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Abstract

This thesis describes theoretical and practical contributions to study fault-tolerance in dis-
tributed computing systems, and to investigate the impact of graph structures to deal with
fault-tolerance. Specifically, we deal with process failures and we consider transient (or tem-
porary) and crash (or permanent) failures. Our purpose is to study such systems in the context
of locality in the sense that the only permitted actions are those using local information. We
use both local computations and message passing models. We build on two main techniques
in fault-tolerance research: Failure detection and self-stabilization.

For faults that are bounded in time, they lead a system to reach an arbitrary state. We
have proposed an extension of the local computations model to study self-stabilization as
fault-tolerance against such faults. That is, we deal with local detection and correction of the
not “legal” (or abnormal) configurations resulting from the arbitrary state. The problem of
resolving conflict is studied in more detail and its stabilization time in terms of the needed
synchronizations is given. For crash failures, we first propose a module to implement a fail-
ure detector in the local computations model. It is a module that gives its process its mind
(possibly incorrect), whether another process may have crashed or not. By combining these
techniques and having failure locality purpose in mind, we construct a novel framework to
transform an intolerant algorithm to a fault-tolerant one taking benefit of the proofs of the the
first one.

On the other hand, we augment the Visidia software to simulate failures and then fault-
tolerance. The transient failures are simulated simply through views allowing to change the
states of the nodes. To deal with crash failures, first we integrate the failure detector module
to Visidia with an interface to measure its performances in order to reach expected behav-
iors. Second, through views, the user may stop the work of some node to simulate the crash.
To circumvent the impossibility implementation, the system of the failure detector is distin-
guished from the algorithm one. That is, the failure detector is implemented with its required
synchrony while the algorithm is still in asynchronous mode.

At the end, we use graph theory to help fault-tolerance following three aspects. We present
a new formalization of the vertex connectivity using the notion of succorer sons. Then we pro-
pose a local distributed algorithm to test the 2-connectivity of graphs using a constructive
approach in the two used models. These results illuminate how to build a bridge between
these models. Second, extending the notion of succorer sons, we studied the maintenance of
a forest of spanning trees in spite of crash failures. Another aspect that has been considered
is efficiency taking benefit of the structural knowledge. Thus, we propose to use free triangle
graphs to solve the problem of resolving conflicts in the presence of transient failures. Fur-
ther, we study the maintenance of a spanning tree for k-connected graphs in spite of k − 1

consecutive failures. In this case, our formalization is an occurrence of the Menger’s theorem.
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Résumé

Ce travail constitue une contribution théorique et pratique à l’étude de la tolérance aux pannes
dans les système distribués, et de spécifier l’impacte de la théorie des graphes dans ce do-
maine. Précisément, on s’intéresse aux pannes de processus et nous considérons les pannes
transitoires et les pannes franches. Notre but est d’étudier ces systèmes dans le contexte de la
localité: Les seuls calculs autorisés sont ceux à base d’informations locales. Comme modèle,
on utilisera les calculs locaux et à passage de messages. Nos constructions sont basées sur les
techniques les plus répondues dans ce domaine: La détection de pannes et l’auto-stabilisation.

Pour les pannes de durée limitée, elles mènent le système dans un état arbitraire. Nous
proposons une extension au modèle des calculs locaux pour exprimer l’auto-stabilisation.
Ceci revient à capturer la notion de détection et de correction des configurations “illégales”
qui résultent de l’état arbitraire du système. Le problème de la résolution de conflits est dé-
taillé, et son temps de stabilisation est calculé en nombre de synchronisations. Pour les pannes
franches, en premier nous proposons un module pour implanter un détecteur de pannes dis-
tribué pour les calculs locaux. C’est un module qui donne son avis à son processus (qui peut
être incorrect), si un autre processus est en panne ou non. En combinant ces deux techniques et
en gardant la localité comme but ultime, nous construisons un nouvel outil pour transformer
un algorithme intolérant en un autre algorithme équivalent mais qui est tolérant aux pannes,
dont la preuve de correction est déduite du premier.

D’une autre part, nous avons augmenté la plate-forme Visidia pour simuler les pannes.
Les pannes transitoires sont simplement simulées à travers des vues permettant de changer
l’état des noeuds. Pour les pannes franches, en premier le détecteur de pannes est intégré dans
Visidia, en plus d’une interface pour mesurer ses performances pour atteindre les comporte-
ments attendus. En second, à travers des vues, l’utilisateur peut stopper le travail d’un noeud
et simuler la panne d’un processus. Pour éviter les résultats d’impossibilité, le système de
communication sous-jacent aux détecteurs est distingué de celui de l’algorithme: Le détecteur
est implanté avec ses besoins de synchronisme tandis que l’algorithme reste asynchrone.

Pour terminer cette thèse, nous sollicitons la théorie de graphe pour aider la tolérance aux
pannes selon trois aspects. Nous présentons une nouvelle formalisation du test de la connex-
ité de graphes en utilisant la notion de fils de secours. Un algorithme distribué et local pour
tester la 2-connexité est proposé dans les deux modèles. Ce résultat nous illumine à propos
de la manière dont un pont peut être construit entre ces deux modèles. En second, le calcul
des fils de secours est entendu pour étudier la maintenance de forêts d’arbres recouvrants en
présence de pannes franches. Le dernier aspect est l’efficacité en tenant compte des connais-
sances structurelles. Les graphes sans triangles sont adaptés à la résolution des conflits et la
maintenance présente un intérêt pour les graphes k-connexes en présence de k−1 pannes con-
sécutives. Dans ce cas, notre formalisation devient une occurrence du théorème de Menger.
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Preface

In our society, distributed computing interests all information systems. The algorithms de-
signed and implemented for special network topology or explicit environment may be easier
to design, and oftenmore efficient, but less flexible regardless of the network topology changes
or environment evolution.

