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Colorations à distane deux dans les graphes
Résumé : Dans ette thèse, on s'intéresse en partiulier à la olorationdu arré des graphes planaires (deux sommets à distane au plus deux ontdes ouleurs distintes) et à la oloration ylique des graphes planaires(deux sommets inidents à la même fae ont des ouleurs distintes).On montre un résultat général qui implique que deux onjetures im-portantes sur es olorations (Wegner 1977 et Borodin 1984) sont vraiesasymptotiquement.On s'intéresse également à d'autres olorations à distane deux, quiont des liens (plus ou moins vagues) ave l'alloation de fréquenes dansles réseaux radios, la théorie des jeux, la soiologie, et l'éologie.
Mots lés :théorie des graphesoloration de graphesgraphes planairesDisipline: Informatique
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Distane-two olorings of graphs

Abstrat: In this thesis, we study the oloring of the square of planargraphs (two verties at distane at most two reeive distint olors) andthe yli oloring of plane graphs (two verties inident to the samefae reeive distint olors). We show a general result implying thattwo important onjetures on these olorings (Wegner 1977 and Borodin1984) hold asymptotially.We also study other types of distane-two olorings, (more or less) re-lated to frequeny assignment in radio networks, game theory, soiology,and eology.
Keywords:graph theorygraph oloringplanar graphsDisipline: Computer-Siene
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IntrodutionUn des points de départ de ette thèse est le problème d'alloation defréquenes dans les réseaux. Dans un réseau radio, on herhe à assignerdes fréquenes aux antennes de manière à éviter les interférenes. Pourela deux antennes très prohes l'une de l'autre doivent émettre sur desfréquenes très éloignées, tandis que deux antennes relativement prohesdoivent simplement émettre sur des fréquenes su�samment éloignées.Ce problème peut être modélisé par le L(p, q)-étiquetage des graphes,introduit par Griggs et Yeh [GY92℄. Un L(p, q)-étiquetage d'un graphe

G est une assignation d'entiers aux sommets de G telle que deux som-mets adjaents reçoivent des entiers distants d'au moins p, tandis quedeux sommets à distane deux dans G reçoivent des entiers distants d'aumoins q. On suppose en général que p ≥ q, étant donné que deux an-tennes très prohes sont plus sujettes aux interférenes que deux antennesrelativement prohes.Le nombre λp,q de G, noté λp,q(G), est le plus petit entier t tel qu'ilexiste un L(p, q)-étiquetage de G utilisant des étiquettes de {1, 2, . . . , t}.On remarque qu'un L(0, 1)-étiquetage d'un graphe G est équivalent àune oloration propre de G, on a don λ1,0(G) = χ(G). Si l'on dé�nit learré G2 d'un graphe G = (V, E) omme le graphe ayant pour ensemblede sommets V et dans lequel deux sommets sont adjaents s'ils sont àdistane au plus deux dans G, on observe qu'un L(1, 1)-étiquetage de Gest exatement une oloration propre de G2; on a don λ1,1(G) = χ(G2).En général, il est NP-di�ile de déterminer le nombre λp,q d'un graphe[GMW94℄. Toutefois, il est possible d'obtenir des bornes intéressantes ense restreignant à des lasses de graphes spéi�ques. Dans le Chapitre2 on donnera des détails sur le L(p, q)-étiquetages des graphes planaires,dans le Chapitre 3, on utilisera des résultats existants sur le L(p, q)-étiquetage des graphes planaires de maille bornée, et en�n dans leChapitre 5, on étudiera le L(p, q)-étiquetage des graphes d'inidene.Pour plus de détails sur le L(p, q)-étiquetage, le leteur est invité à on-sulter [Cal06℄.Dans le as des graphes de degré maximum∆, il est faile de voir qu'enappliquant un algorithme glouton on peut obtenir la borne λ2,1(G) ≤
∆2 + 2∆ + 1. Griggs et Yeh ont proposé la onjeture suivante:Conjeture 1 [GY92℄ Pour tout graphe G de degré maximum ∆ ≥ 2,on a λ2,1(G) ≤ ∆2 + 1.
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Cette borne est optimale étant donné que pour ∆ = 2, 3, 7 il existedes graphes de diamètre deux et de degré maximum ∆ ayant ∆2 +1 som-mets. Cette onjeture a été réemment prouvée pour ∆ assez grand parHavet et al. [HRS08℄ en utilisant des tehniques de preuves probabilistes.Étant donné que les antennes dans les réseaux radios sont générale-ment réparties sur la surfae de la terre, un intérêt partiulier a été a-ordé ette dernière déennie au L(p, q)-étiquetage des graphes planaires.Dans le as où p = q = 1, il est onnu depuis une trentaine d'annéesqu'il existe des graphes planaires G∆ de degré maximum ∆ tels que

λ1,1(G∆) = χ(G2
∆) = ⌊3

2
∆⌋ + 1. Wegner [Weg77℄ a onjeturé que ettevaleur est optimale.Conjeture 2 [Weg77℄ Pour tout graphe planaire G de degré maximum

∆ ≥ 8 on a χ(G2) ≤
⌊

3
2
∆
⌋

+ 1.La première borne supérieure sur le nombre hromatique du arré desgraphes planaires en terme de ∆, χ(G2) ≤ 8 ∆ − 22, était impliite dansun manusrit de Jonas [Jon93℄. Cette borne a été ensuite améliorée parWong [Won96℄, qui a montré χ(G2) ≤ 3 ∆ + 5 puis par Van den Heuvelet MGuinness [HM03℄, qui ont prouvé χ(G2) ≤ 2 ∆ +25. De meilleuresbornes ont ensuite été obtenues pour des valeurs su�samment grandesde ∆. Agnarsson et Halldórsson [AH00℄ ont montré χ(G2) ≤ ⌈9
5
∆⌉ + 1lorsque ∆ ≥ 750, et la même borne lorsque ∆ ≥ 47 a ensuite été montréepar Borodin et al. [BBG+01℄. Molloy et Salavatipour [MS05℄ ont prouvéque χ(G2) ≤ ⌈5

3
∆⌉ + 78, et ont montré que la onstante 78 pouvait êtreréduite lorsque ∆ était su�samment grand.Réemment, Havet et al. ont montré le théorème suivant :Théorème 3 [HHM+07℄ Pour tout p �xé et pour tout graphe planaire

G de degré maximum ∆, on a λp,1(G) ≤
(

3
2

+ o(1)
)

∆.En prenant p = 1, ela implique que le arré de tout graphe planaire dedegré maximum ∆ admet une oloration propre ave au plus (3
2
+o(1)

)

∆ouleurs, e qui améliore le résultat de Molloy et Salavatipour [MS05℄.Notre but dans le Chapitre 2 est d'étendre leur approhe à une familleplus large de olorations à distane deux.Une oloration ylique d'un graphe planaire G (dont le dessin dansle plan est �xé) est une oloration des sommets de G telle que toute pairede sommets inidents à la même fae reçoive des ouleurs di�érentes. Lenombre minimum de ouleurs dans une oloration ylique de G est ap-pelé le nombre hromatique ylique de G, noté χ∗(G). Si on note ∆∗(G)la taille (nombre de sommets) de la plus grande fae de G, il est lair que
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χ∗(G) ≥ ∆∗(G) pour tout graphe planaire G. Ore and Plummer [OP69℄,qui ont introduit la notion de oloration ylique, ont également montréque pour tout graphe planaire G, on a χ∗(G) ≤ 2 ∆∗(G). Borodin [Bor84℄(voir également Jensen et Toft [JT95, page 37℄) a proposé la onjeturesuivante :Conjeture 4 [Bor84℄ Pour tout graphe planaire G, on a

χ∗(G) ≤
⌊

3
2
∆∗(G)

⌋

.Il a donné des exemples montrant que ette borne était atteinte eta prouvé la onjeture pour ∆∗ = 4. Pour des valeurs générales de ∆∗,la borne originale χ∗(G) ≤ 2 ∆∗(G) d'Ore et Plummer [OP69℄ a étéaméliorée par Borodin et al. [BSZ99℄, qui ont montré χ∗(G) ≤
⌊

9
5
∆∗(G)

⌋.La meilleure borne onnue dans le as général est due à Sanders etZhao [SZ01℄ : χ∗(G) ≤
⌈

5
3
∆∗(G)

⌉.En étudiant es olorations, il apparaît non seulement que les onje-tures de Wegner et de Borodin ont une ressemblane frappante, mais aussique les tehniques utilisées pour obtenir des bornes sur la oloration duarré et sur la oloration ylique sont similaires. Pourtant, auun liendiret permettant de relier les deux olorations n'a été trouvé jusqu'àprésent.Dans le Chapitre 2, on introduit une notion qui uni�e la olorationdu arré et la oloration ylique des graphes planaires, et on utilise desidées de [HHM+07℄ pour prouver un résultat général [AEH08℄ impliquantque :
• tout graphe planaire G admet une oloration ylique ave au plus
(

3
2

+ o(1)
)

∆∗(G) ouleurs ;
• tout graphe planaire G admet une oloration de son arré ave auplus (3

2
+ o(1)

)

∆(G) ouleurs.Notre preuve est légèrement plus direte que la preuve de [HHM+07℄,et améliore le résultat de Sanders et Zhao [SZ01℄. De plus, notre résultataméliore également la meilleure borne onnue sur la taille d'une liquemaximale dans le arré d'un graphe planaire. Comme dans [HHM+07℄,on réduit le problème à un problème de oloration par listes des arêtesd'un multigraphe, et on utilise ensuite le fait que l'indie hromatiquepar listes est prohe de l'indie hromatique frationnaire.On a vu dans e qui préède que le L(p, q)-étiquetage peut être on-sidéré omme une généralisation de la oloration du arré. Il existe uneautre généralisation qui permet d'établir des liens entre la oloration du
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arré et la oloration ylique des graphes planaires. Une oloration p-frugale d'un graphe G est une oloration propre des sommets de G tellequ'auune ouleur n'apparaît plus de p fois dans le voisinage d'un som-met. Le nombre hromatique p-frugal de G, noté χp(G), est le nombreminimum de ouleurs dans une oloration p-frugale de G.Cette oloration a été introduite par Hind, Molloy et Reed [HMR97℄dans le but de montrer des résultats sur la oloration totale des graphes.Une oloration totale d'un graphe G est une oloration des sommets etdes arêtes de G telle que (i) toute paire de sommets adjaents reçoive desouleurs distintes, (ii) toute paire d'arêtes inidentes reçoive des ouleursdistintes, et (iii) la ouleur d'une arête est distinte des ouleurs de sesextrémités. Le nombre minimum de ouleurs dans une oloration totalede G est appelé le nombre hromatique total de G, noté χT (G). À la �ndes années 60, Behzad [Beh65℄ et Vizing [Viz68℄ ont proposé de manièreindépendante la onjeture suivante :Conjeture 5 (Conjeture de la Coloration Totale)Pour tout graphe G de degré maximum ∆, χT (G) ≤ ∆ + 2.Hind, Molloy et Reed [HMR97℄ ont prouvé que tout graphe de degrémaximum ∆ su�samment grand admet une oloration (log8∆)-frugaleave au plus ∆ + 1 ouleurs, et ont utilisé e résultat pour en déduireque tout graphe de degré maximum ∆ su�samment grand admet uneoloration totale ave ∆ + log10∆ ouleurs [HMR99℄.Une oloration p-frugale peut aussi être vue omme une olorationpropre dans laquelle toute paire de lasses de ouleurs induit une graphe(biparti) de degré maximum au plus p. Le as p = 1 étant équivalentà la oloration du arré, il est intéressant de voir de quelle manière laonjeture de Wegner se généralise à la oloration p-frugale des graphesplanaires. Dans le Chapitre 3 on propose la onjeture suivante :Conjeture 6 [AEH07℄ Pour tout entier p ≥ 1 et tout graphe planaire
G de degré maximum ∆ ≥ max { 2 p, 8 } on a

χp(G) ≤
{
⌊

∆−1
p

⌋

+ 2, si p est pair ;
⌊

3∆−2
3 p−1

⌋

+ 2, si p est impair.On prouve également des résultats sur les graphes planaires, les graphesplanaires de maille bornée, et les graphes planaire-extérieurs [AEH07℄.Pour ela, on montre qu'il existe des onnetions reliant la olorationfrugale, le L(p, q)-étiquetage, et la oloration ylique des graphes.Une arête oloration p-frugale d'un multigraphe G est une oloration(potentiellement impropre) des arêtes de G telle qu'auune ouleur
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n'apparaît plus de p fois parmi les arêtes inidentes à un sommet. Lenombre minimum de ouleurs dans une arête oloration p-frugale de G estappelé l'indie hromatique p-frugal de G, noté χ′

p(G). On peut observerqu'une arête oloration 1-frugale orrespond exatement à une olorationpropre des arêtes, on a don χ′(G) = χ′
1(G) pour tout graphe G.Hilton et al. [HSS01℄ ont prouvé que lorsque p est pair, tout graphevéri�e χ′

p(G) =
⌈

1
p
∆(G)

⌉. Dans le Chapitre 3 on montre que quand pest impair, tout multigraphe G véri�e χ′
p(G) ≤

⌈

3∆(G)
3 p−1

⌉.Lorsque p = 2, une oloration p-frugale des sommets d'un graphe
G est une oloration propre telle que l'union de toute paire de lassesde ouleurs est un graphe de degré maximum au plus deux (une uniondisjointe de haînes et de yles). De manière surprenante, il y a peu dedi�érenes si l'on autorise seulement l'union de toute paire de lasses deouleurs à être une forêt de haînes. Une oloration linéaire d'un graphe
G est dé�nie omme une oloration propre des sommets de G telle quel'union de toute paire de lasses de ouleurs est une forêt de haînes (uneforêt de degré maximum au plus deux).Cette oloration, équivalente à une oloration aylique et 2-frugale,a été introduite par Yuster [Yus98℄, qui a prouvé que tout graphe de de-gré maximum ∆ admet une oloration linéaire ave O(∆

3
2 ) ouleurs (lamême borne avait été montrée dans le as de la oloration 2-frugale parHind et al. [HMR97℄). Dans le Chapitre 4, on étudie plusieurs lassesde graphes, omme les graphes de degré borné, les graphes planaires,les graphes planaires de degré moyen maximum borné, et les graphesplanaire-extérieurs [EMR08℄, et on obtient (la plupart du temps) des ré-sultats assez prohes des résultats obtenus pour la oloration 2-frugaledans le Chapitre 3. On étudie également la omplexité de la olorationlinéaire : on montre que déterminer si un graphe planaire biparti de degrémaximum trois admet une oloration linéaire ave au plus trois ouleursest un problème NP-omplet.Pour tout graphe G, soit G⋆ le graphe d'inidene de G, 'est-à-dire legraphe obtenu à partir de G en remplaçant haque arête par une haîne delongueur (nombre d'arêtes) deux. On peut remarquer que les olorationsà distane deux dans les graphes d'inidene ont une signi�ation parti-ulière : pour tout graphe G, la oloration du arré de G⋆ est par exempleéquivalente à une oloration totale de G.Un L(p, 1)-étiquetage de G⋆ orrespond à une assignation d'entiersaux sommets de G telle que (i) toute paire de sommets adjaents reçoivedes entiers distints, (ii) toute paire d'arêtes inidentes reçoive des entiersdistints, et (iii) les entiers assignés à une arête et à ses extrémités sontdistants d'au moins p. Cet étiquetage est appelé un (p, 1)-étiquetage totalde G, et le plus petit entier t tel qu'il existe un (p, 1)-étiquetage total
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de G utilisant des étiquettes de {1, . . . , t} est appelé le nombre (p, 1)-total λT

p (G) de G. Cette notion a été introduite par Havet et Yu [HY08℄,et orrespond exatement à la oloration totale quand p = 1. Havet et Yuont proposé une onjeture qui généralise la Conjeture de la ColorationTotale :Conjeture 7 [HY08℄ Si G est un graphe de degré maximum ∆, on a
λT

p (G) ≤ ∆ + 2p.Dans le Chapitre 5 on étudie le nombre (p, 1)-total des grapheslairsemés et on montre que pour tout 0 < ε < 1
2
, et pour tout entier

p, il existe une onstante Cp,ε telle que tout graphe ε∆-lairsemé G dedegré maximum ∆ véri�e λT
p (G) ≤ ∆ + Cp,ε [EMR06℄. Cela impliquenotamment que les graphes aléatoires du modèle Erdös-Rényi satisfontette propriété ave une probabilité tendant vers 1 lorsque ∆ tend versl'in�ni.Nous avons également étudié les olorations à distane deux sousl'angle d'un jeu à deux joueurs. Alie et Bob olorient haun leur touret de manière propre le arré d'un graphe (à haque étape, toute pairede sommets à distane au plus deux doit avoir des ouleurs distintes).Si le jeu s'arrête avant que tous les sommets ne soient oloriés, Bob estle vainqueur et sinon 'est Alie qui gagne. Dans le Chapitre 6, onétudie des stratégies gagnantes pour Alie dans les arbres, les graphesplanaires-extérieurs, les 2-arbres partiels, et les graphes planaires [EZ08℄.On peut remarquer qu'une stratégie gagnante dans un graphe G nel'est pas néessairement dans un sous-graphe H de G. De plus, avoirune stratégie gagnante ave k ouleurs ne garantit pas qu'il existe unestratégie gagnante ave k+1 ouleurs. Pour es raisons, l'étude de e jeuà deux joueurs néessite d'utiliser des tehniques de preuve profondémentdi�érentes des tehniques utilisées dans les hapitres préédents.Dans le hapitre �nal, on montre omment utiliser des tehniques deoloration à distane deux pour obtenir des informations sur la struturedes graphes. La boxiité d'un graphe G = (V, E) est le plus petit entier

k pour lequel il existe k graphes d'intervalle Gi = (V, Ei), 1 ≤ i ≤ k, telsque E = E1 ∩ . . . ∩ Ek. Les graphes de boxiité au plus d sont exate-ment les graphes d'intersetion de boîtes en dimension d. La boxiité desgraphes a été introduite par Roberts [Rob69℄ et a de nombreuses appli-ations dans les réseaux soiaux et dans les réseaux éologiques. Le as
d = 2 orrespond également à un problème de gestion de par automobile.Dans le Chapitre 7, on utilise une oloration à distane deux spéi-�que pour montrer que les graphes de degré maximum ∆ ont une boxiitéau plus ∆2 + 2 [Esp08℄. *****
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En annexe, nous ajoutons à e mémoire des artiles sur la olorationorientée des graphes planaire-2-extérieurs [EO07a℄, la densité des graphesde ordes de maille au moins inq [EO07b℄, les graphes universel-induits[ELO07℄, la oloration aylique impropre des graphes de degré maxi-mum borné [AEK+07℄, et la oloration adaptable des graphes planaires[EMZ08℄.



16
IntrodutionOne of the main motivations of the work presented in this manusriptis the hannel assignment problem: in a radio or mobile phone network,we need to assign radio frequeny bands to transmitters (every station isassigned an integer, whih orresponds to a spei� hannel). In order tominimize interferene, the separation between the hannels assigned totwo stations that are very lose must be su�iently large. Additionally,two stations that are lose (but not very lose) must also reeive hannelsthat are su�iently far apart.This problem may be modelled by L(p, q)-labellings of graphs, �rstintrodued by Griggs and Yeh [GY92℄. An L(p, q)-labelling of a graph

G is an assignment of integers to the verties of G in suh way that anytwo adjaent verties reeive integers that di�er by at least p, and anytwo verties at distane two reeive integers that di�er by at least q. Weoften assume that p ≥ q, sine very lose stations are more subjet tointerferene than lose stations.The λp,q-number of G, denoted by λp,q(G), is the smallest t suhthat there exists an L(p, q)-labelling of G using labels from {1, 2, . . . , t}.Observe that an L(0, 1)-labelling of a graph G is equivalent to a properoloring of G, so λ1,0(G) = χ(G). De�ne the square G2 of a graph
G = (V, E) as the graph with vertex set V in whih two verties areadjaent if they are at distane at most two in G, then an L(1, 1)-labellingof a graph G is exatly a proper oloring of G2, thus λ1,1(G) = χ(G2).In general, it is NP-hard to determine the λp,q-number of a graph[GMW94℄. However, general bounds an be given for spei� lasses ofgraphs. In Chapter 2 we will give details about L(p, q)-labellings ofplanar graphs, in Chapter 3, we will use existing results on L(p, q)-labellings of planar graphs with bounded girth, and in Chapter 5, wewill study L(p, q)-labellings of inidene graphs. For a survey on L(p, q)-labellings of graphs, the reader is referred to [Cal06℄.For a graph G with maximum degree ∆, it is easy to see that agreedy algorithm gives the bound λ2,1(G) ≤ ∆2 + 2∆ + 1. Griggs andYeh onjetured the following:Conjeture 1 [GY92℄ For every graph G with maximum degree ∆ ≥ 2,we have λ2,1(G) ≤ ∆2 + 1.This bound would be tight sine for ∆ = 2, 3, 7 there exist graphswith diameter two, maximum degree ∆, and order ∆2 + 1. This on-
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jeture was reently proved for large enough ∆ by Havet et al. [HRS08℄using probabilisti tehniques.Sine transmitters are in general spread over the surfae of the earth,a partiular interest has been shown over the last deade for L(p, q)-labellings of planar graphs. For the ase p = q = 1, its is known formore that thirty years that there exist planar graphs G∆ with maximumdegree ∆ suh that χ(G2

∆) = ⌊3
2
∆⌋+1. Wegner [Weg77℄ onjetured thatthis is optimal:Conjeture 2 [Weg77℄ For any planar graph G of maximum degree

∆ ≥ 8 we have χ(G2) ≤
⌊

3
2
∆
⌋

+ 1.The �rst upper bound on χ(G2) for planar graphs in terms of ∆,
χ(G2) ≤ 8 ∆−22, was impliit in the work of Jonas [Jon93℄. This boundwas later improved by Wong [Won96℄ to χ(G2) ≤ 3 ∆ + 5 and then byVan den Heuvel and MGuinness [HM03℄ to χ(G2) ≤ 2 ∆ + 25. Bet-ter bounds were then obtained for large values of ∆. It was shown that
χ(G2) ≤ ⌈9

5
∆⌉ + 1 for ∆ ≥ 750 by Agnarsson and Halldórsson [AH00℄,and the same bound for ∆ ≥ 47 by Borodin et al. [BBG+01℄. Molloy andSalavatipour [MS05℄ proved that χ(G2) ≤ ⌈5

3
∆⌉ + 78, and showed thatthe onstant 78 ould be redued for su�iently large ∆. For example,it was improved to 24 when ∆ ≥ 241.Reently, Havet et al. proved the following:Theorem 3 [HHM+07℄ For any �xed p, and any planar graph G ofmaximum degree ∆, we have λp,1(G) ≤

(

3
2

+ o(1)
)

∆.If we take p = 1, this theorem implies that the square of any planargraph with maximum degree ∆ an be olored with (3
2

+ o(1)
)

∆ olors,whih improves the result of Molloy and Salavatipour [MS05℄. Our aim inChapter 2 is to extend their approah to a wider family of distane-twoolorings.A yli oloring of a plane graph G (a planar graph with a pre-sribed embedding) is a vertex oloring of G suh that any two vertiesinident to the same fae have distint olors. The minimum number ofolors required in a yli oloring of a plane graph G is alled the ylihromati number χ∗(G). Denote by ∆∗(G) the size (number of vertiesin its boundary) of a largest fae of G. It is lear that χ∗(G) ≥ ∆∗(G)for any plane graph G. Ore and Plummer [OP69℄, who introdued theonept of yli oloring, also proved that for any plane graph G, wehave χ∗(G) ≤ 2 ∆∗(G). Borodin [Bor84℄ (see also Jensen and Toft [JT95,page 37℄) onjetured the following:
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Conjeture 4 [Bor84℄ For a plane graph G of maximum fae degree ∆∗we have χ∗(G) ≤

⌊

3
2
∆∗⌋.He gave examples showing that this would be best possible and alsoproved Conjeture 4 for ∆∗ = 4. For general values of ∆∗, the origi-nal bound χ∗(G) ≤ 2 ∆∗ of Ore and Plummer [OP69℄ was improved byBorodin et al. [BSZ99℄ to χ∗(G) ≤

⌊

9
5
∆∗⌋. The best known upper boundin the general ase is due to Sanders and Zhao [SZ01℄ : χ∗(G) ≤

⌈

5
3
∆∗⌉.The main point is that not only Wegner's and Borodin's onjetureslook the same, but the proof tehniques used in order to obtain boundson the hromati number of the square and the yli hromati numberare very similar. However, it seems that no one ever found a diret on-netion between these two olorings.In Chapter 2, we introdue a notion that uni�es olorings of thesquare and yli olorings of plane graphs, and then use ideas from[HHM+07℄ to prove a general result [AEH08℄ implying that

• every planar graphG admits a yli oloring with at most (3
2

+ o(1)
)

∆∗(G) olors;
• every planar graph G admits a oloring of its square with at most
(

3
2

+ o(1)
)

∆(G) olors.Our proof is slightly more diret than the proof of [HHM+07℄, andimproves the result of Sanders and Zhao [SZ01℄. Besides, our result alsoimproves the best known bound on the size of a largest lique in thesquare of a planar graph. As in [HHM+07℄, we redue the problem to alist edge oloring problem, and then use the fat that the list hromatiindex is lose from the frational hromati index.Another way to relate yli oloring and oloring of the square ofplane graphs is through frugal oloring. A p-frugal oloring of a graph Gis a proper oloring of the verties of G suh that no olor appears morethan p times in the neighborhood of a vertex. The p-frugal hromatinumber of G, denoted χp(G), is the smallest number of olors in a p-frugal oloring of G.This oloring was introdued by Hind, Molloy and Reed [HMR97℄ inorder to obtain bounds on the total oloring of graphs. A total oloringof a graph G is a oloring of the verties and edges of G so that (i) anytwo adjaent verties have distint olors, (ii) any two inident edgeshave distint olors, and (iii) the olor of any edge is distint from theolors of its ends. The minimum number of olors in a total oloring of
G is alled the total hromati number of G, denoted χT (G). In the latesixties, Behzad [Beh65℄ and Vizing [Viz68℄ independently proposed thefollowing onjeture:
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Conjeture 5 (The Total Coloring Conjeture) For any graph Gwith maximum degree ∆, χT (G) ≤ ∆ + 2.Hind, Molloy and Reed [HMR97℄ proved that any graph with largeenough maximum degree ∆ has a (log8∆)-frugal oloring using at most
∆ + 1 olors, and used this result to prove that any graph with largeenough maximum degree ∆ has a total oloring with ∆ + log10∆ ol-ors [HMR99℄.A p-frugal oloring an also be seen as a proper oloring suh thatany two olor lasses indue a (bipartite) graph with maximum degree
p. The ase p = 1 is equivalent to a oloring of the square of G, so it isinteresting to see how Wegner's onjeture an be generalized to frugaloloring of planar graphs. In Chapter 3 we propose the following on-jeture:Conjeture 6 [AEH07℄ For any integer p ≥ 1 and planar graph G withmaximum degree ∆ ≥ max { 2 p, 8 } we have

χp(G) ≤
{
⌊

∆−1
p

⌋

+ 2, if p is even;
⌊

3∆−2
3 p−1

⌋

+ 2, if p is odd.We also prove results on planar graphs, planar graphs with givengirth, and outerplanar graphs [AEH07℄. To show these results, we relatefrugal oloring with L(p, q)-labelling of graphs and yli oloring of planegraphs.A p-frugal edge oloring of a multigraph G is a (possibly improper)oloring of the edges of G suh that no olor appears more than p timeson the edges inident with a vertex. The least number of olors in a
p-frugal edge oloring of G, the p-frugal hromati index of G, is denotedby χ′

p(G). Remark that for p = 1 we have χ′
1(G) = χ′(G), the usualhromati index of G.Hilton et al. [HSS01℄ proved that for even p, any multigraph G sat-is�es χ′

p(G) =
⌈

1
p
∆(G)

⌉. In Chapter 3 we prove that for odd p, anymultigraph G satis�es χ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉, whih is optimal.When p = 2, a p-frugal oloring of the verties of a graph G is suhthat the union of any two olor lasses is a graph with maximum degreetwo (a union of paths and yles). Surprisingly, there are only few di�er-enes if we only allow the union of any two olor lasses to be a union ofpaths: de�ne a linear oloring of a graph G as a proper oloring of theverties of G suh that the subgraph indued by any two olor lasses isa forest of paths (a forest with maximum degree at most two), then alinear oloring is exatly an ayli and 2-frugal oloring.
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This oloring was introdued by Yuster [Yus98℄, who proved that anygraph with maximum degree ∆ has a linear oloring with O(∆

3
2 ) ol-ors (the same bound was proven by Hind et al. for 2-frugal oloringin [HMR97℄). In Chapter 4, we study several lasses of graphs, suhas planar graphs, planar graphs with bounded maximum average degree,outerplanar graphs [EMR08℄, and we obtain bounds whih are (most ofthe time) lose from the bounds obtained for the 2-frugal hromati num-ber in [AEH07℄. We also study omplexity aspets of linear oloring: weshow that deiding whether a bipartite planar graph with maximum de-gree three admits a linear oloring with three olors is an NP-ompleteproblem.For a graph G, let G⋆ be the inidene graph of G, that is the graphobtained from G by inserting one vertex along eah edge. Observe thatan L(p, 1)-labelling of G⋆ orresponds to an assignment of integers tothe verties and edges of G suh that two adjaent verties have distintintegers, any two inident edges have distint integers, and the di�erenebetween the integer assigned to an edge and the integers assigned to itsends is at least p. This oloring is alled a (p, 1)-total labelling of G, andthe smallest t suh that there exists a (p, 1)-total labelling of G usinglabels from {1, 2, . . . , t} is the (p, 1)-total number λT

p (G) of the graph G.This oloring was introdued by Havet and Yu [HY08℄, and orrespondsexatly to the notion of total oloring when p = 1. Havet and Yu proposedthe following onjeture, whih generalizes the total oloring onjeture:Conjeture 7 [HY08℄ Let G be a graph with maximum degree ∆, then
λT

p (G) ≤ ∆ + 2p.In Chapter 5 we study the (p, 1)-total number of sparse graphs andprove that for any 0 < ε < 1
2
, and for any integer p, there exists a on-stant Cp,ε suh that every ε∆-sparse graph G with maximum degree ∆satis�es λT

p (G) ≤ ∆ + Cp,ε [EMR06℄. This implies that Erdös-Rényi ran-dom graphs satisfy this property asymptotially almost surely.Consider a two player game in whih Alie and Bob alternatively olorthe square of a graph G properly (that is, at any step, any two vertiesat distane at most two in G have distint olors). If the game stopsbefore all the verties are olored, Bob wins and otherwise Alie wins. InChapter 6, we study winning strategies for Alie in trees, outerplanargraphs, partial 2-trees, and planar graphs [EZ08℄.Observe that if we have a winning strategy for a graph G, we annotneessarily use it to obtain a winning strategy in a subgraph H of G.Furthermore, having a winning strategy with k olors for a graph G doesnot mean that we have a strategy with k + 1 olors for G. As a onse-quene, we have to use ompletely di�erent tehniques than the one used
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in the previous hapters.In the �nal hapter, we show how to use distane-two olorings toobtain spei� information on the struture of graphs. The boxiity of agraph G = (V, E) is the smallest integer k for whih there exist k intervalgraphs Gi = (V, Ei), 1 ≤ i ≤ k, suh that E = E1∩ . . .∩Ek. Graphs withboxiity at most d are exatly the intersetion graphs of (axis-parallel)
d-dimensional boxes. Boxiity of graphs has been introdued by Roberts[Rob69℄ and has several appliations in soial networks and eology. Thease d = 2 also orresponds to a �eet maintenane problem.In Chapter 7, we use a spei� distane-two oloring to prove thatgraphs with maximum degree ∆ have boxiity at most ∆2 + 2 [Esp08℄.*****In appendix, we add artiles about oriented oloring of 2-outerplanargraphs [EO07a℄, the density of irle graphs with girth at least �ve[EO07b℄, indued-universal graphs [ELO07℄, ayli improper olorings[AEK+07℄, and adapted oloring of planar graphs [EMZ08℄.
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Chapter 1Preliminaries
Contents1.1 Graph theory . . . . . . . . . . . . . . . . . . . 291.1.1 Basi de�nitions . . . . . . . . . . . . . . . . 291.1.2 Relations between graphs . . . . . . . . . . . 301.1.3 Degree and neighborhood . . . . . . . . . . . 311.1.4 Distane . . . . . . . . . . . . . . . . . . . . . 311.1.5 Connetivity . . . . . . . . . . . . . . . . . . 321.1.6 Trees and bipartite graphs . . . . . . . . . . . 321.1.7 Some lasses of graphs . . . . . . . . . . . . . 331.2 Graph oloring . . . . . . . . . . . . . . . . . . 331.3 Probabilisti tools . . . . . . . . . . . . . . . . 34
1.1 Graph theoryMost of the terminology and notation we use in this thesis is standardand an be found in any text book on graph theory (suh as [BM76℄ or[Die05℄). For the Frenh terminology, please refer to [Ber69℄.1.1.1 Basi de�nitionsA graph is a pairG = (V (G), E(G)) of sets, suh thatE(G) ⊆ {{x, y}, x, y ∈ G =

(V (G), E(G))V (G)}. The elements of V (G) are alled the verties of G, whereas theelements of E(G) are alled the edges of G. We usually write xy or yxinstead of {x, y} when onsidering an edge. If e = xy is an edge of a29



30 Graph theory
graph G, the verties x and y are said to be inident with or to the edge
e. The two verties inident to an edge e are alled the end points, or endverties of e. Two verties x and y are adjaent or neighbors in a graph
G if xy is an edge of G. Two edges e 6= f are said to be inident if theyhave a ommon end vertex.The number of verties of a graph G is alled the order of G. Most ofthe graphs we onsider in this thesis are �nite (they have �nite order),and simple : for any edge xy, x 6= y (we say that there are no loops) andfor any two verties x and y, there is at most one edge xy (we say thatthere are no multiple edges). Suh requirements orrespond exatly tothe de�nition of graphs given above. In Chapters 2 and 3, however, wewill study multigraphs (graphs with multiple edges). The only di�ereneis that in this ase, E(G) is a multiset (instead of a set).A subset U of verties of a graph G is alled a stable or independentset if any two verties of U are non adjaent in G. If any two verties of
U are adjaent in G, the set U is alled a lique of G.1.1.2 Relations between graphsWe say that ϕ : V (G) → V (H) is a homomorphism between G and H ,if for every edge xy of G, ϕ(x)ϕ(y) is an edge of H . The existene of ahomomorphism between G and H is denoted by G → H .G → H Two graphs G and H are said to be isomorphi if there exists a bi-jetive homomorphism between G and H . Usually, we do not make anydistintion between isomorphi graphs. In other words, when onsideringa graph G, we impliitly onsider the equivalene lass for the relationbeing isomorphi to ontaining the graph G.Let G = (V, E) and G′ = (V ′, E ′) be two graphs. If V ⊆ V ′ and
E ⊆ E ′ we say that G is a subgraph of G′, denoted by G ⊆ G′. If G ⊆ G′G ⊆ G′ and G ontains all the edges xy ∈ E ′ with x, y ∈ V , we say that G isthe subgraph of G′ indued by V , or more simply that G is an induedsubgraph of G′, and we denote this by G = G′[V ]. If G ⊆ G′ and V = V ′,G[X ] we say that G is a spanning subgraph of G′.We now de�ne basi operations on graphs. Let G be a graph and Ube a subset of verties of G. We denote by G − U the graph obtainedG − U from G by removing all the verties from U as well as the edges inidentto any vertex of U . Observe that G−U is the subgraph of G indued by
V (G)\U . If U is a single vertex u, we write G−u instead of G−{u}. Let
F be a subset of edges of G, we denote by G − F (or G − f if F = {f})G − F the graph obtained from G by removing all the edges from F . We all
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these two operations the deletion of verties and edges from G.Let e = xy be an edge of a graph G. We denote by G/e the graph G/eobtained from G by deleting the verties x and y and adding a vertex zadjaent to all the neighbors of x or y in G. This operation is alled theontration of the edge e.If a graph G an be obtained from a subgraph of H by a sequene ofedge ontrations, we all G a minor of H , denoted by G � H . G � H1.1.3 Degree and neighborhoodLet G be a non-empty graph and x be a vertex of G. The set of vertiesadjaent to x in G is alled the neighborhood of x, denoted NG(x) or N(x) N(x)when the graph G is lear from the ontext. The number of neighbors ofthe vertex x in G is alled the degree of x in G, denoted dG(x) or d(x) d(x)when G is lear from the ontext.We all k-vertex (resp. ≤k-vertex, ≥k-vertex ) a vertex of degree k(resp. at most k, at least k). If for some k, all the verties of G are
k-verties, then G is said to be k-regular, or regular. A 3-regular graphis also alled a ubi graph.The value δ(G) = min{d(x), x ∈ V (G)} is alled the minimum degree δ(G)of G and the value ∆(G) = max{d(x), x ∈ V (G)} is alled the maximum ∆(G)degree of G. Let n and m be the order and the number of edges of G.The value ad(G) =

∑

v∈V (G) d(v)/n = 2m/n is alled the average degree ad(G)of G. The maximum average degree of G, denoted by mad(G), is the mad(G)maximum of ad(H) over all subgraphs H of G.If for some integer k, any subgraph H of G is suh that δ(H) ≤ k, then
G is said to be k-degenerate. Observe that every graph G is ⌊mad(G)⌋-degenerate, and every k-degenerate graph has maximum average degreeat most 2k.1.1.4 DistaneA path P is a graph with vertex set V = {x0, x1, . . . , xk} and edge set
E = {x0x1, x1x2, . . . , xk−1xk}, where all the xi are distint verties and
k ≥ 0 is an integer. We often write P = x0x1 . . . xk to denote suh apath, and say that P is path between x0 and xk (resp. between xk and
x0), or from x0 to xk (resp. from xk to x0). The number of edges in apath is alled the length of the path. A path of length k is denoted by Pk. PkThe graph obtained from a path P = x0x1 . . . xk−1 by adding an edgebetween x0 and xk−1 is alled a yle of length k, denoted by Ck. We also Ck
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all k-yle (resp. ≤k-yle, ≥k-yle) a yle of length k (resp. at most
k, at least k). The girth g(G) of a graph G is the length of a shortestg(G) yle ontained by G. If G does not ontain any yle, we set g(G) to bein�nite. An edge joining two non-onseutive verties of a yle is alleda hord. An indued yle in a graph G is a hordless yle of G (that is,a yle whih is an indued subgraph of G).The distane dG(x, y) or d(x, y) of two verties x and y in G is thed(x, y) length of a shortest path between x and y in G (if suh a path does notexist, we set d(x, y) to be in�nite). Given a graph G, the square of G,denoted G2, is the graph having the same vertex set as G, with an edgeG2 between any two di�erent verties that have distane at most two in G(see Figure 1.1).

G2GFigure 1.1: The square of G.
1.1.5 ConnetivityLet G be a non-empty graph. If for any two verties x and y of G, there isa path in G between x and y, then G is said to be onneted. A maximalonneted subgraph of G is alled a omponent of G. If a vertex x of Gis suh that G − x has more omponents than G, then x is said to be aut-vertex of G. If an edge e of G is suh that G−e has more omponentsthan G, then e is said to be a bridge of G.A graph G is said to be k-onneted if for some integer k ≥ 1, G hasat least k + 1 verties and the graph G − X is onneted for any set Xof at most k − 1 verties of G.1.1.6 Trees and bipartite graphsA graph without yles is alled a forest, and a onneted forest is alleda tree. A vertex of degree 1 in a tree is alled a leaf. Observe that a path
P = x0x1 . . . xk is a tree with exatly two leaves: x0 and xk. Sometimeswe distinguish one vertex of a tree, and all it the root. In this ase, we
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say that we onsider a rooted tree.A graph G is bipartite if its set of verties an be partitioned into twosets V and V ′, suh that every edge of G has one end point in V and theother one in V ′. Observe that forests are bipartite. A bipartite graphis said to be a omplete bipartite graph if it ontains all possible edgesbetween the two sets V and V ′ of the bipartition. The omplete bipartitegraph with m verties in the �rst set and n verties in the seond set isdenoted by Km,n. Km,n1.1.7 Some lasses of graphsIn this subsetion, we de�ne some lasses of graphs that will be studiedthroughout this thesis.The graph with n verties and all possible edges is alled the ompletegraph of order n, denoted by Kn. KnA plane graph is a graph drawn in the plane in suh a way that thereis no rossing of edges. A planar graph is a graph that admits a drawingin the plane with this property. An outerplanar graph is a planar graphthat an be drawn in the plane without rossing of edges, in suh a waythat every vertex lies on the outer fae.A graph is hordal if it ontains no yle of length at least four asan indued subgraph. A lique of G is a set a pairwise adjaent vertiesof G. For any integer k ≥ 1, a k-tree is a hordal graph in whih every(inlusion-) maximal lique as order exatly k + 1. A partial k-tree is asubgraph of a k-tree. For example, the lass of partial 2-trees is exatlythe lass of graphs whih do not ontain the omplete graph K4 as aminor.The treewidth of a graph G, denoted by tw(G), is the smallest integer tw(G)

k suh that G is a partial k-tree.1.2 Graph oloringFor some integer k ≥ 1, a (proper) k-oloring of the verties of G is a map
c : V (G) → {1, . . . , k} suh that for every edge xy of G, c(x) 6= c(y).The elements from {1, . . . , k} are alled olors, and the set of all vertiesolored with a spei� olor is alled a olor lass. Observe that a properoloring of a graph is a partition of its set of verties into olor lasses,eah of whih is an independent set. If a graph admits a k-oloring, it issaid to be k-olorable. The smallest k suh that a graph G is k-olorableis alled the hromati number of G, denoted by χ(G). χ(G)



34 Probabilisti tools
A list assignment L : V (G) → 2N on the verties of a graph is amap whih assigns to eah vertex v of the graph a list L(v) of presribedintegers. If for some integer t, every list has size at least t, then L isalled a t-list assignment.Let L be a list assignment on the verties of a graph G. A olor-ing c of the verties of G suh that for any vertex v, c(v) ∈ L(v) isalled an L-oloring of G. If suh a oloring exists, then G is said to be

L-olorable. The list hromati number or hoie number ch(G) is thech(G) minimum value t, so that for every t-list assignment L on the verties of
G, the graph G is L-olorable.The onept of hoosability was introdued by Vizing [Viz76℄, andErdös, Rubin, and Taylor [ERT79℄. This generalization of the notionof oloring has been applied to various problems, espeially to the �eldof oloring under onstraints ((a, b)-hoosability [Tuz97℄, k-improper l-hoosability [EH99, Skr99℄, ayli hoosability [BFK+02℄).

