
��� ������� �	��
� ��
� ��� ���	������� �������
��

������ � ���� ����� ��	��
 ����
������� ���
����� ������� ��
� � �� �������
 ��� �����������
��������
�� �������
 ���� �� ���	�� ����
������ �� ��������
 ���� ������� ��� ����������� �
�

����������� ���� ���
����� �� ����� ���� �� ������������ �� �
������������ ��� ������ �� �������

�� ��� ������������ �������������� ���� ������� ����� ��� ����������� ����� ��� ���������
 ��

����� ����� �� ���� ���
���� ���� �� ������������ �� ���� ������� ��������� ����� ��� ����!���

�� �� ����� "������ ��
��������� #������
 ����
������� �� �����	�� �� �� �����
� �� ���� ����

�����
� $�� ������ �� �������� �� ����� ��������% ���� �� ���	�� ���� ������ ������� ����� ��

���� ������ ���������� �� �� �����	��� &����� ��� �
�������
 ���� �������� �� ��������� ��
��

���� ��
������ ��� ����������� ��������� ���� �� ���	�� ����
������ �� ��������� ���� ���

�������� ���� "�������
 ���� �������� � ������� ��������� �������� ������� �� ���� �����

��� ����������� ��������
� ��������� �� ��������� �� "��������� ��� ����	��� �� �

�� �������

���� ��� �������� ���� ����� ��
 ���� �������� ��� ������������� ���� �� �
����������� �� ��
�����"���� ���������� '�(���) ���� �� ���������� �� �� ������������� ������������� ��������
��

��	�
��� �)���������� ��������
�

������� �� ��������
 ������ �������
 ����	��� �� �
�

�� ������
 �
����������� �� �������
 ���� ������� ���������
 ���������
 ���������
 �� �����

�������

 '�(���)�

�	��� ������� �
 �������
��� ���	������

�
�	��
	� *� ���� ������
 +� ����� ���� �������� ������� �� ����������� ����������� *� ���

CONGEST ������� ������� �����
 +� ������� ��������� ������������� ���������� "�� ����������

��� ������ ����� �������������� ��� ������� ������������� *� ��� LOCAL ������� �������

�����
 +� ������� ������������� ���������� "�� ������������ ������ ����� �������� +��� ��+

������� �� ���� ������ ���� ���������� *� ��� ������ ����� �����
 +� ������� �������,�� �����

������ "�� ��� �������-� �������
 ����
 ��������� � �������� �� �������� ����� .� ���� �����

�+� �������� �" ���� ������� ��� ������ ��+ ����� �� ����� �� ������� �������� ���������� �� ���

��������� ������� ������� ������ *� ��� ���� "����� ����� ����� �� ���������� �������
 +� ���+

��+ �� ������ ��� ������� ���� ����� �������� ����-� �� ����� �� ������ � ���"��� ��� ���/��
�������� �" ���� ����������� ����������� 0������
 +� �������� ��� '�(���) ��"�+��� �����"���

��� ���� ��� ���� ������������ "�� ��� ������������� ��� ���������� �" ����������� �����������

��������� ����������� ����������
 ������� �������
 ������ ������
 ���������� �������
 �����

��������������
 ����� ��������
 ��������
 ���� ����������
 ��������
 '�(���)�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
	
�

�

�

�
	

�
�
	
�
�

�
�
�
�

	
�
�
�

�
���
�
�
�

�
�
�

No d’ordre : 3305

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ BORDEAUX I

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

Par Bilel Derbel

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Local Aspects in Distributed Algorithms

Soutenue le : 7 Décembre 2006

Après avis des rapporteurs :

Pierre Fraigniaud Directeur de Recherche CNRS

David Peleg Professeur

Devant la commission d’examen composée de :

Pierre Fraigniaud Directeur de Recherche CNRS Rapporteur

Cyril Gavoille Professeur Examinateur

Guy Melançon . . . Professeur Examinateur

Yves Métivier Professeur Co-Directeur

Mohamed Mosbah Professeur Directeur

David Peleg Professeur Rapporteur

2006

à Moncef, Jamila, Najet, Houda, Nizar et Mohamed.

Remerciements

Mes premiers remerciements vont tout naturellement à mes directeurs de thèse. À Mohamed
Mosbah, pour son encadrement et sa bienveillance. À Yves Métivier, pour ses conseils précieux
et sa confiance.

Cyril Gavoille m’a fait l’immense plaisir de présider mon jury de thèse. Bien avant cela,
son incroyable énergie et son infatiguable curiosité scientifique n’ont cessées de me stimuler.
Je saisie cette occasion pour le remercier très chaleureusement.

Je suis également profondément reconnaissant à David Peleg et à Pierre Fraigniaud qui
m’ont fait l’honneur de lire ce manuscrit, puis d’assister à mon jury. En praticulier, David
Peleg m’a fait l’immense bonheur de découvrir une personne admirablement gentille, que je
ne connaissait auparavant qu’à travers un livre devenu aujourd’hui un compagnon très chèr.

Guy Melançon a immédiatement accepté d’être membre de mon jury. Je l’en remercie
ainsi que pour l’intérêt qu’il a porté à mon travail.

Je suis fortement reconnaissant à Jean-Francois Marckert qui a consacré beacoup de temps
à m’enseigner la rigueur et la subtilité des analyses probabilistes. Je remercie également Akka
Zemmari pour son dévouement et son aide.

Je tiens aussi à remercier les équipes enseignantes, le personnel administratif et les col-
lègues chercheurs à l’IUT de Bordeaux 1, à l’ENSEIRB et au LaBRI pour leur gentillesse
et leur disponibilité. Aussi, les derniers mois de préparation de ce manuscrit auraient pu se
prolonger sans compter sur l’acceuil amical de l’équipe MoVe du LIF à Marseille.

Merci à ma soeur Houda et à Olivier pour m’avoir aidé à soigner la rédaction de ce
document.

Merci à tous mes amis Bordelais pour avoir tant donné, en particulier pour leur soutien
sans faille lors de la soutenance. Un très grand merci à Rahim, Niäma et leur petit Rayan à
Marseille. Merci à Soufienne, Asma et leur petit Anis à Grenoble.

Mes amis et mes proches en France et en Tunisie ont été d’un soutien inestimable. Rien
que par leur présence, ils ont contribués à faire de cette thèse une aventure humaine des plus
passionnates et des plus belles. Je les remercie infinement.

Enfin, je remercie du fond du coeur mon père et ma mère, ma tante, ma soeur, mes deux
frères, mes deux belles soeurs, sans oublier ma petite nièce Najet et mon petit neveu Ayoub.
Qu’ils sachent combien leur soutien et leur amour ont été déterminants.

Résumé
Dans cette thèse, nous adaptons quatre approches différentes et néanmoins complémentaire,
pour étudier différents aspects liées à la nature locale des algorithmes distribués. La nature
locale des algorithmes distribués est une conséquence du manque d’informations globales qui
renseignent sur l’état globale du système distribué considéré.

D’abord, nous étudions la complexité en temps de la construction de structures locales
de graphes. Les structures auxquelles nous nous intéressons peuvent être considérées comme
étant des structures de données efficaces qui sont utilisées dans plusieurs applications dis-
tribuées tels que les synchroniseurs, le routage, le calculs de plus court chemins, etc. Nous
donnons des algorithmes distribués déterministes sous linéaires en temps pour la construc-
tion de décompositions peu denses et de sous graphes couvrants (“spanners”) en utilisant des
messages de petite taille (CONGEST model). Dans le cas des spanners, nous présentons de
nouvelles techniques permettant d’obtenir des algorithmes distribués avec une complexité en
temps mieux que sous linéaire dans le cas déterministe et logarithmique en moyenne dans le
cas probabiliste dans le modèle dit “local” de calculs distribués (LOCAL model).

Dans un cadre plus formel, nous étudions la conception d’algorithmes distribués de façon
formelle, unifiée et compréhensible à travers les systèmes de réétiquetages. Notre contribution
est de montrer à travers plusieurs exemples comment on peut combiner quelques techniques
de bases pour modéliser des algorithmes plus complexes.

Dans le modèle avec agents mobiles, nous nous intéressons au problème du “handshake”
(poignée de mains ou calcul de couplage en temps constant) et nous donnons une solution
efficace basée sur k marches aléatoires de k agents mobiles. Des extensions et des applications
sont présentées pour les systèmes de réétiquetages. Nous montrons comment émuler nos
algorithmes dans le modèle avec échanges de messages. Nous obtenons alors des résultats qui
améliorent les algorithmes connus existants. Ceci montre de façon pratique que le paradigme
des agents mobiles peut aider à avoir une nouvelle vision des systèmes distribués et à trouver
de nouvelles solutions et idées à des problèmes bien classiques.

Dans un cadre plus pratique, nous présentons nos travaux autour de la plate-forme logi-
cielle ViSiDiA pour la simulation et la visualisation d’algorithmes distribués. Nos principales
contributions sont la mise en place d’une version distribuée du logiciel, d’une version sup-
portant le modèle synchrone de calculs distribués et enfin une version supportant le modèle
avec agents mobiles. Ces différentes versions sont destinées aussi bien aux chercheurs qu’aux
étudiants pour aider à l’étude et à l’expérimentation d’algorithmes distribués.

Abstract

In a distributed system many actors are operating in a cooperative manner in order to perform
a specific task. Since no global view of the system is available, the actors must communicate
together and exchange their knowledge. The main challenge when designing a distributed
algorithm is to lean on local information in order to provide a global solution. In this thesis,
we adopt four different approaches in order to acquire a better theoritical understanding of
local aspects of distributed algorithms.

In the first part, we consider a network of processors which can communicate by exchanging
messages. We focus on the time needed to construct network global data structures. In
Chapter 1, we study the problem of partitioning the network into a set of clusters having
a small radius and few inter-cluster edges. We obtain new sublinear time deterministic and
randomized algorithms which improves previous constructions and related applications such
as network synchronizers and graph spanners. The problem of constructing sparse low stretch
spanners efficiently is studied more deeply in Chapter 2. In fact, for any n-node graph, we
provide deterministic algorithms that construct constant stretch spanners with o(n2) edges
in o(nε) time for any constant ε > 0, against O(nc) time for previous constructions where
c < 1 is a positive constant depending on the stretch. Our algorithms make use of an efficient
clustering technique based on breaking the symmetry using independent dominating sets.
Many logarithmic randomized implementations are also presented.

In the second part of this thesis, we consider the problem of encoding distributed algo-
rithms in a formal and unified way independently of the underlying distributed system or
communication structure. We use relabeling systems and local computation as a mathemat-
ical tool-box. Within this framework a distributed algorithm is encoded by mean of local
relabeling rules, that is, the labels attached to nodes and edges are modified locally on a
subgraph of fixed radius. We give an encoding of some basic traversal algorithms such as the
broadcast, the convergecast and the PIF technique (Propagation of Information with Feed-
back). We show how these basic techniques can be combined in order to provide a formal
and comprehensible encoding of sophisticated algorithms such as the Prim’s MST (minimum
spanning tree) algorithm. The work described in this part can be viewed as a first step to-
ward a generic powerful framework for designing and proving distributed algorithms using
relabeling systems.

In the third part, we adopt a mobile agent perspective. We consider a set of k agents
scattered over a network. The agents are autonomous computation entities which are able

to move from node to node and to communicate together by writing and reading informa-
tion using white-boards. In Chapter 4, we focus on the handshake problem which consists
in computing a set a disjoint edges. The ruling measure of a handshake algorithm is the
handshake number, that is the number of disjoint edges. We give a mobile agent algorithm
for this problem and we study its efficiency. The algorithm is based on independent random
walks of the agents. For general graphs, our handshake number improves all the previous
results. We also obtain a handshake number which is optimal up to a constant factor for
almost regular graphs. We show how to emulate our mobile agent algorithm in the message
passing model without any loss of efficiency. We obtain a larger handshake number, which
shows that using mobile agents can provide novel ideas to solve some well studied problems in
the message passing model. Our handshake algorithm can be applied in order to resolve some
symmetry breaking problems such as maximal matching and edge coloring. It can also be
applied in order to implement relabeling systems in the basic edge local computation model.
In Chapter 5, we extend our handshake algorithm for other basic local computation models,
namely the closed star model and the open star model. We also give a performance study of
our algorithm and obtain improved results when adapting them to a message passing model.
Our mobile agent work is concluded by a generic framework for implementing any relabeling
system. The main originality of our framework is to abstract the design of a distributed
algorithm from its practical implementation.

In the last part of this thesis, we adopt a more educational and experimental approach of
distributed algorithms. We present a software platform called ViSiDiA for the visualization
and simulation of distributed algorithms. This tool provides a friendly graphical user interface
and an easy to use library for writing, running and visualizing distributed algorithms in the
asynchronous/synchronous message-passing/mobile-agent model. For researchers, ViSiDiA
can be a software support to experiment new algorithms and ideas. For students, it can help
to test the algorithms studied in class and it leads to a better understanding of the local
nature of distributed algorithms.

Contents

Introduction 1

0.1 Modèles de calculs . 1

0.2 Modèles avec échanges de messages . 2

0.2.1 Modèle de base . 2

0.2.2 Opérations élémentaires . 3

0.2.3 Le synchronisme . 4

0.2.4 Mesures de complexité . 4

0.2.5 Taille des messages et complexité . 5

0.3 Modèles avec agents mobiles . 6

0.4 Contribution et structure de cette thèse . 8

I An Efficiency Approach in Distributed Computing: Sparse Graph

Decompositions and Applications 15

1 Sublinear Fully Distributed Sparse Graph Decomposition 17

1.1 Introduction . 18

1.1.1 Goals and related works . 19

1.1.2 Main results . 20

1.2 Model and definitions . 21

1.3 Semi-sequential basic partition . 22

1.4 Deterministic fully distributed partition: Dist Part 24

1.4.1 Overview of the algorithm . 24

1.4.2 Detailed description and implementation 26

1.4.3 Analysis of the algorithm . 35

1.5 Sublinear deterministic distributed partition . 37

1.5.1 A synchronous algorithm: Sync Part 37

1.5.2 An asynchronous algorithm: Fast Part 39

1.6 Sublinear randomized distributed partition . 41

1.6.1 Randomized local elections . 41

i

1.6.2 Description of algorithm Elect Part 42
1.6.3 Analysis of the algorithm . 43
1.6.4 Improvements . 44

1.7 Open questions . 45

2 On the Locality of Graph Spanners 47

2.1 Introduction . 48
2.1.1 Motivations . 48
2.1.2 Preliminary results . 48
2.1.3 Goals . 50
2.1.4 Related Works . 50
2.1.5 Main results . 52

2.2 A Generic Algorithm . 53
2.2.1 Definitions . 53
2.2.2 Description of the algorithm . 54
2.2.3 Examples for ρ = 1 . 56

2.3 Analysis of the Algorithm . 59
2.3.1 Stretch analysis . 62
2.3.2 Size analysis . 77
2.3.3 Distributed implementation and time complexity 78

2.4 Applications to low stretch spanners . 79
2.4.1 Constant stretch spanners with sub-quadratic size 79
2.4.2 Graphs with large minimum degree . 81
2.4.3 Randomized distributed implementation issues 82

2.5 Open questions . 83

II A Formal Approach in Distributed Computing: Relabeling Systems

and Local Computations 85

3 Relabeling Systems: a Formal Tool-Box for Distributed Algorithms 87

3.1 Introduction . 88
3.2 Model and notations . 89
3.3 Basic building blocks . 92

3.3.1 The broadcast technique . 93
3.3.2 The convergecast technique . 94

3.4 The PIF technique . 96
3.4.1 Layered BFS tree construction . 96
3.4.2 Global function computation . 99

3.5 Distributed minimum spanning trees . 101

3.5.1 Preliminaries . 101
3.5.2 Computing the weight of the MOE . 102
3.5.3 Finding and adding the MOE . 103

3.6 Future works . 105

III A Mobile Agents Approach in Distributed Computing: the Hand-

shake Problem 107

4 Efficient Distributed Handshake using Mobile Agents 109

4.1 Introduction . 110
4.1.1 Goals and Motivations . 110
4.1.2 Models and notations . 110
4.1.3 Problem Definition . 111
4.1.4 Related Works . 112
4.1.5 Main results . 112

4.2 Handshake using mobile agents . 113
4.2.1 The stationary regime . 115
4.2.2 General case analysis: a lower bound . 116
4.2.3 Regular graph analysis: asymptotic tight bound 119
4.2.4 General case analysis: a tight bound . 121

4.3 Handshake in the message passing model . 122
4.4 Distributed initialization of agents . 124
4.5 Open questions . 127

5 Implementation of Relabeling Systems using Mobile Agents 129

5.1 Introduction . 130
5.1.1 Preliminary results and motivation . 130
5.1.2 Related works . 130
5.1.3 Contribution . 132

5.2 Extended handshake algorithms . 133
5.2.1 Full neighborhood handshake . 133
5.2.2 Simple neighborhood handshake . 136
5.2.3 Application to the CS and OS models 139
5.2.4 Application to the message passing model 139

5.3 A general mobile agent framework for local computations 142
5.3.1 Preliminaries . 142
5.3.2 Single agent implementation . 143
5.3.3 Multiple agent implementation . 144

5.4 Open questions . 147

IV An Experimental and Educational Approach in Distributed Com-

puting: the ViSiDiA Platform 149

6 ViSiDiA: Visualization and Simulation of Distributed Algorithms 151

6.1 Introduction . 152
6.1.1 Motivation . 152
6.1.2 Contribution and outline . 153
6.1.3 Related works . 153

6.2 Introduction to ViSiDiA: a concrete example 155
6.2.1 Preliminary . 155
6.2.2 Example of the Flood algorithm . 156
6.2.3 Overview of the ViSiDiA api . 156
6.2.4 How does it work ? The general architecture of ViSiDiA 160

6.3 The mobile agent model in ViSiDiA . 161
6.3.1 The basic features of the mobile agent api 161
6.3.2 A concrete example: Searching for a dangerous thief 162

6.4 The synchronous model in ViSiDiA . 163
6.5 The distributed version of ViSiDiA . 167

6.5.1 General idea . 167
6.5.2 General architecture . 168
6.5.3 Performance . 170

6.6 Future works . 170

Conclusion 173

A Neighborhood Covers and Network Synchronizers 175
A.1 Distributed construction of 1-neighborhood covers 175
A.2 Application to network synchronizers . 177

B Case Study: Circulant Graphs 181

Bibliographie 193

Introduction

Le cadre général de cette thèse est l’étude de différents aspects liés à la nature locale des
algorithmes distribués. La nature locale d’un algorithme distribué provient essentiellement
du manque de vision globale concernant l’état du système lors de la résolution d’un problème.
En effet, seule une information locale est disponible aux différentes entités de calculs pour
produire une solution globalement cohérente. Par ailleurs, une information locale est sou-
vent suffisante pour pouvoir résoudre de façon efficace des problèmes qui du point de vue des
protocoles classiques nécessiteraient une information globale. En d’autres termes, une infor-
mation globale n’est pas toujours nécessaire pour la résolution d’un problème distribué. Étant
donnée l’utilisation toujours croissante des systèmes distribués actuels ainsi que le coût induit
par les tâches de contrôle et de maintenance dans ses systèmes, l’étude de la nature locale des
algorithmes distribués est un enjeu de taille qui peut avoir des conséquences importantes sur
le développement et la mise en place de nouveaux systèmes distribués complexes.

Dans ce travail de thèse, nous essayons de contribuer à mieux comprendre certains aspects
locaux des algorithmes distribués, à mieux les utiliser pour concevoir des solutions robustes
et performantes, et à pouvoir les appliquer de façon pratique. Dans les paragraphes qui
vont suivre, nous donnons d’abord un cadre formel et précis des différents modèles de calculs
distribués que nous considérons. Ensuite, nous présentons nos différents travaux en donnant
nos principaux résultats et contributions.

0.1 Modèles de calculs

En fonction du système distribué considéré et en fonction des objectifs poursuivis, on peut
trouver une très grande variété de modèles de calculs. Leur très grand nombre est tel que dans
chaque article publié, on trouve une section dédiée à la description du modèle considéré, et
accompagnée en général d’une argumentation visant à motiver sa pertinence soit à un niveau
théorique, soit à un niveau pratique. En effet, le modèle de calculs que l’on considère a une
importance capitale lors de la conception et l’étude d’un algorithme distribué. Ce qui est
vrai dans un modèle ne l’ai pas forcément dans un autre. Des détails qui peuvent parâıtre
insignifiants dans un modèle centralisé prennent une ampleur surprenante en distribué et ont
des conséquences étonnantes sur la nature des résultats que l’on peut obtenir.

1

2 Introduction

Dans cette thèse nous considérons exclusivement deux types de systèmes distribués. Le
premier concerne les réseaux d’interconnexions ou différentes entités sont connectées entre
elles et communiquent par échanges de messages. Le deuxième concerne des réseaux à base
d’agents mobiles. Dans la suite, nous décrivons ses deux types de systèmes distribués et nous
précisons les différentes hypothèses que nous allons effectuer.

0.2 Modèles avec échanges de messages

0.2.1 Modèle de base

Considérons un réseau constitué d’un ensemble de machines, de processeurs, de processus, en
général d’un ensemble d’entités de calculs pouvant communiquer en échangeant des messages.
Nous utilisons alors un graphe G = (V,E), comme celui représenté dans la figure 0.1, pour
modéliser la topologie ou la structure du réseau. Les deux ensembles V et E correspondent
respectivement aux sommets et aux arêtes du graphe. Nous considérons uniquement des
graphes connexes, c’est à dire que pour deux sommets quelconque du graphe, on peut trouver
un chemin constitué d’arêtes consécutives qui relie les deux sommets, simples, c’est à dire sans
arêtes multiples reliant une même paire de sommets, et sans boucles, c’est à dire qu’aucune
arête ne relie un sommet à lui même.

Figure 0.1: Un graphe modélisant un réseau d’interconnexion

Dans ce formalisme, un sommet (ou noeud) du graphe correspond à une entité de calcul
et une arête du graphe correspond à un canal de communication bidirectionnel entre deux
entités de calculs voisines. Seuls deux sommets reliés par une arête peuvent mutuellement
s’envoyer des messages. Le voisinage d’un sommet donné est alors l’ensemble des sommets
auxquels ce dernier est connecté par une arête.

Chaque sommet v du graphe G possède des ports lui permettant de communiquer avec ses
voisins. Ils existent exactement autant de ports attachés au sommet v que d’arêtes le reliant

0.2. Modèles avec échanges de messages 3

à ses voisins. Une arête e = (u, v) ∈ E correspond alors à une paire ((u, i), (v, j)) comme
le montre le dessin de la figure 0.2. L’envoi d’un message de u vers v (resp. de v vers u)
s’effectue alors en balançant le message sur le port i (resp. sur le port j). Le sommet v (resp.
u) reçoit le message en le récupérant sur le port j (resp. sur le port i). Nous supposons que
les ports d’un même sommet ont des numéros distincts et qu’un sommet peut distinguer le
port sur lequel il a reçu un message donnée.

i
e

vu
j

Figure 0.2: Zoom sur une arête e = (u, v)

Dans la suite, les hypothèses suivantes sont implicitement admises:

• Chaque sommet est une entité autonome de calcul, qui en plus d’envoyer et de re-
cevoir des messages, est capable d’effectuer des calculs locaux. Ces calculs dépendent
uniquement de l’état local du sommet et des messages échangés avec le voisinage.

• Les liens de communications, i.e., les arêtes, ainsi que les entités de calculs, i.e., les
sommets, sont complètement fiables. En d’autres termes, aucune panne ne peut surgir
sur une arête ou sur un sommet.

• On ne considère que des graphes statiques, c’est à dire que la structure du graphe
reste la même du début à la fin. Aucun sommet, ni arête, ne peut se rajouter ou
disparâıtre en cours d’exécution. En effet, aucun aspect lié à la dynamicité dans les
réseaux d’interconnexions n’est traité.

• Tous les sommets du graphe sont actifs simultanément dès le début de l’algorithme.
Autrement dit, toutes les entités du systèmes commencent à exécuter des calculs en
même temps.

0.2.2 Opérations élémentaires

L’activité d’un sommet, i.e., celle qui correspond à l’exécution d’un algorithme, consiste en
trois opérations élémentaires:

1. Envoyer des messages aux voisins;

2. Recevoir des messages;

3. Effectuer des calculs locaux;

4 Introduction

L’ordre dans lequel ces trois opérations sont effectuées par deux sommets voisins est cru-
cial pour le bon déroulement de l’algorithme. En effet, une difficulté principale lors de la
conception d’un algorithme distribué avec échanges de messages est la bonne coordination
des ordres d’envoi et de réception respectifs à deux sommets voisins.

0.2.3 Le synchronisme

Dans notre modèle de base, on met souvent l’accent sur la notion de temps et sur le niveau de
synchronisme autorisé lors de la communication entre deux sommets (voir par exemple [Tel00,
Pel00]). Nous allons utiliser deux modèles extrêmes que nous décrivons comme suit:

1. Le modèle synchrone : Dans ce modèle, nous supposons que tous les sommets ont
accès à une horloge globale qui produit des tops. En plus, si un message est envoyé
pendant un top t, alors il arrive à destination avant le top t + 1. Cette hypothèse
met l’accent sur le fait que les délais de communications entre les différentes entités du
système sont bornés et que la valeur de la borne est connue des sommets. Ainsi, si un
sommet attend un message qui n’arrive pas au bout d’un top, alors il peut en déduire
qu’aucun message n’a été envoyé au top précédent.

2. Le modèle asynchrone : Dans ce modèle, aucune horloge globale n’est autorisée. Les
messages mettent un temps fini mais non déterminé (inconnu) pour arriver à destination.
Il est impossible dans ce modèle de prédire (de façon locale) si un message est arrivé à
destination ou s’il est encore en cours de route.

Ces deux modèles se situent aux deux extrémités de tout un panel de modèles décrivant
des types de synchronismes différents. Nous motivons ce choix extrême par le fait que si
un résultat d’impossibilité ou une borne inférieure sont démontrés pour un problème dans le
modèle synchrone alors, en général, ils sont tout aussi corrects pour le modèle asynchrone ou
pour les modèles présentant un niveau intermédiaire de synchronisme. Inversement, si nous
disposons d’une solution à un problème dans le modèle asynchrone, alors notre solution reste
toujours correcte pour des modèles ayant un niveau de synchronisme plus fort.

0.2.4 Mesures de complexité

Dans les modèles de calculs avec échanges de messages, on utilise le plus souvent deux mesures
de complexité pour évaluer l’efficacité d’un algorithme distribué: le nombre de messages
échangés et le temps d’exécution de l’algorithme.

Dans le cadre de cette thèse nous définissons la complexité en messages comme étant le
nombre total de messages envoyés par les différents sommets. La définition de la complexité
en temps pose quant à elle plus de difficultés et nécessite plus de précisions notamment dans
le modèle asynchrone.

0.2. Modèles avec échanges de messages 5

Le cas synchrone

Considérons d’abord le modèle synchrone, i.e., on suppose donc qu’il existe une horloge glob-
ale et qu’un message envoyé pendant un top arrive à destination avant le top suivant. La
complexité en temps peut se définir comme étant le nombre total de tops émis par l’horloge
globale pour la réalisation d’une tâche. Cependant, cette définition reste incomplète si on ne
précise pas d’avantage le nombre de tops nécessaires pour réaliser une opération élémentaire.

On pourrait par exemple supposer que pendant un top d’horloge un sommet ne peut
envoyer un message qu’à un nombre bien choisi de voisins, par exemple un seul. On pourrait
aussi supposer que la réception d’un message consome un top d’horloge. De même, on peut
préciser le nombre de tops nécessaires pour qu’un sommet puisse effectuer tel ou tel calcul
local, e.g., trier des variables.

Dans la suite, une unité de temps correspond à un top d’horloge. En plus, nous mettons
l’accent sur le coût de la communication plus que sur le coût des calculs locaux et nous
supposons vraie l’hypothèse classique suivante:

(H):
Pendant une unité de temps, un sommet peut à la fois envoyer un message
(différent) à chacun de ses voisins, recevoir des messages en provenance de
chacun de ses voisins, et effectuer n’importe quel type de calculs locaux.

Le cas asynchrone

Dans le cas asynchrone, le délai d’acheminement d’un message est fondamentalement inconnu
d’où l’hypothèse de non existence d’horloge globale. On ne peut donc spécifier le temps
mis par un message pour arriver à destination. Cependant, et pour des raisons d’évaluation
purement théorique de la complexité, nous supposons que le délai induit par un message pour
arriver à destination est d’au plus une unité de temps. En d’autres termes, on normalise tous
les délais qui peuvent survenir lors de l’acheminement d’un message, mais en aucun cas, on
suppose l’existence d’une borne connue pour l’acheminement des messages. En particulier,
ceci permet de respecter la nature asynchrone du modèle considéré.

Maintenant, les mêmes paramètres que pour le modèle synchrone, à savoir le coût des
opérations élémentaires, sont à prendre en considération. Dans la suite, nous admettons la
validité des propriétés énoncées dans l’hypothèse H précédente.

0.2.5 Complexité en temps, taille des messages et modèles de calculs sous-

jacents

Les éléments donnés dans les paragraphes précédents ainsi que la validité de l’hypothèse H
permettent de définir la complexité en temps comme étant le nombre d’unités de temps écoulés
depuis le début de l’algorithme jusqu’à sa fin.

Néanmoins, un autre paramètre important est à prendre en compte: la taille maximale
d’un message. On peut par exemple se restreindre à des messages de taille B bits, avec B un

6 Introduction

paramètre bien déterminé, ou au contraire autoriser n’importe quelle taille de messages (un
sommet peut envoyer dans un seul message n’importe quelle quantité d’information). Il est
évident qu’un algorithme autorisant une taille quelconque de messages peut être implémenté
de façon triviale avec des messages de taille fixée B: en découpant les messages générés par
l’algorithme en petits messages, chacun de taille au plus B. En revanche, la nombre d’unités
de temps nécessaires pour acheminer ces messages sera plus grand.

Ce dernier paramètre a donné naissance aux deux modèles de calculs distribués suivants:

• Le modèle sans congestion : Ce modèle a été introduit pour la première fois par
Nathan Linial sous le nom de modèle libre de calcul (the free model of computation) et
a ensuite été repris dans le livre de David Peleg sous le nom de modèle local de calcul (the
LOCAL model of computation). Dans ce modèle, on suppose en plus de l’hypothèse H,
que la taille des messages est non limitée. En d’autres termes, en une unité de temps,
un sommet peut transmettre toute l’information dont il dispose à tous ses voisins.

• Le modèle avec congestion : connu sous le nom anglais de CONGEST model. Ce
modèle appelé aussi modèle log(n)-borné autorise seulement des messages de taille
O(log(n)), n étant le nombre de sommets dans le graphe. Comme son nom l’indique ce
modèle prend en considération les difficultés inhérentes à l’utilisation de petits messages
lors d’échanges d’information entre deux sommets.

Récapitulatif

Dans un système distribué par échanges de messages, nous utilisons un graphe pour mod-
éliser les interconnexions entre les différentes entités de calculs. Dans le cas synchrone (resp.
asynchrone), nous supposons qu’il existe (resp. n’existe pas) une horloge globale commune
à tous les sommets. En une unité de temps, un sommet peut envoyer un message à tous
ses voisins. Les calculs locaux effectués par un sommet prennent une quantité négligeable
de temps. On parle de modèle sans congestion (resp. avec congestion) quand la taille des
messages est illimitée (resp. bornée).

0.3 Modèles avec agents mobiles

Dans cette thèse nous nous intéressons aussi à des systèmes distribués où les calculs sont
effectués par des entités mobiles appelées agents mobiles. Un agent mobile peut par exemple
être un programme qui se déplace de machine en machine en exécutant des instructions sur
chaque machine. Il peut aussi représenter un robot qui se déplace de pièce en pièce et qui
effectue certaines commandes de contrôle. Les exemples sont nombreux et les modèles formels
pour représenter un système distribué avec des agents mobiles le sont également.

0.3. Modèles avec agents mobiles 7

Modèle de base

Dans cette thèse, nous considérons qu’un agent mobile est une entité autonome de calcul qui
peut se déplacer d’un site à un autre. Afin de modéliser l’ensemble des sites présents dans le
système, nous utilisons un graphe. Un sommet du graphe modélise un site pouvant héberger
un agent. Une arête du graphe modélise une route que doit emprunter un agent pour aller
d’un sommet à un autre. Comme précédemment, nous considérons uniquement le cas de
graphes connexes, simples et sans boucles.

Nous admettons les hypothèses suivantes:

• À chaque sommet est affecté autant de portes que d’arêtes le reliant à ses voisins.
On donne des numéros différents aux portes correspondant à un même sommet. En
reprenant le schéma de la figure 0.2, pour se déplacer d’un sommet u à un sommet v

voisin, un agent doit traverser l’arête e = ((u, i), (v, j)) qui relie les deux sommets u et
v, i.e., l’agent quitte u à partir de la porte i et entre dans v par la porte j. Aucune
“téléportation” n’est autorisée! En effet, quand un agent quitte un sommet donné, il
atterrit forcément dans un sommet voisin.

• Chaque sommet est équipé d’une ardoise (appelé aussi tableau blanc) à laquelle peut
accéder les agents présents dans le sommet. L’accès à l’ardoise d’un sommet s’effectue
en lecture/écriture exclusive. Initialement, c’est à dire avant le début de tout calcul, les
ardoises peuvent contenir des informations qui peuvent êtres différentes d’un sommet à
un autre.

D’un côté, les informations que contiennent les ardoises renseignent sur l’état des calculs
effectués par les différents agents. D’un autre côté, elles permettent aux agents présents
sur un même sommet de communiquer et de s’échanger de l’information.

• Tous les agents mobiles sont fiables. Aucune déviance du comportement attendu lors
de la spécification d’un algorithme n’est autorisée pour les agents. De même, toutes les
arêtes et tous les sommets sont fiables. Le contenu des ardoises ne peut être endom-
magé par des intervenants extérieurs. Un agent en transit sur une arête arrive bien à
destination. Le comportement normal ainsi que l’état des agents qui s’exécutent sur un
sommet ne peuvent être altérés par aucun intervenant extérieur.

• On ne considère que des graphes statiques dont la structure reste identique du début à
la fin.

• Tous les agents sont actifs simultanément dès le début de l’algorithme.

Synchronisme

Dans le cas synchrone, on admet qu’il existe une horloge globale commune à tous les agents.
Un agent qui quitte un sommet pendant un top donné t arrive à sa destination avant le top

8 Introduction

t + 1, i.e., un agent met au plus une unité de temps pour traverser une arête. Tous les calculs
locaux effectués par un agent prennent un temps négligeable et ne sont pas pris en compte
lors de l’évaluation de la complexité d’un algorithme. Seuls les déplacements des agents d’un
sommet à un autre ont un coût.

Dans le cas asynchrone, on n’admet l’existence d’aucune horloge globale. Un agent met
un temps fini mais non déterminé pour traverser une arête. Lors de l’évaluation théorique
de la performance d’un algorithme nous supposons, comme dans le cas des messages, que le
temps mis pour traverser une arête est borné par un. Cependant, nous n’aurons pas à traiter
du cas d’algorithmes asynchrones avec agents mobiles dans le cadre de cette thèse.

Mémoire d’ardoises et mémoire d’agents

La taille mémoire autorisée pour une ardoise ou celle utilisée pour stocker les variables locales
d’un agent peuvent jouer un rôle important lors de la conception d’un algorithme distribué.
Les problèmes que nous traitons dans cette thèse ne sont pas affectés de façon significative
par ce paramètre. Nous n’aborderons donc pas les difficultés que l’on peut rencontrer et les
détails correspondant. Néanmoins, nous supposons que l’espace de la mémoire de stockage
pour un agent ou pour une ardoise est bornée.

0.4 Contribution et structure de cette thèse

Les différentes particularités des modèles que nous venons de décrire traduisent déjà plusieurs
aspects locaux propres aux systèmes distribués. Tant au niveau du synchronisme, qu’au niveau
du type de communication entre les différentes entités du systèmes, ou encore au niveau de la
nature même des entités de calculs considérées (agents mobiles ou entités fixes), on est con-
fronté au manque d’informations globales et à la nécessité d’une bonne gestion et d’une bonne
coordination des différentes entités lors de la conception d’un algorithme distribué. Dans cette
thèse nous adoptons quatre approches différentes et à priori indépendantes qui contribuent
à mieux comprendre les difficultés inhérentes aux aspects locaux des algorithmes distribués.
Ces approches traitent respectivement de problématiques qui interviennent lorsqu’on réfléchit
à des notions fondamentales telles que l’efficacité et les structures de contrôles distribuées,
l’unification et l’abstraction d’algorithmes distribués, l’équivalence entre agents mobiles et
échanges de messages et l’expérimentation et l’apprentissage des algorithmes distribués.

Cette thèse comporte donc quatre parties dont chacune correspond à une approche dif-
férente. Dans les paragraphes suivants nous exposons les problèmes abordés dans chaque
partie et nous donnons un aperçu des principaux résultats obtenus.

0.4. Contribution et structure de cette thèse 9

Partie I: Une approche dédiée à l’efficacité dans les calculs dis-

tribués: Décompositions peu denses de graphes et applications

Dans cette partie, nous nous intéressons à la construction distribuée de structures et de
représentations de graphes dites préservant la localité [Pel00], tels que les partitions et les
sous graphes couvrants. En effet, ces structures permettent de capturer de façon locale des
propriétés topologiques des réseaux sous-jacents. Elles sont également à la base de plusieurs
applications distribuées tels que les synchroniseurs et le routage, et présentent une utilité
récurrente lors de la résolution de nouveaux problèmes distribués. Les propriétés de ces struc-
tures sont intimement liées à la complexité des applications qui les utilisent. En général,
améliorer la complexité des applications correspondantes revient à trouver de nouvelles struc-
tures avec de meilleures propriétés.

Dans ce contexte, nous nous sommes concentrés sur l’aspect complexité en temps des
algorithmes permettant de construire ces structures locales de graphes dans le modèle avec
échanges de messages. D’un côté, améliorer la complexité en temps de ces algorithmes permet
en général d’améliorer la complexité des applications correspondantes. D’un autre côté, la
complexité en temps est intimement liée à la notion fondamentale de la quantité d’information
nécessaire pour résoudre un problème. En effet, le mieux q’un sommet puisse faire en t

unités de temps est de récolter une information concernant des voisins à distance t. Donc, si
un problème peut être résolu en t unités de temps alors toute l’information nécessaire à la
résolution du problème se trouve à une distance au plus t de chaque sommet. Cet aspect est
aussi lié à la question récurrente en algorithmique distribuée qui est celle de comment casser
la symétrie dans les problèmes distribués de façon efficace c’est à dire en utilisant le moins
d’information possible.

Chapitre 1: Construction complètement distribuée de décompositions peu

dense de graphes

Dans ce premier chapitre, nous nous intéressons aux représentations d’un graphe en utilisant
des “clusteurs”; un clusteur étant un ensemble de sommets du graphe. En particulier, une
représentation permet de partitionner les noeuds d’un graphe en un ensemble disjoints de
clusteurs tel que (i) le sous graphe induit par un clusteur est connexe, (ii) le rayon d’un
clusteur est petit et (iii) le nombre moyen de clusteurs voisins à un clusteur fixé est lui aussi
petit. Cette partition peut être considérée comme étant une structure de base qui a donné
lieu à plusieurs autres types de partitions et plus généralement de décompositions [Awe85,
AP90b, ABCP98, MS00].

Les algorithmes distribués existants et permettant de construire cette partition de base
étaient semi-séquentiels, dans le sens ou les clusteurs sont construits un après l’autre mais
jamais simultanément. Dans un premier temps, nous présentons un algorithme complètement

10 Introduction

distribuée qui permet de construire les clusteurs de façon parallèle. Notre algorithme peut être
implémenté simplement dans le modèle de calculs avec échanges de messages et avec congestion
(CONGEST model). Dans un second temps, Nous montrons comment notre construction
complètement distribuée peut être utilisée pour obtenir des algorithmes (déterministes et
probabilistes) ayant une complexité sous-linéaire en temps. Nos algorithmes améliorent les
anciens algorithmes qui eux avaient une complexité seulement linéaire.

Une première application importante de nos algorithmes est l’amélioration du temps du
pré-calcul nécessaire à la mise en place d’un synchroniseur de type γ. La deuxième application
est la construction de“spanners”(ou sous graphes couvrants) optimaux en temps sous-linéaire.
Cette dernière application est décrite au début du deuxième chapitre qui lui traite de façon
plus approfondie du calcul efficace de spanners.

Chapitre 2: La localité des sous-graphes couvrants

Dans ce chapitre, nous considérons le modèle de calculs avec échanges de messages et sans
congestion (LOCAL model). Comme expliqué précédemment, ce modèle ne fixe aucune limite
sur la taille des messages pouvant être échangés. Il permet de mettre de côté les difficultés
inhérentes à l’utilisation de petits messages, et de se concentrer plutôt sur la notion fonda-
mentale de la quantité d’information nécessaire pour résoudre un problème, c’est à dire la
localité d’un problème.

Nous nous intéressons alors à la construction de spanners (ou sous graphes couvrants)
ayant à la fois peu d’arêtes et un petit facteur d’étirement. Ce type de structures est largement
étudié du fait de son incroyable utilité pour résoudre plusieurs autres problèmes tels que le
routage, les oracles, le calculs de plus courts chemins, etc.

Le facteur d’étirement d’un spanner se définit naturellement comme étant le maximum du
rapport de la distance entre deux sommets dans le sous graphe couvrant et de leur distance
dans le graphe d’origine. Par exemple, si l’on inclut toutes les arêtes du graphe d’origine
dans un spanner alors le facteur d’étirement est égale à un. On préserve ainsi toutes les
distances, mais on prend trop d’arêtes. En revanche, si on considère un arbre couvrant alors
le facteur d’étirement peut être aussi grand que le diamètre du graphe, mais on prend le
minimum possible d’arêtes pour connecter tous les sommets. Un bon compromis est à la
fois un bon facteur d’étirement et un bon nombre d’arêtes. C’est ce qui nous intéresse très
particulièrement dans ce chapitre.

Nous utilisons une nouvelle technique basée sur les ensembles indépendants et maximaux.
Cette technique nous permet à la fois de casser la symétrie de façon rapide et complète-
ment distribuée, et de construire des spanners ayant de bonnes propriétés. Les algorithmes
déterministes que l’on obtient ont une complexité en temps asymptotiquement meilleure que
sous-linéaire, ce qui améliore toutes les anciennes constructions. De plus, les spanners que
nous obtenons sont nouveaux de part leurs facteurs d’étirements. Nous décrivons aussi des

0.4. Contribution et structure de cette thèse 11

implémentations probabilistes de notre technique qui permettent d’obtenir une complexité en
temps seulement logarithmique. Plusieurs résultats dans le cas des graphes avec des petits
degrés sont aussi donnés dans les cas déterministe et probabiliste.

Partie II: Une approche formelle dans les calculs distribués: Les

systèmes de réécritures de graphes

La deuxième partie de cette thèse comporte un seul chapitre dédié à l’étude de quelques
aspects formels liés aux algorithmes distribués.

L’un des thèmes les plus importants en algorithmique en générale est l’étude de la cor-
rection d’un algorithme. En algorithmique distribuée, cet aspect prend une dimension toute
particulière étant donné la multitude de modèles de calculs que l’on peut trouver, et la diffi-
culté inhérente au non-déterminisme dans les calculs distribués.

Dans ce contexte, les systèmes de réétiquetages de graphes [LMS99, GMM04, CM05,
CMZ06] constituent un outil formel pour concevoir et prouver de façon unifiée des algorithmes
distribués. En effet, dans un système de réétiquetage, on considère un graphe étiqueté et un
ensemble de règles de réétiquetage. Les étiquettes peuvent par exemple encoder les états ou
les propriétés d’un sommet ou d’une arête. Les règles de réétiquetages dictent la façon avec
laquelle les sommets et les arêtes sont réétiquetés en fonction de leurs anciennes étiquettes.
Ces règles sont locales dans le sens où elles concernent des boules de rayon fixé (typiquement
égal à 1), et ne modifient que les étiquettes attachées aux boules et non leurs structures. Dans
ce cadre, on ne se préoccupe pas de la façon avec laquelle ses règles peuvent être implémentées
dans des modèles pratiques, on se concentre plutôt sur comment concevoir les bonnes règles et
comment prouver leur correction. Les systèmes de réétiquetages constituent donc un modèle
abstrait qui permet de réfléchir sur des problèmes distribués fondamentaux.

En utilisant les systèmes de réétiquetages, nous montrons comment on peut encoder de
façon très abstraite, mais très compréhensible, deux techniques simples que sont la diffu-
sion et la collecte d’information. Ces deux techniques apparaissent comme étant la base de
plusieurs autres algorithmes distribués plus compliqués. Partant de cette observation, nous
montrons alors à travers plusieurs exemples comment ces différentes briques de bases peu-
vent être combinées pour encoder des algorithmes complexes de façon tout aussi abstraite et
compréhensible. Nous commencons par donner les systèmes de réétiquetages correspondants
aux techniques de “Propagation d’Infroamtion avec Feedback” (PIF), notamment à travers
les exemples de calculs de fonctions globales et de calcul d’arbres recouvrants BFS. Ensuite,
nous étudions l’exemple plus évolué de calcul d’arbres recouvrants de poid minimum (MST)
en donnant les règles de réétiquetages correspondantes. Ce dernier exemple est particulière-
ment intéressant dans notre approche, puisqu’il représente une combinaison non triviale des
principales techniques de bases utilisées lors de calculs distribués.

L’objectif principal poursuivit par les travaux présentés dans cette partie est de donner

12 Introduction

un cadre formel et aussi général que possible pour la conception et la preuve d’algorithmes
distribués. Les résultats que nous obtenons ouvrent des perspectives nombreuses dans l’étude
des algorithmes distribués à la lumière des systèmes de réétiquetages.

Partie III: Une approche à base d’agents mobiles dans les cal-

culs distribués: Le problème de la “poignée de main”

Dans la troisième partie, nous traitons de quelques aspects locaux propres aux agents. Nous
nous intéressons notamment aux bénéfices que nous pouvons tirer de leur utilisation par
rapport aux échanges de messages.

Chapitre 4: “Poignée de main” efficace en utilisant des agents mobiles

Dans le quatrième chapitre, nous étudions le problème de “la poignée de main” (Hand-
shake [MSZ03, DHSZ06]) dans le modèle distribué avec agents mobiles. Ce problème consiste
tout simplement à considérer une infinité de “round” et de calculer à chaque round un en-
semble d’arêtes qui ne se recouvrent pas, i.e., un ensemble stable (ou indépendant) d’arêtes.
En plus, nous sommes guidés par les deux contraintes suivantes: (i) calculer le plus d’arêtes
que possible en un round, et (ii) la durée d’un round doit être aussi petite que possible
(typiquement constante).

Ce problème a été beaucoup étudié dans le modèle avec échanges de message puisqu’il
permet à deux sommets d’avoir la garantie de communiquer exclusivement entre eux. Il est
aussi à la base de plusieurs algorithmes distribués pour le calcul d’ensemble maximal d’arètes
indépendantes. Il permet également de résoudre de façon distribuée des problèmes liés à la
coloration de graphe.

Dans un modèle à base d’agents mobiles, calculer un ensemble indépendant d’arêtes est
facile si le système contient un seul agent. Si l’on s’autorise plusieurs agents, il faut préciser la
façon avec laquelle les différents agents coordonnent leur actions pour calculer le plus d’arêtes
possibles. Nous donnons alors un algorithme pour résoudre le problème avec n’importe quel
nombre d’agents et en utilisant des rounds ayant une durée constante. Notre algorithme se
base sur une marche aléatoire des différents agents. On donne une analyse probabiliste de
notre algorithme dans le régime stationnaire et nous montrons comment créer les agents de
façon efficace. Nous calculons notamment le nombre optimal (par rapport à notre technique)
d’agents qui permet de maximiser le nombre moyen d’arêtes indépendantes calculées par notre
algorithme. Pour des graphes particuliers tels que les graphes à degrés bornés et les graphes
quasi d-régulier, notre algorithme est optimal à une petite constante multiplicative près.

Nous montrons comment émuler notre technique dans le modèle avec échanges de messages
tout en gardant les mêmes performances de l’algorithme original avec agents. Ceci permet
d’améliorer les anciens algorithmes et les applications correspondantes. En particulier, nous

0.4. Contribution et structure de cette thèse 13

obtenons un algorithme permettant d’implémenter les systèmes de réétiquetages sur des arêtes
(Partie II) de façon plus efficace. Notre algorithme permet en effet de réétiqueter en parallèle
et de façon indépendante un plus grand nombre d’arêtes. Cette application est donnée au
début du Chapitre 5.

