. Des caractérisations multiples, telles que le 
profil thermique des matières grasses, le comportement rhéologique ou la réponse en 
fluorescence, appliquées à ces trois systèmes ont été utilisées. Il a été mis en évidence, dans les 
émulsions et dans les mixes, un phénomène compétitif aux interfaces entre les molécules 
tensioactives, principalement pendant la période de maturation. Ce phénomène est, en autre, 
influencé par le degré d’insaturation de l’émulsifiant et de la matière grasse. L'influence de la 
formulation a été également mise en évidence sur le produit fini, notamment en termes de 
comportement à la fonte et de perception organoleptique. Peu de corrélation entre les différentes 
techniques utilisées et entre les différents systèmes étudiés ont été observées suggérant la mise en 
place d’associations spécifiques entre ingrédients. 
 
Mots clés : Crème glacée, matière grasse, émulsifiant, protéine, interface 

 

 

Abstract 

 

The emulsifiers and the proteins take part in the creation and the stabilization of the various 
interfaces formed during the steps of ice cream processing which evolves from a simple oil-in-
water emulsion to a partially solid foam. The aim of this study was to understand and control the 
mechanisms of action of the tensioactive molecules during the different steps of ice cream 
manufacture. In this context, various systems, oil-in-water emulsion, ice cream mix and ice 
cream, were manufactured based on four types of fat and stabilized by two types of mono- and 
diglyceride mixtures and two protein sources. Multiple of characterization, such as thermal 
behavior of fat, rheological parameters and fluorescence response, applied to these three systems 
were used. It was highlighted in the emulsions and mix systems that a competitive phenomenon 
at the oil-water interfaces occurred between emulsifiers and proteins especially during the ageing 
period. This phenomenon was influenced, among other things, by the degree of unsaturation of 
the emulsifier and of the fat. The influence of the formulation was also pointed out on the 
finished product in particular in term of melting behavior and organoleptic perception. Little 
correlation between the various techniques used and between the various systems studied was 
observed suggesting that specific associations between ingredients were taking place. 
 
Key words: Ice cream, fat, emulsifier, protein, interface 
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