G L(G)Figure 1.2: The line graph of G.For any graph G = (V, E), we de�ne the line graph L(G) of G to beL(G) the graph with vertex set E, where two verties u, v ∈ E are adjaent in
L(G) if and only if the orresponding edges are inident in G (see Figure1.2 for an example).The smallest integer k, suh that the edges of a graph G an beolored with k olors in suh a way that any two inident edges havedistint olors, is alled the hromati index of G, denoted by χ′(G).χ′(G) Suh a oloring is alled a (proper) edge oloring of G. Note that χ′(G) =
χ(L(G)). We also de�ne the list hromati index ch ′(G) of G as the hoiech

′(G) number of the line graph of G.1.3 Probabilisti toolsIn this setion, we reall some notions of disrete probabilities, as well assome useful probabilisti tools, as they appear in [MR02℄.
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We only onsider experiments whih have a �nite number of possibleoutomes. For example when tossing a oin, there are only two pos-sible outomes: head and tail. The set of all possible outomes of anexperiment is alled the sample spae, denoted by Ω. A �nite probabil- Ωity spae (Ω,Pr) onsists of a sample spae Ω and a probability funtion Pr

Pr : Ω → [0, 1] (where [0, 1] denotes the losed real interval between 0and 1) suh that:
∑

x∈Ω

Pr(x) = 1.When onsidering a probability funtion verifying Pr(x) = 1/|Ω| forevery x ∈ Ω, we say that the distribution is uniform.We extend Pr to 2Ω (the set of events) by setting for every A ⊆ Ω :
Pr(A) =

∑

x∈A

Pr(x)If we denote by Ā the event that A does not our, then we have :1. Pr(Ā) = 1 − Pr(A),2. Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B),3. Pr (∪n
i=1Ai) ≤

∑n
i=1 Pr(Ai).The onditional probability of A given B, denoted by Pr(A|B), is Pr(A|B)de�ned as the ratio between Pr(A ∩ B) and Pr(B). Two events A and

B are said to be independent if Pr(A|B) = Pr(A), or equivalently if
Pr(A ∩ B) = Pr(A)Pr(B). A set of events E is mutually independent iffor any subset {A0, . . . , An} of E , we have

Pr (A0| ∩n
i=1 Ai) = Pr(A0).Note that a set of events whih is pairwise independent (every two eventsare independent) is not neessarily mutually independent. We also saythat an event A is mutually independent from a set of events E if for anysubset {B1, . . . , Bn} of E , we have

Pr (A| ∩n
i=1 Bi) = Pr(A).A random variable de�ned on a probability spae (Ω,Pr) is a funtion

X : Ω → R. The expeted value, or expetation of a random variable X Eis
E(X) =

∑

x∈Ω

Pr(x)X(x).Amajor property of expetation is its linearity : E (
∑n

i=1 Xi) =
∑n

i=1 E(Xi).The onditional expetation of X given B, denoted by E(X|B) is equal E(X |B)
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to ∑x∈ΩX

Pr (X = x|B), where ΩX denotes the range of X. Note thatlinearity of expetation extends to onditional expetation :if X =
n
∑

i=1

Xi, then E(X|B) =
n
∑

i=1

E(Xi|B).The next results haraterize the onentration of random variableswith spei� properties, in other words they give bounds on the probabil-ity that the value taken by a random variable is lose from its expetation.Lemma 1.1 (Simple Conentration Bound) Let X be a random vari-able determined by n independent trials T1, . . . , Tn and satisfying:1. Changing the outome of any one trial an a�et X by at most c.Then,
Pr(|X − E(X)| > t) ≤ 2e−

t2

2c2nLemma 1.2 (Talagrand's Inequality) Let X be a non-negative ran-dom variable, not identially 0, whih is determined by n independenttrials T1, . . . , Tn, and satisfying the following for some c, r > 0 :1. Changing the outome of any one trial an a�et X by at most c.2. For any s, if X ≥ s then there is a set of at most rs trials whoseoutomes ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr
(

|X −E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)Lemma 1.3 (MDiarmid's Inequality) Let X be a non-negative ran-dom variable, not identially 0, whih is determined by n independent tri-als T1, . . . , Tn and m independent permutations Π1, . . . , Πm and satisfyingthe following for some c, r > 0 :1. Changing the outome of any trial an a�et X by at most c.2. Interhanging two elements in any one permutation an a�et Xby at most c.3. For any s, if X ≥ s then there is a set of at most rs hoies whoseoutomes ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr
(

|X −E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)
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We denote by BIN(n, p) the variable whih is the sum of n variableseah of whih is 1 with probability p and 0 with probability 1 − p. Theexpetation of BIN(n, p) is known to be np, so the next result gives abound on the onentration of BIN(n, p).Lemma 1.4 (Cherno� Bound) For any 0 ≤ t ≤ np:

Pr (|BIN(n, p) − np| > t) < 2e−t2/3np.It is easy to see that if {A1, . . . An} is a mutually independent set ofevents with Pr(Ai) < 1 for every i, then with positive probability, noneof the events our. The last result shows that under ertain assumption,the same is true even if the events are not mutually independent.Lemma 1.5 (Lovász Loal Lemma) Consider a set E of (typiallybad) events suh that for eah A ∈ E1. Pr(A) ≤ p < 1, and2. A is mutually independent of a set of all but at most d of the otherevents.If 4pd ≤ 1 then with positive probability, none of the events in E our.
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Chapter 2Coloring of the square andyli oloring
Contents2.1 Introdution . . . . . . . . . . . . . . . . . . . 402.2 Proof of Theorem 2.10 . . . . . . . . . . . . . 442.2.1 The First Steps . . . . . . . . . . . . . . . . . 452.2.2 The Mathing Polytope and Edge-Colorings . 492.3 Proofs of the Main Lemmas . . . . . . . . . . 512.3.1 Proof of Lemma 2.12 . . . . . . . . . . . . . . 512.3.2 Proof of Lemma 2.19 . . . . . . . . . . . . . . 572.4 Proof of Theorem 2.11 . . . . . . . . . . . . . 612.5 Conlusion . . . . . . . . . . . . . . . . . . . . . 632.5.1 About the Proof . . . . . . . . . . . . . . . . 632.5.2 Further Work . . . . . . . . . . . . . . . . . . 64In this hapter, we prove a general result on the struture of planargraphs, whih implies that

• the verties of any planar graph with maximum degree ∆ an beolored with (3
2

+ o(1)
)

∆ olors, in suh a way that any two vertiesat distane at most two apart have distint olors;
• the faes of any plane graph with maximum degree ∆ an be oloredwith (3

2
+ o(1)

)

∆ olors, in suh a way that any two faes sharinga vertex have distint olors. 39
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2.1 IntrodutionThe Four Color Theorem an be stated as follows: the faes of any planegraph an be olored with four olors, suh that any two faes sharingan edge have distint olors. In [OP69℄, Ore and Plummer onsideredthe same problem, but requiring that any two faes sharing a vertex havedistint olors.To study this problem, it is onvenient to onsider the orrespondingvertex oloring problem: a yli oloring of a plane graph G is a vertexoloring of G suh that any two verties inident to the same fae havedistint olors. The minimum number of olors in a yli oloring of Gis alled the yli hromati number χ∗(G).χ∗(G) A list version of this oloring an also be onsidered: the least integer
t suh that for any t-list assignment L, there exists a yli oloring c of
G satisfying c(v) ∈ L(v) for every vertex v of G is alled the yli hoienumber of G, denoted by ch∗(G).ch

∗(G) Let us denote by G∗ the dual graph of G, that is the plane graph inwhih the verties are the faes of G, and suh that two verties are adja-ent in G∗ if and only if the orresponding faes share an edge. Clearly, ayli oloring of G∗ is a oloring of the faes of G in whih any two faessharing a vertex have distint olors. If we denote the size of the largestfae of any plane graph H by ∆∗(H), we learly have ∆∗(G∗) = ∆(G).∆∗(H) Ore and Plummer [OP69℄ proved that any plane graph G has a ylioloring with at most 2∆∗(G) olors, whih implies that the faes ofany plane graph with maximum degree ∆ an be olored with 2∆ ol-ors in suh a way that any two faes sharing a vertex have distint olors.From now on, we forget about the original fae oloring problem, andonentrate on yli oloring of plane graphs. Borodin [Bor84℄ ( see alsoJensen and Toft [JT95, page 37℄ ) onjetured the following:Conjeture 2.1 [Bor84℄ Any plane graph G has a yli oloring with
⌊

3
2
∆∗(G)

⌋ olors.Additionally, he proved this onjeture for ∆∗ = 4. The best knownupper bound in the general ase is due to Sanders and Zhao [SZ01℄, whoproved that any plane graph G has a yli oloring with ⌈5
3
∆∗(G)

⌉ ol-ors. Observe that Borodin's onjeture is optimal: in the graph depitedin Figure 2.1(a), every pair of verties is inident to the same fae, andmust reeive distint olors in any yli oloring. There are 3k + 1 ver-ties, and every fae has size 2k + 1, hene at least ⌊3
2
∆∗⌋ olors areneessary.



41
In this hapter, we relate yli oloring with another vertex oloringof graphs. Reall that the square G2 of a graph G is the graph withvertex set V (G), with an edge between any two di�erent verties thathave distane at most two in G. The hromati number of G2, denoted

χ(G2), is the least number of olors needed in a proper oloring of G2:that is, suh that any two adjaent verties of G2 have distint olors (orequivalently, suh that any two verties at distane at most two in G havedistint olors). A onjeture by Wegner [Weg77℄ about the hromatinumber of planar graphs has been the starting point of several artiles,the most reent of whih proves an asymptoti version of the onjeture[HHM+07℄.Conjeture 2.2 [Weg77℄ For a planar graph G of maximum degree
∆ ≥ 8 we have χ(G2) ≤

⌊

3
2
∆
⌋

+ 1.Observe that Wegner's onjeture is also optimal. In the graph de-pited in Figure 2.1(b), all the verties exept z are pairwise at distaneat most two. Hene the graph needs at least 3k + 1 =
⌊

3
2
∆
⌋

+ 1 olors,sine ∆ = 2k.
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y(b)Figure 2.1: (a) A graph showing that Borodin's onjeture is optimal (b) A graphshowing that Wegners's onjeture is optimal.An L(p, q)-labelling of a graph G is an assignment of integers to theverties of G in suh way that any two adjaent verties reeive integersthat di�er by at least p, and any two verties at distane two reeiveintegers that di�er by at least q. The λp,q-number of G, denoted by
λp,q(G), is the smallest integer t suh that there exists an L(p, q)-labelling λp,q(G)of G using labels from {1, 2, . . . , t}.Of ourse we an also onsider the list version of L(p, q)-labellings.Given a graph G, the list λp,q-number, denoted λl

p,q(G), is the smallest λl
p,q(G)integer t suh that, for every t-list assignment L on the verties of G,there exists an L(p, q)-labelling f suh that f(v) ∈ L(v) for every ver-tex v.
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Havet et al. reently proved the following result, whih implies thatWegner's onjeture holds asymptotially:Theorem 2.3 [HHM+07℄ For any �xed p, and any planar graph G withmaximum degree ∆, we have λl

p,1(G) ≤
(

3
2

+ o(1)
)

∆.Although Wegner's and Borodin's onjetures seem to be tightly re-lated, nobody has ever been able to bring to light a diret onnetionbetween them. Most of the results approahing these onjetures use thesame ideas, but at this point (as far as we know), no one proved a generaltheorem implying a result on the oloring of the square and a result anthe yli oloring of plane graphs.This is exatly our approah in this hapter: we de�ne a oloring thatgeneralizes both the oloring of the square and the yli oloring of planegraphs, and we prove a result on this oloring whih implies asymptotiversions of both onjetures.Let A and B be two subsets of the vertex set V . ( Note that wedo not require A and B to be disjoint. ) An (A, B)-oloring of G is anassignment of olors to the verties in B so that :
• verties of B that are adjaent must reeive di�erent olors, and
• verties of B that have a ommon neighbor from A must reeivedi�erent olors.When eah vertex v ∈ B has its own list L(v) of olors from whihits olor must be hosen, we talk about a list (A, B)-oloring.We denote by χ(G; A, B) the minimum number of olors required foran (A, B)-oloring to exist. Its list variant is denoted by ch(G; A, B), andis de�ned as the minimum integer t so that for every t-list assignment L(v)to the verties v ∈ B, there exists a proper (A, B)-oloring of G in whihthe verties in B are assigned olors from their own lists. Notie that wetrivially have χ(G) = χ(G; ∅, V ) and χ(G2) = χ(G; V, V ); and the samerelations hold for the list variant.For a vertex v ∈ V , let NB(v) = N(v) ∩ B, and dB(v) = |NB(v)| ( so
dG(v) = dV (v) ). If we set ∆(G; A, B) = max{ dB(v) | v ∈ A }, thenit is lear that we always need at least ∆(G; A, B) olors in a proper
(A, B)-oloring.Our main result in this hapter is the following:Theorem 2.4 [AEH08℄ Let G be a planar graph and A, B ⊆ V . Then
ch(G; A, B) ≤ (1 + o(1)) 3

2
∆(G; A, B).In other words, for all ε > 0, there exists Dε, so that for all D ≥ Dεwe have : If G is a planar graph, with A, B ⊆ V so that ∆(G; A, B) ≤ D,and L is a list assignment so that eah vertex v in B gets a list L(v) of at
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least (3

2
+ ε
)

D olors, then there exists an (A, B)-oloring of G in whihthe verties in B are assigned olors from their own lists.A trivial lower bound for the ( list ) hromati number of a graph G isthe lique number ω(G), the maximal size of a lique in G. For (A, B)- ω(G)olorings, where A, B ⊆ V , we an de�ne the following related onept.An (A, B)-lique is a subset C ⊆ B so that every two di�erent ver-ties in C are adjaent or have a ommon neighbor in A. Denote by
ω(G; A, B) the maximal size of an (A, B)-lique in G. Then we triviallyhave ch(G; A, B) ≥ ω(G; A, B), and so Theorem 2.4 means that for aplanar graph G we have ω(G; A, B) ≤ (1 + o(1)) 3

2
∆(G; A, B).But in fat, the strutural result we use to prove Theorem 2.4 fairlyeasily gives a better estimate.Theorem 2.5 [AEH08℄ Let G be a planar graph and A, B ⊆ V . Then

ω(G; A, B) ≤ 3
2
∆(G; A, B) + O(1).We now disuss two speial onsequenes of these results. These spe-ial versions of Theorems 2.4 and 2.5 also show that the term 3

2
β in theseresults is best possible.Sine ch(G2) = ch(G; V, V ), as immediate orollaries of Theorems 2.4and 2.5 we obtain.Corollary 2.6 The square of every planar graph G of maximum de-gree ∆ has list hromati number at most (1 + o(1)) 3

2
∆.Corollary 2.7 The square of every planar graph G of maximum de-gree ∆ has lique number at most 3

2
∆ + O(1).In order to show that our Theorem 2.4 provides an asymptotially bestpossible upper bound for the yli hromati number of plane graphs G,we need some extra notation. For eah fae f of G, add a vertex xfand all XF the set of verties that were added to G. For any fae fof G, and any vertex v inident with f , add an edge between v and xf .We denote by GF the graph obtained from G by this onstrution, so

V (GF ) = V (G)∪XF . Observe that a (list) (XF , V (G))-oloring of GF isexatly a yli (list) oloring of G and that ∆(GF ; XF , V (G)) = ∆∗(G).We get the following orollary of Theorem 2.4.Corollary 2.8 Every plane graph G of maximum fae degree ∆∗ hasyli list hromati number at most (1 + o(1)) 3
2
∆∗.For a plane graph G, the yli lique number ω∗(G) is the maximal size ω∗(G)of a set C ⊆ V so that every two verties in C have some fae they areboth inident with. Note that the plane graph depited in Figure 2.1(a)satis�es ω∗(G) = 3 k =

⌊

3
2
∆∗⌋. This shows that the following orollaryof Theorem 2.5 is best possible, up to the onstant term.
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Corollary 2.9 Every plane graph G of maximum fae degree ∆∗ hasyli lique number at most 3

2
∆∗ + O(1).To prove Theorems 2.4 and 2.5 we an as well assume that A ontainsall verties of degree at most ∆(G; A, B). To simplify things, de�ne

Bβ = { v ∈ V | dB(v) ≤ β }. So to prove Theorems 2.4 and 2.5 it isenough to prove the following theorems.Theorem 2.10 For all real ε > 0, there exists a βε so that the followingholds for all β ≥ βε. Let G be a planar graph, with B ⊆ V a set ofverties, and suppose every vertex v ∈ B has a list L(v) of at least (3
2

+
ε
)

β olors. Then a list (Bβ, B)-oloring of G with those olors exist.Theorem 2.11 There exist onstants γ1, β1 so that the following holdsfor all β ≥ β1. Let G be a planar graph, with B ⊆ V a set of verties.Then every (Bβ, B)-lique in G has size at most 3
2
β + γ1.The main steps in the proof of Theorem 2.10 an be found in Setion 2.2.The proof relies on two tehnial lemmas; the proofs of those an befound in Setion 2.3. After that we use one of those lemmas to providethe relatively short proof of Theorem 2.11 in Setion 2.4. In Setion 2.5we disuss some of the aspets of our work, give details about the maindi�erenes with the proof of [HHM+07℄, and disuss open problems re-lated to ( list ) (A, B)-oloring of graphs.2.2 Proof of Theorem 2.10We use the terminology and notation from the previous setion. Through-out this setion we assume that G = (V, E) is a plane graph with B ⊆ V ,and β is a positive integer. Reall the notation Uβ = { v ∈ V | dU(v) ≤

β } for a subset U ⊆ V . Note that this means that V β is the set of allverties of degree at most βOur goal is to show that for all ε > 0, if we take β large enough,then for every assignment L(v) of at least (3
2
+ ε
)

β olors to the verties
v ∈ B, there is a list (Bβ, B)-oloring of G where eah vertex in B reeivesa olor from its own list. In other words, we want an assignment c(v) foreah v ∈ B so that :
• for all v ∈ B we have c(v) ∈ L(v);
• for all u, v ∈ B with uv ∈ E we have c(u) 6= c(v); and
• for all u, v ∈ B with a ommon neighbor in Bβ ( i.e., with a ommonneighbor of degree at most β ) we have c(u) 6= c(v).
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2.2.1 The First StepsA β-neighbor of v is a vertex u 6= v, so that u and v are adjaent, or uand v have a ommon neighbor in Bβ. Denote the set of β-neighbors of vby Nβ(v), and its number by dβ(v). Note that we have

dβ(v) ≤ d(v) +
∑

u∈N(v)∩Bβ

(d(u) − 1).For P, Q ⊆ V , the set of edges between P and Q is denoted by E(P, Q),and the number of edges between P and Q by e(P, Q) ( edges with bothends in P ∩ Q are ounted twie ).An important tool in our proof of Theorem 2.10 is the following stru-tural result.Lemma 2.12 There exist onstants γ, γ′, so that for all β ≥ γ′ andplane graphs G = (V, E) we have that G ontains one of the following :(S1) a vertex with degree zero or one;(S2) a fae f and two verties u, v on the boundary of f with d(u) +
d(v) ≤ β and dβ(u) ≤ 3

2
β;(S3) two disjoint nonempty sets X, Y ⊆ V β with the following proper-ties :(i) Every vertex y ∈ Y has degree at most four. Moreover, y isadjaent to exatly two verties of X and the other neighborsof y have degree at most four as well.For y ∈ Y , let Xy be the set of its two neighbors in X. And for

W ⊆ X, let Y W be the set of verties y ∈ Y with Xy ⊆ W ( that is,the set of verties of Y having their two neighbors from X in W ).(ii) For all pairs of verties y, z ∈ Y , if y and z are adjaent orhave a ommon neighbor w /∈ X, then Xy = Xz.(iii) For all nonempty subsets W ⊆ X, we have the followinginequality :
e(W, V \ W ) ≤ e(W, Y ) + e(W, Y \ Y W ) + γ |W |.The proof of Lemma 2.12 an be found in Subsetion 2.3.1. In the proofwe obtain γ = 132 and γ′ = 1060, values that are probably far from bestpossible. The important point, to our mind, is that these are onstant.We ontinue with a desription how to apply the lemma to proveTheorem 2.10, assuming that β ≥ γ′. We use indution on the numberof verties of G. By Lemma 2.12, G ontains one of (S1), (S2) or (S3).(S1) If G ontains a vertex v of degree at most one, we onsider thegraph G1 obtained from G by removing v. If v /∈ B, then a
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list (Bβ, B)-oloring of G1 is also a list (Bβ, B)-oloring of G.Otherwise set B1 = B \ {v}. Now �nd a list (Bβ

1 , B1)-oloringof G1, and give an appropriate olor to v at the end. This isalways possible sine v is in on�it with at most β other verties,and we have (3
2

+ ε
)

β ≥ β + 1 olors available for v.(S2) Let f be a fae with two verties u, v on its boundary suh that
d(u) + d(v) ≤ β and dβ(u) ≤ 3

2
β. In this ase we onstrut anew planar graph G2 by identifying u and v into a new vertex w.Set V2 = (V \ {u, v})∪ {w}, and notie that G2 has stritly fewerverties than G, and w has degree at most dG(u)+dG(v) ≤ β in G2.In other words, w ∈ V β

2 . If v /∈ B, then set B2 = B. Otherwise,set B2 = (B \ {u, v}) ∪ {w} and give w a list of olors L(w) with
L(w) = L(v).By indution there exists a list (Bβ

2 , B2)-oloring of G2. Wede�ne a oloring of G as follows : every vertex di�erent from uand v keeps its olor from the oloring of G2. If v ∈ B, then weolor v with the olor given to w in G2. And if u ∈ B, then weuse the assumption, dβ
G(u) ≤ 3

2
β, and hene there exists a olorfor u di�erent from the olor of all the verties in on�it with u.We olor u with one of these olors. It is easy to verify that thisde�nes a list (Bβ, B)-oloring of G.(S3) This is the only non-trivial ase. In the remaining of this sub-setion we desribe how to redue this ase to a list edge-oloringproblem. In the next subsetion, we then desribe how Kahn'sapproah to prove that the list edge-hromati number is asymp-totially equal to the frational edge-hromati number an beused to onlude the proof of Theorem 2.10.Let X and Y be the two disjoint sets as in (S3). This means that everyvertex in X has degree at most β. Also reall that by (S3)(i), everyvertex y ∈ Y has degree at most four. Moreover, y is adjaent to exatlytwo verties of X and the other neighbors of y have degree at most fouras well. As in (S3), let Xy be the set of the two neighbors of y in X.Suppose there is a vertex y ∈ Y with y /∈ B. If N(y) = Xy, thenontrat y to one of its two neighbors in Xy. If y has a neighbor uoutside Xy, then ontrat the edge uy. Call the resulting graph G3. It iseasy to hek that a list (Bβ, B)-oloring of G3, whih exists by indution,also is a proper list (Bβ , B)-oloring of G.So from now on we assume that all verties in Y are ontained in B.Let Y0 be the set of verties from Y with no neighbor outside X ∪ Y .Consider the graph G[V \ Y0] indued on the set of verties outside Y0.For every vertex y ∈ Y \ Y0 with a unique neighbor u outside X ∪ Y , orwith exatly two neighbors u and v outside X ∪ Y , ontrat the edge yuinto a new vertex u∗. The graph obtained is denoted by G0. And let B0
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be the union of B \ Y0 and all new verties u∗ that originated from anedge yu with u ∈ B.By the onstrution of G0, it is easy to verify the following statement.Claim 2.13 For all u ∈ V (G0) we have (Nβ

G(u) \ Y ) ⊆ Nβ
G0

(u).For eah vertex u∗ of B0 orresponding to the ontration of an edge uy( y ∈ Y \ Y0 ) in G, set L0(u
∗) = L(u) and for all other verties v of B0set L0(v) = L(v). By the indution hypothesis, the graph G0 admits alist (Bβ

0 , B0)-oloring c0 with respet to the list assignment L0.We now transform this oloring into a list (Bβ, B)-oloring of G withrespet to the original list assignment L. For eah vertex u ∈ B \Y , if anedge inident to u has been ontrated in the onstrution of G0 to forma new vertex u∗, set c(u) = c0(u
∗). Otherwise set c(u) = c0(u). UsingClaim 2.13, this is a good partial (Bβ, B)-oloring of all the verties of

B \ Y . The di�ult part of the proof is to show that c an be extendedto Y .By assumption, at the beginning every vertex in Y has a list of atleast (3
2

+ ε
)

β available olors. For eah vertex y in Y , let us removefrom L(y) the olors whih are forbidden for y aording to the partial
(Bβ, B)-oloring c of G. In the worst ase, these forbidden olors areexatly the olors of the verties of V \Y at distane at most two from y.Let us de�ne the multigraph H as follows : H has vertex set X. Andfor eah vertex y ∈ Y we add an edge ey between the two neighbors of yin X ( in other words, between the two verties from Xy ). We assoiatea list L(ey) to ey in H by taking the list of y obtained after removing theset of forbidden olors for y from the original list L(y). Finally, for everyedge e in G[X], we add the same edge e to H and assoiate a list L(e) ofat least (3

2
+ ε
)

β olors to suh an edge. (The olors within these listsare irrelevant for what follows, we just have to make sure that the listsof these spei� edges of H are large enough. )We now prove the following lemma.Lemma 2.14 A list edge-oloring for H, with the list assignment L de-�ned as above, provides an extension of c to a list (Bβ , B)-oloring of Gby giving to eah vertex y ∈ Y the olor of the edge ey in H.Proof. This follows from property (S3)(ii) in Lemma 2.12 : for everytwo verties y, z ∈ Y , if y and z are adjaent or have a ommon neighbor
w /∈ X, then Xy = Xz. This proves that the two verties adjaent in Yor with a ommon neighbor not in X de�ne parallel edges in H and sowill have di�erent olors. If two verties y1 and y2 of Y have a ommonneighbor in X, ey1 and ey2 will be adjaent in H and so will get di�erentolors. Sine we have already removed from the list of verties in Y theset of forbidden olors ( de�ned by the olors of the verties in V \ Y ),
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there will be no on�it between the olors of a vertex from Y and avertex from V \Y . We onlude that the edge oloring of H will providean extension of c to a list (Bβ, B)-oloring of G.The following lemma provides a lower bound on the size of L(e) for theedges e in H .Lemma 2.15 Let e = uv be an edge in H. Then we have

|L(e)| ≥
(

3
2

+ ε
)

β − (dG(u) − dH(u)) − (dG(v) − dH(v)) − 10.Proof. If e originated beause there was already an edge in G[X], then byonstrution we have |L(e)| ≥
(

3
2
+ε
)

β. On the other hand, suppose that
e = ey, i.e., e originated beause of a vertex y ∈ Y in G with Xy = {u, v}.Let Z be the set of verties adjaent in G to y in V \ X. Then by (S3),
|Z| ≤ 2 and |NG(Z) \ Y | ≤ 6. The olors that are forbidden for y arethe olors of {u, v}, plus the olors of verties in (NG(u) ∪ NG(v)) \ Y ,plus the olors of verties in (Z ∪NG(Z)) \ Y . The number of verties inthese three sets add up to (dG(u) − dH(u)) + (dG(v) − dH(v)) + 10. Thelemma follows.In the remainder of this subsetion, we apply Lemma 2.12 to obtaininformation on the density of subgraphs in H , whih we will need in thenext subsetion. As in Lemma 2.12, for all non-empty subsets W ⊆ X,we de�ne Y W as the set of verties y ∈ Y with Xy ⊆ W ( that is, the setof verties of Y having their two neighbors from X in W ). By (S3)(iii)we have :

eG(W, V \ W ) ≤ eG(W, Y ) + eG(W, Y \ Y W ) + γ |W |.This inequality has the following interpretation in H .Lemma 2.16 For all non-empty subsets W ⊆ X( = V (H) ) we have
∑

w∈W

(dG(w) − dH(w)) ≤ eH(W, X \ W ) + γ |W |.Proof. We partition EG(W, V \ W ) into three parts E1, E2 and E3 asfollows : For E1 we take the set of edges from W to V \ (X ∪ Y ), i.e.,
|E1| = eG(W, V \(X∪Y )) =

∑

w∈W

(dG(w)−dH(w)). The set E2 ontains theedges from W to Y , |E2| = eG(W, Y ), and E3 is the set of edges from Wto X \ W in G. By (S3)(iii) ( see also the inequality for eG(W, V \ W )above ), we have
|E1| + |E2| + |E3| ≤ eG(W, Y ) + eG(W, Y \ Y W ) + γ |W |.
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Note that eG(W, Y \ Y W ) = eH(W, X \ W ) − eG(W, X \ W ) and |E2| =
eG(W, Y ). This results in the following stronger inequality, whih in turnimplies the lemma :

|E1| + |E3| ≤ eH(W, X \ W ) − |E3| + γ |W |,and so
∑

w∈W

(dG(w) − dH(w)) ≤ eH(W, X \ W ) − 2 |E3| + γ |W |.At this point, our aim will be to apply Kahn's approah to the multi-graph H with the list assignment L, to prove the existene of a properlist edge-oloring for H . This is desribed in the next subsetion.We summarize the properties we assume are satis�ed by the multi-graph H and the list assignment L of the edges of H . For these onditionswe just onsider dG(v) as an integer with ertain properties, assigned toeah vertex of H .(H1) For all verties v in H we have dH(v) ≤ dG(v) ≤ β.(H2) For all edges e = uv in H : |L(e)| ≥
(

3
2
+ ε
)

β − (dG(u)−dH(u))−
(dG(v) − dH(v)) − 10.(H3) For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(dG(w) − dH(w)) ≤
eH(W, X \ W ) + γ |W |, for some onstant γ.2.2.2 The Mathing Polytope and Edge-ColoringsWe brie�y desribe the mathing polytope of a multigraph. More aboutthis subjet an be found in [Sh03, Chapter 25℄.Let H be a multigraph with m edges. Let M(H) be the set of allmathings of H , inluding the empty mathing. For eah M ∈ M(H), letus de�ne the m-dimensional harateristi vetor 1M as follows : 1M =

(xe)e∈E(H), where xe = 1 for an edge e ∈ M , and xe = 0 otherwise. Themathing polytope of H , denoted by MP(H), is the polytope de�ned bytaking the onvex hull of all the vetors 1M for M ∈ M(H).Edmonds [Edm65℄ gave the following haraterisation of the mathingpolytope:Theorem 2.17 [Edm65℄ A vetor ~x = (xe) is in MP(H) if and only if
xe ≥ 0 for all xe and the following two types of inequalities are satis�ed :
• For all verties v ∈ V (H) : ∑

e: v inident to e

xe ≤ 1;
• for all subsets W ⊆ V (H) with |W | ≥ 3 and |W | odd : ∑

e∈E(W )

xe ≤
1
2
(|W | − 1).
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The signi�ane of the mathing polytope and its relation with list edge-oloring is indiated by the following important result. Reall the nota-tion λMP(H) = { λ x | x ∈ MP(H) }, for a real number λ.Theorem 2.18 [Kah00℄ For all real numbers δ, µ, 0 < δ < 1 and µ > 0,there exists a ∆δ,µ so that for all ∆ ≥ ∆δ,µ the following holds. If H is amultigraph and L is a list assignment of olors to the edges of H so that
• H has maximum degree at most ∆;
• for all edges e ∈ E(H) : |L(e)| ≥ µ ∆;
• the vetor ~x = (xe) with xe =

1

|L(e)| for all e ∈ E(H) is an elementof (1 − δ)MP(H).Then there exists a proper edge-oloring of H where eah edge gets a olorfrom its own list.The theorem above is atually not expliitly stated this way in [Kah00℄,but an be obtained from the appropriate parts of that paper. For fur-ther details, the reader is referred to [AEH08℄.The next lemma shows how to use Theorem 2.18 to omplete theindution.Lemma 2.19 Let γ be a real number. Then there exists Kγ > 0, so thatfor all K ≥ Kγ the following holds. Let H be a multigraph, so that foreah vertex v an integer D(v) is assigned and for eah edge e a positivereal number be is given. Suppose that the following three onditions aresatis�ed :(H1') For all verties v in H : d(v) ≤ D(v) ≤ β.(H2') For all edges e = uv in H : be ≥
(

3
2
β + K) − (D(u) − d(u)) −

(D(v) − d(v)).(H3') For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(D(w) − d(w)) ≤
eH(W, V (H) \ W ) + γ |W |.Then for all edges e ∈ E(H) we have be ≥ 1

2
β. And the vetor

~x = (xe) de�ned by xe =
1

be

for e ∈ E(H) is an element of MP(H).The proof of Lemma 2.19 will be given in Subsetion 2.3.2. Thislemma guarantees that for all ε > 0, there exists a βε, so that for all
β ≥ βε Theorem 2.18 an be applied to a multigraph H with an edge listassignment L satisfying properties (H1) � (H3) stated at the end of theprevious subsetion.
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To see this, take 0 < δε = ε

3+2 ε
< 1. In order to be able to applyTheorem 2.18, we want to prove the existene of βε,γ suh that for any

β ≥ βε,γ the vetor ~x = (xe), xe = 1
|L(e)| , is in (1 − δε)MP(H). Let Kγbe the number given by Lemma 2.19. By ondition (H2) we have

(1 − δε)|L(e)| ≥ (1 − δε)
((

3
2

+ ε
)

β − (D(u) − d(u)) − (D(v) − d(v)) − 10
)

≥ (1 − δε)
(

3
2

+ ε
)

β − (D(u) − d(u)) − (D(v) − d(v)) − 10

=
(

3
2
β + ε

2
β
)

− (D(u) − d(u)) − (D(v) − d(v)) − 10.Let βε,γ = 2(Kγ+10)
ε

. For β ≥ βε,γ, we have
(1 − δε)|L(e)| ≥

(

3
2
β + Kγ

)

− (D(u) − d(u)) − (D(v) − d(v)).So by Lemma 2.19, for be = (1 − δε)|L(e)|, the vetor ~x′ = (x′
e), x′

e =
1

(1−δε)
xe is in MP(H). We infer that ~x ∈ (1−δε)MP(H) and the lemmafollows.Now assume β ≥ max{ γ′, βε,γ, ∆δε,1/2 } (where γ, γ′ are determinedby Lemma 2.12, βε,γ and δε are related to Kγ from Lemma 2.19 as ex-plained above, and ∆δε,1/2 is aording to Theorem 2.18 ). Then usingLemma 2.19, we an now apply Theorem 2.18 whih implies that themultigraph H de�ned in Subsetion 2.2.1 has a list edge-oloring or-responding to the list assignment L. Lemma 2.14 then implies thatthe oloring c an be extended to a list (Bβ, B)-oloring of the origi-nal graph G. This onludes the indution and also ompletes the proofof Theorem 2.10.2.3 Proofs of the Main LemmasWe use the terminology and notation from the previous setions.2.3.1 Proof of Lemma 2.12In what follows, we take γ = 132 and γ′ = 1060. So take β ≥ 1060 andlet G be a plane graph. We need some further notation and terminology.The set of faes of G is denoted by F . For a fae f , a boundary walkof f is a walk onsisting of verties and edges as they are enounteredwhen walking along the whole boundary of f , starting at some vertex.The degree of a fae f , denoted d(f), is the number of edges on theboundary walk of f . Note that this means that if f is inident with abridge ( ut edge ) of G, that bridge will be ounted twie in d(f). Thesize of a fae f is the number of verties on its boundary. We alwayshave that the size of f is at most d(f), with strit inequality if and onlyif the fae has a ut vertex on its boundary.
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We start by proving that we an assume that G is a 2-onnetedtriangulation of the plane. First suppose that G is not onneted. Thenwe an take two verties u, v from di�erent omponents so that addingthe edge uv to G gives a simple plane graph G′.Next, onsider the ase that G is onneted but ontains a fae fof degree more than three. If this fae ontains a vertex v that is aut vertex, then the verties u and w that ome before and after v ona boundary walk of f are di�erent and not adjaent. Form the simpleplane graph G′ by adding the edge uw to G. If f ontains no ut vertex,then it has four verties u1, u2, u3, u4 that are onseutive on a boundarywalk. And sine G is planar, at least one of the pairs u1, u3 and u2, u4are not adjaent. Form the simple plane graph G′ by adding an edgebetween one of these non-adjaent pairs.Suppose G′ ontains one of the strutures (S1) � (S3) in the lemma.We laim that then also G ontains one of these strutures. This isobvious if G′ ontains (S1) or (S2). So suppose G′ has sets X, Y aordingto (S3), and let uv be the edge that was added to G to give G′.It is easy to hek that exatly the same pair X, Y works for G aswell in the following ases : if {u, v} ∩ (X ∪ Y ) = ∅, or if u, v ∈ X, or if

u, v ∈ Y , or if u ∈ Y and v ∈ V \ (X ∪Y ). If u ∈ X and v ∈ V \ (X ∪Y ),then going from G′ to G for W ⊆ X with x ∈ W , we loose one on theleft hand side of the inequality in (iii). Hene the pair X, Y also worksfor G. If u ∈ X and v ∈ Y , then in G either v has degree at most one,and then G ontains struture (S1), or v is adjaent to one vertex x ∈ Xand at most two more verties of degree at most four. But then v has aneighbor w with d(v) + d(w) ≤ 7 ≤ β. Moreover, sine x ∈ X ⊆ V β , wehave dβ(v) ≤ 8 + β ≤ 3
2
β. Hene in this ase G ontains struture (S2).Finally, the possibilities v ∈ Y and u ∈ V \ (X ∪ Y ), or v ∈ X and

u ∈ V \ (X ∪ Y ), or v ∈ X and u ∈ Y , an be done by symmetry withthe ases above.So, by adding edges we an transform G to a onneted graph G∗in whih eah fae has degree three (whih implies that G∗ is indeed 2-onneted ) and so that if G∗ satis�es the lemma, then so does G. Henewe might as well assume the following :(a) The graph G is 2-onneted and all its faes have degree three.Now suppose that G does not ontain any of the strutures (S1) or (S2).In order to prove Lemma 2.12, we only need to prove that G ontainsstruture (S3). We an observe that :(b) All verties have degree at least three. ( Sine G does not on-tain (S1), degrees must be at least two. And we annot have avertex of degree two, sine otherwise, for eah fae to have degreethree, we have a multiple edge as well. )() For all pairs of adjaent verties u, v we have d(u) + d(v) > β or
dβ(u) > 3

2
β ( otherwise we have struture (S2) ).
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Let B ⊆ V , the big verties, be the verties of degree at least 133; theother verties are alled small. De�ne Bβ = B∩V β ( the big verties withdegree at most β ) and B>β = B \ Bβ.(d) If a vertex u of degree three has a small neighbor, then its othertwo neighbors are in Bβ.This follows sine if u has a small neighbor v, then d(u) + d(v) ≤ β. Butthen, by observation (), we must have dβ(u) > 3

2
β, whih is only possibleif both its other neighbors are in Bβ ( note that a neighbor from B>β addsat most one to dβ(u) ).In the same way we an prove :(e) If a vertex of degree four has a small neighbor, then it also has atleast two neighbors from Bβ.(f) A vertex u of degree �ve has at least two big neighbors ( otherwisewe have dβ(u) ≤ 5+4 · (132−1)+ (β−1) ≤ 3

2
β, sine β ≥ 1060 ).We ontinue our analysis using the lassial tehnique of disharging.Give eah vertex v ∈ V an initial harge µ(v) = 2

3
d(v) − 4. Using thefat that every fae has degree three, Euler's Formula |V |− |E|+ |F | = 2an be rewritten as ∑

x∈V

µ(x) = −8.We next redistribute initial harges aording to the following rules :(R1) Eah vertex of degree three that is adjaent to three big vertiesreeives a harge 2/3 from eah of its neighbors.(R2) Eah vertex of degree three that is adjaent to two big vertiesreeives a harge 1 from eah of its big neighbors.(R3) Eah vertex of degree four that is adjaent to four big vertiesreeives a harge 1/3 from eah of its big neighbors.(R4) Eah vertex of degree four that is adjaent to three big vertiesreeives a harge 4/9 from eah of its big neighbors.(R5) Eah vertex of degree four that is adjaent to two big vertiesreeives a harge 2/3 from eah of its big neighbors.(R6) Eah vertex of degree �ve reeives a harge 1/3 from eah of itsbig neighbors.Denote the resulting harge of an element v ∈ V after applying rules(R1) � (R6) by µ′(v). Sine the global harge has been preserved, we have
∑

v∈V

µ′(v) = −8. We will show that for most v ∈ V , µ′(v) is non-negative.Combining observations (d) � (f) with rules (R1) � (R6) and our knowl-edge that µ(v) = 2
3
d(v) − 4, we �nd that µ′(v) = 0 if d(v) = 3, 4, while

µ′(v) ≥ 0 if d(v) = 5.For a small vertex v with d(v) ≥ 6, we have µ′(v) = µ(v) = 2
3
d(v) −

4 ≥ 0.So we are left to onsider verties v ∈ B. The plane embedding of Gimposes a lokwise order on the neighbors of v. If u is a neighbor of v,
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then by u− ( resp. u+ ) we indiate the neighbor of v that omes before( resp. after ) u in that order. Similarly, we denote by u−− ( resp. u++ )the neighbor of v that omes before u− ( resp. after u+ ) in the sameorder.Let us take a vertex v ∈ B>β. We distinguish 5 di�erent types ofneighbors of v :
N3(v) = { u ∈ N(v) | d(u) = 3 and all neighbors of u are big };

N4a(v) = { u ∈ N(v) | d(u) = 4 and all neighbors of u are big };
N4b(v) = { u ∈ N(v) | d(u) = 4 and u has exatly one small neighbor };
N5(v) = { u ∈ N(v) | d(u) = 5 };
N6(v) = { u ∈ N(v) | d(u) ≥ 6 }.Notie that eah neighbor of v is in one of these sets. ( For a neighbor ofdegree three, this follows from observation (d). And for a neighbor u ofdegree four, it follows from observation (e) that, sine v ∈ B>β, if u hasa small neighbor, then the remaining two neighbors are in Bβ. )Moreover, by observation (d) we must have that if u ∈ N3(v), then

u−, u+ ∈ N6(v). Similarly, if u ∈ N4a(v), then we also have u−, u+ ∈
N6(v). While if u ∈ N4b(v), then at least one of u−, u+ is in N6(v).Set n3 = |N3(v)|, n4a = |N4a(v)|, n4b = |N4b(v)|, n5 = |N5(v)|, and
n6 = |N6(v)|. From the previous observation, we dedue

n6 ≥ n3 + n4a +
1

2
n4b.We also have, using µ(v) = 2

3
d(v)− 4 and applying rules (R1), (R3),(R4) and (R6), that

µ′(v) = 2
3
d(v) − 4 − 2

3
n3 − 1

3
n4a − 4

9
n4b − 1

3
n5.Combining this with d(v) = n3 + n4a + n4b + n5 + n6 and 1

3
n6 ≥ 1

3
n3 +

1
3
n4a + 1

6
n4b, we �nd

µ′(v) = 2
3
n6 + 1

3
n4a + 2

9
n4b + 1

3
n5 − 4

≥ 1
3
n6 + 1

3
n3 + 2

3
n4a + 7

18
n4b + 1

3
n5 − 4

≥ 1
3
(n6 + n3 + n4a + n4b + n5) − 4

≥ 1
3
d(v) − 4 ≥ 0.So we found that for all v /∈ Bβ we have µ′(v) ≥ 0, and hene we musthave
∑

v∈Bβ

µ′(v) ≤ −8 < 0.To derive the relevant onsequene of that formula, we must make a de-tailed analysis of the neighbors of a vertex v ∈ Bβ . We again distinguish
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di�erent types of neighbors of v :
M1(v) = { u ∈ N(v) | {u−, u−−, u+, u++} ∩ Bβ 6= ∅ };

M4a(v) = { u ∈ N(v) \ M1(v) | d(u) = 4 and u− or u+ have degree at least �ve };
M4b(v) = { u ∈ N(v) \ M1(v) | d(u) = d(u−) = d(u+) = 4 };
M5(v) = { u ∈ N(v) \ M1(v) | d(u) = 5 };
M6(v) = { u ∈ N(v) \ M1(v) | d(u) ≥ 6 }.First observe that if u ∈ N(v) \ M1(v) is a small vertex, then u−and u+ both have degree at least four : Assume that u− has degree three,then by observation (d) the neighbor w of u− distint from v and u isin Bβ . By observation (a), w = u−−, whih ontradits the fat that

u /∈ M1(v). If u+ has degree three, we �nd that u++ ∈ Bβ , whih againontradits u /∈ M1(v).As a onsequene, every neighbor of v is in exatly one set. Our aimin the following, in order to prove Lemma 2.12, is to show that mostneighbors of v are in M4b(v).We now evaluate the harge that a vertex v ∈ Bβ has given to itsneighbors. If u ∈ M1(v), then v gave at most 1+1+1 = 3 to {u−, u, u+};if u ∈ M4a(v), then v gave at most 1/3 + 2/3 + 2/3 = 5/3 to {u−, u, u+};if u ∈ M4b(v), then v gave at most 2/3 + 2/3 + 2/3 = 2 to {u−, u, u+};if u ∈ M5(v), then v gave at most 1/3 + 2/3 + 2/3 = 5/3 to {u−, u, u+};and, �nally, if u ∈ M6(v), then v gave at most 2/3 + 0 + 2/3 = 4/3to {u−, u, u+}. Setting m1 = |M1(v)|, m4a = |M4a(v)|, m4b = |M4b(v)|,
m5 = |M5(v)|, and m6 = |M6(v)|, we an onlude that v gave at most
1
3

(

3 m1 + 5
3
m4a + 2 m4b + 5

3
m5 + 4

3
m6

)

≤ m1 + 2
3
m4b + 5

9
(m4a + m5 + m6)

≤ 5
9
d(v) + 4

9
m1 + 1

9
m4bto its neighborhood. This means that the remaining harge µ′(v) of avertex v ∈ Bβ must satisfy

µ′(v) ≥
(

2
3
d(v)−4

)

−
(

5
9
d(v)+ 4

9
m1+ 1

9
m4b

)

= 1
9
(d(v)−m4b)− 4

9
m1−4.By de�nition, M1(v) is at most four times the number of neighbors of vin Bβ. Sine the subgraph of G indued by Bβ is planar, it has at most

3 |Bβ| − 6 edges, and so
∑

v∈Bβ

|M1(v)| < 24 |Bβ|.Combining the last two inequalities gives
0 >

∑

v∈Bβ

µ′(v) ≥
(

∑

v∈Bβ

1
9
(d(v) − |M4b(v)|)

)

− 4
9
· 24 |Bβ| − 4 |Bβ|,
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whih an be written as

∑

v∈Bβ

(d(v) − |M4b(v)|) < 132 |Bβ|.We an assume Bβ 6= ∅, otherwise G ontains struture (S1) or (S2).De�ne X0 = Bβ and Y0 =
⋃

v∈Bβ M4b(v). Note that the previous inequal-ity an be written e(X0, V \ Y0) < 132 |X0|. Also observe that the pair
(X0, Y0) satis�es the onditions (i) and (ii) for X and Y in part (S3) ofLemma 2.12 :(i) For all verties u ∈ M4b(v), u− and u+ have degree four in G, andthe fourth neighbor of u is in Bβ = X0 by observation (e).(ii) By observation (a), all pairs of adjaent verties u, v ∈ Y0, satisfy

Xu
0 = Xv

0 . If u, v ∈ Y0 share a neighbor w /∈ X0, then w has degreeat most four and its possible neighbors distint from u and v arein Xu
0 . Again by observation (a), we must have Xu

0 = Xv
0 .So we are done if the pair (X0, Y0) also satis�es ondition (iii) ( with

X = X0 and Y = Y0 ). Suppose this is not the ase. So there must exista set Z1 ⊆ X0 with
e(Z1, V \ Z1) > e(Z1, Y0) + e(Z1, Y0 \ Y Z1

0 ) + 132 |Z1|.De�ne X1 = X0 \ Z1 and Y1 = Y X1
0 . Again, by onstrution, (X1, Y1)satis�es onditions (i) and (ii) of (S3). If it does not satisfy ondition (iii)we iterate the proess ( see Figure 2.2 ) and eventually obtain a pair

(Xk, Yk) satisfying onditions (i), (ii) and (iii) of (S3). We only need tohek that Xk 6= ∅ and Yk 6= ∅.
Zi

Xi
Yi

Xi−1 Yi−1Figure 2.2: Xi = Xi−1 \ Zi and Yi = Y Xi

i−1.Let 1 ≤ i ≤ k. Sine Xi = Xi−1 \ Zi, we have
e(Xi, V \ Yi) = e(Xi−1, V \ Yi) − e(Zi, V \ Yi)

= e(Xi−1, V \ Yi−1) + e(Xi−1, Yi−1 \ Yi)

− e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Yi)

= e(Xi−1, V \ Yi−1) − e(Zi, V \ Yi−1) + e(Xi, Yi−1 \ Yi).
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Sine Yi = Y Xi

i−1, every neighbor u ∈ Yi−1 \ Yi of a vertex from Xi hasexatly one neighbor in Zi ( see Figure 2.2 ). Hene, e(Xi, Yi−1 \ Yi) =
e(Zi, Yi−1 \ Y Zi

i−1). So we have
e(Xi−1, V \ Yi−1) = e(Xi, V \ Yi) + e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Y Zi

i−1)