Chapitre 5: Implémentation des systèmes de réétiquetages de graphes en

utilisant des agents mobiles

La première partie de ce cinquième chapitre est consacré à utiliser et à étendre les techniques
de handshake pour mettre en place un cadre pratique pour l’implémentation de quelques
systèmes de réétiquetages de bases. Nous nous intéressons en effet aux réétiquetages dans les
étoiles fermées et dans les étoiles ouvertes. Dans le cas de plusieurs graphes, on obtient des
algorithmes aussi efficaces, en terme de réétiquetages autorisés pendant un round, que dans le
cadre d’échanges de messages. En plus, lorsque nous adaptons nos algorithmes avec agents au
modèle synchrone avec messages, nous obtenons des solutions ayant une meilleure complexité
en nombre de messages. Cela confirme le fait que réfléchir en terme d’agents mobiles peut
contribuer à trouver de nouvelles solutions plus efficaces dans le modèle avec messages.

La deuxième partie de ce chapitre est quant à elle destinée à donner un cadre général pour
l’implémentation d’un système de réétiquetage quelconque en utilisant des agents mobiles.
Ici, nous ne sommes plus motivés par des considérations de performances. Nous cherchons
simplement à montrer que les agents mobiles peuvent avoir un grand pouvoir d’expression,
dans le sens où il peuvent nous aider à modéliser et à résoudre facilement des problèmes
complexes et fastidieux à étudier dans un autre modèle tel que celui avec échanges de messages.

Ce chapitre donne pour la première fois une étude complète de l’implémentation des
systèmes de réécritures dans un modèle distribué pratique à base d’agents mobiles et ouvre
le champ à plusieurs autres travaux et études aussi bien au niveau théorique que pratique.

Partie IV: Une approche expérimentale et pédagogique dans les

calculs distribués: la plateforme ViSiDiA

Cette dernière partie se distingue des trois autres par son caractère moins théorique et plus
appliqué. En effet, nous y présentons une plateforme qui s’appelle ViSiDiA pour la visualisa-
tion et la simulation d’algorithmes distribués [ViS06]. ViSiDiA est un logiciel qui existe depuis
déjà quelques années au sein du LaBRI. Avant le début de cette thèse, ViSiDiA permettait
de simuler les algorithmes distribués dans le modèle asynchrone avec échanges de messages.
Nos principales contributions consistent (i) à rendre possible la simulation d’algorithmes syn-
chrones avec échanges de messages, (ii) à permettre la simulation d’algorithmes synchrones
et asynchrones avec agents mobiles, (iii) et enfin à mettre en place une version distribuée du
logiciel qui s’exécute sur plusieurs machines et qui est destinée à une simulation sur de grands

14 Introduction

graphes.
En partant du principe que la vraie compréhension vient de la mise en pratique, la plate-

forme ViSiDiA permet aux étudiants d’implémenter, de tester et d’observer le comportement
d’un algorithme distribué de façon pratique et conviviale. Elle leur permet ainsi d’acquérir une
meilleure compréhension des algorithmes distribués et de tester leurs connaissances. ViSiDiA
est aujourd’hui utilisée à l’université de Bordeaux 1 dans le cadre de cours d’algorithmique
distribuée.

Pour les chercheurs, ViSiDiA est un moyen de mettre en oeuvre de nouvelles idées et de
vérifier rapidement leurs validités notamment en effectuant des études expérimentales. Cela
peut être très précieux avant de s’engager dans une étude théorique ou pour avoir une intuition
sur la performance d’un algorithme.

Part I

An Efficiency Approach in

Distributed Computing: Sparse

Graph Decompositions and

Applications

15

Chapter 1

Sublinear Fully Distributed Sparse

Graph Decomposition

Abstract.

We present new efficient deterministic and randomized distributed algorithms for decom-
posing a graph with n nodes into a disjoint set of connected clusters with radius at most k−1
and having O(n1+1/k) intercluster edges.

We show how to implement our algorithms in the distributed CONGEST model of com-
putation, i.e., limited message size, which improves the time complexity of previous algo-
rithms [MS00, Awe85, Pel00] from O(n) to O(n1−1/k).

We apply our algorithms for constructing network synchronizers and low stretch graph
spanners with optimal size in sublinear deterministic time in the CONGEST model.

The challenge here is to resolve the problems araising due to the use of small messages.

Résumé.

Nous présentons des algorithmes déterministes et probabilistes permettant de décomposer
de façon distribuée et efficace un graphe de taille n en un ensemble de clusteurs avec un rayon
au plus k − 1 et ayant seulement O(n1+1/k) arêtes d’interconnexion.

Nous montrons comment implémenter nos algorithmes en utilisant des messages de pe-
tite taille, ce qui permet d’améliorer la complexité en temps des anciens algorithmes [MS00,
Awe85, Pel00] de O(n) à O(n1−1/k).

Nous appliquons nos algorithmes pour construire des synchroniseurs et des sous graphes
couvrants de façon déterministe en temps sous-linéaire.

Le principal défit dans cette étude est de résoudre les différentes difficultés inhérentes à
l’utilisation de messages de petite taille.

17

18 Chapter 1. Distributed Graph Decomposition

1.1 Introduction

Due to the constant growth of networks, it becomes necessary to find new techniques to
handle related global informations, to maintain and to update these informations in an ef-
ficient way. A Locality-Preserving (LP) network representation [Pel00] can be considered
as an efficient data structure that captures topological properties of the underlying network
and helps in designing distributed algorithms for many fundamental problems: synchroniza-
tion [MS00, SS94, AP90a], Maximal Independent Set (MIS) [AGLP89], routing [AP92], mobile
users [AP95], coloring [PS92] and other related applications [GM03, GKP98, KP98, BBCD02,
AR93]. In order to provide efficient solutions for these problems, it is important to construct
LP-representations in a distributed way while maintaining good complexity measures.

The main purpose of this chapter is to give an overview of some LP-representations of
special interest and to show how to construct them efficiently in the distributed setting. More
precisely, we focus on one important type of LP-representations called clustered representa-
tions. The main idea of a clustered representation is to decompose the nodes of a graph
into many possibly overlapping regions called clusters. This decomposition allows to organize
the graph in a particular way that satisfies some desired properties. In general, the clusters
satisfy two types of qualitative criteria. The first criterion attempts to measure the locality
level of the clusters. Some parameters like the radius or the size of a cluster are usually used
to measure the locality level of a clustered representation. The second criterion attempts to
measure the sparsity level. This criterion gives an idea about how the clusters are connected
to each others. For instance, in the case of disjoint clusters, the number of intercluster edges
is usually used to express the sparsity level. In the case of overlapping clusters, the aver-
age/maximum number of occurrences of a node in the clusters is usually used to express the
sparsity (or the overlap) of the clustered representation.

In general, the locality and the sparsity levels of a clustered representation are tightly
related and often go in an opposite way. For instance, one can take the whole graph to be
one cluster C. In this case, the sparsity level is good (the degree of C is 0), but the locality
level is bad (the radius of C is the radius of the whole graph). In opposite, one can take a
representation in which each node forms a cluster. In this case, the locality level is good (the
radius of each cluster is 0), but the sparsity level is bad (the degree of a cluster may be Δ
where Δ is the maximum degree of the graph).

The complexity of many applications (using clustered representations as a communication
structure) is also tightly related to the sparsity and locality levels. In fact, a good locality level
implies in general a low time complexity, and a low sparsity level implies low message/memory
complexity. All the clustered representations one can find always attempt to find a good
compromise between the sparsity and the locality levels.

1.1. Introduction 19

1.1.1 Goals and related works

In this chapter, we focus on an important clustered representation called Basic Partition
([Pel00] Chapter 11). Our interest in this Basic Partition comes from its good sparsity-
locality compromise. In fact, given an n-node graph, the Basic Partition provides a set of
disjoint connected clusters such that the radius of a cluster is at most k−1 and the number of
intercluster edges is O(n1+ 1

k) where k is a given integer parameter. Our goal is to design time
efficient algorithms for constructing a Basic Partition of a graph in a distributed model of
computation where nodes can only communicate with their neighbors by exchanging messages
of limited size.

The Basic Partition was first used in [Awe85] in order to design efficient network synchro-
nizers. The idea of producing a clustered representation satisfying a good compromise between
the locality level and the sparsity level was then studied in [AP90b]. The results of [AP90b]
inspired many other applications and generalizations [Cow93, ABCP96, ABCP98]. In partic-
ular, Awerbuch et al [ABCP96] studied two important types of clustered representations:

1. The first one called network decomposition aims at partitioning the network into disjoint
colored clusters with either weak or strong small radius and using a small number of
colors. For weak -network decompositions, a cluster does not necessarily need to be con-
nected and its radius is computed using paths which may shortcut through neighboring
clusters. For strong-network decompositions, a cluster must be connected and its radius
is computed in the network induced by this cluster.

2. The second one called network covers constructs a set of possibly overlapping clusters
with the property that for any node v, there exists a cluster which contains the t-
neighborhood of v, i.e., the neighbors at distance at most t from v where t is an integer
parameter. The quality of such covers is measured using the strong radius of clusters
and the cluster overlap, i.e., the maximum number of clusters a node belongs to.

In addition to design new network decompositions satisfying some desirable properties,
many works studied the problem of distributively constructing these representations in an
efficient way. For instance, Awerbuch et al [ABCP96] gave a deterministic (resp. randomized)
distributed algorithm to construct a (k, t,O(kn1/k))-neighborhood cover in O(tk · 2c

√
log n +

tk2 · 24
√

log n · n1/k) (resp. O(tk2 · log2 n · n1/k)) time for some constant c > 0. A (k, t, d)-
neighborhood is a set of possibly overlapping clusters such that (i) the strong diameter of a
cluster is O(kt), (ii) each node belongs to at most d clusters, and (iii) the t-neighborhood of
each node is covered by at least one cluster. Moreover, a remark in [ABCP96] claims that
it is possible to translate this neighborhood cover into a strong-network decomposition of
comparable parameters by using some techniques from [Cow93, AP90b].

On one hand, the strong radius of the cover constructed in [ABCP96] is 2k − 1 which

20 Chapter 1. Distributed Graph Decomposition

is worst (by a factor 2) than the one of the Basic Partition. On the other hand, the dis-
tributed model considered there does not take into account the congestion created at vari-
ous bottlenecks in the network (see Section 3.4 of [ABCP96]). In fact, the network model
used in [ABCP96] is the Linial’s free model [Lin87, Lin92] also known as the LOCAL model
(see [Pel00] Chapter 2). The LOCAL model assumes that nodes can communicate by exchang-
ing messages of unlimited size. This assumption focuses on the locality nature of distributed
problems, i.e., what can be computed distributively provided that every node knows its whole
neighborhood at some distance?

From a practical point of view, since clustered representations are in the basis of many
practical applications, it is crucial to design fast algorithms to construct such representations
in practical distributed models. From a more theoretical point of view, it is also interesting
and challenging to design fast algorithms assuming only some weak distributed assumptions,
e.g., see [PR00].

In [MS00], Moran and Snir gave a distributed algorithm that computes a Basic Partition
in O(n) time in a distributed model where the size of a message is at most O(log n) bits, i.e.,
CONGEST model (see [Pel00] Chapter 2). The algorithm of [MS00] improves the previous
constructions of [Awe85, SS94], and allows to obtain more efficient algorithms for designing
network synchronizers γ, γ1 and γ2. The algorithm of [MS00] is semi-sequential: Each cluster
is constructed around some node in a distributed and layered fashion. Nevertheless, the
clusters are constructed sequentially. In other words, the clusters are constructed one after
the other: at each iteration, a new node is selected and the next cluster is constructed.

Moran and Snir end their paper [MS00] saying:

Q1 [MS00] :
are there truly parallel algorithms which construct a Basic
Partition in polylogarithmic or sublinear time complexity in
the CONGEST model?

1.1.2 Main results

In the following, we answer the [MS00] question. In fact, we give new sparse partition algo-
rithms with O(n1−1/k) time complexity, using messages of size at most O(log n) .

More precisely, we give a fully distributed deterministic algorithm Dist Part with no pre-
computation step. The idea is to let the clusters grow spontaneously in parallel in different
regions of the graph, breaking ties using node identities. We give a detailed implementation of
algorithm Dist Part using small messages and we analyze its efficiency. The time complex-
ity of algorithm Dist Part is only linear. However, the technique of algorithm Dist Part is
used as a black box in order to design a new synchronous deterministic algorithm (Sync Part)
with sublinear time complexity. The main idea to break the linear time barrier is to privi-
lege the construction of clusters in the dense region of the graph which allows to finish the
distributed construction in constant time once the graph becomes sparse. This idea is then

1.2. Model and definitions 21

adapted in order to run in an asynchronous setting and we obtain algorithm Fast Part.
Our new asynchronous algorithm is even faster than the synchronous one for many particular
graphs.

We also give a randomized distributed algorithm (Elect Part) which is based on a local
election technique (LEk) in balls of radius k. This k-local election technique is a generalization
of the algorithms given in [MSZ02] and can be of an independent interest. For general graphs,
our randomized construction is also efficient, but its main strength is to provide improved
bounds for many particular graphs. In fact, the analysis of algorithm Elect Part enables
us to express analytically the degree of parallelism of our construction and to compute the
expected number of cluster constructed in parallel.

The basic partition can be applied for designing network covers, network synchronizers
and also graph spanners. Hence, we obtain new fast algorithms for these two applications.

Outline

In Sections 1.2 and 1.3, we give some definitions and we review the Basic Part algorithm
for constructing the Basic Partition in a semi-sequential manner. In Section 1.4, we give
a detailed implementation and analysis of the fully distributed algorithm Dist Part. In
Sections 1.5 and 1.6, we describe algorithms Sync Part, Fast Part and Elect Part, and
we analyze their time complexity.

The application of the basic partition to network covers and network synchronizers γ, γ1

and γ2 is given in Appendix A. In appendix B, we also give a constructive analysis of our
algorithms in the case of Circulant graphs and we obtain logarithmic time complexity.

The application of our algorithms to the construction of graph spanners is presented as a
preliminary result at the beginning of next chapter.

1.2 Model and definitions

We represent a network of n processes by an unweighted undirected connected graph G =
(V,E) where V represents the set of processes (|V | = n) and E the set of links between
them. We consider the distributed model of computation used in [MS00, Awe85] and known
as the CONGEST model. More precisely, we assume that a node can only communicate with
its neighbors by sending and receiving messages of size O(log(n)) bits. Each node processes
messages received from its neighbors, performs local computations, and sends messages to
its neighbors in negligible time. In a synchronous network, all nodes have access to a global
clock which generates pulses. A message which have been sent in a given pulse arrives before
the next pulse. In a synchronous network, the time complexity of an algorithm is defined
as the worst-case number of pulses from the start of the algorithm to its termination. In an
asynchronous network, there is no global clock and a message delay is arbitrary but finite. In
the latter case, the time complexity is defined as the worst-case number of time units from

22 Chapter 1. Distributed Graph Decomposition

the start of the algorithm to its termination, assuming that a message delay is at most one
time unit (this assumption is introduced only for the purpose of performance evaluation).

A cluster C is a subset of V such that the subgraph induced by C is connected. A cluster
is always considered with a leader node and a BFS spanning tree rooted at the leader. We
also assume that each node v of a graph G has a unique identity Idv (of O(log(n)) bits). The
identity IdC of a cluster C is defined as the identity of its leader.

For every pair of nodes u and v of a graph G, dG(u, v) denotes the distance between u

and v in G (we also write d(u, v) when G is clear from the context). For any node v of a
graph G, N (v) = {u ∈ V | dG(u, v) � 1} denotes the neighborhood of v. For any cluster C of
a graph G, Γ(C) =

⋃
v∈C N (v) denotes the neighborhood of C. For any cluster C of a graph

G, Rad(C) denotes the radius of the cluster C, i.e., the radius of the subgraph induced by C

in G. Similarly, for any set C of clusters, Rad(C) = maxC∈C Rad(C) denotes the radius of C.
In all our algorithms, clusters are constructed in a layered and concurrent fashion. In other

words, a cluster may grow and explore a new layer but it may also lose its last layer. Some
clusters may disappear because they lost all their layers and some others may be newly formed.
A cluster is said finished if it belongs to the final decomposition that we are constructing. A
node belonging to a finished cluster is also said finished. A node is said active if it is does
not belong to a finished cluster.

1.3 A basic algorithm for constructing a sparse partition

1: Set C := ∅

2: while V �= ∅ do
3: Select an arbitrary vertex v ∈ V

4: Set C := {v}
5: while |Γ(C)| > n1/k|C| do

6: C := Γ(C)
7: end while

8: Set C := C ∪ C and V := V − C

9: end while

10: return C

Figure 1.1: Algorithm Basic Part

Let k � 1 be an integer parameter. Typically, k is taken to be small compared with n

(k � log n). Let us consider algorithm Basic Part (Fig. 1.1) as given in Peleg’s book [Pel00]
(Chapter 11, page 130). Algorithm Basic Part was first used in [Awe85] as a data structure
for synchronizer γ, then some improvements were given in [SS94, MS00]. The algorithm
operates in many phases. At each phase, a node is selected from the set of nodes which are

1.3. Semi-sequential basic partition 23

not yet covered by a cluster. Then a new cluster is constructed in many iterations according
to the sparsity condition of line 5, i.e., |Γ(C)| > n1/k|C|. It is important to note that the
graph G changes in line 8 of the algorithm and the notations in the while loop correspond to
the new graph G obtained after deletion of the corresponding nodes.

Algorithm Basic Part constructs a Basic Partition. In fact, we have the following:

Theorem 1.3.1 ([Pel00]) The output C of algorithm Basic Part is a partition of G which
satisfies the following properties:

1. Rad(C) � k − 1 (locality level)

2. There are at most n1+1/k intercluster edges (sparsity level)

Proof On one hand, once the construction of a cluster C is finished, the nodes of C are
definitely removed from the graph G. Thus, the clusters constructed by the algorithm are
disjoint. On the other hand, the algorithm terminates once no node remains uncovered. Thus,
the final output C is a partition of G.

Using the sparsity condition, if a cluster C adds i layers, then the size of C verifies
|C| > ni/k. Hence, a cluster can not add more than k − 1 layers and the first property of the
partition holds.

Let GC be the graph induced by the clusters of the partition C: the nodes of GC are
the clusters of C and there is an intercluster edge between two clusters if the clusters are at
distance 1 from each others. Now, consider a cluster C ∈ C. Once the construction of C is
finished, there are at most n1/k|C| nodes in G at distance 1. Thus, there will be at most
n1/k|C| neighboring clusters that will be constructed after C. Thus, there are at most n1/k|C|
intercluster edges that can be added to the graph GC after the construction of C is finished.
Thus, the number of intercluster edges is bounded by

∑
C∈C n1/k|C|. Since C is a partition,∑

C∈C |C| = n and the second property of the partition holds.

There are many distributed implementations of the Basic Part algorithm. All of these
implementations are semi-sequential. First, they distributively elect a new leader in the
network which corresponds to the center of a new cluster. Then, the cluster is constructed
in a distributed way by adding the layers in many iterations. The construction of the cluster
ends when there are no new layers to add or when the sparsity condition is no longer satisfied.
Once the construction of the cluster is finished, a new leader is elected from unprocessed nodes
and a new cluster grows up around this leader.

The main difficulty in these algorithms is to distributively elect the next leader. In [MS00],
a preprocessing is used to overcome this difficulty. First, a spanning tree T of the graph G

is constructed. Then, the next leader is elected by achieving a DFS traversal of T . This
technique allows to improve the complexity bounds of the decomposition: O(|E|) messages
and O(|V |) time.

24 Chapter 1. Distributed Graph Decomposition

In the next sections, we introduce a new algorithm with no precomputation step and no
next leader election step.

1.4 A deterministic fully distributed basic partition algorithm

1.4.1 Overview of the algorithm

The main idea of algorithm Dist Part is to allow clusters to grow in parallel in different re-
gions. In fact, consider two nodes u and v such that dG(u, v) � 2k with k the same parameter
than in algorithm Basic Part. Then, it is possible to grow two clusters respectively around
u and v without any interference. Based on this observation, we initially let each node of
the graph be a single-node cluster. Then, we allow the clusters to grow spontaneously. The
main difficulty here is to guarantee that the clusters do not share any nodes.

Cluster C4

Cluster C3

Cluster C2

Cluster C1

Figure 1.2: An example of conflicts between clusters at distance 1 or 2

We do not avoid cluster collisions but we try to manage the conflicts that can occur. For
instance, consider some region of the graph and suppose that some clusters have independently
grown as shown in Fig. 1.2. The clusters can not add a new layer simultaneously without
overlapping. Thus, we make each cluster compete against its neighbors in order to win a new
layer. There are two critical situations. Either, a cluster enters in conflict with an adjacent
one or with another cluster at distance two. For instance, in the example of Fig. 1.2, cluster
C1 tries to invade some nodes that belong to cluster C3 and C2 at distance 1. Thus, the
neighboring cluster C1, C2 and C3 are in conflicts. Similarly, cluster C4 tries to invade some
nodes in cluster C3. Nevertheless, these nodes are also required for the new layer of cluster C1.
Thus, the two clusters C1 and C4 (at distance 2) are also in conflicts. To resume, each cluster
must compete against all clusters at distance 1 or 2 in order to add a layer. In addition, a
layer not satisfying the sparsity condition of algorithm Basic Part must be rejected.

In order to manage the conflicts and the cluster growth, we use the following rules:

1.4. Deterministic fully distributed partition: Dist Part 25

1: continue := True
2: while continue do

3: execute the Exploration Rule
4: if success of the Exploration Rule then

5: add the new layer
6: execute the Growth Rule
7: if Non success of the Growth Rule then
8: reject the last explored layer
9: switch to a finished cluster

10: continue := False
11: end if
12: else

13: execute the Battle Rule
14: end if

15: end while

Figure 1.3: Algorithm Dist Part: code for a cluster

1. Exploration Rule: a cluster is able to add a new layer if its identifier is bigger than
those of not finished neighboring clusters at distance one or two. If a cluster wins in
exploring a new layer then it must apply the Growth Rule, otherwise it must apply the
Battle Rule.

2. Growth Rule: If the sparsity condition is satisfied then a cluster adds the last explored
layer and tries to apply the Exploration Rule once again. Otherwise, the cluster con-
struction is finished and the cluster rejects the last explored layer. The nodes in the
rejected layer are re-initialized to single node clusters with their initial identifiers.

3. Battle Rule: a cluster looses its whole last layer if at least a neighboring cluster at
distance one has successfully applied the Exploration Rule. The nodes lost by a cluster
are re-initialized to single node clusters with their initial identifiers.

Based on the three previous rules, we obtain the fully distributed algorithm Dist Part

described in a high level way in Fig. 1.3.

Remark 1.4.1 It is important to choose a unique identifier for each cluster. For instance,
the identifier of a cluster can be chosen to be the identity of its leader. This is implicitly
assumed in the rest of this section. However, we can also choose the couple (|C|, Idv) as
the identifier of a cluster C with a root v, and the lexicographical order to compare cluster
identifiers.

Example: Let us consider the concrete example of Fig. 1.4. We have five clusters 1, 2, 3, 4

26 Chapter 1. Distributed Graph Decomposition

and 5 with identities Id1 > Id2 > Id3 > Id4 > Id5. Assume that the identifier of each clusters
corresponds to the identity of its leader node. When a new exploration begins, cluster 1 wins
against clusters 5 and 3. Cluster 2 wins against clusters 4 and 5 but looses against cluster 1
which is at distance two. Thus, cluster 2 can not add a new layer. Cluster 4 loses against both
clusters 2 and 3 but it will not be invaded because both clusters 2 and 3 can not grow. Cluster
3 wins against cluster 4 but loses against cluster 1. Cluster 3 will be invaded by cluster 1
which wins against all clusters at distance two (cluster 5, 2 and 3). Thus, cluster 3 will lose
its last layer. The node connecting it with cluster 4 becomes a single node cluster with the
its initial identity Id6. The node connecting cluster 3 with cluster 1 becomes a leaf in cluster
1. Now, suppose that the sparsity condition for the new enlarged cluster 1 is not satisfied.
Then, cluster 1 rejects the last explored layer and its construction is finished. Hence, the
nodes in the rejected layer become single node clusters. Then, the remaining active clusters
spontaneously continue new explorations. In our example, both cluster 2 and cluster 3 will
succeed their explorations and add a layers. Note that in the other regions of the graph, there
are other clusters which are fighting against each others. Hence, many clusters can grow in
parallel.

1.4.2 Detailed description and implementation

In this section, we give a complete description of how to implement the three rules of the
Dist Part algorithm using message passing. For the clarity of our algorithm, we assume that
the identifier of a cluster is the identity of its root. The main difficulty when implementing
the three rules of algorithm Dist Part is that the center of a cluster can not know what
is happening on the borders of its cluster, that’s why, it must always wait for informations
from the leaves (nodes at the border) before taking any decision. Similarly, the leaves can not
know the global state of their cluster, that’s why they must also wait for information from
their root.

The nodes in a cluster collaborates in order to apply the three rules. They can be in five
states root, leaf, relay, orphan or final. At the beginning, all nodes are orphans and they form
orphan clusters, i.e., cluster with only one node. If a node is in a final state, then it belongs
to a finished cluster and thus it does not make any computation. The other states define a
precise role for each node in its cluster. Generally speaking, if a node v is in a root state,
then it takes decisions. If v is in a leaf state, then it tries to invade new nodes and it informs
its root. If v is in a relay state, then it forwards information from the leaves to the root.

As long as new layers are added (resp. removed) to (resp. from) a cluster, the nodes in the
cluster maintain a layered BFS spanning tree. The root of the tree corresponds to the root of
the cluster, the leaves of the tree correspond to the leaves of the cluster and the nodes in the
interior of the tree correspond to relay nodes. The decisions of adding or removing a layer
are broadcasted by the root node according to the informations forwarded by the leaf nodes

1.4. Deterministic fully distributed partition: Dist Part 27

Id1

Id3

Id4

Id2

Id5

(a) starting configuration.

Id2

Id5

Id4

Id3

Id1

(b) Cluster 1: Exploration rule

success.

Id2

Id5

Id1

Id3

Id4

(c) Cluster 3: Battle rule.

Id2

Id4

Id6

Id3

Id1

(d) Cluster 1: Growth rule, Clus-

ter 3: Battle rule.

Id5

Id1

Id7

Id6

Id3

Id4

Id2

(e) Cluster 1: Growth rule.

Id5

Id1

Id7
Id3

Id4

Id2

Id6

(f) Clusters 3,2: Exploration

rule. Cluster 4: Battle rule.

Figure 1.4: An example of algorithm Dist Part

28 Chapter 1. Distributed Graph Decomposition

all along the constructed BFS tree. Each time new nodes join a cluster, the BFS spanning
tree is enlarged by making the new nodes choosing a father among the leaves of the already
constructed tree.

In next paragraphs, we give a detailed description of the actions to be performed by each
node according to its state. Notice that the state of a node can change several times. For
instance, the state of a node can be relay at some time, then become leaf, after that orphan,
and at last final.

Remark 1.4.2 In the pseudo-code of our algorithms, a node uses the function Send to send
a message to a (or some) neighbors. The function Receive allows a node to receive a message
from a (or some) neighbors. The receive function is blocking, that is, a node can not execute
the next instruction in the algorithm unless the receive action is terminated, i.e., all messages
are arrived.

Root nodes

The algorithm executed by a root node is given by Algorithm 1. First, the root verifies if
the sparsity condition is satisfied and it informs the leaves (Growth rule). More specifically,
if the sparsity condition is satisfied, then the root broadcasts a notification message NEW to
the leaves in order to begin a new exploration. Otherwise, it broadcasts a REJECT message
saying that the construction is finished.

After broadcasting a NEW message Second, the root waits for the response of its leaves.
There are three possible cases:

1. If the root receives only STOPPED messages from its leaves, then the leaves do not find
new nodes to explore. In this case, the root broadcasts a STOP message informing all
the nodes that the cluster construction is finished.

2. If the root does not receive any LOST message, i.e., only WIN (or STOPPED) mes-
sages, then the new exploration was globally successful. Thus, the root broadcasts a
SUCCESS message to the leaves. Then, the root waits to learn the size of the new
enlarged cluster.

3. If the root receives at least one LOST message, then the new exploration was not
successful (at least one leaf has lost against a neighboring cluster). Thus, the root
informs the leaves by broadcasting a FAILURE message. Then, the root waits for the
leaf responses. There are two cases:

• At least one leaf is invaded by another cluster. Thus, the root receives at least
a BYE message. In this case, the cluster must reject its last layer (Battle rule).
Hence, it broadcasts a DOWN message asking the leaves to become orphans.

1.4. Deterministic fully distributed partition: Dist Part 29

• All leaves have resisted to neighbor’s attacks. Thus, the root receives only SAFE
messages, i.e., none of the neighboring cluster has succeeded to invade the current
cluster. In this case, the root broadcasts an OK message saying that the cluster is
not invaded and asking for a new exploration.

Receive count From Sons; Compute |Γ(C)|;1

if Γ(C) > n1/k|C| then2

Send NEW To Sons ;3

Receive LOST WIN STOPPED From Sons;4

if there exists at least one LOST message then5

exploration success := false ;6

else if all messages are STOPPED then7

cluster stopped := true;8

else9

exploration success := true ;10

if cluster stopped then11

Send STOP To Sons ; State := Final ;12

else13

if exploration success then14

Send SUCCESS To Sons ;15

h := h + 1; /* the radius of the cluster */16

else17

Send FAILURE To Sons ;18

Receive BYE SAFE From Sons ;19

if there exists at least one BYE message then20

Send DOWN To Sons ;21

h := h − 1 ;22

if h = 1 then State := Orphan ;23

else24

Send OK To Sons ;25

else26

h := h − 1;27

State := Final ;28

Send REJECT To Sons ;29

Algorithm 1 : Dist Part: high level code for the root node of a cluster C

Leaf nodes

The algorithm executed by a leaf is given by Algorithm. 2.

Remark 1.4.3 We remark that a leaf does not always belong to the last layer of a cluster.
For instance, a leaf node may have only final neighbors belonging to finished clusters. Hence, it

30 Chapter 1. Distributed Graph Decomposition

can not add new nodes to its cluster. Nevertheless, other leaves belonging to the same cluster
can continue exploring new nodes. Therefore, the construction of the cluster can continue
even if some leaves can not locally explore new nodes. In order to handle this situation, we
make each node own a local variable h which corresponds to its width in the BFS-spanning
tree of its cluster. If h = 1 then the leaf belongs to the last layer and can compete in order to
add new layers, otherwise the leaf can not explore any new layer.

When a node u becomes a leaf in a new cluster, it does not know if the sparsity condition
is verified for the new cluster (the exploration of a new layer is done before verifying the
sparsity condition). Thus, node u sends 1 to its parent v in the new cluster and it waits for
the decision of the root. The parent node v sends back the number of its children and so on.
At the end, the root can compute the sparsity condition.

If the leaf u receives a REJECT message from its parent, then u must leave its new cluster
(Growth rule) and it becomes an orphan cluster. Otherwise, u receives a NEW message
from its parent. If u can not explore new regions, then u sends back a STOPPED message.
Otherwise, u begins a new exploration using an election technique in a ball of radius two: First,
u sends its cluster identifier to its neighbors. Symmetrically, it waits for the identifiers of the
neighboring clusters. Second, u computes the maximum of the neighbor identifiers (including
the identifier of its own cluster) and sends it again to the neighbors. Symmetrically, it waits
for the maximum identifiers sent by neighboring leaves. If all the identifiers received by u are
equal to the identifier of u’s cluster, then u has locally succeed its exploration and it sends
back a WIN message. Otherwise, u sends back a LOST message.

Remark 1.4.4 Since the clusters have unique identifiers, then two neighboring leaves can
easily decide whether they belong to the same cluster, e.g., when exchanging their identifiers
in a new exploration.

Once the exploration is finished, the leaf node u waits for the decision of its root. There
are three cases :

1. If u receives a STOP message from the root, then none of the leaves can explore new
nodes. Thus, u becomes a final node, i.e., the construction of the cluster is finished.

2. If u receives an SUCCESS message from the root, then all leaves have succeeded their
local explorations, i.e., they won all neighbors at distance 1 or 2. Thus, u sends a JOIN
message to neighboring leaves asking them to join its cluster. Then, u switches to a
relay state.

3. If u receives a FAILURE message from the root, then at least one leaf has not succeeded
the exploration. Thus, u sends a STAY message to neighboring leaves informing them
that they will not be invaded by u’s cluster. Then, u waits to know if the neighboring
clusters succeeded their explorations. There are two cases:

1.4. Deterministic fully distributed partition: Dist Part 31

• If u receives at least a JOIN message from a neighboring leaf (in a different clus-
ter), then it sends back a BYE message to its roots, waits for an acknowledgment
(DOWN message) and it joins the new cluster.

• Otherwise, if none of the neighboring cluster has succeeded in invading the leaf
(STAY message), the leaf sends back to its root a SAFE message. At this stage of
the algorithm, the leaves (except those who have received a JOIN message) do not
know whether their cluster is being invaded or not (only the root globally knows
what is happening at its frontiers). Thus, the leaves wait for either an OK or a
DOWN message from the root. If a leaf receives an OK message, then it is still in
the same cluster and it begins a new exploration once again. Otherwise, it receives
a DOWN message and it becomes an orphan node.

Orphan nodes

The algorithm executed by an orphan node is given by Algorithm 3. An orphan node acts like
a root and like a leaf node. In fact, it takes decisions for its single node cluster and it fights
against neighboring nodes. If an orphan node succeeds an exploration, it becomes a root
node in a new cluster of radius 1. If it is invaded by a cluster, it becomes a leaf. Otherwise,
it re-tries to invade its neighbors (new exploration). If it has only neighbors belonging to
finished clusters, then it switches to a final state. Here, the only difficulty is to send the good
type of message to the neighbors.

Relay nodes

The algorithm executed by a relay node is given by Algorithm 4. The main role of a relay
node is to forward informations from the root to the leaves. If a relay node receives a message
from its father, it simply forwards it to its children. If the message is a REJECT or a STOP
message, then the node knows that the cluster construction is finished and it switches to a
final state. If the message is a SUCCESS message, then the node knows that there is a new
layer joining. Thus, the width of the node is incremented by one (h := h + 1). If the message
is a DOWN message then the relay node knows that their cluster was invaded and it has lost
the last layer (h := h − 1). In this case, if a relay node belongs to the layer before the last
one (h = 2) then the relay node becomes a leaf.

On the other hand, if a relay node receives a message from its children, it can deduce
which step the leaves are executing (exploration of a new layer: WIN, LOST or STOPPED
messages, resistance against neighbors attacks: OK or BYE messages, and computation of the
sparsity condition: integer message). In all cases, the relay node can easily compute which
type of message it must forward to its root.

Remark 1.4.5 Each node can easily know which of its neighbors belong to a finished cluster.

32 Chapter 1. Distributed Graph Decomposition

Send 1 To father ; Receive msg From father; /* msg is either NEW or REJECT */1

if msg = NEW then2

if there are new nodes to explore then3

Send IdC To neighbors in other active clusters;4

Receive ∪C′IdC′ From neighbors in other active clusters ;5

max1 := the maximum of ∪C′IdC′ ;6

if max1 < IdC then7

Send IdC To neighbors in other active clusters;8

else9

Send max1 To neighbors in other active clusters;10

Receive Ids From neighbors in other active clusters ;11

max2 := the maximum of received Ids;12

if max2 > IdC then13

Send LOST To father ;14

else15

Send WIN To father ;16

else17

Send STOPPED To father ;18

Receive msg From father; /* msg is either SUCCESS or STOP or FAILURE */19

if msg = SUCCESS then20

Send JOIN To neighbors in other active clusters ;21

Receive messages From neighbors in other active clusters ;22

Mark the new Sons in the BFS tree of C; h := h + 1; State := Relay;23

else if msg = STOP then24

State := Final ;25

else26

Send STAY To neighbors in other clusters ;27

Receive messages From neighbors in other active clusters ;28

if there exists at least one JOIN message then29

Send BYE To father ;30

Receive msg From father; /* the message must be a DOWN message*/31

choose a new father in the new winner cluster; h := 1 ;32

else33

Send SAFE To father; Receive msg From father ;34

if msg = DOWN then35

if h = 1 then State := Orphan ;36

if h �= 1 then h := h − 1 ;37

else38

if h = 1 then State = Orphan ;39

if h �= 1 then h := h − 1; State = Final ;40

Algorithm 2 : Dist Part: high level code for a leaf node in a cluster C

1.4. Deterministic fully distributed partition: Dist Part 33

if there exist new nodes to explore then1

Send IdC To neighbors in other active clusters;2

Receive ∪C′IdC′ From neighbors in other active clusters;3

max1 := the maximum of ∪C′IdC′ ;4

if max1 < IdC then5

Send IdC To neighbors in other active clusters;6

else7

Send max1 To neighbors in other active clusters;8

Receive Ids From neighbors in other active clusters ;9

max2 := the maximum of received Ids;10

if max2 > IdC then11

Send STAY To neighbors in other active clusters ;12

Receive msg From neighbors in other active clusters ;13

if there exists at least one JOIN message then14

choose a father in the new winner cluster ;15

State := Leaf ; h := 1 ;16

else17

h := h + 1 ;18

Send JOIN To neighbors in other active clusters ;19

Receive msg From neighbors in other active clusters ;20

Mark the new Sons in the BFS spanning tree of C;21

State := Root ;22

else23

State := Final ;24

Algorithm 3 : Dist Part: code for the orphan node of an orphan cluster C

34 Chapter 1. Distributed Graph Decomposition

Receive MSG From any neighbor;1

if there exists a message MSG from the father in the BFS tree of C then2

Send MSG To Sons ;3

if MSG = SUCCESS then4

h := h + 1 ;5

else if MSG = DOWN then6

h := h − 1 ;7

if h = 1 then State := leaf ;8

else if MSG = REJECT then9

h := h − 1; State := final ;10

else11

if MSG = STOP then State := final ;12

if there exists a message MSG from Sons in the BFS tree of C then13

if MSG = BYE or msg = OK then14

Receive msg From all Sons ;15

if there exists at least one BYE message then16

Send BYE To father ;17

else18

Send SAFE To father ;19

else if MSG = WIN or msg = LOST or msg = STOPPED then20

Receive msg From all Sons ;21

if there exists at least one LOST message then22

Send LOST To father ;23

else if there are only STOPPED messages then24

Send STOPPED To father ;25

else26

Send WIN To father ;27

else28

Receive msg From All Sons; /* msg is an integer message */29

count :=
∑

msg;30

Send count To father ;31

Algorithm 4 : Dist Part: high level code of a relay node in a cluster C

1.4. Deterministic fully distributed partition: Dist Part 35

It is sufficient to make each node (which becomes final) send a message to its neighbors to
inform them. However, we can avoid these extra communication messages as following. When
a node v is explored by a cluster C, it uses the Ids sent by neighbors in order to compute a
set FC of neighbors belonging to the layer before the last one. Then, if v receives a REJECT
message from the root of C, i.e., the sparsity condition for the last layer of C is not satisfied,
then v marks its neighbors in FC as finished.

Now, consider two nodes u and v. Then, w.l.o.g., u must explore v before switching to a
final state. Thus, v can always decide whether u is in a final state or not.

Remark 1.4.6 Although our algorithm is completely asynchronous, we remark that there is a
kind of synchronization in our implementation which is close to the one used in synchronizer
γ (see Appendix A). In fact, the root nodes control the execution of the algorithm and give the
starting signal for all the actions of the leaves. The neighboring leaves belonging to different
clusters are synchronized since they wait to receive some information from each others. On
one hand, the nodes inside a cluster synchronize their actions as if they were a super node.
On the other hand, the super nodes synchronize their decisions too.

1.4.3 Analysis of the algorithm

Theorem 1.4.7 Algorithm Dist Part terminates.

Proof From the algorithm description, the cluster having the biggest identifier in the graph
always succeeds the Exploration rule. Thus, it always succeeds adding new layers until the
sparsity condition is violated. Thus, after at most k−1 layers, the nodes in the biggest cluster
become in final states. Now, the remaining cluster with the biggest identifier always succeeds
its new explorations and so on until all the nodes become in final states.

Theorem 1.4.8 Algorithm Dist Part emulates the Basic Part algorithm.

Proof From the algorithm description, once the construction of a cluster is finished, the
cluster can not be invaded by any other active cluster. Hence, the constructed clusters are
disjoint.

In addition, a new layer is added if and only if it verifies the sparsity condition (Growth
rule). Symmetrically, if a cluster is invaded, then it loses its whole last layer. Hence, the new
cluster still satisfies the sparsity condition.

Thus, the constructed partition satisfies the sparsity and locality properties of algorithm
Basic Part.

Theorem 1.4.9 In the worst case, the time complexity of algorithm Dist Part is:

T ime(Dist Part) = O(n)

36 Chapter 1. Distributed Graph Decomposition

Proof In the following proof, we consider the clusters in an increasing order of the time of
their construction. Let C be a cluster in the final partition C. Let r be the radius of C.
Consider the first time t when the cluster C succeeds successively all its explorations until its
construction is finished. Let T ime(C) be the number of time units from t to the end of C’s
construction. Let j be the radius of C at time t. For any i ∈ {j, · · · , r}, we consider the time
when C contains i layers, and we denote by rmaxi the maximum radius of the neighboring
clusters of C.

In order to decide if a layer is added or not, the cluster C must be traversed at most a
constant number of times. In addition, before a node joins a new cluster, it informs its previous
root and waits for the acknowledgment of this root. Thus, T ime(C) �

∑
0<i�r O(i + rmaxi).

Using Theorem 1.3.1, we have r � k − 1 and rmaxi � k − 1. Thus, T ime(C) = O(kr).
In the worst case, two clusters are never constructed in parallel. Thus,

T ime(Dist Part) =
∑
C∈C

T ime(C)

Hence, using the fact that
∑

C∈C r � n, we get

T ime(Dist Part) = O(k · n)

The previous analysis is not sufficient to prove the theorem if the parameter k is not a
constant. Nevertheless, it gives us a precious remark. In fact, we remark that it is more
interesting to take the couple (Rad(C), Idv) to be the identifier of a cluster C rooted at a
node v and the lexicographical order to compare cluster identifiers (which do not change the
overall implementation). In this case, we have rmaxi � r. Thus, for the relevant range of
k � log(n), we have:

|C| � nr/k ⇒ r � k

log(n)
log(|C|) ⇒ r � log(|C|)

Thus,
T ime(Dist Part) =

∑
C∈C

∑
0<i�r

O(i + rmaxi) �
∑

C∈C
O(r2)

�
∑

C∈C
O(log(|C|)2)

�
∑

C∈C
O(|C|)

Since C is a partition, the theorem holds.

Corollary 1.4.10 In the worst case, the message complexity of algorithm Dist Part is :

Message(Dist Part) = O(n · |E|)

Proof At each time unit, the nodes exchange at most O(|E|) messages. Using Theorem 1.4.9,
the algorithm terminates after at most O(n) time units and the theorem holds.

1.5. Sublinear deterministic distributed partition 37

Remark 1.4.11 The bound given by the previous corollary does not take into account the fact
that a finished cluster stops communicating with its neighbors. In this work, we are mainly
interested in the time complexity and we do not care too much about the message complexity.

Remark 1.4.12 One shall remark that our theoretical analysis is still sequential. We think
that the complexity of our algorithm is better in practice. It would be interesting to compute
the average message and time complexity. This is a hard task because the execution depends
both on the graph topology and on the distribution of node identities. In Fig. 1.5, we give
an example of a graph with a particular node distribution for which the previous complexity
bounds are tight up to a constant factor. Nevertheless, one can show that in average (over all
the permutations of node identities), the time complexity is logarithmic.

n

2n − 1 n + 1

1

2

2n

Path with n nodes

Complete graph with n nodes

n − 2

n − 1

n + 2

Figure 1.5: An example of bad node distribution

1.5 Sublinear deterministic distributed partition

In the following, we show how to improve algorithm Dist Part in order to obtain sublinear
time algorithms for constructing a basic partition. First, we describe and analyze a new
synchronous algorithm called Sync Part. Then, we show that the synchrony of the network
is not important to achieve a sublinear time construction, and we provide a new asynchronous
algorithm called Fast Part.

In the remainder, we denote by Vf the set of finished nodes, i.e., nodes in a finished cluster.
Furthermore, we are interested in active nodes in V − Vf , hence the degree of a node v is
defined as its degree in the graph GV −Vf

induced by V − Vf .

1.5.1 A synchronous deterministic algorithm

In this section, we assume that the network is synchronous, i.e., there exists a global
clock. At any time t, At denotes the set of active nodes (nodes not in Vf at time t), and
Rt = {v ∈ At | dv > n

1
k } denotes the set of active nodes having high enough degrees at time t.

38 Chapter 1. Distributed Graph Decomposition

We remark that the sparsity condition for a single-node cluster rooted at some node v is
dv > n

1
k . Hence, a single-node cluster rooted at some node in At \Rt can not grow any layer.

Thus, at any time t, we only let the nodes in Rt compete in order to grow some clusters. Once
Rt becomes empty, we just let the remaining active nodes be finished single node clusters.

The new algorithm Sync Part works in two stages. The first stage is performed until
time T = O(k2n1−1/k) is reached. The second stage begins at time T and lasts O(1) time
units.

In the next paragraphs, we give the details of algorithm Sync Part and discuss its
correctness and its complexity.

First stage of the algorithm During this stage, all nodes execute algorithm Dist Part

with the following additional exploration rules:

• If a node v ∈ At is no longer in Rt, i.e., v ∈ At \ Rt, then v sets its identity to −∞.

• Single-node clusters rooted at nodes in At \ Rt do not explore any layer.

Notice that the previous modifications are made only by single-node clusters that do not
verify the sparsity condition. We use the same three rules of algorithm Dist Part to manage
the growth of other clusters rooted at any node in Rt.

Let us consider a single-node cluster rooted at v ∈ At \Rt. Then, when applying the new
rules, v sets its identity to −∞. Hence, v has the lowest identity among all other possible
identities. Therefore, node v will not stop the growth of another cluster rooted at a node of
Rt. In fact, v can only be a part of other neighboring dense clusters (if it is asked to join).
If the neighborhood of v is also in At \ Rt, then the cluster behaves as if it has the lowest
identity, i.e., it does not explore any layer. In a practical implementation, a node needs to
know whether it is in Rt or not. Since at any moment of algorithm Dist Part a node is
aware of its finished neighbors (see Remark 1.4.5), there are no further communications to
be done by a node in order to know if it is still in Rt.

Second stage of the algorithm At time T , all remaining active nodes in At stop computing
and just decide to be finished single-node clusters.

Proposition 1.5.1 (Correctness) Algorithm Sync Part emulates algorithm
Basic Part.

Lemma 1.5.2 Let C be the cluster with the biggest identity among active nodes at some
moment of the algorithm. We need O(k2) time in the worst case before the construction of C

is finished.

1.5. Sublinear deterministic distributed partition 39

Proof On one hand, the communications performed by the algorithm are done using a broad-
cast convergecast process inside the BFS spanning tree of each cluster. Since a cluster has a
radius at most O(k), a broadcast (or a convergecast) costs at most O(k) time units.

On the other hand, using the Exploration rule, cluster C always wins against its neighbor-
ing clusters and it always succeeds in exploring new layers. In the worst case, there will be at
most k − 1 new explored layers. Thus, it takes at most O(k · k) time before the construction
of C is finished.

Lemma 1.5.3 At any time t such that Rt �= ∅, |At+O(k2)| < |At| − n1/k

Proof At time t such that Rt �= ∅, we consider the node v in Rt with the biggest identity.
Let us denote C the cluster rooted at v. Using Lemma 1.5.2, at time t′ = t + O(k2), at least
the n1/k nodes in the first layer of cluster C are not in At′ .

Lemma 1.5.4 For t = O(k2n1−1/k), Rt = ∅.

Proof Using Lemma 1.5.3, at some time t, if Rt �= ∅ then after a O(k2) time period p, the
number of active nodes will decrease by at least n1/k. By induction, after i (� 0) periods p,
if Rt �= ∅ then |At| < n − i n1/k. Using the fact that Rt ⊆ At, we have at most i = n1−1/k

periods p such that Rt �= ∅.

Since the first stage of the algorithm costs T = O(k2n1−1/k) time units and the second
one is performed in O(1) time units, we get the following theorem:

Theorem 1.5.5 (Time Complexity) The time complexity of algorithm Sync Part is
O(k2 n1−1/k).

Remark 1.5.6 One can show that if we privilege the growth of clusters having the biggest
couple (Radius,Id), then T can be chosen to be equal to O(n1−1/k) for relevant range of
k < log n. This requires to show that a finished cluster of radius l has at least nl/k nodes
and its construction costs at most O(l2) time. Then, by analyzing the function nl/k/l2, one
can prove that the number of nodes becoming part of the biggest cluster is at least Ω(n1/k)
each O(1) time units. Thus, after O(n1−1/k) time units, no cluster with radius � 1 can be
constructed. Hence, T can be chosen to be O(n1−1/k) and the factor k2 can be removed in the
time complexity. Since we assume that k is typically small comparing with log n, we avoid
going into the technical details.