= e(Xi, V \ Yi) + e(Zi, V ) − e(Zi, Yi−1) − e(Zi, Yi−1 \ Y Zi
i−1).By the de�nition of Zi, we have e(Zi, V ) ≥ e(Zi, V \ Zi) > e(Zi, Yi−1) +

e(Zi, Yi−1 \ Y Zi
i−1) + 132 |Zi|. Hene we obtain

e(Xi−1, V \ Yi−1) ≥ e(Xi, V \ Yi) − e(Zi, Yi−1) − e(Zi, Yi−1 \ Y Zi
i−1) + e(Zi, Yi−1)

+ e(Zi, Yi−1 \ Y Zi
i−1) + 132 |Zi|

≥ e(Xi, V \ Yi) + 132 |Zi|.Setting Z∗ =
⋃

1≤i≤k

Zi, we have e(Xk, V \ Yk) ≤ e(X0, V \ Y0) − 132 |Z∗|.As a onsequene,
|Z∗| ≤ e(X0, V \ Y0) − e(Xk, V \ Yk)

132
≤ e(X0, V \ Y0)

132
<

132 |X0|
132

= |X0|.Sine Xk = X0 \ Z∗, this implies |Xk| > 0, whih leads to Xk 6= ∅.Finally, let v ∈ Xk. Taking W = {v} in the inequality (iii) of (S3)(whih by onstrution is satis�ed by (Xk, Yk) ), we obtain d(v) ≤ 2 dYk
(v)+

132, where dYk
(v) denotes the number of neighbors of v in Yk. Sine v isa big vertex, d(v) ≥ 133 and so dYk

(v) ≥ 1
2
(133 − 132) > 0. This meansthat we must have Yk 6= ∅, whih onludes the proof of Lemma 2.12.2.3.2 Proof of Lemma 2.19We reall the hypotheses of the lemma : We have a real number γ; H isa multigraph; eah vertex v of H has an assoiated integer D(v); and foreah edge e a positive number be is given. The following three onditionsare satis�ed :(H1') For all verties v in H : d(v) ≤ D(v) ≤ β.(H2') For all edges e = uv in H : be ≥
(

3
2
β + K) − (D(u) − d(u)) −

(D(v) − d(v)).(H3') For all non-empty subsets W ⊆ V (H) : ∑

w∈W

(D(w) − d(w)) ≤
eH(W, V (H) \ W ) + γ |W |.In the proof that follows, at ertain moments we will give lower boundsfor K so that any K satisfying all these lower bounds will satisfy thelemma, i.e., suh that the vetor ~x = (xe), xe = 1

be
will be in MP(H).
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For an edge e = uv in H , de�ne

ae =
(

3
2
β+K

)

−(D(u)−d(u))−(D(v)−d(v)) and ye =
1

ae
. (2.1)We will in fat prove that the vetor ~y = (ye) is in the mathing poly-tope MP(H). Sine be ≥ ae, we have xe =

1

be

≤ 1

ae

= ye. So, byEdmonds' haraterisation of the mathing polytope, if ~y ∈ MP(H),this guarantees that ~x ∈ MP(H), as required.Applying ondition (H3') to the set W = {v} gives D(v) − d(v) ≤
d(v) + γ, whih implies :(a) For all verties v ∈ V (H) we have d(v) ≥ 1

2
(D(v) − γ).Let e = uv be an edge of H . If we use the estimate above for both uand v in the de�nition of ae in (2.1), and realling that D(u), D(v) ≤ β,we obtain

ae ≥ 3
2
β − 1

2
D(u) − 1

2
D(v) + K − γ ≥ 1

2
β + K − γ.On the other hand, if we use observation (a) to u only we get

ae ≥ d(v) + 3
2
β − 1

2
D(u) − D(v) + K − 1

2
γ ≥ d(v) + K − 1

2
γ.So if we make sure that K ≥ 2 γ, then the following two onlusions hold.(b) For all edges e = uv in E(H) we have ae ≥ d(v) + 1

2
K.() For all edges e ∈ E(H) we have ae ≥ 1

2
β + 1

2
K.Note that observation () also gives be ≥ ae ≥ 1

2
β for all e ∈ E(H),as required.Next notie that for any κ > 0, the funtion x 7→ x

x+κ
is inreas-ing in x. Together with the fat that d(v) ≤ β for all v ∈ V (H) andobservation (b), we �nd

∑

e∋v

1

ae

≤ d(v) · 1

d(v) + 1
2
K

≤ 1, whih shows thatClaim 2.20 For all verties v ∈ V (H) we have ∑
e∋v

ye ≤ 1.Using Theorem 2.17, all that remains is to prove that for all W ⊆ V (H)with |W | ≥ 3 and |W | odd we have ∑

e∈E(W )

ye ≤ 1
2
(|W | − 1). We atuallywill prove this for all |W | ≥ 3. Note that we ertainly an assume

E(W ) 6= ∅.Using observation (b), we infer that :
∑

e∈E(W )

1

ae

≤ 1

2

∑

u∈W

dH[W ](u)

d(u) + 1
2
K

=
1

2

∑

u∈W

( d(u)

d(u) + 1
2
K

−d(u) − dH[W ](u)

d(u) + 1
2
K

)

.
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Sine d(u)

d(u) + 1
2
K

≤ β

β + 1
2
K

and d(u) − dH[W ](u)

d(u) + 1
2
K

≥ d(u) − dH[W ](u)

β + 1
2
K

,this implies
∑

e∈E(W )

1

ae

≤ 1

2
|W | β

β + 1
2
K

− 1

2

e(W, W c)

β + 1
2
K

.Here we used that ∑
u∈W

(

d(u)−dH[W ](u)
)

= e(W, W c), where W c = V (H)\
W . If e(W, W c) ≥ β, we obtain

∑

e∈E(W )

ye ≤ 1

2
(|W | − 1) · β

β + 1
2
K

≤ 1

2
(|W | − 1),provided that K ≥ 0.So we an assume in the following that e(W, W c) ≤ β, in whih aseCondition (H3') of Lemma 2.19 implies

∑

u∈W

(D(u) − d(u)) ≤ e(W, W c) + γ |W | ≤ β + γ |W |.For a vertex u set c(u) = D(u) − d(u), and for a set of verties U wede�ne c(U) =
∑

u∈U

c(u). So we an write the above as c(W ) ≤ β + γ |W |.In the following we use the fat that all ae are large enough to �nda bound for the sum ∑

e∈E(W )

a−1
e . To this aim, reall from de�nition (2.1)that ae =

(

3
2
β + K

)

− c(u) − c(v) for all edges e = uv in H . This gives
∑

e∈E(W )

ae ≥
(

3
2
β + K

)

|E(W )| −
∑

u∈W

c(u) dH[W ](u).Sine dH[W ](u) ≤ d(u) = D(u) − c(u) ≤ β − c(u), we have
∑

e∈E(W )

ae ≥
(

3
2
β + K

)

|E(W )| − β c(W ) +
∑

u∈W

c(u)2.Set p = min
uv∈E(W )

{(

3
2
β + K

)

− c(u) − c(v)
} and q = 3

2
β + K. Thismeans that q−p = max

uv∈E(W )

{

c(u)+c(v)
}. Let e = uv be an edge in E(W )so that c(u) + c(v) = q − p. Then c(u)2 + c(v)2 ≥ 1

2
(q − p)2, and henewe an be sure that

∑

e∈E(W )

ae ≥ q |E(W )| − β c(W ) + 1
2
(q − p)2.We now use this inequality and the following laim to bound ∑

e∈E(W )

a−1
e .
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Claim 2.21 Let r1, . . . , rm be m real numbers so that 1 < p ≤ r1, . . . , rm ≤
q and ∑

1≤i≤m

ri ≥ q m − (q − p) S, for some S ≥ 0. Then we have
∑

1≤i≤m

r−1
i ≤ S

p
+

m − S

q
.Proof The result is trivial if p = q, so suppose p < q. For any 1 ≤

i ≤ m, set ci =
q − ri

q − p
. Now we have 0 ≤ ci ≤ 1 for all 1 ≤ i ≤ m,and ∑

1≤i≤m

ci ≤ S. Sine the funtion x 7→ 1

x
is onvex, we have that for

1 ≤ i ≤ m,
1

ri
=

1

q − ci (q − p)
=

1

ci p + (1 − ci) q
≤ ci

1

p
+(1−ci)

1

q
= ci

(1

p
−1

q

)

+
1

q
.As a onsequene,

∑

1≤i≤m

1

ri
≤
(1

p
− 1

q

)

∑

1≤i≤m

ci +
m

q
≤
(1

p
− 1

q

)

S +
m

q
≤ S

p
+

m − S

q
.
2We set R = β c(W ) − 1

2
(q − p)2 and S =

R

q − p
. Using Claim 2.21, atthis point we have

∑

e∈E(W )

1

ae

≤ S

p
+
|E(W )| − S

q
=

S (q − p)

p q
+
|E(W )|

q
=

R

p q
+

2 |E(W )|
3 β + 2K

.Notie that by ondition (H3') of Lemma 2.19, 2 |E(W )| ≤ ∑

u∈W

D(u) −
2 c(W ) + γ |W | ≤ β |W | − 2 c(W ) + γ |W |. Hene we �nd

∑

e∈E(W )

1

ae

≤ β |W |
3β + 2K

+
R

p q
− 2 c(W )

3β + 2K
+

γ |W |
3 β + 2K

. (2.2)Claim 2.22 For K large enough we have R

p q
− 2 c(W )

3 β + 2K
+

γ |W |
3 β + 2K

≤
2K

3 (3 β + 2K)
|W |.Proof Sine q = 3

2
β + K, we only have to prove that 2 R

p
− 2 c(W ) +

γ |W | ≤ 1
3
K |W |.Let us write q − p = α β, and so p = 1

2
(3 − 2 α) β + K and R =

β c(W ) − 1
2
α2 β2. Using that c(W ) ≤ β + γ |W |, we have

2 R

p
− 2 c(W ) + γ |W | =

2 β c(W )

p
− α2 β2

p
− 2 c(W ) + γ |W |

= c(W )
2 β − 2 p

p
− α2 β2

p
+ γ |W |

≤ β

p
(2 β − 2 p − α2 β) + γ |W | 2 β − p

p
.
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As 2 p = (3 − 2 α) β + 2K, we have 2 β − 2 p − α2 β = (−1 + 2 α −
α2) β − 2K = −(α − 1)2 β − 2K < 0. Note that by observation (a)and ondition (H1') we have q − p ≤ β + γ, hene if we hoose K ≥ γ,then we have q − p ≤ β + K, and hene p ≥ 1

2
β. We an onlude

2 R

p
− 2 c(W ) + γ |W | ≤ 3 γ |W |. As soon as K ≥ 9

2
γ, we have 3 γ |W | ≤

2
3
K |W |, whih ompletes the proof of the laim. 2Combining (2.2) and Claim 2.22, we obtain that for any K ≥ 9

2
γ :

∑

e∈E(W )

ye =
∑

e∈E(W )

1

ae

≤ β|W |
3β + 2K

+
2K|W |

3 (3β + 2K)

=
(β + 2

3
K)

(3 β + 2K)
|W | = 1

3
|W |.Sine |W | ≥ 3, 1

3
|W | ≤ 1

2
(|W | − 1), whih ompletes the proof of thelemma.2.4 Proof of Theorem 2.11Let γ and γ′ be as given in Lemma 2.12, and take γ1 = max

{⌈

1
4
(3 γ +

37)
⌉

, 11
} and β1 = γ′. Next take β ≥ γ′. Suppose the theorem isfalse, and let the planar graph G be a ounterexample with the minimumnumber of verties, for some B ⊆ V .Suppose G ontains verties u, v that are inident with a ommonfae, and so that d(u) + d(v) ≤ β. Construt a new planar graph G1 byidentifying u and v into a new vertex w. Set V1 = (V \ {u, v}) ∪ {w},and notie that G1 has stritly fewer verties than G, and w has degreeat most dG(u) + dG(v) ≤ β in G1. In other words, w ∈ V β

1 . If v /∈ B,then set B1 = B; otherwise, set B1 = (B \ {u, v}) ∪ {w}.Every (Bβ , B)-lique in G not ontaining u orresponds to a (Bβ
1 , B1)-lique in G of the same size. Sine G was hosen as the smallest oun-terexample to Theorem 2.11, this means that every (Bβ, B)-lique in Gof size larger than 3

2
β + γ1 must ontain u. On the other hand, any

(Bβ, B)-lique in G ontaining u has size at most 1 + dβ(u).We an onlude that for all pairs of verties u, v in G inident witha ommon fae and with d(u) + d(v) ≤ β, we have that u and v are inevery (Bβ, B)-lique of size larger than 3
2
β+γ1, and these verties satisfy

dβ(u), dβ(v) ≥ 3
2
β + γ1.Sine β ≥ γ′, we an apply Lemma 2.12. We use the notation from thelemma. Beause of the observation above, onlusions (S1) and (S2) ofthat lemma are not possible. Hene we know that G ontains X, Y ⊆ V βsatisfying (S3) from the lemma. We reall the ruial properties :
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(i) Every vertex y ∈ Y has degree at most four. Moreover, y is adja-ent to exatly two verties of X and the other neighbors of y havedegree at most four as well.For y ∈ Y , let Xy be the set of its two neighbors in X. And for W ⊆ X,let Y W be the set of verties y ∈ Y with Xy ⊆ W ( that is, the set ofverties of Y having their two neighbors from X in W ).(ii) For all pairs of verties y, z ∈ Y , if y and z are adjaent or havea ommon neighbor w /∈ X, then Xy = Xz.(iii) For all nonempty subsets W ⊆ X, we have the following inequal-ity :

e(W, V \ W ) ≤ e(W, Y ) + e(W, Y \ Y W ) + γ |W |.By (i), it follows that all verties in Y are in every (Bβ, B)-lique ofsize larger than 3
2
β + γ1. Hene in partiular :(a) For every y ∈ Y we have dβ(y) ≥ 3

2
β + γ1.Also by the properties of the verties in Y aording to (i) and (ii) wehave for all y ∈ Y and Xy = {x1, x2} :

dβ(y) ≤ 4 + 2 · (4 − 1) + (d(x1) − 1) + (d(x2) − 1) − |Y {x1,x2} \ {y}|
= 9 + d(x1) + d(x2) − |Y {x1,x2}|( the term |Y {x1,x2} \ {y}| is subtrated, sine these verties are ountedtwie in (d(x1) − 1) + (d(x2) − 1) ). Sine d(x1), d(x2) ≤ β, from (a) wean onlude that(b) for every pair x1, x2 ∈ X we have |Y {x1,x2}| ≤ 1

2
β − γ1 + 9.We also must have that all pairs of verties from Y are adjaent orhave a ommon neighbor from Bβ. By (ii), this proves that for everytwo verties y1, y2 ∈ Y we have Xy1 ∩ Xy2 6= ∅. As a onsequene, if X ′denotes the set of verties of X with at least one neighbor in Y , and Hdenotes the graph with vertex set X ′ in whih two verties are adjaentif they have a ommon neighbor in Y , then H is either a triangle or astar.Case 1. H is a triangle or H is a star with at most two leaves.First suppose H is a triangle. Let y ∈ Y with (X ′)y = {x1, x2}, where

X ′ = {x1, x2, x3}. Then Y = Y {x1,x2} ∪ Y {x1,x3} ∪ Y {x2,x3}, hene by (b),
|Y | ≤ 3

2
β − 3 γ1 + 27. Sine all verties in Y are in every (Bβ, B)-liqueof size larger than 3

2
β + γ1, we an estimate, using (i) :

dβ(y) ≤ 2 · (4 − 1) + |X ′| + |Y | + e({x1, x2}, V \ (X ′ ∪ Y ))

≤ 3
2
β − 3 γ1 + 36 + e({x1, x2}, V \ (X ′ ∪ Y )).By (iii) we have, using that Y X′

= Y by de�nition of X ′,
e({x1, x2}, V \(X ′∪Y )) ≤ e(X ′, V \(X ′∪Y )) = e(X ′, V \X ′)−e(X ′, Y ) ≤ 3 γ.
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These two estimates give dβ(y) ≤ 3

2
β + 3 γ + 36 − 3 γ1, whih ontra-dits (a), sine 4 γ1 ≥ 3 γ + 37.If H is a star with at most two leaves, then similar arguments willgive a ontradition.Case 2. H is a star with at least three leaves.For any y ∈ Y , the β-neighbors of y in G are the neighbors of y, theneighbors of y's neighbors of degree four, the neighbors of the entre ofthe star ( there are at most β of these ), or the verties adjaent to allthe leaves of the star. Sine H has at least three leaves and G is planar,there is at most one vertex of the last type. Subtrating one when y itselfappears as one of the types above, we an estimate

dβ(y) ≤ 4 + 2 · (4 − 1) + (β − 1) + 1 ≤ β + 10.Again we �nd a ontradition with (a), whih ompletes the proof of thetheorem.Lemma 2.12 was proved with γ = 132 and γ′ = 1060. Following the proofabove means we an obtain γ1 = 109 and β1 = 1060 in Theorem 2.11.But it is lear that these values are far from best possible. Using moreelaborate disharging arguments and more areful reasoning in the �nalparts of the proof of Lemma 2.12 an give signi�antly smaller values.Sine our �rst goal is to show that we an obtain onstant values forthese results, we do not pursue this further.2.5 Conlusion2.5.1 About the ProofThe proof of our main theorem in general follows the same lines as theproof of Theorem 2.3 in [HHM+07℄. In partiular, the proof of that the-orem also starts with a strutural lemma omparable to Lemma 2.12,uses the struture of the graph to redue the problem to edge-oloringa spei� multigraph, and then apply ( and extend ) Kahn's approah tothat multigraph. Of ourse, a di�erene is that Theorem 2.3 only dealswith list oloring the square of a graph, but it is probably quite straight-forward to generalize the whole proof to the ase of list (Bβ, B)-oloring.Nevertheless, there are some important di�erenes in the proofs we feeldeserve highlighting.Lemma 2.12 is stronger than the omparable lemma in [HHM+07℄.The properties of the set Y in Lemma 2.12 mean that in our proof wean onstrut a multigraph H so that a standard list edge-oloring of Hprovides the information to olor the verties in Y ( see Lemma 2.14 ).In the lemma in [HHM+07℄, the translation to a list-edge oloring of a
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multigraph is not so lean; apart from the normal ondition in the listedge-oloring of H ( that adjaent edges need di�erent olors ), for eahedge there may be up to O(∆1/2) non-adjaent edges that also need toget a di�erent olor. In partiular this means that in [HHM+07℄, Kahn'sresult in Theorem 2.18 annot be used diretly. Instead, a new, stronger,version has to be proved that an deal with a ertain number of non-adjaent edges that need to be olored di�erently. Lemma 2.12 allows usto use Kahn's Theorem diretly.A seond aspet in whih our Lemma 2.12 is stronger is that inthe �nal ondition (S3)(iii), we have an �error term� that is a onstanttimes |W |. In [HHM+07℄ the omparable term is ∆9/10 |W |, where ∆ isthe maximum degree of the graph. This in itself already means that theapproah in [HHM+07℄ at best an give a bound of the type (3

2
+o(1)

)

∆.The fat that we annot do better with the stronger strutural result isbeause of the limitations of Kahn's Theorem, Theorem 2.18. If it wouldbe possible to replae the ondition in that theorem by a ondition ofthe form �the vetor ~x = (xe) with xe =
1

|L(e)| − K
for all e ∈ E(H) isan element of MP(H)�, where K is some positive onstant, the work inthis paper would give an improvement for the bound in Theorem 2.10 to

3
2
β + O(1) (beause our version of Lemma 2.19 is strong enough to alsosupport that ase).Lemma 2.12 also allows us to prove a bound 3

2
β+O(1) for the (Bβ, B)-lique number in Theorem 2.11. The important orollary that the squareof a planar graph has lique number at most 3

2
∆+O(1) would have beenimpossible without the improved bound in the lemma.Also Lemma 2.19 is stronger than its ompatriot in [HHM+07℄. Thelemma in [HHM+07℄ only deals with the ase D(v) = β for all verties vin H . Beause of this, it an only be applied to the ase that all vertiesin H have maximum degree ∆. Some non-trivial trikery then has tobe used to deal with the ase that there are verties in H of degreeless than ∆. Apart from that di�erene, the proof of Lemma 2.19 isompletely di�erent from the proof in [HHM+07℄. We feel that our newproof is more natural and intuitive, giving a lear relation between thelower bounds on the sizes of the lists and the upper bound of the sumof their inverses. The proof in [HHM+07℄ is more ad-ho, using somenon-obvious distintion in a number of di�erent ases, depending on thesize of W and the degrees of some verties in W .2.5.2 Further WorkA natural way to extend Wegner's and Borodin's onjetures to (A, B)-olorings is the following:
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Conjeture 2.23 There exist onstants c1, c2, c3 suh that for all planargraphs G and A, B ⊆ V we have

χ(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ c1;

ch(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ c2;

ch(G; A, B) ≤
⌊

3
2
∆(G; A, B)

⌋

+ 1, if ∆(G; A, B) ≥ c3.If A = ∅ ( hene ∆(G; A, B) = 0 ) and B = V , then the Four ColorTheorem means that the smallest possible value for c1 is four; while thefat that planar graphs are always 5-list olorable but not always 4-listolorable, shows the smallest possible value for c2 is �ve.We feel that our work is just the beginning of the study of general
(A, B)-oloring. It should be possible to obtain deeper results taking intoaount the struture of the two sets A and B, and not just the degreesof the verties. The following easy result is an example of this.Theorem 2.24 Let G = (V, E) be a planar graph and A, B ⊆ V . Sup-pose that for every two distint verties in A we have that their distanein G is at least three. Then ch(G; A, B) ≤ ∆(G; A, B) + 5.Proof. Sine G is planar, there exists an ordering v1, . . . , vn of the ver-ties so that eah vi has at most �ve neighbors in {v1, . . . , vi−1}. Wegreedily olor the verties v1, . . . , vn that are in B in that order. Notethat eah vertex has at most one neighbor from A.When oloring the vertex vi, we need to take into aount its neighborsin {v1, . . . , vi−1}, plus the neighbors in {v1, . . . , vi−1} of a vertex a ∈ A ad-jaent to vi (where that vertex a an be in {v1+1, . . . , vn} ). By onstru-tion of the ordering, there are at most �ve neighbors of vi in {v1, . . . , vi−1}.And a neighbor a ∈ A has at most dB(a) − 1 ≤ ∆(G; A, B) − 1 neigh-bors in {v1, . . . , vi−1} di�erent from vi. So the total number of forbiddenolors when oloring vi is at most ∆(G; A, B) + 4. Sine eah vertex has
∆(G; A, B) + 5 olors available, the greedy algorithm will always �nd afree olor.Note that saying that the verties in A have distane at least three isthe same as saying that two di�erent verties in A have no ommonneighbor. We think that it is possible to generalize our main theoremand the theorem above in the following way. For A, B ⊆ V , let k(G; A, B)be the maximum of |NB(a1) ∩ NB(a2)| over all a1, a2 ∈ A, a1 6= a2.Conjeture 2.25 There exists a onstant c so that for all planar graphs Gand A, B ⊆ V we have

ch(G; A, B) ≤ ∆(G; A, B) + k(G; A, B) + c.
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This onjeture would �t with our urrent proof of Theorem 2.10, themain part of whih is a redution of the original problem to a list edge-oloring problem. For this approah, Shannon's Theorem [Sha49℄ that amultigraph with maximum degree ∆ has an edge-oloring using at most
⌊

3
2
∆(G)

⌋ olors, forms a natural base for the bounds onjetured in Con-jeture 2.23. If the relation between oloring the square of planar graphsand edge-oloring multigraphs holds in a stronger sense, then Conje-ture 2.25 forms a logial extension of Vizing's Theorem [Viz64℄ that amultigraph with maximum degree ∆ and maximum edge-multipliity µhas an edge-oloring with at most ∆ + µ olors.In Borodin et al. [BBG+07℄, a weaker version of Conjeture 2.25 foryli oloring was proved. Reall that if G is a plane graph, then ∆∗ isthe maximum number of verties in a fae. Let k∗ denote the maximumnumber of verties that two faes of G have in ommon.Theorem 2.26 [BBG+07℄ For a plane graph G with ∆∗ ≥ 4 and k∗ ≥ 4we have χ∗(G) ≤ ∆∗ + 3 k∗ + 2.



Chapter 3Frugal oloring
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . 673.2 Frugal oloring of planar graphs . . . . . . . . 693.3 Frugal oloring and L(p, q)-labelling . . . . . . 713.4 Frugal oloring of outerplanar graphs . . . . 723.5 Frugal oloring and yli oloring . . . . . . 733.6 Frugal edge oloring . . . . . . . . . . . . . . . 753.7 Conlusion . . . . . . . . . . . . . . . . . . . . . 77In the previous hapter, we studied the oloring of the square of graphs(every pair of verties at distane at most two must be assigned distintolors). Another way to look at this oloring is to say that it is proper (notwo adjaent verties have the same olor), and no olor appears morethan one in every neighborhood.A natural way to generalize this is to onsider a proper oloring suhthat no olor appears more than p times in every neighborhood, for somegiven p. This oloring was introdued under the name of p-frugal oloringby Hind, Molloy and Reed [HMR97℄.In this hapter, we study the frugal oloring of planar graphs, planargraphs with large girth, and outerplanar graphs, and relate this olor-ing with L(p, q)-labelling and yli oloring, both seen in the previoushapter. We also study frugal edge-olorings of multigraphs.3.1 IntrodutionFor an integer p ≥ 1, a p-frugal oloring of a graph G is a proper ver-tex oloring of G suh that no olor appears more than p times in the67



68 Introdution
neighborhood of any vertex. Alternatively, a p-frugal oloring an bede�ned as a proper oloring in whih every pair of olor lasses induesa subgraph with maximum degree at most k. The least number of olorsin a p-frugal oloring of G is alled the p-frugal hromati number of G,denoted χp(G). Clearly, χ1(G) is the hromati number of G2; and for pχp(G) at least the maximum degree of G, χp(G) is the usual hromati numberof G. An easy onsequene of the de�nition is that for any graph G withmaximum degree ∆, we have χp(G) ≥ ⌈∆

p
⌉ + 1.Let L be a list assignment for the verties of a graph G. A p-frugaloloring c of G is alled a p-frugal L-oloring if for any vertex v of G,

c(v) ∈ L(v). The smallest integer t, suh that for any t-list assignment
L, the graph G has a p-frugal L-oloring, is alled the p-frugal hoienumber of G, denoted by chp(G).chp(G) Reall that a multigraph is a graph whih an have multiple edges(loops are not allowed). A p-frugal edge oloring of a multigraph G is a( possibly improper ) oloring of the edges of G suh that no olor appearsmore than p times on the edges inident with a vertex. The least numberof olors in a p-frugal edge oloring of G, the p-frugal hromati index of
G, is denoted by χ′

p(G). Observe that for p = 1 we have χ′
1(G) = χ′(G),χ′

p(G) the usual hromati index of G. We an also de�ne the p-frugal edgehoie number in the same way (see Setion 3.6). Again, a straightfor-ward onsequene of the de�nition is that for any graph G with maximumdegree ∆, we have χ′
p(G) ≥ ⌈∆

p
⌉.Frugal vertex olorings were introdued by Hind et al. [HMR97℄, asa tool towards improving results about the total hromati number of agraph. One of their results is that a graph with large enough maximumdegree ∆ has a (log8∆)-frugal oloring using at most ∆ + 1 olors. Theyalso show that there exist graphs for whih a ( log ∆

log log ∆

)-frugal oloringannot be ahieved using only O(∆) olors.Our aim in this hapter is to study some aspets of frugal oloringsand frugal list olorings in their own right. In the �rst part we onsiderfrugal vertex olorings of planar graphs. We show that frugal oloringis related with L(p, q)-labellings in general, and with yli oloring inthe ase of planar graphs (these two notions have been introdued in theprevious hapter).In the �nal setion we derive some results on frugal edge olorings ofmultigraphs in general.
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3.2 Frugal oloring of planar graphsIn the next four setions we onsider p-frugal (list) olorings of planargraphs. For a large part, our work in that area is inspired by Wegner'sonjeture mentionned in the previous hapter.Conjeture 3.1 [Weg77℄ For any planar graph G of maximum degree
∆(G) ≥ 8 we have χ(G2) ≤

⌊

3
2
∆(G)

⌋

+ 1.Wegner also onjetured maximum values for the hromati number ofthe square of planar graph with maximum degree less than eight andgave examples showing that his bounds would be tight. For even ∆ ≥ 8,these examples are skethed in Figure 3.1.
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yFigure 3.1: The planar graphs Gk.Inspired by Wegner's Conjeture, we onjeture the following boundsfor the p-frugal hromati number of planar graphs.Conjeture 3.2 [AEH07℄ For any integer p ≥ 1 and any planar graph
G with maximum degree ∆(G) ≥ max { 2 p, 8 } we have

χp(G) ≤







⌊∆(G)−1
p

⌋

+ 2, if p is even;
⌊3∆(G)−2

3 p−1

⌋

+ 2, if p is odd.Note that the graphs Gk in Figure 3.1 also show that the bounds in thisonjeture annot be dereased. The graph Gk has maximum degree 2 k.First onsider a p-frugal oloring with p = 2 ℓ even. We an use the sameolor at most 3
2
p times on the verties of Gk, and every olor that appearsexatly 3

2
p = 2 ℓ times must appear exatly ℓ times on eah of the threesets of ommon neighbors of x and y, of x and z, and of y and z. Sowe an take at most 1

ℓ
(k − 1) = 1

p
(∆(Gk) − 1) olors that are used 3

2
ptimes. In this ase, x and y must then be olored with two new olors,
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sine otherwise the neighborhood of x or y ontains more than p timesthe same olor.If p = 2 ℓ + 1 is odd, then eah olor an appear at most 3 ℓ + 1 =
1
2
(3 p − 1) times, and the only way to use a olor so many times is byusing it on the verties in V (Gk)\{x, y, z}. Doing this at most 3 k−1

(3 p−1)/2
=

3∆(G)−2
3 p−1

times, we are left with a graph that requires at least two newolors.We next derive some upper bounds on the p-frugal hromati numberof planar graphs. The �rst one is a simple extension of the approahfrom [HM03℄. In that paper, Van den Heuvel and MGuinness prove thefollowing strutural lemma:Lemma 3.3 [HM03℄ Let G be a planar simple graph. Then there existsa vertex v with m neighbors v1, . . . , vk with d(v1) ≤ · · · ≤ d(vk) suh thatone of the following holds :(i) k ≤ 2;(ii) k = 3 with d(v1) ≤ 11;(iii) k = 4 with d(v1) ≤ 7 and d(v2) ≤ 11;(iv) k = 5 with d(v1) ≤ 6, d(v2) ≤ 7, and d(v3) ≤ 11.In [HM03℄, this strutural lemma is used to prove that the hromatinumber of the square of a planar graph is at most 2 ∆ + 25. Makingslight hanges in their proof, it is not di�ult to obtain a �rst boundon chp ( and hene on χp ) for planar graphs.Theorem 3.4 [AEH07℄ For any planar graph G with ∆(G) ≥ 12 andinteger p ≥ 1 we have chp(G) ≤
⌊2∆(G)+19

p

⌋

+ 6.Proof. We will prove that if a planar graph satis�es ∆(G) ≤ C for some
C ≥ 12, then chp(G) ≤

⌊

2 C+19
p

⌋

+ 6. We use indution on the number ofverties, noting that the result is obvious for small graphs. So let G bea graph with |V (G)| > 1, hoose C ≥ 12 so that ∆(G) ≤ C, and assumeeah vertex v has a list L(v) of ⌊2 C+19
p

⌋

+ 6 olors. Take v, v1, . . . , vk asin Lemma 3.3. Contrating the edge vv1 to a new vertex v′ will result ina planar graph G′ in whih all verties exept v′ have degree at most asmuh as they had in G, while v′ has degree at most ∆(G) ( for ase (i) )or at most 12. ( for the ases (ii) � (iv) ). In partiular we have that
∆(G′) ≤ C. If we give v′ the same list of olors as v1 had ( all verties in
V (G) \ {v, v1} keep their list ), then, using indution, G′ has a p-frugaloloring. Using the same oloring for G, where v1 gets the olor v′ hadin G′, we obtain a p-frugal oloring of G with the one de�it that v has noolor yet. But the olors forbidden for v are the olors on its neighbors,and for eah neighbor vi, the olors that already appear p times around vi.
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So the number of forbidden olors is at most k +

k
∑

i=1

⌊d(vi)−1
p

⌋. Using theknowledge from the ases (i) � (iv), we get that |L(v)| =
⌊

2 C+19
p

⌋

+6 is atleast one more than this number of forbidden olors, hene we an always�nd an allowed olor for v.In the next setion we will obtain ( asymptotially ) better resultsbased on more reent work on speial labellings of planar graphs.3.3 Frugal oloring and L(p, q)-labellingIn this setion, we relate frugal olorings with L(p, q)-labelling, a gen-eralization of the oloring of the square of graphs seen in the previoushapter. Our main tool is the following proposition:Proposition 3.5 For any graph G and integer p ≥ 1 we have χp(G) ≤
⌈

1
p
λp,1(G)

⌉ and chp(G) ≤
⌈

1
p
λl

p,1(G)
⌉.Proof. We only prove the seond part, the �rst one an be done in asimilar way. Set ℓ =

⌈

1
p
λl

p,1(G)
⌉, and let L be an ℓ-list assignment onthe verties of G. Using that all elements in the lists are integers, wean de�ne a new list assignment L∗ by setting L∗(v) =

⋃

x∈L(v){p x, p x+

1, . . . , p x + p − 1}. Then L∗ is a (p ℓ)-list assignment. Sine p ℓ ≥
λl

p,1(G), there exists an L(p, 1)-labelling f ∗ of G with f ∗(v) ∈ L∗(v) forall verties v. De�ne a new labelling f of G by taking f(v) =
⌊

1
p
f ∗(v)

⌋.We immediately get that f(v) ∈ L(v) for all v. Sine adjaent vertiesreeived an f ∗-label at least p apart, their f -labels are di�erent. Also,all verties in a neighborhood of a vertex v reeived a di�erent f ∗-label.Sine the map x 7→
⌊

1
p
x
⌋ maps at most p di�erent integers x to the sameimage, eah f -label an appear at most p times in eah neighborhood.So f is a p-frugal oloring using labels from eah vertex' list. This provesthat chp(G) ≤ ℓ, as required.We will ombine this proposition with the following reent result fromHavet et al., already mentionned in the previous hapter.Theorem 3.6 [HHM+07℄ For any �xed p, and any planar graph G withmaximum degree ∆, we have λl

p,1(G) ≤
(

3
2

+ o(1)
)

∆.Combining this with Proposition 3.5 gives the asymptotially best upperbound for χp and chp for planar graphs we urrently have.Corollary 3.7 Fix ε > 0 and an integer p ≥ 1. Then there exists aninteger ∆ε,p so that if G is a planar graph with maximum degree ∆(G) ≥
∆ε,p, then chp(G) ≤ (3+ε)∆(G)

2 p
.
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In [MS05℄, Molloy and Salavatipour proved that for any planar graph Gand any integer p ≥ 1, we have λp,1(G) ≤

⌈

5
3
∆(G)

⌉

+18 p+60. Togetherwith Proposition 3.5, this re�nes the result of Theorem 3.4 and gives abetter bound than Corollary 3.7 for small values of ∆. Note that thisorollary only onerns frugal oloring, and not frugal list oloring.Corollary 3.8 For any planar graph G and integer p ≥ 1, we have
χp(G) ≤

⌈

5∆(G)+180
3 p

⌉

+ 18.Proposition 3.5 has another orollary for planar graphs of large girththat we desribe below. Reall that the girth of a graph is the length ofa shortest yle in the graph.In [LW03℄, Lih and Wang proved that for planar graphs of large girththe following holds :
• λp,q(G) ≤ (2 q − 1) ∆(G) + 6 p + 12 q − 8 for planar graphs of girthat least six, and
• λp,q(G) ≤ (2 q − 1) ∆(G) + 6 p + 24 q − 14 for planar graphs of girthat least �ve.Furthermore, Dvo°ák et al. [DKN+08℄ proved the following tight boundfor L(p, 1)-labellings of planar graphs of girth at least seven, and of largedegree.Theorem 3.9 [DKN+08℄ Let G be a planar graph of girth at leastseven, and maximum degree ∆(G) ≥ 190 + 2 p, for some integer p ≥ 1.Then we have λp,1(G) ≤ ∆(G) + 2 p − 1.Moreover, this bound is tight, i.e., there exist planar graphs whihahieve the upper bound.A diret orollary of these results are the following bounds for planargraphs with large girth.Corollary 3.10 Let G be a planar graph with girth g and maximumdegree ∆(G). For any integer p ≥ 1, we have

χp(G) ≤















⌈

∆(G)−1
p

⌉

+ 2, if g ≥ 7 and ∆(G) ≥ 190 + 2 p;
⌈∆(G)+4

p

⌉

+ 6, if g ≥ 6;
⌈∆(G)+10

p

⌉

+ 6, if g ≥ 5.3.4 Frugal oloring of outerplanar graphsWe now prove a variant of Conjeture 3.2 for outerplanar graphs (graphsthat an be drawn in the plane so that all verties are lying on theoutside fae). For p = 1, i.e., if we are oloring the square of the graph,Hetherington and Woodall [HW06℄ proved the best possible bound forouterplanar graphs G : ch1(G) ≤ ∆(G) + 2 if ∆(G) ≥ 3, and ch1(G) =
∆(G) + 1 if ∆(G) ≥ 6.
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Theorem 3.11 [AEH07℄ For any integer p ≥ 2 and any outerplanargraph G with maximum degree ∆(G) ≥ 3, we have χp(G) ≤ chp(G) ≤
⌊∆(G)−1

p

⌋

+ 3.Proof. In [EO07a℄ (see Appendix A for further details), we proved aresult implying that any outerplanar graph ontains a vertex u suh thatone of the following holds : (i) u has degree at most one; (ii) u has degreetwo and is adjaent to another vertex of degree two; or (iii) u has degreetwo and its neighbors v and w are adjaent, and either v has degree threeor v has degree four and its two other neighbors ( i.e., distint from uand w ) are adjaent (see Figure 3.2).
a) b)

v

ww

u v u

Figure 3.2: Unavoidable on�gurations in an outerplanar graph without 1-vertiesand without two adjaent 2-verties.We prove the theorem by indution on the number of verties, ob-serving that it is trivial for graphs with at most two verties. If G has atleast three verties, let u be a vertex of G having one of the propertiesdesribed above. By the indution hypothesis, there exists a p-frugal listoloring c of G − u if the lists L(v) ontain at least ⌊∆(G)−1
p

⌋

+ 3 olors.If u has property (i) or (ii), let t be the neighbor of u whose degree is notneessarily bounded by two. It is easy to see that at most 2 +
⌊∆(G)−1

p

⌋olors are forbidden for u : the olors of the neighbors of u and the olorsappearing p times in the neighborhood of t. If u has property (iii), atmost 2 +
⌊∆(G)−2

p

⌋ olors are forbidden for u : the olors of the neighborsof u and the olors appearing p times in the neighborhood of w. Notethat if v has degree four, its two other neighbors are adjaent and the
p-frugality of v is respeted sine p ≥ 2. In all ases we found that atmost ⌊∆(G)−1

p

⌋

+2 olors are forbidden for u. If u has a list with one moreolor, we an extend c to a p-frugal list oloring of G, whih ompletesthe indution.3.5 Frugal oloring and yli oloringIn this setion, we disuss the link between frugal oloring and ylioloring of plane graphs. Reall that a plane graph is a planar graph with
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a presribed planar embedding, and that the size (number of verties inits boundary) of a largest fae of a plane graph G is denoted by ∆∗(G).The previous hapter was devoted to the study of yli oloring ofplane graphs: a vertex oloring suh that any two verties inident tothe same fae have distint olors. Reall that Borodin [Bor84℄ (see alsoJensen and Toft [JT95, page 37℄) onjetured that any plane graph Ghas a yli oloring with ⌊3

2
∆∗(G)

⌋ olors, and proved this onjeturefor ∆∗(G) = 4.In this setion we show that if there is an even p ≥ 4 suh thatBorodin's onjeture holds for all plane graphs with ∆∗ ≤ p, and if ourConjeture 3.2 is true for the same value p, then Wegner's onjeture istrue up to an additive onstant fator.Theorem 3.12 [AEH07℄ Let p ≥ 4 be an even integer suh that everyplane graph H with ∆∗(H) ≤ p has a yli oloring using at most 3
2
polors. Then, if G is a planar graph satisfying χp(G) ≤

⌊

∆(G)−1
p

⌋

+ 2, wealso have χ(G2) = χ1(G) ≤
⌊

3
2
∆(G)

⌋

+ 3p.Proof. Let G be a planar graph with a given embedding and let p ≥ 4 bean even integer suh that t = χp(G) ≤
⌊∆(G)−1

p

⌋

+2. Consider an optimal
p-frugal oloring c of G, with olor lasses C1, . . . , Ct. For i = 1, . . . , t,onstrut the graph Gi as follows : Firstly, Gi has vertex set Ci, whihwe assume to be embedded in the plane in the same way they were for G.For eah vertex v ∈ V (G) \ Ci with exatly two neighbors in Ci, we addan edge in Gi between these two neighbors. For a vertex v ∈ V (G) \ Ciwith ℓ ≥ 3 neighbors in Ci, let x1, . . . , xℓ be those neighbors in Ci in ayli order around v ( determined by the plane embedding of G ). Nowadd edges x1x2, x2x3, . . . , xℓ−1xℓ and xℓx1 to Gi. These edges will form afae of size ℓ in the graph we have onstruted so far. Call suh a fae aspeial fae. Note that sine Ci is a olor lass in a p-frugal oloring, thisfae has size at most p.Do the above for all verties v ∈ V (G) \ Ci that have at least twoneighbors in Ci. The resulting graph is a plane graph with some faeslabelled speial. Add edges to triangulate all faes that are not speial.The resulting graph is a plane graph with vertex set Gi and every faesize at most p. From the �rst hypothesis it follows that there is a ylioloring of eah Gi with 3

2
p new olors. Sine every two verties in Cithat have a ommon neighbor in G are adjaent in Gi or are inident tothe same ( speial ) fae, verties in Ci that are adjaent in the squareof G reeive di�erent olors. Hene, ombining these t olorings, usingdi�erent olors for eah Gi, we obtain a oloring of the square of G, usingat most 3

2
p ·
(⌊∆(G)−1

p

⌋

+ 2
)

≤
⌊

3
2
∆
⌋

+ 3p olors.Sine Borodin [Bor84℄ proved his yli oloring onjeture in the ase
∆∗ = 4, we have the following orollary.
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Corollary 3.13 If G is a planar graph so that χ4(G) ≤

⌊∆(G)−1
4

⌋

+ 2,then χ(G2) ≤
⌊

3
2
∆(G)

⌋

+ 12.3.6 Frugal edge oloringAn important element in the proof of Theorem 2.10 in the previous hap-ter is the derivation of a relation between (list) oloring square of planargraphs and (list) edge olorings of multigraphs. Beause of this, it seemsto be opportune to have a short look at a frugal variant of edge oloringsof multigraphs in general.Edge olorings of multigraphs have the same de�nitions as for simplegraphs: given a multigraph G, the minimum number of olors required isthe hromati index, denoted χ′(G). The list hromati index ch ′(G) is χ′(G)

ch
′(G)de�ned analogously as the minimum length of lists that needs to be givento eah edge so that we an use olors from eah edge's list to obtain aproper oloring.A p-frugal edge oloring of a multigraph G is a ( possibly improper )oloring of the edges of G suh that no olor appears more than p timeson the edges inident with a vertex. The least number of olors in a p-frugal edge oloring of G, the p-frugal edge hromati number ( or p-frugalhromati index ), is denoted by χ′

p(G). χ′
p(G)Note that a p-frugal edge oloring of G is not the same as a p-frugaloloring of the verties of the line graph L(G) of G. Sine the neighbor-hood of any vertex in the line graph L(G) an be partitioned into at mosttwo liques, every proper oloring of L(G) is also a p-frugal oloring for

p ≥ 2. A 1-frugal oloring of L(G) ( i.e., a vertex oloring of the squareof L(G) ) would orrespond to a proper edge oloring of G in whih eaholor lass indues a mathing. Suh olorings are known as strong edgeolorings, see, e.g., [FF83℄.The list version of p-frugal edge oloring an also be de�ned in thesame way : given lists of size t for eah edge of G, one should be ableto �nd a p-frugal edge oloring suh that the olor of eah edge belongsto its list. The smallest t with this property is alled the p-frugal edgehoie number, denoted ch ′
p(G). ch

′
p(G)Frugal edge olorings and their list version were studied under thename improper edge-olorings and improper L-edge-olorings by Hiltonet al. [HSS01℄.It is obvious that the hromati index and the edge hoie numbersare always at least the maximum degree ∆. The best possible upperbounds in terms of the maximum degree only are given by the followingresults.Theorem 3.14(a) [Viz64℄ For any simple graph G we have χ′(G) ≤ ∆(G) + 1.
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(b) [Sha49℄ For any multigraph G we have χ′(G) ≤

⌊

3
2
∆(G)

⌋.() [Gal95℄ For any bipartite multigraph G we have ch ′(G) = ∆(G).(d) [BKW97℄ For any multigraph G we have ch ′(G) ≤
⌊

3
2
∆(G)

⌋.We will use Theorem 3.14 () and (d) to prove two results on the p-frugalhromati index and the p-frugal edge hoie number. The �rst resultshows that for even p, the maximum degree ompletely determines thevalues of these two numbers. This result was earlier proved by Hilton etal [HSS01℄ in a slightly more general setting, involving a more ompli-ated proof. We now give a short proof of this theorem:Theorem 3.15 [HSS01℄ Let G be a multigraph, and let p be an eveninteger. Then we have χ′
p(G) = ch ′

p(G) =
⌈

1
p
∆(G)

⌉.Proof. It is obvious that ch ′
p(G) ≥ χ′

p(G) ≥
⌈

1
p
∆
⌉, so it su�es to prove

ch ′
p(G) ≤

⌈

1
p
∆
⌉.Let p = 2 ℓ. Without loss of generality, we an assume that ∆ is amultiple of p and G is a ∆-regular multigraph. (Otherwise, we an addsome new edges and, if neessary, some new verties. If this larger multi-graph is p-frugal edge hoosable with lists of size ⌈1

p
∆
⌉, then so is G. )As p, and hene ∆, is even, we an �nd an Euler tour in eah omponentof G. By giving these tours a diretion, we obtain an orientation D of theedges of G suh that the in-degree and the out-degree of every vertex is

1
2
∆. Let us de�ne the bipartite multigraph H = (V1 ∪ V2, E) as follows :

V1, V2 are both opies of V (G). For every ar (a, b) in D, we add an edgebetween a ∈ V1 and b ∈ V2.Sine D is a direted multigraph with in- and out-degree equal to
1
2
∆, H is a (1

2
∆)-regular bipartite multigraph. This means that we andeompose the edges of H into 1

2
∆ perfet mathings M1, M2, . . . , M∆/2.De�ne disjoint subgraphs H1, H2, . . . , Hℓ as follows : for i = 0, 1, . . . , ℓ−1set Hi+1 = M i

p
∆+1∪M i

p
∆+2 · · ·∪M i+1

p
∆. Notie that eah Hi is a (1

p
∆
)-regular bipartite multigraph.Now, suppose that eah edge omes with a list of olors of size 1

p
∆.Eah subgraph Hi has maximum degree 1

p
∆, so by Theorem 3.14() wean �nd a proper edge oloring of eah Hi suh that the olor of eahedge is inside its list. We laim that the same oloring of edges in G is

p-frugal. For this we need the following observation :Observation Let M be a mathing in H. Then the set of orrespondingedges in G form a subgraph of maximum degree at most two.To see this, remark that eah vertex has two opies in H : one in V1 andone in V2. The ontribution of the edges of M to a vertex v in the originalmultigraph is then at most two, at most one from eah opy of v.
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To onlude, we observe that eah olor lass in H is the union ofat most ℓ mathings, one in eah Hi. So at eah vertex, eah olor lassappears at most two times the number of Hi's, i.e., at most 2 ℓ = p times.This is exatly the p-frugality ondition we set out to satisfy.For odd values of p we give a tight upper bound of the p-frugal edgehromati number.Theorem 3.16 [AEH07℄ Let p be an odd integer. Then we have ⌈∆(G)

p

⌉

≤
χ′

p(G) ≤ ch ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉.Proof. Again, all we have to prove is ch ′
p(G) ≤

⌈3∆(G)
3 p−1

⌉.Let p = 2 ℓ + 1. Sine 3 p − 1 is even and not divisible by three, wean again assume, without loss of generality, that ∆ is even and divisibleby 3 p − 1, and that G is ∆-regular. Set ∆ = m (3 p − 1) = 6 ℓ m + 2 m.Using the same idea as in the previous proof, we an deompose G intotwo subgraphs G1, G2, where G1 is (6 ℓ m)-regular and G2 is (2 m)-regular.(Alternatively, we an use Petersen's Theorem [Pet91℄ that every evenregular multigraph has a 2-fator, to deompose the edge set in 2-fators,and ombine these 2-fators appropriately. ) Sine 1
2 ℓ

· 6 ℓ m = 3
3 p−1

∆,by Theorem 3.15 we know that G1 has a 2 ℓ-frugal edge oloring usingthe olors from eah edge's lists. Similarly we have 3
2
· 2 m = 3

3 p−1
∆, andhene Theorem 3.14 (d) guarantees that we an properly olor the edgesof G2 using olors from those edges' lists. The ombination of these twoolorings is a (2 ℓ + 1)-frugal list edge oloring, as required.Note that Theorem 3.16 is best possible : For k ≥ 1, let T (k) be themultigraph with three verties and k parallel edges between eah pair. If

p = 2 ℓ + 1 is odd, then the maximum number of edges with the sameolor a p-frugal edge oloring of T (k) an have is 3 ℓ + 1. Hene theminimum number of olors needed for a p-frugal edge oloring of T (k) is
⌈

3 k
3 ℓ+1

⌉

=
⌈

3
3 p−1

∆(T (k))
⌉.3.7 ConlusionWe sum up the upper bounds obtained for the frugal hoie number ofgraphs with maximum degree ∆ in Table 3.1, where ∆ is supposed to belarge enough.Many possible diretions for future researh are still open. An in-triguing question is inspired by the results on frugal edge oloring inthe previous setion. These results demonstrate an essential di�erenebetween even and odd p as far as p-frugal edge oloring is onerned.Based on what we think are the extremal examples of planar graphs for

p-frugal vertex oloring, also our Conjeture 3.2 gives di�erent values for
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G chp(G) onjeture (p even | odd)planar (3+ε)∆

2 p

⌊

∆−1
p

⌋

+ 2 | ⌊3∆−2
3 p−1

⌋

+ 2planar with g(G) ≥ 5
⌈

∆+10
p

⌉

+ 6

⌈

∆
p

⌉

+ 1

planar with g(G) ≥ 6
⌈

∆+4
p

⌉

+ 6planar with g(G) ≥ 7
⌈∆(G)−1

p

⌉

+ 2outerplanar ⌊

∆−1
p

⌋

+ 3Table 3.1: chp(G) for G with large enough maximum degree ∆.even and odd p. But for frugal vertex olorings of planar graphs in gen-eral we have not been able to obtain results that are di�erent for evenand odd p. Most of our results for vertex oloring of planar graphs areonsequenes of Proposition 3.5 and known results on L(p, 1)-labellingof planar graphs, for whih no fundamental di�erene between odd andeven p has ever been demonstrated. Hene, a major step would be toprove that Proposition 3.5 is far from tight when p is even.A seond line of future researh ould be to investigate whih lassesof graphs have p-frugal hromati number equal to the minimum possiblevalue ⌈∆
p

⌉

+ 1. Corollary 3.10 and Theorem 3.11 give bounds for planargraphs with large girth and outerplanar graphs that are very lose to thebest possible bound. We onjeture that, in fat, planar graphs with largeenough girth and outerplanar graphs of large enough maximum degreedo satisfy χp(G) =
⌈∆(G)

p

⌉

+1 for all p ≥ 1. A step toward this onjeturewould be to minimize the value g∗ (resp. to maximize the value d∗) suhthat for some onstant C, every planar graph G with g(G) ≥ g∗ (resp.every graph G with mad(G) < d∗) satis�es χp(G) ≤
⌈

∆(G)
p

⌉

+ C for all
p ≥ 1.In [KW01℄, Kostohka and Woodall onjetured that for any graph G,the hromati number and the list hromati number of G2 are thesame. We onjeture the following, whih orresponds to the onjetureof [KW01℄ when p = 1.Conjeture 3.17 For any multigraph G and any integer p ≥ 1, we have
χp(G) = chp(G).The famous List Coloring Conjeture ( see, e.g., the book of Jensen andToft [JT95℄ ) states that for any multigraph G the hromati index andthe list hromati index of G are the same. Again, this an be seen as aspeial ase of the following onjeture :
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Conjeture 3.18 For any multigraph G and any integer p ≥ 1, we have
χ′

p(G) = ch ′
p(G).When p is even, this has already been proved in [HSS01℄, as explainedin Setion 3.6. On the other hand, Galvin [Gal95℄ proved the List Col-oring Conjeture for bipartite multigraphs. It ould be interesting to seewhether Conjeture 3.18 (when p ≥ 3 is odd) is easier to solve when Gis a bipartite multigraph.
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Chapter 4Linear hoosability
Contents4.1 Introdution . . . . . . . . . . . . . . . . . . . 824.2 First results . . . . . . . . . . . . . . . . . . . . 834.3 Outerplanar graphs . . . . . . . . . . . . . . . 844.4 Planar graphs . . . . . . . . . . . . . . . . . . . 864.5 Graphs with small maximum degree . . . . . 864.5.1 Sububi graphs . . . . . . . . . . . . . . . . 864.5.2 Graphs with maximum degree 4 . . . . . . . . 884.6 Graphs with bounded maximum average degree 894.7 NP-ompleteness . . . . . . . . . . . . . . . . . 964.8 Conlusion . . . . . . . . . . . . . . . . . . . . . 98In the previous hapter, we studied p-frugal olorings, that is properolorings suh that no olor appears more than p times in the neighbor-hood of a vertex. This is equivalent to a proper oloring suh that theunion of any two olor lasses indues a subgraph of maximum degreeat most p. We saw that a 1-frugal oloring of a graph G was a properoloring of G2. A 2-frugal oloring is by de�nition a proper oloring suhthat the union of any two olor lasses indues a disjoint union of ylesand paths. If instead of this, we require that the union of any two olorlasses indues a forest of paths, we obtain a linear oloring, introduedby Yuster [Yus98℄.Out aim in this hapter is to investigate linear olorings and showthat most of the results we an obtain for ertain families of graphs(outerplanar and planar graphs, graphs with small maximum degree,and graphs with bounded maximum average degree) are lose from theresults we obtained for 2-frugal olorings in the previous hapter.81



82 Introdution
4.1 IntrodutionThe notion of ayli olorings was introdued by Grünbaum [Gru73℄:a vertex oloring is said to be ayli if it is proper (no two adjaentverties have the same olor), and if there is no biolored yle (thesubgraph indued by the union of any two olor lasses is a forest).Yuster [Yus98℄ mixed this notion and the onept of frugal oloringsseen in the previous hapter, while introduing the onept of linear ol-oring. A linear oloring of a graph is an ayli and 2-frugal oloring.It an also be seen as a oloring suh that the subgraph indued by theunion of any two olor lasses is a forest of paths (an ayli graph withmaximum degree at most two). The linear hromati number of a graph
G, denoted by Λ(G), is the minimum number of olors in a linear oloringΛ(G) of G.A graph G is linearly L-olorable if for a given list assignment L =
{L(v) : v ∈ V (G)}, there exists a linear oloring c of G suh that
c(v) ∈ L(v) for eah vertex v. Suh a oloring is alled a linear L-oloring of G. If G is linearly L-olorable for any k-list assignment L,then G is said to be linearly k-hoosable. The smallest integer k suhthat the graph G is linearly k-hoosable is alled the linear hoie num-ber, denoted by Λl(G).Λl(G) Using Lovász Loal Lemma (see Lemma 1.5 in Chapter 1), Yusterproved that Λ(G) = O(∆(G)3/2) in the general ase, and he onstrutedgraphs for whih Λ(G) = Ω(∆(G)3/2).We begin with some basi results (Setion 4.2). In Setion 4.3, weshow that every outerplanar graph G with maximum degree ∆ veri�es
Λl(G) ≤ ⌈∆/2⌉ + 2. In Setion 4.4, we prove that every planar graphof maximum degree ∆ ≥ 12 has linear hoie number at most ∆ + 26.Setion 4.5 is dediated to the study of graphs with small maximum de-gree: we prove that Λl(G) ≤ 5 when ∆(G) ≤ 3, and Λl(G) ≤ 9 when
∆(G) ≤ 4. In Setion 4.6, we give bounds for graphs with bounded max-imum average degree. Finally, in Setion 4.7, we prove that determiningwhether a bipartite sububi planar graph is linearly 3-olorable is anNP-omplete problem.In the following, we will use a slight abuse of terminology, by sayingthat the 2-frugality of a vertex v is respeted or preserved, when no olorappears more than twie in N(v).
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4.2 First resultsA linear oloring is a 2-frugal oloring, so there are at least ⌈d/2⌉ distintolors in the neighborhood of eah d-vertex. Hene, for any graph G withmaximum degree ∆, we have Λl(G) ≥ Λ(G) ≥ ⌈∆/2⌉ + 1. The followingproposition shows that this bound is tight for some families of graphs,suh as trees.Proposition 4.1 If G is a tree with maximum degree ∆, then Λl(G) =
⌈∆/2⌉ + 1.Proof. Let L be a (⌈∆/2⌉ + 1)-list assignment to the verties of G.We proeed by indution on the order of the graph. Let v be a leafof G, and let u be its unique neighbor. By the indution assumption,there exists a linear L-oloring c of G − v. We now extend c to v by�nding a olor c(v) ∈ L(v) suh that the oloring obtained is linear. Weonly forbid to v the olor c(u) and the olors appearing at least twiein u's neighborhood. This is su�ient to obtain a proper and 2-frugaloloring, and thus a linear oloring of the tree G. There are at most
1 + ⌊∆−1

2
⌋ = ⌈∆/2⌉ forbidden olors. Sine |L(v)| ≥ ⌈∆/2⌉ + 1, it ispossible to olor v with a olor from its list.Let Km,n be the omplete bipartite graph with stable sets V and V ′of size m and n respetively. We show the following result:Proposition 4.2 If m ≥ n, Λ(Km,n) = ⌈m/2⌉ + n.Proof. To prove that Λ(Km,n) ≥ ⌈m/2⌉+n, observe that if two vertiesof a same set V or V ′ have the same olor, then all the verties of theother set must have distint olors (otherwise there would be a bioloredyle of length four). Moreover a given olor annot appear more thantwie in V ∪ V ′ sine otherwise the 2-frugality would not be respeted.Hene, the best solution is to assign eah olor to a pair of verties inthe largest set, and to olor all the remaining verties with distint olors(see Figure 4.1).

2

1

5

3

4

Figure 4.1: A linear oloring of K3,3.
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Observe that the linear hromati number of Kn,n is asymptotiallyequivalent to 3∆

2
.Reall that a 2-degenerate graph is a graph every subgraph of whihontains a vertex of degree at most two. We prove the following propo-sition:Proposition 4.3 If G is a 2-degenerate graph of maximum degree ∆,then Λl(G) ≤ ∆ + 2.Proof. We prove the theorem by indution on the order of G. Let L bea (∆ + 2)-list assignment for the verties of G. Sine G is 2-degenerate,it ontains a vertex v with degree at most two. Consider the graph

H = G− v. H is a proper subgraph of G, thus it is a 2-degenerate graphwith order stritly less than that of G. By the indution hypothesis, thereexist a linear L-oloring c of H .Assume that the vertex v has degree one. To extend the oloring c tothe whole graph G, we shall hoose for v a olor distint from the olor ofits neighbor w and from the olors appearing twie in w's neighborhood.At most ⌊∆−1
2

⌋+ 1 = ⌈∆/2⌉ olors are forbidden to v, so it is possible toolor it with a olor from its list L(v), sine |L(v)| ≥ ∆ + 2.If the vertex v has degree two, let u and w be its neighbors. We forbidto v the olors belonging to the set C de�ned as follows. A olor a is in
C if one of the following onditions is veri�ed:

• one neighbor of u and one neighbor of w are both olored with a(a biolored yle ould be reated if v was also olored with a);
• two neighbors of u are olored with a (the 2-frugality of u wouldnot be preserved if v was also olored with a);
• two neighbors of w are olored with a (2-frugality of w).Observe that |C| ≤ ∆ − 1, sine any olor of C appears at least twiein (N(u) ∪ N(w)) \ {v}. Sine v must reeive a olor distint from theolors of u and w, there are at most ∆−1+2 = ∆+1 forbidden olors for

v. Sine |L(v)| ≥ ∆+2, there remains at least one olor in L(v) that anbe assigned to v. We obtain a linear L-oloring of G, whih ompletesthe indution.4.3 Outerplanar graphsSine outerplanar graphs are 2-degenerate, it follows from Proposition4.3 that outerplanar graphs with maximum degree ∆ have linear hoie
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number at most ∆+2. In this setion, we improve this bound by provingthe following theorem:Theorem 4.4 [EMR08℄ If G is an outerplanar graph with maximumdegree ∆, then Λl(G) ≤ ⌈∆/2⌉ + 2.Proof. We prove the theorem by indution on the order of G. Let L bea (⌈∆/2⌉ + 2)-list assignment for the verties of G. As in the previoushapter, we use a result from [EO07a℄ (see Appendix A for further de-tails), whih states that any outerplanar graph ontains a vertex u suhthat one of the following holds : (i) u has degree at most one; (ii) u hasdegree two and is adjaent to another vertex of degree two; or (iii) u hasdegree two and its neighbors v and w are adjaent, and either v has de-gree three or v has degree four and its two other neighbors (i.e., distintfrom u and w) are adjaent (see Figure 3.2).Let u be as desribed above. If (i) u has degree at most one, let v bethe neighbor of u, if it exists, and let c be a linear L-oloring of G − u.Color u with a olor distint from c(v) and the olors appearing twie in
N(v). At most ⌊∆−1

2

⌋

+ 1 = ⌈∆/2⌉ are forbidden for u, and the oloringobtained is linear.If (ii) u has degree two and is adjaent with a 2-vertex, say v, let c bea linear L-oloring of G−{u, v}. Let u′ be the neighbor of u distint from
v and let v′ be the neighbor of v distint from u. Choose for v a olor c(v)distint from c(u′), c(v′), and the olors appearing twie in N(v′). Thenolor u with a olor distint from c(u′), c(v), and the olors appearingtwie in N(u′). At most ⌊∆−1

2

⌋

+ 2 ≤ ⌈∆/2⌉ + 1 are forbidden for u and
v, and the oloring obtained is linear (having c(v) 6= c(u′) ensures thatthe oloring c is ayli).If (iii) u has degree two and its neighbors v and w are adjaent, andeither v has degree three or v has degree four and its two other neighbors(i.e., distint from u and w) are adjaent, let c be a linear L-oloring of
G−u. Take c(u) distint from c(v) and c(w), and from the olors appear-ing twie in N(w)\{v}. At most ⌊∆−2

2

⌋

+ 2 ≤ ⌈∆/2⌉ + 1 are forbiddenfor u, and the oloring obtained is linear: sine v and w are adjaent, theoloring is ayli, and (iii) ensures that the only olor that may appearstwie in N(v) is c(v) (wih is forbidden for u).In any ase, it is possible to olor the unolored verties given lists ofsize at least ⌈∆/2⌉+2, in order to obtain a linear L-oloring of G, whihompletes the indution.
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4.4 Planar graphsAs in Chapter 3, we use Lemma 3.3 from Van den Heuvel and MGuinness[HM03℄ to prove the following result.Theorem 4.5 [EMR08℄ If G is a planar graph with maximum degree
∆ ≥ 12, then Λl(G) ≤ ∆ + 26.Proof. We prove the theorem by indution on the order of G. Let L bea (∆ + 26)-list assignment to the verties of G.Let k, v, v1, . . . , vk be as in Lemma 3.3, and let H be the graph ob-tained from G by ontrating the edge vv1 into the vertex v1. Thisgraph has maximum degree 12 (ase (ii)) or ∆, so by indution, thereexists a linear oloring c of H suh that any vertex u ∈ V (H) is ol-ored with a olor c(u) ∈ L(u). In order to extend c to G, we only needto olor v with a olor from its list L(v). Choose the olor of v di�er-ent from the olors of v1, . . . , vk as well as the olors of the neighbors of
v1, . . . , vk−2 if k ≥ 3. Choose it also di�erent from the olors appearingtwie among the verties adjaent to vk−1 or vk. In total we forbid at most
5 + 5 + 6 + 10 + (2∆− 2)/2 = ∆ + 25 olors to v. Sine |L(v)| ≥ ∆ + 26,it is possible to �nd an appropriate olor for this vertex.We now prove that the oloring obtained is linear. Sine the oloring
c of H is linear, no olor appears more than twie in the neighborhood of
v in G. If k ≥ 3, the olors of the neighbors of v1, . . . , vk−2 are forbiddento v, so the 2-frugality of v1, . . . , vk−2 is preserved and any biolored ylepassing through v ontains vk−1 and vk. The olors appearing twie in
N(vk−1) or twie in N(vk) are forbidden, so the 2-frugality of vk−1 and
vk is preserved. The olors appearing in N(vk−1) and N(vk) are alsoforbidden, so v annot belong to any biolored yle. We thus obtain alinear L-oloring of G, whih ompletes the indution.4.5 Graphs with small maximum degree4.5.1 Sububi graphsAs seen in Setion 4.2, the graph K3,3 is not linearly 4-olorable. Let
G be a graph with maximum degree three, ontaining at least one ≤2-vertex. Then G is 2-degenerate and we have Λl(G) ≤ 5 by Proposition4.3. So the hardest part is to prove that 3-regular graphs have linearhoie number at most �ve. To show this, we prove a slightly strongerstatement:Theorem 4.6 [EMR08℄ Let G be a graph with maximum degree ∆ ≤ 3,and L be a 5-list-assignment to the verties of G. Then there exists a
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linear L-oloring of G suh that the two neighbors of any 2-vertex havedistint olors.Proof. We prove the theorem by indution on the order of G. let L bea 5-list-assignment to the verties of G. We an assume that G is on-neted, otherwise we an olor eah onneted omponent by indutionand obtain a linear list L-oloring of G with the desired property.If G ontains a 1-vertex v adjaent to a vertex u, then by indution,the graph G − v has a linear L-oloring c suh that the neighbors ofany 2-vertex have distint olors. By oloring v with a olor distintfrom c(u) and from the olors of the neighbors of u, we obtain a linear L-oloring of G suh that the neighbors of any 2-vertex have distint olors.If G ontains a 2-vertex v with neighbors u and w, let H be the graphobtained from G by removing the vertex v and adding an edge uw ifit does not already exist. H has maximum degree at most three andis smaller than G, so there exists a linear L-oloring c of H , suh thatthe neighbors of any 2-vertex have distint olors. We hoose for v aolor distint from c(u), c(w), and from the olors appearing twie in theneighborhood of u, or twie in the neighborhood of w. Sine c(u) 6= c(w),we do not reate any biolored yle. We forbid at most four olors to v,so we an hoose a olor for v and obtain a linear L-oloring of G suhthat the neighbors of any 2-vertex have distint olors.

v1

v2

v3

vk

vk−1

u1

u2

u3

uk−1
ukFigure 4.2: A shortest yle in a minimum ounterexample.Otherwise the graph G is 3-regular. Let u1, . . . , uk, with k ≥ 3 bea shortest yle (see Figure 4.2). For all 1 ≤ i ≤ k, we denote by vithe neighbor of ui outside the yle (that is, distint from ui−1 and ui+1,where all values are taken modulo k). Observe that two verties vi and vjould be the same vertex, but that eah vi is distint from all the verties

uj, sine otherwise there would be a yle with less than k verties. Let
H be the graph obtained from G by removing the verties u1, . . . , uk. Byindution there exists a linear L-oloring c of H , suh that the neighbors
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of any 2-vertex have distint olors. In partiular, eah vertex vi hasdegree at most two in H , so its neighbors have distint olors and the2-frugality of vi will be preserved regardless of the olor we assign to ui.We now olor the verties u1, . . . , uk in this order. We hoose for u1a olor distint from c(v1) and c(v2). For any 2 ≤ i ≤ k − 1, we hoosefor ui a olor distint from c(ui−1), c(vi), and c(vi+1). For uk, we hoosea olor distint from c(u1), c(uk−1), c(vk), and c(v1). By doing so, weprevent any biolored yle ontaining a vertex vi, and the 2-frugality ofevery vertex ui is respeted. But at this point, the yle u1, . . . , uk ouldstill be a biolored yle. Hene, if k ≥ 4, we also forbid the olor of u1 to
u3 while we are oloring this vertex (if k = 3 the yle is a triangle and itannot be properly biolored). At most four olors are forbidden to eahvertex ui, so we an hoose a olor c(ui) ∈ L(ui) for any of them, andthe oloring obtained is a linear L-oloring of G. Sine G is 3-regular,the additional property that the neighbors of any 2-vertex have distintolors is trivially veri�ed.Sine K3,3 seems to be the only sububi graph whih linear hoienumber is equal to 5, we propose the following onjeture :Conjeture 4.7 If G has maximum degree 3, and is di�erent from K3,3,then Λl(G) ≤ 4.4.5.2 Graphs with maximum degree 4Aording to Proposition 4.2, we have Λl(K4,4) ≥ 6. Applying the samemethod of reduible on�gurations to graphs with maximum degree 4,we obtain the following theorem, whih we suspet not to be tight.Theorem 4.8 [EMR08℄ If G is a graph with maximum degree ∆ ≤ 4,then Λl(G) ≤ 9.Proof. Let G be a ounterexample of minimum order: there exists a 9-list-assignment L suh that G is not linearly L-olorable. Using the samearguments as in the previous proof, we show that G does not ontain any
≤3-vertex. Hene, the graph is 4-regular. We now show that G does notontain any 4-verties.Let u be a 4-vertex and let v, w, x, and y be its neighbors. Let G′be the graph obtained from G − v by adding the edges vw and xy ifthey are not already there (see Figure 4.3). Let c be a linear L-oloringof G′. We now extend c to the initial graph G: we only have to olorthe vertex u with a olor from its list L(u). We have to hoose a olordistint from the olors of v, w, x, and y. The ondition of 2-frugalityfor these four verties forbids at most four additional olors. If v, w, x,and y have distint olors, it is impossible to reate a biolored yle,
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so we an olor u with the ninth olor of L(u), and thus obtain a linear
L-oloring of G.Otherwise, we have for example c(v) = c(y) and c(w) 6= c(x). Theneighbors of u forbid only three olors, and their 2-frugality forbids atmost 4 olors. But it is possible to reate a biolored yle passingthrough v and y. To avoid this, we forbid to u the olors of v's neigh-bors. This makes only two additional olors, as the third one was alreadyounted to ensure v's 2-frugality. There are still at most eight forbiddenolors for the hoie of c(u).In the last ase, we have without loss of generality c(v) = c(x) and
c(w) = c(y). The neighbors of u forbid two olors to this vertex. To en-sure the 2-frugality of v, w, x, and y we forbid at most four other olorsto u. To prevent any biolored yle it su�es to forbid to u the olorsof v's and w's neighbors (six olors, among whih two have already beenounted). This makes at most eight forbidden olors for the hoie of u.So it is possible to olor this vertex with a olor of its list, and to obtaina linear L-oloring of G. This ompletes the proof.

w

v

y

x

y

v

x

u w

G′GFigure 4.3: Elimination of a 4-vertex.
As notied by Frédéri Havet, there exists a simpler way to proveTheorem 4.8 when we restrit ourselves to linear oloring (instead oflinear list oloring): sine G is 4-regular, it is the union of two yle-fators F1 and F2. Eah Fi admits a linear oloring ci with three olors,and the produt of c1 and c2 gives a linear oloring of G with 9 olors.4.6 Graphs with bounded maximum averagedegreeReall that the maximum average degree of a graph G, denoted bymad(G) is de�ned by:
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mad(G) = max{2|E(H)|/|V (H)|, H ⊆ G}.Theorem 4.9 [EMR08℄ Let G be a graph with maximum degree ∆:1. If ∆ ≥ 3 and mad(G) < 16

7
, then Λl(G) =

⌈

∆
2

⌉

+ 1.2. If mad(G) < 5
2
, then Λl(G) ≤

⌈

∆
2

⌉

+ 2.3. If mad(G) < 8
3
, then Λl(G) ≤

⌈

∆
2

⌉

+ 3.Sine every planar or projetive-planar graph G with girth g(G) veri�esmad(G) < 2g(G)
g(G)−2

, we obtain the following orollary:Corollary 4.10 Let G be a planar or projetive-planar graph with max-imum degree ∆:1. If ∆ ≥ 3 and g(G) ≥ 16, then Λl(G) =
⌈

∆
2

⌉

+ 1.2. If g(G) ≥ 10, then Λl(G) ≤
⌈

∆
2

⌉

+ 2.3. If g(G) ≥ 8, then Λl(G) ≤
⌈

∆
2

⌉

+ 3.Observe that yles are linearly 3-hoosable; hene, we annot removethe ondition on ∆ in Theorem 4.9.1 and Corollary 4.10.1.Proof of Theorem 4.9.1 Let G be a ounterexample of minimumorder, with ∆ ≥ 3 and mad(G) < 16
7
. There exists an assignment of listsof size at least ⌈∆

2
⌉ + 1 suh that G is not linearly L-olorable. Usingthe method of reduible on�gurations, we �rst prove that G satis�es thefollowing laim:Claim 4.11 G does not ontain any of the following on�gurations:(C4.11.1) a 1-vertex,(C4.11.2) a 2-vertex adjaent to two 2-verties,(C4.11.3) a 3-vertex adjaent to three 2-verties, eah of them adjaentto a 2-vertex.Proof.
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(C4.11.1) If G ontains a 1-vertex v, let c be a linear L-oloring of G− v(whih exists as G − v is a subgraph of G and thus veri�esmad(G − v) < 16

7
). We now extend c to v: the neighbor u of

v forbids one olor; we also have to preserve u's 2-frugality:among its d already olored neighbors (d ≤ ∆ − 1), there areat worst ⌈∆
2
⌉ − 1 pairs of verties having the same olor. Thisforbids at most ⌈∆

2
⌉ olors to v. Thus v an be olored with aremaining olor in its list L(v), and the oloring obtained is alinear L-oloring of G, whih is a ontradition.(C4.11.2) If G ontains a 2-vertex v adjaent to two 2-verties u and w,we olor the graph G− v linearly with olors belonging to thelists of L (it is possible by the minimality of G). If u and whave distint olors, we hoose for v a olor distint from theolors of its neighbors, and it is impossible to reate a biol-ored yle. If u and w have the same olor, we forbid it to v,as well as the olor of the seond neighbor of u. This preventsthe reation of any biolored yle. There are at most twoforbidden olors, what enables us to olor v sine ⌈∆

2
⌉+ 1 ≥ 3when ∆ ≥ 3.

v2 v1

u

x1

x2

x3

w1

w2

v2

w2

x3

x2

G HFigure 4.4: Elimination of Con�guration (C4.11.3).(C4.11.3) If G ontains a 3-vertex adjaent to three 2-verties, eah ofthem being adjaent to another 2-vertex, then we olor theredued graph H obtained from G by removing the verties
u, v1, w1, and x1 (see Figure 4.4). This redued graph H isa subgraph of G, and so mad(H) < 16/7. We now have toolor the verties u, v1, w1, and x1. For v1, we hoose a olordi�erent from the olor of v2. For w1 we take a olor di�erentfrom those of w2 and v1. We olor u with a olor di�erent fromthose of v1 and w1. For the last vertex, we have to handle twodi�erent ases: if u and x2 have di�erent olors it is impossi-ble to reate a biolored yle, so we an take for x1 a olor
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di�erent from those of u and x2. If u and x2 have the sameolor, we hoose for x1 a olor di�erent from those of x2 and
x3 (what prevents biolored yles oming from x3). As in theprevious situation, there are at most two forbidden olors foreah vertex, what enables us to olor eah of them with a olorof its own list. We then obtain a linear L-oloring of G, whihis a ontradition.

We omplete the proof of Theorem 4.9.1 with a disharging proedure.First, we assign to eah vertex v a harge ω(v) equal to its degree. Wethen apply the following disharging rules:Rule 1. Eah ≥4-vertex gives 2
7
to eah adjaent 2-vertex.Rule 2. Eah 3-vertex gives 2

7
to eah adjaent 2-vertex neighbor of another2-vertex, and 1

7
to eah adjaent 2-vertex whih is not neighbor ofa 2-vertex.Let ω∗(v) be the harge of v after the proedure. Let v be a k-vertex(k ≥ 2, as G does not ontain Con�guration (C4.11.1)).

• If k = 2, v reeives 2
7
if it is adjaent to a ≥4-vertex or to a 3-vertexand a 2-vertex. Otherwise v must be adjaent to two 3-verties(Con�guration (C4.11.2) does not appear in the graph), and willreeive two times 1

7
, so ω∗(v) ≥ 2 + 2

7
= 16

7
.

• If k = 3, v gives at most 2
7

+ 2
7

+ 1
7
(the graph does not ontainCon�guration (C4.11.3)), thus ω∗(v) ≥ 3 − 5

7
= 16

7
.

• If k ≥ 4, then by Rule 1 ω∗(v) ≥ k − k × 2
7
≥ 20

7
.In any ase, ω∗(v) ≥ 16

7
, so∑v∈V (G) ω∗(v) ≥ 16n

7
. Sine∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 16/7|V (G)|
|V (G)| =

16

7We obtain a ontradition, sine mad(G) < 16
7
aording to the thede�nition of G.
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Proof of Theorem 4.9.2 Let G be a ounterexample of minimumorder, with mad(G) < 5

2
. There exists an assignment L of lists of size

⌈∆
2
⌉+ 2 suh that G is not linearly L-olorable. Using the method of re-duible on�gurations, we �rst prove that G satis�es the following laim:Claim 4.12 G does not ontain any of the following on�gurations:(C4.12.1) a 1-vertex,(C4.12.2) two adjaent 2-verties,(C4.12.3) a 3-vertex adjaent to three 2-verties.Proof.(C4.12.1) The ase of the 1-vertex has already been handled in the pre-vious proof (see Con�guration (C4.11.1)).(C4.12.2) If G ontains two adjaent 2-verties v and w, let c be a linear

L-oloring of G − {v, w}. We extend c to the whole graph by�nding olors c(v) ∈ L(v) and c(w) ∈ L(w) for v and w suhthat the new oloring c is a linear oloring of G. Let u be theneighbor of v in G distint from w and let x be the neighbor of
w in G distint from v. For v, we hoose a olor distint fromthose of u and x. We also need to preserve u's 2-frugality; todo this we forbid at most ⌈∆

2
⌉ − 1 other olors to v. We takefor w a olor di�erent from those of v and x; x's 2-frugalityalso forbids at most ⌈∆

2
⌉−1 other olors to w. At most ⌈∆

2
⌉+1olors are forbidden to v and w, so it is possible to olor themwith olors from their own lists. We obtain a linear L-oloringof G, whih is a ontradition.(C4.12.3) If G ontains a 3-vertex adjaent to three 2-verties, let c be alinear L-oloring of the redued graph H obtained from G byremoving the verties u, x1, and w1 (see Figure 4.5). In orderto extend c to the whole graph G, we have to �nd olors for theremaining verties: w1, x1, and u. We hoose for w1 a olordistint from the olors of w2 and v1, and from the at most

⌈∆
2
⌉−1 olors appearing twie in w2's neighborhood. We takefor u a olor di�erent from those of v1, w1, and x2. Finally weforbid to x1 the olors of x2 and u, as well as most ⌈∆

2
⌉ − 1olors appearing twie in x2's neighborhood. Suh a oloringpreserves the property of 2-frugality of all the verties, andsine c(w1) 6= c(v1) and c(u) 6= c(x2) no biolored yle anbe reated. So we an olor eah of these verties with a olor
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from its own list in order to obtain a linear L-oloring of G,whih is a ontradition.

v2

v1

w1

w2

u
x1

x2

G

v1

v2

x2 w2

HFigure 4.5: Elimination of Con�guration (C4.12.3).
We omplete the proof of Theorem 4.9.2 with a disharging proedure.First, we assign to eah vertex v a harge ω(v) equal to its degree. Wethen apply the following disharging rule:Rule. Eah ≥3-vertex gives 1

4
to eah adjaent 2-vertex.Let ω∗(v) be the harge of v after the proedure. Let v be a k-vertexof G (k ≥ 2, as G does not ontain Con�guration (C4.12.1)).

• If k = 2, v is adjaent to two ≥3-verties (the graph does not ontainCon�guration (C4.12.2)), thus ω∗(v) ≥ 2 + 2 × 1
4

= 5
2
.

• If k = 3, v is adjaent to at most two 2-verties (the graph doesnot ontain Con�guration (C4.12.3)), thus ω∗(v) ≥ 3 − 2 × 1
4

= 5
2
.

• If k ≥ 4, v an be adjaent to k 2-verties, so ω∗(v) ≥ k−k× 1
4
≥ 3.In any ase, ω∗(v) ≥ 5

2
, so∑v∈V (G) ω∗(v) ≥ 5n

2
. Sine∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 5/2|V (G)|
|V (G)| =

5

2We obtain a ontradition, sine mad(G) < 5
2
aording to the thede�nition of G.
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Proof of Theorem 4.9.3 Let G be a ounterexample of minimumorder, with mad(G) < 8

3
. There exists an assignment L of lists of size

⌈∆
2
⌉+ 3 suh that G is not linearly L-olorable. Using the method of re-duible on�gurations, we �rst show that G satis�ed the following laim:Claim 4.13 G does not ontain any of the following on�gurations:(C4.13.1) a 1-vertex,(C4.13.2) two adjaent 2-verties,(C4.13.3) a 3-vertex adjaent to two 2-verties.Proof.(C4.13.1) see Con�guration (C4.11.1).(C4.13.2) see Con�guration (C4.12.2).(C4.13.3) If G ontains a 3-vertex adjaent to two 2-verties, let c bea linear L-oloring of the redued graph H obtained from Gby removing the verties u, x1, and w1 (see Figure 4.6. Thisoloring exists, as H is a subgraph of G, and thus mad(H) ≤mad(G) < 8

3
. We extend c to the whole graph G, by oloring

w1, x1, and u with olors of L(w1), L(x1), and L(u) respe-tively. We take for w1 a olor di�erent from the olors of v and
w2, and from the ⌈∆

2
⌉−1 olors appearing twie in w2's neigh-borhood. We then olor u with a olor di�erent from those of

w1, v, x2, and from the ⌈∆
2
⌉ − 1 olors appearing twie in v'sneighbors (2-frugality of v). Finally, we olor x1 with a olordi�erent from those of u, x2, and from at most ⌈∆

2
⌉ − 1 olorsamong the olors of x2's neighbors. So we an olor eah ver-tex with a olor from its list, and we obtain a linear L-oloringof G, whih is a ontradition.

v

u
w1

w2

x1

x2
x2 w2

v

G HFigure 4.6: Elimination of Con�guration (C4.13.3).
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We omplete the proof of Theorem 4.9.3 with a disharging proedure.First, we assign to eah vertex v a harge ω(v) equal to its degree. Wethen apply the following disharging rule:Rule. Eah ≥3-vertex gives 1

3
to eah adjaent 2-vertex.Let ω∗(v) be the harge of v after the proedure. Let v be a k-vertexof G (k ≥ 2, as G does not ontain Con�guration (C4.13.1)).

• If k = 2, v is adjaent to two ≥3-verties (G does not ontainCon�guration (C4.13.2)), thus ω∗(v) ≥ 2 + 2 × 1
3

= 8
3
.

• If k = 3, v is adjaent to at most one 2-vertex (G does not ontainCon�guration (C4.13.3)), thus ω∗(v) ≥ 3 − 1
3

= 8
3
.

• If k ≥ 4, v an be adjaent to k 2-verties, thus ω∗(v) ≥ k−k× 1
3
≥

8
3
.In any ase, ω∗(v) ≥ 8

3
, so∑v∈V (G) ω∗(v) ≥ 8n

3
. Sine∑v∈V (G) ω∗(v) =

∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:mad(G) ≥ 2|E(G)|
|V (G)| =

∑

v∈V (G) ω∗(v)

|V (G)| ≥ 8/3|V (G)|
|V (G)| =

8

3We obtain a ontradition, sine mad(G) < 8
3
aording to the thede�nition of G.4.7 NP-ompletenessTheorem 4.14 [EMR08℄ Deiding whether a bipartite sububi planargraph is linearly 3-olorable is an NP-omplete problem.Proof. The proof of the NP-ompleteness proeeds by a redution to theproblem of 3-oloring of planar graphs, whih is an NP-omplete prob-lem [GJS76℄. Given an instane of this problem �a planar graph H , weneed to reate a bipartite sububi planar graph G of a size polynomialin |V (H)| suh that G is linearly 3-olorable if and only ifH is 3-olorable.Let M be the 7 × 2 grid (see Figure 4.7). Observe that in any linear3-oloring c of M, we have c(x1) = c(x2) and c(y1) = c(y2).Let N (z1, z2) be the graph depited in Figure 4.8. This graph isbipartite, sububi, planar, and linearly 3-olorable. Moreover, by theproperty of M we have c(z1) = c(z2) in any linear 3-oloring c of N .
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y1 Figure 4.7: A linear 3-oloring of the graph M.
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Figure 4.8: The graph N (z1, z2). The two stable sets are represented with whiteand blak dots respetively.To make the redution, we �rst replae eah d-vertex u ∈ V (H) bya tree Tu with maximum degree at most 3, having d leaves (eah leaf uvorresponds to a link to a neighbor v of u in H). We then replae eahedge xy of these trees by the graph N (x, y). We then link eah vertex uvto the vertex vu by an edge (see Figure 4.9). Eah tree is bipartite, butour onstrution may not be bipartite at this point: if we olor eah tree
Tu properly with the olors blak and white, two leaves vw and wv maybe olored with the same olor. If this is the ase, we subdivide the edge
vwwv, thus reating a new vertex mvw adjaent to vw and wv. We thenreplae the edge vwmvw by the graph N (vw, mvw). We repeat this proessuntil the graph obtained is properly 2-olorable, and thus bipartite.

Tv
Tu

v u v
uv uvu

Figure 4.9: Transformation of the planar graph into a sububi bipartite planargraph.
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The graph G obtained is planar, bipartite, and sububi. Eah ver-tex of the tree Tu reeives the olor of u in the 3-oloring of H . This3-oloring of the graph G is linear : there is no problem of 2-frugality inthe trees, and there are no biolored yles (there are no biolored pathsof size at least four in the widgets).Conversely, in a linear 3-oloring of G, the verties of a given tree Tuhave the same olor, whih an be used to olor u in H . So we easilyobtain a 3-oloring of H .We ould have used a 4 × 2 grid instead of a 7 × 2 grid to build thewidget. All the properties would have been onserved, but the widgetwould not have been bipartite (it would have ontained some C5). Thetheorem of NP-ompleteness would have been a little weaker.4.8 ConlusionTable 4.1 sums up the upper bounds obtained for the linear hoienumber of graphs with maximum degree ∆.

G Λl
k(G)

∆ ≤ 3 5
∆ ≤ 4 9

∆ ≥ 3 and mad(G) < 16
7

⌈

∆
2

⌉

+ 1mad(G) < 5
2

⌈

∆
2

⌉

+ 2mad(G) < 8
3

⌈

∆
2

⌉

+ 3outerplanar ⌈

∆
2

⌉

+ 2planar with ∆ ≥ 12 ∆ + 26Table 4.1: Λl(G) for G with maximum degree ∆.Sine this work has been written, the bound of Theorem 4.5 has beenredued from ∆ + 26 down to 9
10

∆ + 5 (when ∆ ≥ 85) by Raspaud andWang [RW06℄. It is believed that the right bound should be ∆/2 + C,where C is an absolute onstant, but this seems to be a di�ult prob-lem. It is also an open problem to know whether Λl(G) = Λ(G) for everygraph G.
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A generalization of linear oloring an be made, by replaing the on-dition of 2-frugality by a ondition of k-frugality. More preisely, wede�ne the k-forested oloring of a graph G as a proper oloring of theverties of G suh that the union of any two olor lasses is a forest ofmaximum degree at most k. The k-forested number of a graph G, de-noted by Λk(G), is the smallest number of olors appearing in a k-forestedoloring of G.The lower bound Λ(G) ≥ ⌈∆(G)

2
⌉ + 1 an be easily generalized to

Λk(G) ≥ ⌈∆
k
⌉ + 1 for all graph G of maximum degree ∆. The exam-ple desribed by Yuster in [Yus98℄ an also be generalized in k dimen-sions in order to prove that Λk(G) = Ω(∆

k+1
k ). However, as soon as

k ≥ 4, this onstrution is less interesting than the probabilisti boundof Ω
(

∆4/3

(log ∆)1/3

) given by Alon, MDiarmid and Reed [AMR91℄ for theayli hromati number.Reently, Kang and Müller [KM07℄ investigated this oloring andfound some onnetions with t-improper olorings (olorings suh thatevery olor lass indues a graph with maximum degree t).
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Chapter 5
(p, 1)-total labelling
Contents5.1 Introdution . . . . . . . . . . . . . . . . . . . 1015.2 Proof of Theorem 5.6 . . . . . . . . . . . . . . 1055.2.1 Sketh of Proof . . . . . . . . . . . . . . . . . 1065.2.2 The Naive Coloring Proedure . . . . . . . . 1065.3 Analysis of the proedure . . . . . . . . . . . 1075.3.1 The �rst iteration . . . . . . . . . . . . . . . 1075.3.2 The next iterations . . . . . . . . . . . . . . . 1105.3.3 The �nal phase . . . . . . . . . . . . . . . . . 1135.4 Conlusion . . . . . . . . . . . . . . . . . . . . . 115In the previous hapters, we investigated distane-two olorings of spe-i� families of graphs: graphs with bounded maximum degree, withbounded maximum average degree, forests, outerplanar graphs, planargraphs, and planar graphs with large girth. In this hapter, we studyinidene graphs, for whih distane-two olorings are of partiular inter-est.5.1 IntrodutionFor a graph G, let us de�ne the inidene graph G⋆ of G as the graph G⋆obtained from G by replaing every edge by a path of length two (seeFigure 5.1 for an example). Observe that for a graph G, oloring thesquare of G⋆ is equivalent to oloring the verties and edges of G suhthat:
(i) the edge-oloring is proper, i.e. no two inident edges reeive thesame olor; 101
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(ii) the vertex-oloring is proper, i.e. no two adjaent verties reeivethe same olor;
(iii) every edge has a olor distint from the olors of its end verties.Suh a oloring is alled a total oloring of G, and the smallest number ofolors in a total oloring of G is the total hromati number of G, denotedby χT (G). By the observation above, χT (G) is equal to the hromatiχT (G) number of the square of G⋆. In the late sixties, Behzad [Beh65℄ andVizing [Viz68℄ independently proposed the following onjeture, whih isstill an open problem:Conjeture 5.1 (The Total Coloring Conjeture) For any graph Gwith maximum degree ∆, χT (G) ≤ ∆ + 2.