1.5.2 An asynchronous deterministic algorithm

Algorithm Sync Part uses the property that the system is synchronous to find a bound
on the time T before no nodes can grow a non zero radius cluster. The time T informs
all remaining active nodes that there are no more active dense clusters in the graph. This
compels us to wait T time units even if the input graph is sparse. Furthermore, algorithm
Sync Part can not be run in an asynchronous system without using any synchronizers (see,

40 Chapter 1. Distributed Graph Decomposition

e.g., Appendix A). In the following, we give a new asynchronous algorithm Fast Part which
does not use any global clock. The general idea of the algorithm is to allow sparse clusters
to become finished without waiting until pulse T . Our asynchronous algorithm shows that
the key point for speeding up the construction does not rely on the global synchrony of the
system, but rather on more local parameters.

Details of the algorithm Let us call a cluster C dense, if C has a radius at least 1 or if
the single node v of C verifies dv > n

1
k . We also define a sparse cluster to be a single-node

cluster which is not dense (this corresponds to a node in At \ Rt in algorithm Sync Part).
Algorithm Fast Part uses the three rules of algorithm Dist Part with the following

modifications:

• A dense cluster can explore a new layer if it has an identity bigger than those of its
active dense neighbors at distance one or two.

• A sparse cluster is not allowed to explore a new layer.

• A sparse cluster declares itself finished single-node cluster if:

– all its neighbors are sparse,

– or if none of its dense neighbors has succeeded to explore a new layer.

Using these new rules, a sparse node is allowed to declare itself finished if it is not explored
by any neighboring cluster. This occurs if all neighbors are sparse or if the dense neighbors
have not succeeded their explorations. This simple idea enables us to improve the time
complexity of the previous synchronous algorithm.

It is obvious that the new modifications can be implemented using messages of size at most
O(log(n)) using the same techniques than in algorithm Dist Part. For instance, we can use
a couple (Id,Dense) for the cluster identifiers, where Dense is a boolean variable indicating
whether a cluster is dense or sparse.

Proposition 1.5.7 (Correctness) Algorithm Fast Part emulates algorithm Basic Part.

Let Λ be the number of clusters of radius at least 1 at the end of algorithm Fast Part.
Then, the following theorem holds:

Theorem 1.5.8 (Time Complexity). The worst case time complexity of algorithm
Fast Part satisfies:

T ime(Fast Part) = O(k2 Λ) = O(k2 n1− 1
k)

Proof The new rules guarantee that a dense cluster is never stopped by a sparse one. In
the worst case, no two dense clusters are constructed in parallel. Thus, let us consider the
finished dense clusters in a decreasing order of their time construction.

1.6. Sublinear randomized distributed partition 41

The construction of a cluster costs at most O(k2). Thus, after at most O(k2Λ) time, it only
remains active sparse clusters in the graph. In two rounds, all remaining sparse clusters detect
that their neighbors are sparse. Thus, using the new rules, they become finished clusters and
the algorithm terminates. Thus, the first part of the theorem holds. In addition, since the
cluster are disjoint, it is obvious that for any graph and for any execution of the algorithm,
Λ is bounded by n1− 1

k which completes the proof.

Remark 1.5.9 Note that we can apply Remark 1.5.6 for the asynchronous algorithm
Fast Part in order to obtain a O(n1− 1

k) time complexity.

Remark 1.5.10 The bound O(k2 Λ) becomes of special interest in the case of graphs where
Λ can be shown to be small comparing with n1− 1

k , e.g., see Appendix B for the case study of
Circulant graphs.

Remark 1.5.11 An important feature of algorithm Fast Part is to focus on clustering
dense regions of the graph. In fact, if we consider a graph with only some few dense re-
gions, e.g., some cliques connected by some paths. Our algorithm will automatically capture
the topology of the underlying graph and the clustering will have a high priority on dense
regions. Moreover, the construction will be faster if the dense areas are far from each other.

1.6 Sublinear randomized distributed partition

Although, the previous deterministic algorithms allow to construct cluster in parallel, their
analysis is still sequential. In this section, we give a new randomized algorithm enabling us
to compute a lower bound of the number of clusters constructed in parallel.

1.6.1 Randomized local elections

In [MSZ02], a randomized algorithm called L2-election (LE2 for short) is introduced in order
to implement distributed algorithms described with relabeling systems (See Chapters 3 and 5).
In algorithm LE2, nodes are fighting to be centers of a ball of radius 1 so that the elected
nodes can execute a computation step. Non elected nodes are part of at most one star which
allows to execute local computations concurrently on closed balls of radius 1.

The authors in [MSZ02] studied the average number of nodes locally elected and they
interpreted it as the degree of parallelism authorized by an algorithm. In the special case of
our algorithm, that study gives an idea about the number of clusters constructed in parallel
in one round and for k = 2. In fact, when taking k = 2 in the Basic Part algorithm and
using Theorem 1.1, the radius of the clusters produced by the decomposition can be either 0
(i.e., single-node clusters) or 1 (i.e., clusters containing a node v and its neighborhood N (v)).
Therefore, we can use algorithm LE2 in order to implement algorithm Basic Part. In fact,
It is sufficient to run many rounds of algorithm LE2 until there are no more active nodes in

42 Chapter 1. Distributed Graph Decomposition

the graph. Then, every time a node v is center of a star, it computes its neighborhood |N (v)|
and decides to be either a radius 1 finished cluster or just a finished single-node cluster.

In the following, we use a generalization called LEk of the local election algorithm
of [MSZ02] in order to elect nodes which are centers of disjoint balls of radius k � 2. Our
algorithm LEk is used as a sub-procedure in algorithm Elect Part in order to construct
the basic partition. The two algorithms are described in next paragraphs.

1.6.2 Description of algorithm Elect Part

Algorithm Elect Part is depicted in Fig. 1.6 below. It runs in many phases until each node
of the graph becomes part of a finished cluster. A phase of the algorithm is executed in two
stages.

1: while There exist nodes not in a finished cluster do

2: (0.) each node selects randomly an identity from a big set of integers.

3: Stage 1: local election in balls of radius k

4: (1.a) Each node v not in a finished cluster runs algorithm LEk

5: Stage 2: reinitialization

6: (2.a) Each formed cluster C computes independently the sparsity condition for each layer j � k,

7: if S contains a layer j violating the sparsity condition then

8: (2.b) C releases all layers l � j and becomes a finished cluster,

9: (2.c) nodes in released layers become single-node clusters.

10: else

11: if all neighbors are finished then

12: (2.d) C becomes finished.

13: end if

14: end if

15: (2.e) Break all non finished clusters and form new single-node clusters.

16: end while

Figure 1.6: Algorithm Elect Part

1: Round← 0;

2: while Round < k do

3: execute the Exploration Rule;

4: Round← Round + 1;

5: if Non Success of the Exploration Rule then

6: execute the Battle Rule;

7: end if

8: end while

Figure 1.7: Algorithm LEk: code for a cluster

In the first stage, we construct disjoint balls of radius at most k using algorithm LEk

depicted in Fig. 1.7. Algorithm LEk is a variant of algorithm Dist Part where the sparsity

1.6. Sublinear randomized distributed partition 43

condition does not matter: only the radius of elected clusters is important.
The second stage allows to compute finished clusters and to re-initialize the computations

for a new phase. In fact, each cluster in the input of the second phase computes independently
whether there is a layer not satisfying the sparsity condition (Step 2.a). This can be done
distributively using convergecast and broadcast between the root and the leaves. If there exists
a layer j violating the sparsity condition then the cluster rejects all layers l � j and declares
itself finished (Steps 2.b and 2.c). Otherwise, if all its neighbors are finished then the cluster
can not grow any more and it also declares itself finished (Step 2.d). Finally, the remaining
clusters are just broken into single-node clusters in order to run another phase (Step 2.e).

Remark 1.6.1 Note that, algorithm LEk grows balls of radius k whereas a radius k − 1
suffices. This allows us to mark edges connecting a cluster with the nodes in the last rejected
layer and thus avoiding the preferred edge election step needed for some applications (see the
introduction of Chapter 2 for more explanations).

1.6.3 Analysis of the algorithm

In this section, we compute a bound of the expected number of phases needed before algorithm
Elect Part terminates. The main idea of our analysis is to bound the number of nodes
becoming part of a finished cluster in a phase, by using the number of clusters constructed in
parallel in each phase.

In the sequel, we say that a node is locally k-elected if it succeeds the first stage of
algorithm Elect Part without losing against any other cluster, i.e., line 6 of algorithm
LEk is never executed by a locally k-elected node. We also use a parameter K such that:
∀v ∈ V , N2k(v) � K, where N2k(v) = {u ∈ V | d(u, v) � 2k}, i.e., K is an upper bound of
the 2k-neighborhood of any node.

Inspired by proofs in [MSZ02], the following proposition holds:

Proposition 1.6.2 The expected number of nodes locally k-elected in a phase is lower bounded
by: ∑

v∈V −Vf

1
N2k(v)

>
|V − Vf |

K

Theorem 1.6.3 Let T be the time complexity of algorithm Elect Part. The expected value
of T satisfies:

E (T) = O

⎛⎝k2 log(n)

log
(

K
K−1

)
⎞⎠

Proof Let i � 0 be a phase of the algorithm and (Gi)i�0 the sequence of graphs such
that G0 = G and for all i � 1, Gi is the graph obtained by removing the nodes (and the

44 Chapter 1. Distributed Graph Decomposition

corresponding incident edges) belonging to a finished cluster from Gi−1. Obviously, Gi is the
input graph of phase i.
Let Xi be the random variable which denotes the size of the graph Gi (the number of its
nodes) for all i � 0, and let Yi be the number of nodes locally k-elected in the ith step. It is
clear from Proposition 1.6.2 that we have the following inequality:

E (Yi | Gi) � X(Gi)/K

It is also easy to see that Xi+1 � Xi − Yi for all i � 0. Thus,

E (Xi+1 | Gi) � Xi − E (Yi | Gi) � Xi(1 − 1
K

)

For i � 0, we define a new r.v. Zi by Zi = Xi/(1 − 1
K)i. Then, E (Zi+1 | Gi) � Zi. Thus, the

r.v. Zi is a super-martingale (see [Wil93]), and then

E (Zi+1) = E (E (Zi+1 | Gi)) � E (Zi)

A direct application of a theorem from [Wil93] chapter 9, yields E (Zi) � Z0 = n. Thus

E (Xi) =
(

1 − 1
K

)i

E (Zi) � n

(
1 − 1

K

)i

.

The algorithm terminates when Vf = V , i.e., Xi = 1. This implies that i is upper bounded
by the ratio log(n)/ log(K

K−1). Since both the first and the second stage of the algorithm take
at most O(k2) time to be finished, the assertion in the theorem is proved.

Remark 1.6.4 The bound given by Theorem 1.6.3 does not take into account the size of
the finished clusters at each phase but only the number of clusters constructed in parallel.
Furthermore, the number of clusters constructed in parallel is just lower bounded using the
variable K which corresponds to the initial graph G and not to the subgraph in the input of
each phase. It would be very interesting to take all this features into account in order to get
a better bound on the number of phases needed to terminate algorithm Elect Part.

1.6.4 Improvements

In algorithm Elect Part, sparse nodes also participate in the computations and compete
against other nodes in order to grow a ball. This slows down the construction because an
elected sparse node will always form a finished single node cluster. Thus, we have to make
some modifications in algorithm Elect Part. More specifically, (i) we prohibit that a sparse
node stops the growth of a dense cluster, and (ii) we allow a sparse node to declare itself
finished if it is not explored by any neighbor. Using these modifications, only the dense nodes
are allowed to compete in order to grow a ball of radius k.

Similarly to algorithm Fast Part, we let a dense node win against a sparse one using a
couple (Id,Dense). We also let a sparse node declare itself finished if it is not invaded by

1.7. Open questions 45

any neighboring cluster, i.e., if dense neighbors loose their explorations or if all neighbors are
sparse.

By considering the number of dense nodes at each phase and using the same arguments
than in Theorem 1.6.3, we can find a bound on the expected number of phases needed to
terminate the construction. Unfortunately, the theoretical analysis leads to the same bound
than in Theorem 1.6.3.

This new modified version of algorithm Elect Part is particularly interesting because
it allows to express the high degree of parallelism of our method. For instance, consider a
graph G such that K = O(nε) with ε < 1. This defines a large class of graphs for which we
can achieve an improved time complexity, namely O(log(n)nε).

In Appendix B, we show that the expected running time of the modified algorithm is
O(log(n)) in the case of Circulant graphs.

1.7 Open questions

In this chapter, we focus on the time complexity of constructing sparse partitions in the prac-
tical CONGEST distributed model. One important motivation of our work is to understand
and to study the effects of the congestion created by small messages into the overall time
complexity of a distributed algorithm.

We left open the following questions:

1. Can we improve the time complexity of our algorithms from n1−1/k to n1/k in the
CONGEST model? In particular, we remark that, in the case of small k (2, 3, 4, 5), the
locality level of the basic partition and the time complexity bound obtained using our
technique are better than the bounds one can obtain by both assuming a more powerful
distributed model, i.e., unlimited message size, and using techniques from [ABCP96].
This observation is intriguing and one can be interested in a lower bound on the time
complexity of distributively computing the basic partition. Although, the case k = 2
seems hard to improve, we are optimistic that deterministic algorithms with better
bounds exist for other values of k.

2. We have studied the sparse partition problem from a locality point of view. In other
words, we only consider the problem of improving the time complexity. Can we improve
the message complexity of our algorithms while maintaining the same time complexity?

The basic partition presented in this chapter is at the bottleneck of many distributed
applications. In Appendix A, we apply our algorithms for network synchronizers. In the
beginning of the next chapter, we show how we can apply our algorithms in order to construct
graph spanner efficiently.

46 Chapter 1. Distributed Graph Decomposition

Chapter 2

On the Locality of Graph Spanners

Abstract.

This chapter concerns the efficient construction of sparse and low stretch spanners for
unweighted arbitrary graphs with n nodes. All previous deterministic distributed algorithms,
for constant stretch spanner of o(n2) edges, have a running time Ω(nε) for some constant
ε > 0 depending on the stretch. Our deterministic distributed algorithms construct constant
stretch spanners of o(n2) edges in o(nε) time for any constant ε > 0.

More precisely, in the Linial’s free model (LOCAL model), we construct in nO(1/
√

log n)

time, for every graph, a (3, 2)-spanner of O(n3/2) edges. The result is extended to
(O(k2.322), O(k2.322))-spanners with O(n1+1/k) edges for every integer parameter k � 1. If
the minimum degree of the graph is Ω(

√
n), then, in the same time complexity, a 9-spanner

with O(n) edges can be constructed.

Résumé.

Dans ce chapitre, on considère un graphe sans poids de taille n. On s’intèresse à la con-
struction efficace d’un“spanner”(sous graphe couvrant) ayant peu d’arêtes et un petit facteur
d’étirement. Les meilleurs algorithmes distribués permettant de construire de façon détermin-
iste un spanner avec o(n2) arêtes et un facteur d’étirement constant, ont une complexité en
temps égale à Ω(nε) où ε > 0 et un paramètre qui dépend du facteur d’étirement. Les algo-
rithmes que nous présentons dans ce chapitre permettent de construire de façon déterministe
et distribuée des spanners avec les mêmes propriétés en un temps égale à o(nε) pour n’importe
quel ε.

Dans le modèle de calcul sans congestion, nous construisons pour tout graphe un (3, 2)-
spanner avec O(n3/2) arêtes en nO(1/

√
log n) unités de temps. Nous étendons également ce

résultat pour construire un (O(k2.322, O(k2.322))-spanner avec O(n1+1/k) arêtes en gardant
la même complexité en temps pour tout paramètre entier k � 1. Dans le cas des graphes
ayant un degrès minimum Ω(

√
n), nous construisons, toujours avec la même complexité, un

9-spanner avec O(n) arêtes.

47

48 Chapter 2. On the Locality of Graph Spanners

2.1 Introduction

2.1.1 Motivations

This chapter deals with deterministic distributed construction of sparse and low stretch graph
spanners. Intuitively, spanners can be thought of as a generalization of the concept of spanning
trees. In fact, we look for a spanning subgraph such that the distance between any two nodes
in the subgraph is bounded by some constant times the distance in the whole graph. More
formally, H is a (α, β)-spanner of a graph G if H is a spanning subgraph of G, and if
dH(u, v) � α · dG(u, v) + β for all nodes u, v of G, where dX(u, v) denotes the distance from
u to v in the graph X. The smallest pair (α, β) for which H is a (α, β)-spanner is called the
stretch of H, and the size of H is the number of its edges. In the case β = 0 (resp. α = 0), H

is called a pure multiplicative (resp. additive) spanner. A pure multiplicative spanner with
stretch (α, 0) is usually called an α-spanner. The quality of a spanner refers to the trade-off
between the stretch and the size of the spanner.

Graph spanners are in the basis of various applications in distributed systems. For in-
stance, Peleg and Ullman [PU89a] establish the relationship between the quality of spanners,
and the time and message complexity of network synchronizers (see Appendix A). In addi-
tion, spanners are implicitly used for the design of low stretch routing schemes with compact
tables [Cow01, EGP03, PU89b, RTZ02, TZ01], and appear in many parallel and distributed
algorithms for computing approximate shortest paths and for the design of compact data-
structures, a.k.a. distance oracles [BS04, GPPR04, RTZ05, TZ05, Coh98].

2.1.2 Preliminary results

It is well known that graph decompositions can be used in order to construct spanners. Let
us first show how to efficiently construct graph spanner in the CONGEST distributed model
using the sparse decomposition algorithms of Chapter 1. In fact, one immediate applica-
tion of the basic partition of Chapter 1 (algorithm Basic Part) is the construction of a
(4k − 3,0)-spanner with O(n1+ 1

k) edges for any n-node graph G. The spanner is obtained by
considering the set of edges spanning each cluster and by selecting an inter-cluster edge for
each pair of two neighboring clusters. The bounds on the stretch and the size of the spanner
are a straightforward consequence of Theorem 1.3.1. In order to construct such a spanner
distributively, we must first construct the basic partition, and second select an edge between
every two neighboring clusters. However, we can both avoid this additional step of selecting
preferred edges and at the same time improve the bound on the spanner size.

In fact, let us consider any cluster C under construction in algorithm Dist Part. Before
the construction of C is finished (just after the sparsity condition is no longer satisfied) and
for every neighboring vertex u of C (u is on the last rejected layer of C), we select an edge
from u to some v in the last layer of C and we add it to the spanner S. Moreover, we add

2.1. Introduction 49

the BFS spanning tree of each cluster C to the spanner S.

Cu = Cv

� k − 1

u

v

v′

Cu Cv

vu

� k − 1

Figure 2.1: Stretch analysis using sparse partitions

Now, let us consider any edge (u, v) in the graph G. Using the fact that u and v must
belong to some clusters, there exist two clusters Cu and Cv such that u ∈ Cu and v ∈ Cv:

• If Cu = Cv (first part of Fig. 2.1), then using the first property of Theorem 1.3.1, there
is a path between u and v in the BFS spanning tree of Cu with size at most 2(k − 1).

• Otherwise, if Cu �= Cv, then w.l.o.g we can suppose that Cu was constructed before Cv.
Thus, there exists an edge between v and a node v′ ∈ Cu which has been added to the
spanner before finishing the construction of Cu (second part of Fig. 2.1). Using the first
property of Theorem 1.3.1, there exists a path between u and v′ in the BFS spanning
tree of Cu with size 2(k−1). Hence, there exists a path between u and v in the spanner
with size at most 2(k − 1) + 1 = 2k − 1.

Thus, for any edge (u, v), we have dS(u, v) � 2k − 1. Now, let us consider any pair of
nodes w and w′ (not necessarily neighbors), and a shortest path P in G between w and w′.
Using the fact that for any edge (u, v) in the path P, dS(u, v) � 2k − 1, it is straightforward
that dS(w,w′) � (2k−1)dG(w,w′). Thus, the stretch of the spanner S is 2k−1. What about
the size of S? On one hand, it is easy to see that the number of edges added by the BFS
spanning trees is at most n − 1. On the other hand, when adding the edges connecting the
last rejected layer of some cluster C, the sparsity condition is no longer satisfied. Hence, for
each cluster C we add at most |Γ(C)| � n1/k|C| edges. Summing over all clusters we add at
most n1/k

∑
C |C| which is n1+1/k since the clusters are disjoint.

Notice that in all our sparse decomposition algorithms given in Chapter 1 the last rejected
layer is always explored. Hence, the edges connecting a cluster with nodes in the last rejected
layer are implicitly computed by our algorithms without any extra communications. Hence,
we obtain the following results:

Theorem 2.1.1 There is a deterministic algorithm that given a graph with n nodes and a
fixed integer k � 1, constructs a (2k − 1, 0)-spanner with O(n1+1/k) edges in O(n1−1/k) time
in the worst case.

50 Chapter 2. On the Locality of Graph Spanners

Corollary 2.1.2 There is a deterministic algorithm that given a graph with n nodes con-
structs a (3, 0)-spanner with O(n3/2) edges in O(

√
n) time in the worst case.

2.1.3 Goals

To our knowledge, Theorem 2.1.1 provides the best time complexity for constructing (2k −
1, 0)-spanners with O(n1+1/k) edges in a deterministic manner. Here, a natural question is the
following: Can we provide distributed algorithms for constructing O(k)-spanners with better
time complexity ? For instance, is it possible to construct spanners having good properties
within a time that does not depend significantly on the stretch ? Generally speaking, we are
interested in the locality nature of constructing graph spanners, that is:

Q2 : what spanners can we compute assuming only some local knowledge?

Theoretically speaking, the locality of a distributed problem is often expressed in term
of the time needed to resolve the problem. In fact, in the distributed setting, the best a
node can do in O(t) time units is to collect its t-neighborhood. For instance, Θ(log∗ n)
time are necessary and sufficient to compute a maximal independent set for trees, bounded
degree graphs, or bounded growth graphs with n nodes [CV86, GPS88, Lin92, KMNW05].
Results are known for other fundamental problems such as non-uniform coloring [Awe87,
PS96], minimum spanning tree [Elk04a, Elk04b, LPSP01, LPSPP05, PR00], small dominating
set [KP98, PV04], and maximal matching [KMW04, Lin92].

In this chapter, we give new results about the locality of graph spanners. The distributed
model of computation we will be concerned with is the Linial’s free model [Lin87], also known
as LOCAL model in [Pel00]. In this model, we assume that communication is completely
synchronous and reliable. At every time unit, each node may send (resp. receive) a message
of unlimited size to (resp. from) all its neighbors, and can locally compute any function. The
model also assumes that each node is equipped with a unique identifier. Much as PRAM
algorithms in parallel computing give a good indication of parallelism, the LOCAL model
gives a good indication of the locality and distributed time.

2.1.4 Related Works

Best known results for deterministic O(k)-spanners: Sparse and low stretch span-
ners can be constructed from (d, c)-decomposition of Awerbuch and Peleg [AP90b], that is a
partition of the graph into clusters of diameter at most d such that the graph obtained by
contracting each cluster can be properly c-colored. There are several deterministic algorithms
for constructing (d, c)-decompositions [ABCP93, ABCP96, ABCP98, PS96] (see also the in-
troduction of Chapter 1). The resulting distributed algorithms provide O(k)-spanners of size
O(n1+1/k), for any integral parameter k � 1. However, these algorithms run in Ω(n1/k+ε)

2.1. Introduction 51

time, where ε = Ω(1/
√

log n), and provide a stretch s � 4k − 2. Better stretch-size trade-offs
exist but with an increasing time complexity. In particular, our sparse partition algorithms
(as stated in Theorem 2.1.1 and Corollary 2.1.2) provide the best trade-offs.

Other related deterministic and randomized results: Elkin [Elk01] discussed some
distributed issues of constructing (1 + ε, β(ε, ρ))-spanner of size O(n1+ρ), where ε can be
made arbitrarily small and β is independent of n but grows super-polynomially in ρ−1 and
ε−1. The deterministic algorithm given there has O(n1+ρ) running time in the CONGEST
model. Although, the running time of the algorithm can be showed to be better in the LOCAL
model, the algorithm uses some distributed procedures having high time complexity, e.g., BFS
spanning tree of the whole graph and DFS traversals. In addition, a network cover (similar
to those of [ABCP98, ABCP93, Coh98]) is at the bottleneck of the algorithm. Therefore,
the running time of the algorithm in the LOCAL model is at least equal to the one needed
for constructing such covers. Unfortunately, the best known deterministic distributed cover
algorithms are still slow and depend significantly on the stretch.

More recently, the result of [Elk01] was improved in [EZ04], and the authors gave a
randomized O(nρ) time distributed algorithm to construct spanners with essentially the same
properties (ρ still depends on the stretch). In fact, there exist some fast randomized algorithms
for constructing sparse spanners with good properties. For instance, Baswana et al. [BS03,
BKMP05] gave a randomized algorithm which computes an optimal (2k − 1)-spanner with
expected size O(n1+1/k) in O(k) time. The latter stretch-size trade-off is optimal since,
according to an Erdös Conjecture, there are graphs with Ω(n1+1/k) edges and girth 2k + 2
(the length of the smallest induced cycle), thus for which every s-spanner requires Ω(n1+1/k)
edges if s < 2k + 1. The conjecture was proved for k = 1, 2, 3, 5 [Wen91].

As mentioned in [ABCP96], a randomized solution might not be acceptable in some cases,
especially for distributed computing applications. In the case of graph spanners, deterministic
algorithms that guarantee a high quality spanner are more than of a theoretical interest.
Indeed, one cannot just run a randomized distributed algorithm several times to guarantee a
good spanner, since it is impossible to check efficiently the global quality of the spanner in
the distributed model.

In general, the randomized algorithms one can find use a technique based on sampling
the graph nodes with a given probability. The sampling step implies with high probability a
data structure having some desirable properties, e.g., a good expected size. There exist some
theoretical methods to derandomize the sampling, e.g., [AS92]. However, no fast deterministic
distributed implementations of these methods are known.

Related sequential algorithms: Many algorithms for computing approximated shortest
paths [Elk01, DHZ00, CZ01, BGS05], routing [EGP98, ABNLP90, ABNLP89, PU88, AP92]
and approximate distance oracles [RTZ05, TZ01, BS04] can be used at the aim of constructing
graph spanners with various properties. Most of these algorithms are designed in the sequen-
tial or parallel settings. Those who can be deterministically adapted to distributed model of

52 Chapter 2. On the Locality of Graph Spanners

computation could even not be implemented in linear time. The other randomized ones give
no guarantees on the properties of the spanner, i.e., expected size.

For instance, Thorup and Zwick [TZ01] gave a randomized algorithm for computing a
(2k − 1)-approximate distance oracle with expected size O(kn1+1/k) in Õ(kmn1/k) expected
sequential time, where |E| = m. Recently, Roditty, Thorup and Zwick [RTZ05] gave a
deterministic construction of such oracles with only a logarithmic loss in the time complexity
and improves the results of many previous works, e.g., [BS04]. In particular, the technique
in [RTZ05] allows to derandomize the construction of spanners in [BS03] and enables the
deterministic construction of (2k − 1)-spanners with size O(kn1+1/k) in O(km) sequential
time. The algorithm of [RTZ05] uses a powerful technique that allows to efficiently compute
the q-nearest neighbors and close dominating sets. However, that technique can not trivially
work in the distributed setting without drastically losing its efficiency. For instance, given
a set of nodes U , and in order to efficiently compute the set containing the 1-nearest nodes
from every node to the set U , the authors in [RTZ05] add a virtual source node s to G and
connect it to all nodes in U , then they run a single shortest path algorithm rooted at s. This
technique can not be implemented distributively by an efficient algorithm.

Related parallel algorithms: In [LB96], the authors gave a parallel algorithm for con-
structing a O(kt)-spanner with O((n

kt)1+1/k +n) edges in O(n
kt log n) time on a CRCW PRAM

machine. They also give a deterministic poly-logarithmic parallel algorithm for constructing a
2k-spanner with O(min

{
m,n2/k

}
) which is interesting only for large values of k. In [Coh98],

Cohen gives a randomized EREW PRAM parallel algorithm for constructing k-spanners with
size O(n1+(2+ε)/k) in O(β2 log2 n) time and O(n1/βmβ log2 n) work where β = k/(2+ε/2). She
also gives a deterministic (resp. randomized) sequential algorithm that runs in O(mnc·(2+ε)/k)
(resp. Õ(mn(2+ε)/k)) where c = 1 + logn m. The algorithms given in [Coh98] are based on
network covers.

2.1.5 Main results

We consider unweighted connected graphs with n nodes. All previous deterministic distributed
algorithms for O(1)-spanner of size o(n2) have a running time Ω(nδ) for some constant δ > 0
depending on the stretch. In this chapter, we construct constant stretch spanner of size o(n2)
in o(nε) time for any constant ε > 0.

More precisely, in the LOCAL model we construct in nO(1/
√

log n) time and for every
graph a (3, 2)-spanner of O(n3/2) edges. The result is extended to larger stretch spanners of
size O(n1+1/k) for every k � 1. More precisely, we obtain stretches s = (α(k), β(k)) which
surprisingly depend on the positions of the first two leading 1’s in the binary written of k. A
detailed analysis is made for any parameter k and we show that α(k) and β(k) are essentially
bounded by O(klog2 5). Furthermore, for any nodes u and v, the stretch bound depends on
whether dG(u, v) is even or odd.

2.2. A Generic Algorithm 53

We also show that if the minimum degree of the graph is Ω(
√

n), then, in the same time
complexity, spanners with small constant stretch and O(n) edges can be constructed.

The previous algorithms have simple randomized versions with improved performances,
i.e., O(log n) time complexity. In particular, we cans compute a 5-spanner of size O(n log2 n)
in O(log n) time if the minimum degree is Ω(

√
n).

The main idea to break the O(nδ) time barrier is to abandon the optimality on the stretch-
size trade-off. We show that constant stretch spanners can be constructed on the basis of a
maximal independent set, i.e., a set of pairwise non-adjacent nodes, maximal for inclusion.
This can be deterministically computed in nO(1/

√
log n) time [ABCP96, PS96]. Therefore, the

time complexity to construct our spanners is improved by a factor of n1/k.

The generic algorithm is described in Section 2.2 and analyzed in Section 2.3, where a
distributed implementation is presented.

We mainly reduce the problem to the computation of an independent ρ-dominating set,
that is a set X of pairwise non-adjacent nodes such that every node of the graph is at
distance at most ρ from X. Using the terminology of [Pel00], an independent ρ-dominating
set if nothing else than a (ρ, s)-ruling set for some s > 1. Actually, in order to optimize the
stretch, the main algorithm combines two strategies in a way depending on the binary written
of k.

In Section 2.4, we present the main results about constant stretch spanners for general
graphs. Observing that for ρ = 1 an independent ρ-dominating set is a maximal independent
set, we conclude that our generic algorithm can be implemented to run in nO(1/

√
log n) time

for ρ = 1. Several optimizations are then proposed including randomization and graphs of
large minimum degree.

2.2 A Generic Algorithm

2.2.1 Definitions

Let us consider an unweighted connected graph G = (V,E). Given an integer t � 1, the t-th
power of G, denoted by Gt, is the graph obtained from G by adding an edge between any
two nodes at distance at most t in G. For a set of nodes H, G[H] denotes the subgraph of G

induced by H. For X,Y ⊆ V , let dG(X,Y) = min {dG(x, y) | x ∈ X and y ∈ Y }.
We associate with each v ∈ V a region, denoted by R(v), that is a set of nodes containing

v and inducing a connected subgraph of G. Given U ⊆ V , GU denotes the graph whose node
set is U , and there is an edge between u and v in U if dG(R(v), R(u)) = 1. We denote by
R+(v) = {u ∈ V | dG(u,R(v)) � 1} and by R+

U (v) = {u ∈ U | dG(R(u), R(v)) � 1}.
The eccentricity of a node v in G is defined as maxu∈V {dG(u, v)}. For a node v ∈ X,

we denote by BFS(v,X) a Breadth First Search spanning tree in X rooted at v. We define
IDS(G, ρ) as any independent ρ-dominating set of G. Finally, we define the integer �(x) as

54 Chapter 2. On the Locality of Graph Spanners

follows:

�(x) =

{
−1 if x � 0,

log2 x� otherwise.

2.2.2 Description of the algorithm

The main idea of the algorithm is to find an efficient clustering of dense regions in the graph.
A high level description of the algorithm, named Spanner, is given in Fig. 2.2. Intuitively,
i0 represents the relative position of the first two leading 1’s in the binary written of k.

Spanner

Input : a graph G = (V,E) with n = |V |, and integers ρ, k � 1
Output : a spanner S

1. i0 := �(k) − �(k − 2�(k)); U := V ; r = 0; ∀v ∈ V , R(v) := {v}, and c(v) := v

2. for i := 1 to �(k) + 1 do: if i = i0 then Strategy 1 else Strategy 2

Figure 2.2: The algorithm Spanner.

The algorithm works in many phases, where new regions are formed at each phase. There
are two types: the light regions (L) and the heavy regions (H). At a given phase, some
of the heavy regions are selected and enlarged by including nodes from other neighboring
regions. One important observation is that each new enlarged region is connected and the
new constructed regions are mutually disjoint.

At each phase of the algorithm, one of the two strategies depicted in Fig. 2.3 and Fig. 2.4
applies. The main idea behind the two strategies is the same: choose some well selected
dense regions and merge them with the other ones in order to form new larger regions. The
main difference is that the density of a region is computed in a different way. The stretch of
the output spanner depends on the way the radius of the regions increases and on the total
number of phases of the algorithm, depending on the volume of the regions. And, radius and
volume increase very differently.

On one hand, in Strategy 1, a region is dense if its neighborhood is n1/k times greater
than its size. Applying only Strategy 1 allows to obtain small stretch for small values of k.
However, asymptotically, the stretch is exponential in k. On the other hand, in Strategy 2,
a region is dense if the number of its neighboring regions is n1/k times greater than its size
which provides an exponential growth of the size of a region. Applying only Strategy 2
allows to obtain asymptotically stretches polynomial in k.

The main idea of algorithm Spanner is to switch from one strategy to an other at each
phase in order to obtain the smallest possible stretch. A full analysis shows that, by alternating

2.2. A Generic Algorithm 55

Strategy 1 and Strategy 2, the best stretch can be obtained by applying Strategy 1
only once at a well chosen phase i0. Typically, i0 = p − q for k = 2p + 2q with p > q.

We associate with each region R(v) an active node, called center, and the set of centers
forms U . Initially, each node is the center of the region formed by itself. Each phase i ∈
{1, . . . , �(k) + 1} can be decomposed in seven parts we briefly sketch.

1. L :=
{
v ∈ U, |R+(v)| � n1/k · |R(v)|

}
and H := U \ L;

2. ∀(u, v) ∈ L × V such that ∃ edge e between R(u) and v, S := S ∪ {e}

3. X := IDS(G2(r+1)[H], ρ)

4. ∀z ∈ V , if dG(z,X) � (2ρ + 1)r + 2ρ, then set c(z) to be its closest node of X,
breaking ties with identities.

5. ∀v ∈ X, R(v) := {z ∈ V | c(z) = v}

6. ∀v ∈ X, S := S ∪ BFS(v,R(v))

7. U := X and r := (2ρ + 1)r + 2ρ

Figure 2.3: Strategy 1.

1. L :=
{
v ∈ U, |R+

U (v)| � n1/k · |R(v)|
}

and H := U \ L

2. ∀(u, v) ∈ L × U such that ∃ edge e between R(u) and R(v), S := S ∪ {e}

3. X := IDS((GU)2[H], ρ)

4. ∀u ∈ U , if dGU
(u,X) � 2ρ, then set c(u) to be its closest node of X in GU ,

breaking ties with identities.

5. ∀v ∈ X, R(v) := {R(u) | u ∈ U and c(u) = v}

6. ∀v ∈ X, S := S ∪ BFS(v,R(v))

7. U := X and r := (4ρ + 1)r + 2ρ

Figure 2.4: Strategy 2.

In Step 1, we compute the two sets H and L corresponding respectively to heavy and
light regions. In Step 2, a light region is connected with some neighboring nodes. This step
is crucial in the stretch bound analysis. If Strategy 1 is applied, then each light region is

56 Chapter 2. On the Locality of Graph Spanners

connected with each neighboring node in V , i.e., ∀u ∈ L,R+(u) is spanned. If Strategy 2
is applied, then each light region is connected with every neighboring region. Note that at
the beginning of a given phase, every region is spanned by a BFS tree constructed in Step 6
of the previous phase.

The nodes in H are then processed at the aim of constructing new regions with a set of
new centers. The key point of our construction is to efficiently merge all the regions defined
by the set H into more dense, connected and disjoint regions. In order to guarantee that the
algorithm terminates quickly, the dense regions must grow enough. More precisely, if a dense
region R(v) is enlarged it must contain at least its neighborhood R+(v) when Strategy 1
is applied or its neighborhood in the graph GU if Strategy 2 is applied. It is clear that
two regions at distance one or two (in G or in GU depending on the strategy 1 or 2) cannot
grow simultaneously without overlapping. Thus, the difficulty is to elect in an efficient way
the centers of regions that are allowed to grow in parallel.

In Step 3, we compute an independent ρ-dominating set X in the graph G2(r+1)[H] if
Strategy 1 is applied (resp. (GU)2[H] for Strategy 2), where r is a radius that grows at
each phase. The set X defines the set of nodes allowed to grow in parallel.

In order to guarantee that nodes in non selected regions in Step 3 (the set H \X) will be
spanned by the output spanner, we must merge them with nodes in the selected regions. Thus,
in Step 4, we define a coloring strategy allowing a correct merge process. In fact, in order to
ensure that the new regions are disjoint, we let nodes choose their new region in a consistent
manner, i.e., a node chooses to be in the region of the closest node in X breaking ties using
identities. If Strategy 1 is applied then each node chooses by itself its new dominator, i.e.,
its new region. However, once a node u chooses its new dominator node v, and in order to
ensure that the new formed regions are connected, we include all the nodes in the shortest
path between u and v, even those in non dense region. If Strategy 2 is applied then, the
center of each region chooses a new region and merge its whole region with the new chosen
region.

In Step 5, the new regions are formed according to the coloring step. Note that as soon
as the new region are formed, they are spanned in Step 6. Finally, in Step 7, the set U and
the variable r are updated for the next phase.

2.2.3 Examples for ρ = 1

In the example of Fig. 2.5, we show how to connect a sparse region with neighboring ones using
Strategy1. In the example of Fig. 2.6, we show how to merge the regions using Strategy1

in the case ρ = 1 and all regions are dense.

In the example of Fig. 2.7, we show how to connect a sparse region with neighboring
ones using Strategy2. In the example of Fig. 2.8, we show how to merge the regions using
Strategy2 in the case ρ = 1 and all regions are dense.

2.2. A Generic Algorithm 57

Figure 2.5: An example of spanning a sparse region with Strategy1 (Steps 2 and 1)

r

2r+1

2r+2

(a) Starting configuration. (b) Constructing the IDS (Step 3).

(c) Merging the new regions (Step 4).

3r+2

(d) The regions are constructed (Step 5).

Figure 2.6: An example of merging dense regions with Strategy1

58 Chapter 2. On the Locality of Graph Spanners

Figure 2.7: An example of spanning a sparse region with Strategy2 (Steps 2 and 6)

r

(a) Starting configuration. (b) Constructing the IDS (Step 3).

(c) Merging the new regions (Step 4).

5r+2

(d) The regions are constructed (Step 5).

Figure 2.8: An example of merging dense regions with Strategy2

2.3. Analysis of the Algorithm 59

2.3 Analysis of the Algorithm

For every phase i, we denote by Hi (resp. Xi and Li) the set H (resp. X and L) computed
during phase i, i.e., after Steps 1 and 3 of phase i. Similarly, we denote by ci(z) the color
of z assigned during phase i, i.e., after Step 4 of phase i. We denote by Ui the set U at the
beginning of phase i, and ri denotes the value of r at the beginning of phase i. For a node
v ∈ Ui, we denote by Ri(v) the region of v at the beginning of phase i. In the following we
need the four important properties.

Lemma 2.3.1 At the beginning of phase i, every v ∈ Ui is of eccentricity at most r in
G[Ri(v)].

Proof We prove the lemma by induction. The lemma is clearly true for i = 1. Let us consider
a node v ∈ Ui and a node z ∈ Ri(v) at a given phase i > 1. From Step 7 of the algorithm, Ui

corresponds to the set Xi−1. Thus, the region Ri(v) was computed in Step 5 of phase i − 1.

• Case 1: Strategy 1 was used at phase i − 1. Hence, using Step 5, for every node
z ∈ Ri(v), z was colored v at phase i − 1. Thus, ∀z ∈ Ri(v), ci−1(z) = v. Thus, from
the coloring step, there exists a shortest path P = (z = z1, z2, z3, . . . , zl, v) connecting z

and v in G, with l � 2(ri−1 + 1)ρ + ri−1. Let us consider zj ∈ P with 1 � j � l. Let us
first note that dG(zj , v) � 2(ri−1 +1)ρ+ ri−1 and v ∈ Xi−1. Hence, zj has also chosen a
color at phase i − 1. Using the fact that the coloring is consistent, ci−1(zj) = v. Thus,
using Step 5, P ⊆ Ri(v). Hence, dG[Ri(v)](z, v) � 2(ri−1 + 1)ρ + ri−1 = ri.

• Case 2: Strategy 2 was used at phase i−1. Hence, using Step 5, there exists u ∈ Ui−1

such that ci−1(u) = v and z ∈ Ri−1(u). Using Step 4, there exists a path P in GUi−1

such that P = (u = u1, u2, ..., ul = v) with l � 2ρ. From now, it is convenient for
the proof of the lemma to view the path P as a directed path where u1 is the left-
most node and ul is the rightmost one. From the definition of the graph GUi−1 , for
every pair of successive nodes uj and uj+1, there exists a pair of neighboring nodes
zj and zj+1 such that zj ∈ Ri−1(uj), zj+1 ∈ Ri−1(uj+1) and (zj , zj+1) ∈ E. Thus,
dRi−1(uj)∪Ri−1(uj+1)(uj , uj+1) � dRi−1(uj)(uj , zj) + 1 + dRi−1(uj+1)(uj+1, zj+1). Thus,
using the induction hypothesis, dRi−1(uj)∪Ri−1(uj+1)(uj , uj+1) � 2ri−1 + 1. There-
fore, d∪1�j�lRi−1(uj)(u1, ul) � 2ρ · (2ri−1 + 1) = 4ρ · ri−1 + 2ρ. Because we have
z ∈ Ri−1(u = u1), then d∪1�j�lRi−1(uj)(z, ul) � 4ρ · ri−1 + 2ρ + ri−1 = (4ρ + 1)ri−1 + 2ρ.

Notice that ∀1 � j � l, dGUi−1
(uj , v) � 2ρ. Hence, uj has also chosen a color in Step 4

of phase i − 1. Using the fact that the coloring is consistent, ci−1(uj) = v. Thus,
∀1 � j � l, Ri−1(uj) ⊂ Ri(v). Therefore, dR(v)(z, v) � (4ρ + 1)ri−1 + 2ρ. By Step 7, we
have ri = (4ρ + 1)ri−1 + 2ρ which completes the proof.

Lemma 2.3.2 At the beginning of phase i, for every two nodes u �= v ∈ Ui, Ri(u)∩Ri(v) = ∅.

60 Chapter 2. On the Locality of Graph Spanners

Proof We prove the lemma by induction. The lemma is clearly true for i = 1. Let us consider
a phase i > 1. Let us consider two nodes u, v ∈ Ui and u �= v. From Step 7 of the algorithm,
the set Ui corresponds to the set Xi−1. Hence, u, v ∈ Xi−1.

• Case 1: Strategy 1 was used at phase i−1. Suppose that there exists z ∈ Ri(u)∩Ri(v).
From Step 5 of phase i − 1, we have: ci−1(z) = u and ci−1(z) = v. Thus, u = v which
is a contradiction.

• Case 2 Strategy 2 was used at phase i−1. Suppose that there exists z ∈ Ri(u)∩Ri(v).
From Step 5 of phase i − 1, there exist w1, w2 ∈ Ui−1 such that ci−1(w1) = u and
ci−1(w2) = v and z ∈ Ri−1(w1) ∩ Ri−1(w2). Using the induction hypothesis, w1 = w2.
Thus, ci−1(w1) = ci−1(w2) = u = v which is a contradiction.

Therefore for every two nodes u, v ∈ Ui such that u �= v, Ri(u) ∩ Ri(v) = ∅, which
completes the proof.

Lemma 2.3.3 At the beginning of phase i �= i0, if |Ri(v)| � Vi for every v ∈ Ui, then
|Ri+1(v)| � n1/k · V2

i for every v ∈ Ui+1.

Proof First, because i �= i0, the Strategy 2 is applied at phase i. Notice also that the set
Ui+1 corresponds to the set Xi (⊆ Hi ⊆ Ui) computed at phase i. Let us consider a node v

in Xi. Consider a node u ∈ R+
Ui

(v). Clearly, u ∈ Ui \ Xi, otherwise the independence of set
Xi is violated. Suppose that there exists a node v′ at distance 1 from u in the graph GUi .
Thus, v′ is at distance 1 from v in G2

Ui
. Thus, v′ ∈ Ui−1 \ Xi−1, otherwise the independence

of set Xi is violated. Therefore, v is the closest node in Xi to u. Thus, ci(u) = v and hence,
Ri(u) ⊆ Ri+1(v). Therefore, using Lemma 2.3.2,

|Ri+1(v)| > |R+
Ui

(v)| · min {Ri(u) | u ∈ Ui and ci(u) = v} .

Thus from Step 1 of phase i, we have

|Ri+1(v)| > n1/k · |Ri(v)| · Vi

> n1/k · V2
i

Lemma 2.3.4 For every node u ∈ V , there exists a phase i and a node v ∈ V such that:

• at the beginning of phase i, v ∈ Ui and u ∈ Ri(v); and

• v is in the set Li computed in Step 1 of phase i.

Proof Let us denote by i1 = �(k) and i2 = �(k− 2�(k)), i.e., i0 = i1 − i2. Let Vi the minimum
size of any region corresponding to a node in Ui.

First, let us show that

Claim Every node in U�(k)+1 is in L�(k)+1, i.e. U�(k)+1 = L�(k)+1.

2.3. Analysis of the Algorithm 61

Proof of the claim

• Case 1: i2 = −1. Hence, i0 = �(k) + 1 and k = 2�(k). By induction and using
Lemma 2.3.3, at the beginning of phase i0, the size of the region of any node in Ui0 is
at least Vi0 � n(2i0−1−1)/k = n(k−1)/k (because V1 = 1). Hence, for every v ∈ Ui0 ,

n1/k · |Ri0(v)| � n1/k · n(k−1)/k = n � |R+
i0

(v)|

Because, Strategy 1 is applied at phase i0, after Step 1, U�(k)+1 = L�(k)+1.

• Case 2: i2 � 0. We have Vi0 � n(2i0−1−1)/k. At phase i0, we apply Strategy 1. Thus,
using the same arguments than in Lemma 2.3.3, the new enlarged regions constructed
at phase i0 contain all their neighborhood (in G) otherwise the independence of set Xi0

is violated. Thus, Vi0+1 � n1/k · Vi0 � n2i0−1/k.

– Subcase 2.1: i2 = 0. Then, i0 = i1 = �(k) and k = 2�(k) + 1. Thus,

n1/k · V2
�(k)+1 � n(1+2�(k))/k = n

– Subcase 2.2: i2 �= 0. Then, by applying Lemma 2.3.3 to phase i going from i0 + 1
to �(k) + 1 (excluding �(k) + 1), we have

V�(k)+1 � n1/k · V2
�(k) � n1/k ·

(
n1/k · V2

�(k)−1

)2
� . . . � n(1+21+···+2j−1)/k · V2j

�(k)+1−j

� n
P(�(k)+1)−(i0+1)−1

j=0 2j/k · V2(�(k)+1)−(i0+1)

i0+1 � n(2�(k)−i0−1+2�(k)−1)/k

Thus,

n1/k · V2
�(k)+1 � n(1+2(2�(k)−i0−1+2�(k)−1))/k � n(2�(k)−i0+1−1+2�(k))/k

Note that �(k) − i0 + 1 = i1 − i0 + 1 = i2 + 1. Thus,

2�(k)−i0+1 − 1 + 2�(k) = 2i2+1 + 2i1 − 1 � k

Thus, we get n1/k · V2
�(k)+1 � n.

Hence, in both subcases, we have

n

V�(k)+1
� n1/k · V�(k)+1

Now, let us take a node v ∈ U�(k)+1. Because Strategy 2 is applied at phase �(k) + 1,
v is in L�(k)+1 iff |R+

U�(k)+1
(v)| � n1/k · |R�(k)+1(v)|. Let us show that, in fact v is in

L�(k)+1 . There is at least V�(k)+1 nodes in a region, thus using Lemma 2.3.2, we have

|R+
U�(k)+1

(v)| � n

V�(k)+1
� n1/k · V�(k)+1 � n1/k · |R�(k)+1(v)|

Thus, all nodes of U�(k)+1 are in L�(k)+1.

62 Chapter 2. On the Locality of Graph Spanners

Therefore, in both cases, U�(k)+1 = L�(k)+1.

We are now ready to prove Lemma 2.3.4.

Let us consider a node u ∈ V . At the beginning of the algorithm, the node u is also in
U . If R(u) does not satisfy the condition of Step 1 of the algorithm then u ∈ L1. Hence, the
lemma is true. Otherwise, u participates in Step 3 and u is at distance at most 2ρ from a
node in X1. Thus, u joins the region of some other node u1 ∈ X1 ⊂ U2 (possibly equal to u)
and u ∈ R2(u1). Let us call u1 the new dominator of u. At the next phase i = 2, if u1 is in
L2 then the lemma holds. Otherwise, u1 participates in Step 3. There are two cases:

• Case 1: Suppose that Strategy 1 is applied at phase 2. Then, u1 is at distance at most
2(r2 +1)ρ from a node in set X2 in the G. Hence, u is at distance at most 2(r2 +1)ρ+r2

from a node in set X2 in the graph G. Hence u will be colored in phase 2 and it will
join the region of a new dominator u2 ∈ X2 ⊂ U3.

• Case 2: Suppose that Strategy 2 is applied at phase 2. Then, u1 is at distance at
most 2ρ from a node in set X2 in the graph GU2 . Hence, the region of u1 joins the
region of a new dominator u2 ∈ X2 ⊂ U3. Because u is in the region of u1, u will join
the region of the new dominator u2.

In both cases, u will be in the region of a new dominator u2 ∈ U3. It is not difficult to
show by induction that, if the (i − 1)-th dominator of u is still not in Li at phase i, then u

will join the region of a new dominator ui.
In the worst-case, the �(k)-th dominator of u will be in L�(k)+1 in phase �(k) + 1. Thus,

there must exist some node v such that u is in the region of v at the beginning of some phase
i, i.e., v is the (i− 1)-th dominator of u, and v is in the set Li computed in Step 1 of phase i.

2.3.1 Stretch analysis

In the following, we denote i1 = �(k) and i2 = �(k − 2�(k)), i.e., i0 = i1 − i2.

Lemma 2.3.5 For any integer ρ � 1, if i0 = �(k) + 1, i.e., k = 2�(k), then for every phase i

such that 1 � i � �(k) + 1 , we have:

ri =
1
2
·
(
(4ρ + 1)i−1 − 1

)

Proof From the initialization step of the algorithm, we have r1 = 0. Since Strategy2 is
applied until phase i0, for every 1 < i � i0, we have ri = (4ρ + 1)ri−1 + 2ρ. Thus, the lemma
holds by induction.

2.3. Analysis of the Algorithm 63

Lemma 2.3.6 For any integer ρ � 1, if i0 < �(k) + 1 then for every phase i such that
1 � i � �(k) + 1 , we have:

ri =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
(
(4ρ + 1)i−1 − 1

)
if 1 � i � i0,

1
2
(2ρ + 1) ·

(
(4ρ + 1)i0−1 − 1

)
+ 2ρ if i = i0 + 1,

1
2
(4ρ + 1)i−i0−1

(
(2ρ + 1)(4ρ + 1)i0−1 + 2ρ

)
− 1

2
if i0 + 1 < i � �(k) + 1.

Proof From the initialization step of the algorithm, we have r1 = 0. Since Strategy2 is
applied until phase i0, for every 1 < i � i0, we have ri = (4ρ+1)ri−1+2ρ. Thus, by induction,
if 1 � i � i0, we have ri � 1

2 ·
(
(4ρ + 1)i−1 − 1

)
.

In phase i0, Strategy1 is applied. Thus, ri0+1 = (2ρ + 1)ri0 + 2ρ. Thus,

ri0+1 =
1
2
(2ρ + 1) ·

(
(4ρ + 1)i0−1 − 1

)
+ 2ρ (2.1)

Now, for other phases i such that i0 + 1 < i � �(k) + 1, Strategy2 is applied until phase
�(k) + 1. Thus, for i0 + 1 < i � �(k) + 1, we have ri = (4ρ + 1)ri−1 + 2ρ. Thus, by induction,
for every i0 + 1 < i � �(k) + 1,

ri = (4ρ + 1)i−i0−1 · ri0+1 +
1
2
((4ρ + 1)i−i0−1 − 1) (2.2)

By replacing ri0 by its corresponding value from Eq. 2.1, the lemma holds.

Lemma 2.3.7 Let z and z′ be two nodes such that dG(z1, z
′
1) = 1, i.e., (z, z′) is an edge of

G.
For any integer k, ρ � 1, the output spanner S of algorithm Spanner satisfies

dS(z, z′) �
{

(4ρ + 1)�(k) − 1 if k = 2�(k),

2(2ρ + 1)(4ρ + 1)�(k)−1 + 4ρ(4ρ + 1)�(k−2�(k)) − 1 otherwise.

Proof Using Lemma 2.3.4, there exists a phase j � �(k) + 1 (resp. j′ � �(k) + 1) and a node
v (resp. v′) such that v ∈ Uj (resp. v′ ∈ Uj′), z ∈ Rj(v) (resp. z′ ∈ Rj′(v′)) and v ∈ Lj (resp.
v′ ∈ Lj′). We take v (resp. v′) to be the first dominator of z, i.e., node in U whose region
contains z, (resp. z′) that fall into set L. In fact, one can see that node z (or z′) can be in a
sparse region at a phase and switch to a dense region at the next phase, because either

• its sparse region has been merged with a neighboring dense one (if Strategy 2 is
applied),

• it is in the neighborhood of a dense region,

• or it is on a shortest path leading to a dense region.

64 Chapter 2. On the Locality of Graph Spanners

W.l.o.g., we suppose that j � j′.

• Case 1: k = 2�(k), i.e., i2 = −1 and i0 = �(k) + 1 and. By induction and using
Lemma 2.3.3, at the beginning of phase i0, the size of the region of any node in Ui0 is
at least n(2i0−1−1)/k = n(k−1)/k. Note that we apply Strategy 1 at phase i0. Thus,
every node in Ui0 will be in Li0.

– Subcase 1.1: j � j′ < i0 (see Fig. 2.9). Thus, using Step 6, a BFS tree spanning

z wv

Rj(v)

z′

Rj(w)

Figure 2.9: Stretch analysis for distance 1: Subcase 1.1

Rj(v) is added to the output spanner at phase j − 1. In addition, one can easily
show that there exists a node w ∈ Uj such that z′ ∈ Rj(w). Hence, a BFS tree
spanning Rj(w) is added to the output spanner at phase j − 1. Using Step 2
of Strategy2, there exists an edge e ∈ S connecting Rj(v) and Rj(w). Thus,
dS(z, z′) � 4rj + 1. Using Lemma 2.3.5, we have dS(z, z′) � 2(4ρ + 1)j−1 − 1

– Subcase 1.2: j � j′ = i0. (see Fig. 2.10). In this subcase, Strategy 1 is applied

z′ v′

Ri0 (v′)

z

Figure 2.10: Stretch analysis for distance 1: Subcase 1.2

at phase j′. Using Step 2, R+
j (v) is spanned. In addition, by Step 6, a BFS tree

spanning Rj′(v′) is added to the output spanner at phase j′ − 1. Thus, because
z ∈ R+

j′(v
′), dS(z, z′) � 2rj′ +1 = 2ri0 +1. Using Lemma 2.3.5, we have dS(z, z′) �

(4ρ + 1)i0−1.

Finally, because ρ > 0, in both subcases, the stretch is bounded by (4ρ + 1)�(k).

• Case 2: k �= 2�(k), i.e., i2 � 0.

– Subcase 2.1: j �= i0. Thus, it easy to show that there exists a node w ∈ Uj such
that z′ ∈ Rj(w). Using Step 6, Rj(w) and Rj(v) were spanned by a BFS tree at

2.3. Analysis of the Algorithm 65

phase j − 1. In addition, because Strategy 2 is applied at phase j, an edge e

connecting Rj(v) and Rj(w) is added at phase j (Step 2). Thus, dS(z, z′) � 4rj +1.

– Subcase 2.2: j = i0. Thus, Strategy1 is applied at phase j and R+
j (v) is spanned

by a BFS tree. Since z′ ∈ R+
j (v), we have dS(z, z′) � 2rj + 1 = 2ri0 + 1.

Thus, the stretch is bounded by 4r�(k)+1 + 1. Using Lemma 2.3.5, we have:

4r�(k)+1 + 1 = 4
(
(4ρ + 1)i2 · ri0+1 + 1

2 ((4ρ + 1)i2 − 1)
)

+ 1
= 2(2ρ + 1)(4ρ + 1)i1−1 + 4ρ(4ρ + 1)i2 − 1

It is easy to see that the previous stretch bounds also hold for any two nodes (not neces-
sarily at distance 1). Thus, we obtain a general bound for the stretch of the output spanner
S of algorithm Spanner. However, in the next lemmas, we give a different analysis which
provides improved bounds.

Lemma 2.3.8 Let z1 and z′1 (resp. z2 and z′2) be two nodes such that dG(z1, z
′
1) = 2 (resp.

dG(z2, z
′
2) = 3).

For any integers k, ρ � 1, if i0 = �(k) + 1, i.e., k = 2�(k), then the output spanner S of
algorithm Spanner satisfies:{

dS(z1, z
′
1) � (4ρ + 1)�(k) + 1

dS(z2, z
′
2) � 2(4ρ + 1)�(k) + 1

Proof In the following proof, we shall keep in mind that in the case k = 2�(k), Strategy1

is applied in the last phase �(k) + 1 = i0.
First let us study the stretch for the two nodes z1 and z′1 satisfying dG(z1, z

′
1) = 2. Let us

consider a path (z1, z, z′1) of length 2 in G. Using Lemma 2.3.4, there exists a phase j (resp.
j1 and j′1) and a node v (resp. v1 and v′1) such that v ∈ Uj (resp. v1 ∈ Uj1 and v′1 ∈ Uj′1),
z ∈ Rj(v) (resp. z1 ∈ Rj1(v1) and z′1 ∈ Rj′1(v

′
1)) and v ∈ Lj (resp. v1 ∈ Lj1 and v′1 ∈ Lj′1).

We take v (resp. v1 and v′1) to be the first dominator of z (resp. z1 and z′1), i.e., node in
U whose region contains z (resp. z1 and z′1), that fall into set L.
In the following, we analyze of all possible cases.

• Case 1: j �= i0, i.e., nodes z is in a light region before the last phase �(k) + 1 = i0.

– Subcase 1.1: j � j1, j
′
1 (see Fig. 2.11).

Let Rj(w) and Rj(w′) the regions containing z1 and z′1 at phase j. Since the
regions Rj(v), Rj(w) and Rj(w′) are neighbors and using Step 2 of Strategy2,
there exist nodes y, y1, y′ and y′1 (respectively in regions Rj(v), Rj(w), Rj(v) and
Rj(w′)) such that e1 = (y, y1) is an edge in the spanner S connecting Rj(v) with
Rj(w) and e′1 = (y′, y′1) is an edge in the spanner S connecting Rj(v) with Rj(w′).

66 Chapter 2. On the Locality of Graph Spanners

v

w′
z′
1zz1

y1

y

y′ y′
1

Rj(w′)

Rj(v)

Rj(w)

w

Figure 2.11: Stretch analysis for distance 2: Subcase 1.1

In addition, using Step 6, the regions Rj(v), Rj(w) and Rj(w′) were spanned by a
BFS tree in phase j − 1. Thus, we have:

dS(z1, z
′
1) � dS(z1, v1) + dS(v1, y1) + dS(y1, y) + dS(y, v) + dS(v, y′)

+ dS(y′, y′1) + dS(y′1, v′1) + dS(v′1, z′1)
= rj + rj + 1 + rj + rj + 1 + rj + rj

� 6ri0−1 + 2

– Subcase 1.2: j > j1, j
′
1. W.l.o.g. assume that j1 � j′1. (see Fig. 2.12).

z′
1

y

v′
1

w′

Rj′1
(v′

1)

w

Rj1 (w)

Rj′1
(w′)

Rj1 (v1)

zz1

v1

y1

y′

y′
1

Figure 2.12: Stretch analysis for distance 2: Subcase 1.2

By construction, there exists a node w such that z ∈ Rj1(w), i.e., Rj1(w) is the
region containing z in phase j1. Since Rj1(v1) and Rj1(w) are neighbors and using
Step 2, there exist nodes y1 ∈ Rj1(v1) and y ∈ Rj1(w) such that (y, y1) is an edge
in the spanner S connecting Rj1(w) and Rj1(v1). Thus, using Step 6, we have:

dS(z1, y) � 2rj1 + 1 � 2ri0−1

2.3. Analysis of the Algorithm 67

Let us suppose j′1 > j1 and let us focus on the region Rj1(w) containing both z

and y. We only apply Strategy2 in phases before phase j′1 � j < i0. Thus, at
each phase where Strategy2 is applied, and using Steps 4 and 5, the whole region
Rj1(w) is entirely merged with neighboring ones in order to form a new enlarged
region. Then, the new enlarged region is is entirely merged with other regions
and so on. Thus, nodes z and y will always belong to the same region (which is
connected). In particular, there exists a region Rj′1(w

′) such that both z and y are
in Rj′1(w

′). Since Rj′1(v
′
1) and Rj′1(w

′) are neighbors, there exist nodes y′ ∈ Rj′1(w
′)

and y′1 ∈ Rj′1(w
′) such that (y′, y′1) is an edge of the output spanner S connecting

Rj′1(w
′) and Rj′1(w

′). Thus, we have:

dS(z′1, y
′) � 2rj′1 + 1 � 2ri0−1 + 1

Using Step 6, Rj′1(w
′) is spanned by a BFS tree. Thus, we get:

dS(y, y′) � 2rj′1 � 2ri0−1

Thus,

dS(z1, z
′
1) � 6ri0−1 + 2

If j′1 = j1, then it is easy to see that the region Rj′1(v
′
1) is connected to Rj1(w)

using an edge in the output spanner. Hence, it is easy to find a path in S such
that dS(z1, z

′
1) � 2rj1 + 1 + 2rj1 + 1 + 2rj1 = 6ri0−1 + 2.

– Subcase 1.3: j1 � j � j′1 (see Fig. 2.13) which is symmetric to j′1 � j � j1.

z′
1

y

w

Rj1 (w)

Rj1 (v1)

zz1

v1

vRj(v)

Rj(w′)

w′

y′
1

y′

y1

Figure 2.13: Stretch analysis for distance 2: Subcase 1.3

Here, the only difference with subcase 1.2 is that the region Rj(v) becomes sparse
before Rj′1(v

′
1). It is straightforward from the analysis of subcase 1.2 and Fig. 2.13

that:

dS(z1, z
′
1) � 6ri0−1 + 2

68 Chapter 2. On the Locality of Graph Spanners

• Case 2: j = i0 (see Fig. 2.14). Thus, Strategy1 is applied at phase j. It is clear by
Lemma 2.3.4 and the analysis there that Rj(v) ∈ Lj=i0. Thus, the neighborhood R+

j (v)
of Rj(v) is spanned by a BFS tree. Since, z1, z

′
1 ∈ R+

j (v), we get the following:

dS(z1, z
′
1) � 2ri0 + 2

z

v

Rj(v)

z1 z′
1

Figure 2.14: Stretch analysis for distance 2: Case 2

Thus, in all cases the following is true:

dS(z1, z
′
1) � max

{
2ri0 + 2 , 6ri0−1 + 2

}
But ri0 = (4ρ + 1)ri0−1 + 2ρ. Hence,

dS(z1, z
′
1) � max

{
2(4ρ + 1)ri0−1 + 4ρ + 2 , 6ri0−1 + 2

}
= 2ri0 + 2

Using Lemma 2.3.5, we have

dS(z1, z
′
1) � 2 ·

(
1
2
·
(
(4ρ + 1)i0−1 − 1

))
+ 2

= (4ρ + 1)�(k) + 1

This demonstrates the lemma for the case of two nodes at distance 2.

Now, let us study the stretch for the two nodes z2 and z′2 satisfying dG(z2, z
′
2) = 2. Let

us consider a path (z2, z, z′, z′2) of length 3 in G. Using Lemma 2.3.4, there exists a phase j

(resp. j′, j2 and j′2) and a node v (resp. v′, v2 and v′2) such that v ∈ Uj (resp. v′ ∈ Uj′ ,
v2 ∈ Uj2 and v′2 ∈ Uj′2), z ∈ Rj(v) (resp. z ∈ Rj′(v′), z2 ∈ Rj2(v1) and z′2 ∈ Rj′2(v

′
2)) and

v ∈ Lj (resp. v′ ∈ Lj′ , v2 ∈ Lj2 and v′2 ∈ Lj′2). We take v (resp. v′, v2 and v′2) to be the first
dominator of z (resp. z′, z2 and z′2), i.e., node in U whose region contains z (resp. z′, z2 and
z′2), that fall into set L.

Hereafter, the analysis is more difficult because there more cases to analyze, but the
general idea is the same as for two nodes at distance two.

2.3. Analysis of the Algorithm 69

• Case 1: j �= i0 and j′ �= i0.

– Subcase 1.1: j2 � j � j′ � j′2.

z′ z′
2zz2

v2

Rj2 (v2)

Rj(v)

v

v′

y

y2
y3

y4

y1

y5

w

w1

Rj2 (w)

R
j′ (v

′)

w2

R
j′ (w2)

Rj(w1)

Figure 2.15: Stretch analysis for distance 3: Subcase 1.1

Let us first recall the following fact: when applying Strategy2, a dense region
is never broken, but it is entirely merged with another one. Now, using Step 2 of
Strategy2, one can show that there exist nodes w, w1 and w2, with corresponding
regions Rj2(w), Rj(w1) and Rj′(w2) such that (see Fig. 2.15):

∗ z ∈ Rj2(w), Rj2(w) ⊆ Rj(v) and there exists and edge (y, y1) ∈ S such that
y ∈ Rj2(v2) and y1 ∈ Rj2(w).

∗ z′ ∈ Rj(w1), Rj(w1) ⊆ Rj′(v′) and there exists and edge (y2, y3) ∈ S such that
y2 ∈ Rj(v) and y3 ∈ Rj(w1).

∗ z′2 ∈ Rj′(w2) and there exists and edge (y4, y5) ∈ S such that y4 ∈ Rj′(v′) and
y3 ∈ Rj′(w2).

Now, using the fact that each region is always spanned by a BFS tree in Step 6, it
is easy to see that

dS(z2, z
′
2) � 2rj2 + 1 + 2rj + 1 + 2rj′ + 1 + 2rj′

� 8ri0−1 + 3

– Subcase 1.2: j2 � j and j � j′ � j′2 (see Fig. 2.16). Using the same arguments
than in subcase 1.1, it is straightforward that

dS(z2, z
′
2) � 8ri0−1 + 3

– Subcase 1.3: j2 � j, j � j′2 � j′ (see Fig. 2.17). Using the same arguments than in
subcase 1.1, it is straightforward that

dS(z2, z
′
2) � 8ri0−1 + 3

70 Chapter 2. On the Locality of Graph Spanners

z′ z′
2zz2

v

v′

w

w1

w2Rj(w)

Rj(w1)

R
j′ (v

′)

Rj(v)

R
j′ (w2)

Figure 2.16: Stretch analysis for distance 3: Subcase 1.2

z′ z′
2zz2

v
w

Rj(w)

Rj(v)

v′
2

R
j′2

(v′
2)

w1

w3

R
j′2

(w3)

Rj(w2)

Figure 2.17: Stretch analysis for distance 3: Subcase 1.3

– Subcase 1.4: j2, j
′
2 � j, j′ (see Fig. 2.18). Note that the cases j � j′ and j′ � j are

symmetric. In this subcase, it is also clear that we have

dS(z2, z
′
2) � 8ri0−1 + 3

– Subcase 1.5: all other subcases are perfectly symmetric to one of the three previous
subcases.

• Case 2: j = i0, i.e., Strategy1 is applied at phase j. Thus, the neighborhood R+
j (v)

is spanned by Step 6. Thus, dS(z2, z
′) � 2ri0 + 2

– Subcase 2.1: j′2 �= i0 (see Fig. 2.19). Based on the previous analysis, it is easy to

2.3. Analysis of the Algorithm 71

z′ z′
2zz2

Rj2 (v2)

R
j′2

(v′
2)

v2

v′
2

Figure 2.18: Stretch analysis for distance 3: Subcase 1.4

see that: dS(z′, z′2) � 4rmin{j′,j′2} + 1 � 4ri0−1 + 1.

Thus, dS(z2, z
′
2) � 2ri0 + 4ri0−1 + 3.

z′
2z2 z

z′

v

Rj(v)

Figure 2.19: Stretch analysis for distance 3: Subcase 2.1

– Subcase 2.2: j′2 = i0 (see Fig. 2.20). Because in this case R+
j′2

(v′2) is spanned, we
have: dS(z′, z′2) � 2ri0 + 1. Thus,

dS(z2, z
′
2) � 2ri0 + 2 + 2ri0 + 1 = 4ri0 + 3

z2 z

z′

v

Rj(v)

R
j′2

(v′
2)

v′
2

z′
2

Figure 2.20: Stretch analysis for distance 3: Subcase 2.2

72 Chapter 2. On the Locality of Graph Spanners

• Case 3: j′ = i0. By symmetry, we obtain the same bounds than in Case 2.

Thus, for all cases, we get the following:

dS(z2, z
′
2) � max

{
2ri0 + 4ri0−1 + 3, 4ri0 + 3, 8ri0−1 + 3

}
But ri0 = (4ρ + 1)ri0−1 + 2ρ. Hence,

dS(z2, z
′
2) � max

{
2(4ρ + 1)ri0−1 + 4ρ + 4ri0−1 + 3,
4(4ρ + 1)ri0−1 + 8ρ + 3 ,

8ri0−1 + 3
}

= 4ri0 + 3
= 2(4ρ + 1)i0−1 + 1

This completes the proof of the lemma.

Lemma 2.3.9 Let z1 and z′1 (resp. z2 and z′2) two nodes such that dG(z1, z
′
1) = 2 (resp.

dG(z2, z
′
2) = 3).

For any integers k, ρ � 1, if i0 < �(k)+1, then the output spanner S of algorithm Spanner

satisfies: {
dS(z1, z

′
1) � 3(2ρ + 1)(4ρ + 1)�(k)−1 + 6ρ(4ρ + 1)�(k−2�(k)) − 1

dS(z2, z
′
2) � 4(2ρ + 1)(4ρ + 1)�(k)−1 + 8ρ(4ρ + 1)�(k−2�(k)) − 1

Proof First let us study the stretch for the two nodes z1 and z′1 which satisfy dG(z1, z
′
1) = 2.

Let us consider a path (z1, z, z′1) of length 2 in G. Using Lemma 2.3.4, there exists a phase
j (resp. j1 and j′1) and a node v (resp. v1 and v′1) such that v ∈ Uj (resp. v1 ∈ Uj1 and
v′1 ∈ Uj′1), z ∈ Rj(v) (resp. z1 ∈ Rj1(v1) and z′1 ∈ Rj′1(v

′
1)) and v ∈ Lj (resp. v1 ∈ Lj1 and

v′1 ∈ Lj′1). We take v (resp. v1 and v′1) to be the first dominator of z (resp. z1 and z′1), i.e.,
node in U whose region contains z, (resp. z1 and z′1) that fall into set L.

• Case 1: j1 � j � j′1. Here the critical case is when j1 < i0 < j � j′1 (see Fig. 2.21).

In fact, we can find two nodes y1 ∈ Rj1(v1) and y2 ∈ Rj1(w) where Rj1(w) is the region
containing z in phase j1 such that the edge (y1, y2) is in the spanner. Then, the region
Rj1(w) is entirely merged with other regions until phase i0. At phase i0 < j, it may
happen that the region Rj1(w) becomes broken into many parts and the nodes y1 and y2

become in two new different regions. Thus, it may happen that Rj1(w) � Rj(v) (This
is the main difference with the case k = 2�(k)). Nevertheless, we can find two nodes
y3 ∈ Rj(v) and y4 ∈ Rj(w′), where Rj(w′) is the region containing z′1 at phase j, such
that the edge (y3, y4) is in the output spanner. Thus,

dS(z1, z
′
1) � 4rj1 + 1 + 4rj + 1

� 4ri0−1 + 1 + 4r�(k)+1 + 1

2.3. Analysis of the Algorithm 73

z1 z z′
1

y1
y2

Rj1 (w)

Rj1 (v1)

y3

y4

w′

v

w

Rj(v)

Rj(w′)

Figure 2.21: Stretch analysis for distance 2: j1 < i0 < j � j2

In the other cases, we have essentially the same analysis as in the case k = 2�(k) and it
is not difficult to show that dS(z1, z

′
1) � 6r�(k)+1 + 2.

Thus, we obtain:

dS(z1, z
′
1) � max

{
6r�(k)+1 + 2 , 4ri0−1 + 4r�(k)+1 + 2

}
• Case 2: j1 � j′1 � j. Similarly to Case 1, the critical case here is for j1 < i0 < j′1 � j

and we obtain the same bounds.

• Case 3: j � j1 � j′1. Here, it is obvious that dS(z1, z
′
1) � 6r�(k)+1 + 2

• Other cases. By symmetry we obtain the same upper bounds as in previous cases.

Using Eq. 2.2 (in Lemma 2.3.6), we have:

r�(k)+1 = (4ρ + 1)�(k)−i0 · ri0+1 + 1
2((4ρ + 1)�(k)−i0 − 1)

= (4ρ + 1)�(k)−i0 · ((2ρ + 1)ri0 + 2ρ) + 1
2((4ρ + 1)�(k)−i0 − 1)

= (4ρ + 1)�(k)−i0 · ((2ρ + 1) ((4ρ + 1)ri0−1 + 2ρ) + 2ρ) + 1
2 ((4ρ + 1)�(k)−i0 − 1)

= (4ρ + 1)�(k)−i0 · ((2ρ + 1)(4ρ + 1)ri0−1 + 2ρ(2ρ + 1) + 2ρ) + 1
2((4ρ + 1)�(k)−i0 − 1)

Hence, we have:

r�(k)+1 = (2ρ + 1)(4ρ + 1)�(k)−i0+1ri0−1 + 2ρ(2ρ + 2 +
1
2
)(4ρ + 1)�(k)−i0 − 1

2
(2.3)

Thus,
(
6r�(k)+1 + 2

)
−
(
4ri0−1 + 4r�(k)+1 + 2

)
=

2r�(k)+1 − 4ri0−1 =
(
2(2ρ + 1)(4ρ + 1)�(k)−i0+1 − 4

)
ri0−1 + 4ρ(2ρ + 2 + 1

2)(4ρ + 1)�(k)−i0 − 1
� 0

74 Chapter 2. On the Locality of Graph Spanners

Thus, in all the cases, we have:

dS(z1, z
′
1) � 6r�(k)+1 + 2

Using Lemma 2.3.6, we have:

6r�(k)+1 + 2 = 6
(

1
2
(4ρ + 1)�(k)−i0

(
(2ρ + 1)(4ρ + 1)i0−1 + 2ρ

)
− 1

2

)
+ 2

= 3(4ρ + 1)�(k)−i0
(
(2ρ + 1)(4ρ + 1)i0−1 + 2ρ

)
− 1

= 3(2ρ + 1)(4ρ + 1)�(k)−1 + 6ρ(4ρ + 1)�(k−2�(k)) − 1

Thus, the lemma is true for the nodes z1 and z′1 at distance 2 in G.

Now, let us study the stretch for the two nodes z2 and z′2 satisfying dG(z2, z
′
2) = 2. Let

us consider a path (z2, z, z′, z′2) of length 3 in G. Using Lemma 2.3.4, there exists a phase j

(resp. j′, j2 and j′2) and a node v (resp. v′, v2 and v′2) such that v ∈ Uj (resp. v′ ∈ Uj′ ,
v2 ∈ Uj2 and v′2 ∈ Uj′2), z ∈ Rj(v) (resp. z ∈ Rj′(v′), z2 ∈ Rj2(v1) and z′2 ∈ Rj′2(v

′
2)) and

v ∈ Lj (resp. v′ ∈ Lj′ , v2 ∈ Lj2 and v′2 ∈ Lj′2). We take v (resp. v′, v2 and v′2) to be the first
dominator of z (resp. z′, z2 and z′2), i.e., node in U whose region contains z (resp. z′, z2 and
z′2), that fall into set L.

There are too many cases to analyze in details. Thus, we will just give the bound obtained
for each case. We do not give the details of the cases which use the same technical arguments
as for the case of two nodes at distance 2. In fact, using the same ideas as previously, the
reader can easily guess the path of S allowing to obtain the corresponding bound.

• Case 1: j2 � j � j′ � j′2. The critical case is when j2 � i0 � j or j � i0 � j′. In fact,
we have:

– If j2 < i0 � j (see Fig. 2.22), then dS(z2, z
′
2) � 4rj2 + 1 + 2rj + 1 + 2rj′ + 1 + 2rj′ .

Thus, dS(z2, z
′
2) � 4ri0−1 + 6r�(k)+1 + 3.

– If j < i0 � j′ (see Fig. 2.23), then dS(z2, z
′
2) � 2rj2 +1+2rj+1+2rj +2rj′+1+2rj′.

Thus, dS(z2, z
′
2) � 6ri0−1 + 4r�(k)+1 + 3.

– Otherwise, one can see that dS(z2, z
′
2) � 8r�(k)+1 +3. For instance, if j2 � j � j′ �

j′2 < i0 or if i0 < j2 � j � j′ � j′2, then we have the situation of Fig. 2.24 (which
is the same than for the case k power of 2).

All the other cases are very similar and are based on the observation that if two
nodes belong to the same region at phase i < i0 (resp. i > i0), then in any phase
i′ such that i < i′ � i0 (resp. i < i′) the two nodes will still belong to a common
region, i.e., a region is never broken by Strategy2.

• Case 2: j2 � j � j′2 � j′. Here the critical cases are when j2 < i0 � j or j < i0 � j′2.
And we obtain the same bounds as for Case 1.

2.3. Analysis of the Algorithm 75

z′ z′
2zz2

y1

y2

y3

y5

y6

y4

v2

w1 v
w2

w3

v′

Rj2 (v2)

Rj2 (w1)

Rj(v)
Rj(w2)

R
j′ (v

′)

R
j′ (w3)

Figure 2.22: Stretch analysis for distance 3 (k not power of 2): j2 < i0 � j � j′ � j′2

z′
2zz2 z′

y1

y2

y3

y4

y5

y6

v2

w1

v

w2
v′

w3

Rj2 (v2)

Rj2 (w1)

Rj(v)

Rj(w2)
R

j′ (v
′)

R
j′ (w3)

Figure 2.23: Stretch analysis for distance 3 (k not power of 2): j2 � j < i0 � j′ � j′2.

• Case 3: j2 � j′2 � j′ � j. Here, the critical cases are

– j′2 < i0 and we have the situation of Fig. 2.25. Thus, we obtain:

dS(z2, z
′
2) � 4rj2 + 1 + 4rj′ + 1 + 4rj2 + 1

� 8ri0−1 + 4r�(k)+1 + 3

– j2 < i0 < j′2 and we obtain dS(z2, z
′
2) � 4ri0−1 + 6r�(k)+1 + 3.

76 Chapter 2. On the Locality of Graph Spanners

z′
2zz2 z′

y1

y2

y3

y4

y5

y6

v2

w1

v

w2

w3

Rj2 (v2)

Rj2 (w1)

Rj(v)

Rj(w2)

R
j′ (w3)

v′R
j′ (v

′)

Figure 2.24: Stretch analysis for distance 3 (k not power of 2): j2 � j � j′ � j′2 < i0 or
i0 < j2 � j � j′ � j′2.

z′
2zz2 z′

y1

y2

v2

w1

Rj2 (v2)

Rj2 (w1)

y3

y4

y5

y6

v′

R
j′ (v

′)

w2
R

j′2
(w2)

w3

R
j′ (w3)

Figure 2.25: Stretch analysis for distance 3 (k not power of 2): j2 � j′2 < i0 � j′ � j.

• Case 4: j2 � j′2 � j � j′. The analysis is very similar to the one of Case 3 and we
obtain the same bounds.

• Other cases: By studying all the reamining cases, we always get similar situtations than
in previous cases, and it is not diffuclt to show that we obtain the same upper bounds.

2.3. Analysis of the Algorithm 77

In all cases, we have:

dS(z2, z
′
2) � max

{
8r�(k)+1 + 3 , 6ri0−1 + 4r�(k)+1 + 3 ,

4ri0−1 + 6r�(k)+1 + 3 , 8ri0−1 + 4r�(k)+1 + 3
}

= max
{

8r�(k)+1 + 3 , 4ri0−1 + 6r�(k)+1 + 3 ,

8ri0−1 + 4r�(k)+1 + 3
}

Using Eq. 2.3, we have 8r�(k)+1 + 3 − (4ri0−1 + 6r�(k)+1 + 3) = 2r�(k)+1 − 4ri0−1 =

(2(2ρ + 1)(4ρ + 1)�(k)−i0+1 − 4)ri0−1 + 4ρ(2ρ + 2 +
1
2
)(4ρ + 1)�(k)−i0 − 1 � 0

In addition, 8r�(k)+1 + 3 − (8ri0−1 + 4r�(k)+1 + 3) = 4r�(k)+1 − 8ri0−1 =

(4(2ρ + 1)(4ρ + 1)�(k)−i0+1 − 8)ri0−1 + 8ρ(2ρ + 2 +
1
2
)(4ρ + 1)�(k)−i0 − 2 � 0

Thus,

dS(z2, z
′
2) � 8r�(k)+1 + 3

Now, using Lemma 2.3.6, we have:

8r�(k)+1 + 3 = 8
(

1
2
(4ρ + 1)�(k)−i0

(
(2ρ + 1)(4ρ + 1)i0−1 + 2ρ

)
− 1

2

)
+ 3

= 4(4ρ + 1)�(k)−i0
(
(2ρ + 1)(4ρ + 1)i0−1 + 2ρ

)
− 1

= 4(2ρ + 1)(4ρ + 1)�(k)−1 + 8ρ(4ρ + 1)�(k−2�(k)) − 1

Thus, the lemma is true for the nodes z2 and z′2 at distance 3 in G.

2.3.2 Size analysis

Lemma 2.3.10 For any integer k, ρ � 1, the size of the output spanner S of algorithm
Spanner is O(log k · n1+1/k).

Proof Let us fix a phase i of the algorithm. The output spanner S is updated in Steps 2
and 6 of each phase. Let us consider two consecutive phases i and i− 1 and the edges added
by Step 6 at phase i − 1 and the edges added by Step 2 at phase i.

• Case 1: Strategy 1 is applied at phase i. Thus, the number of edges is bounded by:∑
v∈Li

|BFS(v,Ri(v))| +
∑
v∈Li

∑
z∈R+(v)

1 < n +
∑
v∈Li

|R+(v)|

� n +
∑
v∈Li

n1/k|Ri(v)|

� n + n1+1/k

78 Chapter 2. On the Locality of Graph Spanners

• Case 2: Strategy 2 is applied at phase i. Thus, the number of edges added is bounded
by: ∑

v∈Li

|BFS(v,Ri(v))| +
∑
v∈Li

|R+
Ui

(v)| � n + n1/k
∑
v∈Li

|Ri(v)|

� n + n1+1/k

Since there are O(log k) phases in the algorithm, the lemma is true.

2.3.3 Distributed implementation and time complexity

In the LOCAL model, distributed computation of some distributed procedure A on Gt[H]
can be easily simulated on G as follows, charging the overall time by a factor of t. Hereafter,
we assume that each node u ∈ G can determine if it belongs or not to H. Indeed, consider one
communication step in A running on some node u of Gt[H] followed by one local computation
step. In G, an original message in A is sent from u with a counter initialized to t−1 as an extra
field. Now, each node v ∈ G, upon the reception of a message with some counter in its header:
1) decrements the counter; 2) stores this message if v ∈ H; and 3) forwards the incoming
message with the updated counter to all its neighbors in G if the updated counter is non-null
(if many messages are received during a round, then they are concatenated before being sent).
After t communication rounds in G, every node u ∈ H starts the local computation step of
A on the base of all received messages during the last t communication rounds.

Similarly, given U ⊆ V , the computation of some distributed procedure A on GU can be
simulated on G as follows, charging the overall time by a factor O(r) where r is an upper
bound of the eccentricity of a node v ∈ U in G[R(v)]. At each time procedure A requires for
a node v of GU to send a message to a neighbor, v broadcasts the message in G[R(v)] (which
is connected). The nodes at the frontier of R(v), i.e., nodes having neighbors in different
regions, also broadcasts the message out of their region. Symmetrically, upon the reception of
messages from different regions, messages are concatenated and a convergecast is performed
to v. The time overhead for one step of A is at most 2r + 1.

Relying on the above discussions, running procedure A on G2(r+1)[H] or on (GU)2[H] can
be simulated on G within a factor of O(r) on the time complexity.

Lemma 2.3.11 For any integer k, ρ � 1, Spanner can be implemented with a deterministic
distributed algorithm in O(log k ·ρlog k · τ) time, where τ is the time complexity to compute an
independent ρ-dominating set in a graph of at most n nodes.

Proof Let us first remark that in the LOCAL model, we can make the nodes know their
entire p-neighborhood in O(p) time. Therefore, any task which requires only information
about p-neighborhood can be solved within O(p) time.

Let us consider a fixed phase i � �(k). For every v ∈ U , Steps 1 and 6 of the algorithm
can be implemented, using classical broadcast-convergecast, by traversing R+

i (v) a constant
number of times which is O(ri) time consuming. Note that the BFS trees constructed in

2.4. Applications to low stretch spanners 79

Step 6 can be maintained at each phase, by adding the new nodes being merged at each
phase. The time needed to run procedure IDS on G2(ri+1)[H] blows up by a factor of 2(ri +1)
as explained before. Thus, if Strategy 1 is applied, then Step 3 is O(ri · τ) time consuming.
Similarly, the time complexity of procedure IDS on GU [H] blows up by a factor 2ri. Thus, if
Strategy 2 is applied, Step 3 is O(ri · τ) time consuming.

Steps 4 and 5 can be implemented by letting each node exploring its O(2(ri + 1)ρ +
ri)-neighborhood which is O(ri) time consuming for fixed ρ. Finally, Step 7 is O(1) time
consuming. Summing up among all steps, every phase i � �(k) is O(ri · τ) time consuming.

At phase �(k)+1, the set H is empty and thus phase �(k)+1 is O(r�(k)+1) time consuming.
Using Lemma 2.3.1 (and the radius bounds given in the proof of Lemma 2.3.7) and sum-

ming up among all phases, the time complexity of the algorithm is O(�(k) · (4ρ + 1)�(k) · τ)
which completes the proof.

2.4 Applications to low stretch spanners

2.4.1 Constant stretch spanners with sub-quadratic size

Let MIS(n) denote the time complexity for computing, by a deterministic distributed al-
gorithm, a maximal independent set (MIS) in a graph with at most n nodes. The fastest
deterministic algorithm [PS96] shows that MIS(n) � nO(1/

√
log n). It is also known that

MIS(n) � Ω(
√

log n/ log log n) [KMW04].
It is not difficult to check that a set X is an independent 1-dominating set if and only if

X is a maximal independent set (cf. [Pel00, pp. 259, Ex. 4]). Thus, using the fast distributed
MIS algorithm as a subroutine in algorithm Spanner, we obtain:

Theorem 2.4.1 There is a deterministic distributed algorithm that given a graph G with n

nodes and any fixed integer k = 2p with p � 0, constructs a spanner for G with O(n1+1/k)
edges in O(MIS(n)) time, with the following stretch properties, ∀u, v ∈ V :

• If dG(u, v) is even, then: dS(u, v) � 1
2

(
klog 5 + 1

)
dG(u, v).

• Otherwise, dS(u, v) � 1
2

(
klog 5 + 1

)
dG(u, v) + 1

2

(
klog 5 − 1

)
.

Proof Size and time are direct consequences of lemmas 2.3.3 and 2.3.11 for a fixed k and for
ρ = 1. Note also that �(k) = p = log k.

If dG(u, v) = 2d′ for some integer d′ � 0, then we consider a path P between u and v

in G. The path P can be viewed as the sum of d′ segments of length 2 each. Now, using
Lemma 2.3.8, the stretch of each segment is 5log k +1 = klog 5+1. Thus dS(u, v) � (klog 5+1)d′

and the stretch bound for even distances holds.
If dG(u, v) = 2d′+1 for some integer d′ > 0, then we consider a path P between u and v in

G. The path P can be viewed as the sum of d′−1 segments (of length 2 each), and a segment

80 Chapter 2. On the Locality of Graph Spanners

of length 3. Now, using Lemma 2.3.8, the stretch of each even segment is klog 5 + 1 and the
stretch of the odd segment is 2klog 5 + 1. Thus, dS(u, v) � (klog 5 + 1)(d′ − 1) + 2klog 5 + 1 and
the stretch bound for odd distances holds.

If dG(u, v) = 1 (d′ = 0), then using Lemma 2.3.7, the stretch bound is still good.

Theorem 2.4.2 There is a deterministic distributed algorithm that given a graph G with n

nodes and any fixed integer k = 2p + 2q − 1 with p � q > 0, constructs a spanner for G with
O(n1+1/k) edges in O(MIS(n)) time, with the following stretch properties, ∀u, v ∈ V :

• If dG(u, v) = 1, then: dS(u, v) � 6 5p−1 + 4 5q−1 − 1.

• If dG(u, v) is even, then: dS(u, v) � 1
2

(
9 5p−1 + 6 5q−1 − 1

)
dG(u, v).

• Otherwise, dS(u, v) � 1
2

(
9 5p−1 + 6 5q−1 − 1

)
dG(u, v) − 1

2

(
3 5p−1 + 2 5q−1 − 1

)
.

Proof Size and time are direct consequences of lemmas 2.3.3 and 2.3.11 fixing k and ρ = 1.
First, if p = q, then k = 2p+1 − 1 =

∑p
j=0 2j. Hence, �(k) = p and �(k − 2�(k)) =

�(2p+1 − 1 − 2p) = �(2p − 1) = p − 1. If p �= q, then k = 2p +
∑q−1

j=0 2j . Hence, �(k) = p. In
addition, �(k − 2�(k)) = �(2p + 2q − 1 − 2p) = �(2q − 1) = q − 1.

If dG(u, v) = 1, the stretch bound is given by Lemma 2.3.7 for ρ = 1.
If dG(u, v) = 2d′ for some d′ � 0, then by viewing the shortest path between u and v as a

sum of segments of length 2 and using Lemma 2.3.9, we have dS(u, v) � (9·5p−1+6·5q−1−1)d′.
Hence, the stretch bound for even distance holds.

Otherwise, if dG(u, v) = 2d′ + 1 for some d′ > 0, then using Lemma 2.3.9, we have
dS(u, v) � (9 · 5p−1 + 6 · 5q−1 − 1)(d′ − 1) + (12 · 5p−1 + 8 · 5q−1 − 1). Hence, the stretch bound
for even distances also holds.

Corollary 2.4.3 For every integer k such that k = 2p + 2q − 1, where p � q � 0, there is a
deterministic distributed algorithm that given a graph G with n nodes, constructs a spanner
for G with O(n1+1/k) edges in O(MIS(n)) time, such that for every u, v ∈ V , dS(u, v) �
α[k] dG(u, v) + β[k] where (α[k], β[k]) is given by Table 2.1.

(p, q) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1)
k 1 2 3 4 5 7 8 9

2k − 1 1 3 5 7 9 13 15 17
dG(u, v) = 1 ⇒ (α[k], β[k]) (1, 0) (5, 0) (9, 0) (25, 0) (33, 0) (49, 0) (125, 0) (153, 0)

dG(u, v) ≡ 0[2] ⇒ (α[k], β[k]) (1, 0) (3, 0) (7, 0) (13, 0) (25, 0) (37, 0) (63, 0) (115, 0)
dG(u, v) ≡ 1[2] ⇒ (α[k], β[k]) (1, 0) (3, 2) (7,−2) (13, 12) (25,−8) (37,−12) (63, 62) (115,−38)

i0 1 2 1 3 2 1 4 3

Table 2.1: Stretch and Strategy examples for k = 2p + 2q − 1.

2.4. Applications to low stretch spanners 81

2.4.2 Graphs with large minimum degree

It is known that sparser spanners exist whenever the minimum degree increases (cf. the
concluding remark of [BKMP05]). In this paragraph, we show that graphs with minimum
degree large enough enjoy an O(1)-spanner with only O(n) edges, moreover computable with
a fast deterministic distributed algorithm.

Let us first note that if a graph G has a ρ-dominating set X (not necessarily independent),
then G has a (O(ρ), O(ρ))-spanner with at most n+|X|2/2 edges. Assuming we are given such
a dominating set, the spanner can be constructed distributively in O(ρ) time by first clustering
the nodes of the graph around the nodes in the dominating set, and then by connecting every
two neighboring clusters using one edge. The stretch analysis is based on the same techniques
used for algorithm Spanner.

Proposition 2.4.4 For every parameter ρ � 1, there exists a deterministic distributed algo-
rithm that given a graph G with n nodes and a ρ-dominating set X, constructs a spanner S

for G with at most n + |X|2/2 edges in O(ρ) time, such that, ∀u, v ∈ V :

• If dG(u, v) = 1, then dS(u, v) � 4ρ + 1.

• If dG(u, v) is even, then dS(u, v) � (3ρ + 1) dG(u, v).

• If dG(u, v) is odd and dG(u, v) �= 1, then dS(u, v) � (3ρ + 1) dG(u, v) − ρ.

This proposition can be combined with the observation that if G has minimum degree
δ �

√
n log n, then G has a 1-dominating set X of size O(

√
n log n). Indeed, this can be

proved using the following greedy algorithm [Lov75]: one starts with X = ∅ and with the set
of all radius-1 balls, B = {N [v] | v ∈ V }, where N [v] = {u ∈ V | dG(u, v) � 1}. Then, while B
is nonempty, one selects a node x ∈ V for X that belongs to the maximum number of balls in
the current set B. The set B is updated by removing all balls containing x. The constructed
set X is a 1-dominating set and it can be shown that |X| � n(1 + ln n)/minv∈V |N [v]| which
is at most O(

√
n log n) if δ �

√
n log n. Thus, the problem is to efficiently compute such

1-dominating set.

Unfortunately, no deterministic distributed implementation of the greedy algorithm faster
than O(|X|) is known. A small ρ-dominating set can be computed much more efficiently in
O(ρ log∗ n) time by the algorithm of [KP98]. Unfortunately, its guaranteed size for X is only
of O(n/ρ). Finally, no algorithm is known to run in o(

√
n log n) time for this problem.

However, using our algorithm, we obtain a spanner with only O(n) edges, moreover with
a better time complexity.

Theorem 2.4.5 There exists a deterministic distributed algorithm that given a graph G with
n nodes and minimum degree δ � √

n, constructs a spanner for G with at most 3n/2 edges in
O(MIS(n)) time, such that, ∀u, v ∈ V :

82 Chapter 2. On the Locality of Graph Spanners

• If dG(u, v) = 1, then: dS(u, v) � 9.

• If dG(u, v) is even, then: dS(u, v) � 7 dG(u, v).

• If dG(u, v) is odd and dG(u, v) �= 1, then: dS(u, v) � 7 dG(u, v) − 2.

Proof The algorithm consists in two stages. First, we construct an MIS for G2. Then, each
node of the MIS constructs its region using the coloring technique of algorithm Spanner. The
spanner is obtained by considering the edges spanning the regions and the edges connecting
every two adjacent regions.

The stretch bounds are just a corollary of Proposition 2.4.4.

2.4.3 Randomized distributed implementation issues

In [Lub86], Luby gives a simple and efficient randomized PRAM algorithm for computing an
MIS in O(log n) expected time. Luby’s algorithm can be turned to run in the distributed
LOCAL model, and we obtain a distributed algorithm for computing an independent 1-
dominating set which terminates within O(log n) expected time. We remark that upon termi-
nation of the algorithm, the constructed 1-dominating set is always correct, the randomization
is only on the running time, i.e., it is a Las Vegas algorithm.

Thus, we obtain the following randomized version of Theorems 2.4.1 and 2.4.2:

Theorem 2.4.6 There is a (Las Vegas) randomized distributed algorithm that given a graph
G with n nodes and any fixed integer k = 2p with p � 0, constructs a spanner for G with
O(n1+1/k) edges in O(log n) expected time, with the same stretch properties than in Theo-
rem 2.4.1.