G G⋆Figure 5.1: An example of inidene graph.Kostohka [Kos77℄ proved that for a graph G with maximum degree
∆, we have χT (G) ≤ ⌊3

2
∆⌋. The �rst bound in ∆ + o(∆) was givenby Hind [Hin90℄, who proved that χT (G) ≤ ∆ + 2

√
∆. This was laterimproved to ∆ + 18∆1/3 log(3∆) by Häggkvist and Chetwynd [HC92℄. Asigni�ant step was then made by Hind, Molloy and Reed [HMR99℄, whoproved a bound of ∆+poly(log ∆) using frugal olorings (see Chapter 3).The best bound so far is due to Molloy and Reed [MR98℄, who provedthat the total hromati number of any graph with maximum degree ∆is at most ∆ plus an absolute onstant.Reall that for integers p, q ≥ 0, an L(p, q)-labelling of G is an assign-ment f of integers to the verties of G suh that :

• |f(u) − f(v)| ≥ p, if dG(u, v) = 1,
• |f(u) − f(v)| ≥ q, if dG(u, v) = 2.In 1995, Georges, Mauro, and Whittlesey [GMW95℄ studied the L(2, 1)-labelling of inidene graphs. An L(2, 1)-labelling of the inidene graphof G is equivalent to an assignment of integers to eah element of V (G)∪

E(G) suh that :
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(i) the edge-oloring is proper,
(ii) the vertex-oloring is proper,
(iii) the di�erene between the integer assigned to a vertex and thoseassigned to its inident edges is at least 2.This labelling is alled a (2, 1)-total labelling of G. Havet and Yu [HY08℄generalized it to the (p, 1)-total labelling of a graph: a (p, 1)-total labellingof a graph G = (V, E) is a map c : V ∪ E → N verifying:
(i) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ c(u) 6= c(v),
(ii) ∀(u, v, w) ∈ V 3 : uv ∈ E, uw ∈ E ⇒ c(uv) 6= c(uw),
(iii) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ |c(u) − c(uv)| ≥ p.The (p, 1)-total number of a graph G, denoted by λT

p (G), is the mini-mum integer k suh that G has a (p, 1)-total labelling1 with labels from
{1, . . . , k}. Figure 5.2 gives an example of a (2, 1)-total labelling with 6olors.

6 4

2

2 2

4 6
46

46

5 5

5

3 1

4 61

1

2

3

6

1

2

Figure 5.2: A (2, 1)-total labelling of Petersen's graph.Observe that (1, 1)-total labelling is the usual total oloring (whih,again, is basially the same as oloring the square of the inidene graph):for any graph G, λT
1 (G) = χT (G) = χ(G⋆2).We reall some bounds and a onjeture for the (p, 1)-total number:Theorem 5.2 [HY08℄ Let G be a graph with maximum degree ∆, then:

(i) λT
p (G) ≥ ∆ + p.

(ii) If G is ∆-regular, λT
p (G) ≥ ∆ + p + 1.1As in Chapter 3, our de�nition of λT

p (G) may di�er by one from some of thede�nitions found in the literature, sine we onsider labels from {1, . . . k} instead of
{0, . . . k}. We hoose this onvention in order to be oherent with the de�nition of
L(p, q)-labelling given in Chapter 3 and to have λT

1 (G) equal to the total hromatinumber of G.
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(iii) If p ≥ ∆, λT

p (G) ≥ ∆ + p + 1.Observe that if we olor the verties properly with olors belonging toan interval IV ontaining χ(G) olors and the edges with olors belongingto an interval IE ontaining χ′(G) olors, IV and IE being separated byan interval of size p− 1, we obtain a (p, 1)-total labelling of the graph G.Theorem 5.3 is dedued from this observation :Theorem 5.3 [HY08℄ Let G be a graph, then
(i) λT

p (G) ≤ χ(G) + χ′(G) + p − 1

(ii) λT
p (G) ≤ 2∆ + pObserve that the following onjeture is a generalization of the TotalColoring Conjeture:Conjeture 5.4 [HY08℄ Let G be a graph with maximum degree ∆,then λT

p (G) ≤ ∆ + 2p.Montassier and Raspaud [MR03℄ proved this onjeture for graphswith large maximum degree and small maximum average degree.Theorem 5.5 [MR03℄ Let G be a onneted graph with maximum de-gree ∆, and let p ≥ 2 be an integer, then λT
p (G) ≤ ∆ + 2p − 1 in thefollowing ases :

(i) ∆ ≥ 2p + 1 and mad(G) < 5
2
;

(ii) ∆ ≥ 2p + 2 and mad(G) < 3;
(iii) ∆ ≥ 2p + 3 and mad(G) < 10

3
.As mentionned above, Molloy and Reed [MR98℄ proved that the totalhromati number of any graph with maximum degree ∆ is at most ∆plus an absolute onstant. Moreover, in [MR02℄, they gave a slightlysimpler proof of this result for sparse graphs. In this hapter, our aimis to generalize their approah to the (p, 1)-total number. Our proof fol-lows the lines of the proof in [MR02℄, but the analysis is signi�antlymore omplex. Besides, we �ll in some blanks of [MR02℄, whih is morea sketh than a omplete proof.A vertex v ∈ V (G) is said to be α-sparse if the subgraph of G induedby N(v) ontains at most (∆

2

)

−α∆ edges. An α-sparse graph is a graphin whih all the verties are α-sparse. In this hapter, we will onsider
ε∆-sparse graph for �xed 0 < ε < 1

2
, in other words, graphs suh that the
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(subgraph indued by the) neighborhood of any vertex ontains at most
c
(

∆
2

) edges, for some absolute onstant c < 1. Note that every Gn,p with
p < 1 is asymptotially almost surely (that is, with probability tendingto 1 when n tends to in�nity) ε∆-sparse for some 0 < ε < 1

2
.Our main result is the following :Theorem 5.6 [EMR06℄ For any 0 < ε < 1

2
, and any positive integer

p, there exists a onstant Cp,ε suh that for any ε∆-sparse graph G withmaximum degree ∆, we have λT
p (G) ≤ ∆ + Cp,ε.The proof of Theorem 5.6 is based on a probabilisti approah. Ituses intensively onentration inequalities and Lovász Loal Lemma. Wealso onjeture the following, whih is a weakening of Conjeture 5.4:Conjeture 5.7 For any positive integer p, there exists a onstant Cp,suh that for any graph G with maximum degree ∆, we have λT

p (G) ≤
∆ + Cp.In Setion 5.2, we present the proedure used to prove Theorem 5.6and in Setion 5.3, we analyze this proedure. The probabilisti toolsused in the proof are desribed in Chapter 1 (for further details, see[MR02℄).5.2 Proof of Theorem 5.6Sine λT

p (G) ≤ 2∆+p, if we prove that for some ∆0(p, ε) and some Dp,ε,any ε∆-sparse graph G of maximum degree ∆ ≥ ∆0 veri�es λT
p (G) ≤

∆ + Dp,ε, then Theorem 5.6 will be proved.The seond observation is that it su�es to prove the theorem for ∆-regular graphs (graphs in whih all the verties have degree ∆). If G isnot ∆-regular, take two opies of G and join the two opies of any vertexwith degree less than ∆ (see Figure 5.3 for an example). Sine the min-imum degree inreases by one, by repeating this proess we eventuallyobtain a ∆-regular graph ontaining G. Moreover it is easy to see that if
G is ε∆-sparse, then the graph obtained from the onstrution is also ε∆-sparse. Hene, we an assume from now on that the graph G is ∆-regular.Let φ be a full or partial oloring of G. Any edge e = uv suh that
|φ(u) − φ(e)| < p or/and |φ(v) − φ(e)| < p is alled a rejet edge. Thegraph R indued by the rejet edges is alled the rejet graph. It will beonvenient for us to onsider the rejet degree of a vertex v, whih is thenumber of edges e = uv suh that |φ(u)− φ(e)| < p. Observe that dR(v)is at most the rejet degree of v plus 2p − 1.
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G G

HFigure 5.3: G ⊆ H , ∆(G) = ∆(H), and δ(H) = δ(G) + 1.5.2.1 Sketh of ProofSet C = ∆ + 1. To prove Theorem 5.6, we apply the following steps :Step 1. First, we will olor the edges by Vizing's Theorem using olors from
{1, . . . , C}.Step 2. Then we will use the Naive Coloring Proedure to olor the vertieswith olors {1, . . . , C}. This proedure reates rejet edges. How-ever, we an prove that after the proedure, the maximum degreeof the rejet graph R is a onstant Dp,ε whih does not depend on
∆.Step 3. Finally, we remove the olor of the verties of R and reolor theseverties greedily with the olors from {∆+p+1, . . . , ∆+p+2+Dp,ε}.Taking Cp,ε = Dp,ε + p − 2, this proves that λT

p (G) ≤ ∆ + Cp,ε.We now present the Naive Coloring Proedure.5.2.2 The Naive Coloring ProedureFor eah vertex v, we maintain two lists of olors: Lv and Fv. Lv isthe set of olors whih do not appear in the neighborhood of v. Initially,
Lv = {1, . . . , C}. After iteration I (spei�ed later), Fv will be a set offorbidden olors. Until iteration I, Fv = ∅.During the Naive Coloring Proedure, we will perform i∗ (spei�edlater) iterations of the following proedure :Step 1. Assign to eah unolored vertex v a olor hosen uniformly at ran-dom in Lv.Step 2. Unolor any vertex whih reeives the same olor as a neighbor inthis iteration.
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Step 3. Iteration i ≤ I. Let v be a vertex having more than T (spei�edlater) neighbors u whih are assigned a olor c(u) suh that

|c(uv) − c(u)| < p in this iteration. For any v, we unolor allsuh neighbors.Iteration i > I.(a) Unolor any vertex v whih reeives a olor from Fv inthis iteration.(b) Let v be a vertex having more than one neighbor u whihis assigned a olor suh that |c(uv) − c(u)| < p in thisiteration. For any v, we unolor all suh neighbor.() Let v be a vertex having at least one neighbor u suh that
|c(uv) − c(u)| < p in this iteration. For any v, we plae
{c(vw) − p + 1, . . . , c(vw), . . . , c(vw) + p − 1} in Fw forevery w ∈ N(v).Step 4. For any vertex v whih retained its olor (i.e. whih was not un-olored during a previous step), we remove c(v) from Lu for any

u ∈ N(v).After i∗ iterations of this proedure, we have a partial oloring of G.We omplete this oloring in order to obtain a rejet graph R with abounded maximum degree whih does not depend on ∆.5.3 Analysis of the proedure5.3.1 The �rst iterationLet ζ = ε
2e3 . In this subsetion, we prove that:Claim 5.8 The �rst iteration produes a partial oloring with boundedrejet degree for whih every vertex has at least ζ

2
∆ repeated olors in itsneighborhood.We reall that C = ∆ + 1 is the initial size of eah olor list Lv.Let Av be the number of olors c suh that at least two neighbors of vreeive the olor c and all suh verties retain their olor during Step 2.Let Bv be the number of neighbors of v whih are unolored at Step 3.Notie that verties are unolored at Step 3 regardless of what happenedat Step 2. Let Xv be the event that �Av < ζ∆�. Let Yv be the eventthat �Bv ≥ ζ

2
∆�. If no type X event ours, every vertex has at least ζ∆repeated olors in its neighborhood at the end of Step 2. If no type Yevent ours, less than ζ

2
∆ verties are unolored in eah neighborhood.As a onsequene, if we show that with positive probability, no type Xor Y event ours, Claim 5.8 will be proved.
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Claim 5.9 Pr(Xv) < e−α log2 ∆, for a partiular onstant α > 0.Proof. We �rst bound the expeted value of Av. Let A′

v be the num-ber of olors c suh that exatly two neighbors of v reeive the olor cand are not unolored during Step 2. Notie that Av ≥ A′
v, and thus

E(Av) ≥ E(A′
v). Let u and w be two non adjaent neighbors of v. Theprobability that u and w are olored with c, while no other neighborof v is olored with c, and while no neighbor of u or w is olored with

c is exatly ( 1
C
)2 (

1 − 1
C
)3∆−3

>
(

1
C
)2 (

1 − 1
C
)3∆. Sine G is ε∆-sparse,

|E(N(v))| ≤
(

∆
2

)

− ε∆2. We assumed without loss of generality that Gwas ∆-regular, so there are at least ε∆2 pairs of non adjaent vertiesamong the neighbors of v. There are C hoies for the olor c, thus
E(A′

v) > Cε∆2

(

1

C

)2(

1 − 1

C

)3∆

=
ε∆2

C

(

1 − 1

C

)3∆For∆ > 2, we have ln(1− 1
C ) ≥ − 1

C− 1
C2 , and thus (1 − 1

C
)3∆ ≥ e−3e−

3
C .For ∆ large enough, ∆/C >

√
3/2 and e−

3
C >

√
3/2, so:

E(A′
v) >

3ε∆

4e3
=

3

2
ζ∆Sine E(Av) ≥ E(A′

v), we also have E(Av) > 3
2
ζ∆. Let ATv be thenumber of olors assigned to at least two neighbors of v, and let Delvbe the number of olors assigned to at least two neighbors of v and notretained by at least one of them. Note that Av = ATv − Delv, andby linearity of expetation, E(Av) = E(ATv) − E(Delv). The randomvariable ATv only depends on the ∆ olors assigned to the neighbors of

v. Moreover, hanging one of these olors an only a�et ATv by at most1. Using the Simple Conentration bound, we obtain:
Pr (|ATv − E(ATv)| > t) < 2e−

t2

2∆ . (5.1)The random variable Delv only depends on the nearly ∆2 olors as-signed to the verties at distane at most 2 from v. As previously, hang-ing one of these olors an only a�et Delv by at most 1. Furthermore,if Delv ≥ s, we an �nd at most 3s verties, whose olors ertify thatDelv ≥ s (for eah olor α ounted by Delv ≥ s, we take two neighbors
x and y of v olored with α and a neighbor z of x or y also olored with
α). Applying Talagrand's Inequality with c = 1 and r = 3, we obtain forall t ≥ √

∆ log ∆

Pr (|Delv − E(Delv)| > t) < 4e−
(t−60

√
3E(Delv))

2

24E(Delv) < 4e−
t2

25∆ , (5.2)
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sine E(Delv) ≤ ∆. Reall that E(Av) = E(ATv) − E(Delv). Let

t = 1
2
log ∆

√

E(Av). If |Av − E(Av)| > log ∆
√

E(Av) we have either
|ATv − E(ATv)| > t or |Delv − E(Delv)| > t. Using (5.1) and (5.2), theprobability that this happens is at most

2e−
t2

2∆ + 4e−
t2

25∆ < 2e−
3
16

ζ log2 ∆ + 4e−
3

200
ζ log2 ∆ < e−

ζ
100

log2 ∆So, for∆ large enough, Pr
(

|Av − E(Av)| > log ∆
√

E(Av)
)

< e−
ζ

100
log2 ∆.

Pr
(

|Av − E(Av)| > log ∆
√

E(Av)
)

≥ Pr
(

Av < E(Av) − log ∆
√

E(Av)
)

≥ Pr

(

Av <
3

2
ζ∆ − log ∆

√
∆

)

≥ Pr (Av < ζ∆)Sine Pr(Xv) = Pr(Av < ζ∆), we proved that Pr(Xv) < e−
ζ

100
log2 ∆.Claim 5.10 Pr(Yv) < e−β∆, for a partiular onstant β > 0.Proof. Let u be a neighbor of v. The vertex u will be unolored inStep 3 if for some neighbor w of u, u and T other neighbors x1, . . . , xTof w are eah assigned a olor c(xi) suh that |c(u) − c(wu)| < p and

|c(xi)− c(wxi)| < p for all 1 ≤ i ≤ T . The probability that this happensis at most
∆

(

∆ − 1

T

)(

2p − 1

C

)T+1

<
(2p − 1)T+1

T !For T large enough, (2p− 1)T+1/T ! < ζ/4, and thus E(Bv) < ζ∆
4
. Therandom variable Bv only depends on the nearly ∆3 olors assigned to theverties at distane at most 3 from v. Changing one of these olors ana�et Bv by at most T + 1. Moreover, if Bv ≥ s there is a set of at most

(T + 1)s verties whose olors ertify that Bv ≥ s (for eah unoloredneighbor u of v, take u and T other neighbors x1, . . . , xT of some neighbor
w of u, suh that |c(u) − c(wu)| < p and |c(xi) − c(wxi)| < p for all
1 ≤ i ≤ T ). Applying Talagrand's Inequality to Bv with c = T + 1 and
r = T + 1, we obtain for all t ≥ √

∆ log ∆

Pr (|Bv − E(Bv)| > t) < 4e
−(t−60(T+1)

√
(T+1)E(Bv))

2

8(T+1)3E(Bv) < 4e
− t2

9(T+1)3∆ .Taking t = ζ∆
8
, we obtain Pr

(

|Bv − E(Bv)| > ζ∆
8

)

< 4e
− ζ2∆

576(T+1)3 <

e
− ζ2∆

577(T+1)3 . Now, sine
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Pr

(

|Bv −E(Bv)| >
ζ∆

8

)

≥ Pr

(

Bv > E(Bv) +
ζ∆

8

)

≥ Pr

(

Bv >
3

8
ζ∆

)

≥ Pr

(

Bv ≥ ζ∆

2

)

we have Pr(Yv) < e
− ζ2

577(T+1)3
∆.We now use Lovász Loal Lemma to prove Claim 5.8. Eah event Xvonly depends on the olors assigned to the verties at distane at most 2from v, and eah event Yv depends on the olors assigned to the verties atdistane at most 3 from v. Hene, eah event is mutually independent ofall but at most 2∆6 other events. For ∆ su�iently large, Pr(Xv) < 1

8∆6and Pr(Yv) < 1
8∆6 . Using Lovász Loal Lemma, this proves that withpositive probability no type X or Y event happens. Thus with positiveprobability, the �rst iteration produes a partial oloring with boundedrejet degree, suh that eah vertex has at least ζ∆

2
repeated olors in itsneighborhood.5.3.2 The next iterationsLet di =

(

1 − 1
4
e−

2
ζ

)i

∆ and fi = 4(2p−1)
ζ

∑i−1
j=I+1 dj. Let i∗ be the smallestinteger i suh that di ≤

√
∆. Observe that for any i ≤ i∗, we have

di ≥ (1 − 1
4
e−

2
ζ )
√

∆.Claim 5.11 At the end of eah iteration 1 ≤ i ≤ i∗, with positive prob-ability every vertex has at most di unolored neighbors, and eah list Fvhas size at most fi.Proof. We prove Claim 5.11 by indution on i. At the end of the �rst it-eration, every vertex has at least ζ∆
2

repeated olors in its neighborhood.So the number of unolored verties in the neighborhood of any vertexis at most (1− ζ)∆, whih is less than d1 =
(

1 − 1
4
e−

2
ζ

)

∆. Morever, forany vertex v, the list Fv is still empty at the end of the �rst iteration,thus |Lv| = 0 = f1.Suppose i > 1. By indution, there are at most di−1 unolored vertiesin eah neighborhood at the beginning of iteration i, and eah Fv hassize at most fi−1. We de�ne the random variable Di
v as the number ofunolored neighbors of v after iteration i, and the random variable F i

v as
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the size of the list Fv after iteration i. To omplete the indution, weshow that with positive probability, Di

v ≤ di and F i
v ≤ fi for any vertex v.Sine every vertex v has at least ζ∆

2
repeated olors in its neighborhood,every list Lv has size at least ζ∆

2
. Thus, the probability that a newlyolored vertex is not unolored during Step 2 is at least (1 − 2

ζ∆

)∆. Sothe probability that a newly olored vertex is unolored during Step 2 isat most:
1 −

(

1 − 2

ζ∆

)∆

≤ 1 − 3

4
e−

2
ζFor i ≤ I, the probability that the newly olored vertex v is unoloredduring Step 3 is at most:

∆

(

di−1

T

)(

2p − 1

ζ∆/2

)T+1

≤
(

2(2p − 1)

ζ∆

)T+1
1

T !
≤ 1

4
e−

2
ζObserve that for I su�iently large in terms of ζ and p, we have

fi =
4(2p − 1)∆

ζ

i−1
∑

j=I+1

(

1 − 1

4
e−

2
ζ

)j

≤ 4(2p − 1)∆

ζ
× 4e

2
ζ

(

1 − 1

4
e−

2
ζ

)I+1

<
ζ∆

16
e−

2
ζ .Thus, for i > I, the probability that the vertex v is unolored duringStep 3(a) is at most:

|Fv|
|Lv|

≤ 2

ζ∆
fi−1 <

1

8
e−

2
ζAnd the probability that v is unolored during Step 3(b) is at most:

∆di−1

(

2(2p − 1)

ζ∆

)2

≤
(

1 − 1

4
e−

2
ζ

)I (
2(2p − 1)

ζ

)2

≤ 1

8
e−

2
ζCombining these results, the probability that a newly olored vertexis unolored during Step 2 or Step 3 is at most 1− 3

4
e−

2
ζ + 1

4
e−

2
ζ = 1− 1

2
e−

2
ζ .As a onsequene,

E(Di
v) ≤

(

1 − 1

2
e−

2
ζ

)

di−1Let X i
v be the event that Di

v >
(

1 − 1
4
e−

2
ζ

)

di−1. We de�ne the ran-dom variable NF i
v as the number of olors added to Fv during iteration i.Let Y i

v be the event that NF i
v > 4(2p−1)

ζ
di−1. Using Lovász Loal Lemma,we prove that with positive probability none of the type X or Y eventsours.
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Claim 5.12 Pr(X i

v) < e−δ log2 di−1, for a partiular onstant δ > 0.Proof. Let v be a vertex of G. Let A be the number of neighbors of vthat are unolored during Step 2. For i ≤ I we de�ne B as the numberof neighbors of v that are unolored during Step 3. For i > I we de�ne
C (resp. D) as the number of neighbors of v that are unolored duringStep 3.(a) (resp. 3.(b)). Using the Simple Conentration Bound on A,Talagrand's Inequality on B and D, and Cherno� Bound on C, ombinedwith E(Di

v) ≤ (1 − 1
2
e−

2
ζ )di−1, we prove the following inequalities:

Pr

(

|A −E(A)| >
1

2
log di−1

√

E(A + B)

)

< 2e−
e
− 2

ζ

64
log2 di−1 (5.3)

Pr

(

|B −E(B)| >
1

2
log di−1

√

E(A + B)

)

< 4e
− e

− 2
ζ

64(T+1)3
log2 di−1 (5.4)

Pr

(

|A − E(A)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
− 2

ζ

144
log2 di−1 (5.5)

Pr

(

|C − E(C)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
1

144
log2 di−1 (5.6)

Pr

(

|D −E(D)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
− 2

ζ

1152
log2 di−1 (5.7)The proof of these results is very lose from the proofs of Claims 5.9and 5.10. Combining (5.3), (5.4), (5.5), (5.6) and (5.7), we obtain for Tand ∆ large enough :

Pr(X i
v) < e

− e
− 2

ζ

65(T+1)3
log2 di−1

Claim 5.13 Pr(Y i
v ) < e−γdi−1 , for a partiular onstant γ > 0.Proof. The probability that a neighbor u of v is assigned a olor c(u)suh that |c(u)−c(uv)| < p is 2p−1

|Lu| ≤ 2(2p−1)
ζ∆

. Thus E(NFv) ≤ 2(2p−1)
ζ∆

di−1.Applying Talagrand's Inequality to the random variable NFv with c =
(2p − 1)2 and r = 1, we obtain :

Pr (|NFv − E(NFv)| > t) < 4e
− ζt2

16(2p−1)5di−1for any t > log di−1

√

di−1. Taking t = 2p−1
ζ

di−1, we obtain :
Pr
(

NFv > 4(2p−1)
ζ

di−1

)

≤ Pr
(

|NFv − E(NFv)| > 2p−1
ζ

di−1

)

< 4e
− di−1

2ζ(2p−1)3 .
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The variable X i

v only depends on the olors assigned to the verties atdistane at most 3 from v during iteration i, while the variable Y i
v dependson the olors assigned to the verties at distane at most 2 from v duringiteration i. Thus, eah type X or Y event is mutually independent fromall but at most 2d6

i−1 other events. Using Claims 5.12 and 5.13, we have
Pr(X i

v) < 1
8d6

i−1
and Pr(Y i

v ) < 1
8d6

i−1
for ∆ large enough (reall thataording to our hoie of i∗ we always have di ≥ (1− 1

4
e−

2
ζ )
√

∆). LovászLoal Lemma ompletes the indution.5.3.3 The �nal phaseAt this point, we have a partial oloring suh that:
• eah vertex v has at most √∆ unolored neighbors;
• the rejet degree of eah vertex is at most IT + 1;
• eah unolored vertex has a list of at least ζ∆

2
available olors.It will be more onvenient to use lists of equal sizes. So we arbitrar-ily remove olors from eah list, so that for every unolored vertex v, wehave |Lv| =

⌈

ζ∆
2

⌉. For eah unolored vertex, we hoose a subset of olorsfrom Lv whih will be andidates for v and we prove that with positiveprobability, there exists a andidate for eah unolored vertex, suh thatwe an omplete our partial oloring of G.A andidate a for v is said to be good if:Condition 1 for every neighbor u of v, a is not andidate for u;Condition 2 for every neighbor u of v, and every neighbor w of
u, there is no andidate b of w suh that |c(uv) − a| < p and
|c(uw)− b| < p.If we �nd a good andidate for every unolored vertex, Condition1 ensures that the vertex oloring obtained is proper, and Condition 2ensures that no rejet degree inreases by more than one.Claim 5.14 There exists a set of andidates Sv for eah unolored vertex

v, suh that eah set ontains at least one good andidate.Proof. For eah unolored vertex v, we hoose a random permutation of
Lv, and take the �rst twenty olors of the list as set of andidates for v.Let Cv be the event that none of the andidates for v is a good andidate.Eah event Cv depends on at most ∆4 other events. We now show that
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Pr(Cv) < 1

4∆4 . Lovász Loal Lemma will omplete the proof.Let v be an unolored vertex of G. We de�ne:
Bad1 = {c ∈ Lv : c is andidate for some neighbor of v}

Bad2 = {c ∈ Lv : hoosing c for v violates Condition 2}
Bad = Bad1 ∪ Bad2Note that a andidate for v is good if and only if it does not belongto Bad. Let D be the event that |Bad| ≤ 60(2p−1)2

√
∆. Observe that :

Pr(Cv|D) ≤
( |Bad|

|Lv|

)20

≤
(

60(2p − 1)2
√

∆
⌈

ζ∆
2

⌉

)20

≤ 12020(2p − 1)40

ζ20∆10So for ∆ su�iently large, Pr(Cv|D) < 1
8∆4 .Eah vertex has at most √

∆ unolored neighbors, thus |Bad1| ≤
20
√

∆ ≤ 20(2p − 1)2
√

∆. We now show that with high probability, thesize of Bad2 is at most 40(2p − 1)2
√

∆. A olor c belongs to Bad2 if forsome neighbor u of v suh that |c(uv) − c| < p, there is a neighbor w of
u and a andidate a for w suh that |c(uw) − a| < p. Thus we obtain:

Pr(c ∈ Bad2) ≤ (2p − 1) × 20
√

∆ × 2p − 1
⌈

ζ∆
2

⌉

E(|Bad2|) ≤
⌈

ζ∆

2

⌉

×Pr(c ∈ Bad2) ≤ 20(2p − 1)2
√

∆The random variable |Bad2| only depends on at most∆2 permutationsof olor lists of unolored verties at distane at most 2 from v. Moreover,exhanging two members of one of the permutations an a�et |Bad2| byat most 2p − 1. If |Bad2| ≥ s, we an ertify this by giving, for eaholor α ∈ Bad2, a neighbor u of v suh that |c(uv)− α| < p, as well as aneighbor w of u having a andidate a suh that |c(uw) − a| < p. Reallthat a is a andidate for w if it belongs to the �rst twenty positions of thepermutation of Lw. So we only need to give s hoies of andidates toertify that |Bad2| ≥ s. We apply MDiarmid's Inequality to X = |Bad2|with n = 0, m = ∆2, c = 2p − 1, r = 1, and t = 10(2p − 1)2
√

∆ :
Pr
(

|X − E(X)| > 10(2p − 1)2
√

∆ + 60(2p − 1)
√

E(X)
)

< 4e
− 100(2p−1)4∆

8(2p−1)2E(X)Sine E(X) ≤ 20(2p − 1)2
√

∆, this implies for ∆ su�iently large:
Pr
(

|Bad2| > 40(2p − 1)2
√

∆
)

< 4e−
5
8

√
∆
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So for ∆ large enough, Pr

(

D
)

< 1
8∆4 . We an express the probability of

Cv as Pr(Cv) = Pr(Cv|D)Pr(D) + Pr(Cv|D)Pr(D). Hene,
Pr(Cv) ≤ Pr(Cv|D) + Pr(D) <

1

4∆4We obtain a oloring of G with maximum rejet degree at most IT +2.So the rejet graph R obtained has maximum degree at most IT +2p+1.We unolor the verties of R and reolor them greedily with olors from
{∆+p+1, . . . , ∆+IT +3p+3} using Brooks theorem. This �nal oloringis a (p, 1)-total labelling of G. Sine I and T are independent of ∆, weproved that λT

p (G) ≤ ∆ + Cp,ε.5.4 ConlusionUsing general ideas from [MR02℄, Theorem 5.6 an be seen as a �rststep to prove Conjeture 5.7, whih would be the losest result fromConjeture 5.4 so far.Indeed, we only use the sparseness of G to prove that after the �rstiteration, we obtain a partial oloring with many repeated olors in eahneighborhood. So the proof of Theorem 5.6 also implies the followinglemma:Lemma 5.15 For every ε, ζ > 0 and every integer p, there exists twoonstants C(ζ, p, ε) and ∆(ζ, p, ε) suh that the following holds : onsiderany graph G with maximum degree ∆ ≥ ∆(ζ, p, ε), any edge oloring of
G, and any partial vertex oloring of G suh that every unolored vertexhas ζ∆ olors appearing at least twie in its neighborhood. The partialvertex oloring an be ompleted in order to obtain a (p, 1)-total labellingof G suh that the maximum rejet degree does not inrease by more than
C(ζ, p, ε).It seems that Lemma 5.15 ould be used to prove Conjeture 5.7,by only modifying the �rst iteration of the proedure (for example, byoloring �rst the dense omponents, and then apply the lemma to the re-maining verties). However, this would require muh deeper probabilistitehniques and tools.
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Chapter 6Game oloring
Contents6.1 Introdution . . . . . . . . . . . . . . . . . . . 1176.2 Game oloring of the square of forests . . . . 1206.3 Outerplanar graphs . . . . . . . . . . . . . . . 1246.4 Partial 2-trees and planar graphs . . . . . . . 1266.5 Conlusion . . . . . . . . . . . . . . . . . . . . . 127In this hapter, we look at distane-two oloring through a di�erentangle. We study a two-player game in whih the �rst player (Alie) triesto olor the square of a graph with a given set of olors, whereas theseond player (Bob) tries to prevent her from sueeding. The aim is tounderstand why ayli game oloring is so di�erent from the usual gameoloring. To obtain bounds on the size of the olor sets for whih Aliehas a winning strategy, we re�ne the usual ativation strategy and adaptit to the ase of distane-two olorings.6.1 IntrodutionThe game oloring number of a simple graph G is de�ned through a two-player game. Alie and Bob take turns marking unmarked verties of
G, with Alie having the �rst move. Eah move marks one unmarkedvertex. The game oloring number olg(G) of G is the smallest integer
k suh that Alie has a strategy to ensure that at any step of the game,every unmarked vertex is adjaent to at most k − 1 marked verties.The game oloring number was �rst expliitly introdued by Zhu[Zhu99℄ as a tool in the study of the game hromati number of graphs,whih is also de�ned through a two-player game: let G be a graph and C117



118 Introdution
be a set of olors. Alie and Bob take turns oloring unmarked vertiesof G, with Alie having the �rst move. Eah move olors one unmarkedvertex, subjet to the ondition that two adjaent verties annot bemarked with the same olor. Alie wins the game if eventually every ver-tex is marked. Bob wins the game if some unmarked vertex x annot bemarked anymore (eah olor in C has been assigned to some neighbor of
x). The game hromati number χg(G) of G is the minimum k for whihAlie has a winning strategy with olors from {1, . . . , k} in this game.The game hromati number was introdued by Bodlaender [Bod91℄,and has been widely studied over the last ten years. The question ofdetermining the game hromati number of planar graphs has raised par-tiular interest [Bod91, DZ99, Kie00, KT94, Zhu99℄. Reently, Wu andZhu [WZ08℄ proved that there exist planar graphs with game oloringnumber at least 11, and Zhu [Zhu08℄ proved that every planar graph hasgame hromati number at most 17.

x
y

z

u1 v1

uk vkFigure 6.1: A partial 2-tree G with χa,g(G) ≥ ∆(G)/2.In his Ph.D Thesis, Chang [Cha07℄ reently investigated ayli gameolorings. The only di�erene with the de�nition above is that, at anystep, the partial oloring has to be ayli (that is, a proper oloring with-out biolored yles). The ayli game hromati number of a graph Gis denoted by χa,g(G). Surprisingly, while the ayli hromati num-ber of planar graphs is at most 5 [Bor79℄, their ayli game hromatinumber is not bounded. Chang [Cha07℄ gave an example of a partial2-tree (with ayli hromati number at most three) with ayli gamehromati number at least ∆/2 (see Figure 6.1). It is easy to hek thatduring his �rst two moves, Bob an olor x and y with the same olor,or y and z with the same olor (depending on Alie's �rst moves). Then,either u1, . . . uk, or v1, . . . vk must have distint olors, and the ayligame hromati number is at least ∆/2.
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It is easy to prove that χ(G) ≤ χg(G) ≤ olg(G) ≤ ∆ + 1 for anygraph G with maximum degree ∆. Unfortunately, obtaining good upperbounds for the ayli game hromati number seems di�ult in general.However, we an use the following observation, whih is one of the mainreasons why we studied distane-two game olorings.Observation 6.1 For every graph G, χa,g(G) ≤ olg(G2).If Alie has a strategy to win the marking game in G2 with k olors,then by using the same strategy she an win the ayli game with kolors. When playing, Alie piks a vertex v suh that at any step of thegame, any unmarked vertex has at most k−1 marked verties at distaneone or two. She then olors v with a olor distint from all the olors atdistane at most two from v. She eventually obtains a proper oloring of

G2, whih is also an ayli oloring of G.It is very important to observe that χa,g(G) ≤ χg(G
2) may not be truein general, sine Bob has more freedom in the ayli game than in thegame oloring of the square (whih prevents Alie from using the exatlythe same strategy).Also note that if we have a winning strategy for a graph G, we an-not neessarily use it to obtain a winning strategy in a subgraph H of

G. Furthermore, having a winning strategy with k olors for a graph Gdoes not mean that we have a strategy with k +1 olors for G. As a on-sequene, it seems di�ult to use proofs by indution or with minimumounterexamples as in Chapters 2, 3, and 4.The following is an easy observation about the game hromati num-ber of the square of graphs with bounded maximum degree (and as aonsequene, about their ayli game hromati number).Observation 6.2 If G has game olouring number k and maximum de-gree ∆, then χg(G
2) ≤ olg(G2) ≤ (k − 1)(2∆ − k + 1) + 1.Assume that Alie has a strategy for the marking game on G to ensurethat at any moment of the game, any unmarked vertex has at most k−1marked neighbours in G. We shall show that by using the same strategy,Alie an ensure that at any moment of the game, any unmarked vertexhas at most (k−1)(2∆−k+1) marked verties at distane at most 2 in G.Indeed, if v is an unmarked vertex, then let NM(v) be the set of markedneighbours of v in G, and NU(v) be the set of unmarked neighbours of v in

G. Eah vertex of NM(v) has at most ∆−1 marked neighbours, and eahvertex of NU (v) has at most k − 1 marked neighbours. It is obvious that
k ≤ ∆+1. If k = ∆+1, then G2 has maximum degree at most (k−1)∆,and the onlusion holds trivially. If k ≤ ∆, then sine |NM(v)| ≤ k − 1,the number of marked verties at distane at most two from v in G is atmost |NM(v)|(∆−1)+|NM(v)|+(k−1)(∆−|NM(v)|) ≤ (k−1)(2∆−k+1).
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6.2 Game oloring of the square of forestsFor speial lasses of graphs, the upper bound for χg(G

2) in Observation6.2 an usually be improved. This setion proves a better upper boundfor χg(G
2) when G is a forest.Theorem 6.3 If G is a forest with maximum degree ∆ ≥ 9, then ∆+1 ≤

χg(G
2) ≤ olg(G2) ≤ ∆ + 3.For any forest G, ω(G2) = ∆ + 1. Therefore χg(G

2) ≥ ∆ + 1. Assume
G = (V, E) is a forest with ∆ ≥ 9. To prove that olg(G2) ≤ ∆ + 3, weshall give a strategy for Alie for the marking game on G2, so that at anymoment of the game, eah unmarked vertex has at most ∆ + 2 markedneighbors in G2.If G is not a tree, then we may add some edges to G to obtain a tree.Thus we may assume that G is a tree. Alie's strategy is a variation ofthe ativation strategy, whih is widely used in the study of oloring gameand marking game. She keeps trak of a set Va ⊆ V of ative verties,whih always indues a subtree of G. When a vertex v is added to Va,we say that v is ativated. Verties in Va are alled ative verties, andother verties are alled inative.Choose a vertex r of G as the root, and view G as a rooted tree. Fora vertex x, f 1(x) (abbreviated as f(x)) is the father of x and for i ≥ 2,let f i(x) = f(f i−1(x)). For onveniene, we let f(r) = r. The verties in
{f i(x) : i ≥ 1} are alled the anestors of x. Let S(x) be the set of sonsof x, and let S2(x) = ∪y∈S(x)S(y) be the set of grandsons of x.Alie's strategy:

• Initially she sets Va = {r}, and marks r.
• Assume Bob has just marked a vertex x and there are still unmarkedverties. Let Px be the unique path from x to the nearest vertex yof Va. In partiular, if x ∈ Va, then x = y and Px onsists of thesingle vertex x. Alie adds all the verties of Px to Va, and marksthe �rst unmarked vertex from the sequene: f 2(y), f(y), y, z∗, v,where v is an unmarked vertex with no unmarked anestors, and

z∗ is de�ned as follows: Let Z = {z ∈ S(y) : |(S(z) ∪ S2(z)) ∩ Va|is maximum among all unmarked sons of y}. Let M be the setof marked verties. Then z∗ is a vertex in Z for whih |(S(z∗) ∪
S2(z∗)) ∩ M | is maximum. In ase Z = ∅, then ignore the vertex
z∗ in the sequene.This ompletes the desription of Alie's strategy. In the following, weshall show that by using this strategy, eah unmarked vertex has at most
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∆ + 2 marked neighbors in G2 (or equivalently, eah unmarked vertexhas at most ∆ + 2 marked verties at distane one or two in G).For eah vertex x marked by Bob, there is a path Px de�ned as above.If (w, f(w)) is an edge in Px for some Px, then we say that w made aontribution to f(w) and f(w) reeived a ontribution from w. Let x′ bethe last vertex of Px. We also say that w made a ontribution to f(w) ifone of the following holds:1. If w = x′ and Alie marked f(x′).2. If w = x′ or w = f(x′) and Alie marked f 2(x′).Lemma 6.4 Assume Alie has just �nished a move and y has two ativesons. Then f 2(y) is marked.Proof. When the �rst son of y is ativated, then y and all its anestorsare ativated. When the seond son of y is ativated, then the orre-sponding path Px ends at y, and by the strategy, Alie marks f 2(y),provided that f 2(y) was not marked earlier.Lemma 6.5 Assume Alie has just �nished a move, and one of y, f(y)is an unmarked vertex. Then the following holds:(1) y has at most 3 ative sons.(2) S(y)∪S2(y) ontains at most 6 ative verties. Moreover, if S(y)∪

S2(y) does ontain 6 ative verties, then y has 3 ative sons, eahof whih has one ative son.Proof. Assume y or f(y) is unmarked. Aording to the strategy, if in amove of Alie, a vertex in S(y)∪S2(y) is ativated, then the orrespondingpath Px either goes through y, or ends at y or ends at a vertex z ∈
S(y). As y, f(y) are not both marked, whenever a vertex in S(y) ∪
S2(y) is ativated, y reeives a ontribution. When y reeives the �rstontribution, y, f(y), f 2(y) are all ativated. When y reeives the seondontribution, if f(y) was not marked earlier, one of f(y), f 2(y) is marked.When y reeives the third ontribution, one of y, f(y) is marked. Whenit reeives the fourth ontribution, y must be marked. Sine y or f(y)is unmarked, y reeived at most three ontributions. During eah of thethree orresponding moves of Alie, at most one vertex of S(y) and atmost one vertex of S2(y) are ativated. So S(y) ontains at most threeative verties and S2(y) ontains at most three ative verties. In ase
S(y)∪ S2(y) does ontain 6 ative verties, then y has three ative sons,eah of whih has one ative son.
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Lemma 6.6 Assume Alie has just �nished a move, and one of y, f(y)is an unmarked vertex. Then y has at most one unmarked son x suhthat S(x) ∪ S2(x) ontains more than 2 ative verties.Proof. Assume to the ontrary that y and f(y) are not both markedand y has two unmarked sons x1, x2 suh that for eah j = 1, 2, S(xj) ∪
S2(xj) ontains more than 2 ative verties. For j = 1, 2, if a vertex in
S(xj) ∪ S2(xj) is ativated, the orresponding path Px ends at xj or avertex z ∈ S(xj). Hene xj reeives a ontribution. Sine xj is unmarked,
xj passes the ontribution to y. As S(xj) ∪ S2(xj) ontains more than
2 ative verties, there are at least two steps in whih some vertex in
S(xj)∪S2(xj) is ativated. Hene y reeived at least 4 ontributions. Asremarked in the proof of Lemma 6.5, if y reeived 4 ontributions, thenboth y, f(y) are marked.Lemma 6.7 Assume Alie has just �nished a move. Then the followingholds:

• y has at most two unmarked sons x for whih S(x)∪S2(x) ontainsmore than 2 ative verties.
• If y has 3 ative sons, then y has at most one unmarked son xfor whih S(x) ∪ S2(x) ontains more than 2 ative verties. If

y has 4 or more ative sons, then for eah unmarked x ∈ S(y),
S(x) ∪ S2(x) ontains at most two ative verties and ontains atmost one marked vertex.Proof. By Lemma 6.6, before y and f(y) are both marked, y has at mostone unmarked son x suh that S(x) ∪ S2(x) ontains more than 2 ativeverties. Therefore at the moment the last of the two verties y and f(y)is marked, y has at most two unmarked sons x for whih S(x) ∪ S2(x)has more than 2 ative verties. Moreover, if y does have two unmarkedsons x for whih S(x) ∪ S2(x) ontains more than 2 ative verties, then

y has only two ative unmarked sons.Assume that at the moment that the last of the two verties y and
f(y) is marked, y has two unmarked sons, say x1 and x2, suh that
S(xi)∪S2(xi) ontains more than 2 ative verties (i = 1, 2). By Lemma6.4, f 2(y) is marked.Suppose the third son x3 of y is ativated. Sine f 2(y), f(y), y are allmarked, by the strategy, one of x1 and x2, say x1, will be marked. At thetime x3 is ativated, S(x3) ∪ S2(x3) ontains at most two ative vertiesand at most one marked vertex. If one more vertex of S(x3) ∪ S2(x3) isativated or marked, then Alie should have marked x3. When the fourthson x4 of y is ativated, Alie should have marked x2. One both x1 and
x2 are marked, then for any son x of y, if S(x) ∪ S2(x) ontains more
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v1Figure 6.2: A tree T with olg(T 2) = ∆ + 3.than 2 ative verties or ontains more than one marked vertex, Alieshould have marked x.Lemma 6.8 Assume ∆(G) ≥ 9. If Alie has just �nished a move and xis an unmarked vertex, then there are at most ∆ + 1 marked verties atdistane at most 2 (in G) from x.Proof. By Lemma 6.5, S(x) ∪ S2(x) ontains at most 6 ative verties,and so at most 6 marked verties sine after any of Alie's moves allthe marked verties are ative. The other marked verties at distaneat most 2 from x are f(x) and the neighbors of f(x). By Lemma 6.7,if S(x) ∪ S2(x) ontains at least 2 two marked verties then f(x) has atmost 3 ative sons (inluding x), hene the set N [f(x)]−{x} ontains atmost 4 marked verties : f(x), f 2(x), and two sons of f(x). So in thisase there are at most 4 + 6 = 10 ≤ ∆ + 1 marked verties at distaneat most 2 from x. If S(x) ∪ S2(x) ontains at most one marked vertex,then again there are at most ∆ + 1 marked verties at distane at most
2 from x.After Bob's move, an unmarked vertex x has at most ∆ + 2 ativeverties that are of distane at most 2 from x. This proves that the gameoloring number of the square of a forest F is at most ∆ + 3.The bound colg(G) ≤ ∆+3 is tight for trees. To see this, onsider thegraph depited in Figure 6.2. By symmetry, we an assume that Aliedoes not mark x or xi during her �rst move. Let X = {xi, 1 ≤ i ≤ t},
Yi = {yi, y

′
i}, and Y =

⋃

1≤i≤t Yi. We say that Yi has been marked ifany of yi and y′
i has been marked. Bob's strategy is the following : ifthere is an unmarked vertex xi, suh that Yi is not marked, Bob marks

yi. Otherwise he just marks any uj, vj , or v′
j.We now prove that if Bob follows this strategy, some unmarked vertexwill be adjaent to at least ∆ + 2 marked verties in T 2 at some point ofthe game.
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After Bob's �rst move, the number of marked Yi's is one more thanthe number of marked xi's. If Alie marks an xi whenever Bob marks