Theorem 2.4.7 For every fixed integer k � 3, there is a (Las Vegas) randomized distributed
algorithm that given a graph G with n nodes and any fixed integer k = 2p + 2q − 1 with
p � q > 0, constructs a spanner for G with O(n1+1/k) edges in O(log n) expected time, with
the same stretch properties than in Theorem 2.4.2.

Our (Las Vegas) randomized algorithms guarantee the stretch and the size bounds for
the constructed spanners, while the O(k) time (Monte Carlo) randomized algorithms [BS03]
do not give any guarantee on the spanner size. This is of course achieved at the price of
increasing the stretch factor of the spanner.

Recently, in [KMW06], Khun et al. show that every packing problem can be approxi-
mated by a constant factor with high probability in O(log n) time in the LOCAL model.
Therefore, the (Monte Carlo) algorithm of [KMW06] implies a randomized constant approx-
imation algorithm for the minimum 1-dominating set problem with O(log n) time. Thus,
using Proposition 2.4.4, we obtain the following result (to be compared with Theorem 2.4.5
and [BS03]):

2.5. Open questions 83

Theorem 2.4.8 There exists a (Monte Carlo) randomized distributed algorithm that given
a graph G with n nodes of minimum degree δ � √

n, constructs a spanner for G in O(log n)
time. The size is O(n log2 n) edges with high probability, and ∀u, v ∈ V :

• If dG(u, v) = 1, then: dS(u, v) � 5.

• If dG(u, v) is even, then: dS(u, v) � 4 dG(u, v).

• If dG(u, v) is odd and dG(u, v) �= 1, then: dS(u, v) � 4 dG(u, v) − 1.

More generally, for a minimum degree δ graph, we obtain a spanner with O(n + (n log n/δ)2)
edges.

Let us remark that, in Theorem 2.4.8, 5 is the best possible bound on the stretch if
δ � w(n1/4 log n). In fact, there exist graphs with minimum degree c

√
n (for some constant

c > 0) and girth 6 (the length of its smallest cycle). Thus, the deletion of any edge implies a
stretch of at least 5 for its endpoints. Therefore, any spanner with size less than 1

2cn
√

n have
stretch at least 5, and O(n + (n log n/δ)2) = o(n

√
n) if δ � w(n1/4 log n).

2.5 Open questions

In this chapter we have considered deterministic distributed algorithm to construct low stretch
and sparse spanners of unweighted arbitrary graphs. In particular, we have shown that
(3, 2)-spanner with O(n3/2) edges can be constructed in nO(1/

√
log n) time. Let us observe

that log n < n1/
√

log n only for n > 242
. In other words, deterministic distributed n1/

√
log n

time algorithms might be competitive1 over randomized log n time algorithms for distributed
system up to n � 32656 processors. We left open the two following problems:

1. Reduce the stretch from (3, 2) to optimal stretch 3, without increasing the size of the
spanner and the running time. More generally, is it possible, for every k � 1, to compute
with a deterministic distributed algorithm a (2k − 1)-spanners of size O(n1+1/k) in
O(MIS(n)) time?

2. Reduce the time complexity to o(MIS(n)), possibly with some small stretch and size
increasings. More precisely, is it possible to compute with a deterministic distributed
algorithm a constant stretch spanner with o(n2) edges in o(MIS(n)) time? Using our
approach, it suffices to show that there is a constant ρ for which an independent ρ-
dominating set can be computed in o(MIS(n)) time for every graph.

1This obviously depends on the constants hidden in the O-notation.

84 Chapter 2. On the Locality of Graph Spanners

Part II

A Formal Approach in Distributed

Computing: Relabeling Systems

and Local Computations

85

Chapter 3

Relabeling Systems: a Formal

Tool-Box for Distributed

Algorithms

Abstract.

Graph traversals are fundamental for many distributed algorithms. In this chapter, we use
graph relabelling systems to encode two basic graph traversals which are the broadcast and
the convergecast. We obtain formal, modular and simple encoding for many sophisticated
distributed algorithms, such as the layered breadth-first spanning tree algorithm, and the
minimum spanning tree algorithm.

The method and the formalism we use in this chapter allow to focus on the correctness
of a distributed algorithm rather than on the implementation and the communication details
in the network.

Résumé.

Les parcours de graphes sont la bases de la plus part des algorithmes distribués. Dans ce
chapitre, nous utilisons les systèmes de réétiquetage de graphes pour coder deux techniques de
bases: la dissémation et la collecte d’information. Ceci nous permet d’obtenir une description
formelle, modulaire et simple de plusieurs algorithmes distribués sophistiqués, tels que, le
calcul d’un arbre recouvrant de plus courts chemins, et le calcul d’un arbre recouvrant de
poids minimum.

La méthode ainsi que le formalisme que nous utilisons dans ce chapitre permettent
de se concentrer sur la correction d’un algorithme distribuè plutôt que sur les aspects
d’implémentation ou de communications entre les différentes entités du réseau.

87

88 Chapter 3. Distributed Algorithms by Relabeling Systems

3.1 Introduction

One of the most important challenges in distributed computing is to design rigorous dis-
tributed algorithms and to prove them in a precise and formal way. In general, due to the
interaction between the process variables and the communication procedures, it is hard to
design a distributed algorithm in such a way it can be understood, implemented and proved
easily. In addition, many algorithms depend strongly on the distributed model, i.e., message-
passing, shared memory, synchronous, asynchronous etc. A distributed algorithm which is
designed in a given model can not always work in another model. Even though it is possible,
one has often to re-adapt or to re-encode the algorithm depending on the model assumptions.

Generally speaking, the purpose of this chapter is to give a general methodology in order
to help designers to encode distributed algorithms. More precisely, in this work we try to
understand and to answer the following general problem:

Q3 :
How can we design distributed algorithms in a unified, for-
mal and comprehensive way?

In order to achieve this goal, we use graph relabeling systems and local computa-
tions [LMS95, GMM04] as a tool-box. A graph relabeling system is based on a set of relabeling
rules which are executed locally and concurrently on balls of fixed radius. These rules are
described using mathematical and logic tools which enables to give a rigorous mathematical
formalization of a distributed algorithm.

The starting point of our work is the following simple observation: “many distributed al-
gorithms appear as the compositions of some basic network traversals”. These basic traversals
are generally based on the broadcast (or propagation) of information and the convergecast
(or echo) of information [Cha82, Tel00, Lyn96, Seg83]. Our goal is to show how to encode
and to combine the broadcast and the convergecast techniques in order to obtain a formal
encoding of a large class of wave and traversal algorithms. Our approach is purely theoretical
and provides many theoretical examples for encoding in a formal way the main classical tech-
niques used in distributed computing. We do not care about the practical implementation
issues of relabeling systems or the efficiency issues of such implementations. We just focus on
the expressiveness of relabeling systems for distributed algorithms from a theoretical point of
view.

The rest of this chapter is organized as follows:

• In Section 3.2, we first give an intuitive definition of relabeling systems.

• In Section 3.3, we give an encoding of the broadcast and convergecast techniques using
graph relabeling systems. These two techniques are the basis of all the other algorithms
given in this chapter.

3.2. Model and notations 89

• In Section 3.4, we show how to encode the classical layered BFS tree algorithm using
relabeling systems. We also give a general method to encode distributed algorithms for
computing global functions having particular properties (commutativity and associa-
tivity). These two applications illustrate how to encode distributed algorithms based
on the more general technique of “Propagation of Information with Feedback” (PIF for
short) [Seg83].

• In Section 3.5, we use a combination of our basic traversal algorithms in order to derive
the graph relabeling system encoding the classical Prim’s distributed algorithm for com-
puting a minimum spanning tree (MST for short) [Tel00, Pri57]. This example shows
how to combine the basic graph traversal techniques in order to obtain a simple and
formal encoding of more sophisticated algorithms.

3.2 Model and notations

In this section, we give a practical definition of relabeling systems and we explain the
conventions under which we will describe then later. A detailed description of the math-
ematical foundations of graph relabeling systems and local computations can be found
in [GMM04, LMS99, CM05].

A network is represented as a connected, undirected graph G = (V,E) where nodes denote
processors and edges denote direct communication links. Labels (or states) are attached to
nodes and edges. For every two nodes u, v ∈ V , we denote by dG(u, v) the unweighted distance
between u and v in G, i.e., the number of hops from u to v. For every integer � � 0, and for
every node v ∈ V , the ball BG(v, �) of center v and radius � is a subgraph of G, where the
nodes of BG(v, �) are defined by the set V (BG(v, �)) = {u ∈ V | dG(u, v) � �} and the edges of
BG(v, �) are defined by the set E(BG(v, �)) = {(u,w) ∈ E | dG(v, u) � �, d(v,w) � �}. When
the graph G is clear from the context, the ball of center v and radius � is denoted by B(v, �).
We also write u ∈ B(v, �) to denote a node u of the ball B(v, �).

Throughout the chapter we will consider graphs where nodes and edges are labeled with
labels from a set L. A graph labeled over L is denoted by (G,λ), where G is the graph and
λ : V ∪ E → L is the labeling function.

Intuitively, a distributed algorithm can be encoded by means of local relabeling rules which
modify the labels of nodes and edges. The rules satisfy the following constraints, that arise
naturally when describing distributed computations with decentralized control:

(C1) they do not change the underlying graph but only the labeling of its components (node
and/or edge), the final labeling being the result of the computation,

(C2) they are local, that is, each relabeling step changes only a connected subgraph of a fixed
size in the underlying graph,

90 Chapter 3. Distributed Algorithms by Relabeling Systems

(C3) they are locally generated, that is, the applicability of a relabeling rule only depends on
the local context of the relabeled subgraph.

More formally, a relabeling system is a triple R = (L,I,P) where:

• L = Lv ∪Le: where Lv is a finite set of node labels, and Le is a finite set of edge labels,

• I ⊆ L: a finite set of initial labels verifying some properties,

• P: a finite set of relabeling rules.

For each relabeling rule, we consider a generic node v0 and the corresponding generic
ball B(v0, �) of center v0 and radius � for some integer � � 0. Within these conventions, a
relabeling rule R ∈ P is given by:

1. a precondition on the labels of the nodes and edges of B(v0, �),

2. a relabeling of the nodes and edges of B(v0, �).

Since a relabeling rule R is entirely defined by the precondition and the relabeling on the
generic ball B(v0, �), R is called �-local. A relabeling system R = (L,I,P) is called �-local, if
for every relabeling rule R ∈ P there exists an integer �′ � � such that R is �′-local.

Let us consider a relabeling rule R ∈ P and a generic ball B(v0, �). Let v be a node of
the generic ball B(v0, �). We denote by λ(v) the label of v in the precondition, and by λ′(v)
the label of v in the relabeling (the new label of v). The label of a node can be composed of
c components (with c a given integer). In this case, we denote by Lv =

(
L1 × L2 × ... × Lc

)
the set of labels where Li (1 � i � c) is the set of possible values of the ith component. We
denote by λ(v).Li the value of the ith component of λ(v). We use the same notations for edge
labels. For instance, λ(v0, v) denotes the labels of the edge e = (v0, v) in the precondition and
λ′(v0, v) denotes its label in the relabeling. The precondition and the relabeling are encoded
as logic formulas. We use the logic symbols ∧, ∨, ∃, ∃! and ∀ to denote respectively the logic
operators “and”, “or”, “there exist”, “there exists a unique” and “for all”. In the case of a
weighted graph, if e = (u, v) is an edge then we denote by W(u, v) the weight of e.

A relabeling step corresponds to an application of a relabeling rule. An application of a
relabeling rule R consists in:

1. finding a ball in the graph G where the precondition of rule R is verified, i.e., finding
an occurrence of rule R in the graph G,

2. applying the relabeling corresponding to rule R to the ball.

Local computations can then be defined by the computations corresponding to the re-
labeling steps. A sequential view of local computations consists in applying the relabeling
rules sequentially, i.e., a relabeling step at once. In opposite, since many relabeling rules can

3.2. Model and notations 91

be applied in parallel if the corresponding balls do not overlap, a distributed view of local
computations consists in applying some rules in parallel on a non-overlapping set of balls.

An execution of a distributed algorithm in our formalism corresponds to a sequence of
relabeling steps.

The three basic local computation models

For the special case of 1-local relabeling systems, one can find three particular types of local
computation models:

1. The Closed Star (CS) model : in this model, the labels attached to the nodes and the
edges of a star are allowed to be relabeled according to their previous values.

In particular, if Pred(v) (resp. Pred(u, v)) denotes a predicate using the label of node
u (resp. edge (u, v)), then the general shape of a relabeling rule in the CS model is as
follows:

Rcs : Precondition :

– λ(v0) = X

– ∀v ∈ B(v0, 1), λ(v) = Yv

– ∀v ∈ B(v0, 1), λ(v0, v) = zv

Relabeling :

– λ′(v0) := X′

– ∀v ∈ B(v0, 1) (Pred(v) =⇒ λ′(v) := Y ′
v)

– ∀v ∈ B(v0, 1) (Pred(v0, v) =⇒ λ′(v0, v) := z′v)

Y ′
v4

Y ′
v3

z′
3

X′z′
4

z′
2

Y ′
v2

z′
1z′

5
Y ′

v5

Y ′
v1

Yv3
z3

Yv4

z4
X

z2

Yv2
z1

z5
Yv5

Yv1

2. The Open Star (OS) model : in this model, only the labels attached to the center and
the edges of a star are allowed to be relabeled according to the previous values of the
labels of the star.

In particular, if Pred(u, v) denotes a predicate using the label of an edge (u, v), then
the general shape of a relabeling rule in the OS model is as follows:

Re : Precondition :

– λ(v0) = X

– ∀v ∈ B(v0, 1), λ(v) = Yv

– ∀v ∈ B(v0, 1), λ(v0, v) = zv

Relabeling :

– λ′(v0) := X′

– ∀v ∈ B(v0, 1) (Pred(v0, v) =⇒ λ′(v0, v) := z′v)

z2

Yv5 z5

z1

Yv1

Yv2

Yv3

z3

Xz4

Yv4 Yv4 Yv3

z′
3

X′z′
4

z′
2

Yv2
z′
1z′

5
Yv5

Yv1

3. The Edge model : in this model, only the labels attached to an edge are allowed to be
relabeled. The general shape of a relabeling rule in the edge local computation model
can be written as follows:

92 Chapter 3. Distributed Algorithms by Relabeling Systems

Ros : Precondition :

– λ(v0) = X

– λ(v) = Y

– λ(v0, v) = z

Relabeling :

– λ′(v0) = X′

– λ′(v) = Y ′

– λ′(v0, v) = z′

z

X′

z′

Y ′

X

Y

The previous basic local computation models are widely studied. In particular, many
works are devoted to study and to compare their computation power. For instance, it is clear
that a relabeling system in the OS model trivially holds for the CS model, whereas it was
proved that the CS model is strictly more powerful than the OS model. In this work we are
not interested in the computation power of relabeling systems. Our goal is to show how to use
them in order to design formal and unified distributed algorithms. Therefore, we choose to
use the CS model as the default model for all our relabeling systems. However, it is important
to remark that all the techniques presented in this chapter can be adapted in less powerful
local computation models.

Remark 3.2.1 The three basic local computation models can be implemented in practical
distributed systems, i.e., message passing/mobile agents. The idea is to run many rounds
where a set of disjoint stars (or edges) are distributively elected in each round. This set
defines the set of regions where a relabeling can be applied. As discussed before, we are not
interested in the implementation issues in this chapter. More details are given in Chapter 5.

3.3 Basic building blocks

Many basic distributed algorithms can be described as a combination of many couples of
broadcast and convergecast [Tel00, Pel00, Lyn96]:

• The broadcast is usually used to deliver a given information, e.g., the value of a variable,
the beginning of a new computation step, to all the nodes of the network.

• The convergecast is in general used to collect some information into one single node.
This information is for example used to start some new computation step.

In the next two subsections, we give the relabeling systems corresponding to the broadcast
and convergecast operations. We do not care about the information to be broadcasted or
collected. We only give the intuitive method to encode these two basic techniques using
relabeling systems.

3.3. Basic building blocks 93

3.3.1 The broadcast technique

The broadcast operation can be defined as “the dissemination of some information from a
source node to all nodes in the network” [Pel00]. It can be encoded with the relabeling system
Rb = (Lb, Ib,Pb) defined by:

• Lb = E ∪ {0, 1} where E = {A, S, O}, i.e., a node can be labled A or S or O, and an edge
can be labeled 0 or 1.

• Ib = {A, O} ∪ {0}. Initially, one source node is labeled A, all other nodes are labeled O

and all the edges are labeled 0.

• Pb = {R1
b , R

2
b} where the two rules R1

b and R2
b are described below.

In the following rules, the label S encodes the fact that the broadcast process has reached
some node.

R1
b : Broadcast : initial step

Precondition :

– λ(v0).E = A

Relabeling :

– ∀v ∈ B(v0, 1)
(

λ(v).E = O =⇒
(
λ′(v) := S, λ′(v, v0) := 1

))

R2
b : Broadcast

Precondition :

– λ(v0).E = S

Relabeling :

– ∀v ∈ B(v0, 1)
(

λ(v).E = O =⇒
(
λ′(v) := S, λ′(v, v0) := 1

))

In practical, rule R1
b (resp. R2

b) can be applied as follows. If a star center v0 is labeled A

(resp. S) then for each node v in the star B(v0, 1), if v is labeled O then it becomes labeled
S and the edge (v0, v) becomes labeled 1.

As a basic application of the relabeling system Rb, once the broadcast is terminated, we
obtain a spanning tree by considering the edges with labels 1. Fig. 3.1 shows an example of
the broadcast algorithm using the relabeling system Rb. Notice that the rules in our example
are applied by many nodes belonging to disjoint stars.

94 Chapter 3. Distributed Algorithms by Relabeling Systems

: label S: label A : label O : label 1: label 0

Figure 3.1: An example of a broadcast using the relabeling system Rb.

3.3.2 The convergecast technique

The convergecast operation consists in “collecting information upwards on a rooted spanning
tree T” [Pel00]. The most fundamental example is to let a source node which broadcasted
some information, detect that the information has reached all the nodes. In order to detect
the “broadcast termination”, a convergecast process can be performed as follows. First, each
leaf of the tree T which is reached by the broadcast sends an acknowledgment to its parent.
Upon receipt of an acknowledgment from all its children, a node sends an acknowledgment to
its parent and so on. When the source node receives an acknowledgment from all its children
then the source node knows that the broadcast has reached all the nodes of the graph. This
example can be generalized when we want to collect some other information in some root
node.

We assume that we have a precomputed rooted spanning tree (recall that the relabeling
system Rb enables us to construct such a tree). Then, the convergecast operation can be
encoded using the relabeling system Rc = (Lc, Ic,Pc) defined by:

• Lc = E ∪{0, 1} where E = {A, S, F, T }, i.e., E is the set of node labels and {0, 1} is the set
of edge labels.

• Ic = {A, S} ∪ {0, 1}. Initially, the source node is labeled A, all other nodes are labeled
S, an edge belonging to the spanning tree is labeled 1 and all other edges are labeled 0.

• Pc = {R1
c , R

2
c}, where the two rules R1

c and R2
c are described below.

Notice that in the following rules, if a node becomes labeled F then it has finished the
convergecast. Once the source node A becomes labeled T then the convergecast process is
terminated.

R1
c : A node becomes a leaf

3.3. Basic building blocks 95

Precondition :

– λ(v0).E = S

– ∃! v1 ∈ B(v0, 1)
((

λ(v1).E = S ∨ λ(v1).E = A
)
∧ λ(v0, v1) = 1

)
Relabeling :

– λ′(v0).E := F

R2
c : Termination detection

Precondition :

– λ(v0).E = A

– ∀v ∈ B(v0, 1)
(
λ(v).E = F

)
Relabeling :

– λ′(v0).E := T

In Fig. 3.2, we show an example of the execution of the convergecast algorithm using the
relabeling system Rc.

����

��
��
��
��

: label A : label T : label S: label F : label 0 : label 1

Figure 3.2: An example of a convergecast using the relabeling system Rc.

96 Chapter 3. Distributed Algorithms by Relabeling Systems

3.4 The PIF technique: two basic applications

3.4.1 Layered BFS tree construction

Many distributed algorithms can be implemented by performing many phases of broadcast
and convergecast. Each phase corresponds to a propagation of some information with feed-
back (PIF). The broadcast can be viewed as the beginning of a new stage of the algorithm and
the convergecast corresponds to the termination of that stage. This technique is fundamental
when designing distributed algorithms because, in the distributed setting, there is no central-
ized entity which supervises in a global way the execution of an algorithm. In the following,
our main goal is to show how to encode by graph relabeling systems the PIF operation by
using the basic example of the Dijkstra’s layered BFS tree [CLR90, Tel00, Pel00] algorithm.

We recall that a BFS tree of a graph G with respect to a root node r is a spanning tree
such that for every node v, the path leading from the root r to v in the tree has the minimum
(unweighted) possible length. A classical algorithm to construct a BFS tree is to grow the
tree from the root in a layered fashion. The algorithm works in many phases. At each phase,
a new layer is explored and added to the tree. The main difficulty here is to start adding a
new layer only when the previous layer has been completely added.

The classical layered BFS tree construction can be encoded using the graph relabeling
system Rt = (Lt, It,Pt) defined by:

• Lt =
(
E × i

)
∪ {0, 1}, where E = {A, S, F, T, O} and i = {−1, 1},

• It = {(O,−1), (A,−1)} ∪ {0}. Initially, a pre-distinguished node (the root) is labeled
(A,−1) i.e., active. All other nodes are labeled (O,−1), i.e., outside the BFS tree. All
edges are labeled 0.

• Pt = {R1
t , R

2
t , R

3
t , R

4
t , R

5
t , R

6
t , R

7
t } where the seven rules are explained below.

In the remainder, by BFS tree, we mean the fragment which is being enlarged. If an edge
becomes labeled 1 then it is part of the tree. The A-labeled node is the initiator of a new
phase of the algorithm, i.e., the construction of a new layer. If a node is labeled (S, 1), then
the node must broadcast some information, i.e., the construction of a new layer. In contrast,
if a node is labeled (S,−1) then it waits for the acknowledgment of its children. If a node is
labeled F , then the node has finished the convergecast and it is waiting for an order from its
parent. Finally, if a node is labeled T , then the node has locally terminated, i.e., it can not
contribute any more in the tree construction.

Rule R1
t starts the computation of the BFS tree by adding the first layer. It also encodes

the beginning of a new phase of the algorithm. In fact, once the neighbors of the node with
labeled A become labeled F (or T), the A-node knows that a new layer was added and the
construction of a new layer can start. Thus, the labels of all F -neighbors are set to (S, 1) in
order to begin the broadcast up to the leaves.

3.4. The PIF technique 97

R1
t : Beginning the construction of a new layer

Precondition :

– λ(v0).E = A /*the root node*/

– ∀v ∈ B(v0, 1)
(
λ(v).E �= S

)
/*broadcast-convergecast finished*/

– ∃v1 ∈ B(v0, 1)
(
λ(v1).E �= T

)
/*the computation is not over*/

Relabeling :

– ∀v ∈ B(v0, 1)
(

λ(v).E �= T =⇒
(
λ′(v) := (S, 1) ∧ λ′(v0, v) := 1

))

If an (S, 1)-labeled node u is in the interior of the BFS tree, then it just informs its
children by setting their labels to (S, 1) and it becomes (S,−1) labeled (Rule R2

t). Otherwise,
if u is a leaf, then either u adds the neighbors with label O to the tree, and it becomes
F -labeled (Rule R3

t), or there are no new nodes to add and u becomes T -labeled, i.e.,
terminated state (Rule R4

t).

R2
t : Broadcast

Precondition :

– λ(v0) = (S, 1) /*broadcast in progress*/

– ∃v1 ∈ B(v0, 1)
(
λ(v0, v1) = 1 ∧ λ(v1).E = F

)
/*children are not informed*/

Relabeling :

– λ′(v0) := (S,−1)

– ∀v ∈ B(v0, 1)
((

λ(v).E = F ∧ λ(v0, v) = 1
)

=⇒ λ′(v) := (S, 1)
)

R3
t : Construction of the next layer

Precondition :

– λ(v0) = (S, 1)

– ∃v1 ∈ B(v0, 1)
(
λ(v1).E = O

)
/*some neighbors are not in the tree*/

Relabeling :

– λ′(v0) := (F,−1)

– ∀v ∈ B(v0, 1)
(

λ(v).E := O =⇒
(
λ(v) := (F,−1) ∧ λ′(v0, v) := 1

))

98 Chapter 3. Distributed Algorithms by Relabeling Systems

R4
t : No nodes to add to the next layer

Precondition :

– λ(v0) = (S, 1)

– ∀v ∈ B(v0, 1)
(
λ(v).E �= O

)
/*all neighbors are in the tree*/

– ∃! v1 ∈ B(v0, 1)
(
λ(v0, v1) = 1

)
/*v0 is a leaf*/

Relabeling :

– λ′(v0) := (T,−1)

After the broadcast step in Rule R2
t , a node u which becomes (S,−1)-labeled waits for

the acknowledgment of its children. When these children become F -labeled, then u knows
that a new layer has been added by the leaves of the subtree rooted at it. Thus, it becomes
(F,−1)-labeled in order to inform its parent (Rule R5

t). Note that if all the children of u

become T -labeled, then u knows that no new nodes can be added in the subtree rooted at it.
Thus, it becomes T -labeled (Rule R6

t).

R5
t : Convergecast: waiting for the next broadcast

Precondition :

– λ(v0) = (S,−1)

– ∃! v1 ∈ B(v0, 1)
((

λ(v1).E = S ∨ λ(v1).E = A
)
∧ λ(v0, v1) = 1

)
/*all children have received an acknowledgment*/

– ∃v2 ∈ B(v0, 1)
(
λ(v2).E = F ∧ λ(v0, v2) = 1

)
/*some children have not yet terminated the algorithm*/

Relabeling :

– λ′(v0) := (F,−1)

R6
t : Convergecast: the tree construction is locally finished

Precondition :

– λ(v0) = (S,−1)

– ∃! v1 ∈ B(v0, 1)
((

λ(v1).E = S ∨ λ(v1).E = A
)
∧ λ(v0, v1) = 1

)
– ∀v ∈ B(v0, 1)

((
v �= v1 ∧ λ(v0, v) = 1

)
=⇒ λ(v).E = T

)
Relabeling :

– λ′(v0) := (T,−1)

3.4. The PIF technique 99

The construction of the BFS tree is terminated when all the neighbors of the A-labeled
node become T -labeled. In this case, the A-labeled node becomes T -labeled (Rule R7

t).

R7
t : Termination detection

Precondition :

– λ(v0).E = A

– ∀v ∈ B(v0, 1)
(
λ(v).E = T

)
Relabeling :

– λ′(v0).E = T

Remark 3.4.1 Note that only the A-labeled node detects the global termination of the algo-
rithm. By adding a new broadcast rule, we are able to let all nodes detect the global termination
of the BFS tree construction.

3.4.2 Global function computation

In many distributed algorithms, the convergecast and the broadcast are used in order to
compute some functions of the graph. Suppose for instance that we want a source node to
compute a global function f(Xv1 ,Xv2 , ...,Xvn) where Xv is an input stored in each node v.
Suppose that f verifies the following properties (we adopt the same notations as in [Pel00]
page 36) :

• f is well-defined for any subset of the inputs.

• f is associative and commutative.

For simplicity, let us assume that we have a precomputed spanning tree (obtained for ex-
ample by using the relabeling system Rt). Such a function f , also called semi-group function,
can be computed in a distributed manner by performing a convergecast process using the
precomputed tree.

In fact, f(Xv1 ,Xv2 , ...,Xvn) can be computed using the relabeling system Rf = (Lf , If ,Pf)

defined by:

• Lf =
(
E × X × Y

)
∪ {0, 1}, where E = {S, F, T }, X is the set of the possible input values

of function f , and Y is a set of intermediate partial values of function f ,

• If = {S} ∪ {0, 1}. Initially, all the nodes are labeled S. An edge with label 1 is part of
the precomputed spanning tree. Edges with label 0 are not in the tree.

• Pf = {R1
f , R2

f} where the two rules R1
f and R2

f are described below.

100 Chapter 3. Distributed Algorithms by Relabeling Systems

By “local value of f” in rule R1
f , we mean the value of f computed on the subtree Tv0

rooted at node v0. The variable Y1 in rule R1
f contains the value of f applied to all the entries

Xvi with vi ∈ Tv0 and vi �= v0. The local value of f computed by v0 enables the parent u

of v0 to compute its own local value of f . Each time a node applies Rule R1
f , it becomes

F -labeled which means that it has finished to compute the local value of f . At the end of the
convergecast process, it remains only one node with label S. Thus, this node applies rule R2

f

and it obtain the global value f(Xv1 ,Xv2 , ...,Xvn).

R1
f : Convergecast: computation of the local value of f

Precondition :

– λ(v0).E = S

– ∃! v1 ∈ B(v0, 1)
(
λ(v1).E = S ∧ λ(v0, v1) = 1

)
Relabeling :

– Y1 := f
(⋃

vi∈B(v0,1)(λ(vi).E=F∧λ(v0,vi)=1) λ(vi).Y
)
.

– λ′(v0).E := F

– λ′(v0).Y := f(λ(v0).X , Y1)

R2
f : Convergecast: global computation of f and termination detection

Precondition :

– λ(v0).E = S

– ∀v ∈ B(v0, 1) (λ(v).E = F)
Relabeling :

– Y1 := f
(⋃

vi∈B(v0,1)(λ(v0,vi)=1) λ(vi).Y
)
.

– λ′(v0).E := T

– λ′(v0).Y := f(λ(v0).X , Y1)

Remark 3.4.2 Note that the convergecast process used in rule R2
f does not end at a pre-

distinguished node but at some node which is elected at random depending on the algorithm
execution.

Remark 3.4.3 Using the two generic rules R1
f and R2

f , we can encode in a formal way
some classical distributed algorithms. For instance, in order to compute the maximum of
some values stored by the network nodes, we take f := max; for the sum over the node
inputs, we take f := +. This technique can also be used to design distributed algorithms for
computing some logical functions. For instance, let Pred(v) some predicate using some local

3.5. Distributed minimum spanning trees 101

variables of node v, and suppose that we want to design a distributed algorithm to decides
whether the formula {∃v ∈ V | Pred(v)} is true or false (i.e., is there some node v such that
Pred(v) = true). This can be done by defining for each node v the variable Xv to be 1 if
Pred(v) = true and 0 otherwise, and by taking f to be the logical ∨ (or) operator. Similarly,
the formula {∃v ∈ V | Pred(v)} can be evaluated by taking f to be the logical ∧ (and) operator.
Now, by combining with the PIF technique, we can encode more sophisticated functions.

3.5 Distributed minimum spanning tree: Prim’s algorithm

3.5.1 Preliminaries

The goal of this section is to show that by combining some basic relabeling systems, we can
design more sophisticated algorithms in a detailed and comprehensive way. We choose the
minimum spanning tree in order to illustrate our approach. In fact, the distributed solution
of this problem uses a careful and non trivial combination of the basic techniques described
in the previous sections.

Recall that given a weighted graph G, a minimum spanning tree of G (MST for short) is
a spanning tree T such that the sum of the weights of the edges of T is the minimum over all
possible spanning trees of G. The problem has been heavily studied and many features of the
MST problem, such as the distributed computability of such a tree or the time complexity for
constructing it, were studied under many assumptions in past works. In this work we only
want to use relabeling systems in order to design a distributed MST algorithm. In particular,
we assume that the edge weights are unique, real and positive. Under this assumption, it is
well known that there exists a unique minimum spanning tree of G (see [CLR90, Tel00, Pel00]
and references there).

One of the most basic algorithms for computing a MST is Prim’s algorithm [Pri57, Tel00]
(see Fig. 3.3). Starting from one node, Prim’s algorithm grows a fragment of the MST by
adding at each phase the minimum outgoing edge (MOE for short) to this fragment.

Input : a weighted graph G = (V, E).

Step 1 : Initially, set ET (a set of edges) empty.
Set VT (a set of nodes) empty.

Step 2 : Select an arbitrary node in V , and add it to VT .
Step 3 : Find the lowest weight edge e = (u, v) such that

u ∈ VT but v /∈ VT . Add v to VT , and e to ET .
Step 4 : Repeat Step 3 until VT equals V .

Output : A minimum spanning tree T = (V, ET).

Figure 3.3: Prim’s Algorithm

The classical distributed implementation of this algorithm works in many phases where

102 Chapter 3. Distributed Algorithms by Relabeling Systems

each phase can be decomposed in two stages. In the first stage, the nodes in the fragment
cooperate to compute the weight of the MOE. This is performed by a convergecast using the
constructed fragment. In the second stage, the MOE is added by broadcasting the weight of
the MOE to all nodes in the fragment. When learning about the weight of the MOE, a node
adds the new edge to the fragment if the MOE is incident to it.

The main difficulty here is to combine many broadcast and convergecast operations (PIF)
with the MOE computation (global function). By combining Rt and Rf=min, Prim’s algo-
rithm can be encoded by the graph relabeling system Rm=(Lm, Im,Pm) defined by:

• Lm=
(
E × wsubtree × wlocal × i

)
∪ {0, 1} where E = {S, F, T, O}, i = {−1, 1}, and wsubtree and

wlocal are subsets of ∈ R2
+ ∪⊥,

• Im = {(O,⊥,⊥,−1), (S,⊥,⊥,−1)} ∪ {0}. Initially, there is a distinguished node with
label (S,⊥,⊥,−1) which is the first node in the fragment. All other nodes are labeled
(O,⊥,⊥,−1). All edges are labeled 0.

• Pm={R1
m, R2

m, R3
m, R4

m, R5
m} where the five rules are described below.

If the value of some label is equal to ⊥, then it means that this value has not been
computed yet. If an edge becomes labeled 1 then it is part of the MST.

Remark 3.5.1 Similarly to the relabeling system Rt, if the value of the attribute i is equal
to 1 (resp. −1), then an S-labeled node knows that it is in the broadcast (resp. convergecast)
stage.

3.5.2 Computing the weight of the MOE

The nodes of the fragment must cooperate in order to compute the MOE, i.e., convergecast
from the leaves up to an elected node (rule R1

m). Each node must first compute the attribute
wsubtree which is the weight of the minimum outgoing edge of the subtree rooted at it. Note
that, during the convergecast process, each node also stores the attribute wlocal which is the
weight of its local minimum outgoing edge. In the broadcast stage, the wlocal enables a node
to know whether its local minimum outgoing edges corresponds to the global one or not (recall
that we have assumed that edge weights are unique).

R1
m : Convergecast: computing the minimum outgoing edge

Precondition :

– λ(v0) = (S,⊥,⊥,−1) /*convergecast stage*/

– ∀v ∈ B(v0, 1)
((

λ(v).E = S ∧ λ(v0, v) = 1
)

=⇒ λ(v).i = −1
)

– ∃! v1 ∈ B(v0, 1)
(
λ(v1).E = S ∧ λ(v0, v1) = 1

)
/*all children have received an acknowledgment */

3.5. Distributed minimum spanning trees 103

Relabeling :

– w := min
{{

W(v0, v) | v ∈ B(v0, 1) ∧ λ(v).E = O
}
∪
{

+ ∞
}}

/*local MOE*/

– wmin := min
{{

λ(v).wsubtree | v ∈ B(v0, 1) ∧ (λ(v0, v) = 1) ∧ (λ(v).E = F)
}
∪
{
w
}}

/*the MOE of the subtree rooted at v0*/

– (wmin = +∞) =⇒ λ′(v0).E := T /*local termination*/

– (wmin �= +∞) =⇒ λ′(v0) := (F, wmin, w,−1)

At the end of the convergecast, the weight wmin of the MOE is computed at some elected
node (rule R2

m). This node sets its label to (S,wmin, w, 1) in order to begin the broadcast
phase. (Note that rule R2

m also enables to initialize the MST construction).

R2
m : End of the convergecast: election of a node

Precondition :

– λ(v0) = (S,⊥,⊥,−1)

– ∀v ∈ B(v0, 1)
(
λ(v0, v) = 1 =⇒ λ(v).E �= S

)
Relabeling :

– w := min
{{

W(v0, v) | v ∈ B(v0, 1) ∧ (λ(v).E = O)
}
∪
{

+ ∞
}}

– wmin := min
{{

λ(v).wsubtree | v ∈ B(v0, 1) ∧ (λ(v0, v) = 1) ∧ (λ(v).E = F)
}
∪
{
w
}}

– (wmin = +∞) =⇒ λ′(v0).E := T

– (wmin �= +∞) =⇒ λ′(v0) := (S, wmin, w, 1)

Remark 3.5.2 Rules R1
m and R2

m also allow to detect the termination of the MST construc-
tion. In fact, if the weight of the MOE is equal to +∞ then there is no node with label O at
the frontier of the fragment and thus all the nodes of the graph are in the fragment.

3.5.3 Finding and adding the MOE

At the end of the convergecast process (rule R2
m), there is an elected node with label

(S,w,w′, 1) that begins the broadcast (attribute i is equal to 1). Thus, a node u with label
(S,w,w′, 1) first compares w and w′:

• If w=w′ then the MOE is incident to u. Hence, the minimum edge is added and u sets
its attribute i to −1 in order to start a new stage (rule R4

m).

• If w �= w′ then there must exist a children v1 with label (F,w,w′′,−1) from which u has
inherited its w value and the MOE must be in the subtree rooted at that children. Thus,
the F -labeled children v1 becomes (S,w,w′′, 1)-labeled (rule R3

m). The other F -labeled

104 Chapter 3. Distributed Algorithms by Relabeling Systems

children become (S,⊥,⊥, 1)-labeled in order re-initialize the computation of a new MOE
(rule R5

m).

R3
m : Broadcasting the weight of the MOE

Precondition :

– λ(v0) = (S, w, w′, 1)

– w �= w′ ∧ (w �= +∞) ∧ (w �= ⊥)

– ∃! v1 ∈ B(v0, 1)
(
λ(v0, v1) = 1 ∧ (λ(v1).wsubtree = w)

)
/*weights are unique*/

Relabeling :

– λ′(v0) := (S,⊥,⊥,−1)

– λ′(v1).E := S, λ′(v1).i := 1

– ∀v ∈ B(v0, 1)
((

v �= v1 ∧ (λ(v0, v) = 1) ∧ (λ(v).E = F)
)

=⇒ λ′(v) := (S,⊥,⊥, 1)
)

R4
m : Adding the MOE

Precondition :

– λ(v0) = (S, w, w, 1)

– (w �= +∞) ∧ (w �= ⊥)

– ∃! v1 ∈ B(v0, 1)
(
(λ(v0, v1) = 1) ∧ (λ(v1).E = O) ∧ (W(v0, v1) = w)

)
Relabeling :

– λ′(v0) := (S,⊥,⊥,−1)

– ∀v ∈ B(v0, 1)
((

(v �= v1) ∧ (λ(v0, v) = 1) ∧ (λ(v).E = F)
)

=⇒ λ′(v) := (S,⊥,⊥, 1)
)

– λ′(v1) := (S,⊥,⊥,−1)

– λ′(v0, v1) := 1

R5
m : Reinitialization

Precondition :

– λ(v0) = (S,⊥,⊥, 1) /*the MOE is not in the subtree rooted at v0*/

Relabeling :

– λ′(v0) = (S,⊥,⊥,−1)

– ∀v ∈ B(v0, 1)
((

(λ(v).E = F) ∧ (λ(v0, v) = 1)
)

=⇒ λ′(v) := (S,⊥,⊥, 1)
)

3.6. Future works 105

3.6 Future works

In this chapter, we gave a modular methodology that enables to encode a large class of
distributed algorithms by mean of relabeling systems. The main strength of our approach is
the expressiveness of the algorithms we obtain and their high level nature. However, some
other features concerning the proof techniques and the implementation issues remains to be
studied in future works:

1. In order to prove the correctness of an algorithm encoded by a relabeling system, the
main technique is to exhibit (i) some invariant properties associated with the relabeling
system, i.e., some properties of the graph labeling which are satisfied by the initial
labeling and preserved after a relabeling step and (ii) some properties of irreducible
graphs [MMS02], i.e., graph that can not be relabeled any more. The formal correctness
of the algorithms given in this chapter can be proved using the previous technique.
Nevertheless, since our relabeling systems are clearly expressed as a combination of
some basic procedures, we think that it would be more interesting to use the correctness
proofs of the basic procedures as building blocks in order to get a global proof. In order
to achieve this goal, it seems necessary to provide a more sophisticated formal scheme
that allows to combine some basic relabeling systems automatically. In our future work,
we plan to provide specific logical tools which, given a distributed algorithm expressed
in term of some basic procedures, allows to define the corresponding relabeling system
automatically. This will also enable us to provide a formal proof automatically by only
using the correctness proofs of the basic procedures.

2. In this work, we have assumed the CS local computation model. Nevertheless, our
relabeling systems could have been encoded in less powerful models. Therefore, our
work can be viewed as a first step towards a more general methodology which allows to
encode a distributed algorithm in any local computation model. Once again, it would
be very interesting to provide high level logical tools allowing to combine the basic
techniques automatically. Then, by only encoding the basic techniques in different
local computation models, we will be able to encode more sophisticated algorithms
automatically in the corresponding local computation models. In particular, it would
be very nice to apply our approach in the local computation model studied in [CM05].
In fact, that model provides a rigorous and theoretical formalization of the distributed
messages passing model. The resulting framework would be very precious in order to
design and to prove practical message passing algorithms in a very formal way.

106 Chapter 3. Distributed Algorithms by Relabeling Systems

Part III

A Mobile Agents Approach in

Distributed Computing: the

Handshake Problem

107

Chapter 4

Efficient Distributed Handshake

using Mobile Agents

Abstract.

There is a handshake between two nodes in a network, if the two nodes are communicating
with one another in an exclusive mode. In this chapter, we give a mobile agent algorithm
that allows to decide whether two nodes realize a handshake. Our algorithm can be used in
order to solve some other classical distributed problems, e.g., local computations, maximal
matching and edge coloring. We give a performance analysis of our algorithm and we compute
the optimal number of agents maximizing the mean number of simultaneous handshakes.

In addition, we show how to emulate our mobile agent algorithm in the classical message
passing model while maintaining the same performances. Comparing with previous message
passing algorithms, we obtain a larger number of handshakes, which shows that using mobile
agents can provide novel ideas to efficiently solve some well studied problems in the message
passing model.

Résumé.

On dit que deux sommets dans un résau réalisent une “poignée de main”, si les deux som-
mets communiquent l’un avec l’autre de façon exclusive. Dans ce chapitre, nous proposons
un algorithme distribué utilisant des agents mobiles, qui permet de décider si deux sommets
réalisent une “poignée de main”. Notre algorithme peut être utilisé pour résoudre d’autres
problèmes distribués classiques, tels que, l’implémentation de règles de réétiquetages, la col-
oration d’arêtes, et le calcul d’ensemble maximal d’arêtes indépendantes. Nous donnons une
étude théorique de la performance de notre algorithme et nous calculons le nombre optimal
d’agents qui optimise le nombre moyen de “poignée de main” simultanées.

En outre, nous montrons comment émuler notre algorithme dans le modèle avec messages,
tout en gardant les mêmes performances. En comparaison avec les algorithmes existants,
notre algorithme est plus efficace. Ceci montre que l’utilisation d’agents mobiles peut aider
à trouver des idées nouvelles pour résoudre de façon efficace des problèmes bien étudiés dans
les modèles avec messages.

109

110 Chapter 4. Efficient Distributed Handshake

4.1 Introduction

4.1.1 Goals and Motivations

In this chapter, we present new efficient handshake algorithms in the distributed model of
computation. Generally speaking, a handshake algorithm enables the establishment of safe
communications between two nodes, which guarantees that both the two nodes are being
communicating with one another in exclusive mode. Distributed solutions of this problem are
known in networks supporting message passing [MSZ00, MSZ02, MSZ03, DHSZ06]. What
happens if we consider a distributed system based on mobile agents? In particular, we focus
on the following question:

Q4 :
can we solve the handshake problem using mobile agents
while maintaining good performances?

More generally, the growing demand for distributed applications, makes a case for the
comparative study of the performances of systems based on mobile agents and systems based
on more classical network communications. Many works in the last few years were intended
to understand the computational power of mobile agents and to solve new specific problems
raised by their use. In this work, we are mainly interested in the performance aspects of
mobile agents. More precisely, we show how to efficiently solve the handshake problem by
using mobile agents. Surprisingly, our mobile agent approach also leads to improved solutions
and new ideas in the more classical message passing setting. From a general point of view,
this work can be viewed as a part of a larger study concerning the complexity power of mobile
agents and the benefit they may provide.

4.1.2 Models and notations

We model a network by a connected graph G = (V,E) where V is the set of nodes and E the
set of edges. We denote by Δ (resp. δ) the maximum (resp. minimum) degree of G and by
n = |V | (resp. m = |E|) the number of nodes (resp. edges). For each node v ∈ V , we denote
by dv the degree of v and by N (v) the neighbors of v, i.e, N (v) = {u ∈ V | dG(u, v) = 1}
where dG(u, v) is the distance between u and v in G.

In the mobile agent model, an agent (or robot) is an autonomous entity of computation
able to move from a node to another and equipped with an internal memory. We assume the
following:

• each node v is equipped with a white-board WB(v), which can be viewed as a memory
place where agents can write and read information in a mutual exclusion manner.

• the outgoing edges around each node are labeled, that is each node has a numbering of
the ports connecting it with its neighbors.

4.1. Introduction 111

• each agent knows the port from which it is arrived in a given node.

• we only consider the synchronous case where agents have access to a global clock which
generates pulses.

• agents can read and write in a white-board in negligible time.

• it takes one time unit to an agent to move from a node to a neighboring one.

For the clarity of our algorithm, we use a local generic function Write(v) ∈ {true, false}
which can be applied by each agent at any node v. At a given pulse, if many agents apply
Write(v) in node v, then Write(v) returns true for only one agent and false for all others.
In this case, the agent for which Write(v) = true has instantaneously a read/write access
to WB(v), i.e., it has access to WB(v) before the other agents.

In the message passing model, a node is an autonomous entity of computation that can
communicate with its neighbors by sending and receiving messages. We assume that each
node performs computations in negligible time. In the synchronous model, we assume that all
nodes have access to a global clock that generates pulses. We assume that messages sent in a
given pulse reach their destination before the beginning of the next pulse. In the asynchronous
model, there is no global clock and a message delay is arbitrary but finite.

4.1.3 Problem Definition

One can think of several formulations of the handshake problem depending on the distributed
model. We have based our work on the following general definition: “a handshake algorithm is
a distributed procedure that enables a pair of adjacent nodes (u, v) to communicate exclusively
with one another at some time”. In other words, if a handshake occurs between nodes u and
v at some time, then u (resp. v) has the guarantee that v (resp. u) does not communicate
with any other neighbors.

In general, distributed algorithms solving the handshake problem work in infinitely many
rounds. At each round, some handshakes occur distributively between pairs of neighboring
nodes. Then, communications take place between nodes where a handshake occurs. In prac-
tice, there are new rounds as long as some communication between pairs of nodes is required.
The handshake problem can then be formulated more practically in terms of matching: “Given
a graph G, at each round, find a set of disjoint edges of E”. It is clear that the set of these
edges defines the nodes that can communicate with each other in an exclusive manner at each
round. The number of edges computed at each round is called the handshake number. The
handshake number is the ruling performance measure of a handshake algorithm. Our goal is
to design an algorithm providing the highest possible handshake number.

112 Chapter 4. Efficient Distributed Handshake

4.1.4 Related Works

All handshake algorithms in the literature use randomization and message passing. For
instance, in the asynchronous message passing model and in the algorithm presented
in [MSZ03, MSZ00, RS82], each node repeats forever the following three steps (i) choose
randomly a neighbor, (ii) send him 1, and (iii) send 0 to all other neighbors. Then, there is
a handshake if two neighboring nodes have sent 1 to each others, and a handshake between
two nodes occurs with a given probability. The authors in [MSZ03] studied many probabilis-
tic properties of the above algorithm for many graphs. In the general case, their handshake
number is Ω(m/Δ2). Very recently, the authors in [HMR+06] gave a new efficient handshake
algorithm and they prove that their algorithm is more efficient than the one of [MSZ03]. How-
ever, they assume a fully synchronous message passing model where nodes have access to a
continuous real-valued global clock, and communications take no time, i.e., if a message is sent
at time t ∈ R, then it arrives at time t. This assumption is the key point of the correctness
and the analysis of their algorithm. Therefore, the results in [HMR+06] are fundamentally
different from those in this chapter.

Independently of its theoretical interest, the handshake problem can be applied in many
settings. For instance, the authors in [DHSZ06] use the handshake algorithm of [MSZ03] in
order to efficiently solve the problem of broadcasting information under a restricted model of
communication. In [MSZ02], the authors apply the handshake problem in order to practically
implement the basic edge local computation model described in Section 3.2 (see also [LMS99,
CM05, KY96, Maz97, Ang80, AAER05, Cha05, CM04, CMZ06, GM02] for more results about
related local computations models).