Yi, then eventually x will have too many marked neighbors in T 2. Sobefore all the xi's are marked, Alie needs to mark x at a ertain move.Then before all the xi's are marked, if Bob has just �nished a move, thenumber of marked Yi's is at least two more than the number of marked
xi's.Let xi and xj be the last verties of X to be marked. Before xi, xj aremarked, Bob has already marked yi and yj. Without loss of generality,assume that Alie hooses to mark xi �rst, then Bob marks y′

j and afterhis move, xj is unmarked and has at least ∆ + 2 neighbors in T 2.6.3 Outerplanar graphsA graph G is an outerplanar graph if G an be embedded in the planein suh a way that all the verties of G lie on the boundary of the in�-nite fae. This setion gives an upper bound for χg(G
2) for outerplanargraphs.Theorem 6.9 Let G be an outerplanar graph with maximum degree ∆,then χg(G

2) ≤ olg(G2) ≤ 2∆ + 16.Let G = (V, E) be an outerplanar graph with maximum degree ∆,and let H = (V, E ′) be a maximal outerplanar graph ontaining G. Sine
H is a 2-tree, there exists an orientation ~H of H suh that:

• every vertex of ~H has out-degree at most two;
• the two out-neighbors of any vertex, if they exist, are adjaent.If a vertex x of H has two out-neighbors y, z, and −→yz is an ar of H ,then we say that z is the major parent of x, x is a major son of z, yis the minor parent of x, and x is a minor son of z. If x has only oneout-neighbor z, then z is the major parent of x and x is a major son of

z. For a vertex x, we denote by f(x) (resp. l(x)) its major (resp. minor)parent, if it exists. We also de�ne S(x) as the set of in-neighbors of xand S2(x) as the set of in-neighbors of the verties of S(x).Observation 6.10 For every vertex x ∈ ~H, at most two in-neighbors of
x are minor sons of x. The minor sons of x, if any, are major sons of
f(x) or l(x).This observation is an easy onsequene of the de�nition of ~H (seeFigure 6.3, where only x1 and xt may be minor sons of x).
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xtx1

x

f (x) l(x)

x2

vtv1Figure 6.3: The neighborhood of a vertex x in ~H . The dashed ars may not be herein the graph.Let −→
T be the direted tree de�ned by the ars {−−−→xf(x), x ∈ ~H}. Asin the previous setion, Alie's strategy is a variation of the ativationstrategy and she will keep trak of a set Va of ative verties.Alie's strategy

• At her �rst move, Alie will mark the root r of ~T , and set Va = {r}.
• Assume Bob just marked a vertex x. Let Px be the path onstrutedas follows: At the beginning Px = {x}. Let z be the last vertexof Px. If z is inative, then add f(z) to Px. Otherwise if l(z) isinative, add l(z) to Px. Eventually the proedure will stop and thelast vertex y of Px, as well as its parents, are all ative (note thatif z is ative then f(z) must be ative). Alie adds all the vertiesof Px to Va and marks the �rst unmarked vertex from the sequene

f(y), l(y), y, v, where v is an unmarked vertex with no unmarkedanestors.Lemma 6.11 Let x be an unmarked vertex after a move of Alie, then
x has at most 2∆ + 14 ative verties at distane one or two in G.Proof. Assume x is an unmarked vertex. We denote by x1, . . . , xt thesons of x (see Figure 6.3). Notie that by Observation 6.10 only x1 and
xt may be minor sons of x. Let v1 be the minor son of x1 that is possiblya major son of f(x), and vt be the minor son of xt that is possibly amajor son of l(x).Assume that f(x) and l(x) both exist. One they are both markedand x is ativated, only two verties of S(x) (the two minor sons x1 and
xt of x) and four verties of S(x) ∪ S2(x) − {v1, vt} an be ativated. Ifsome major son of x was ativated, then Alie should have marked x.If a son of x1 distint from v1 was ativated, then x1 would have beenativated (x2 ould not be ativated, sine otherwise x would have been
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marked). If a seond son of x1 distint from v1 was ativated, then xwould have been marked by Alie's strategy. The same holds for xt.The �rst time a vertex y1 of S(x)∪S2(x)−{v1, vt} is ativated, Alieativates x and f(x). The seond time, l(x) is ativated. The third andfourth times, f(x) and l(x) are marked. If x1 or xt are ativated duringthese moves, the only hange is the order of ativation and marking of
x, f(x), and l(x). In any ase, at the time the last vertex of f(x), l(x)is marked and x is ativated (whihever is later), there are at most fourmoves in whih some verties in S(x) ∪ S2(x) − {v1, vt} are ativated.During these four moves, at most eight verties of S(x) ∪ S2(x) are ati-vated.Combining the two previous remarks, S(x)∪S2(x) ontains at most 14ative verties: 8 verties in S(x) ∪ S2(x) ativated before the momentthat f(x), l(x) are marked and x is ativated, four verties in S(x) ∪
S2(x) − {v1, vt} ativated after (inluding x1 and xt), and �nally v1 and
vt. If l(x) does not exist, the same omputation shows that S(x)∪S2(x)ontains at most 8 ative verties. If they are neighbors of x in G, theparents of x have at most 2∆− 2 neighbors in G distint from x. Hene,
x has at most 2∆ + 14 ative verties at distane one or two in G.After Bob's move, an unmarked vertex has at most 2∆ + 15 ativeverties at distane one or two in G. This proves that the game oloringnumber of the square of an outerplanar graph with maximum degree ∆is at most 2∆ + 16.Observe that in the desription and analyse of the strategy, we alwaysuse the graph H , whih is a triangulated outerplanar graph obtained from
G by adding some edges. But the degree of a vertex x refers to its degreein G, and ∆ is the maximum degree of G.6.4 Partial 2-trees and planar graphsThe two following lemmas are partiular ases of an impliit lemma inthe proof of Theorem 4 in [Zhu00℄ :Lemma 6.12 [Zhu00℄ In any partial 2-tree, Alie has a strategy suhthat at the end of eah of her moves, any unmarked vertex has at most 6marked neighbors.Lemma 6.13 [Zhu00℄ In any planar graph, Alie has a strategy suhthat at the end of eah of her moves, any unmarked vertex has at most17 marked neighbors.We use these two results, ombined with the same idea as in Obser-vation 6.2 to obtain the following orollary.
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Corollary 6.14 Let G be a partial 2-tree with maximum degree ∆ ≥ 6,then olg(G2) ≤ 12∆ − 34.Corollary 6.15 Let G be a planar graph with maximum degree ∆ ≥ 17,then olg(G2) ≤ 34∆ − 287.Proof. Let v be an unmarked vertex just after Alie's move, and let
NM(v) (resp. NU(v)) be the set of marked (resp. unmarked) neighborsof v. If every unmarked vertex is adjaent to at most l ≤ ∆ markedverties at this moment, then using a similar ounting as in Observation6.2, v has at most |NM(v)|∆+ |NU(v)|l ≤ |NM(v)|(∆− l)+ l∆ ≤ 2l∆− l2marked verties at distane one or two. Hene, after any of Bob's moves,no unmarked vertex has more than 2l∆−l2+1 marked verties at distaneone or two. These two fats prove that in this ase, the game oloringnumber is bounded by 2l∆ − l2 + 2.6.5 ConlusionUsing Observation 6.1, Theorem 6.9, as well as Corollaries 6.14 and 6.15have immediate onsequenes on the ayli game hromati number ofouterplanar graphs, partial 2-trees, and planar graphs.However, we onjeture that in the ase of ayli games, less olorsare neessary:Conjeture 6.16 For some onstant C1, any planar graph G with max-imum degree ∆ satis�es χa,g(G) ≤ ∆

2
+ C1.Based on what is known on the hromati number of the square ofpartial 2-trees and planar graphs (see Chapters 2 and 3), we also onje-ture the following:Conjeture 6.17 For some onstant C2, any outerplanar graph G withmaximum degree ∆ satis�es olg(G2) ≤ ∆ + C2.Conjeture 6.18 For some onstant C3, any planar graph G with max-imum degree ∆ satis�es olg(G2) ≤ 3

2
∆ + C3.
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Chapter 7Boxiity
Contents7.1 Introdution . . . . . . . . . . . . . . . . . . . 1297.2 Proof of Theorem 7.1 . . . . . . . . . . . . . . 1307.3 Conlusion . . . . . . . . . . . . . . . . . . . . . 132In this �nal hapter, we de�ne a spei� oloring at distane two anduse it to bound the boxiity of graphs with maximum degree ∆.The boxiity of a graph G = (V, E) is the smallest k for whihthere exist k interval graphs Gi = (V, Ei), 1 ≤ i ≤ k, suh that E =
E1 ∩ . . . ∩ Ek. Graphs with boxiity at most d are exatly the interse-tion graphs of (axis-parallel) boxes in R

d. We prove that graphs withmaximum degree ∆ have boxiity at most ∆2 + 2, whih improves theprevious bound of 2∆2 obtained by Chandran et al. (J. Combin. TheorySer. B 98 (2008) 443�445).7.1 IntrodutionFor a family F = {S1, . . . , Sn} of subsets of a set Ω, the intersetiongraph of F is de�ned as the graph with vertex set F , in whih two setsare adjaent if and only if their intersetion is non-empty. A d-box isthe Cartesian produt [x1, y1] × . . . × [xd, yd] of d losed intervals of thereal line. For any graph G, the boxiity of G, denoted by box(G), is the box(G)smallest d suh that G is the intersetion graph of a family of d-boxes.For a family of graphs {Gi = (V, Ei), 1 ≤ i ≤ k} de�ned on the samevertex set, we set G1 ∩ . . . ∩ Gk to be the graph with vertex set V , andedge set E1∩. . .∩Ek), and we naturally say that the graph G1∩. . .∩Gk is129
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the intersetion of the graphs G1, . . . , Gk. The boxiity of a graph G anbe equivalently de�ned as the smallest k suh that G is the intersetion of
k interval graphs. Graphs with boxiity one are exatly interval graphs,whih an be reognized in linear time. On the other hand, Kratohvíl[Kra94℄ proved that determining whether box(G) ≤ 2 is NP-omplete.The onept of boxiity was introdued in 1969 by Roberts [Rob69℄.It is used as a measure of the omplexity of eologial [Rob76℄ and so-ial [Fre83℄ networks, and has appliations in �eet maintenane [OR81℄.Boxiity has been investigated for various lasses of graphs [CR83, Sh84,Tho86℄, and has been related with other parameters, suh as treewidth[CS07℄. Reently, Chandran et al. [CFS08℄ proved that every graph withmaximum degree at most ∆ has boxiity at most 2∆2. To prove thisbound, Chandran et al. use the fat that if a graph G is the intersetionof k graphs G1, . . . , Gk, we have box(G) ≤∑1≤i≤k box(Gi).In the remaining of the hapter, we use the same idea to prove thefollowing theorem:Theorem 7.1 [Esp08℄ Every graph with maximum degree ∆ has boxi-ity at most 2 ⌊∆2/2⌋ + 2.7.2 Proof of Theorem 7.1Let G = (V, E) be a graph with maximum degree ∆, and let c be a(not neessarily proper) oloring of the verties of G with olors from
{1, . . . , 2k} suh that:(i) there is no path uvw with c(u) = c(w);(ii) for any 1 ≤ j ≤ k, there is no edge between a vertex olored with

2j − 1 and a vertex olored with 2j.Observe that ondition (i) implies that the graph indued by eaholor lass is a graph with maximum degree at most one (the disjointunion of a stable set and a mathing). The �rst step of the proof is to�nd the smallest k suh that a 2k-oloring as de�ned above exists. De�nethe funtion f suh that for every j ≥ 1, f(2j) = 2j−1 and f(2j−1) = 2j.We olor the verties of G one by one with the following proedure: whileoloring a vertex u ∈ V , we hoose for u a olor from {1, . . . , 2k}\(N1 ∪
N2), where N1 = {f(c(v)) | v is a olored neighbor of u} and N2 =
{c(v) | u and v have a ommon (not neessarily olored) neighbor}.If we follow this proedure, the partial oloring obtained at the endof eah step has the desired properties : sine c(u) 6∈ N1, ondition (ii)is still veri�ed, and sine c(u) 6∈ N2, ondition (i) is also still veri�ed.At eah step, N1 has size at most ∆ and N2 has size at most ∆(∆ − 1).Hene if k =

⌈

∆2+1
2

⌉

=
⌊

∆2

2

⌋

+ 1, a 2k-oloring of G as de�ned aboveexists.
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From now on, we assume that k = ⌊∆2/2⌋ + 1. Hene, a 2k-oloring

c of G with the properties de�ned above exists. For any 1 ≤ i ≤ k, let Gibe the graph obtained from G by adding an edge between any two non-adjaent verties u, v suh that c(u), c(v) 6∈ {2i−1, 2i}. Using onditions(i) and (ii), Gi an be deomposed into a lique Ki (indued by theverties olored neither with 2i− 1, nor with 2i), and two sets S2i−1 and
S2i orresponding to the verties olored with 2i − 1 and 2i respetively(see Figure 7.2(a)). By ondition (ii), there is no edge between S2i−1and S2i, and by ondition (i), every vertex of Ki is adjaent to at mostone vertex of S2i−1 and one vertex of S2i. Moreover, S2i−1 and S2i bothindue a graph with maximum degree one by ondition (i).Now observe that G = ∩1≤i≤kGi. If two verties are adjaent in Gthey are also adjaent in any Gi, sine G ⊆ Gi. On the other hand, iftwo verties u and v are not adjaent in G, then they are not adjaent in
G⌈c(u)/2⌉, and so they are not adjaent in the intersetion of the Gi's.As a onsequene, box(G) ≤ ∑

1≤i≤k box(Gi). We now show thatevery graph Gi has boxity at most two, whih implies that box(G) ≤
2(⌊∆2/2⌋ + 1) and onludes the proof.

u2 u3 u4u1 us
. . .S2i−1

S2i

. . .

. . . . . .
v1 v2 v3 v4 vtFigure 7.1: The ordering of the verties of S2i−1 and S2i.For any 1 ≤ i ≤ k, we represent Gi as the intersetion graph of2-dimensional boxes. We order the verties u1, . . . , us of S2i−1 and theverties v1, . . . , vt of S2i as depited in Figure 7.1 (reall that S2i−1 and

S2i both indue a graph with maximum degree at most one). Let r be themaximum of s and t. For every j suh that u2j−1 and u2j are adjaent in
S2i−1, u2j−1 is represented by the box {−r + 2j − 1}× [−2j + 2,−2j + 1]and u2j is represented by the box [−r +2j−1,−r +2j]×{−2j +1}. If avertex uj is isolated in S2i−1, it is represented by the point (−r+j,−j+1).Similarly, for every j suh that v2j−1 and v2j are adjaent in S2i, v2j−1is represented by the box [2j−2, 2j−1]×{r−2j+1} and v2j is representedby the box {2j − 1} × [r − 2j, r − 2j + 1]. If a vertex vj is isolated in
S2i, it is represented by the point (j − 1, r − j) (see Figure 7.2(b) for anexample).Observe that :(1) the boxes of two adjaent verties u2j−1 and u2j interset in (−r +

2j − 1,−2j + 1);(2) the boxes of two adjaent verties v2j−1 and v2j interset in (2j −
1, r − 2j + 1);
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(b)Figure 7.2: (a) A graph Gi and (b) a representation of Gi as the intersetion graphof 2-dimensional boxes.(3) the boxes of all the other pairs of verties olored with 2i − 1 or 2iare not interseting.(4) the top-right orner of the box of uj is the point (−r + j,−j + 1)and the bottom-left orner of the box of vj is the point (j−1, r− j)We now have to represent the verties from Ki. We represent theverties having no neighbor outside Ki by the point (0, 0). If a vertex ufrom Ki has only one neighbor outside Ki, say uj ∈ S2i−1, we represent
u by the box [−r + j, 0] × [−j + 1, 0]. If a vertex v from Ki has onlyone neighbor outside Ki, say vj ∈ S2i, we represent v by the box [0, j −
1] × [0, r − j]. If a vertex w of Ki has one neighbor uj ∈ S2i−1 and oneneighbor vℓ ∈ S2i, we represent w by the box [−r+j, ℓ−1]× [−j+1, r−ℓ](see Figure 7.2(b) for an example).The boxes representing the verties from Ki are pairwise interseting,sine they all ontain the point (0, 0). Moreover, using Observation (4)above, the box of every vertex v from Ki only intersets the boxes of theneighbors of v. Hene, Gi is the intersetion graph orresponding to thisrepresentation, and so Gi has boxiity two, whih onludes the proof.7.3 ConlusionThe best known lower bound for the boxiity of graphs with maximumdegree ∆ was given by Roberts [Rob69℄. Consider the graph H2n obtainedby removing a perfet mathing from a lique of 2n verties. If thisgraph has boxiity k ≤ n−1, let G1, . . . , Gk be interval graphs suh that
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H2n = G1 ∩ . . . ∩ Gk. Sine k ≤ n − 1 and H2n have n non-edges, twonon-edges of H2n have to lie in the same interval graph, say Gi. Thisis impossible sine otherwise Gi ontains an indued yle of length fourand is not an interval graph. Hene, box(H2n) ≥ n ≥

⌈

1
2
∆(H2n)

⌉.Cozzens and Roberts [CR83℄ gave another onstrution of a graphwith maximum degree ∆ and boxiity at least ⌈∆/2⌉ based on a om-plete bipartite graph, but the proof is slightly more di�ult.Chandran et al. [CFS08℄ onjetured that for any graph G, box(G) ≤
O(∆). It is interesting to remark that this onjeture is true when thegraphs G1, . . . , Gk with G = ∩1≤i≤kGi are only required to be hordal.MKee and Sheinerman [MS93℄ de�ned the hordality of a graph G,denoted by hord(G), as the smallest k suh that G is the intersetion hord(G)of k hordal graphs. Sine a graph is an interval graph if and only if itis hordal and its omplement is a omparability graph, we learly havehord(G) ≤ box(G) for any graph G. MKee and Sheinerman provedthat the hordality of a graph is bounded by its hromati number. As aorollary, it is easy to show that for any graph G with maximum degree
∆, hord(G) ≤ ∆.We onlude with general remarks. We denote by a(G) the arboriity a(G)of G, that is the minimum number of indued forests into whih the edgesof G an be partitioned. For outerplanar graphs, planar graphs, graphswith bounded treewidth, and graphs with bounded degree, the boxiityseems to be bounded by the arboriity. Unfortunately it seems to befalse in general: there exists trees with boxiity at least two, and graphswith arboriity two and boxiity at least three. This leads to two naturalquestions:1. Is there a onstant κ ≥ 1, suh that any graph G satis�es box(G) ≤

a(G) + κ?2. Is there a onstant λ > 1, suh that any graph G satis�es box(G) ≤
λa(G)?A positive answer to the seond question (and thus to the �rst), wouldimply that for any graph G with maximum degree ∆, box(G) ≤ λ

⌈

∆+1
2

⌉,proving the onjeture of Chandran et al. [CFS08℄.
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ConlusionIn Chapter 2, we proved that the verties of any planar graph anbe olored with (3

2
+ o(1))β olors, in suh way that any two vertiesthat are adjaent or have a ommon neighbor of degree at most β, havedistint olors. It might be interesting to investigate a similar problemon surfaes of bounded genus:Question 1 Is there a funtion f suh that the verties of any graphembeddable on a surfae of genus g an be olored with f(g)β olors,in suh way that any two verties that are adjaent or have a ommonneighbor of degree at most β have distint olors?A onsequene of the main result of Chapter 2 is that Wegner's on-jeture [Weg77℄ that the square of any planar graph of maximum degree

∆ ≥ 8 an be properly olored with ⌊3
2
∆(G)

⌋

+1 olors is asymptotiallytrue. In Chapter 3, we investigated a generalization of this problem: re-all that a p-frugal oloring of a graph G is a proper oloring of the vertiesof G suh that every olor appears at most p times in the neighborhoodof every vertex. We generalized Wegner's onjeture in the following way:Conjeture 2 [AEH07℄ For any integer p ≥ 1 and planar graph G withmaximum degree ∆ ≥ max { 2 p, 8 } we have
χp(G) ≤

{
⌊

∆−1
p

⌋

+ 2, if p is even;
⌊

3∆−2
3 p−1

⌋

+ 2, if p is odd.Using onnetions between frugal oloring and L(p, q)-labelling, wethen proved that for �xed p, any planar graph G with maximum degree
∆ satis�es χp(G) ≤ 3∆

2p
+ o(∆).In [KW01℄, Kostohka and Woodall onjetured that for any graph G,the hromati number and the list hromati number of G2 are the same.We generalize this onjeture in the following way:Conjeture 3 [AEH07℄ For any multigraph G and any integer p ≥ 1,we have χp(G) = chp(G).The List Coloring Conjeture states that for any multigraph G the hro-mati index and the list hromati index of G are the same. Again, thisan be seen as a speial ase of the following onjeture :Conjeture 4 [AEH07℄ For any multigraph G and any integer p ≥ 1,we have χ′

p(G) = ch ′
p(G).
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When p = 2, a p-frugal oloring of the verties of a graph G orre-sponds to a oloring in whih the (bipartite graph) indued by every twoolor lasses has maximum degree two. In Chapter 4, we remarked thatin this ase, it does not ost too muh to also require that the oloringbe ayli. De�ne a linear oloring as an ayli 2-frugal oloring, thenthe union of any two olor lasses is a forest of paths.In Chapter 4, we gave bounds on the linear hromati number of var-ious lasses of graphs, suh as graphs with small maximum degree, graphwith small maximum average degree, outerplanar graphs, and planargraphs. We give here two nie onjetures about graphs with maximumdegree at most three and planar graphs:Conjeture 5 [EMR08℄ If G has maximum degree three, and is di�er-ent from K3,3, then Λl(G) ≤ 4.Conjeture 6 [RW06℄ For some onstant C, every planar graph G withmaximum degree ∆ satis�es Λl(G) ≤ ∆

2
+ C.In Chapter 5, we studied the (p, 1)-total number of graphs with boundedmaximum degree. Our aim was to prove a weaker version of the followingonjeture of Havet and Yu [HY08℄.Conjeture 7 [HY08℄ Let G be a graph with maximum degree ∆, then

λT
p (G) ≤ ∆ + 2p.Observe that any (2, 1)-total labelling of K4 requires 7 olors. How-ever, Havet and Yu onjetured the following:Conjeture 8 [HY08℄ Let G be a graph with maximum degree at mostthree, with G 6= K4, then λT

2 (G) ≤ 6.In Chapter 6, we onsidered a two-player game in whih Alie and Bobare properly oloring the square of a graph. If the oloring is ompleted,Alie wins, and otherwise Bob wins. We investigated winning strategiesfor Alie in forests, outerplanar graphs, partial 2-trees and planar graphs,and our results had diret onsequenes on the ayli game hromatinumber of these graphs. However most of our bounds are onjetured tobe far from tight:Conjeture 9 There exist a onstant C1, suh that if G is a planar graphwith maximum degree ∆, then χa,g(G) ≤ ∆
2

+ C1.Conjeture 10 [EZ08℄ For some onstant C2, any outerplanar graph
G with maximum degree ∆ satis�es olg(G2) ≤ ∆ + C2.Conjeture 11 [EZ08℄ For some onstant C3, any planar graph G withmaximum degree ∆ satis�es olg(G2) ≤ 3

2
∆ + C3.
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In Chapter 7, we investigated the boxiity of graphs with boundedmaximum degree. We proved that any graph with maximum degree ∆ould be seen as the intersetion of ∆2 + 2 interval graphs. The oneptof boxiity seems to be related with the arboriity of graphs, so we askedthe following:Question 121. Is there a onstant κ ≥ 1, suh that any graph G satis�es box(G) ≤

a(G) + κ?2. Is there a onstant λ > 1, suh that any graph G satis�es box(G) ≤
λa(G)? *****We onlude with a ouple of questions and onjetures about distane-two olorings in general.

L(p, q)-labellings of oriented graphs have been investigated for graphswith maximum degree, trees, and Halin graphs [CL03, CW06, GRS06℄,but interesting questions remain. De�ne the 2-dipath hromati num-ber ~χ2( ~G) of an oriented graph ~G as the minimum number of olorsin a oloring of the verties of ~G, suh that any two verties joined by adireted path of length (number of ars) at most two have distint olors.We saw in Chapter 2 that a oloring of the square of a non-orientedplanar graph of maximum degree ∆ might require at least 3
2
∆ olors.Surprisingly, a oloring of the square of an oriented planar graph onlyrequires a onstant number of olors. To see this, observe that for anyoriented graph ~G, ~χ2( ~G) is at most the oriented hromati number of

~G (see Appendix A for more details about oriented oloring). Sine theoriented hromati number of planar graphs is at most 80, we obtain thatfor any oriented planar graph ~G, ~χ2( ~G) ≤ 80. On the other hand, thereexists an oriented planar graph with 15 verties, in whih any two vertiesare joined by a a direted path of length one or two. Hene, there existsan oriented planar graph ~G, with ~χ2( ~G) = 15. Note that Klostermeyerand MaGillivray [KM04℄ proved that the order of an oriented planargraph in whih all the verties are joined by a a direted path of lengthone or two is at most 36.The problem of improving the bound of 80 for oriented oloring ofplanar graphs is supposed to be quite di�ult, but improving this boundfor the 2-dipath hromati number might be slightly easier. We proposethe following optimisti onjeture:Conjeture 13 For any oriented planar graph ~G, we have ~χ2( ~G) ≤ 15.
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In this thesis, we mainly studied distane-two olorings of the vertiesof graphs. The problem of oloring the edges of graphs with a ondition atdistane two is also very interesting. Erdös and Ne²et°il (see [FGS+89℄)de�ned a strong edge-oloring of a graph G as a (proper) oloring ofthe edges of G in whih every olor lass is an indued mathing. Thisoloring an be seen as a proper vertex-oloring of the square of the linegraph of G. If G has maximum degree ∆ then L(G)2 has maximum degreeat most 2∆2 − 2∆, so it is easy to prove that any graph with maximumdegree ∆ has a strong edge-oloring using at most 2∆2 − 2∆ + 1 olors.Erdös and Ne²et°il onjetured the following:Conjeture 14 Every graph with maximum degree ∆ has a strong edge-oloring with ⌊5

4
∆2
⌋ olors.They also provided examples showing that this bound would be bestpossible. The losest result so far was given by Molloy and Reed [MR97℄,who proved that for some onstant ε > 0, every graph with maximumdegree ∆ has a strong edge-oloring using at most ⌊(2 − ε)∆2⌋ olors.An inidene in a graph G is a pair (v, e) ∈ V (G)× E(G) suh that vand e are inident (it orresponds intuitively to a half-edge of G). Twoinidenes (u, e) and (v, f) are adjaent if one of the following holds: (i)

u = v, (ii) e = uv or (iii) f = uv.An inidene oloring of a graph G, de�ned by Brualdi and Massey[BM93℄, is a oloring of the inidenes of G suh that any two adjaentinidenes have distint olors. Let G⋆ denote the graph obtained from
G by subdividing every edge exatly one (see Figure 5.1 in Chapter 5 foran example). Then it is lear that an inidene oloring of G is exatlya strong edge-oloring of G⋆.Guiduli [Gui97℄ proved that every graph with maximum degree ∆ hasan inidene oloring with ∆ + O(log∆) olors, whih is best possible.Hosseini et al. [HSZ04℄ proved that any planar graph with maximumdegree ∆ has an inidene oloring with ∆+7 olors. We ask the followingquestion:Question 15 Is it true that any planar graph with maximum degree ∆has an inidene oloring with ∆ + 2 olors?
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Appendix A[EO07a℄
Oriented olorings of 2-outerplanar graphsAbstratA graph G is 2-outerplanar if it has a planar embedding suh that thesubgraph obtained by removing the verties of the outer fae is outerpla-nar. The oriented hromati number of an oriented graph H is de�nedas the minimum order of an oriented graph H ′ suh that H has a homo-morphism to H ′. In this paper, we prove that 2-outerplanar graphs are4-degenerate. We also show that oriented 2-outerplanar graphs have ahomomorphism to the Paley tournament QR67, whih implies that their(strong) oriented hromati number is at most 67.

This artile appeared in Information Proessing Letters.
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Oriented olorings of 2-outerplanar graphsLouis Esperet∗, and Pasal Ohem†LaBRI UMR CNRS 5800, Université Bordeaux I,33405 Talene CedexFRANCE.Marh 21, 2008AbstratA graph G is 2-outerplanar if it has a planar embedding suh that the subgraph ob-tained by removing the verties of the outer fae is outerplanar. The oriented hromatinumber of an oriented graph H is de�ned as the minimum order of an oriented graph

H ′ suh that H has a homomorphism to H ′. In this paper, we prove that 2-outerplanargraphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a ho-momorphism to the Paley tournament QR67, whih implies that their (strong) orientedhromati number is at most 67.Keywords: ombinatorial problems, oriented oloring, 2-outerplanar graphs.1 IntrodutionOriented graphs are direted graphs without loops nor opposite ars. In other words anoriented graph is an orientation of an undireted simple graph, obtained by assigning to everyedge one of the two possible orientations. If G is a graph, V (G) denotes its vertex set, E(G)denotes its set of edges. A homomorphism from an oriented graph G to an oriented graph
H is a mapping ϕ from V (G) to V (H) whih preserves the ars, that is (x, y) ∈ E(G) =⇒
(ϕ(x), ϕ(y)) ∈ E(H). We say that H is a target graph of G if there exists a homomorphismfrom G to H. The oriented hromati number χo(G) of an oriented graph G is de�ned asthe minimum order of a target graph of G. The oriented hromati number χo(G) of anundireted graph G is then de�ned as the maximum oriented hromati number taken overall orientations of G. Ne²et°il and Raspaud introdued in [5℄ the strong oriented hromatinumber of an oriented graph G (denoted by χs(G)), whih de�nition di�ers from that of χo(G)by requiring that the target graph is an oriented Cayley graph. They show in partiular thatthe strong oriented hromati number of a planar graph G orresponds to the antisymmetri�ow of the dual of G. Upper bounds on the (strong) oriented hromati number have beenfound for various sublasses of planar graphs. In partiular:1. if G is a planar graph, then χo(G) ≤ 80 [8℄.2. if G is an outerplanar graph, then χs(G) ≤ 7 [9℄.

∗esperet�labri.fr
†ohem�labri.fr 1



141A graph G is 2-outerplanar if it has a planar embedding suh that the subgraph obtainedby removing the verties of the outer fae is outerplanar. The seond author proved that2-outerplanar graphs have an ayli partition into three independent sets and an outerplanargraph [7℄. By Theorem 1 in [1℄, the oriented hromati number of a 2-outerplanar graph isthus at most 24−1 × (1 + 1 + 1 + 7) = 80. The same result follows from the bound of Raspaudand Sopena [8℄ holding for planar graphs.In Setion 2, we prove among other results that 2-outerplanar graphs G are 4-degenerate,that is, every subgraph H of G has minimum degree at most 4. In Setion 3, we use theseresults to show that 2-outerplanar graphs have a homomorphism to QR67, whih improves theprevious bounds of 80.In the following, we all a k-vertex (resp. ≥k-vertex, ≤k-vertex) a vertex of degree k (resp.at least k, at most k). Figures are drawn with the following onvention : the star symbolindiates the outer fae, white verties orrespond to verties whih neighbors are all depitedin the �gure, whereas blak verties may have other neighbors in the graph.2 Strutural properties of 2-outerplanar graphsDe�nition 1 A 2-outerplanar graph embedded in the plane is said to be a blok if its outerfae is an indued yle.Theorem 2 If G is a 2-outerplanar graph, then it ontains a ≤4-vertex.Proof. Let G be a 2-outerplanar graph embedded in the plane. We onsider the subgraph
H indued by the outer fae of G. H is an outerplanar graph, so it ontains an internal fae
F inident to at most one other internal fae of H (see Proof of Lemma 2 in [4℄). Let B bethe subgraph of G indued by the verties of F and the verties inside F . By onstrution,the graph B obtained is a blok. Moreover, B ontains only two verties x and x′ suh thatthe degree of x and x′ in G may be higher than their degree in B. By onstrution, x and x′are two adjaent verties belonging to the outer fae of B (see Figure 1).

HG F
B

x x

x′x′Figure 1: The deomposition of a 2-outerplanar graph into bloks.Let Bc be the graph indued by the outer fae of B, and Bo be the graph obtained from
B by removing the verties of Bc. By de�nition of 2-outerplanar graphs, Bo is outerplanar.So it ontains two non-adjaent 2-verties u and v (see Figure 2).As mentioned above, verties of Bo have the same degree in B and in G, so dB(u) = dG(u)and dB(v) = dG(v). Let us �nd a ≤4-vertex in B. If Bo ontains a ≤4-vertex, it is done.Otherwise, it means that Bo ontains only ≥5-verties; in partiular u (resp. v) is adjaent to2
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u v

Bo

Bc

B

Figure 2: The deomposition of B into Bc and Bo.three verties u1, u2, u3 (resp. v1, v2, v3), where u1u2u3 (resp. v1v2v3) is an indued path of
Bc (see Figure 3).

u v

u1

u2

u3

v1

v2

v3Figure 3: u and v have three neighbors in Bc.We now use the fat that B ontains only two verties x and x′ having a degree in Gpossibly higher than their degree in B. As xx′ is an edge of Bc, this means that u2 or v2 havethe same degree in B and in G, i.e. dG(u2) = dB(u2) = 3 or dG(v2) = dB(v2) = 3. Hene Balways ontains a vertex with degree at most 4 in G. 2We now prove that outerplanar graphs have properties stronger than 2-degeneration, inorder to �nd more preise on�gurations in 2-outerplanar graphs.Lemma 3 Let G be an outerplanar graph. G ontains either a 1-vertex, two adjaent 2-verties, a 2-vertex adjaent to a 3-vertex as depited in Figure 4.a, or two 2-verties adjaentto a 4-vertex as depited in Figure 4.b.
a) b)

⋆⋆

Figure 4: Unavoidable on�gurations in an outerplanar graph without two adjaent 2-verties.Proof. We prove this lemma by indution. Let G be an outerplanar graph, and let v be a2-vertex of G (v exists, see [4℄ for details). The graph H = G \ v is outerplanar, and smallerthan G. By indution, H ontains either two adjaent 2-verties, or the on�gurations of3



143Figure 4. If v is not adjaent to suh a on�guration of H, then it is a on�guration of G, andthe indution is �nished. Otherwise v is adjaent to a on�guration, and we have to make thedistintion between various ases. Notie that the neighbors of v must be adjaent in H inorder to obtain an outerplanar graph.
v

v

v

v

v

⋆⋆

⋆ ⋆⋆

Figure 5: Indution step in the proof of Lemma 3.
• If H ontains two adjaent 2-verties, we obtain the on�guration of Figure 4.a.
• If H ontains a on�guration of Figure 4, we obtain either the on�guration of Figure4.a, or the on�guration of Figure 4.b (see Figure 5).In any ase, G ontains one of the three on�gurations desribed earlier. 2We now use Lemma 3 to prove a key strutural theorem on 2-outerplanar graphs admittinga blok embedding in the plane. The following result an be extended to the whole lass of2-outerplanar graphs by using the same kind of proof as in Theorem 2.Theorem 4 Let G be a 2-outerplanar graph admitting a blok embedding in the plane. Gontains either a ≤3-vertex, two adjaent 4-verties, or the on�guration depited in Figure 6.

⋆

Figure 6: Unavoidable on�guration in a 2-outerplanar blok ontaining neither a ≤3-vertexnor two adjaent 4-verties.Proof. We onsider a blok embedding of G in the plane. Then the subgraph indued bythe outer fae is a yle. Let Gc be this yle and let Go be the graph obtained from G byremoving the verties of Gc. By de�nition of G and Gc, the graph Go is outerplanar. We then4



144 APPENDIX A. [EO07A℄know by Lemma 3 that Go ontains either two adjaent 2-verties, a 2-vertex adjaent to a3-vertex as depited in Figure 4.a, or two 2-verties having a ommon neighbor of degree 4 asdepited in Figure 4.b.
• If Go ontains a 1-vertex or two adjaent 2-verties, we easily �nd a ≤3-vertex or twoadjaent 4-verties in G.
• If Go ontains a 2-vertex v adjaent to a 3-vertex u, we an prove that either dG(v) = 4or there is a vertex of degree 3 in G (whih is a neighbor of v belonging to the outerfae). This is done by applying the same method as in the previous proof. Thus G mustontain the on�guration depited in Figure 7. Notie that u and w are adjaent, sineotherwise one of them would be a ≤3-vertex. For reasons of planarity, if u is adjaent toanother vertex of Gc, w annot be adjaent to another vertex of Go. Conversely, if w isadjaent to another vertex of Go, u annot be adjaent to a vertex of Gc. This provesthat either u or w has degree 4 in G, say u. If there is no 3-vertex in G, we found twoadjaent 4-verties: u and v.

w

u
v

Gc GoFigure 7: Go ontains a 2-vertex v adjaent to a 3-vertex u.
• If Go ontains two 2-verties v and v′ both adjaent to a 4-vertex u as depited in Figure4.b, we �rst prove that either v and v′ have degree 4 in G or G ontains a 3-vertex (inwhih ase the proof is �nished). Let v1 and v2 (resp. v′1 and v′2) be the neighbors of

v (resp. v′) belonging to the outer fae. As depited in Figure 8, we have to make adistintion between two ases : {v1, v2} and {v′1, v′2} are disjoint (ase 1), or they havea vertex in ommon, say v2 = v′1 (ase 2).
v1

v′2

v

v1

v′2

v

v2

v′1 v2

a) b)

u u
Gc Go Gc Go

v′ v′

Figure 8: Go ontains two 2-verties v and v′ adjaent to a ommon 4-vertex u.5



145ase 1 (see Figure 8.a) If v2 and v′1 have degree at least 4 in G, they both have to beadjaent to u, in whih ase dG(v2) = dG(v′1) = 4, and we found two adjaent4-verties in G.ase 2 (see Figure 8.b) If u is adjaent to v2 = v′1, we obtain exatly the on�gurationdepited in Figure 6. Otherwise, we simply have two adjaent 4-verties (v and v2).
23 Strong oriented oloring of 2-outerplanar graphsTheorem 5 If G is a 2-outerplanar graph, then χs(G) ≤ 67.Let q be prime power and let Fq denote the unique �nite �eld with q elements. For aprime power q ≡ 3 (mod 4), the verties of the Paley tournament QRq are the elements of

Fq and (i, j) is an ar in QRq if and only if j − i is a non-zero quadrati residue of Fq. Sine
q ≡ 3 (mod 4), we have that for i, j ∈ Fq, i 6= j, j − i is a quadrati residue if and only if
i − j is not a quadrati residue. This means that QRq is an oriented Cayley graph whoseset of generators are the non-zero quadrati residue of Fq. It an be proven [3℄ that Payleytournaments are ar-transitive, that is, for every ars uv and tw, there is an automorphism ϕof QRq suh that tw = ϕ(uv)). As a onsequene, eah QRq is also a irular tournament,that is, a tournament admitting an automorphism whih is a irular permutation.An orientation vetor of size k is a sequene α = {α1, α2, . . . , αk} in {0, 1}k . Let G be anoriented graph and X = (x1, x2, . . . , xk) be a sequene of distint verties of G. A vertex y of
G is said to be an α-suessor of X if for every i, 1 ≤ i ≤ k, we have αi = 1 ⇒ (xi, y) ∈ E(G)and αi = 0 ⇒ (y, xi) ∈ E(G). The graph G satis�es property Sk,n if for every sequene
X = (s1, s2, . . . , sk) of k distint verties of G, and for every orientation vetor α of size k,there exist at least n verties in V (G) whih are α-suessors of X.Notie that property Sk,n implies Sk′,n′ for every k′ ≤ k and n′ ≤ n.A omputer hek (similar to the one desribed in [6℄) proves the following lemma:Lemma 6 The tournament QR67 satis�es properties S3,6 and S4,1.We use the method of reduible on�gurations to show that every 2-outerplanar graph is
QR67-olorable. Let w(G) = |V (G)| + |E(G)|. We onsider a 2-outerplanar graph G havingno homomorphism to QR67 suh that w(G) is minimum.Lemma 7 G is 2-onneted and does not ontain a ut onsisting in two adjaent verties.Proof. If G is not 2-onneted, then we an obtain a QR67-oloring of G from the oloring ofits 2-onneted omponents, sine QR67 is a irular tournament. Moreover G annot ontaina ut set onsisting of two adjaent verties, sine QR67 is ar-transitive. 2Notie that Lemma 7 implies that every 2-outerplanar embedding of G is a blok.Lemma 8 6



146 APPENDIX A. [EO07A℄1. The graph G does not ontain any ≤3-vertex.2. The graph G does not ontain two adjaent 4-verties.3. The graph G does not ontain the on�guration depited in Figure 6.
u v

u3

u3

u2

u1
xx u2u1

(i) (iii)(ii)

u2

u1 v1

v2

v3Figure 9: Forbidden on�gurations for Lemma 8.
⋆ ⋆

u2
x

y

u2

y

w2

v2 v2

w1

u1

v1

u1

v1Figure 10: Constrution of G′ in the proof of Lemma 8.3.Proof.1. Notie that G does not ontain ≤1-verties by Lemma 7. Suppose that G ontains a2-vertex x adjaent to verties u1 and u2 (see on�guration (i) in Figure 9). Let G′ bethe graph obtained from G \ {x} by adding the ar −−→u1u2 if u1 and u2 are not alreadyadjaent in G. Notie that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-oloring
f of G′ indues a oloring of G \ {x} suh that f(u1) 6= f(u2), whih an be extendedto G by property S2,1.Suppose that G ontains a 3-vertex x adjaent to verties u1, u2, and u3 (see on�gura-tion (ii) in Figure 9). Sine QR67 is self-reverse, we assume w.l.o.g. that d−(x) ≤ d+(x)by onsidering either G or GR. We have d−(x) 6= 0, sine otherwise we ould extend any
QR67-oloring of G \ {x} to G. Suppose now d−(x) = 1, whih is the only remainingase. Let us set N−(x) = {u1}, N+(x) = {u2, u3}. Let G′ be the graph obtained from
G\{x} by adding the ar −−→u1u2 (resp. −−→u1u3) if u1 and u2 (resp. u1 and u3) are not alreadyadjaent in G. Notie that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-oloring
f of G′ indues a oloring of G \ {x} suh that f(u1) 6= f(u2) and f(u1) 6= f(u3), whihan be extended to G by property S3,1.2. Suppose that G ontains on�guration (iii) in Figure 9. Let G′ be the graph obtainedfrom G by removing the ar onneting u and v. Notie that G′ is 2-outerplanar and
w(G′) < w(G). Let f be any QR67-oloring of G′. By property S3,6, we an hoose fsuh that f(u) 6∈ {f(v1), f(v2), f(v3)}. Now by property S4,1, we an hoose f suh that
f(v) 6∈ {f(u), f(u1), f(u2), f(u3)} and extend this oloring to G.7



1473. Suppose that G ontains the on�guration depited in Figure 6. Let G′ be the graphobtained from G \ {w1, w2, x} by adding the ars −→u1y and −→yu2, and the ar −−→u1v1 (resp.
−−→u2v2) if u1 and v1 (resp. u2 and v2) are not adjaent in G. This onstrution is depitedin Figure 10. Notie that G′ is 2-outerplanar and w(G′) < w(G). Any QR67-oloring f of
G′ indues a oloring of G \ {w1, w2, x} suh that f(u1), f(v1), f(y) (resp. f(u2), f(v2),
f(y); resp. f(u1), f(u2), f(y)) are pairwise distint. By Property S3,6, we an assign
x a olor f(x) 6∈ {f(v1), f(v2)}. By Property S4,1, we an assign w1 a olor f(w1) 6∈
{f(u1), f(v1), f(y), f(x)} and assign w2 a olor f(w2) 6∈ {f(u2), f(v2), f(y), f(x)}. Wethus obtain a QR67-oloring of G, whih is a ontradition.

2By Lemma 7, G is a blok. Using Theorem 4, G must ontain one of the on�gurationsthat are forbidden by Lemma 8. This ontradition ompletes the proof of Theorem 5.Referenes[1℄ P. Boiron, E. Sopena, and L. Vignal. Ayli improper olourings of graphs, J. GraphTheory 32 (1999), 97�107.[2℄ O.V. Borodin, A.V. Kostohka, J. Ne²et°il, A. Raspaud, and E. Sopena. On the maxi-mum average degree and the oriented hromati number of a graph, Disrete Math. 206(1999), 77�89.[3℄ E. Fried. On homogeneous tournaments, Combinatorial theory and its appliations II(1970), 467�476.[4℄ A. Hakmann and A. Kemnitz. List edge olorings of outerplanar graphs, Ars Combi-natoria 60 (2001), 181�185.[5℄ J. Ne²et°il and A. Raspaud. Antisymmetri �ows and strong olorings of oriented planargraphs, Ann. Inst. Fourier 49(3) (1999), 1037�1056.[6℄ P. Ohem. Oriented olorings of triangle-free planar graphs, Inform. Proess. Lett. 92(2)(2004), 71�76.[7℄ P. Ohem. Ph.D. thesis, Université Bordeaux 1, 2005.http://dept-info.labri.fr/~ohem/these.ps[8℄ A. Raspaud and E. Sopena. Good and semi-strong olorings of oriented planar graphs,Inform. Proess. Lett. 51(4) (1994), 171�174.[9℄ E. Sopena. Oriented graph oloring, Disrete Math 229(1�3) (2001), 359�369.
8
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Appendix B[EO07b℄
On irle graphs with girth at least �veAbstratCirle graphs with girth at least �ve are known to be 2-degenerate(Ageev, 1999). In this paper, we prove that irle graphs with girth atleast g ≥ 5 ontain a vertex of degree at most one or a hain of g − 4verties of degree two, whih implies Ageev's result in the ase g = 5. Wethen use this strutural property to give an upper bound on the irularhromati number of irle graphs with girth at least g ≥ 5 as well as apreise estimate of their maximum average degree.