The handshake problem is also tightly related to the fundamental problem of breaking
the symmetry in distributed networks where nodes have to make decisions depending only on
their local views. Typical problems where breaking the symmetry is essential are finding a
maximal independent set (MIS), a coloring and a maximal matching. For instance, a maximal
matching (see, e.g., [HKP98] for a definition) can be computed using handshakes by deleting
the edges computed at each round, and by iterating until the graph is empty. The same idea
can be applied for distributed edge coloring by giving a legal color to the edges computed at
each round independently and in parallel.

4.1.5 Main results

In this chapter, we give an efficient algorithm for the handshake problem in the mobile agent
model. Our algorithm is based on random walks of the agents. We give a probabilistic analysis
of the performance of our algorithm. In particular, we compute the optimal (with respect to
our method) number of agents that allows a maximal handshake number in expectation. We
show that our algorithm is efficient for general graphs, and provides Ω(mδ/Δ2) handshakes
per round. It also becomes of special interest for many graph classes. For instance, for almost

4.2. Handshake using mobile agents 113

1: choose randomly 0 or 1 with probability 1/2;
2: if 0 then
3: do not move.
4: else
5: choose at random (equally likely) an outgoing edge e = (v, v′);
6: move to v′.
7: end if

Figure 4.1: Algorithm Random Step: code for an agent at node v

Δ-regular graphs, i.e., graphs such that δ = Θ(Δ) (which includes bounded degree graphs),
the handshake number is drastically reduced to Ω(n) which is optimal up to a constant factor.

We also show how we can turn back to the asynchronous message passing model and
emulate our algorithm to this model while maintaining the same performances. The technique
is based on simulating agents using tokens. From a practical point of view, we obtain new
improved message passing handshake algorithms. From a more general point of view, since the
simulation technique is independent of the handshake problem, our results show that solving
a problem using mobile agents can provide new ideas to design new efficient algorithms in
other distributed models.

The rest of this chapter is organized as follows. In Section 4.2 we give our main
Basic Agent Handshake algorithm and we analyze its performance. In Section 4.3 we
show how to transform our algorithm in the message passing model. In Section 4.4 we discuss
how to initialize the agents efficiently.

4.2 Handshake using mobile agents

In this section, we consider the mobile agent model and we assume that the white-board of
each node v contains a single boolean variable b. We write WB(v) = true when b = true and
WB(v) = false when b = false. We assume that for every v ∈ V , WB(v) is initially equal to
false and that the network contains k agents. We do not make any assumptions concerning
the initial positions of agents.

At pulse 0, each agent begins to execute algorithm Basic Agent Handshake (see
Fig. 4.2). The algorithm consists of many rounds. At each round, agents in a node v first
try to make a handshake randomly on a given edge. Once the handshake trial is finished, the
agents in v move to an equally likely chosen neighboring node (see algorithm Random Step

Fig. 4.1). Then, a new round starts.

Remark 4.2.1 Note that in Fig. 4.2, t0 denotes the pulse at which a given round begins and
it is not used by the agents in order to make any computation.

Let us consider a round which begins at pulse t0 = 3t (with t � 0) and let us consider an

114 Chapter 4. Efficient Distributed Handshake

Line pulse The Algorithm

t0=3t

t0+1

t0+2

t0+2

1: while true do
2: if Write(v) then
3: WB(v) := true;
4: Choose at random (equally likely) an outgoing edge e = (v, u);
5: Move from v to u;
6: if Write(u) then
7: if WB(u) = false then
8: Handshake Success;
9: end if

10: end if
11: Move back from u to v;
12: WB(v) := false;
13: else
14: repeat
15: wait;
16: until WB(v) = false
17: end if
18: execute algorithm Random Step;
19: end while

Figure 4.2: Algorithm Basic Agent Handshake: code for an agent at node v

agent A at some node v. It may happen that many agents are in v at t0. Only one agent in
v is allowed to try to make a handshake. Hence, the agents first “fight” in order to mark the
white-board of v. The agent which succeeds in marking WB(v) is chosen to try a handshake,
i.e., line 2 of the algorithm. If agent A is not chosen to make the handshake, then it just
waits (for two pulses) in v until the chosen agent comes back (line 15). Otherwise, agent A
moves to a neighboring node u (line 5). In this case, at pulse t0 + 1 agent A arrives at u, and
three cases arise:

1. WB(u) = true: node u was marked at pulse t0. Thus, there was an agent in u at pulse
t0, and the handshake fails.

2. WB(u) = false: there were no agents in u at pulse t0, and no other agents arrive in u

at pulse t0 + 1. Thus, Write(u) always returns true and the handshake succeeds.

3. WB(u) = false: there were no agents in u at pulse t0, and at least another agent arrives
in u at pulse t0 + 1. Thus, if Write(u) returns true then A succeeds the handshake.

Remark 4.2.2 It is important to note that once an agent in a node v executes line 14 of
algorithm Basic Agent Handshake, the white-board of v verifies WB(v) = true, i.e., there
is another agent for which Write(v) in line 2 returns true, and which instantaneously writes
true in WB(v).

4.2. Handshake using mobile agents 115

To summarize, when an agent is at some node v, we say that it succeeds a handshake, if it
can write firstly the white-board of v and secondly the white-board of some unmarked node
u ∈ N (v). In this case, we also say that a handshake is assigned to edge (u, v). It is clear
that our handshake algorithm is correct, that is at each round, the edges where a handshake
is assigned are disjoint.

4.2.1 The stationary regime

Let (Ai){i=1,··· ,k} denotes the set of all agents. For every integer pulse t � 0 and for every i ∈
{1, · · · , k}, let Ai(t) ∈ V denotes the position of agent Ai at pulse t � 0. Let PG(Ai(3t) = v)
denotes the probability that agent Ai is in node v at pulse 3t, i.e., the beginning of a round.

From the description of the algorithm, each round takes 3 time units. Thus, each 3 time
units, each agent makes a step of a random walk. A classical result from Markov chain
theory [Lov96] claims that there exists a unique stationary distribution for random walks
on graphs (under some additional assumptions of aperiodicity which is satisfied by line 1 of
algorithm Random Step). The stationary distribution is π the probability measure on G

defined by:

π(v) =
dv

2m
, ∀v ∈ V

In other words, if the starting point of a random walk is chosen according to π, then at each
time the position of the random walk is still π-distributed. We recall that whatever is the
distribution of the starting point, the random walk converges to the stationary distribution,
that is, for every i ∈ {1, · · · , k}, when t −→ +∞, PG(Ai(3t) = v) −→ π(v).

In addition, we assume that each agent aims a proper random generator, and the agents
execute algorithm Random Step independently. Hence, we use the following definition:

Definition 4.2.3 We say that the k agents are under the stationary regime, if for every
v ∈ V and for every pulse t, we have:

PG(Ai(3t) = v) =
dv

2m
= π(v)

and the positions of agents are independent: for any (vi)i∈{1,··· ,k} ∈ V k, we have:

PG

(
(Ai(3t))i∈{1,··· ,k} = (vi)i∈{1,··· ,k}

)
=

k∏
i=1

π(vi)

Let us consider a given fixed round and let us denote by Nv the number of agents in the
node v at the beginning of the round.

Remark 4.2.4 It is easy to check that under the stationary regime, the r.v. (Nv)v∈V has
a multinomial distribution that is, for any family of positive integers (jv)v∈V such that

116 Chapter 4. Efficient Distributed Handshake

∑
v∈V jv = k,

P
(
(Nv = jv)v∈V

)
=

k!∏
v∈V

jv!
·
∏
v∈V

π(v)jv

Notice also that the distribution of the (Nv)v∈V is preserved by a step of the random walks.

The handshake number depends on the graph G, on the number of agents k, on the round
and on the initial positions of agents. For the sake of analysis, we only assume the stationary
regime and we focus on the expected handshake number E(Hk(G)). We will see in Section 4.4
that assuming the stationary regime is more than of a theoretical interest.

4.2.2 General case analysis: a lower bound

Let us consider an edge (u, v) ∈ E, and let us denote by ω1 the event “an agent moves from
u to v in line 5” and by ω2 the event “no agent moves from N (v) \ {u} to v in line 5”. We
denote by p(u � v) = P(Nu � 1, Nv = 0, ω1, ω2) the probability that {Nu � 1}, {Nv = 0},
w1 and w2 arise altogether. Similarly, let pi(u � v) = P(Nu = i,Nv = 0, ω1, ω2) for any
i ∈ {1, · · · , k}.

Lemma 4.2.5 Under the stationary regime and at any round, the following holds:

1. For every edge (u, v) ∈ E and for every i ∈ {1, · · · , k}, we have:

pi(u � v) � 1
du

·
(

k

i

)
· π(u)i · (1 − π(u) − 2π(v))k−i

2. For every edge (u, v) ∈ E, we have:

p(u � v) � 1
du

·
(
(1 − 2π(v))k − (1 − π(u) − 2π(v))k

)
Proof By the definition of pi(u � v), we have:

pi(u � v) = P(ω2 | Nu = i,Nv = 0, ω1) · P(ω1 | Nu = i,Nv = 0) · P(Nu = i,Nv = 0) (4.1)

Using the definitions of Nu and Nv, one has:

P(Nu = i,Nv = 0) =
(

k

i

)
· π(u)i · (1 − π(u) − π(v))k−i (4.2)

Since in line 4 of algorithm Basic Agent Handshake an agent chooses equally likely a
node to move to, we have for any i ∈ {1, · · · , k}:

P(ω1 | Nu = i,Nv = 0) =
1
du

(4.3)

It remains to compute P(ω2 | Nu = i,Nv = 0, ω1). First of all, we note that P(ω2 | Nu =
i,Nv = 0, ω1) = P(ω2 | Nu = i,Nv = 0) because knowing Nu = i and Nv = 0, the two events
w1 and w2 are independent.

4.2. Handshake using mobile agents 117

Remark 4.2.6 the event w2 depends on whether or not there are some agents in the neigh-
borhood of v. Hence, w2 depends on the r.v. (Nw)w∈N (v)\{u}. On one hand, using the lemmas
given in Section 4.2.4, the r.v. (Nw)w∈N (v)\{u} (knowing Nu = i and Nv = 0) can be shown
to be a multinomial like r.v.. On the other hand, if Nw > 0 for some w ∈ N (v) \ {u}, an
agent moves to v with probability 1/dw independently of the value of Nw. Thus, we can obtain
an exact formula of P(ω2 | Nu = i,Nv = 0, ω1).

In the following, we just give a lower bound of P(ω2 | Nu = i,Nv = 0, ω1), by relaxing the
fact that there is only one agent that tries to make the handshake at a given node w.

In fact, assume the following hypothesis H: “in line 5, every agent in a node w ∈ N (v)\{u}
is allowed to move to a neighboring node independently of the other agents in w (in other
words, not only one agent in w is allowed to move but all of them)”. Denote by w′

2 the
event: “no agent in w ∈ N (v) \ {u} moves to u assuming H is true”. Then, it is clear
that P(w2 | Nu = i,Nv = 0) � P(w′

2 | Nu = i,Nv = 0). Now, it is easy to compute
P(w′

2 | Nu = i,Nv = 0). In fact, if we assume that H is true, then each agent in a node
w ∈ N (v) \ {u} moves to v with probability 1/dw. Thus, we get the following:

P(ω2 | Nu = i,Nv = 0, ω1) �

⎛⎝1 −
∑

w∈N (v)\{u}
π(i)(w) · 1

dw

⎞⎠k−i

where π(i)(w) is the probability that a fixed agent is in w ∈ N (v) \ {u} knowing that Nu = i

and Nv = 0. It is easy to check that π(i)(w) = π(w)
1−π(u)−π(v) .

Thus, we have:

P(ω2 | Nu = i,Nv = 0, ω1) �

⎛⎝1 − 1
1 − π(u) − π(v)

·
∑

w∈N (v)\{u}

dw

2m
· 1
dw

⎞⎠k−i

=
(

1 − 1
1 − π(u) − π(v)

· dv − 1
2m

)k−i

Note that dv−1
2m � dv

2m = π(v). Thus,

P(ω2 | Nu = i,Nv = 0, ω1) �
(

1 − π(u) − 2π(v)
1 − π(u) − π(v)

)k−i

(4.4)

Hence, the first part of the lemma holds by putting together (4.1), (4.2), (4.3) and (4.4).
The second part of the lemma is a consequence of the first part and can be checked using the
Newton’s formula.

Note that in line 2 of the algorithm, it does not matter for which agent the Write function
returns true. It only matters that exactly one agent is chosen to move. In addition, in line 6,
if there is exactly one agent in the corresponding node, then the Write function always
returns true for this agent. Thus, we get the following:

118 Chapter 4. Efficient Distributed Handshake

Fact 4.2.7 The handshake number verifies: E(Hk(G)) �
∑

(u,v)∈E

p(u � v) + p(v � u).

Using Fact 4.2.7 and Lemma 4.2.5, we obtain a general lower bound of the expected
handshake number per round, which depends on G and k. In particular, we obtain the
following:

Theorem 4.2.8 Let G(m) be a sequence of graphs such that G(m) has m edges and Δ/m → 0
when m → +∞. Then, there exists k = Θ(m/Δ) such that under the stationary regime
E(Hk(G(m))) = Ω(mδ/Δ2).

Proof For all v ∈ V , we have δ � dv � Δ and δ
2m � π(v) � Δ

2m . Hence, for all (u, v) ∈ E,
1 − π(u) − 2π(v) � 1 − 3Δ

2m . Thus, for i ∈ 1, k, we have:

pi(u � v) � 1
Δ

·
(

k

i

)(
δ

2m

)i

·
(

1 − 3Δ
2m

)k−i

Thus,

p(u � v) � 1
Δ

·
[(

1 − 3Δ − δ

2m

)k

−
(

1 − 3Δ
2m

)k
]

Hence, using Fact 4.2.7, we have:

E(Hk(G)) � 2m
Δ

[(
1 − 3Δ − δ

2m

)k

−
(

1 − 3Δ
2m

)k
]

Let f(k) be the function defined by f(k) = (E1)k−(E2)k where E1 = 1− 3Δ−δ
2m and E2 = 1− 3Δ

2m .
Hence, the optimal k which maximizes f(k) is obtained for:

kopt =
log

(
log E2

log E1

)
log

(
E1

E2

)

On the other hand, we have: f(k) = exp (k log(E2)) ·
(

exp
(

k · log
(

E1

E2

))
− 1

)
. Hence,

f(kopt) = exp (kopt log(E2)) ·
(

exp
(

log
(

log E2

log E1

))
− 1

)
= exp (kopt log(E2)) ·

(
log E2

log E1
− 1

)
In the rest of this poof, we suppose that Δ = o(m). Thus, we have:

log E1 ∼ −3Δ − δ

2m
, log E2 ∼ −3Δ

2m
, log

(
E1

E2

)
∼ δ

2m
and

log E2

log E1
∼ 3Δ

3Δ − δ

Hence,

kopt ∼ log
(

3Δ
3Δ − δ

)
· 2m

δ
and kopt log(E2) ∼ log

(
1 − δ

3Δ

)
· 3Δ

δ

4.2. Handshake using mobile agents 119

Using the fact that for any x such that 0 < x � 1/3, (log(1 − x))/x = Θ(1), we have

kopt = Θ(
m

Δ
) and f(kopt) = Θ(

δ

Δ
). Thus, E(Hkopt(G)) = Ω(

mδ

Δ2
).

Remark 4.2.9 We note that the performance of the algorithm is not very sensitive to the
value of k. For instance, if the value of k varies by a multiplicative constant close to 1, then
the handshake number is up to a constant factor the same.

The previous theorem has to be compared with the previous best known handshake number
which is Ω(m/Δ2) (in the asynchronous message passing model). Our lower bound becomes
of special interest for graphs having high minimum degree. For instance, if δ = Θ(Δ),
then E(Hk(G)) = Ω(n) for k = Θ(n) which is optimal up to a constant factor. In fact,
the maximal theoretical handshake number is n/2. Note also that for these graphs our
algorithm drastically improves the one presented in [MSZ03, MSZ00] by a factor Ω(Δ). In
particular, if δ = Θ(Δ) = Θ(nε) with ε ∈ (0, 1), we obtain Θ(n) handshakes against Ω(n1−ε)
in [MSZ03, MSZ00]. If ε = 1, i.e., almost complete graphs, we obtain Ω(n) handshakes against
Ω(1). In the next section, we give a different approach to the problem which provides exact
bounds for d-regular graphs.

4.2.3 Regular graph analysis: asymptotic tight bound

In this part, we consider a d-regular graph Gn = (Vn, En) where d is a fixed integer. For
every v ∈ Vn, we suppose given an ordering of the neighbors of v from 1 to d. Let us consider
a given fixed round. For every j ∈ {1, · · · , d}, let the r.v. Nv

j be the number of agents in
the j-th neighbor of v at the beginning of the given round. Let N (v) � v be the event:
“an agent moves from at least a node in N (v) to v in line 5”. Let Pn (N (v) � v,Nv = 0)
the probability that {N (v) � v} and {Nv = 0} in Gn. In the remainder, we will make the
following assumption:

Q =
(

n −→ +∞, k = k(n) −→ +∞, k(n)/n −→ c and c ∈ (0,+∞)
)

When the graph Gn is regular and under the stationary regime, agents choose equally likely
each node v. By symmetry of Gn, the distribution of (Nv, Nv

1 , Nv
2 , · · · , Nv

d) does not depend
on v. Thus, in the following two lemmas, the node v may be seen as a generic node in Vn, or
as the first node for any ordering on the nodes of Gn, or even as a node chosen randomly.

Lemma 4.2.10 Assume Q. Let v be a generic node in Vn. Under the stationary regime,

1. the following convergence in distribution holds

(Nv, Nv
1 , Nv

2 , · · · , Nv
d)

(law)
−−−−−−−−→

n→+∞
(X0,X1,X2, · · · ,Xd)

where the r.v. Xj are i.i.d and follow a Poisson distribution with parameter c, that is:

P(Xj = �) = e−c c�

�!
∀� � 0

120 Chapter 4. Efficient Distributed Handshake

2. for any round, we have

Pn (N (v) � v,Nv = 0) −−−−−−−−→
n→+∞

e−c ·
(

1 −
(

1 − 1
d

+
e−c

d

)d
)

Proof of the first part of the lemma (sketch): Let v be a generic node. Recall that the
agent positions are independent and uniform on all the nodes (for regular graphs). Consider
some fixed integers j0, j1, · · · , jd. We write s = j0 + j1 + · · · jd. Using Sterling’s formula
(�! ∼

√
2π�

(
�
e

)�)), we have Pn ((Nv, Nv
1 , · · · , Nv

d) = (j0, j1, · · · , jd)) =:

(k(n)
j0,j1,··· ,jd,k(n)−s

)(1
n

)s(
1 − d + 1

n

)k(n)−s

=
k(n)!

j0! j1! · · · jd! · (k(n) − s)!
1
ns

(
1 − d + 1

n

)k(n)−s

∼ 1
j0! j1! · · · jd!

k(n)!
(k(n) − s)! ns

e−k(n)d+1
n

∼ 1
j0! j1! · · · jd!

√
2πk(n)

(
k(n)

e

)k(n)

√
2π(k(n) − s)

(
k(n)−s

e

)k(n)−s

1
ns

e−k(n)d+1
n

∼ 1
j0! j1! · · · jd!

e−s(
1 − s

k(n)

)k(n)−s

k(n)s

ns
e−k(n)d+1

n

Using k(n)/n −→ c, this converges to:

1
j0! j1! · · · jd!

cse−c(d+1) =
d∏

i=0

P(Xi = ji)

where the r.v. Xi are Poisson(c)-distributed. Hence, the first part of the lemma holds.

Proof of the second part of the lemma: Let A(v) denotes the number of neighbors of v

in which there is at least an agent. Obviously, we have:

Pn (N (v) � v,Nv = 0) =
d∑

j=1

P(N (v) � v | Nv = 0,A(v) = j) · P(Nv = 0,A(v) = j)

One one hand, we have:

Pn(N (v) � v | Nv = 0,A(v) = j) = 1 −
(

1 − 1
d

)j

On the other hand, when n → +∞, using the first part of the current lemma, we have:

Pn(Nv = 0,A(v) = j) −→
(

d

j

)
·
(
1 − e−c

)j · (e−c
)d−j · e−c

4.2. Handshake using mobile agents 121

Thus,

Pn (N (v) � v,Nv = 0) −→
d∑

j=1

(
1 −

(
1 − 1

d

)j
)

·
(

d

j

)
·
(
1 − e−c

)j · (e−c
)d−j · e−c (∗)

Using the Newton formula, the right hand side of (∗) can be explicitly computed. One finds

Pn (N (v) � v,Nv = 0) −→ e−c ·
(

1 −
(

1 − 1
d

+
e−c

d

)d
)

As a straightforward consequence of Lemma 4.2.10, we get the following:

Theorem 4.2.11 Assume Q. For every d-regular graph Gn with d an integer constant, under
the stationary regime, the handshake number verifies:

E(Hk(Gn))
n

−−−−−−−−→
n→+∞

e−c ·
(

1 −
(

1 − 1
d

+
e−c

d

)d
)

(4.5)

One can numerically find the optimal constant c that maximize the limit given in Theo-
rem 4.2.11. By taking c = log(2), the right hand side of (4.5) is larger than 0.196... for any d.
Thus, our bound is optimal up to a small multiplicative constant factor (� 5/2).

4.2.4 General case analysis: a tight bound

In this section, we give a general generic formula that allows to compute the exact handshake
number of algorithm Basic Agent Handshake in the general case.

For any event ω, we define �ω as follows:

�ω =

{
1 if ω is true,
0 if ω is false.

It is easy to show that under the stationary regime and at any round, the handshake
number verifies the following:

E(Hk(G)) =
∑
v∈V

P(Nv = 0) −
∑
v∈V

P(N (v) � v, Nv = 0) (4.6)

where N (v) � v is the complementary of the event N (v) � v. It is clear that for any v ∈ V ,
P(Nv = 0) = (1−π(v))k. Thus, it remains to compute P(N (v) � v,Nv = 0) for any v ∈ V .

Let us consider a node v ∈ V and the set of its neighbors ∪1�i�dvui. Let
Jv = (0, j1, j2, · · · , jdv) where (ji)1�i�dv is a set of integers. We denote by p(Jv) =
P
((

Nv, Nv
1 , Nv

2 , · · · , Nv
dv

)
= Jv

)
the probability that the number of agents at the beginning

of a round in node ui ∈ N (v) is equal to ji for every i ∈ {1, · · · , dv}, and that there are no
agents in v.

122 Chapter 4. Efficient Distributed Handshake

Lemma 4.2.12 For every v ∈ V , we have:

P(N (v) � v,Nv = 0) =
∑

0�j1,j2,··· ,jdv�k,
j1+j2+···+jdv �k

(
p(Jv) ·

dv∏
i=1

(
1 −

�(ji�1)

dui

))

and the r.v.
(
Nv, Nv

1 , Nv
2 , · · · , Nv

dv

)
is a multinomial like r.v.. More precisely, for every

positive integers (j1, j2, · · · , jdv) such that j1 + j2 + · · · + jdv � k,we have:

p(Jv) =
(

k

j1, j2, · · · , jdv

)
·

dv∏
i=1

π(ui)ji ·
(

1 − π(v) −
dv∑
i=1

π(ui)

)k−j1−j2···−jdv

By putting together the previous formulas, we obtain an exact general formula of the
expected handshake number for any graph G. It seems hard to deduce a simple general
formula for any graph. Nevertheless, for particular graphs such as trees, our general formula
could be very helpfull.

4.3 Handshake in the message passing model

In this section, we show how to simulate our agent based algorithm in the asynchronous
message passing model. The general outline of the method consists in using tokens to simulate
agents. A similar idea appears in [BFFS03] (see also [CGMO06]) in order to give a necessary
condition for deterministic election in anonymous networks.

Initially, we suppose that there are k tokens scattered at some nodes. Each time a node
v has one or more tokens, v locally executes the algorithm that the agents are supposed
to execute in node v. Each white-board can be simulated using the local variables of the
corresponding node. The agent movements can be simulated by sending the tokens from a
node to another (If many agents in the original algorithm choose to move to the same di-
rection, then the corresponding tokens are concatenated). Because we have only considered
the synchronous mobile agent model, the above simulation method will automatically provide
synchronous algorithms in the message passing model. However, by using a classical syn-
chronization technique, we obtain algorithm Distributed Handshake which works in the
asynchronous case.

Algorithm Distributed Handshake is given by Algorithm 5. We assume that the func-
tion sendTo (resp. sendAll) allows to send a message to a specified (resp. all) neighbor(s),
and the function receiveFrom allows to receive a message from a specified incoming edge (if
there are no messages then the node waits until a message arrives). The variable #tokens(v)
corresponds to the number of agents in node v in the original handshake algorithm. All tokens
are given the value 1. When many tokens are sent to the same direction, we simply send their
sum.

4.3. Handshake in the message passing model 123

while true do1

if #tokens(v) > 0 then2

Hs-trial := false;3

choose an outgoing edge i at random;4

sendTo(i,1); /* send a request to one neighbor */5

for j ∈ [1, dv] and j �= i do sendTo(j,0);/* send synchronization msg to other neighbors */6

for j ∈ [1, dv] do7

receiveFrom(j); /* receive neighbor’s request or synchronization msg */8

sendTo(j,0); /* send a reject or synchronization msg */9

for j ∈ [1, dv] do10

Msg := receiveFrom(j); /* receive response of the request */11

if j = i and Msg = 1 then Hs-trial := true;/* handshake success if response of i is 1 */12

#moves := 0; move := int [1, dv]; /* tabular initialized with 0: where to move tokens */13

for int � = 1 to #tokens(v) do14

choose 1 or 0 with probability 1/2;15

if 1 then16

choose randomly an outgoing edge i;17

#moves ++; move[i]++;18

#tokens(v) -= #moves; /* update tokens: those who stay at the node */19

for int � = 1 to dv do sendTo(�,move.[�]); /* move other tokens to the chosen directions */20

else21

sendAll(0); /* send synchronization msg */22

request := boolean [1, dv]; /* tabular initialized with false */23

for j ∈ [1, dv] do24

Msg := receiveFrom(j);25

if Msg = 1 then request.[j] := true; /* neighbor j is requesting a handshake */26

if ∃j such that request.[j] = true then27

choose at random i ∈ [1, dv] such that request.[i] = true;28

sendTo(i,1); /* accept request from neighbor i */29

for every � �= i do sendTo(�,0); /* reject the others */30

else31

sendAll(0); /* synchronization msg */32

for j ∈ [1, dv] do Msg := receiveFrom(j); /* synchronization msg */33

sendAll(0); /* synchronization msg */34

for j ∈ [1, dv] do35

Msg := receiveFrom(j); /* receive incoming tokens */36

#tokens(v) += Msg; /* update the number of tokens */37

Algorithm 5 : asynchronous Distributed Handshake: code for a node v

124 Chapter 4. Efficient Distributed Handshake

Theorem 4.3.1 Algorithm Distributed Handshake is correct and the number of
handshakes at a given round is equal to the number of handshakes in algorithm
Basic Agent Handshake.

Using the previous theorem, it makes sense to compare the performance results of Sec-
tion 4.2 in the mobile agent model and the performances of other algorithms in the message
passing model (such as those in [MSZ03, MSZ00]).

Remark 4.3.2 Another benefit one can obtain from using mobile agents is to reduce the global
number of computation entities in the network from n in the message passing model to k in the
mobile agent model. We think that this observation defines new criteria allowing to compare
distributed solutions of a problem in the two models. For instance, given a distributed problem,
one can be interested in finding an algorithm that provides a good compromise between the
global resources used in the whole network in order to solve the problem and the performances
of the algorithm.

4.4 Distributed initialization of agents

In Section 4.2, we have assumed the stationary regime in our analysis. In fact, this is relevant if
the agents have been moving randomly from a node to another in the network for a sufficiently
long time before the computation of some tasks begins. For instance, this assumption can be
realistic in the case of some distributed systems where the agents have been created in the
past and have been waiting to do some tasks. In this case, the initial positions of agents do
not matter and the previous analysis still holds.

If the computations begin before the stationary regime, our algorithms are still correct,
only the analysis is different and depends on the initial positions of agents. For instance, if
the agents have the same initial departure node, then the number of handshakes will be 1 at
the first round and then it increases with time. In opposite, if the agents are well distributed
over the network, then intuitively, there will be more handshakes at the first round and it
will take less time to reach the stationary regime. In practice, the agents must have been
created at some time before any computation begins, but we have not made any assumption
on how the agents are created. In the following, we show how to create agents in such a way
they are immediately under the stationary regime. The idea is to make the nodes start some
agents locally and by their own such that the global number of agents is almost the optimal
one since the first round.

First suppose that m is known and let k be the optimal number of agents computed in
Section 4.2. Then, at time 0, each node v creates a random number Nv of agents according
to a Poisson law with parameter dv

2m · k. Let K denotes the total number of agents effectively
created by the nodes. Let us first describe the joint distribution of the Nv’s knowing that

4.4. Distributed initialization of agents 125

Input: a constant parameter x.
repeat for ever:
1: create an agent A with probability x,
2: agent A tries to make a handshake with a neighboring

node chosen at random,
3: agent A commits suicide.

Figure 4.3: Dist Bernoulli: code for a node v

K = �. Let (jv)v∈V a sequence of integers such that
∑

v∈V jv = �. Thus, we have:

P((Nv = jv)v∈V | K = �) =
P((Nv = jv)v∈V ,K = �)

P(K = �)
=

∏
v∈V

P(Nv = jv)

P(K = �)

By a simple checking, conditionally on K = l, the r.v. (Nv)v∈V follows a multinomial
distribution. Using Remark 4.2.4, we can conclude that agents are under the stationary
regime. To be precise, there is a slight difference with the consideration of Remark 4.2.4,
since there the agents were labeled.

Now, it is classical (and easy to show) that K follows a Poisson law distribution with
parameter

∑
v∈V

dv
2m · k = k. Thus, the expected number of agents is E(K) = k. Due

to properties of concentration of the Poisson law, K is very close to k, i.e., P(|K − k| >

k1/2+ε) −→ 0 when k → +∞. Using remark 4.2.9, picking the number of agents at each
node according to the Poisson law given above provides w.h.p., the same performances than
in Section 4.2. In particular, we have the following:

Proposition 4.4.1 For any graph G, if m is known, then there exists a distributed procedure
for choosing the initial position of agents such that, w.h.p., at any round, the handshake
number is up to a constant factor the same as under the stationary regime.

In the case where neither m nor n are known, we give another distributed solution which
is efficient in the case of almost regular graphs. Let x ∈ (0, 1) be a parameter. Algorithm
Dist Bernoulli depicted in Fig. 4.3 works in rounds. At each round, each node creates only
one agent according to a Bernoulli law with parameter x. If an agent A is created, then it
tries to make a handshake with a neighboring node using the same technique as in algorithm
Basic Agent Handshake. Then, the agent A disappears, and a new round is started.

Notice that the total number K of agents created at each round using Dist Bernoulli

is a r.v. following a binomial distribution with parameter n and x; and its mean is n ·x (which
matches up to a constant factor the optimal number of agents in Section 4.2 in the case of
almost regular graphs). In the next theorem, the handshake number is simply denoted by
H(G). Inspired by the analysis of Section 4.2, we can prove the following:

126 Chapter 4. Efficient Distributed Handshake

Theorem 4.4.2 For every graph G, at any round of algorithm Dist Bernoulli, the ex-
pected handshake number verifies:

E(H(G)) =
∑
v∈V

(1 − x) ·

⎡⎣1 −
∏

u∈N (v)

(
1 − x

du

)⎤⎦
Proof For every v ∈ V , let Nv denotes the number of agents in v which is either 1 or 0. Let
us consider a node v with degree dv. Let ω be the event “an agent moves from at least a node
in N (v) to v in order to make a handshake in step 2 of algorithm Dist Bernoulli”, and ω

its complementary event. Thus, we have:

P (ω,Nv = 0) = P(ω) · P(Nv = 0)
= (1 − P(ω)) · (1 − x)

=

⎛⎝1 −
∏

u∈N (v)

(
1 − x · 1

du

)⎞⎠ · (1 − x)

The theorem follows from the fact that P (ω,Nv = 0) is the probability that a handshake
occurs in node v.

Corollary 4.4.3 For every almost d-regular graph G, at any round of algorithm
Dist Bernoulli, the expected handshake number verifies: E(H(G)) = Ω(n).

Proof In the case of an almost regular graph, for every node v, we have |N (v)| = dv = Θ(Δ).
Thus, from Theorem 4.4.2, we have

E(H(G)) =
∑
v∈V

(1 − x) ·
[
1 −

(
1 − x

Θ(Δ)

)Θ(Δ)
]

= n · (1 − x) ·
[
1 −

(
1 − x

Θ(Δ)

)Θ(Δ)
]

Using the fact that
(
1 − x

Θ(Δ)

)Θ(Δ)
= O(e−x) and because we take x to be a fixed constant,

we conclude that H(G) = Ω(n).

Remark 4.4.4 For almost regular graphs, Theorem 4.4.2 shows that it is sufficient to make
the nodes pick an agent (or a token) at each round according to a Bernoulli law in order
to obtain a good handshake number. What happens if agents are created at once at the first
round? It is not clear that using the Bernoulli law permits to quickly reach the stationary
regime. Following the same reasoning than in Proposition 4.4.1, an alternative solution could
be to make “each node v picks at once a random number of agents Nv according to a Poisson
law with a parameter c” where c is a positive constant. Intuitively, for almost regular graphs
and according to the analysis in Section 4.2.3, we think that the stationary regime will be
reached very quickly.

4.5. Open questions 127

Remark 4.4.5 An equivalent way to view the Dist Bernoulli algrithm is to initially assign
one agent Av per node v ∈ V . Then, at each round, each agent Av decides according to the
Bernoulli law whether or not it tries to make a handshake from v. In this case, there is no
more need to create new agents at each round.

4.5 Open questions

We remark that, with some modifications, algorithm Basic Agent Handshake works in an
asynchronous mobile agent model as well . It would be very interesting to give a performance
analysis of our algorithm in this case. More precisely, it would be nice to give a theoretical
analysis in the case of a weighted graph (where each edge has a weight which models the time
needed to be traversed) and weighted agents (where each agent has a weight which models
its speed). Hereafter, we discuss some other open problems:

1. It is clear that our algorithm is still correct in the case where we allow an agent in a
node v to continue the random walk even if it is not chosen to try a handshake, i.e.,
if line 2 fails. What can we say about the handshake number in this case? In other
words, what happens if an agent moves and tries to make a handshake from another
node instead of waiting in v in line 15.

2. For any graph G, how fast the stationary regime is reached, if initially each node creates
a random number of agents according to a Poisson law (or even a Bernoulli law) with
some parameter possibly depending on its degree? It would be nice to create the agents
in such a way the stationary regime is reached in polylogarithmic time for any graph
and without any initial knowledge.

3. Using our algorithms, can we improve the results of [DHSZ06]? We conjecture that the
answer is yes. More generally, we are optimistic that our technique can help improving
related handshake applications. For instance, one can show that our algorithm can
be adapted to compute a maximal matching or an edge coloring. We hope that our
algorithm can be applied to solve other distributed problems efficiently in the mobile
agent and message passing models.

128 Chapter 4. Efficient Distributed Handshake

Chapter 5

Implementation of Relabeling

Systems using Mobile Agents

Abstract.

In this chapter, we give a general framework in order to implement any relabeling system in
the practical mobile agent model. In particular, we give two new handshake-based algorithms
(Agent Full N -Handshake and Agent N -Handshake) allowing to implement the basic
CS (Close Star) and OS (Open Star) models. We analyse the performances of our two
algorithms and we obtain new improved results compared with previous message passing
algorithms.

This work confirms that mobile agents can be very helpful for designing efficient and
practical distributed algorithms.

Résumé.

Dans ce chapitre, nous donnons un cadre général permettant d’implémenter tout type
de système de réétiquetages dans un modèle distribué pratique utilisant des agents mo-
biles. En particulier, nous donnons deux algorithmes (Agent Full N -Handshake et
Agent N -Handshake) qui étendent la technique “poignée de main” et qui permettent
d’implémenter les systèmes de réétiquetages de bases dans les étoiles fermés ou ouvertes. Nous
analysons la performance de nos deux algorithmes et nous obtenons des nouveaux résultats
qui améliorent ceux obtenues précédement dans le modèle avec échanges de messages.

Ce travail confirme le fait que les agents mobiles peuvent être très utiles pour la résolution
efficace et pratique d’algorithmes distribués.

129

130 Chapter 5. Mobile Agents and Relabeling Systems

5.1 Introduction

5.1.1 Preliminary results and motivation

One important application of algorithm Basic Agent Handshake described in Chapter 4
is the implementation of the edge local computation model described in Chapter 3. In fact,
let us consider a relabeling system R = (L,I,P) in the edge model. We recall that in the edge
model, a relabeling rule R ∈ P is entirely defined by a precondition and a relabeling on an
edge, that is the rule R changes only the labels attached to an edge according to the previous
labels of the edge. Now suppose that we have scattered some mobile agents over the network,
and suppose that each agent owns a copy of P as an input. Then, each agent tries to make a
handshake on a given edge using algorithm Basic Agent Handshake. From the properties
of our handshake algorithm, all the edges where a handshake is assigned are disjoint. Thus,
an agent which succeeds a handshake on an edge e = (u, v) can apply a relabeling rule on
the edge e in parallel and without interfering with the other agents. In fact, the agent simply
collects the labels attached to the edge e, i.e., λ(u), λ(v) and λ(e). Then, it checks whether
a rule in P can be applied or not. If the precondition of a rule R ∈ P is satisfied, then the
agent assigns the new labels λ′(u), λ′(v) and λ′(e) to u, respectively v and e according to the
relabeling specified in rule R. Otherwise, the labels of the edge remain the same. Finally, the
agents execute a step of a random walk and start a new round once again. Thus, we obtain a
general framework in order to implement the edge local computation model in the practical
synchronous distributed mobile agent model.

A natural idea is to extend the Basic Agent Handshake algorithm to other local com-
putation models. In fact, we are interested in designing a practical framework for implement-
ing relabeling systems in practical mobile agent models. Such a framework will allow us to
abstract the design and the description of a distributed algorithm from its implementation.
On one hand, we are able to encode and to prove a distributed algorithm in a formal and
unified way using relabeling systems. On the other hand, a practical framework will enable
us to implement the obtained relabeling systems and to run them in practical distributed
settings.

Many efforts were done in order to implement a distributed algorithm described with
relabeling systems in message passing networks. However, no results are known in mobile
agent networks. The goal of this chapter is to give an answer to the following question:

Q5 :
How can we implement relabeling systems in a mobile agent
network in an efficient and practical way?

5.1.2 Related works

In the message passing model, the authors in [MSZ02] gave two frameworks that allow to
implement the Open Star (OS) and the Closed Star (CS) local computation models (see

5.1. Introduction 131

the introduction of Chapter 3 for a formal definition). Let us recall that in the case of the
CS model, two relabeling steps can be performed in parallel if they occur on two disjoint
stars while, in the case of the OS model two relabeling steps can be performed in parallel
if they occur on two stars having disjoint centers. The frameworks of [MSZ02] are based
on randomized local elections using asynchronous message passing. Hereafter, we recall the
algorithms described in [MSZ02]:

• Implementation of the CS local computation model [MSZ02]: Each node v

selects an integer rand(v) randomly and uniformly from a big set of integers. The node
v sends to its neighbors the value rand(v). When it has received from each neighbor
an integer, it sends to each neighbor w ∈ N (v) the maximum of the set of integers it
has received from neighbors different from w. The node v is elected in N2(v), i.e., the
2-neighborhood of v, if rand(v) is strictly greater than rand(w) for any node w ∈ N2(v).
Following the same notation as in [MSZ02, MSZ00], this local election is called an L2-
election. In this case, a computation step may be performed on the star centered in v.
During this computation step there is a total exchange of labels by nodes of N (v), this
exchange allows nodes of N (v) to change their labels. The L2-election algorithm is
depicted in Fig 5.1.

Each node v repeats forever the following:

1: the node v selects an integer rand(v) chosen randomly and uniformly from a
big set of integers;

2: the node v sends rand(v) to its neighbors;
3: the node v receives integers from all its neighbors.
4: let mv/w the max of the integers that v has received from nodes different from

w;
5: the node v sends to each neighbor w the integer mv/w;
6: the node v receives integers from all its neighbors
7: /* The node v is elected in N2(v) if rand(v) is strictly greater than integers

received by v; in this case, a relabeling step may be performed in N (v) */

Figure 5.1: Randomized L2-elections [MSZ02]

• Implementation of the OS local computation model [MSZ02]: Each node v

selects an integer rand(v) randomly and uniformly from a big set of integers. The node
v sends to its neighbors the value rand(v). The node v is elected in N (v), i.e., the
1-neighborhood of v, if for each neighbor w ∈ N (v): rand(v) > rand(w). Following the
same notation as in [MSZ02], this local election is called an L1-election. In this case, a
computation step on the star centered in v is allowed: the center collects the labels of
the star and then changes some labels according to a rule. The L1-election algorithm
is depicted in Fig 5.2.

132 Chapter 5. Mobile Agents and Relabeling Systems

Each node v repeats forever the following:

1: the node v selects an integer rand(v) chosen randomly and uniformly from a
big set of integers;

2: the node v sends rand(v) to its neighbors;
3: the node v receives integers from all its neighbors.
4: /* The node v is elected in N (v) if rand(v) is strictly greater than integers

received by v; in this case, a relabeling step may be performed in N (v) */

Figure 5.2: Randomized L1-elections [MSZ02]

We remark that the two previous algorithms are based on the consideration of rounds.
Their performance in terms of number of nodes locally elected in a round was studied
in [MSZ02]. In particular, the authors provide the following important proposition, and
they interpret it as the degree of parallelism allowed by their algorithms:

Proposition 5.1.1 ([MSZ02]) Let G = (V,E) be any n-node graph. For any node v ∈ V ,
let dv denote the degree of v and N2(v) the 2-neighborhood of v. Let Δ denote the maximum
degree of G.

Let M1(G) (resp. M2(G)) denote the expected number of nodes locally elected by the L1

(resp. L2) algorithm in a round in the graph G. We have:

M1(G) =
∑
v∈V

1
dv + 1

= Ω(
n

Δ
)

and

M2(G) =
∑
v∈V

1
|N2(v)| + 1

= Ω(
n

Δ2
)

The algorithms of [MSZ02] can be adapted to the mobile agent model using the technique
of [CGMO06]. However, the modified algorithms become very inefficient. In fact, the tech-
nique given in [CGMO06] allows to transform any message passing algorithm into a mobile
agent one; but it does not care about the performances of the obtained algorithm.

To our knowledge, no frameworks for other local computation models were studied in the
past. Furthermore, no work concerning the practical implementation of relabeling systems
using mobile agents is known even for the basic models.

5.1.3 Contribution

In this chapter, we investigate for the first time the implementation of relabeling systems
using mobile agents.

In the first part of this chapter, that is in Section 5.2, we focus on the CS and
OS model. More precisely, we give two algorithms Agent Full N -Handshake and
Agent N -Handshake in order to implement these two basic local computation models.

5.2. Extended handshake algorithms 133

We analyze the efficiency of our algorithms, and we obtain some surprising results. For in-
stance, we show that when adapting our agent based algorithms to the message passing model,
we obtain new algorithms having a message complexity less than the one of the L1 and L2

election algorithms given in [MSZ02].
In the second part of this chapter, that is in Section 5.3, we do not care anymore about

the efficiency of implementing relabeling systems by mobile agents. Our main goal is to give a
generic framework for implementing any local computation model using mobile agents. Our
framework is completely independent of the handshake problem and it is simple to understand
and to implement in practical networks. In particular, our framework shows that mobile
agents can bring a new kind of abstraction in distributed computing.

5.2 Extended handshake algorithms

In the following, we use the same mobile agent model as in Chapter 4. In particular, a network
is modeled by an n-node graph G = (V,E) where |V | = n and |E| = m. The degree of a node
v is denoted by dv. The maximum (resp. minimum) degree of G is denoted by Δ (resp. δ).
We define the 1 (resp. 2) neighborhood of a node v as follows: N (v) = {u ∈ V | dG(u, v) = 1}
(resp. N2(v) = {u ∈ V | 0 < dG(u, v) � 2})

Each node v is equipped with a white-board WB(v) where agents can read and write
information. Each node v aims a local generic function Write(v). In one time unit, there
is only one agent for which the Write(v) function returns true. Each white-board contains
a single boolean variable initialized with false. We also assume that there are k agents
scattered on the network. It takes one time unit for an agent to cross an edge and negligible
time to write or read the white-board of a node.

The algorithms presented in the next two sections work in rounds. We denote by
(Ai)i={1,··· ,k} the set of all agents. For every integer pulse t � 0 and for every i ∈ {1, · · · , k},
we denote by Ai(t) ∈ V the position of agent Ai at pulse t � 0. Finally, we denote by
PG(Ai(t) = v) the probability that agent Ai is in node v at pulse t.

5.2.1 Full neighborhood handshake

In this subsection, we extend the Basic Agent Handshake algorithm in order to make
handshakes between a node and all its neighbors. The new extended algorithm called
Agent Full N -Handshake is given in Fig. 5.3.

Algorithm Agent Full N -Handshake works in rounds of (4Δ+1) time units each. At
the beginning of each round, an agent in a node v tries to make a handshake simultaneously
between v and all its neighbors N (v). In fact, the agent first tries to mark the white-board
of v. Then, in case of success, it visits sequentially each node u ∈ N (v) and it tries to mark
the white-board WB(u) of node u. If the agent succeeds in marking all the nodes in N (v),
then we say that it succeeds a full N -handshake. In other words, the agent succeeds a full

134 Chapter 5. Mobile Agents and Relabeling Systems

1: while true do
2: t0 := t; /* t: the current pulse */
3: M := ∅ /* set of marked nodes*/
4: if Write(v) then
5: WB(v) := true;
6: for each u ∈ N (v) do
7: Move from v to u;
8: if WB(u) = true then
9: Move back from u to v;

10: go to line 22;
11: else
12: if Write(u) then
13: WB(u) := true;
14: M := M∪ {u}
15: Move back from u to v;
16: else
17: Move back from u to v;
18: go to line 22;
19: end if
20: end if
21: end for
22: for each u ∈ M∪ {v} do
23: Move from v to u;
24: WB(u) := false;
25: Move back from u to v;
26: end for
27: end if
28: while t �= t0 + 4Δ do
29: wait;
30: end while
31: execute algorithm Random Step (Fig. 4.1);
32: end while

Figure 5.3: Algorithm Agent Full N -Handshake: code for an agent in node v

N -handshake, if it can write first the white-board of v and second the white-board of all nodes
u ∈ N (v). In this case, we also say that a full N -handshake is assigned to node v.

Notice that the white-boards of marked nodes are re-initialized to false before starting a
new round (line 22). Furthermore, at the end of each round, that is after 4Δ time units, every
agent performs a random step (defined by algorithm Random Step given in Chapter 4) of
a random walk.

Remark 5.2.1 In algorithm Agent Full N -Handshake, there is a full N -handshake in
node v, if there is an agent A in v such that, the set M of marked nodes in line 22 verifies
M = N (v).

Remark 5.2.2 In algorithm Agent Full N -Handshake, we assume that the maximum
degree Δ is given in the input of the algorithm, which allows the agent to wait for the start of
a new round (line 28) and to synchronize their random walks. Nevertheless, this assumption

5.2. Extended handshake algorithms 135

is introduced essentially in order to simplify the presentation and the comprehension of the
algorithm. In fact, this can be avoided in practical implementations as follows. If an agent
A in node v succeeds the Write(v) in line 4, then it creates dv temporary “slave-agents”.
Each slave-agent is responsible for exploring one node in the neighborhood of v. Thus, agent
A does not move from v as specified in lines 6 to 21. Instead, the slave-agents (i) go visit the
neighbors of v in parallel and try to write their white-boards. Thenafter, (ii) they come back
to v and inform A of the result of their exploration. If all the slave-agents succeed to write the
white-boards of the neighbors, then agent A succeeds the handshake; otherwise it fails. At the
end, the slave-agents which succeed their exploration reinitialize (to false) the white-boards
of the corresponding nodes, and all slave-agents vanish (they die). Thus, the exploration of
the neighborhood of node v is only 3 time unit consuming instead of 4Δ, and a round last 4
time units for all agents.

One shall also note that using this method, the probability that an agent succeeds a full
handshake is no longer the same as the one of the original algorithm. However, the analysis
that we will make afterward is still correct.

Using random walk theory, it is easy to show that the distribution of agent positions in
algorithm Agent Full N -Handshake converges to a stationary distribution defined by the
probability measure π. In our analysis, we use the following definition:

Definition 5.2.3 We say that the k agents in algorithm Agent Full N -Handshake are
under the stationary regime, if for every v ∈ V and for every pulse t, we have:

PG(Ai((4Δ + 1)t) = v) =
dv

2m
= π(v)

and the positions of agents are independent: for any (vi)i∈{1,··· ,k} ∈ V k, we have:

PG

((
Ai((4Δ + 1)t)

)
i∈{1,··· ,k} = (vi)i∈{1,··· ,k}

)
=

k∏
i=1

π(vi)

Let pf (v) be the probability that a full N -handshake is assigned to v in a given round of
algorithm Agent Full N -Handshake. For every i ∈ {1, · · · , k}, let pf

i (v) be the probabil-
ity that at the beginning of a round, (i) there are i agents in v, (ii) there are no agents in
N2(v). Then the following lemma holds:

Lemma 5.2.4 Under the stationary regime, for every node v ∈ V , we have:

pf
i (v) =

(
k

i

)
· π(v)i ·

⎛⎝1 − π(v) −
∑

u∈N2(v)

π(u)

⎞⎠k−i

and

pf (v) �

⎛⎝1 −
∑

u∈N2(v)

π(u)

⎞⎠k

−

⎛⎝1 − π(v) −
∑

u∈N2(v)

π(u)

⎞⎠k

136 Chapter 5. Mobile Agents and Relabeling Systems

Proof The first part holds from a straightforward probabilistic analysis. The second part
of the lemma holds from the fact that pf (v) �

∑
1�i�k pf

i (v) and by using the Newton’s
formula.

Let FHk(G) be the full N -handshake number, i.e., the number of nodes of G to which
a full N -handshake is assigned in a round of algorithm Agent Full N -Handshake. It is
clear that E(FHk(G)) �

∑
v∈V pf (v). Thus, using Lemma 5.2.4, one can compute a general

lower bound of the full N -handshake number. In particular, we have the following:

Theorem 5.2.5 Let G(m) be a sequence of graphs such that G(m) has m edges and Δ3/m →
0 when m → +∞. Then, there exists k = Θ(m/Δ3) such that, under the stationary regime,
the full N -handshake number verifies E(FHk(G)) = Ω(nδ/Δ3).

Proof (Sketch) Let us assume that Δ3 = o(m) and let E1 = 1− Δ3+Δ−δ
2m and E2 = 1− Δ3+Δ

2m .
Using Lemma 5.2.4 (and similarly to the proof of Theorem 4.2.8), one can easily check that

pf (v) � Ek
1 − Ek

2

The best number of agents that maximizes Ek
1 − Ek

2 is obtained for:

k =
log(log(E2)

log(E1))

log(E1
E2

)
∼ log

(
Δ3 + Δ

Δ3 + Δ − δ

)
· 2m

δ
= Θ(

m

Δ3
)

The full N -handshake number verifies:

E(FHk(G)) � n · (Ek
1 − Ek

2) = n · exp (k · log(E2)) ·
(

log(E2)
log(E1) − 1

)
By replacing k with its optimal value and by a simple cheking, we find

E(FHk(G)) = Ω(
nδ

Δ3
)

Corollary 5.2.6 Let G(m) be a sequence of almost Δ-regular graphs such that G(m) has m

edges and Δ/
√

n → 0 when m → +∞. Then, there exists k = Θ(n/Δ2), such that the full
N -handshake number verifies E(FHk(G)) = Ω(n/Δ2).

5.2.2 Simple neighborhood handshake

In this subsection, we are interested in another kind of handshake which can be viewed as
an intermediate case between the basic handshake of Section 4.2 and the full handshake of
Subsection 5.2.1. The new extended algorithm called Agent N -Handshake is given in
Fig. 5.4.

Algorithm Agent N -Handshake works in rounds of (2Δ + 1) time units each. At the
beginning of each round, an agent in a node v tries to mark the white-board of v. Then, in

5.2. Extended handshake algorithms 137

1: while true do
2: t0 := t; /* t: the current pulse */
3: if Write(v) then
4: WB(v) := true;
5: for each u ∈ N (v) do
6: Move from v to u;
7: if Write(u) then
8: if WB(u) = false then
9: Move back from u to v;

10: else
11: Move back from u to v;
12: WB(v) := false;
13: go to line 18;
14: end if
15: end if
16: end for
17: end if
18: while t �= t0 + 2Δ do
19: wait;
20: end while
21: execute algorithm Random Step (Fig. 4.1);
22: end while

Figure 5.4: Algorithm Agent N -Handshake: code for an agent in node v

case of success, it visits sequentially the nodes of the neighborhood N (v) of v and it simply
verifies whether the white-boards of nodes in N (v) have been marked by any other agent. If
none of the white-boards of the nodes in N (v) is marked, then the agent succeeds a simple
N -handshake. For instance, if an agent succeeds in writing the white-board of v and if there
are no agents in the neighborhood N (v) of v, then the agent succeeds a simple N -handshake
at v.

Remark 5.2.7 In algorithm Agent N -Handshake, an agent re-initialize the white-board
of its departure node v to false (line 12) immediately without waiting until time t0 + 2Δ in
line 18. Therefore, it may happen that an agent in node v succeeds a simple handshake even
if there are other agents in N (v) at time t0. Nevertheless, this is not taken into account in
our probabilistic analysis.

Remark 5.2.8 Remark 5.2.2 can also be applied in the case of algorithm
Agent N -Handshake in order to avoid using Δ in the description of the algorithm.

Similarly to the previous analysis, the distribution of agent positions converges to a sta-
tionary distribution defined by the probability measure π, and thus we use the following
definition in our analysis:

Definition 5.2.9 We say that the k agents in algorithm Agent N -Handshake are under

138 Chapter 5. Mobile Agents and Relabeling Systems

the stationary regime, if for every v ∈ V and for every pulse t, we have:

PG(Ai((2Δ + 1)t) = v) =
dv

2m
= π(v)

and the positions of agents are independent: for any (vi)i∈{1,k} ∈ V k, we have:

PG

((
Ai((2Δ + 1)t)

)
i∈{1,··· ,k} = (vi)i∈{1,··· ,k}

)
=

k∏
i=1

π(vi)

Let ps(v) be the probability that a simple N -handshake is assigned to node v at some
round. For every i ∈ {1, · · · , k}, let ps

i (v) the probability that at the beginning of a round,
(i) there are i agents in v, and (ii) there are no agents in N (v). Then, we have the following:

Lemma 5.2.10 Under the stationary regime, for every node v ∈ V , we have:

ps
i (v) =

(
k

i

)
· π(v)i ·

⎛⎝1 − π(v) −
∑

u∈N (v)

π(u)

⎞⎠k−i

and

ps(v) �

⎛⎝1 −
∑

u∈N (v)

π(u)

⎞⎠k

−

⎛⎝1 − π(v) −
∑

u∈N (v)

π(u)

⎞⎠k

Let SHk(G) be the simple N -handshake number, i.e., the total number of nodes of G

to which a simple N -handshake is assigned at a round of algorithm Agent N -Handshake.
Thus, using Lemma 5.2.10, we have the following theorem:

Theorem 5.2.11 Let G(m) be a sequence of graphs such that G(m) has m edges and
Δ2/m → 0 when m → +∞. Then, there exists k = Θ(m/Δ2) such that, under the sta-
tionary regime, the simple N -handshake number verifies E(SHk(G)) = Ω(nδ/Δ2).

Proof (Sketch) Let us assume that Δ2 = o(m) and let E1 = 1− Δ2+Δ−δ
2m and E2 = 1− Δ2+Δ

2m .
Using Lemma 5.2.10, we obtain

ps(v) = Ek
1 − Ek

2

The best number of agents that maximizes the previous formula is obtained for:

k =
log(log(E2)

log(E1))

log(E1
E2

)
∼ log

(
Δ2 + Δ

Δ2 + Δ − δ

)
· 2m

δ
= Θ(

m

Δ2
)

The simple N -handshake number verifies E(SHk(G)) � n · (Ek
1 − Ek

2)
Thus by a simple checking and for the optimal value of k, we obtain

E(SHk(G)) = Ω(
nδ

Δ2
)

5.2. Extended handshake algorithms 139

Corollary 5.2.12 Let G(m) be a sequence of almost Δ-regular graphs such that G(m) has
m edges and Δ/n → 0 when m → +∞. Then, there exists k = Θ(n/Δ) such that, the simple
N -handshake number verifies E(SHk(G)) = Ω(n/Δ).

5.2.3 Application to the CS and the OS local computation models

It is straightforward that algorithm Agent Full N -Handshake and algorithm
Agent N -Handshake define a generic framework for implementing relabeling systems in
the CS and the OS local computation models using mobile agents. In fact, it is sufficient to
first let the agents make a handshake using our algorithms. Then, an agent which succeeds a
handshake (i) collects the labels of its neighborhood, (ii) checks if some rules can be applied,
(iii) applies a rule and then (iv) continues the random walk.

However, collecting the neighborhood of a node v is time consuming. Thus, we have to
be careful because all our analysis is based on the fact that the agents make a step of a
random walk simultaneously (at the same pulse). In order to synchronize the random steps
when applying our handshake algorithms to the CS and OS model, the agents have to wait
more time before moving to a new node. More precisely, the agents which do not succeed a
handshake have to wait until the other agents finish applying a relabeling rule. It is easy to
see that the duration of a round increases by only a multiplicative constant 4 in the case of
the CS model and 2 in the case of the OS model.

Moreover, based on remark 5.2.2, and using “slave-agents” in order to apply a relabeling
rule, the number of time units needed to execute a round can be reduced to 7 for the CS
model and to 6 for the OS model.

The previous discussion shows that the handshake number of our algorithms corresponds
to the number of stars that can be relabeled simultaneously in parallel. Our handshake
numbers have to be compared with the results of [MSZ02] resumed in Proposition 5.1.1.

In particular, we note that in the case of almost Δ-regular graphs, our extended handshake
algorithms allow to obtain the same performance as the randomized algorithms of [MSZ02] in
the message passing model. In addition, the number of computation entities in the network is
drastically reduced by a factor Θ(Δ). For instance, for typical values of Δ = Θ(

√
n), we can

use only Θ(
√

n) mobile agents against n computation entities for message passing networks,
but we achieve the same performance (we compute the same number of stars).

5.2.4 Application to the message passing model

Similarly to algorithm Basic Agent Handshake, our extended algorithms can be adapted
to run on a message passing distributed system. The main idea is to use k tokens in order to
simulate the k agents. We also use 5.2.2 in order the remove Δ from the description of our
new message passing algorithms.

140 Chapter 5. Mobile Agents and Relabeling Systems

Message passing algorithm for the CS model

Algorithm 6 (Synchronous Distributed N -Handshake) given below is a synchronous
message passing implementation of algorithm Agent Full N -Handshake.

while true do1

if #tokens > 0 then2

Full-N -Hs-trial := true;3

sendAll(1); /* send 1 to all neighbors */4

for j ∈ [1 · ·dv] do5

Msg := receiveFrom(j); /* receive message from port j */6

if Msg = 1 then Full-N -Hs-trial := false;7

if Full-N -Hs-trial then8

for j ∈ [1 · ·dv] do9

Msg := receiveFrom(j);10

if Msg = null then Full-N -Hs-trial := false;11

else12

receive all incoming messages and wait for the next pulse;13

if Full-N -Hs-trial then14

/* full handshake success*/;15

MOVE TOKENS ;16

else17

wait for the next pulse;18

request := boolean [1 · ·dv];19

for j ∈ [1 · ·dv] do20

Msg := receiveFrom(j);21

if Msg = 1 then request.[j] := true;22

if ∃j such that request.[j] = true then23

choose at random i ∈ [1, dv] such that request.[i] = true;24

sendTo(i,1); /* send 1 to neighbor i */25

RECEIVE INCOMING TOKENS ;26

Algorithm 6 : Synchronous Distributed Full N -Handshake

In algorithm Synchronous Distributed Full N -Handshake, we have omitted the
details of the Move Tokens procedure in line 22. This procedure simulates a random step of
agents. For each token, the Move Tokens procedure allows a node to decide with probability
1/2 whether the token is moved or not. Then, an outgoing edge is chosen equally likely and
the token is sent through the chosen edge. Symmetrically, the Receive Incoming Tokens

procedure allows a node to receive the tokens sent by its neighbors. It just verifies (for all
edges) whether a token arrives or not using the receiveFrom function.

Remark 5.2.13 In the synchronous message passing model, a message which is sent at a
given pulse t arrives at pulse t + 1. The receiveFrom function allows a node to receive a

5.2. Extended handshake algorithms 141

message from a given port in the current pulse. If there are no messages, then it returns null,
i.e., the node knows that no messages have been sent by the corresponding neighbor in the
previous pulse.

It is not difficult to see that our message passing implementation is correct, that is our
algorithm allows to compute a set of disjoint stars at each round. In addition, the analysis
made for the mobile agent algorithm can be adapted for our new message passing algorithm
and we obtain the same full N -handshake number.

When analyzing the message complexity of our algorithm, we obtain the following inter-
esting lemma:

Lemma 5.2.14 The message complexity of the Synchronous Distributed Full N -

Handshake algorithm is O(k · Δ) messages per round.

On one hand, one can easily see that a synchronous implementation of the L2-election
algorithm described in [MSZ02] and depicted in Fig. 5.1 leads to a message complexity of
O(m) messages per round. Hence, using Proposition 5.1.1, the L2-election algorithm given
in [MSZ02] ensures that the expected number of stars locally elected is Ω(n/Δ2) per round
using O(m) messages per round.

On the other hand, using Corollary 5.2.6 and Lemma 5.2.14, algorithm
Synchronous Distributed Full N -Handshake allows to obtain Ω(n/Δ2) simulta-
neous relabeling per round while using only O(n) messages per round, for all almost
Δ-regular graphs.

Remark 5.2.15 Notice that we have assumed the stationary regime in our performance anal-
ysis, while, the randomized local election algorithms of [MSZ02] do not make any similar as-
sumptions, i.e., their bounds hold at any round. However, the analysis given in Section 4.4
of Chapter 5 allows us to start the agents (tokens) in such a way they are quickly under the
stationary regime. In particular, the technique of Section 4.4 is very efficient for almost Δ
regular graphs.

Message passing algorithms for the OS model

Algorithm 7 (Synchronous Distributed N -Handshake) given below is a syn-
chronous message passing implementation of algorithm Agent N -Handshake. The
discussion and remarks made in previous paragraphs holds also for algorithm
Synchronous Distributed N -Handshake. In particular, the algorithm is correct, that
is it allows to compute a set of stars having no common centers. The performance of the
algorithm is the same as the one with mobile agents. Moreover, we have the following lemma:

Lemma 5.2.16 The message complexity of the Synchronous Distributed N -Handshake

algorithm is O(k · Δ) messages per round.

142 Chapter 5. Mobile Agents and Relabeling Systems

As a consequence, algorithm Synchronous Distributed N -Handshake improves the
message complexity of the L1-election algorithm of [MSZ02] from O(m) message per round
to O(n) messages while maintaining the same expected number of elected stars for all almost
regular graphs.

while true do1

if #tokens > 0 then2

N -Hs-trial := true;3

sendAll(1);4

for j ∈ [1 · ·dv] do5

Msg := receiveFrom(j);6

if Msg = 1 then N -Hs-trial := false;7

if N -Hs-trial then8

/* simple handshake success */9

MOVE TOKENS ;10

else11

wait for the next pulse;12

for j ∈ [1 · ·dv] do13

Msg := receiveFrom(j);14

RECEIVE INCOMING TOKENS ;15

Algorithm 7 : Synchronous Distributed N -Handshake

5.3 A general framework for implementing local computations

with mobile agents

5.3.1 Preliminaries

The previous handshake algorithms can be extended to the more general case of any local
computation model, that is they can be exetended for implementing relabeling rules on balls of
any fixed radius. However, the resulting algorithms become hard to understand and to run in
a real setting. In the following, we do not care anymore about the efficiency of implementing a
relabeling system. Instead, we want to provide a very high level and comprehensible framework
in order to implement any relabeling system in practice by using mobile agents.

Let us consider a �-local relabeling system R = (L,I,P). We recall from Chapter 3 that R
is �-local if any rule R ∈ P is �-local, that is the rule R is entirely defined by the precondition
and the relabeling of a generic ball of radius at most �. (Intuitively, only the labels attached
to nodes and edges in a ball of radius � are changed).

Assume that we have k agents which have been scattered over the network. Our goal is
to make the agents apply the relabelling rules in a distributed way. The main difficulty is to
make the agents execute the rules in an independent and concurrent way, that is, if an agent

5.3. A general mobile agent framework for local computations 143

is executing a rule in some region, then no other agent should execute a rule simultaneously
on the same region otherwise the relabeling may be wrong. We first give an algorithm in the
case where there is a unique agent in the network (k = 1), thenafter we extend the algorithm
in the more general case of many agents (k > 1).

In the following, we assume that the white-board WB(v) of a node v contains a couple
of variables denoted by WB(v).c = (X, i) with X ∈ {M,L} and i ∈ {1, · · · , k}. The couple
(X, i) allows agents to exchange information and to communicate with each other. Typically,
it is used by the agents in order to decide whether a node can be relabeled or not. In addition,
we assume that the label of the node v is stored in the white-board WB(v) of v. For simplicity,
we use the classical notation λ(v), λ′(v), λ(u, v) and λ′(u, v) to denote the label of a node v,
repectively the relabeling of v, the label of an edge (u, v) and the relabeling of (u, v).

5.3.2 Single agent implementation

For now we assume that we have only one agent (k = 1) in the netwotk to implement a
local relabeling system. The general idea is to make the agent travel from a node to another
and execute the rules at each new visited node. Two main problems must be solved in this
scenario:

(P1): How shall the agent travel the whole network without ommitting any node?

(P2): How does the agent recognize the �-neighborhood of a node in order to apply a relabeling
rule on this node in that neighborhood?

Herafter we give a solution to the two previous problems:

(S1): The travelling problem can be solved using a spanning tree. Thus, first we make the
agent construct a rooted spanning tree TG of the whole network. Many algorithms are
known in the literature and any kind of spanning tree will do. Now, the agent can use
TG as a map in order to travel across the network. For instance, the agent could perform
a DFS-traversal of TG. When the agent visits a new node, it stops the DFS-traversal
momentarily in order to execute a rule. Once it has finished the execution of a rule,
the agent continues the DFS-traversal to visit another node. Once the entire network
is traversed, the agent starts a new DFS-traversal and so on until no further relabeling
rules are applicable. This method ensures that all the nodes of the graph will be visited
at some time by the agent, such that node starvation is impossible.

(S2): Now, we describe how the agent can execute a rule R after arrival at some node v. The
idea is to make the agent learn the �-neighborhood of v and then check if some rule
can be applied. In order to learn the node’s �-neighborhood, the agent first constructs
a BFS-tree TB(v,�) of B(v, �) rooted at v. Then, the agent ’collect’ the entire topology
of B(v, �) by traversing the neighborhood tree TB(v,�). In case the network nodes have

144 Chapter 5. Mobile Agents and Relabeling Systems

unique identifiers, the learing of a node’s �-neighborhood is rather straightforward. In
case no such unique identifiers are available, it is also not too difficult to let the agent
himself create such identifiers for the visited nodes (e.g., when constructing the tree
TG). Having learned the topology of B(v, k), and having noticed that some relabeling
rule r is applicable in the context of B(v, k), the agent visits B(v, k) again (using the
neighborhood tree TB(v,k)) and attaches new labels according to rule r.

Remark 5.3.1 Since the network topology never changes, the BFS-tree TB(v,�) constrcuted by
the agent at each node v ∈ V and allowing to learn the topology of B(v, �) can be constructed
at once. In fact, using a unique identifier given to node v by the agent, the neighborhood tree
TB(v,�) can be assigned specifically to node v, and then it can be used next times.

5.3.3 Multiple agent implementation

Preliminary.

In the previous section we have argued that a single agent can assign identifiers to network
nodes in order to learn the topology of a neighborhood sussrounding that node. In the case
of multiple agents k > 1 and in order to avoid the problems of breaking the symmetry in
anonymous networks, we assume that either the graph or the agents are not anonymous (the
case of anonymous networks leads to impossibility results that do not interest us in this work).

For the clarity of our algorithms, we assume that each agent Ai have a unique identi-
fier i (i ∈ {1, · · · , k}). In the rest of this section, we describe our generic framework for
implementing a �-local relabelling system for any � and for any k � 1.

The general framework.

Our main idea is to partition the graph G into k regions (Gi)i∈{1,··· ,k} and to assign a region
Gi to every agent Ai. Then, each agent applies the relabeling rules in its own region indepen-
dently of the other agents. Inside a region, an agent applies the relabeling rules like described
in the single agent implementation. Thus, it remains to solve two problems:

1. How the application of rules is managed at the borderline between two regions?

2. How the regions are assigned to agents?

Let us first we show how the regions are assigned in a distributed way. The main idea is to
make every agent compete against the other in order to compute spanning tree corresponding
to its regions.

At the beginning, each agent executes algorithm Agent Init Region. A high level
description is given in Algorithm 8. Algorithm Agent Init Region is a variant of the
classical DFS-tree algorithm. For simplicity, we have ommited the details showing how an
agent marks a node or an edge (this is straightforward using the white-boards of nodes). After

5.3. A general mobile agent framework for local computations 145

if current node v is marked then1

move back to the last visited node;2

else3

mark the current node v;4

mark the incoming edge as part of TGi5

while no unexplored edge is found do6

move back to the last visited node;7

if current node is the root (departure position) and all edges were explored then8

the construction of TGi is finished;9

move to a new direction (continue the DFS traversal);10

go to line 1;11

Algorithm 8 : algorithm Agent Init Region: code for agent Ai in a node v

termination, every agent has computed a spanning tree denoted by TGi . In other words, the
region Gi is defined by the subgraph of G induced by the tree constructed by agent i.

Remark 5.3.2 Notice that it may happen that an agent fails to compute a tree. In this case,
the agent should vanishes and the actual number of agents is decreased. Notice also that the
case of a unique agent corresponds to the case where there is only one region (the whole graph).

Now that the regions are constrcuted, each agent is responsible for executing the rules in
its own region. However, some conflicts may occur at the borderline between two adjacent
regions. In order to manage these conflicts, each agent Ai first constructs a BFS-spanning tree
TB(v,�) of B(v, �) for each node v ∈ Gi (TB(v,�) may contain nodes in another region Gj �= Gi).
Then, each agent Ai travrerses Gi in a DFS fashion using TGi . When agent Ai is at some
node v ∈ Gi, it tries to apply a rule using the following four step strategy:

Step 1: At the first step, agent Ai traverses TB(v,�) and collects the labels of B(v, �) in order to
check if a rule can be applied. If no rule can be applied, then Ai continues the traversal
of TB(v,�). Otherwise, Ai goes to the second step.

Step 2: At the second step, agent Ai traverses TB(v,�) and tries to mark the WB(w).c field of all
nodes w ∈ B(v, �) using the extra label (M,i). If a node w ∈ B(v, �) is already marked
(M,j) by another agent Aj �= Ai, then there are two cases.

1. If i < j then Ai unmark all the nodes he has already marked and continues the
traversal of TGi (visit a new node).

2. Otherwise, Ai marks w with label (M,i) and continues the traversal of TB(v,�)

(exploration of B(v, �)).

146 Chapter 5. Mobile Agents and Relabeling Systems

Step 3: If Ai succeeds in marking all the nodes of B(v, �) with (M,i), then it traverses TB(v,�)

once again in order to lock all the nodes in B(v, �) by marking them with the extra label
(locked,i), i.e., the ball is ready to be relabelled according to a rule. If the label of at
least one node w ∈ B(v, �) is not (M,i) then Ai goes back and reinitializes all nodes
locked with label (locked,i) or marked (M,i) and then continues the DFS-traversal of
TGi . When an agent Ai traverses TB(v,�) in order to lock the nodes, it also collects the
topology of B(v, �) in order to prepare executing a rule (which avoids to make another
traversal).

Step 4: This step is executed if and only if the agent Ai has succedeed locking all the nodes
of B(v, �). Hence, the agent traverses B(v, �) for the fourth time in order to apply a
rule. At the same time, it unlocks the nodes in B(v, �). Finally, the agent continues the
DFS-traversal of TGi .

Remark 5.3.3 Note that an agent executes Step 2 if and only if it finds a rule to execute
after the first traversal in Step 1. Nevertheless, it may happen that in Step 4, no rule can be
applied since the label of some nodes in B(v, �) may change.

Remark 5.3.4 Notice that several traversals of B(v, �) are needed only in the case where v

belongs to the frontier of some other regions, i.e., there exists some j �= i such that B(v, �) ∩
Gj �= ∅. Based on this observation, the agents can make some further precomputations in
order to mark the nodes at their frontier, and thus they can avoid traversing the ball B(v, �)
several times if node v does not belong to the frontier.

Proposition 5.3.5 There are no deadlocks in our generic framework, that is:

• there are no agent deadlocks: An agent can not be blocked an infinite time in any node.

• there are no rule starvations: If any rule R has to be executed in any node v in order
to continue the relabelling of the graph, then there exists an agent Ai that succeeds to
relabel B(v, �) within a finite time according to R.

Remark 5.3.6 Suppose that we want to execute an �-local relabelling system in a message
passing distributed model. Then, it is sufficient to adapt our general algorithm using tokens.
Nevertheless, we think that a practical implementation or just a detailed description would be
very complicated compared to an agent implementation since:

1. We have to write a non uniform code due to the fact that nodes will not play the same
role.

2. The notion of a region controlled by an agent will completely disappear.

3. The notion of only one computation entity (which is the agent) trying to relabel a ball
B(v, �) will also completely disappear.

5.4. Open questions 147

For these reasons, we think that mobile agents can help making some distributed solutions
more comprehensible and easy to implement in a real distributed system.

5.4 Open questions

The algorithms given in this chapter raise at least two important remarks. First, from an
efficiency point of view, mobile agents can lead to improved results compared with message
passing for some distributed problems. Second, mobile agents can bring a new level of ab-
straction in distributed computing. In fact, in the message passing model, the nodes (and
the way they are connected, i.e., the graph) define both the topology of the network and
the autonomous entities which are computing permanently in the network. In opposite, in
the mobile agent model, the nodes define only the topology of the network, while the agents
define the computation entities of the network. This observation could be crucial for the case
of practical dynamic distributed systems where the network topology can change. For some
applications, it seems to be more practical to sperate the topology aspects of the network and
the computation aspects by using mobile agents.

Within this context, the general goal of our mobile agent was to bring some new results
in order to comprehend the following general problem: Given a distributed problem, which is
more accurate: a mobile agent solution or a message passing solution ?

It is obvious that the answer of the previous question will vary according to the distributed
problem, to the network topology, and to the network synchrony. We also believe that there
are many other parameters which must be taken into account in order to comprehend the
strength of the two models and many further investigations and comparative studies have to
be done.

148 Chapter 5. Mobile Agents and Relabeling Systems

Part IV

An Experimental and Educational

Approach in Distributed

Computing: the ViSiDiA Platform

149

Chapter 6

ViSiDiA: Visualization and

Simulation of Distributed

Algorithms

Abstract.

In this chapter, we present a powerful software tool called ViSiDiA allowing to visualize
and to simulate distributed algorithms. Our tool is intended to researchers and to students
as well.

We give a general view of ViSiDiA by describing its main features without going into tech-
nical or implementation details. More precisely, we show how ViSiDiA can be used in order
to implement, test and experiment distributed algorithms in the asynchronous/synchrnous
message-passing/mobile-agent model.

Résumé.

Dans ce chapitre, nous présentons la plateforme ViSiDiA: un outil logiciel permettant
de visualiser et de simuler des algorithmes distribués. Notre outil est destiné aussi bien aux
chercheurs qu’aux étudiants.

Nous décrivons de façon générale et concise les principales fonctionalités de ViSiDiA sans
rentrer dans les détails techniques d’implémentation. Plus précisement, nous montrons com-
ment ViSiDiA peut être utilisée pour implémenter, tester et expérimenter rapidement un
algorithme distribué dans un modèle synchrone/asynchrone avec messages/agents-mobiles.

151

152 Chapter 6. ViSiDiA

6.1 Introduction

6.1.1 Motivation

The development of increasingly complex and massively distributed information systems on
wide-area networks, e.g. Internet, is very fast. The number of servers and machines connected
to the net is growing rapidly. Therefore, the implementation of distributed applications is a
real challenge. Technological progress in workstations and networks, in particular with high
data flow, and the standardization efforts of middle-ware have made it possible to overcome
the traditional low-level problems due to heterogeneous networks or the variety of operating
systems and programming languages. Thus, distributed systems and co-operative solutions
have become an accessible and even current option for many applications in industry, banking,
multi-media, or e-commerce. The companies must fit themselves into this ongoing evolution
in order to guarantee their productivity and competitiveness in phase with the technological
developments. However, the development of distributed applications is a difficult task and a
complicated process: In addition to the complexity of classical centralized applications, a new
kind of complexity arises due to the distribution and communication between the involved
agents, and due to their competitions and resource conflicts.

We conjecture that the availability of toolkits for simulation, visualization and evidence
support becomes essential in the design and validation of programs in distributed environ-
ments. The underlying models represent the networks by graphs wherein the nodes correspond
to machines or processors, and edges to the inter-processor connections. For the designers
and researchers of distributed algorithms, such toolkits will make it possible to carry out tests
and simulations easily in order to understand the operations of a distributed algorithm and
to gain insight into its properties. The availability of such tools seems particularly essential in
order to avoid those investigations to be carried out tediously by hand. Moreover, such tools
could be useful for educational purposes when the execution of a distributed algorithm has to
be explained in the classroom. For the developers, the visualization of distributed program
execution allows for an abstraction of the particular applications, which is especially beneficial
in designing, installing and testing these programs. For several distributed applications, the
development carried out by analyzing text files, traces or logs, turns often out as ineffective
because of the complexity and the dynamic changes of data and network. It is assumed that
in these cases visualization can be helpful in error diagnosis.

In this context, the main goal of the ViSiDiA project is to bring together researchers
having various and synergetic competences in distributed algorithms in order to develop a
simulation and visualization environment for distributed algorithms. In particular, it aims
at providing a real-world experimentation environment. Since many years, many efforts have
been done by the LaBRI ’s distributed computing team in order to achieve these goals. In fact,
a software platform also called ViSiDiA was developed and many researchers and students
are using ViSiDiA at the aim of implementing, experimenting and understanding their own

6.1. Introduction 153

distributed algorithms.

6.1.2 Contribution and outline

In this chapter, we introduce the ViSiDiA platform and we give our main contributions. We
will not give implementation details. We just outline some important conceptual features of
the software and give a kind of a tutorial (or a manual) in order to illustrate the strength of
the ViSiDiA platform. In fact, our goal is not to give technical explanation which could be
hard to follow for non programming experts, but we hope that at the end of this chapter, the
reader learns enough about ViSiDiA so he can write and run his own distributed algorithms.
The software source code and documentation (GPL license) are available for free download on
the ViSiDiA web page [ViS06]. ViSiDiA is written in Java and can be installed and executed
very easily. Many examples including those of this chapter are also provided with the software
so that the reader can test them.

The rest of this chapter is organized as follows. First, we recall the basic features of
ViSiDiA by giving a practical example (Section 6.2). Second, we outline our main contribu-
tions and the new features that we add to the ViSiDiA platform, namely:

1. A complete and friendly new application programming interface (api) allowing to sim-
ulate and to visualize on the fly a distributed algorithm in the synchronous message
passing distributed model (Section 6.4). This part improves the existing asynchronous
message passing api.

2. A complete and friendly new api allowing to simulate and to visualize on the fly a
distributed algorithm in the asynchronous/synchronous mobile agent distributed model
(Sections 6.3 and 6.4).

3. A distributed version of ViSiDiA which runs on N (N � 1) real physical machines
(Section 6.5). This version is a first step towards a powerful platform allowing an
experimentation of distributed algorithms on very huge graphs.

We conclude the chapter by giving some remarks and some future improvements of the
ViSiDiA platform (Section 6.6).

6.1.3 Related works

ViSiDiA is among the first platforms providing a complete api for implementing, simulating,
visualizing and experimenting distributed algorithms in the two classical and widely used
message and mobile agents models. However, many other platforms providing related libraries
already exist in the literature [KPT03, BA01, SK93, MPTU98, CFJ+03]. Hereafter, we give
a general description of the most relevant ones:

154 Chapter 6. ViSiDiA

• VADE (visualization of algorithms in distributed environment [MPTU98]): This tool
allows the end-user to visualize an asynchronous message passing distributed algorithm
in a web page while the real execution of the algorithm is done on a remote server. A
particular feature of the VADE tool is to make it possible for the programmer to write
animations quickly. To the best of our knowledges, there are no recent developments of
this tool.

• PARADE (parallel program animation development environment [SK93]): The general
goal of this tool is to enable the visualization of many different types of programs,
from different architectures, different programming models and languages and different
applications. Hence, it is not specifically devoted to distributed algorithms. The general
organization of PARADE can be divided into three components. The first component
allows to gather the information needed to define a program execution: this is done
using trace files of the program actions. The third component allows to construct a
graphical view of the program execution. The second or middle component allows to
construct a mapping from program execution data to appropriate visualization actions.

• LYDIAN (library of distributed algorithms and animations [KPT03]): This tool is a
simulation and visualization environment for distributed algorithms that provides to the
students an experimental environment to test and visualize the behavior of distributed
algorithms. LYDIAN supports the simulation and the animation of asynchronous mes-
sage passing algorithms. The simulation is event driven, i.e., when an event takes place,
a process performs a computation depending on its state. New protocols can be added
and tested easily by end-users using the LYDIAN library. In this case, the user have
to implement the actions to be executed by a process depending on the set of possible
couples of state/event that could occur. The visualization in LYDIAN takes as input
any possible execution trace corresponding to a given algorithm. The user may have
different graphical views of an execution. In particular, he can visualize the Causality
view which illustrate the causal relation between events in the system execution. To the
best of our knowledges, LYDIAN covers closest the aspects addressed by ViSiDiA.

• DAJ (distributed algorithms in java [BA01]): this tool allows students to write a dis-
tributed algorithm (in java) and to interact with the state of a process. The main goal
of the DAJ tool is that students achieve a basic understanding of distributed algorithms
and be able to create and to analyze their own scenarios. In particular, the students
can construct a scenario step-by-step, and they are responsible for selecting the state
changes at each step.

6.2. Introduction to ViSiDiA: a concrete example 155

6.2 Introduction to ViSiDiA: a concrete example in the asyn-

chronous message passing model

6.2.1 Preliminary

Let us consider the asynchronous message passing model and suppose we want to simulate a
distributed algorithm on some network. ViSiDiA allows us to:

1. write the code to be executed by each node of the network.

2. draw the graph which models the network using the graphical user interface (GUI for
short).

3. load the distributed algorithm and start the simulation using the GUI.

4. visualize on the fly the execution of the algorithm on the GUI, that is the messages and
the states of nodes and edges are visualized on the GUI in a real-time manner while the
algorithm is being executed.

The three last points are automatically handled by ViSiDiA. The only effort a user has
to do is to write his algorithm and to compile it. Knowing only few procedures provided
by the ViSiDiA api, testing an algorithm becomes an easy task. In fact, the simulation and
the visualization are completely transparent to the user and no specific knowledges of how
ViSiDiA is practically encoded are required.

Let us explain how a distributed algorithm can be implemented in practice by ViSiDiA.
First, the user must keep in mind the following three important features:

1. In ViSiDiA, each node v is an autonomous entity of computation modeled using a Java
thread. Each node can communicate only with its neighbors using its outgoing edges (or
links). For each node v, the outgoing edges of v are ordered automatically by ViSiDiA
from 0 to dv − 1 where dv is the degree of v (see Fig. 6.1).

a node v

door dv-1 door 0
door 1

door 2

door 3

1

0

1

23

0
1

20
1
2

0
1 0

32

Figure 6.1: The model of a node in ViSiDiA

156 Chapter 6. ViSiDiA

2. A node (thread) can send (resp. receive) messages to (resp. from) its outgoing edges
using the sendTo (resp. receiveFrom) procedures provided by the ViSiDiA api.

3. A node (thread) may handle any set of local variables. However, each node can store
some local variables using a particular local data structure provided by ViSiDiA. In
order to write (resp. read) some variables in its local data structure, each node should
use the putProperty (resp. getProperty) procedure of the ViSiDiA api. The local
data structure enables ViSiDiA to visualize the variables stored by the corresponding
node.

6.2.2 Example of the Flood algorithm

Now, we are ready to write our first algorithm using ViSiDiA. For instance, let us consider
the classical Flood algorithm for constructing a rooted spanning tree. In Fig 6.2, we give
a simplified high level description of this algorithm as it appears in Peleg’s book [Pel00]
(Chapter 3, page 33). The algorithm begins by broadcasting a message from a root node
r0 to all nodes in the network by simply forwarding the message over all links. The Flood

algorithm constructs a directed tree TFlood rooted at r0 and spanning all the nodes in the
network, with the parent of each non-root node v in TFlood being the node from which v has
received a message for the first time.

1: if the node v = r0 then
2: Send a message on all outgoing links.
3: else
4: Upon receiving a message for the first time over an edge e do
5: Mark the edge e in the tree TFlood

6: Forward the message on every other edge
7: Upon receiving a message again (over other edges) do
8: Discard it and do nothing
9: end if

Figure 6.2: Algorithm Flood [Pel00]: high level code for a node v

In Fig. 6.3 we give a concrete and complete implementation of the flood algorithm with
the communication details in the message passing model using ViSiDiA. In Fig. 6.4, we give
a snapshot of the GUI of ViSiDiA while the flood algorithm is being executed.

6.2.3 Overview of the ViSiDiA api: explanation of the F loodTree algorithm

The ViSiDiA FloodTree class is organized according to two important rules which must
always be satisfied by any algorithm. In the following, we explain these rules:

6.2. Introduction to ViSiDiA: a concrete example 157

public class FloodTree extends Algorithm {

/* the code to be executed by each node */
public void init(){
/* the degree of the node */
int nodeDegree = getArity() ;

/* the door leading to the father in the tree */
int parentDoor;

/* the node label */
String label = (String) getProperty("label");

/* the current node is the source */
if(label.equals("R")) {
/* the node brodcasts a message to neighbors */
sendAll(new StringMessage("WAVE"));

} else {
/* the node waits until a message arrives. The message is
* returned in the msg variable. The incoming door is
* returned in the door variable */

Door door = new Door();
Message msg = receive(door);
parentDoor = door.getNum();

/* the node becomes in the tree */
putProperty("label",new String("T"));

/* the edge is marked in bold in the GUI */
setDoorState(new MarkedState(true),parentDoor);

/* the node broadcast a message to its neighbors except
* his parent in the tree */

for(int i=0; i < nodeDegree; i++){
if(i != parentDoor) {
sendTo(i, new StringMessage("WAVE"));

}
}
/* other messages are ignored and the node locally
* terminates: no more actions to do */

}
}

}

Figure 6.3: Algorithm FloodTree: code for a node with ViSiDiA

158 Chapter 6. ViSiDiA

Figure 6.4: An execution of the FloodTree algorithm with ViSiDiA

• The concrete java algorithm must always inherit from the Algorithm class of the
ViSiDiA api. In fact, all the basic procedures provided to the user and which allow
to send and receive messages are accessible only from the Algorithm class.

• The code to be executed by each node must be specified in the init() method. In fact,
the thread created by ViSiDiA for each node will execute the instructions specified in
the init() method automatically.

The abstract class Algorithm of ViSiDiA provides many methods to help the user writing
his algorithm. Let us review some of them based on FloodTree example:

• The sendTo() method allows a node to send a message on a specified door. The
sendAll() method allows a node to send a message to all its neighbors. The re-
ceiveFrom() method allows a node to receive a message. There are two types of the
receiveFrom() method. The first one allows a node to wait until the reception of a
message and it puts the value of the door from which the message arrives in the Door

variable given in parameter (this is the case in our example). The second one allows
a node to wait for a message on a specified door given in parameter. In this case, the
receiveFrom() method returns if and only if a message arrives from the specified door.
Notice that the receiveFrom() method is very sensitive, since it locks the node until
receiving a message. Here we remark that ViSiDiA also provides some boolean methods
that enable a node to test whether or not a message is arrived on any door. This allows

6.2. Introduction to ViSiDiA: a concrete example 159

a different approach when writing a distributed algorithm. For instance, the user can
easily encode the following instruction: “if a node has received a message (on some door)
then it executes some task, otherwise its executes some other task”.

• A message is implemented in ViSiDiA using the Message abstract class. There exist
many kinds of messages (string, boolean, integer, vector). In our example we use only
string messages which are implemented by the StringMessage class. We also remark
that the user can assign many properties to a messages in ViSiDiA. For instance, the
user can use the StringMessage class to create string messages but with as many types
as he wants. This allows to handle the messages according to their types. In other
words, the user can easily encode the following instruction: “if a node receives some
message with type X then it executes some task, otherwise it executes some other task”.
The messages can also be easily customized for the visualization. For instance, the user
can choose the color of messages according to their types or choose to not visualize some
messages.

• As mentioned before, each node has a local data structure which is used to store some
particular variables. By default, each node in ViSiDiA is given a local data structure
containing only one variable: a label initialized to N . Using the GUI of ViSiDiA, the
user can for instance select a node and assign another label to it. This is very helpful
if some nodes have to be initialized with some particular value. This is the case in
our example where a root node has to be selected. We choose the special label R to
distinguish this node which implies that the user has to assign the label R to a particular
node in the GUI before starting the simulation (otherwise, all nodes will have label N).
The getProperty() method is then used in the concrete algorithm in order to read the
value of the label of a node and to decide if the node was chosen by the user as being
the root. The putProperty() method allows the user to change the label of a node
(which is visualized automatically in the GUI). For instance, when a node becomes in
the tree, it changes its label from N to T .

• We also use some other methods in our code. For instance, the getArity() method is a
standard ViSiDiA method which returns the degree of the node. The setDoorState()
allows to change the shape of an edge in the GUI. For instance, in our example, the
edges of the tree are drawn in bold.

Let us remark that the instructions of the practical Floodtree algorithm (Fig. 6.3) are
essentially the same as the instructions given by the high level Flood algorithm Fig. 6.2.
In addition, the visualization of the execution of the algorithm is completely handled by
ViSiDiA without any intervention of the user. These two observations together with the
library provided by the api of ViSiDiA forms the real strength of the ViSiDiA platform.

160 Chapter 6. ViSiDiA

6.2.4 How does it work ? The general architecture of ViSiDiA

In the following paragraphs, we outline the general architecture used in ViSiDiA and allowing
the simulation and the visualization of a distributed algorithm.

msg

msg

Threads

Simulator

GUI

Figure 6.5: General architecture of the centralized version of ViSiDiA

In Fig. 6.5, we give the three main components of the ViSiDiA platform:

• First, we have the graphical user interface which allows to draw a graph. The GUI also
allows the visualization of the algorithm.

• Second, we have the simulator which is an intermediate entity having a global view of
the simulation.

• Third, we have the threads which model the nodes of the network and which execute
the algorithm.

Remark 6.2.1 Notice that this three level architecture of ViSiDiA allows a programmer to
add easily new functionalities to any level independently of the other levels.

The general idea of the simulation is based on the notion of events. For instance, each
time a node wants to send a message to a neighbor, a corresponding event EVT 1 is generated.
Then, the event EVT 1 is caught by the simulator. The simulator may perform some actions
corresponding to the event EVT 1. Then, the simulator generates a new event EVT 2. This
event contains all the information needed for the visualization. The event EVT 2 is then
caught by the GUI and some visualization is performed. For instance, in the case of a message
sending, the GUI draws the message from the sender to the receiver. Once, the visualization
corresponding to event EVT 2 is finished, the GUI generates a new event EVT 3 which is caught
by the simulator. The simulator uses the information given by EVT 3 in order to perform some
actions. For instance, in the case of a message sending, the simulator puts the message in the

6.3. The mobile agent model in ViSiDiA 161

queue of the receiver. All these events are handled in a transparent way and the simulation
is entirely handled internally by ViSiDiA. In fact, the user should only write the code to be
executed by each node using the high level procedures provided by ViSiDiA as shown in our
FloodTree example.

6.3 The mobile agent model in ViSiDiA

Recently, we have extended the ViSiDiA api in order to support the simulation and the
visualization of distributed algorithms in the mobile agent model. Similarly to the message
passing simulation, ViSiDiA allows a user to:

1. write a mobile agent algorithm using the high level procedures provided by the ViSiDiA
api. This is the only step where the user has to write a concrete Java code.

2. draw the graph which models the network using the GUI.

3. choose the initial position of one or more agents either by hand by picking sequentially
a set of nodes using the GUI, or by writing a sequential algorithm which takes in input
the whole graph and decides whether an agent is initially created on a given node or
not.

4. initialize the white-boards of some nodes (or all off them) by hand by adding some simple
(boolean, string, integer ...) variables using the GUI or by adding more sophisticated
variables using an already written algorithm.

5. load the mobile agent algorithm and start the simulation using the GUI.

6. visualize on the fly the execution of the algorithm, i.e., the agent movements and node
(edge) states in the GUI.

6.3.1 The basic features of the mobile agent api

The agents are modeled using Java threads. A thread is created automatically by ViSiDiA
for each agent. The thread executes the instructions in the java code written by the user. In
order to encode a mobile agent algorithm with ViSiDiA, the user must simply inherit from
the Agent class of ViSiDiA and implement the init() method. The Agent class provides
many useful methods that enable the user to write his algorithm. Let us review the most
important ones:

• moveToDoor(int door): allows an agent in a node v to move to a neighboring node
by using the door number given in parameter.

162 Chapter 6. ViSiDiA

• setVertexProperty(Object key, Object var): allows an agent in node v to write a
variable var identified by the key parameter on the white-board of v. By default, the
white-board of each node contains one variable: its label. The key object allowing to
access the label of a node is the string object “label”.

• getVertexProperty(Object key): returns the value of the local variable of the white-
board of a node corresponding to the key parameter. The getVeretxPropertyKeys()

allows an agent in a node v to learn all the local variables stored in the white-board of
node v.

• lockVertexProperties(): allows an agent in node v to have an exclusive access to the
white-board of node v. If the node is already locked, then the agent waits until the node
is unlocked. The vertexPropertiesLocked() method allows to test whether node v is
already locked by another agent or not. We remark that an agent has an exclusive access
to a single variable of the white-board of a node even if the lockVertexProperties()

is not used.

• unlockVertexProperties(): allows the agent in node v to unlock the white-board of
node v so that an other agent can have an exclusive access.

• cloneAgent(): allows an agent in node v to create a clone of itself in the same node v.

• createAgent(Class agClass): allows an agent in node v to create a new agent in the
same node v. The new agent will execute the code specified in the agClass parameter.

6.3.2 A concrete example: Searching for a dangerous thief

Let us consider the following scenario:

• A dangerous thief arrives to the small and rich town of Irbal. The thief goes from house
to house and tries to steal the strong-box in each house. It takes few seconds to the thief
to break out the alarm device and to steal the strong-box.

• The police is aware that a thief is being operating in their town and many policemen are
trying to capture him. The only moment a policeman can capture the thief is when the
thief is stealing.

• The thief is under pressure and once he steals a house, he randomly moves and hides
out in a new house for some time, then he tries to steal the new house.

The policemen are aware of the technique of the thief but they do not know what strategy
they must adopt in order to capture the thief quickly before he steals all the town. ViSiDiA
can help them! In fact, the houses of the town can be modeled using a graph. The thief and
the policemen can be simulated using agents. The algorithm executed by the thief can be

6.4. The synchronous model in ViSiDiA 163

easily encoded using the api of ViSiDiA. It remains to define the strategy to be adopted by
the policemen and to test its performance. Suppose for example that we decide to scatter k

policemen in the town, and suppose that each policeman adopts the following strategy: “move
randomly from house to house wondering to creep up on the thief”.

In Fig. 6.6 (resp. Fig. 6.7), we give the algorithm to be executed by the thief (resp. a
policeman). In Fig. 6.8, we give a snapshot of the GUI of ViSiDiA while a simulation of the
thief and the policemen is running. One can see three policemen moving and the thief stealing
the strong-box of node number 0. Notice also that the label of the nodes are used in order to
model the state of the thief:

• if a node v has label S, then the thief is in v and is stealing the strong-box of v.

• if a node v has label H, then the thief is in v and is hiding off himself in v.

• if a node v has label N (default), then the strong-box of node v is not yet stolen by the
thief.

• if a node v has label D, then the thief has already stolen the strong-box of v.

• if a node v has label C, then the thief was captured by a policeman in node v. Note that
we use a static variable thiefCaptured in the code of the policemen. This variable
is shared by all the policemen and allows a policeman to inform the others that he
captured the thief. This can model the following scenario: “if a policeman captures the
thief then he informs all other policemen by phone”.