149



150 APPENDIX B. [EO07B℄
On irle graphs with girth at least �veLouis Esperet ∗ and Pasal Ohem ∗

∗ LaBRI, Université Bordeaux 1, Talene, FraneMay 2007AbstratCirle graphs with girth at least �ve are known to be 2-degenerate (Ageev, 1999). Inthis paper, we prove that irle graphs with girth at least g ≥ 5 ontain a vertex of degreeat most one or a hain of g − 4 verties of degree two, whih implies Ageev's result in thease g = 5. We then use this strutural property to give an upper bound on the irularhromati number of irle graphs with girth at least g ≥ 5 as well as a preise estimateof their maximum average degree.1 IntrodutionLet C denote the unit irle, and let us take the lokwise orientation as the positive orien-tation of C. Let {x0, . . . , xk−1} ⊂ C, we say that (x0, . . . , xk−1) are in yli order if theminimum between the sum of the length of the ars −−−−→xixi+1, 0 ≤ i ≤ k− 1, and the sum of thelength of the ars −−−−→xi+1xi, 0 ≤ i ≤ k − 1, is equal to one, where i is taken modulo k. A pair
{x, y} of elements of C is alled a hord of C with endpoints x and y. Two hords {x1, y1}and {x2, y2} interset if (x1x2y1y2) are in yli order, otherwise they are said to be parallel.All graphs onsidered in this paper are simple: they do not have any loop nor paralleledges. The girth of a graph G is the size of a shortest yle in G. We all a k-vertex (resp.
≤k-vertex, ≥k-vertex) a vertex of degree k (resp. at most k, at least k).By de�nition, every irle graph G with set of verties V (G) = {v1, . . . , vn} admits a rep-resentation C = {{x1, y1}, . . . , {xn, yn}} suh that for all i, j, vi and vj are adjaent in G ifand only if the hords {xi, yi} and {xj , yj} interset in C. We only onsider representationsin whih endpoints and intersetion points of hords are all distint. Observe that in general,irle graphs do not have a unique representation. A representation C′ obtained from C onlyby removing hords is alled a sub-representation of C. Observe that if C is a representationof G, a sub-representation of C orresponds to an indued subgraph of G.Observation 1 Let G be a irle graph with representation C, and let v1, . . . , vk be an inde-pendent set in G. The hords of C orresponding to v1, . . . , vk are pairwise parallel.In order to prove that irle graphs with girth at least �ve are 2-degenerate, Ageev [1℄does not onsider their irle representation, but an equivalent representation on the real axis,1
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(b)(a)Figure 1: (a) The unique irle representation of C4. (b) The two non-equivalent representa-tions of C4 on the real axis.

(a) (c)(b)Figure 2: Three non-equivalent irle representations of the union of two paths of length two.usually alled interval-overlap. The major di�erene is that some graphs, for example yles,have a unique irle representation whereas they have several non-equivalent representationson the real axis (see Figure 1). Hene, even if onsidering a real axis representation an bevery onvenient to de�ne an order on the endpoint of the hords, the ase study is then muhharder. Unfortunately, even in the irle representation, some very simple graphs suh as theunion of two disjoint paths do not have a unique representation (see Figure 2). Observe that inFigure 2(a), the representation of the two paths is a sub-representation of the representationof a yle. In this ase we make a slight abuse of notation and say that the two paths are inyli order.In Setion 2, we prove the following extension of Ageev's result:Theorem 1 Every irle graph with girth g ≥ 5 ontains a ≤1-vertex or a hain of (g − 4)2-verties.In [1℄, Ageev uses his strutural result to prove that irle graphs with girth at least �vehave hromati number at most three. We an use Theorem 1 to obtain a re�nement of thisresult for irle graphs with larger girth. Instead of onsidering the hromati number ofthese graphs, we onsider their irular hromati number. For two integers 1 ≤ q ≤ p, a
(p, q)-oloring of a graph G is a oloring c of the verties of G with olors {0, . . . , p − 1} suhthat for any pair of adjaent verties x and y, we have q ≤ |c(x)− c(y)| ≤ p− q. The irularhromati number of G is

χc(G) = inf(p

q
| there exists a (p, q)-oloring of G

)

.It is known that χ(G) − 1 < χc(G) ≤ χ(G), and so χ(G) = ⌈χc(G)⌉. The hromati numberan thus be onsidered as an approximation of the irular hromati number.2
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µg 2 + 4

g−2 2 + 2
g−2 2 + 2

⌊ g−1
2 ⌋ 2 + 4

g−4 2 + 4
g−4Table 1: Values of µg for some lasses of graphs.Using a well-known observation on irular oloring (see e.g. Corollary 2.2 in [2℄), theexistene of a hain of (g − 4) 2-verties implies the following result:Corollary 1 Every irle graph G with girth g ≥ 5 has irular hromati number

χc(G) ≤ 2 +
1

⌊

g−3
2

⌋ .In Setion 3, we study an invariant giving a very preise idea of the loal struture ofgraphs. The maximum average degree of a graph G is de�ned asmad(G) = max {ad(H),H ⊆ G} , where ad(H) =
2|E(H)|
|V (H)| .For planar graphs, there is a simple relation between girth and maximum average degree: anyplanar graph G with girth g is suh that mad(G) < 2g/(g − 2). On the other hand, thereexists a family (Gn)n≥0 of planar graphs with girth g, suh that mad(Gn) → 2g/(g − 2) when

n → ∞. We would like to obtain the same kind of link between the girth and the maximumaverage degree of irle graphs. The following orollary is a straightforward onsequene ofTheorem 1:Corollary 2 Any irle graph G with girth g ≥ 5 is suh that mad(G) < 2 + 2/(g − 4).note that Corollary 2 has some impliations on the irular hoosability of irle graphs.Using Proposition 32(i) in Setion 5.4 of [3℄, we an prove :Corollary 3 Every irle graph G with girth g ≥ 5 has irular hoie number h(G) ≤
2 + 4

g−2 .To improve Corollary 2, we onsider
µg(F) = sup {mad(G) | G ∈ F and G has girth at least g} .Let Seg denote the lass of graphs de�ned as intersetion of segments in the plane, and 1-String denote the lass of graphs de�ned as intersetion of jordan urves in the plane, suhthat any two urves interset at most one. Table 1 gives an idea of the funtion µg for somelasses of graphs. Note that for Seg and 1-String, g has to be at least �ve, sine otherwise

µg is not bounded.We an remark that for all these lasses, µg is a rational number. The following theoremshows that this is not the ase for the lass of irle graphs. It is proved in Setion 3.Theorem 2 For every g ≥ 5, µg(Cirle) = 2
√

g−2
g−43



1532 Proof of Theorem 1Let G = (V,E) be a irle graph with girth g ≥ 5 and minimum degree two, and let C =
{{x1, x

′
1}, . . . , {xn, x′

n}} be a irle representation of G. We �rst deompose the hords of Cinto two sets, using the following rules:(1) for every set of 3 distints hords {x, x′}, {y, y′}, and {z, z′}, suh that {y, y′} is unoloredand (xyzz′y′x′) are in yli order, olour the hord {y, y′} in blue,(2) olour all the unolored hords in red.By onstrution, the red hords are exatly the hords {x, y} suh that at least one of thears −→xy and −→yx does not ontain both endpoints of a hord distint from {x, y}. Let CR (resp.
CB) be the representation indued by the red (resp. blue) hords and GR (resp. GB) be theorresponding graph. We �rst prove the following lemma.Lemma 1 CR is a sub-representation of the representation of a yle.Proof. Assume that GR ontains a ≥3-vertex v, adjaent to x, y, and z in GR. Sine
g ≥ 5, the graph G does not ontain any triangle, and so {x, y, z} is an independent set.Using Observation 1, this implies that the three orresponding red hords are parallel in anyrepresentation, whih ontradits Rule (1).Hene, GR has maximum degree two. Suppose now that GR ontains a yle. Then ifthere exists a vertex whih is not in the yle, the orresponding hord, as well the hordsorresponding to two non-adjaent verties of the yle, are parallel (reall that the yle haslength at least �ve, sine g ≥ 5). This ontradits Rule (1). So GR is either a yle or a unionof disjoint paths.Suppose now that CR is not a sub-representation of a yle. Then GR is neessarily aunion of disjoint paths, and two of them are not in yli order in CR. This also ontraditsRule (1), so CR is a sub-representation of the representation of a yle. 2Observe that eah blue hord {x, y} indues two omplementary ars −→xy and −→yx on theirle. We denote by A1 the set of suh ars. Similarly, two interseting blue hords {u, v} and
{x, y} indue four onseutive ars whose lengths add up to one, say without loss of generality
−→ux, −→xv, −→vy, and −→yu. We denote by A2 the set of all suh ars.For any ar −→xy of the irle, we de�ne ρ(−→xy) as the number of red hords having bothendpoints in −→xy. We onsider the integer t = min{ρ(−→xy),−→xy ∈ A1 ∪ A2, ρ(−→xy) > 0}.If there is no blue hord in our deomposition, then G is either a yle or a union of paths,and thus ontains a ≤1-vertex or g adjaent 2-verties. So we an assume from now on that
GB is non empty. Observe that for any blue hord {x, y}, we have ρ(−→xy) > 0 and ρ(−→yx) > 0sine otherwise {x, y} would be red. Hene, the integer t exists. We now onsider two ases,depending on whether the minimum is reahed by two interseting hords or by a single hord.Case 1: The minimum t > 0 is reahed by two interseting blue hords, say {x, x′} and
{y, y′}, and for every blue hord {u, v}, we have ρ(−→uv) 6= t. Let us assume without loss ofgenerality that t = ρ(−→xy). Aording to the lokwise order, we denote by {x1, x

′
1}, . . . {xt, x

′
t}the red hords having both endpoints in −→xy (see Figure 3(a)). Observe that every blue hord4
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x′t−1

x y

v
x′t

x2
x′1

u
x1 (a) x′t−1x2

x′1

x1

u

x y

v
x′t(b)Figure 3: A hain of t ≥ g − 4 verties of degree two in G.has at most one endpoint in −→xy, sine otherwise we would have a blue hord {u, v} with

1 ≤ ρ(−→uv) ≤ t, whih would ontradit the hypothesis.We �rst prove that the graph indued by the hords {xi, x
′
i} (1 ≤ i ≤ t) is a path. If this isnot the ase, then for some i the hords {xi, x

′
i} and {xi+1, x

′
i+1} do not interset. Then eitherone of them orresponds to a ≤1-vertex, or eah of them intersets a blue hord. Suh a bluehord also intersets {x, x′} or {y, y′}, sine it has only one endpoint in −→xy. This ontraditsthe minimality of t.We now prove that the ar −−−−→x2x

′
t−1 does not ontain any endpoint of a blue hord. Observethat if the ar ontains the endpoint u of a blue hord, then there exists 1 ≤ i ≤ t − 2 suhthat u ∈ −−−−→

x′
ixi+2, sine otherwise this would reate a triangle. If suh an endpoint u exists, therelated blue hord along with {x, x′} or {y, y′} ontradits the minimality of t.Hene, the verties orresponding to {xi, x

′
i} (2 ≤ i ≤ t−1) are a hain of (t−2) 2-verties in

G. Sine G does not ontain any 1-vertex, the hord {x1, x
′
1} intersets a hord {u, u′} distintfrom {x2, x

′
2}. Suh a hord may be blue or red, but by the minimality of t it annot interset

{y, y′}. So the hord {u, u′} has to interset {x, x′} and sine g ≥ 4, exatly one suh {u, u′}exists. Similarly, {xt, x
′
t} intersets exatly one hord distint from {xt−1, x

′
t−1}, say {v, v′},and {v, v′} also intersets {y, y′}. Thus the verties orresponding to {xi, x

′
i} (1 ≤ i ≤ t) form ahain of t 2-verties in G. Sine the hords {x, x′}, {u, u′}, {x1, x

′
1}, . . . , {xt, x

′
t}, {v, v′}, {y, y′}orrespond to a yle in G, we have t ≥ g − 4.Case 2: The minimum t > 0 is reahed by a blue hord {x, y}. The proof is the sameas the previous one, exept that we obtain a hain of (g − 3) 2-verties instead of (g − 4)2-verties (see Figure 3(b)).3 Proof of Theorem 2Let us �rst give a onstrution to prove the lower bound. For every g ≥ 5, we onstrut afamily (Qg,t)t≥0 of irle graphs with girth g suh that Qg,0 = Cg (the yle on n verties)and Qg,t+1 is obtained by adding hords to the representation of Qg,t.These new hords (represented as thin hords in Figure 4) indue a yle. Every old hord(i.e. that belongs to Qg,t, represented as thik hords in Figure 4) intersets one new hord ateah of its endpoints. A k-region is a region inside the irle, whih is inident to the irleand to exatly k hords. Note that in any Qg,t, every k-region is either a 2- or a 3-region. Any2-region in Qg,t produes in Qg,t+1 a fae F of size g, (g − 3) verties (2(g − 3) half-hords),

(g− 2) edges, (g− 3) 2-regions, and (g− 2) 3-regions. Any 3-region in Qg,t produes in Qg,t+1a fae F of size g, (g − 4) verties, (g − 3) edges, (g − 4) 2-regions, and (g − 3) 3-regions.5
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2(g−4) half-chords2(g−3) half-chords

F F

Figure 4: From Qg,t to Qg,t+1

Q5,0 Q5,1Figure 5: ExamplesWe now onsider the vetor Vg,t = t (n,m,R2, R3) whose omponents are respetively thenumber of verties, edges, 2-regions, and 3-regions of Qg,t. By onstrution, we have that
Vg,t+1 = MgVg,t, where

Mg =









1 0 g − 3 g − 4
0 1 g − 2 g − 3
0 0 g − 3 g − 4
0 0 g − 2 g − 3







The limit of the average degree ad(Qg,t) of Qg,t when t → ∞ an be obtained from the uniqueeigenvetor
V =









g − 3 +
√

(g − 2)(g − 4)

g − 2 + (g − 3)
√

(g − 2)/(g − 4)

g − 4 +
√

(g − 2)(g − 4)

g − 2 +
√

(g − 2)(g − 4)







assoiated to the largest eigenvalue g − 3 +
√

(g − 2)(g − 4) of Mg. We thus obtain:
µg ≥ lim

t→∞
ad(Qg,t) = 2 · g − 2 + (g − 3)

√

(g − 2)/(g − 4)

g − 3 +
√

(g − 2)(g − 4)
= 2

√

g − 2

g − 4Before proving the upper bound, we make some remarks on struture of the graphs Qg,t.Observe that the graphs Qg,t with t ≥ 1 are irle graphs with girth g ≥ 5 that ontain neither
≤1-verties nor hains of (g − 3) 2-verties (see Figure 5 for an example with g = 5), whihproves that Theorem 1 is optimal in a ertain way. Another interesting property of thesegraphs is that for any g ≥ 5, Qg,t ontains Kt+3, the omplete graph with t + 3 verties, as aminor (that is, Kt+3 an be obtained from Qg,t by ontrating edges and removing edges andverties). To see this, ontrat Qg,0 in order to obtain a triangle, and at eah step ontrat6



156 APPENDIX B. [EO07B℄the set of new verties into a single vertex, whih is universal by onstrution. The size of thelique we onstrut will inrease by one at eah step, and we will eventually obtain Kt+3 as aminor of Qg,t. This implies that for any integer g ≥ 5 and any graph H, there exists a irlegraph G with girth g suh that G ontains H as a minor.We now prove the upper bound by ontradition. Sine irle graphs of girth at least gare losed under taking indued subgraphs, it is su�ient to prove that every irle graph Gwith girth at least g ≥ 5 has average degree ad(G) < 2
√

g−2
g−4 .Let G be a irle graph and C be a irle representation of G. We denote by R(C) theplanar graph onstruted as follows:

• the vertex set of R(C) is the set of rossings of hords in C,
• two distint verties are adjaent in R(C) if and only if they orrespond to onseutiverossings of a same hord in C.Observe that the onstrution above learly gives a natural planar embedding of R(C). In thefollowing, we only onsider this preise planar embedding. For example, the outerfae of R(C)will be well-de�ned. Note that R(C) has maximum degree four.Let us onsider a �xed integer g ≥ 5 and a irle graph G1 with girth at least g, suh thatad(G1) > 2

√

g−2
g−4 , and suh that G1 is minimal with this property. That is, for any irlegraph H with girth at least g and suh that |V (H)| < |V (G1)|, we have ad(H) < 2

√

g−2
g−4 .Observe that by minimality, G1 does not ontain any ≤1-vertex, sine otherwise by removingit we would obtain a smaller graph with larger average degree.Let C1 be a representation of G1. If the outerfae of the planar embedding of R(C1)ontains a 4-vertex, we apply the following operation on C1, whih gives a new representation

C2 and a new irle graph G2 with girth g. Let u denote a 4-vertex on the outerfae of R(C1).It orresponds to an edge between to verties v1 and v2 of G1, represented by two rossinghords c1 and c2 in C1. Sine u is a 4-vertex in R(C1), the hords c1 and c2 respetively rosstwo hords c′1 and c′2 as depited in Figure 6. Let v′1 and v′2 be the verties of G1 assoiatedto c′1 and c′2. Sine u is on the outerfae of R(C1), v′1 and v′2 are not adjaent in G1. Hene,we an add a path of g − 4 hords between c′1 and c′2, as depited in Figure 6. Let C2 denotethe new representation, and G2 be the assoiated irle graph. The g−4 verties added to G1to obtain G2 form a yle of length exatly g in G2 ontaining v1, v2, v′1, and v′2. Note thatthe number of 4-verties on the outerfae of the plane graph assoiated to the representationdereases by one after at most two iterations of this proess.Let n1 and m1 denote respetively the number of verties and edges of G1. By Corollary 2,we have that ad(G1) < 2 · g−3
g−4 . This implies that ad(G2) = 2 · m1+g−3

n1+g−4 > 2 · m1
n1

= ad(G1).Thus the average degree inreases during this operation.We repeat this operation until we obtain a irle graph G with girth g having a representa-tion C suh that the outerfae of the planar embedding of R(C) does not ontain any 4-vertex.The onsequene of the previous observation is that ad(G) > ad(G1) > 2
√

g−2
g−4 . Let n and mbe the number of verties and edges of G. This implies in partiular that:

√

g − 2

g − 4
n < m (1)7
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C1

C2

c2c1

c′1 c′2 c′2c′1

c2c1

Figure 6: From C1 to C2Let N , M , and F denote respetively the number of verties, edges, and faes of R(C).Sine a rossing in C orresponds to both an edge in G and a vertex in R(C), we have:
N = m (2)We an write Euler's formula for the planar embedding of R(C) as follows:

M + 2 = F + N (3)Let Nd denote the number of d-verties in R(C). Sine G1 does not ontain any ≤1-vertex,and no new ≤1-vertex is reated during the transformation, the graph G does not ontain any
≤1-vertex either. This implies in partiular that R(C) does not ontain ≤1-verties. Thus, thedegree of a vertex in R(C) is at least 2 and at most 4 and we have:

N = N2 + N3 + N4 (4)The sum of vertex degrees is equal to twie the number of edges in R(C):
2N2 + 3N3 + 4N4 = 2M (5)Any hord in a representation of G orresponding to some vertex v ∈ G ontains (deg(v)−

1) edges of R(C). Sine ∑v∈G(deg(v) − 1) = 2m − n, we have:
2m − n = M (6)Note that the outerfae of R(C) ontains every 2-vertex, every 3-vertex, and no 4-vertexof R(C). Moreover, R(C) annot ontain a fae of degree stritly less than g, sine otherwise

G would ontain a yle of length stritly less than g. We thus obtain a lower bound on thesum of degrees of the faes of R(C), whih is equal to twie the number of edges in R(C):
g(F − 1) + N2 + N3 ≤ 2M (7)Let us deompose the hords of C into blue and red hords as done in the proof of Theo-rem 1. Using previous notation, CB is the sub-representation of C indued by the blue hordsand GB is the orresponding irle graph. Note that GB is a proper indued subgraph of G1and G. We thus have:ad (GB

)

=
2(m − N2 − N3)

n − N2
< 2

√

g − 2

g − 4
<

2m

n
= ad (G)8
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This implies that 2(N2+N3)

N2
> 2m

n > 2
√

g−2
g−4 , whih gives:

(
√

g − 2

g − 4
− 1

)

N2 < N3 (8)The ombination (g−4)×(1)+(g−4)
(

2
√

g−2
g−4 − 1

)

×(2)+g×(3)+2(g−2)
(

1 −
√

g−4
g−2

)

×(4)+ 1
2(g− 2)

(

1 −
√

g−4
g−2

)

× (5)+
√

(g − 2)(g − 4)× (6)+ (7)+ 1
2 (g− 4)

(√

g−2
g−4 − 1

)

× (8)gives g < 0, a ontradition.4 PerspetivesIn the present paper, we study the struture of sparse irle graphs. The opposite problemof studying the struture of dense irle graphs seems to be muh harder. For example, therelation between the lique number of irle graphs and their hromati number is not preiselyestablished. Kostohka and Kratohvíl [4℄ proved that every irle graph with lique number
ω has hromati number at most 2ω+6, but this is still far from the lower bound of Ω(ω logω).Note that the upper bound of 2ω+6 even holds for polygon-irle graphs, a superlass ofirle graphs, de�ned as the intersetion lass of hords and onvex polygons of the irle. Thesize of this lass is known to be muh larger, but we suspet that polygon-irle graphs withgirth at least �ve behave like irle graphs with girth at least �ve. It would be interesting tosee if the results of the present paper extend to the lass of polygon-irle graphs.AknowledgementThe authors would like to thank Daniel Gonçalves and Arnaud Labourel for fruitful disussion.Referenes[1℄ A.A. Ageev. Every irle graph with girth at least 5 is 3-olourable, Disrete Math., 195(1999) 229�233.[2℄ A. Galluio, L.A. Goddyn, and P. Hell. High-Girth Graphs Avoiding a Minor are NearlyBipartite J. Combin. Theory. Ser. B 83(1) (2001), 1�14.RR-5957[3℄ F. Havet, R.J. Kang, T. Müller, and J.-S. Sereni. Cirular hoosability, INRIA Sophia-Antipolis Tehnial Report RR-5957 (2006).[4℄ A. Kostohka, J. Kratohvíl. Covering and oloring polygon-irle graphs, DisreteMath., 163 (1997) 299�305.
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Appendix C[ELO07℄
On indued-universal graphs for the lassof bounded-degree graphsAbstratFor a family F of graphs, a graph U is said to be F -indued-universalif every graph of F is an indued subgraph of U . We give a onstrutionfor an indued-universal graph for the family of graphs on n vertieswith degree at most k. For k even, our indued-universal graph has
O(nk/2) verties and for k odd it has O(n⌈k/2⌉−1/k log2+2/k n) verties.This onstrution improves the main result of [But06℄ by a multipliativeonstant fator for even ase and by almost a multipliative n1/k fatorfor odd ase. We also onstrut indued-universal graphs for the lassof oriented graphs with bounded inoming and outgoing degree, slightlyimproving another result of [But06℄.
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On indued-universal graphs for the lass of bounded-degreegraphsLouis Esperet∗ Arnaud Labourel† Pasal Ohem‡February 6, 2008AbstratFor a family F of graphs, a graph U is said to be F-indued-universal if every graphof F is an indued subgraph of U . We give a onstrution for an indued-universal graphfor the family of graphs on n verties with degree at most k. For k even, our indued-universal graph has O(nk/2) verties and for k odd it has O(n⌈k/2⌉−1/k log2+2/k n) verties.This onstrution improves a result of Butler by a multipliative onstant fator for evenase and by almost a multipliative n1/k fator for odd ase. We also onstrut indued-universal graphs for the lass of oriented graphs with bounded inoming and outgoingdegree, slightly improving another result of Butler.1 IntrodutionAll graphs are assumed to be without loops or multiples edges. For a graph G we denote by

V (G) its vertex set and by E(G) its edge or ar set. Our terminology is standard and anyunde�ned term an be found in standard theory books [11℄.For a �nite family F of graphs, a graph U is said to be F-universal if every graph in Fis a subgraph of U . For instane, if we denote by Fn the family of all graphs with at most nverties, then the omplete graph Kn is Fn-universal. The universal graph problem onsistsin �nding a n-vertex universal graph with minimal number of edges for spei� subfamilies of
Fn. This problem was originally motivated by iruit design for omputer hips [4℄. Severalfamilies of graphs have been studied for this problem, inluding forests [10℄, bounded-degreeforests [2, 3℄, and bounded-degree graphs [1℄.The notion of indued-universal graph an be similarly de�ned. For a family F of graphs,a graph U is F-indued-universal if every graph in F is an indued subgraph of U . Theindued-universal graph problem onsists in �nding an indued-universal graph of minimalnumber of verties for spei� subfamilies of Fn. The family Fn itself was onsidered byMoon [13℄, while Chung onsidered trees, planar graphs, and graphs with bounded arboriityon n verties [9℄.The indued-universal problem is strongly related to a notion of distributed data strutureknown as adjaeny labeling sheme or impliit representation. An impliit representation for

∗esperet�labri.fr
†labourel�labri.fr
‡pasal.ohem�lri.fr 1



161a family F of graphs onsists in two funtions: a labeling funtion that assigns labels to theverties of any graph of F and an adjaeny funtion that determines the adjaeny betweentwo verties only by looking at their labels. The problem of �nding an impliit representationwith small labels for spei� families of graphs was �rst introdued by Breuer [6, 7℄.Kannan, Naor and Rudih [12℄ established the strong relation between the two problemsby proving that the existene of an impliit representation using k(n) bits per vertex fora family Fn is equivalent to the existene of an Fn-indued-universal graph with 2k(n) verties.In this paper, we fous on indued-universal graphs for bounded-degree graphs. We on-strut an indued-universal graph for the family Fk,n of n-vertex graphs of degree at most
k. For k even, our indued-universal graph has O(nk/2) verties and for k odd our indued-universal graph has O(n⌈k/2⌉−1/k log2+2/k n) verties. Our result for graphs with maximumdegree k ≡ 0 (mod 2) is dedued from a onstrution similar to that of [8℄ but with animprovement of the base graph of the onstrution (Setion 3). Atually, our F2,n-indued-universal graph forming the basis of the onstrution has 5n/2 + O(1) verties while the bestlower bound known for the order of suh graphs is 11n/6 + Ω(1). Our result for graphs withmaximum degree k ≡ 1 (mod 2) is dedued from a reent result of Alon and Capalbo [1℄ onuniversal graphs for bounded-degree graphs, ombined with a onstrution of [9℄ that givesan interesting onnetion between indued-universal graphs and universal graphs (Setion 4).Given that the best known lower bound for the number of verties of an Fk,n-indued-universalgraph is Ω(nk/2) [8℄, our result for k even is tight up to a multipliative onstant and our resultfor k odd is equal to O(n1/2−1/k log2+2/k n) times the lower bound. We also give a general-ization of our result for oriented graphs of bounded degree (Setion 5). In Setion 6, we showhow to onstrut of an indued-universal graph for all orientations of the graphs of a family
F , only using a spei� F-indued-universal graph. We onlude the paper with some openproblems (Setion 7).2 A small indued-universal graph for graphs with degree atmost twoOur main onern here is to �nd an Fk,n-indued-universal graphs for every k. We �rstinvestigate the ase k = 2.

⌊

n
2

⌋

+5 tiles joined in seriesFigure 1: The F2,n-indued-universal graph Un.Lemma 1 The graph Un depited in Figure 1 is an F2,n-indued-universal graph.Proof. It is su�ient to prove that any graph G ∈ F2,n is an indued subgraph of the graph
Un depited in Figure 1. For 1 ≤ i ≤ n, let ni be the number of onneted omponents of G2



162 APPENDIX C. [ELO07℄with i verties. The degree of G is bounded by 2 so G ontains n1 isolated verties, n2 disjoint
K2's, and for i ≥ 3, ni yles or paths of i verties. We embed the onneted omponents of
G into Un from left to right after having sort them by inreasing size. The graph Un is madeof yles of size 5 alled tiles that are joined in series by 4 edges. Let us prove that we anembed all the onneted omponents of G in an indued way using at most ⌊n

2

⌋

+ 5 tiles.
• The embedding of the stable set of size n1, using ⌈n1

2

⌉

+ 1 tiles.
⌈

n1
2

⌉

+1 tiles

• The embedding of n2 K2's, using n2 + 1 tiles.
n2 +1 tiles

• The embedding of n3 onneted omponents of size 3, using n3 + 1 tiles.
n3 +1 tiles

• The embedding of n4 onneted omponents of size 4, using 2n4 + 1 tiles.
2n4 +1 tiles

• The embedding of n5 onneted omponents of size 5, using 2n5 tiles.
2n5 tiles

• For k ≥ 3, the embedding of n2k onneted omponents of size 2k, using kn2k tiles.
k−1 tiles k−1 tiles3
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• For k ≥ 3, the embedding of n2k+1 onneted omponents of size 2k + 1, using kn2k+1tiles.

k−1 tiles k−1 tilesObserve that for eah i the embedding of onneted omponents of size i is indued.Moreover, at the end of the embedding of all onneted omponents of size i, there is a tile inwhih no vertex of G is embedded. So, there are no edges of Un between the embeddings oftwo onneted omponents of di�erent sizes. Hene, the embedding of G into Un is indued.It remains to upper bound the number l of tiles used by suh an embedding.
l =

n1

2
+ 2 + n2 + 1 + n3 + 1 + 2n4 + 1 + 2n5 +

⌊n/2⌋
∑

k=3

2kn2k +

⌊n/2⌋
∑

k=3

2kn2k+1

≤ 5 +

n
∑

i=1

i
ni

2

≤ 5 +
⌊n

2

⌋ , sine n
∑

i=1

ini = n and the number of tiles is an integer.
2A natural question is to investigate whether this onstrution is optimal. We now provethat it is optimal up to a onstant multipliative fator of approximately 3

2 .Claim 1 Every F2,n-indued-universal graph has at least 11
⌊

n
6

⌋ verties.Proof. Let n ∈ N be a multiple of 6. Let Hn be the family ontaining the following threegraphs:
• the stable set of n verties,
• the disjoint union of n/2 K2,
• the disjoint union of n/3 K3.

· · · · · ·· · ·

n/6 K2n/3 K3 n/2 K1Figure 2: An indued subgraph of Un.Note that these three graphs have n verties and degree at most two. Let Un be an
Hn-indued-universal graph. Then Un must ontain n/3 triangles as indued subgraphs.4



164 APPENDIX C. [ELO07℄Sine eah of the triangles intersets at most one indued K2, the graph Un must ontain anindued mathing of size at least n/2 − n/3 = n/6 disjoint from the triangles. Sine eah
K2 and eah triangle ontains at most one isolated vertex as an indued subgraph, Un mustontain a stable set of size n − n/3 − n/6 = n/2 disjoint from the triangles and the induedmathing (see Figure 2). Eventually, Un has at least 3n/3 + 2n/6 + n/2 = 11n/6 verties andso any F2,n-indued-universal graph needs 11 ⌊n/6⌋ verties beause H6⌊n/6⌋ ⊆ F2,n. 2We believe that the results in this setion are not sharp. Indeed, we onjeture that thereexists an F2,n-indued-universal graph with 2n + o(n) verties, and that this is optimal.3 Indued-universal graphs for graphs with even maximum de-greeWe now use our onstrution of an F2,n-indued-universal graph to onstrut an Fk,n-indued-universal graph for k even (the same method was already used in [8℄).Theorem 1 Let k ≥ 2 be an even integer. There is an Fk,n-indued-universal graph Uk,nsuh that

|V (Uk,n)| = (1 + o(1))

(

5n

2

)k/2 and |E(Uk,n)| =

(

9k

10
+ o(1)

)(

5n

2

)k−1

.Proof. To prove this theorem, we �rst redue the problem to the onstrution of an F2,n-indued-universal. Petersen [14℄ proved that any k-regular graph with k even an be deom-posed into k/2 edge-disjoint graphs of degree at most 2. In [9℄, Chung proved that for twofamilies of graphs F and H suh that any graph of F an be deomposed into k graphs of H,if we have an H-indued-universal graph W , we an onstrut an F-indued-universal graph
U suh that:

|V (U)| = |V (w)|k and |E(U)| = k|V (W )|2k−2|E(W )|.Using Lemma 1, we onstrut an F2,n-indued-universal graph Un with |V (Un)| = 5
2n +

O(1) and |E(Un)| = 9
2n + O(1). Eventually, using the fat that any graph of Fk,n an bedeomposed into k/2 graphs of F2,n, we obtain an Fk,n-indued-universal graph Uk,n suhthat:

|V (Uk,n)| = |V (U)|k/2 =

(

5

2

)k/2

nk/2 + o(nk/2)

|E(Uk,n)| =
k

2
|V (U)|k−2|E(U)| =

k

2
· 9

2

(

5

2

)k−2

nk−1 + o(nk−1).

2

5



1654 Indued-universal graphs for graphs with odd maximum de-greeTo the best of your knowledge, there is no good result on edge deomposition for graphsbelonging to Fk,n with k odd. Nevertheless, we an use Uk+1,n as an Fk,n-indued-universalgraph sine Fk,n ⊂ Fk+1,n. The graph obtained is from a multipliative fator of O(n1/2)of the best known lower bound for the number of verties of Fk,n-indued-universal graphs.We now show how to redue the gap between lower and upper bounds with a onstrutiondedued from universal graphs.Theorem 2 Let k ≥ 3 be an odd integer. There is an Fk,n-indued-universal graph Uk,n suhthat
|V (Uk,n)| = c1(k)n⌈k/2⌉−1/k log2+2/k n and |E(Uk,n)| = c2(k)nk−2/k log4+4/k nProof. The indued-universal graph is dedued from the Fk,n-universal graph obtained byAlon and Capalbo [1℄, using a result of Chung [9℄ that gives a general onstrution of anindued-universal graph from an universal graph.The onstrution of Chung [9℄ depends on the degree of the indued-universal graph andthe arboriity of graphs of the family. Indeed, if we onsider a family Ar of graphs witharboriity at most r and an Ar-universal graph G, then the onstrution produes an Ar-indued-universal graph H suh that :
|V (H)| =

∑

v∈V (G)

(dG(v) + 1)r and |E(H)| =
∑

uv∈E(G)

(dG(u) + 1)rdG(v)r−1.The arboriity of graphs of the family Fk,n is at most ⌈k/2⌉. Moreover, the Fk,n-universalgraph desribed in [1℄ has degree at most c(k)n2−2/k log4/k n. Hene, there is an indued-universal graph Uk,n for the family Fk,n = A⌈k/2⌉ suh that:
|V (Uk,n)| =

∑

v∈V (Hk,n)

(dHk,n
(v) + 1)⌈k/2⌉

≤ |V (Hk,n)|(2dHk,n
)⌈k/2⌉

≤ n(2c(k)n1−2/k log4/k n)⌈k/2⌉

≤ c1(k)n⌈k/2⌉−1/k log2+2/k n , where c1(k) = (2c(k))⌈k/2⌉

|E(Uk,n)| =
∑

uv∈E(Hk,n)

(dHk,n
(u) + 1)⌈k/2⌉dHk,n

(v)⌈k/2⌉−1

≤ |E(Hk,n)|(2dHk,n
)⌈k/2⌉(dHk,n

)⌈k/2⌉−1

≤ c(k)n2−2/k log4/k n(2c(k)n1−2/k log4/k n)⌈k/2⌉(c(k)n1−2/k log4/k n)⌈k/2⌉−1

≤ c2(k)nk−2/k log4+4/k , where c2(k) = (2c(k))k+1.

26



166 APPENDIX C. [ELO07℄5 Indued-universal graphs for bounded-degree oriented graphsAn orientation −→
G of a graph G onsists in assigning to every edge of G one of its two possibleorientations. −→G is alled an oriented graph and by de�nition, it annot have loops nor oppositears. The onstrution of Setion 3 an be easily generalized to the family Ok,n of all theorientations of the graphs from F2k,n having inoming and outgoing degree at most k. Indeed,any graph of Ok,n an be deomposed into k graphs of O1,n [14℄ and the onstrution ofindued universal graph using deomposition works in the oriented ase.Theorem 3 There is an Ok,n-indued-universal oriented graph −−→

Ok,n suh that
|V (

−−→
Ok,n)| = (1 + o(1)) (3n)k and |E(

−−→
Ok,n)| = (2 + o(1)) (3n)2k−1 .Proof. The onstrution of an indued-universal graph for Ok,n is almost the same as theonstrution for F2k,n presented in Setion 3. Any graphs with outgoing and inoming degreeat most k an be deomposed into k edge-disjoint graphs having outgoing and inoming degreeat most 1 [14℄. Let −→

On be the graph depited in Figure 3. If −→On is O1,n-indued-universalthen, using the onstrution of Chung [9℄, we an onstrut an Ok,n-indued-universal graph−−→
Ok,n having |V (

−−→
Ok,n)| = (1 + o(1)) (3n)k verties and |E(

−−→
Ok,n)| = (2 + o(1)) (3n)2k−1 edges.So, the only thing we need to prove is that −→On is O1,n-indued-universal.

⌊

n
2

⌋

+5 tiles joined in seriesFigure 3: The O1,n-indued-universal graph −→
On.Let −→

G be any graph of O1,n. The onneted omponents of −→G are either direted paths(oriented paths with exatly one sink and one soure) or direted yles (oriented yles withno soure). We embed −→
G in −→

On almost the same way we embedded graphs of F2,n in Un inSetion 2. The only di�erenes are for the embeddings of onneted omponents of size 3 ormore that slightly di�er from the non-oriented ase.
• The embedding of n3 onneted omponents of size 3, using n3 + 1 tiles.

n3 +1 tiles

• The embedding of n4 onneted omponents of size 4, using 2n4 + 1 tiles.
2n4 +1 tiles7
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• The embedding of n5 onneted omponents of size 5, using 2n5 + 1 tiles.

2n5 +1 tiles

• For k ≥ 3, the embedding of n2k onneted omponents of size 2k, using kn2k tiles.
k−1 tiles k−1 tiles

• For k ≥ 3, the embedding of n2k+1 onneted omponents of size 2k + 1, using kn2k+1tiles.
k−1 tiles k−1 tilesWe use for embeddings exatly the same number of tiles as for the non-oriented ase, sothe graph −→

On has also ⌊n
2

⌋

+ 5 tiles. 26 From indued-universal graphs to oriented indued-universalgraphsIn Setion 5, we onstruted an indued-universal graph for a family of orientations of graphsin F2,n by orienting the edges and adding some verties to the non-oriented indued-universalgraph. Let F be a family of graph and −→F be a family of orientations of graphs from F .One may ask if, taking an F-indued-universal graph U , it is always possible to onstrut an−→F -indued-universal graph −→
U .Given two graphs G and H, a homomorphism from G to H is a mapping f : V (G) → V (H)satisfying [x, y] ∈ E(G) ⇒ [f(x), f(y)] ∈ E(H). In fat, the onstrution is possible ifthere is a graph −→

H into whih eah graph of −→F has a homomorphism. In this ase, thegraph −→
H is said to be an −→F -universal graph for homomorphism. For instane, the diretedyle of length three is a universal graph for homomorphism for the family of orientationof trees. The graph −→

U an be obtained by making a speial produt of the two graphs −→
Hand U . The oriented tensor produt G × −→

H of a non-oriented graph G and an orientedgraph −→
H is de�ned to have vertex set V (G × −→

H ) = V (G) × V (
−→
H ) and ar set E(G × −→

H ) =
{

[(x, u), (y, v)] | xy ∈ E(G) and uv ∈ E(
−→
H )
}.Theorem 4 Let U and −→

H be two graphs. If U is F-indued-universal and −→
H is −→F -universalfor homomorphism then U ×−→

H is −→F -indued-universal.8



168 APPENDIX C. [ELO07℄Proof. It su�es to show that we an embed an arbitrary graph −→
G ∈ −→F as an induedsubgraph of U ×−→

H . Let v ∈ −→
G . There is a homomorphism of −→G to −→

H sine −→H is −→F -universalfor homomorphism. We denote by h(v) ∈ V (
−→
H ) the vertex into whih v is mapped. If weforget about the orientation, we an embed −→

G into U sine U is F-indued-universal. Letdenote by u(v) ∈ V (U) the vertex into whih v is embedded. The embedding of −→
G into

U × −→
H onsists in embedding eah vertex v of G into the vertex (u(v), h(v)) of U ×−→

H . Theembedding is orret in the sense that if there is an ar [x, y] in −→
G then there is an ar

[(u(x), h(x)), (u(y), h(y))] in U × −→
H . Indeed, there is an edge [u(x), u(y)] in U due to thenon-oriented embedding of −→G into U and an ar [h(x), h(y)] in −→

H due to the mapping of −→Ginto −→
H . Moreover, the embedding is indued. Indeed, if two verties x and y of G are notadjaent then u(x) and u(y) are not adjaent in U beause the non-oriented embedding of−→

G into U is indued. So, by onstrution, (u(x), h(x)) and (u(y), h(y)) are not adjaent in
U ×−→

H . 2Families suh as trees, planar graphs, partial 2-trees, outerplanar graphs, and sububigraphs are known to have universal graphs for homomorphism with onstant number of verties[5, 15℄. So for these families, indued-universal graphs and indued-universal oriented graphshave asymptotially the same order.7 Conluding remarks and open problemsIn Setion 2, we proved that a minimal F2,n-indued-universal has at least 5n/2 + O(1), andand at most 11n/6 + O(1) verties. The natural question that arises is whether it is possibleto redue the gap between 5/2 and 11/6 for the multipliative onstant. This question seemsto be quite di�ult, even though graphs of F2,n have a very simple struture. For k odd, ifwe drop the polylogarithmi fator, there remains a multipliative fator of n1/2−1/k betweenthe lower and the upper bound for the number of verties in a minimal Fk,n-indued-universalgraph. An interesting problem would be to lower this fator, espeially for large values of
k. In our onstrution, for k even, our Fk,n-indued-universal graph have maximum degree
4k/2 depending only on k whereas for k odd, it has maximum degree c2(k)nk−1−2/k log4+4/k n.Considering that for k even our onstrution is almost tight whereas for k odd it is not, weonjeture that Fk,n-indued-universal graphs with minimal number of verties and edges havedegree only depending on k. In other words, we onjeture that there is a funtion f(k) suhthat the existene of a Fk,n-indued-universal graph Uk,n implies that there exists another onewith at most the same number of verties, but with degree at most f(k).A more general problem onerning indued-universal graphs should be to solve theindued-universal version of the impliit graph onjeture of Kannan, Naor and Rudih [12℄:Conjeture 1 (Impliit Graph Conjeture (indued-universal version)) Everyhereditary lass of graphs whih ontains 2O(n log n) graphs on n verties admits an indued-universal graph with nO(1) verties.Solving this onjeture seems rather di�ult even if it is known that families of graphslosed by taking minor ful�ll the onjeture sine they admit indued-universal graph of nO(1)verties. 9
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Appendix D[AEK+07℄
Ayli improper olourings of graphswith bounded maximum degreeAbstratFor graphs of bounded maximum degree, we onsider ayli t-improperolourings, that is, olourings in whih eah bipartite subgraph onsistingof the edges between two olour lasses is ayli and eah olour lassindues a graph with maximum degree at most t.We onsider the supremum, over all graphs of maximum degree atmost d, of the ayli t-improper hromati number and provide t-improperanalogues of results by Alon, MDiarmid and Reed (1991, RSA 2(3), 277�288) and Fertin, Raspaud and Reed (2004, JGT 47(3), 163�182).
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1 Introduction

Given a graph G = (V,E), a proper colouring V = (V1, . . . , Vk) of V is acyclic
if for all 1 ≤ i < j ≤ k, the subgraph of G induced by Vi ∪ Vj, which we
denote G[Vi ∪Vj ], contains no cycles (i.e., is a forest). The acyclic chromatic
number χa(G) is the smallest value k for which there exists a proper acyclic
k-colouring of G. It is easily seen that χa(G) ≤ ∆(G)(∆(G)− 1) + 1, as any
proper colouring of the square G2 of G is de facto a proper acyclic colouring
of G, and G2 has maximum degree at most ∆(G)(∆(G)− 1). In 1976, Erdős
(see (cf. [1])) conjectured that χa(G) = o(∆(G)2); this conjecture was proved
by Alon et. al. [2], who showed the existence of a fixed constant c < 50 such
that for all G, χa(G) ≤ c∆(G)4/3. Alon et. al. also showed that their bound
was close to optimal by proving via probabilistic arguments that

max{χa(G) : ∆(G) ≤ ∆} = Ω

(

∆4/3

(log ∆)1/3

)

.

When studying the asymptotics of χa(G) in terms of ∆(G), the restriction
that the colouring be proper is not of great importance. Indeed, suppose we
define the laid-back acyclic chromatic number χℓ(G) to be the smallest value
k for which there exists a colouring V = (V1, . . . , Vk) of G such that, for all
1 ≤ i < j ≤ k, G[Vi ∪ Vj ] is a forest (placing no further restriction on edges
within a given block G[Vi]). Clearly, χℓ(G) ≤ χa(G). On the other hand,
given such a colouring, it follows in particular that for all 1 ≤ i ≤ k, G[Vi] is

a forest, so χ(G[Vi]) ≤ 2. By splitting Vi into stable sets V
(1)
i and V

(2)
i (for

each 1 ≤ i ≤ k), we may then obtain an acyclic proper colouring of G with
at most 2k colours. It follows that χa(G) and χℓ(G) are within a factor of
two of each other.

In this paper we investigate another relaxation of the acyclic chromatic
number; in order to define it we first note that we may reformulate the
definition of χa(G) by observing that if Vi and Vj are distinct stable sets in
G, then G[Vi∪Vj] is exactly the bipartite graph G[Vi, Vj] containing all edges
with one endpoint in Vi and one endpoint in Vj. We may then equivalently
define χa(G) as the smallest value k for which there exists a proper colouring
V = (V1, . . . , Vk) of V such that for all 1 ≤ i < j ≤ k, G[Vi, Vj] is a forest
(i.e. such that with this colouring, G contains no alternating cycle).

Starting from this definition, we may now relax the requirement that V be

2
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a proper colouring while continuing to impose that G contain no alternating
cycle. To wit: given an integer t ≥ 0, we say that a colouring V = (V1, . . . , Vk)
is t-improper if for all 1 ≤ i ≤ k, G[Vi] has maximum degree at most t (in
this case we say that Vi is t-dependent, for each 1 ≤ i ≤ t). The t-improper
acyclic chromatic number χt

a(G) is the smallest k for which there exists a t-
improper colouring V = (V1, . . . , Vk) such that with this colouring, G contains
no alternating cycle.