6.4 The synchronous model in ViSiDiA

Let us first recall that: “ In a synchronous network, there exists a global clock which generates
pulses”. One can then refine this definition by giving precisely the time needed to make some
computation.

For instance, we can have the following three different communication assumptions:

• in the message passing model, it takes one time unit for a node to send a message to
one neighbor.

• in the message passing model it takes one time unit for a node to send a message to all
its neighbors.

• in the mobile agent model, it takes one time unit to an agent to cross an edge.

In addition, one can make some other kind of assumptions. For instance, we can have the
following:

164 Chapter 6. ViSiDiA

public class Thief extends Agent {

public void init() {
Random randHide = new Random();
Random randMove = new Random();

boolean captured = false;

while (! captured) {
int degree = getArity();
int randomDirection = Math.abs(randMove.nextInt(degree));
moveToDoor(randomDirection);

String oldLabel = (String)getVertexProperty("label");

/* The thief is in the house */
setVertexProperty("label", new String("H"));
try {
/* The thief waits a random time before stealing */
Thread.sleep((Math.abs(randHide.nextInt(5))+1)*500);

} catch (Exception e) { }

/* if the house was not stolen */
if(oldLabel.equals("N")) {
/* The thief is stealing for 3 seconds */
setVertexProperty("label", new String("S"));
try {
Thread.sleep(3000);

} catch (Exception e) { }

lockVertexProperties();
/* if the thief is captured */
if(((String)getVertexProperty("label")).equals("C"))
captured = true;

else
/* the house is stolen */
setVertexProperty("label", new String("D"));

unlockVertexProperties();
} else {
/* the house was already stolen */
setVertexProperty("label", new String("D"));

}
}

}
}

Figure 6.6: Thief algorithm: code with ViSiDiA

6.4. The synchronous model in ViSiDiA 165

public class Policeman extends Agent {

static boolean thiefCaptured = false;

public void init() {
Random randMove = new Random();

while (! thiefCaptured) {
int degree = getArity();
int randomDirection = Math.abs(randMove.nextInt(degree));

moveToDoor(randomDirection);

lockVertexProperties();
/* if the thief is stealing then capture him */
if(((String)getVertexProperty("label")).equals("S")) {
thiefCaptured = true;
setVertexProperty("label", new String("C"));

}
unlockVertexProperties();

}
}

Figure 6.7: Policeman algorithm: code with ViSiDiA

Figure 6.8: An execution using one thief and three policemen with ViSiDiA

166 Chapter 6. ViSiDiA

• in the message passing model, it takes no time for a node to do any local computation.

• in the mobile agent model, it takes one time unit to write/read the white-board of a
node.

• in the mobile agent model, each time unit, only one agent can write/read the white-
board of a node.

ViSiDiA allows the user to encode and to simulate a synchronous algorithm under any
combination of the previous assumptions. The general idea is to write an algorithm in many
blocks, each of them takes one time unit. No matter what kind of instructions the user writes
in a block, the only restriction is that the instructions of a block take one time unit in the
theoretical model.

The most important feature of the synchronous api is the nextPulse() method. In fact,
when the user invokes this method in his algorithm, the corresponding computation entity
(node or agent) is blocked until all the other entities invoke the nextPulse() method. In
practice, the user must simply insert the nextPulse() method in his algorithm each time
he writes a sequence of instructions which takes one time unit in his theoretical synchronous
model. In other words, any block of instructions encapsulated by two calls to the nextPulse()

method takes one time unit.

Remark 6.4.1 The methods provided by ViSiDiA for sending and receiving messages in the
synchronous model are essentially the same as in the asynchronous case from a syntactical
point of view. Nevertheless, their actions are fundamentally different. In fact, assume a syn-
chronous model and suppose that it takes one time unit to send a message. Suppose that at
some pulse t, a node v sends a message to a node u and then v invokes the nextPulse()
method, i.e., the node declares that it is safe for the current pulse t. In this case, the syn-
chronous api of ViSiDiA guarantees that

• the message is visualized before pulse t is finished, that is before node u enters pulse
t + 1.

• the message is delivered to u only at the beginning of pulse t+1. In other words, if node
u executes the receiveFrom() method in pulse t, then it can not read the message sent
by v because it has not yet arrived to destination.

This remark is crucial for the correctness of the simulation and the visualization architecture
of the synchronous version of ViSiDiA.

In Fig. 6.9, we give an implementation of the classical synchronous message passing BFS
tree algorithm using the api of ViSiDiA. The algorithm is a direct consequence of the Flood

algorithm (Fig. 6.2) in a synchronous model where each time unit a node can send a message
to all its neighbors.

6.5. The distributed version of ViSiDiA 167

public class SynchBFS extends SyncAlgorithm {

public void init() {

boolean run = true;

int degree = getArity();
String label = (String)getProperty("label");

while(run) {
if(label.equals("R")) { // the node is the root
sendAll(new StringMessage("WAVE",wave));
run = false;
nextPulse();

} else {
if(anyMsg()) { // check if any message is arrived
Door door = new Door();
StringMessage msg = (StringMessage)receive(door);
// mark my father in the tree
setDoorState(new MarkedState(true),door.getNum());
putProperty("label", new String("T"));
// broadcast the message to neighbors
sendAll(new StringMessage("WAVE",wave));
run = false;

}
nextPulse();

}
}

}
}

Figure 6.9: Synchronous message passing BFS tree: code for a node with ViSiDiA

6.5 The distributed version of ViSiDiA

6.5.1 General idea

In order to allow experimentations on very huge graphs, we have developed a distributed
version of ViSiDiA . This new version is based on distributing the threads which execute an
algorithm on a real network of machines. More precisely, the visualization of an algorithm
takes place on the local host of the user whereas the simulation is distributed over many
machines. In the following paragraphs, we outline the architecture of the distributed version
without going into technical details.

Let us consider a simulation graph on which we want to simulate a distributed algorithm.
Typically, the simulation graph is the graph drawn by the user on the GUI. Suppose that
we have a real network of machines that we model using a network graph. The general idea
of the distributed version is to decompose the nodes of the simulation graph into clusters
and to make the nodes of each cluster run on one machine of the real network. In Fig. 6.10,
we give a concrete example of a network graph, a simulation graph and the corresponding
decomposition.

168 Chapter 6. ViSiDiA

GUI

msg msg

Figure 6.10: The general idea of the simulation in the distributed version of ViSiDiA

6.5.2 General architecture

We recall that, in the centralized version of ViSiDiA, the simulation is controlled by a simu-
lator and the threads corresponding to the simulation graph run on the local host of the user.
In particular, the simulator allows the threads to send messages to their neighbors.

In the distributed version, there is no simulator and the threads corresponding to the
simulation graph are completely independent of each others and do not share any centralized
entity. In fact, we use a remote object called remote node in order to implement a node of the
simulation graph. Each remote node is hosted by a network machine and run the distributed
algorithm using a java thread in a real autonomous way. In particular, each node aims a
set of references (computed at the beginning of the simulation) and allowing it to contact its
neighbors. The general data structure of a remote object corresponding to a node is depicted
in Fig. 6.11. In practice, a node can be viewed as an object that acts some times like a“server”
and some times like a “client”. The communication between the nodes is ensured using java
remote method invocations RMI (see, e.g., [RD00, Sun]).

messages

Properties

Algorithm

(thread)

door dv − 1

door 0

door 1

door 2
console reference

neighbor reference 0

neighbor reference dv − 1

Figure 6.11: Remote node structure

For the visualization, we use a remote object called the console. The console (and the
GUI) run on the local-host of the user. Each time a remote node makes an action which needs
to be visualized, it generates an event and transmits it to the console. Then, the console can
perform the actions needed for the visualization.

6.5. The distributed version of ViSiDiA 169

localhost

local node

host 2

Console

local node

local node

GUI

host 1

host 3

Figure 6.12: A general view of the remote objects in the distributed version of ViSiDiA

In order to dynamically create the remote nodes corresponding to the simulation graph,
we use another remote object called remote local node. The user must create at least one
remote local node per machine of the network graph. Each remote local node is responsible
for creating a group of remote nodes. Before starting a simulation, the user must configure
ViSiDiA by providing the name of the remote local nodes participating in the simulation and
the way the remote nodes are distributed over the network.

Generally speaking, the local nodes and the console allow the user to supervise the simu-
lation. When the user starts a simulation using the distribued version of ViSiDiA, the console
contacts sequentially each remote local node and asks it to create as many remote nodes as
needed. Once the remote nodes are created on each machine, they are intialized in order to
run autonomously. In particular, we initialize the references (see Fig. 6.11) enabling them to
communicate with their neighbors. At any moment of the simulation, the console and the
remote local nodes can collect informations about the simulation. But, they do not interfere
with the computations and the communications done by the remote nodes.

In Fig. 6.12, we give a general view of the distributed architecture of ViSiDiA (a simulation
graph, a three-machine network graph, the console running on the local-host, three remote
local nodes, seven remote nodes distributed according to the decomposition of Fig 6.10).

Remark 6.5.1 The distributed version of ViSiDiA can be run using one machine. In this
case, all the remote objects are created on the same machine.

Remark 6.5.2 In practice, the api provided by the distributed version is essentially the same
as the centralized one and any algorithm can be immediately transformed to run on the dis-
tributed version by simply inheriting from the ViSiDiA DistAlgorithm class. Nevertheless,

170 Chapter 6. ViSiDiA

the distributed version allows to implement distributed algorithms only in the asynchronous
message passing model.

6.5.3 Performance

The goal of the distributed version of ViSiDiA is to make experimentations of distributed
algorithms using very huge graphs. Typically, the user should use the centralized version in
order to test the correctness of an algorithm. Then, he should use the distributed version in
order to get relevant experimental results using huge simulation graphs.

The performance of the distributed version depends heavily on the properties of the real
network. In fact, if we use a larger number of machines or more powerful machines for the real
network, then we are able to create more threads corresponding to the simulation graph, and
thus to make experimentation on larger graphs. In practice, we think that it is always possible
to find the resources required to create as many threads as necessary for a simulation. Hence,
the distributed version of ViSiDiA is tailored for experimentation of distributed algorithms
on very huge graphs.

The current implementation of the distributed version of ViSiDiA improves significantly
the performance of the centralized one. Typically, it allows a simulation on a graph (grid)
of 20000 nodes, using a network of five machines (Pentium III Bi-PRO 32 Mo), whereas the
centralized version allows a simulation on a grid of at most 5000 nodes (on a localhost Pentium
III Bi-PRO 256 Mo). Our goal in the future is to run a simulation on a graph having some
millions of nodes. Since, the ViSiDiA architecture is perfectly adapted to such a simulation,
the main remaining challenge is to improve the GUI of ViSiDiA in order to support such huge
graphs. We are currently working on it.

Remark 6.5.3 The decomposition (of the simulation graph) implied by the distributed version
can also be of a theoretical interest. In the current implementation, we simply allow the user to
decompose the simulation graph by hand using the GUI, or to randomly distribute the nodes
of the simulation graph over the real network. It would be very interesting to design and
implement more sophisticated decomposition algorithms.

6.6 Future works

The ultimate ambition behind the ViSiDiA project is to provide a reference platform allowing
researchers and students to implement and test distributed algorithms. We are continuing
our efforts in order to attain this goal. In our future works, we plan to add the following
features:

1. Add new functionalities to ViSiDiA in order to simulate distributed algorithm using
weighted graphs. In fact, at present, the data structure corresponding to a graph in
ViSiDiA implements only unweighted graphs. The user has to write an extra code in

6.6. Future works 171

his algorithm in order to assign weights to edges in a consistent manner. In addition,
the visualization of the weights of edges is not taken into account yet.

2. Allow the user to control the execution of a distributed algorithm by implementing his
own process manager. Typically, the user should be able to speed up the execution of
a thread modeling a given node or even to give priority to the threads corresponding to
each node of the graph. This allows the user to observe the behavior of a distributed
algorithm when assuming different processor speeds. One can also think of a graph
structure which allows the user to control the speed of messages for each edge. This can
be very precious when studying some highly asynchronous distributed algorithms.

3. Find a friendly way to simulate and analyze distributed protocols using precomputed
data structures. For instance, many rooting algorithms use a precomputed data struc-
ture in order to describe a rooting scheme. In general, the rooting scheme is local, i.e.,
that is it relies only on local information stored in the message and/or in the correspond-
ing node. It would be very interesting to provide an api for generating the precomputed
data structure in an easy way and to focus on the rooting scheme itself.

4. Find new ideas in order to handle the simulation on very huge graphs, i.e., about 106

nodes. There are at least two possible solutions to achieve our goal. The first one is to
improve our GUI. The second one is to create on the fly the data structure needed for
the distributed simulation by efficiently parsing a text file modeling the graph, instead
of using the GUI for launching the simulation. The goal here is no more to visualize
but to get relevant experimental results.

5. Improve the experimentation module of ViSiDiA. For instance, ViSiDiA allows to run
automatically an algorithm many times and to collect the total number of messages
exchanged by nodes at each execution using a java window. Thus, the user can for
example compute the average message complexity of an algorithm. The user can also
collect other experimental results by writing extra-instructions in the java code of the
distributed algorithm to be tested. It would be interesting to enable the user to configure
ViSiDiA in order to collect any kind of experimental information using the GUI. The
goal here is to allow researchers to get experimental results in a friendly way.

172 Chapter 6. ViSiDiA

Conclusion

Les travaux présentés dans cette thèse sont de natures différentes. Ils partagent cependant un
objectifs commun: celui d’une meilleure compréhension des aspects locaux de l’algorithmique
distribuée. Ces aspects locaux se sont exprimés en premier lieu lors de la conception
d’algorithmes efficaces en temps. Ainsi, nous avons proposé de nouveaux algorithmes effi-
caces qui permettent de construire des structures locales de graphes couramment utilisées
en calculs distribués. D’abord, la construction de partitions a permis de mettre en lumière
quelques problèmes typiques en algorithmique distribuée, et de mettre en place les techniques
adéquates pour les résoudre de façon efficace. Ensuite, nos travaux sur la localité des sous
graphes couvrants (spanners) ont permis d’exposer de nouveaux types de spanners ayant de
nouvelles propriétés. Nous avons proposé une technique efficace, en terme de temps, pour
casser la symétrie qui apparâıt inévitablement lors de la résolution de problèmes distribués.
Ces différents travaux ont aussi l’intérêt d’ouvrir de nouvelles perspectives et de poser de
nouvelles questions notamment sur l’amélioration de la performance des algorithmes et des
structures présentés. Il serait par exemple très intéressant de pouvoir construire des spanners
optimaux de façon déterministe et en temps poly-logarithmique.

Les aspects locaux se sont ensuite exprimés dans un cadre plus formel, celui de la concep-
tion d’algorithmes distribués de façon abstraite et unifiée avec les systèmes de réétiquetages.
L’utilisation même des systèmes de réétiquetages et leur adéquation pour encoder des al-
gorithmes distribués découlent naturellement de cet aspect local des calculs distribués. Les
travaux que nous avons menés dans ce cadre montrent la puissance des systèmes de réétique-
tages dans l’encodage et la modélisation d’algorithmes distribués. Nos observations montrent
aussi qu’il reste encore un long travail de formalisation rigoureuse pour arriver à proposer
une méthode générale et automatique pour la description d’algorithmes distribués avec des
systèmes de réétiquetages. Nous pensons que nos travaux futurs dans ce cadre peuvent donner
lieu à de jolis résultats aussi puissants qu’inattendus.

Les agents mobiles n’ont pas été moins révélateurs des aspects locaux propres à certains
algorithmes distribués. En effet, les algorithmes que nous avons proposés pour le problème de
Handshake permettent d’obtenir des résultats surprenants par rapport à des solutions qui se
basent sur l’échange de messages. Dans ce sens, les agents mobiles peuvent changer la vision
que nous avons de certains problèmes et nous aider à trouver de nouvelles idées performantes

173

174 Conclusion

et compréhensibles. Les liens que possède le problème du Handshake avec d’autres problèmes
tel que le calcul d’ensemble d’arêtes indépendantes et la coloration laisse le champ libre pour de
nouveaux travaux. Nous sommes confiants que ces travaux mènerons à de nouveaux résultats.

Finalement, la plateforme ViSiDiA a été d’une aide précieuse dans beaucoup de travaux
présentés dans cette thèse. À titre d’exemple, les tests que nous avons effectués dans le
cadre du problème du Handshake nous ont confortés dans notre intuition théorique et nous
ont encouragés à pousser le raisonnement théorique encore plus loin. Nous espérons que
cette plateforme sera utilisée de plus en plus massivement par les étudiants en algorithmique
distribuée mais aussi par les chercheurs. Pour cela, nous poursuivons nos développements,
nos améliorations et nos collaborations avec d’autres chercheurs dans le but de proposer un
outil de référence.

Appendix A

Neighborhood Covers and Network

Synchronizers

Neighborhood covers can be though as a generalization of the basic partition of Chapter 1.
In fact, for any positive integer ρ, a ρ-neighborhood cover of a graph G can be defined as a
collection of clusters C = ∪C such that for every v ∈ V , there exists a cluster C ∈ C such that
Nρ(v) ⊆ C where Nρ(v) = {u ∈ V | d(u, v) � ρ} denotes the ρ-neighborhood of node v in the
graph G. For instance, the basic partition described before is a 0-neighborhood cover of G.
It is not too difficult to see that it is possible to extend our basic partion algorithms in order
to construct ρ-neighborhood covers with good properties.

In addition, network covers can be used as a data structure for network synchronizers.
In order to design the efficient network synchronizers given in [MS00], we just need a 1-
neighborhood cover. Therefore, in next paragraphs, we only show how to extend the algo-
rithms of Chapter 1 for ρ = 1 and we briefly outline the main modifications to be done

A.1 Distributed construction of 1-neighborhood covers

In this section, we extend algorithm Dist Part in order to cover the 1-neighborhood of each
node. We use the same distributed techniques as in Chapter 1 to manage cluster growth.
However, we make a cluster explore two layers at the same time instead of only one. At each
new exploration, each cluster fights in order to maintain two layers li and li+1 with i the radius
of the cluster. The first layer li allows the cluster to compute the sparsity condition (the same
one than in algorithm Dist Part). The second layer li+1 (which is the last explored one)
guarantees that the neighborhoods of all nodes in layer li are in the current cluster. There
are mainly five important modifications to do:

1. At the beginning of the algorithm, all nodes are orphans. An orphan node first explores
two consecutive layers before starting computing the sparsity condition.

175

176 Appendix A. Neighborhood Covers and Network Synchronizers

2. If the sparsity condition is satisfied for layer li, then a cluster begins a new exploration,
i.e., the leaves in layer li+1 try to invade new nodes. If the new exploration succeeds,
then layer li+1 becomes layer li′=i+1 and the new explored layer becomes the new li′+1

layer.

3. If the sparsity condition for layer li is not satisfied, then the construction of the cluster
is finished. The finished cluster contains not only all layers lj<i but also the two layers li

and li+1. Nevertheless, only nodes in layers lj<i are in a final state. The 1-neighborhoods
of all nodes in layer li are covered by the finished cluster but they do not stop computing
yet. In fact, the 1-neighborhoods of nodes in layer li+1 may not be covered by a cluster.
Hence, nodes in layer li become orphan clusters with identity −∞ in order to allow
other clusters to grow and cover the neighborhoods of nodes in layer li+1. On the other
side, nodes in layer li+1 become orphan clusters with their initial identifiers and continue
competing in order to grow new clusters.

4. If a new exploration fails, i.e., there is a cluster at distance 1 or 2 (from layer li+1) with
a bigger identifier, then:

• either the winner lost against another neighboring cluster and the current cluster
is not invaded. Hence, the cluster simply retries a new exploration.

• or the current cluster is invaded and the cluster looses its last layer li+1. Hence,
invaded nodes in layer li+1 become part of the last layer liwin+1 of the winner
cluster. Nodes in layer li+1 which have not been invaded become orphan nodes
and begin a new exploration using their own identifiers. Layer li becomes the last
layer li′+1=i and layer li−1 becomes layer li′=i−1. Then the cluster begins a new
exploration once again.

5. When the construction of a cluster is finished, nodes at distance at least 2 from the
border of the cluster, i.e., layers lj�i−1, switch to final states. In fact, layer li−1 of a
finished cluster acts as a barrier that protects the finished cluster from future invasions.
Layers lj�i−1 are usually called the Kernel of the cluster.

It is easy to see that the time and message complexity of the extended algorithm increases
by only a constant factor due to the computation of the extra layer li+1. Notice also that it
is not difficult to adapt the techniques of algorithms Fast Part and Elect Part in order
to obtain sublinear time complexity.

An example of cluster growth

In Fig. A.1, we give an example of how the cover is constructed. In our example, there are
four active clusters: 1, 2, 3 and 4 with identities Id1 > Id2 > Id3 > Id4. We suppose that
there is a finished cluster in the neighborhood of cluster 1.

A.2. Application to network synchronizers 177

The nodes in layer li of the finished cluster (first part of Fig. A.1) still participate in the
computation with identity −∞, all the nodes in the Kernel of the finished cluster are in a
final state. There is also a node in layer li+1 of the finished cluster which belongs to layer li+1

of cluster 1.
Suppose that the layers li of the active clusters satisfy the sparsity condition, then these

clusters will try to grow. Cluster 2 can not grow because cluster 1 is at distance two of it and
has a bigger identity. Cluster 1 will invade both clusters 3 and 4. Cluster 4 is orphan and
it simply joins the last layer of cluster 1. Cluster 3 will lose its last layer li+1. The invaded
nodes of cluster 3 join cluster 1 and the other nodes which have not been invaded become
orphan clusters (second part of Fig. A.1). Note also that the node with identity −∞ in the
finished cluster is invaded by cluster 1. This guarantees that the neighborhood of the children
of the (−∞)-node in the finished cluster is covered by cluster 1.

Once the new exploration is finished, cluster 1 verifies the sparsity condition. If it is
satisfied, a new exploration will begin and clusters 2 and 3 will be invaded. Note that nodes
in the Kernel of the finished cluster will not be invaded by cluster 1. If the sparsity condition
is not satisfied which is the case in the third part of Fig. A.1, the construction of cluster 1
is finished. The nodes in layer li′ become orphans with identity −∞. The nodes in layer
li′+1 become orphan nodes except those which are already in layer li of another finished
cluster (those whose neighborhoods are covered). Note that the two finished clusters we have
constructed overlap (they have a common edge).

A.2 Application to network synchronizers

The basic partition of Chapter 1 and the 1-neighborhood covers constructed in previous
sections are of special interest for designing network synchronizers γ, γ1 and γ2 [MS00]. In
the following, we review the basic properties of these synchronizers.

Background

Network synchronizers allow to transform a synchronous algorithm into an asynchronous one.
In general, one prefers to design a distributed algorithm in a synchronous model rather than an
asynchronous model which is typically harder to grasp and to analyze ([Pel00], Chapter 6).
From a practical point of view, network synchronizers provide a uniform methodology for
transforming synchronous distributed algorithms in asynchronous ones.

Generally speaking, the basic idea of network synchronizers is to simulate a global clock
by using local pulse generators. If the local clock pulse of some node v is equal to p, then node
v knows that the messages that it has sent at pulse p − 1 have reached their destinations.
Many simulation techniques were developed in order to guarantee this property:

1. The first basic technique is known as synchronizer α. The general idea of synchronizer

178 Appendix A. Neighborhood Covers and Network Synchronizers

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

li

li

li+1

li+1

li
li+1

Id2

Id1

Id3

Id4

−∞

Finished

(a) Before cluster 1 expansion

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Id1

l
i′

l
i′

l
i′+1

Id3

Id5

Id2

li
li+1

l
i′+1

Finished

(b) After cluster 1 expansion

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��

��

Id3

Id4

−∞

Id2

li+1

li

l
i′+1

l
i′

Id5

Id6

Finished

−∞

−∞

−∞

Finished

(c) After construction of cluster 1 is fin-

ished

Figure A.1: An example of a cluster expansion for cover needed for γ2

α is to send an acknowledgment corresponding to each received message of the original
synchronous algorithm. Once, a node receives an acknowledgment of all the original
messages corresponding to one pulse, the node informs its neighbors and then it gener-
ates the next pulse. This technique leads to an overhead of O(|E|) messages in order
to simulate a pulse. Assuming that a message delay is at most O(1) (this is only for
performance analysis), it also leads to the theoretical O(1) time overhead per pulse.

2. The second basic technique called synchronizer β assumes a precomputed rooted BFS
spanning tree T of G. Only the root of T have a pulse generator which controls all
other nodes. In fact, once a node u receives the acknowledgments of the messages it has
sent, the node u is ready for the next pulse and it informs its parent in the tree T . The

A.2. Application to network synchronizers 179

parents forward this information until it reaches the root of T . Once the root learns
that all the nodes are ready for the next pulse, it broadcasts a message saying “it is
time for the next pulse”! Thus, synchronizer β implies an overhead of O(|V |) messages
and O(D) time per pulse, where D is the diameter of G.

3. The third technique is an intermediate technique which provides a good time-message
trade-offs. This technique implies three synchronizers γ, γ1 and γ2 ([MS00]). All of
these three synchronizers use sparse covers. More precisely, synchronizer γ uses the
basic partition as a data structure. Synchronizer γ1 uses a cover based on the basic
partition where each edge belongs to at least one cluster. This modified partition can
be easily constructed by our algorithms by simply marking the last rejected layer as part
of the cluster. Finally, synchronizer γ2 uses the the 1-neighborhood cover described in
the previous section.

A detailed description of synchronizers γ, γ1 and γ2 can be found in [MS00]. In the
following, we just outline the basic ideas used in synchronizer γ (the two other synchronizers
are based on the same general ideas). First, we assume the following:

1. A partition C of G is constructed.

2. A rooted BFS spanning tree TC for each cluster C ∈ C is constructed.

3. A set I of intercluster edges is selected.

In order to simulate a pulse, we combine the techniques of synchronizers α and β. Roughly
speaking, the root of each tree TC first waits to learn that the nodes in C are ready for the
next pulse (which costs O(|C|) messages and O(Rad(C)) time for each cluster). Then, the
cluster tries to synchronize with its neighbors using the intercluster edges. More precisely, the
root of C broadcasts a notification message all along the tree TC saying that all the nodes in
its cluster are ready. When the leaves of TC receive the notification message, they forward it
to neighboring clusters using the selected intercluster edges (which costs O(|I|) message and
O(1) time). Symmetrically, the leaves receive a notification from their neighboring clusters.
When receiving such a notification, they send it back to their root. Once the root receives the
notification messages of its neighbors, it sends a message to the nodes in its cluster saying “it
is time for the next pulse”. Thus, the global overhead is O(n + |I|) messages and O(Rad(C))
time per pulse.

Thus, if we take the basic partition as a data structure, then the global overhead is
O(n1+1/k) messages and O(k) time per pulse which gives a good compromise comparing with
synchronizer α and β.

180 Appendix A. Neighborhood Covers and Network Synchronizers

Contribution

The previous overhead is essentially optimal according to Lemma 25.1.7 in Peleg’s
book [Pel00]. Synchronizers γ, γ1 and γ2 have the same performances up to a constant
factor. Hence, the remaining challenge was to improve the pre-processing step of construct-
ing the required graph data structure. Using our algorithms, the time complexity of this
pre-processing step is reduced from O(n) in previous implementations to O(n1−1/k).

Appendix B

Case Study: Circulant Graphs

In this chapter, we study the efficiency of our sublinear partition algorithms (Fast Part

and Elect Part) described and analyzed in Chapter 1 in the case of Circulant Graphs. In
fact, Circulant Graphs are dense enough to be interesting for the algorithm we are studying.
They have enough large diameter in order to let the analysis non trivial and constructive. In
addition, the analysis given here is interesting from a theoretical point of view. In particular,
the proofs of theorem B.0.6 illustrate the improvements discussed in Section 1.6.4.

Definition B.0.1 A circulant graph Cirn(L) is a graph of n nodes {1, 2, ..., 3} in which a
vertex i is adjacent to nodes (i− j) and (i + j) for each i and j in the list L (see Fig. B.1 for
an example).

Figure B.1: An Example of Cirn(L) graphs with n=8 and L ∈ {{1}, {1, 2}, {1, 2, 3}}

Definition B.0.2 For every parameter ε such that 0 < ε � 1, we define the graph Cirε
n to be

the circulant graph Cirn(1, 2, ...,
nε

2 �).

In the sequel, we suppose that ε > 1
k . In fact, if ε � 1

k then the graph is already sparse
and all our algorithms terminate in O(1) rounds.

Theorem B.0.3 For k < log(n) and for every graph Cirε
n, the time complexity of algorithm

Fast Part is bounded by O(n1−ε).

Proof For k < log(n), any constructed cluster has radius at most 1. It can also be shown
that Λ � 2 n

nε = O(n1−ε). Thus, the theorem follows as a consequence of Theorem 1.5.8.

181

182 Appendix B. Case Study: Circulant Graphs

Theorem B.0.4 Let T be the time complexity of algorithm Elect Part. Then, for every
graph Cirε

n, the expected value of T satisfies:

E(T) = O(k3 log(n) nε)

Proof For any graph Cirε
n, it is easy to show that K = 2k nε (we recall that K is an upper

bound of the 2k-neighborhood of any node). Thus, log(1− 1
K) � − 1

K = − 1
2knε and the result

follows immediately from Theorem 1.6.3.

The two theorems B.0.3 and B.0.4 are immediate consequences of the analysis we have
already made for algorithms Sync Part and Elect Part. In particular, we obtain a time
complexity which is better than O(n1− 1

k). Nevertheless, using a more careful analysis, we
obtain the following bounds:

Theorem B.0.5 For every graph Cirε
n, the expected time complexity T of algorithm

Elect Part satisfies:
E(T) = O

(
k3log(n) + kn

1
k

)

Theorem B.0.6 Using the improved version of algorithm Elect Part described in Sec-
tion 1.6.4, the expected time complexity T of algorithm Elect Part satisfies:

E(T) = O(k3 log(n))

Proof We prove the previous two theorems in two parts. The first part is common to
the two theorems. The technical arguments are similar to those in the analysis made
in Theorem 1.6.3 but the reasoning is different and gives an idea about the proof of the
improvements of Section 1.6.4.

First Part of the proof Let i � 0 be a phase of algorithm Elect Part and (Gi)i�0 be the
sequence of graphs such that G0 = G and for all i � 1, Gi is the graph obtained by removing
the nodes belonging to a finished cluster from Gi−1.
Let Vi be the set of nodes having a degree higher than
nε

2 � in phase i. Let Xi be the random
variable which denotes the number of nodes in Vi, and let Yi be the number of nodes from Vi

which are locally k-elected in the ith step. The following inequality holds:

E (Yi | Gi) � Xi

K
,

One can show that if the node v belongs to Vi, then every active neighbor w of v is also
in Vi. Hence, we can state the following:

183

E (Xi+1 | Gi) � Xi − E (Yi | Gi) nε

2

� Xi(1 − nε

2K)

� Xi(1 − 1
2·2k).

By induction and using the same arguments as in Theorem 1.6.3, the expected time such
that Xi = 1 is bounded by:

O(k2 log(n)
log(4k

4k−1)
)

Let us consider the time after which all nodes in the graph have a degree less than
nε

2 �,
i.e., the time such that Vi = 0) . One can show that the remaining nodes are grouped in many
connected fragments that can be divided in two types: dense components with more than n

1
k

nodes and sparse components with no more than n
1
k nodes. All theses components are dis-

joint and do not share any node. Thus, the algorithm runs independently on each component.

Let us consider a dense component Cd, i.e., n
1
k < |Cd| <
nε

2 �). In one phase, there will
be exactly one elected node in Cd and the finished cluster constructed around this node will
contain the whole component Cd. Thus, in O(k) time, all nodes in Cd become finished.
Second part of the proof of Theorem B.0.5: Let us consider a sparse component Cs,
i.e., |Cs| � n

1
k). The nodes of such a component have a degree less than n

1
k . At each phase of

algorithm Elect Part, there will be exactly one elected node in Cs which forms a finished
single node cluster. Thus, we need at most O(n

1
k) phases of O(k) time units each before all

nodes in Cs become finished.
To conclude, if Vi becomes empty then we need at most O(kn

1
k) time units before the

algorithm terminates and Theorem B.0.5 holds.

Second Part of the proof of Theorem B.0.6: Let us consider a sparse component Cs,
i.e., |Cs| � n

1
k). The nodes of such a component have a degree less then n

1
k . Thus, using

from the improvements of algorithm Elect Part in Section 1.6.4, these nodes are allowed
to be finished. Hence, in O(1) time, they all become finished single node clusters.

To conclude, if Vi becomes empty then we need at most O(k) time units before the
algorithm terminates and Theorem B.0.6 holds.

184 Appendix B. Case Study: Circulant Graphs

Bibliography

[AAER05] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. On the power of anonymous
one-way communication. In 9th conf. on Principles of Distributed Computing
(PODC05), pages 307–318, 2005.

[ABCP93] Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-
linear cost sequential and distributed constructions of sparse neighborhood cov-
erss. In 34th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 638–647. IEEE Computer Society Press, November 1993.

[ABCP96] Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Fast dis-
tributed network decompositions and covers. Journal of Parallel and Distributed
Computing, 39:105–114, 1996.

[ABCP98] Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-
linear time construction of sparse neighborhood covers. SIAM Journal on Com-
puting, 28(1):263–277, February 1998.

[ABNLP89] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Compact
distributed data structures for adaptive routing. CWI Quarterly, 2(4):277–305,
1989.

[ABNLP90] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved
routing strategies with succinct tables. Journal of Algorithms, 11(3):307–341,
1990.

[AGLP89] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Poltkin. Network decompo-
sition and locality in distributed computation. 30th IEEE Symposium on Foun-
dation of Computer Science (FOCS89), pages 364–369, 1989.

[Ang80] D. Angluin. Local and global properties in networks of processors. In 12th

Symposium on Theory Of Computing (STOC80), pages 82–93, 1980.

[AP90a] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic over-
head. 31st IEEE Symposium on Foundations of Computer Science (FOCS90),
2:503–513, October 1990.

185

186 BIBLIOGRAPHY

[AP90b] Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Symposium on
Foundations of Computer Science (FOCS90), pages 503–513. IEEE Computer
Society Press, October 1990.

[AP92] B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-
off. SIAM Journal on Discrete Mathematics, 5:151–162, 1992.

[AP95] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM,
42:1021–1058, 1995.

[AR93] Y. Afek and M. Ricklin. Sparser : a paradigm for running distributed algorithms.
Journal of Algorithms, 14:316–328, 1993.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons,
1992.

[Awe85] B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32:804–823, 1985.

[Awe87] Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election and related problems. In 19th ACM Symposium
on Theory of Computing (STOC87), pages 230–240. ACM Press, May 1987.

[BA01] Mordechai Ben-Ari. Interactive execution of distributed algorithms. Journal
on Educational Resources in Computing (JERIC), 1(2):Article No. 2, 2001.
http://stwww.weizmann.ac.il/g-cs/benari/daj/index.html.

[BBCD02] F. Belkouch, M. Bui, L. Chen, and A. K. Datta. Self-stabilizing deterministic
network decomposition. Journal of Parralel and Distributed Computing, 62:696–
714, 2002.

[BFFS03] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Can we elect if we cannot
compare? In 15th ACM Symposium on Parallel Algorithms and Architectures
(SPAA03), pages 324–332, 2003.

[BGS05] Surender Baswana, Vishrut Goyal, and Sandeep Sen. All-pairs nearly 2-
approximate shortest-paths in O(n2polylogn) time. In 21st Symposium on The-
oretical Aspects of Computer Science (STACS05), volume 3404 of Lecture Notes
in Computer Science, pages 666–679. Springer, 2005.

[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of (α, β)-spanners and purely additive spanners. In 16th Symposium
on Discrete Algorithms (SODA05), pages 672–681. ACM-SIAM, January 2005.

BIBLIOGRAPHY 187

[BS03] Surender Baswana and Sandeep Sen. A simple linear time algorithm for comput-
ing a (2k−1)-spanner of O(n1+1/k) size in weighted graphs. In 30th International
Colloquium on Automata, Languages and Programming (ICALP03), volume 2719
of Lecture Notes in Computer Science, pages 384–396. Springer, July 2003.

[BS04] Surender Baswana and Sandeep Sen. Approximate distance oracles for un-
weighted graphs in Õ(n2) time. In 15th Symposium on Discrete Algorithms
(SODA04), pages 271–280. ACM-SIAM, January 2004.

[CFJ+03] Steve Carr, Changpeng Fang, Timothy R. Jozwowski, Jean Mayo, and Ching-
Kuang Shene. Concurrentmentor: A visualization system for distributed pro-
gramming education. In The international Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA06), pages 1676–1682.
CSREA Press, 2003. http://www.cs.mtu.edu/ shene/NSF-3/index.html.

[CGMO06] J. Chalopin, E. Godard, Y. Métivier, and R. Ossamy. Mobile agent algorithms
versus message passing algorithms. In 10th International Conference On Princi-
ples Of Distributed Systems (OPODIS06), page to appear, 2006.

[Cha82] E. J. H. Chang. Echo algorithms: Depth parallel operations on general graphs.
IEEE Trans. Software Eng., 8(4):391–401, 1982.

[Cha05] J. Chalopin. Local computations on closed unlabelled edges : the election prob-
lem and the naming problem. In 31st Annual Conference on Current Trends in
Theory and Practice of Informatics (SOFSEM05), volume 3381 of Lecture Notes
in Computer Science, pages 82–91. Springer-Verlag, jan 2005.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press/McGraw-Hill, Cambridge, MA, 1990.

[CM04] J. Chalopin and Y. Métivier. Election and local computations on edges. In
Foundations of System Specification and Computation Structures (FoSSaCS04),
volume 2987 of Lecture Notes in Computer Science, pages 90–104. Springer-
Verlag, mar 2004.

[CM05] J. Chalopin and Y. Métivier. A bridge between the asynchronous message passing
model and local computations in graphs. In Mathematical Foundations of Com-
puter Science (MFCS05), volume 3618 of Lecture Notes in Computer Science,
pages 212–223. Springer-Verlag, aug 2005.

[CMZ06] J. Chalopin, Y. Métivier, and W. Zielonka. Local computations in graphs: the
case of cellular edge local computations. Fundamenta informaticae, to appear,
2006.

188 BIBLIOGRAPHY

[Coh98] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch
t. SIAM Journal on Computing, 28(1):210–236, 1998.

[Cow93] Lenore J. Cowen. On Local Representations of Graphs and Networks. Ph. D
Thesis, MIT, 1993.

[Cow01] Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algo-
rithms, 38(1):170–183, 2001.

[CV86] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.

[CZ01] Edith Cohen and Uri Zwick. All-pairs small-stretch paths. Journal of Algorithms,
38:335–353, 2001.

[DHSZ04] P. Duchon, N. Hanusse, N. Saheb, and A. Zemmari. Broadcast in the ren-
dezvous model. In 21st Symposium on Theoretical Aspects of Computer Science
(STACS04), volume 2996 of Lecture Notes in Computer Science, pages 559–570,
2004.

[DHSZ06] P. Duchon, N. Hanusse, N. Saheb, and A. Zemmari. Broadcast in the rendezvous
model. Information and Computation, 204(5):697 – 712, 2006. extended abstract
published in the proceedings of 21st Symposium on Theoretical Aspects of Com-
puter Science (STACS04) (see [DHSZ04]).

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM
Journal on Computing, 29(5):1740–1759, 2000.

[EGP98] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with
low stretch factor. Research Report RR-1195-98, LaBRI, University of Bor-
deaux 1, 351, cours de la Libération, 33405 Talence Cedex, France, January
1998.

[EGP03] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with
low stretch factor. Journal of Algorithms, 46:97–114, 2003.

[Elk01] Michael Elkin. Computing almost shortest paths. In 20th ACM Symposium on
Principles of Distributed Computing (PODC01), pages 53–62. ACM Press, 2001.

[Elk04a] Michael Elkin. A faster distributed protocol for constructing a minimum span-
ning tree. In 15th Symposium on Discrete Algorithms (SODA04), pages 359–368.
ACM-SIAM, January 2004.

BIBLIOGRAPHY 189

[Elk04b] Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs
for the distributed minimum spanning tree problems. In 36th ACM Symposium
on Theory of Computing (STOC04), pages 331–340. ACM Press, May 2004.

[EZ04] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-
spanners in the distributed and streaming models. In 23rd ACM Symposium
on Principles of Distributed Computing (PODC04), pages 160–168. ACM Press,
July 2004.

[GKP98] J.A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm
for minimum-weight spanning trees. SIAM Journal on Computing, 27:302–316,
February 1998.

[GM02] E. Godard and Y. Métivier. A characterization of families of graphs in which elec-
tion is possible. In Foundations of System Specification and Computation Struc-
tures (FoSSaCS02) (EATCS best paper award), pages 159–171. Lecture Notes in
Computer Science 2303, Springer-Verlag, 2002.

[GM03] I. Gaber and Y. Mansour. Centralized broadcast in multihop radio networks.
Journal of Algorithms, 46:1–20, 2003.

[GMM04] E. Godard, Y. Métivier, and A. Muscholl. Characterizations of classes of graphs
recognizable by local computations. Theory of Computing Systems, 37:2:249–293,
2004.

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennès, and Ran Raz. Distance labeling
in graphs. Journal of Algorithms, 53(1):85–112, 2004.

[GPS88] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics,
1(4):434–446, 1988.

[HKP98] M. Hanckowiak, M. Karonski, and A. Panconesi. On the distributed complexity
of computing maximal matchings. In 9th Symposium on Discrete Algorithms
(SODA98), pages 219–225, 1998.

[HMR+06] A. El Hibaoui, Y. Métivier, J.M. Robson, N. Saheb-Djahromi, and A. Zemmari.
Analysis of a randomized dynamic timetable handshake algorithm. Technical
Report 1402-06, LaBRI, 2006.

[KMNW05] Fabian Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer.
Fast deterministic distributed maximal independent set computation on growth-
bounded graphs. In 19th International Symposium on Distributed Computing

190 BIBLIOGRAPHY

(DISC05), volume Lecture Notes in Computer Science. Springer, September
2005.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be
computed locally! In 23rd ACM Symposium on Principles of Distributed Com-
puting (PODC04), pages 300–309. ACM Press, July 2004.

[KMW06] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In 17th Symposium on Discrete Algorithms (SODA06), pages 980–
989. ACM-SIAM, January 2006.

[KP98] Shay Kutten and David Peleg. Fast distributed construction of small k-
dominating sets and applications. Journal of Algorithms, 28(1):40–66, 1998.

[KPT03] Boris Koldehofe, Marina Papatriantafilou, and Philippas Tsigas. Integrating a
simulation-visualisation environment in a basic distributed systems course: A
case study using lydian. In 8th SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education (ITiCSE03), pages 35–39. ACM
press, 2003. http://www.cs.chalmers.se/ lydian.

[KY96] T. Kameda and M. Yamashita. Computing on anonymous networks: Part i -
characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems, 7(1):69–89, 1996.

[LB96] Weifa Liang and Richard P. Brent. Constructing the spanners of graphs in
parallel. In 10th International Parallel Processing Symposium (IPPS96), pages
206–210, April 1996.

[Lin87] Nathan Linial. Distributive graph algorithms - Global solutions from local data.
In 28th IEEE Symposium on Foundations of Computer Science (FOCS87), pages
331–335. IEEE Computer Society Press, October 1987.

[Lin92] Nathan Linial. Locality in distributed graphs algorithms. SIAM Journal on
Computing, 21(1):193–201, 1992.

[LMS95] I. Litovsky, Y. Métivier, and E. Sopena. Different local controls for graph rela-
belling systems. Mathematical Systems Theory, 28:41–65, 1995.

[LMS99] I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and dis-
tributed algorithms. In H. Ehrig, H.J. Kreowski, U. Montanari, and G. Rozen-
berg, editors, Handbook of graph grammars and computing by graph transforma-
tion, volume 3, pages 1–56. World Scientific, 1999.

[Lov75] Laszlo Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

BIBLIOGRAPHY 191

[Lov96] L. LovÃ¡sz. Random walks on graphs: a survey. Combinatorics, Paul erdos is
eighty, 2:353–397, 1996.

[LPSP01] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant
diameter graphs. In 20th ACM Symposium on Principles of Distributed Comput-
ing (PODC01), pages 63–71. ACM Press, 2001.

[LPSPP05] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight
spanning tree construction in O(log log n) communication rounds. SIAM Journal
on Discrete Mathematics, 35(1):120–131, 2005.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM Journal on Computing, 15(4):1036–1053, November 1986.

[Lyn96] N. A. Lynch. Distributed algorithms. Morgan KaufmanPublishers, Inc., 1996.

[Maz97] A. Mazurkiewicz. Distributed enumeration. Information Processing Letters,
61:233–239, 1997.

[MMS02] Y. Métivier, M. Mosbah, and A. Sellami. Proving distributed algorithms by graph
relabeling systems: Examples of trees in networks with processor identities. In
Applied Graph Transformations, pages 45–57, Grenoble, 2002.

[MPTU98] Yoram Moses, Zvi Polunsky, Ayellet Tal, and Leonid Ulitsky. Algorithm vi-
sualization for distributed environments. In IEEE Symposium on Information
Visualization (InfoVis98), pages 71–78, 1998.

[MS00] Shlomo Moran and Sagi Snir. Simple and efficient network decomposition and
synchronization. Theoretical Computer Science, 243(1-2):217–241, 2000.

[MSZ00] Y. Métivier, N. Saheb, and A. Zemmari. Randomized rendez vous. In Mathe-
matics and computer science: Algorithms, trees, combinatorics and probabilities,
Trends in mathematics, pages 183–194. Birkhäuser, 2000.

[MSZ02] Y. Métivier, N. Saheb, and A. Zemmari. Randomized local elections. Information
Processing Letters, 82:313–120, 2002.

[MSZ03] Y. Métivier, N. Saheb, and A. Zemmari. Analysis of a randomized rendez vous
algorithm. Information and Computation, 184:109–128, 2003.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[PR00] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time com-
plexity of distributed minimum-weight spanning tree construction. SIAM Journal
on Computing, 30(5):1427–1442, 2000.

192 BIBLIOGRAPHY

[Pri57] Robert. C. Prim. Shortest connection networks and some generalisations. Bell
System Technical Journal, 36:1389–1401, 1957.

[PS92] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring
and network decomposition. 24th ACM Symposium on Theory of Computing
(STOC92), pages 581–592, 1992.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed
network decomposition. Journal of Algorithms, 20(2):356–374, 1996.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency for routing
tables. In 20th ACM Symposium on Theory of Computing (STOC88), pages
43–52. ACM Press, May 1988.

[PU89a] David Peleg and Jeffrey D. Ullman. An optimal synchornizer for the hypercube.
SIAM Journal on Computing, 18(4):740–747, 1989.

[PU89b] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, July 1989.

[PV04] Lucia Draque Penso and C. Barbosa Valmir. A distributed algorithm to find
k-dominating sets. Discrete Applied Mathematics, 141(1-3):243–253, May 2004.

[RD00] G. Roussel and E. Dusris. Java et Internet, Concepts et programmation. Vuibert,
2000.

[RS82] J. Reif and P. Spirakis. Real time resource allocation in distributed systems. In
1st ACM Symposium on Principles of Distributed Computing (PODC82), pages
84–94. ACM Press, 1982.

[RTZ02] Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and
roundtrip routing in directed graphs. In 13th Symposium on Discrete Algorithms
(SODA02), pages 844–851. ACM-SIAM, January 2002.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of
approximate distance oracles and spanners. In 32nd International Colloquium
on Automata, Languages and Programming (ICALP), volume Lecture Notes in
Computer Science, 2005.

[Seg83] A. Segall. Distributed network protocols. IEEE Transactions on Information
Theory, 29(1):23–34, 1983.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for build-
ing application-specific visualizations of parallel programs”. Journal of

BIBLIOGRAPHY 193

Parallel and Distributed Computing, 18(2):258–264, 1993. http://www-
static.cc.gatech.edu/gvu/softviz/parviz/parviz.html.

[SS94] L. Shabtay and A. Segall. Low complexity network synchronization. 8th Inter-
natinal Workshop on Distributed Algorithms, pages 223–237, 1994.

[Sun] Java Sun. Java Remote Method Invocation (RMI).
http://www.sun.com/products/jdk/rmi/.

[Tel00] G. Tel. Introduction to distributed algorithms. Cambridge University Press, 2000.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA01), pages 1–10. ACM
Press, July 2001.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the
ACM, 52(1):1–24, January 2005.

[ViS06] ViSiDiA. http://www.labri.fr/visidia. LaBRI Distributed Algorithms Group,
2006.

[Wen91] Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of
Combinatorial Theory, Series B, 52(1):113–116, 1991.

[Wil93] D. Williams. Probability with Martingals. Cambridge University Press, 1993.

194 BIBLIOGRAPHY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