For an integer d ≥ 0, we let

χt
a(d) = max{χt

a(G) : ∆(G) ≤ d}.

The object of this paper is to study how χt
a(d) varies as a function of t and

of d. Clearly, for any d, χ0
a(d) ≥ χ1

a(d) ≥ . . . ≥ χd
a(d) = 1.

It is easily seen that χt
a(d) = Ω

(

(d/t)4/3/(ln d)1/3
)

; given an acyclic t-
improper colouring, by applying the first of the results from [2] mentioned
above, we can acyclically colour each colour class with at most ct4/3 new
colours (where c is some fixed constant which is less than 50) to obtain an
acyclic colouring of the entire graph. Our first result is to show that this
straightforward lower bound on χt

a(d) can be much improved upon asymp-
totically, as long as t ≤ d− 10

√
d ln d. More fully,

Theorem 1. If t ≤ d− 10
√
d ln d, then χt

a(d) = Ω
(

(d− t)4/3/(ln d)1/3
)

.

In particular, if t = (1 − ε)d for any fixed constant ε, 0 < ε ≤ 1, then we
obtain the same asymptotic lower bound as Alon et al. Comparing this lower
bound with the upper bound χt

a(d) = O(d4/3), we see the surprising fact that
even allowing t = Ω(d) does not greatly reduce the number of colours needed
for improper acyclic colourings of graphs with large maximum degree.

At some point, χt
a(d) must drop significantly as t increases, because

χd
a(d) = 1. Although we are unable to pin down the behaviour of χt

a(d)
viewed as a function of t, we can improve upon the upper bound of Alon et
al. when t is very close to d (more precisely, when d− t = o(d1/3)). We prove:

Theorem 2. χt
a(d) = O(d lnd+ (d− t)d).

As for lower bounds on χt
a(d) when d − t = o(d), we first note that

[3] showed χd−2
a (d) ≥ 3; we can straightforwardly generalise this result by

3
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showing that χt

a(d) ≥ d − t + 1. This is done as follows: if Kd+1 is the
complete graph on d + 1 vertices, then χt

a(Kd+1) ≥ d − t + 1, since, in
any acyclic t-improper colouring of Kd+1, at most one colour class has more
than one vertex and no colour class has more than t + 1 vertices. We can,
however, improve upon this further and, in the final section, we exhibit a set
of examples showing the following lower bound.

Theorem 3. χd−1
a (d) = Ω(d2/3).

We would like to reduce the gaps between the lower and upper bounds
on χt

a(d). For t = d − 1, the problem is particularly tantalising, and, in
this case, the lower bound of Theorem 3 and the upper bound of Theorem 2
differ by a factor of d1/3 ln d. For this choice of t, the problem also includes
the conjecture from [3] that every subcubic graph is acyclically 2-improperly
2-colourable.

In the rest of the paper, we use the following notation. The degree of
a given vertex v is denoted by d(v). We denote by N(v) the set of the
neighbours of v. A k-cycle (resp. a ≥k-cycle) is a cycle containing k vertices
(resp. at least k vertices). For a graph G and a vertex v ∈ V (G), we denote
by G \ {v} the graph obtained from G by removing v and its incident edges;
for an edge uv of E(G), G \ {uv} denotes the graph obtained from G by
removing the edge uv. These notions are extended to sets of vertices and
edges in an obvious way. Let G be a graph and f be a colouring of G.
For a given vertex v of G, we denote by imf (v), or simply im(v) when the
colouring is clear from the context, the number of neighbours of v having the
same colour as v and call this quantity the impropriety of the vertex v. For
notation not defined here, we refer the reader to [9].

2 A probabilistic lower bound for χta(d)

In this section, we prove Proposition 6 below, a more explicit version of
Theorem 1. Our argument mirrors that of Alon et al. but uses upper bounds
on the t-dependence number αt, the size of a largest t-dependent set, in the
random graph Gn,p. For more precise upper bounds on αt(Gn,p), consult [7].

Lemma 4. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n−128 lnn/p4⌋. Then asymptotically almost surely and uniformly over

4
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p in the above range, any colouring of Gn,p with k ≤ (n−m)/4 colours and in
which each colour class contains at most m vertices contains an alternating
4-cycle.

Proof. As there are at most kn ≤ nn possible k-colourings of Gn,p, to prove
the lemma it suffices to show that for any fixed k-colouring of the vertices of
Gn,p (which we denote {v1, . . . , vn}) with colour classes C1, . . . , Ck in which
|Ci| ≤ m for all 1 ≤ i ≤ k, the probability that Gn,p does not contain an
alternating 4-cycle is o(n−n).

Fix a colouring as above, and let q be minimal such that |C1∪ . . .∪Cq| ≥
(n−m)/2. Let A = C1 ∪ . . .∪Cq and let B = Cq+1 ∪ . . .∪Ck. As no colour
class has size greater than m, |A| ≤ (n +m)/2 and so |B| ≥ (n−m)/2. By
symmetry, we may also assume that |A| ≥ n/2.

Next, let P = {{x1, x
′
1}, . . . , {xr, x

′
r}} be a maximal collection of pairs of

elements of A such that for 1 ≤ i ≤ r, xi and x′i have the same colour, and
for 1 ≤ i < j ≤ r, {xi, x

′
i} and {xj , x

′
j} are disjoint. As we may place all but

perhaps one vertex from each colour class Ci in some such pair (with one
vertex left over precisely if |Ci| is odd), it follows that

r ≥ 1

2
(|A| − q) ≥ 1

2

(n

2
− k
)

≥ n

8
.

Similarly, let Q = {{y1, y
′
1}, . . . , {ys, y

′
s}} be a maximal collection of pairs

of elements of B satisfying identical conditions; by an identical argument to
that above, it follows that s ≥ (n−m)/8.

Let E be the event that for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, {xi, yj, x
′
i, y

′
j}

is not an alternating 4-cycle, and let E ′ be the event that Gn,p contains no
alternating 4-cycle; clearly E ′ ⊆ E. For fixed 1 ≤ i ≤ r and 1 ≤ j ≤ s, the
probability that {xi, yj, x

′
i, y

′
j} is not an alternating 4-cycle is (1−p4) and this

event is independent from all other such events. As (n−m) ≥ 128 lnn/p4 it
follows that

Pr (E ′) ≤ Pr (E) ≤ (1 − p4)rs ≤ e−p4rs

≤ exp

{

−p
4n(n−m)

64

}

≤ e−2n ln n = o(n−n),

as required. 2
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Using this lemma, we next bound the acyclic t-improper chromatic num-

ber of Gn,p for p in the range allowed in Lemma 4.

Lemma 5. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n−128 lnn/p4⌋ and let t(n, p) = p(m−1)−2

√
np. Then asymptotically

almost surely, for all integers t ≤ t(n, p), χt
a(Gn,p) ≥ 32 lnn/p4, uniformly

over p and t in the above ranges.

Proof. Fix n and p as above, and choose t ≤ t(n, p). We will show that
asymptotically almost surely Gn,p contains no t-dependent set of size greater
than m, from which the claim follows immediately by applying Lemma 4 as
(n−m)/4 ≥ 32 lnn/p4. Let G[m] represent the subgraph of Gn,p induced by
{v1, . . . , vm}. By a union bound and symmetry, we have

Pr
(

αt(Gn,p) ≥ m
)

≤
(

n

m

)

Pr (∆(G[m]) ≤ t) ≤ 2nPr (∆(G[m]) ≤ t) .

Since, if ∆(G[m]) ≤ t then G[m] has at most tm/2 edges, it follows that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2nPr

(

E(G[m]) ≤ tm

2

)

≤ 2nPr

(

E(G[m]) − p

(

m

2

)

≤ tm

2
− p

(

m

2

))

Finally, by a Chernoff bound and by the definition of t(n, p), we conclude
that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2n exp

{

−
(

tm

2
− p

(

m

2

))2

·
(

2p

(

m

2

))−1
}

≤ 2n exp

{

−(t− p(m− 1))2

4p

}

≤ (2/e)n = o(1),

as claimed. 2

Using Lemma 5, it is a straightforward calculation to bound χt
a(d) for d

sufficiently large and t sufficiently far from d.

Proposition 6. For all sufficiently large integers d and all non-negative
integers t ≤ d− 10

√
d ln d,

χt
a(d) ≥

(d− t)4/3

214(ln d)1/3
.

6
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Proof. Choose n so that

213n3 lnn ≤ d3(d− t) ≤ 214n3 lnn; (1)

such a choice of n clearly exists as long as d is large enough. Let p =
(d − 4

√
d ln d)/n; we first check that p and t satisfy the requirements of

Lemma 5. Presuming d is large enough that np ≥ d/2, by the lower bound
in (1) and the fact that d(d− t) ≤ d2 we have

p ≥ d

2n
≥ (d3(d− t))1/4

2n
≥ 8n3/4(lnn)1/4

2n
= 4

(

lnn

n

)1/4

. (2)

Furthermore, letting m = ⌊n− 128 lnn/p4⌋, we have

p(m− 1) − 2
√
np ≥ np− 128 lnn

p3
− 2

√
np− 2 = d− 4

√
d ln d− 2

√
np− 2 − 128 lnn

p3

≥ d− 8
√
d ln d− 128 lnn

p3
. (3)

Since p ≥ d/2n and by the lower bound in (1),

128 lnn

p3
≤ 210n3 lnn

d3
≤ d− t

8
,

which combined with (3) yields

p(m− 1) − 2
√
np > d− 8

√
d ln d− (d− t)

8

= t+
7(d− t)

8
− 8

√
d ln d > t, (4)

the last inequality holding since t ≤ d − 10
√
d ln d. As (2) and (4) hold we

may apply Lemma 5 to bound χt
a(Gn,p) with this choice of t and p; as n > d,

it follows that as long as d is sufficiently large,

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4

)

≥ 3

4
, (5)

say. Furthermore, by a union bound and a Chernoff bound,

Pr (∆(Gn,p) > d) ≤ nPr

(

BIN

(

n,
d− 4

√
d ln d

n

)

> d

)

≤ ne−16 ln d/3 ≤ 1

n
, (6)

7
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the last inequality holding as ln d ≥ lnn/2 (which is an easy consequence of
(1)). Combining (5) and (6), we obtain that

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4
,∆(Gn,p) ≤ d

)

≥ 3

4
− 1

n
≥ 1

2

as long as n ≥ 4, so there is some graph G with maximum degree at most
d and with χt

a(G) ≥ 32 lnn/p4. Since χt
a is monotonically increasing in d, it

follows that

χt
a(d) ≥

32 lnn

p4
>

32n4 lnn

d4
. (7)

An easy calculation using the upper bound in (1) and the fact that lnn <
2 ln d gives the bound

d4 <
219n4(ln d)4/3

(d− t)4/3
,

so 32n4 lnn/d4 > (d− t)4/3/214(ln d)1/3. By (7), it follows that

χt
a(d) ≥

(d− t)4/3

214(ln d)1/3
,

as claimed. 2

3 A probabilistic upper bound for χta(d)

In this section, we study the situation when d − t = o(d1/2). Theorem 2,
which improves the upper bound of [2] when d− t = o(d1/3, is a corollary of
our main result here.

We analyse a different parameter from, but one that is closely related
to, the acyclic t-improper chromatic number. A star colouring of G is a
colouring such that no path of length three (i.e. with four vertices) is al-
ternating; in other words, each bipartite subgraph consisting of the edges
between two colour classes is a disjoint union of stars. The star chromatic
number χs(G) is the least number of colours needed in a proper star colour-
ing of G. We analogously define the parameters χt

s(G) and χt
s(d) in the

natural way. The star chromatic number was one of the main motivations
for the original study of acyclic colourings [6]. Clearly, any star colouring

8
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is acyclic; thus, χt

a(d) ≤ χt
s(d). Fertin, Raspaud and Reed [5] showed that

χs(d) = O(d3/2) and that χs(d) = Ω
(

d3/2/(ln d)1/2
)

. We note that a natural
adaptation to star colouring of the argument given in the last section gives
the following:

Theorem 7. There exists a fixed constant C > 0 such that, if t ≤ d −
C
√
d ln d, then χt

s(d) = Ω
(

(d− t)3/2/(ln d)1/2
)

.

Given a graph G of maximum degree d, the idea behind our method
for improved upper bounds is to find a dominating set D and a function
g = g(d) = o(d3/2) such that |(N(v) ∪N2(v)) ∩ D| ≤ g for all v ∈ V (G).
Given such a set D in G, we assign colours to the vertices in D by greedily
colouring D in the square of G (i.e. vertices in D at distance at most two
in G receive different colours) with at most g + 1 colours; then we give the
vertices of G \ D the colour g + 2. It can be verified that this colouring
prevents any alternating paths of length three (and so prevents alternating
cycles) and ensures that every vertex has at least one neighbour of a different
colour. Furthermore, we can generalise this idea by prescribing that our set
D is k-dominating — each vertex outside of D has at least k neighbours in
D — to give a bound on χd−k

s (d).

Theorem 8. χt
s(d) = O(d ln d+ (d− t)d).

This result provides an asymptotically better upper bound than χt
s(d) =

O(d3/2) when d− t = o(d1/2). It also provides a better bound than χt
a(d) =

O(d4/3) when d − t = o(d1/3). Theorem 8 is an easy consequence of the
following lemma:

Lemma 9. Given a d-regular graph G and an integer k ≥ 1, let ψ(G, k)
be the least integer k′ ≥ k such that there exists a k-dominating set D for
which, for all v ∈ V (G), |N(v) ∩ D| ≤ k′. Let ψ(d, k) be the maximum
over all d-regular graphs G of ψ(G, k). Then, for all d sufficiently large,
ψ(d, k) ≤ max{3k, 31 lnd}.

We postpone the proof of this lemma, first using it to prove Theorem 8:

Proof of Theorem 8. We first remark that the function χt
s is monotonic

with respect to graph inclusion in the following sense: if G and G′ are graphs
with V (G) ⊆ V (G′), and E(G) ⊂ E(G′), then χt

s(G) ≤ χt
s(G

′). As any

9
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graph G of maximum degree d is a subgraph of a d-regular graph (possibly
with a greater number of vertices), to prove that χt

s(d) = O(d lnd+(d− t)d)
it therefore suffices to show that χt

s(G) = O(d lnd + (d − t)d) for d-regular
graphs G. We hereafter assume G is d-regular and d is large enough to apply
Lemma 9. Let k = d − t. We will show that χt

s(G) ≤ dψ(d, k) + 2, which
proves the theorem.

By Lemma 9, there is a k-dominating set D such that |N(v)∩D| ≤ ψ(d, k)
for all v ∈ V (G). Fix such a dominating set D and form the auxiliary graph
H as follows: let H have vertex set D and let uv be an edge of H precisely
if u and v have graph distance at most two in G. As |N(v) ∩ D| ≤ ψ(d, k)
for all v ∈ V (G), H has maximum degree at most dψ(d, k).

To colour G, we first greedily colour H using at most dψ(d, k)+1 colours,
and assign each vertex v of D the colour it received in H . We next choose
a new colour not used on the vertices of D, and assign this colour to all
vertices of V (G) \ D. We remind the reader that im(v) denotes the number
of neighbours of v of the same colour as v. If v ∈ D then im(v) = 0, and if
v ∈ V \D then im(v) ≤ d−|N(v)∩D| ≤ d−k = t, so the resulting colouring
is t-improper.

Furthermore, given any path P = v1v2v3v4 of length three in G, either
two consecutive vertices vi, vi+1 of P are not in D (in which case c(vi) =
c(vi+1) and P is not alternating), or two vertices vi, vi+2 are in D (in which
case c(vi) 6= c(vi+2) and P is not alternating). Thus, the above colouring
is a star colouring G of impropriety at most t and using at most d(3k +
31 ln d) + 2 colours; as G was an arbitrary d-regular graph, it follows that
χt

s(d) ≤ dψ(d, k) + 2, as claimed. 2

We next prove Lemma 9 with the aid of the following symmetric version
of the Lovász Local Lemma:

Lemma 10 ([4], cf. [8], page 40). Let A be a set of bad events such that for
each A ∈ A

1. Pr (A) ≤ p < 1, and

2. A is mutually independent of a set of all but at most δ of the other
events.

If 4pδ ≤ 1, then with positive probability, none of the events in A occur.

10
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Proof of Lemma 9. We may clearly assume that k is at least (31/3) ln d,

since, if the claim of the lemma holds for such k, then it also holds for smaller
k. Let p = 2k/d and let D be a random set obtained by independently
choosing each vertex v with probability p. We claim that, with positive
probability, D is a k-dominating set such that |N(v) ∩ D| ≤ 3k for all v ∈
V (G); we will prove our claim using the local lemma.

For v ∈ V (G), let Av be the event that either |N(v) ∩ D| < k or
|N(v) ∩ D| > 3k. By the mutual independence principle, cf. [8], page 41,
Av is mutually independent of all but at most d2 events Aw (with w 6= v).
Furthermore, since |N(v) ∩ D| has a binomial distribution with parameters
d and p, we have by a Chernoff bound that

Pr (Av) = Pr (||N(v) ∩ D| − E(|N(v) ∩ D|)| > k) ≤ 2e−k/5 = o(d−2)

so 4Pr (Av) d
2 < 1 for d large enough. By applying Lemma 10 with A =

{Av | v ∈ V }, it follows that with positive probability none of the events Av

occur, i.e. D has the desired properties. 2

4 A deterministic lower bound for χd−1
a (d)

In this section, we concentrate on the case t = d− 1 and exhibit an example
Gn which gives the asymptotic lower bound of Theorem 3. Given a positive
integer n, we construct the graph Gn as follows: Gn has vertex set {vij :
i, j ∈ {1, . . . n}} ∪ {wij : i, j ∈ {1, . . . , n}}. For i, j ∈ {1, . . . , n} we let
Vij = {vij, wij}. We can think of the set of vertices as an n-by-n matrix,
each entry of which has been “doubled”. Within each column Ci =

⋃n
j=1 Vij

and within each row Rj =
⋃n

i=1 Vij we add all possible edges. The graph Gn

has 2n2 vertices and is regular with degree d = 4n − 3. We will prove the
following proposition, which directly implies Theorem 3:

Proposition 11. χd−1
a (Gn) ≥ n

n1/3+1
+ 1.

Proof. Let f : Gn → {1, . . . , k} be an acyclic (d − 1)-improper colouring
of Gn; we will show that necessarily k ≥ n

n1/3+1
. Since n ≥ 1 it follows that

n/2 ≥ n
n1/3+1

and thus we may assume that k < n/2. Clearly, some colour
– say a1 – appears on two vertices x, x′ of C1. We call the colour a1 “black”
and refer to vertices receiving colour a1 as black vertices. If y, y′ ∈ C1 both

11
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receive colour i 6= a1, then xyx′y′ forms an alternating cycle, so a1 is the only
colour appearing twice in C1. It follows that at most k − 1 vertices in C1 are
not black.

Applying the same logic to any column Ci, we see that all but k − 1
vertices in Ci must receive the same colour, say ai. Since k < n/2, it is easily
seen, then, that there must be a row Rm such that vm1 and wm1 are both
black, and vmi and wmi are both coloured ai. This implies that ai = a1, since
otherwise vm1vmiwm1wmj would be an alternating cycle. It follows that in all
columns, at most k−1 vertices receive a colour other than a1. Symmetrically,
there is a colour b such that in all rows, at most k−1 vertices receive a colour
other than b; clearly, it must the case that b = a1.

If there are i, j ∈ {1, . . . , n} such that both Ri and Cj are entirely coloured
black, then all the neighbours of vij , wij are coloured with a1 and the colouring
is not (d−1)-improper; therefore, it must be the case that either all rows, or
all columns, contain a non-black vertex. Without loss of generality, we may
assume that all rows contain a non-black vertex.

Let x1, . . . , xr be non-black vertices receiving the same colour, say a, and
let xi ∈ Vℓi,mi

, for 1 ≤ i ≤ r. As previously noted, no two of x1, . . . , xr may
lie in the same row or column; i.e., for i 6= j, ℓi 6= ℓj and mi 6= mj .

Claim 1. At least 3
(

r
2

)

vertices of
⋃

1≤i6=j≤r Vℓi,mj
receive a non-black colour

other than a.

Proof. No vertices in
⋃

1≤i6=j≤r Vℓi,mj
receive colour a as each such vertex

is in the same row as one of x1, . . . , xr. On the other hand, for each pair
i, j with 1 ≤ i < j ≤ r, at least three of the vertices in Vℓi,mj

∪ Vℓj ,mi
must

receive a colour other than a1. For if y, y′ ∈ Vℓi,mj
∪Vℓj ,mi

both receive colour
a1, then xiyxjy

′ forms an alternating cycle. The result follows as there are
(

r
2

)

pairs i, j with 1 ≤ i < j ≤ r. 2

Claim 2. At least r distinct non-black colours appear on
⋃

1≤i<j≤r Vℓi,mj
.

Proof. By an argument just as above, each of Vℓ1,m2 , . . . ,Vℓ1,mr must con-
tain a vertex receiving a colour other than a1 or a. These colours must all
be distinct as Vℓ1,m2, . . . ,Vℓ1,mr are all contained within Rℓ1 . 2

Let {a2, a3, . . . , ak} be the set of non-black colours. Let x2
1, . . . , x

2
r2

be
the vertices receiving colour a2, and for i = 3, . . . , k let xi

1, . . . , x
i
ri

be the

12
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vertices receiving colour ai which are in a different row from all vertices in
⋃

j<i

⋃

s≤rj
xj

s. As every row contains a non-black vertex,
∑k

i=2 ri = n; it is
possible that ri = 0 for certain i, if there is a vertex coloured with one of
a2, . . . , ai in every row.

For i ∈ {2, . . . , k} and s ∈ {1, . . . , ri}, say vertex xi
s ∈ Vℓi

s,mi
s
, and let

Ai =
⋃

1≤s<t≤ri

Vℓi
s,mi

t
∪ Vℓi

t,m
i
s
.

By Claim 1, at least 3
(

ri

2

)

vertices of Ai are non-black. Furthermore, if i 6= i′

then for any s ∈ {1, . . . , ri}, s′ ∈ {1, . . . , ri′}, xi
s and xi′

s′ are in different rows

– so Ai and Ai′ are disjoint. It follows that in
⋃k

i=2Ai∪{xi
1, . . . , x

i
ri
}, at least

k
∑

i=2

(

3

(

ri

2

)

+ ri

)

≥
k
∑

i=2

r2
i (8)

vertices are non-black. As
∑k

i=2 ri = n, it is easily seen that

k
∑

i=2

r2
i ≥ (k − 1)

(⌊

n

k − 1

⌋)2

.

As there are only k−1 non-black colours, it follows that some non-black colour
– say a2 – appears at least (⌊n/(k − 1)⌋)2 times. If (⌊n/(k − 1)⌋)2 ≥ n2/3,
then by Claim 2, at least n2/3 + 1 > n

n1/3+1
+ 1 colours appear on Gn, so

we may assume that n2/3 > (⌊n/(k − 1)⌋)2 ≥ (n/(k − 1) − 1)2. But then
k > n

n1/3+1
+ 1, as claimed. 2

It is worth noting that the correct asymptotic order of χd−1
a (Gn) is un-

known; it is even conceivable that χd−1
a (Gn) = Θ(d).

5 Conclusion

In our view, the most surprising result of this paper is that the same asymp-
totic lower bound for ordinary acyclic chromatic number by Alon et al. also
holds for the acyclic t-improper chromatic number for any t = t(d) satisfy-
ing d − t = Θ(d). As χa(G) ≥ χt

a(G) for any t ≥ 0, this means that, for
d− t = Θ(d), Theorem 1 is asymptotically tight up to a factor of (lnd)1/3.
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In the case that t is very close to d, Theorem 8 improves upon upper

bounds for χt
a(d) and χt

s(d) implied by the results of Alon et al. and Fertin et
al., respectively, giving for instance that χt

s(d) = O(d lnd) for d−t = O(ln d).
On the other hand, we showed that χd−1

a (d) = Ω(d2/3) by a deterministic
construction.

χt
a(d) χt

s(d)
d− t lower upper lower upper

Θ(d) Ω
(

d4/3

(ln d)1/3

)

O(d4/3)

Ω
(

d3/2

(ln d)1/2

)

O(d3/2)
ω(

√
d ln d) Ω

(

(d−t)4/3

(ln d)1/3

)

Ω
(

(d−t)3/2

(ln d)1/2

)

Ω
(

d2/3
)

Ω
(

d2/3
)O(d1/2)

O((d− t)d)
O(d1/3) O((d− t)d)
O(ln d) O(d lnd) O(d lnd)

0 1 1 1 1

Table 1: Asymptotic bounds for χt
a(d) and χt

s(d).

There is much remaining work in the case d − t = o(d). Table 1 is a
rough summary of the current bounds on χt

a(d) and χt
s(d) when d is large. A

case of particular interest to the authors is when d− t = 1; in this case, it is
unknown if χd−1

a (d) is Θ(d2/3), Θ(d ln d) or lies somewhere strictly between
these extremes.
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Adapted list colouring of planar graphs

Louis Esperet∗ Mickaël Montassier† Xuding Zhu‡

Abstract

Given a (possibly improper) edge-colouring F of a graph G, a vertex colour-
ing of G is adapted to F if no colour appears at the same time on an edge and
on its two endpoints. If for some integer k, a graph G is such that given any
list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-
colouring F of G, G admits a colouring c adapted to F where c(v) ∈ L(v)
for all v, then G is said to be adaptably k-choosable. In this note, we prove
that K5-minor-free graphs are adaptably 4-choosable, which implies that pla-
nar graphs are adaptably 4-colourable and answers a question of Hell and Zhu.
We also prove that triangle-free planar graphs are adaptably 3-choosable and
give negative results on planar graphs without 4-cycle, planar graphs without
5-cycle, and planar graphs without triangles at distance t, for any t ≥ 0.

Keywords: Adapted colouring, list colouring, planar graphs.

Mathematical Subject Classification: 05C15

1 Introduction

The concept of adapted colouring of a graph was introduced by Hell and Zhu in [9],
and has strong connections with matrix partition of graphs, graph homomorphisms,
and full constraint satisfaction problems [4, 6, 7, 10]. The more general problem of
adapted list colouring of hypergraphs was then considered by Kostochka and Zhu in
[11], where an application to job assignment problems was also given.
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In this note, we study adapted list colourings of simple graphs. Let G be a simple

graph (that is, without loops nor multiple edges), and let F : E(G) → N be a (possi-
bly improper) colouring of the edges of G. A k-colouring c : V (G) → {1, . . . , k} of
the vertices of G is adapted to F if for every uv ∈ E(G), c(u) 6= c(v) or c(v) 6= F (uv).
In other words, the same colour never appears on an edge and both its endpoints. If
there is an integer k such that for any edge colouring F of G, there exists a vertex
k-colouring of G adapted to F , we say that G is adaptably k-colourable. The smallest
k such that G is adaptably k-colourable is called the adaptable chromatic number of
G, denoted by χad(G).

Note that in [9] and [11], the authors require that the edge colouring F is a
k-colouring. Even though we enable F to take any integer value, it is easy to see
that our definition is equivalent to the original definition (whereas its extension to
adapted list colouring is more natural). Let L : V (G) → 2N be a list assignment to
the vertices of a graph G, and F be a (possibly improper) edge colouring of G. We
say that a colouring c of G adapted to F is an L-colouring adapted to F if for any
vertex v ∈ V (G), we have c(v) ∈ L(v). If for any edge colouring F of G and any
list assignment L with |L(v)| ≥ k for all v ∈ V (G) there exists an L-colouring of G
adapted to F , we say that G is adaptably k-choosable. The smallest k such that G is
adaptably k-choosable is called the adaptable choice number of G, denoted by chad(G).

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring
of G, we clearly have χad(G) ≤ χ(G) and chad(G) ≤ ch(G) for any graph G, where
χ(G) is the usual chromatic number of G, and ch(G) is the usual choice number of G.
Using the Four-Colour Theorem and a theorem of Thomassen [13], this proves that
for any planar graph G, χad(G) ≤ 4 and chad(G) ≤ 5. In [9], Hell and Zhu proved that
there exist planar graphs that are not adaptably 3-colourable, and asked whether it
would be possible to prove that every planar graph is adaptably 4-colourable without
using the Four-Colour Theorem.

A graph H is called a minor of G if a copy of H can be obtained by contracting
edges and/or deleting vertices and edges of G. A graph is said to be H-minor-free
if it does not have H as a minor. Planar graphs are known to be a proper subclass
of K5-minor-free graphs. In this note, we answer to the question of Hell and Zhu by
proving the following stronger statement:

Theorem 1 Every K5-minor-free graph is adaptably 4-choosable.

Observe that this does not hold for the usual list colouring, since Voigt [15] proved
that there exist planar graphs which are not 4-choosable.
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Triangle-free planar graphs are known to be 3-colourable [5, 14] and 4-choosable (it

is easy to prove that they are 3-degenerate using Euler Formula). On the other hand
Voigt [16] proved that there exist triangle-free planar graphs that are not 3-choosable.
In Section 3, we prove the following theorem:

Theorem 2 Every triangle-free planar graph is adaptably 3-choosable.

In Section 4, we investigate a problem related to a question of Havel [8]. We prove
that for all t, there exist planar graph without triangles at distance less than t, which
are not adaptably 3-choosable. In Sections 5 and 6, we prove that there exist planar
graphs without 4-cycles, and planar graph without 5-cycles, which are not adaptably
3-colourable. These negative results seem to indicate that it may be hard to have a
weaker hypothesis in Theorem 2.

2 K5-minor-free graphs

Theorem 1 is a consequence of Lemma 2.3 in this section. Note that the adaptable
4-choosability of planar graphs can be deduced directly from Lemma 2.1.

Lemma 2.1 Let G be an edge-coloured plane graph, and let C = (v1, . . . , vk) be its
outer face. Let φ be an adapted colouring of v1 and v2. Suppose finally that any vertex
v ∈ C distinct from v1 and v2 has a colour list L(v) of size at least three and every
vertex v ∈ V (G) \C has a colour list L(v) of size at least four. Then the colouring φ
can be extended to an adapted L-colouring of G.

Proof. We prove this lemma by induction on |V (G)|. If |V (G)| = 3, the assertion is
trivial. Suppose now that |V (G)| ≥ 4 and assume that the assertion is true for any
smaller graphs.

Since the subgraph GC of G induced by C is an outerplanar graph, it contains
two vertices vi and vj of degree at most two which are not adjacent in GC and which
are not cut-vertices of GC . These vertices vi and vj are neither cut-vertices of G nor
incident to a chord of C, and one of them (say vi), is distinct from v1 and v2. Let
α ∈ L(vi) be a colour distinct from the colours of the edges vivi+1, vivi−1. For each
neighbour x of vi not in C, we remove the colour α from the colour list of x. Applying
the induction hypothesis to G \ vi and then colouring vi with α yields an adapted list
colouring of G.

Lemma 2.2 Let G be an edge-coloured plane graph. Suppose that every vertex v of
G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic to K2 or
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K3, and let φ be an adapted L-colouring of H. Then φ can be extended to an adapted
L-colouring of G.

Proof. Let G be a counterexample with minimum order. If H is isomorphic to K2,
then consider a face incident to H as the outer face and apply Lemma 2.1 to this
planar embedding of G.

Assume now that H is isomorphic to K3 and V (H) = {u, v, w}. If H is a separat-
ing 3-cycle, then let G1 (resp. G2) be the graph induced by the vertices of H and the
vertices inside (resp. outside) of H . By the minimality of G, extending φ to G1 and
to G2 yields an adapted L-colouring of G. Suppose now that H is not a separating
3-cycle, and assume that H bounds the outer face of G. Let G′ = G \ w and let L′

be the list assignment defined by L′(x) = L(x) \ {φ(w)} for every vertex x adjacent
to w (and distinct from u, v) and by L′(x) = L(x) for any other vertex distinct from
u and v. Lemma 2.1 applied to G′ allows to extend φ to G.

Lemma 2.3 Let G be an edge maximal K5-minor-free graph. Suppose that every
vertex v of G has a list L(v) of size at least four. Let H be a subgraph of G isomorphic
to K2 or K3, and let φ be an adapted L-colouring of H. Then φ can be extended to
an adapted L-colouring of G.

Proof. Let G be a counterexample with minimum order. Then G is not isomorphic
to the Wagner graph (which is 3-regular, and hence adaptably L-colourable given a
precolouring of H), and by Lemma 2.2, G is not a planar triangulation. It follows
from Wagner’s theorem [17], that G = G1 ∪ G2 where G1, G2 are proper subgraphs
of G such that G1 ∩ G2 is isomorphic to K2 or K3. Clearly, H ⊆ G1 or H ⊆ G2.
Without loss of generality, assume that H ⊆ G1. By minimality of G, we can extend
φ to G1. This gives an adapted colouring to G1 ∩ G2 which can be extended to G2,
by the minimality of G. This yields an extension of φ to an adapted L-colouring of
G.

3 Triangle-free planar graphs

Theorem 2 is a consequence of the following theorem:

Theorem 3 Suppose G is an edge-coloured simple triangle-free plane graph, C =
(v1, v2, · · · , vk) is the outer face. Suppose L is a list assignment that assigns to each
vertex x a set L(x) of 3 permissible colours, except that some vertices on C have only
2 permissible colours. However, each edge of G has at least one end vertex x which
has 3 permissible colours. Then G is adaptably L-colourable.
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Proof. We may assume G is connected and prove the theorem by induction on the
number of vertices. If |V (G)| ≤ 4, then the theorem is obviously true.

Assume |V (G)| ≥ 5. A path P = (vi, x, vj) is called a long chord of C connecting
vi and vj, if vi, vj ∈ C, x 6∈ C and |L(vi)| + |L(vj)| = 5. Let P be the set of chords,
long chords, and cut-vertices of C. Suppose P ∈ P is a chord (vi, vj) or a long chord
(vi, x, vj) connecting vi and vj . We denote by AP and BP the two components of
C − {vi, vj}, and assume that |AP | ≤ |BP |. If P ∈ P is a cut-vertex of C, we denote
by AP the smallest component of C − P . Let P ∗ ∈ P be a chord, long chord, or
cut-vertex, for which |AP ∗| is minimum.

Claim AP ∗ contains a vertex vt which is not a cut-vertex, such that |L(vt)| = 3 and
vt is not contained in any chord or long chord of C.

First observe that AP ∗ does not contain any cut-vertex, since otherwise this would
contradict the minimality of P ∗. Assume that P ∗ is a cut-vertex v. Then AP ∗ contains
at least two adjacent vertices vi and vi+1, and both of them are neither contained in
a chord nor in a long chord of C by the minimality of P ∗. By the hypothesis, there
is a t ∈ {i, i + 1} such that |L(vt)| = 3.

Assume P ∗ = (vi, x, vj) is a long chord, |L(vj)| = 2 and AP ∗ =
(vi+1, vi+2, · · · , vj−1). Then |L(vj−1)| = 3, for otherwise vjvj−1 is an edge of G con-
necting two vertices each with 2 permissible colours, in contrary to our assumption.
Since G is triangle-free, vj−1 is not adjacent to x. If vj−1 is contained in a chord or a
long chord P ′, then we would have AP ′ ⊂ AP ∗ and hence |AP ′| < |AP ∗|, in contrary
to our choice of P ∗.

Assume P ∗ = (vi, vj) is a chord, and AP ∗ = (vi+1, vi+2, · · · , vj−1). Since G is
triangle-free, vi+1 6= vj−1. Since each edge of G has at least one end vertex x which
has 3 permissible colours, there exists t ∈ {i + 1, i + 2} such that |L(vt)| = 3. By the
same argument as above, vt is not contained in any chord or long chord of C. This
completes the proof of the claim.

Let vt ∈ C be a vertex which is not a cut-vertex, such that |L(vt)| = 3 and vt is
not contained in any chord or long chord of C. Let α ∈ L(vt) be a colour distinct
from the colours of the two edges vt−1vt and vtvt+1. Let G′ = G − vt and let L′ be a
list assignment of G′ defined as L′(x) = L(x) − {α} if x is a neighbour of vt distinct
from vt−1, vt+1, and L′(x) = L(x) otherwise. Then L′(x) contains 3 colours for each
interior vertex x of G′ and L′(x) contains at least 2 colours for each vertex x on the
outer face of G′, since vt is not contained in any chord of C. Moreover, since vt is not
contained in any long chord of C, it follows that each edge of G′ has at least one end
vertex x which has 3 permissible colours. By induction hypothesis, G′ is adaptably
L′-colourable. Any L′-colouring of G′ can be extended to an L-colouring of G by
colouring vt with colour α. So G is adaptably L-colourable.
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Figure 1: The construction of Hk.

4 Planar graphs without triangles at distance k

The distance between two triangles xyz and uvw is the minimum distance between a
vertex of {x, y, z} and a vertex of {u, v, w}. For any graph G, we denote by dt(G) the
minimum distance between two triangles of G. If G contains at most one triangle,
we take dt(G) to be infinite. Havel [8] asked the following question: is it true that
for some k, every planar graph G with dt(G) ≥ k is 3-colourable? Havel showed that
such an integer k is at least 2, disproving a conjecture of Grűnbaum. In [1], Aksionov
and L.S Mel’nikok proved that such a k is at least 4, and conjectured that the real
value should be 5.

Since triangle-free planar graphs are adaptably 3-choosable, it is interesting to
see if anything can be said about a relaxation similar to Havel’s problem : is there
an integer k, such that any planar graph G with dt(G) ≥ k is adaptably 3-choosable?
In the following, we prove that such a k does not exist: more precisely, for every k
we construct a planar graph where every two triangles are at distance at least 2k
apart, which is not adaptably 3-choosable.

Let us define the distance between two faces F1 and F2 of a graph as the minimum
distance between a vertex of F1 and a vertex of F2. A face containing exactly k
vertices is called a k-face. In the following, we construct inductively the plane graph
Hi, such that the following is verified at each step:

(a) Hi is triangle-free.
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1 2

b b

aaaa

b
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z z′

u v

Figure 2: H(a, b).

(b) Hi contains exactly two 5-faces (the outer face and another face, say Fi). More-
over, the distance between these two faces is exactly i.

(c) Assume that the outer face is coloured with five distinct colours a, b, c, d and
e in clockwise order. Then there exist an edge-colouring Fi of Hi and a list
assignment Li with |Li(v)| = 3 for every vertex v which is not incident to the
outer face, such that Hi has a unique Li-colouring adapted to Fi. Moreover, this
colouring is such that Fi is coloured with a, b, c, d and e in clockwise order.

Let H0 be a 5-cycle. Then the three properties are trivially verified. Assume that
for some i ≥ 1, Hi−1 also verifies these properties. Fix five different colours a, b, c,
d, and e (in clockwise order) on the vertices of the outer face of Hi−1. By property
(3), there exist an edge-colouring Fi−1 of Hi−1 and a list assignment Li−1 with lists
of size three, such that Hi−1 has a unique Li−1-colouring adapted to Fi−1. In this
colouring, the vertices u, v, w, x, and y of the 5-face Fi−1 are coloured with a, b, c,
d and e respectively. Let Hi be the graph obtained from Hi−1 by adding five new
vertices inside Fi−1, as depicted in Figure 1. This figure also shows how to extend
Fi−1 and Li−1 to an edge-colouring Fi and a list-assignment Li of Hi.

Since u and w are coloured with a and c respectively, the new vertex v′ adjacent
to u and w must be coloured with b. The new vertex w′ adjacent to v′ and x must
be coloured with c; the new vertex x′ adjacent to w′ and y must be coloured with d;
the new vertex y′ adjacent to x′ and y must be coloured with e, and the new vertex
u′ adjacent to y′ and v′ must be coloured with a. The graph Hi is still triangle-free,
and only contains two 5-faces: the outer face and Fi = u′v′w′x′y′. Moreover these
two faces are at distance exactly i−1+1 = i. Hence, the graph Hi verifies properties
(a), (b), and (c). We denote by Gi the graph obtained from Hi by adding inside the
face Fi a 3-vertex z adjacent to u′, w′, and x′. We give the edges zu′, zw′ and zx′

colours a, c, and d respectively, and we assign the list {a, c, d} to z. Observe that the
graph Gi contains only one triangle (which is at distance i from the outer face), and
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that the colouring of the outer face cannot be extended to an adapted list-colouring
of Gi.

Let H(a, b) be the edge-coloured graph depicted in Figure 2. Assume that x and
y are coloured with a and b respectively. Then u and v must be coloured with 3,
and w must be coloured either 1 or 2. If it is coloured with 1, the 5-face xzwyu
has its vertices coloured with a, 2, 1, b and 3. Otherwise, the 5-face xvywz′ has its
vertices coloured with a, 3, b, 2, 1. Let G(a, b) be the graph obtained from H(a, b)
by plugging the widget Gk in each of the two 5-faces (that is, each of these two faces
becomes the outer face of a graph Gk). Using what has been done before, we know
that with a suitable edge-colouring of the two widgets, there exists a list assignment
with lists of size three, such that the colouring of H(a, b) cannot be extended to a
colouring of G(a, b). Hence, if x and y are coloured with a and b respectively, this
cannot be extended to an adapted list colouring of G(a, b).

Consider 9 copies of G(a, b), with (a, b) ∈ {4, 5, 6} × {7, 8, 9}, and identify all the
vertices x (resp. y) of these copies into a single vertex x∗ (resp y∗). Assign the colour
lists {4, 5, 6} and {7, 8, 9} to x∗ and y∗ respectively. Assume that there exists an
adapted list colouring f of this graph, then there exist no adapted list colouring of
the copy of G(f(x∗), f(y∗)), which is a contradiction. Hence, this planar graph is not
adaptably 3-choosable, and any two triangles are at distance at least 2k apart.

5 Planar graphs without 4-cycles

In this section, we prove that there exist planar graphs without 4-cycles, which are not
adaptably 3-colourable. Let H(a, b, c) be the edge-coloured graph depicted in Figure
3. Consider that {a, b, c} = {1, 2, 3}, and assume that the vertices u and v of H(a, b, c)
are coloured with a and b respectively. Then at least one of the vertices w and w′

is coloured with c. By symmetry, we can assume that w is coloured with c. Then x
must be coloured with a, y must be coloured with c, and z and z′ must be coloured
with b. It is easy to check that in this situation, the remaining subgraph induced the
vertices at distance one or two from z and z′ cannot be adaptably coloured. Hence, if
u and v are coloured with a and b, this colouring cannot be extended to an adapted
3-colouring of H(a, b, c).

For every 1 ≤ a ≤ 3, let b and c be the two colours from {1, 2, 3} distinct from
a. We denote by Ga the edge-coloured graph obtained from H(a, b, c) and H(a, c, b)
by contracting the two vertices u (resp. v) into a single vertex u∗ (resp.v∗). Observe
that in any adapted 3-colouring of Ga, if u∗ is coloured with a then v∗ is also coloured
with a.
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Figure 4: A planar graph without 4-cycle, which is not adaptably 3-colourable.
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Figure 5: H1(a) and H2(a, b).

Consider now an adapted 3-colouring of the construction of Figure 4, which does
not contain any 4-cycle. If the vertex u is coloured with 1 ≤ i ≤ 3, then the two
vertices xi and yi are both coloured with i, which is a contradiction since they are
linked by an edge coloured with i. Hence, this graph is not adaptably 3-colourable.

6 Planar graphs without 5-cycles

In this section, we prove that there exist planar graphs without 5-cycles, which are
not adaptably 3-colourable. For any {a, b, c} = {1, 2, 3}, let H1(a) and H2(a, b) be the
two C5-free planar graphs depicted in Figure 5. It is easy to check that in H1(a), if
the vertices u and v are coloured with a, then this colouring cannot be extended to an
adapted colouring of H1(a). Similarly in H2(a, b), if u and v are coloured respectively
with a and b (a 6= b), then this colouring cannot be extended to an adapted colouring
of H2(a, b).

Consider the three graphs H1(a) for 1 ≤ a ≤ 3, and the six graphs H2(a, b) with
1 ≤ a 6= b ≤ 3. Contract the nine vertices u (resp. v) of these graphs into a single
vertex u∗ (resp. v∗). Assume that there exists an adapted 3-colouring f of this graph.
If f(u∗) = f(v∗) then the copy of H1(f(u∗)) is not adaptably 3-colourable, which is
a contradiction. Otherwise f(u∗) 6= f(v∗) and the copy of H2(f(u∗), f(v∗)) is not
adaptably 3-colourable, which is also a contradiction. Hence, this graph is planar
and without 5-cycles, but is not adaptably 3-colourable.
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7 Conclusion

In this note, we proved that triangle-free planar graphs are adaptably 3-choosable,
whereas C4-free planar graphs and C5-free planar graphs are not even adaptably 3-
colourable. We also showed that for any k ≥ 0, there exist planar graphs without
triangles at distance k which are not adaptably 3-choosable. However, the question
remains open for adapted colouring:

Question 7.1 Is there an integer k, such that every planar graph G with dt(G) ≥ k
is adaptably 3-colourable?

If the answer to this question is negative, it implies that the answer to the original
problem of Havel is also negative, whereas a positive answer to the original problem
of Havel would imply a positive answer to Question 7.1.

In 1976, Steinberg conjectured that planar graphs without cycles of length 4 and 5
are 3-colourable (see [12] for a survey). We can ask the same for adapted 3-colouring
and adapted 3-choosability :

Question 7.2 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
colourable?

Question 7.3 Are planar graphs without 4-cycles and 5-cycles adaptably 3-
choosable?

A weaker version of the problem of Steinberg was proposed by Erdős in 1991: he
asked what is the smallest i, such that every planar graph without cycles of length
4 to i is 3-colourable? The same can be asked for adapted 3-colouring and adapted
3-choosability:

Question 7.4 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-colourable?

Question 7.5 What is the smallest i, such that every planar graph without cycles of
length 4 to i is adaptably 3-choosable?

Note that by [3], the answer of Question 7.4 is at most 7, and by [2, 18], the
answer of Question 7.5 is at most 9.
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