The most goal of our research is to deal with fault-tolerance in distributed environment.
This work unifies four fundamental aspects in this area:

• Models

• Algorithms

• Experimentation

• Network structure

We start to show the motivations of our research about fault-tolerance in distributed com-
puting systems. Then, we present well-known terminology and some relevant techniques.

The formal frameworks including tools to model networks, to formalize distributed com-
puting and to encode distributed algorithms are presented in Chapter 1. Detailed systems for
all following chapters are given. Since the system assumptions in these chapters differ, the
overall system model is chosen such that it covers all these system models. Specific assump-
tions are presented only as needed. In fact, somemodels are presented in their formal state and
other using informal descriptions. An overview of two examples of distributed computation
of a spanning tree are also given.

Chapter 2 deals with the self-stabilization using relabeling systems. The notion of illegal
configuration is introduced in the local computations model. Such an extension is used to
encode states that disturb the functioning of applications. Automatic generation method of
self-stabilizing distributed algorithms is proposed. The approach is illustrated with examples
including the spanning tree computation and distributed resource allocation. For the last one,
we propose an implementation and analysis based on the use of randomized synchroniza-
tions. Then, we study some graph structure for which this algorithm is executed optimally.

Chapter 3 focuses on the local failure detection services. We present and analyze our fail-
ure detector protocol based on local computations. Some experimentations are proposed to
validate the power and analysis of such a protocol. A new view of failure detection measures
is also discussed.

Chapter 4 is devoted to the formal design of local fault-tolerant distributed applications.
Given a network which is improved using unreliable failure detectors, we propose a method
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to design fault-tolerant distributed algorithms bymeans of local computations. The procedure
is illustrated through examples of distributed spanning tree computations.

A tool to help the designers of fault-tolerant distributed applications is presented in Chap-
ter 5. That is, a software to prototype applications based on distributed algorithms encoded
in both local computations and message passing models. This part unifies the formal frame-
work of fault-tolerant distributed algorithms, the use of failure detectors on Visidia platform.
Example of simulation of fault-tolerant distributed algorithm shows the advantages of this ap-
proach. Then, we discuss how our platform can be used to prototype fault-tolerant distributed
applications.

As the structure of the network and especially its connectivity is an important feature on
the study of the fault-tolerance in distributed systems, we propose in Chapter 6 a protocol to
test the 2-vertex connectivity of graphs in distributed setting. That is, a general and a construc-
tive approach. The protocol is encoded in the local computations model and implemented in
the message passing model using a set of procedures.

In Chapter 7, we use the same scheme of the previous algorithm to deal with the main-
tenance of a forest of spanning trees of a network in the presence of crash failures. A new
formalization is given and an incremental algorithm is proposed. Then, we show the impact
of the graph structure to design efficient solutions of problems in distributed environments in
spite of failures. So we adapt our protocol to deal with the maintenance of a spanning tree
in the presence of crash failures for k-connected graphs. That is a useful structure to design
reliable applications for unreliable networks.

Some of the works presented in this thesis have been published separately as referred con-
ference and journal papers:

Section 2.5 was published as: B. Hamid and M. Mosbah, An automatic approach to self-
stabilization, Proceedings SNPD05, 6th ACIS International Conference on Software Engineer-
ing, Artificial Intelligence, Networking, and Parallel/Distributed Computing, IEEEComputer
Society, 2005, pp 123-128.

Section 2.6.2 was appeared as: B. Hamid and M. Mosbah, A Local Self-stabilizing Enumer-
ation Algorithm, Proceedings DAIS06, Distributed Applications and Interoperable Systems,
6th IFIP WG 6.1 International Conference, LNCS 4025, Springer-Verlag, 2006, pp. 289-302.
An extended version of this work is also published as: B. Hamid and M. Mosbah, A Local
Enumeration Protocol in Spite of Corrupted Data, Journal Of Computer(JCP), Volume 1(7),
Academy Publisher, 2006, pp. 9-20.

Section 3.4 was published as: B. Hamid and M. Mosbah, An implementation of a fail-
ure detector for local computations in graphs, Proceedings of the 23rd IASTED International
multi-conference on parallel and distributed computing and networks, ACTA Press, 2005, pp
473-478.

Section 4.4 appeared as: B. Hamid and M. Mosbah, A formal model for fault-tolerance in
distributed systems, Proceedings SAFECOM05, 24th International Conference on Computer
Safety, Reliability and Security, LNCS 3688, Springer-Verlag, 2005, pp. 108-121.

Section 5.2 was published as: B. Hamid and M. Mosbah, Visualization of self-stabilizing
distributed algorithms. Proceedings IV05, 9th International conference on information visual-
ization, IEEE Computer Society, 2005, pp. 550-555. An extended version is accepted to be pub-
lished as: B. Hamid and M. Mosbah, Self-stabilizing applications in distributed environments
with transient faults, International Journal of Applied Mathematics and Computer Science.



The result of Section 5.3 appeared as: B. Hamid, A tool to design and prototype fault-
tolerant distributed algorithms, Proceedings NOTERE06, New Technologies for Distributed
Systems, 2006, HERMES, pp 311-322.

The first version of Section 6.3 is accepted for inclusion in the proceeding of the PDCS 2007
and in the IJECS Journal as: Distributed 2-Vertex Connectivity Test of Graphs Using Local
Knowledge, with B. Le Saec and M. Mosbah.

The new version of this section is accepted for inclusion in the Proceedings ISPA 2007,The
Fifth International Symposium on Parallel and Distributed Processing and Applications ,
LNCS , Springer-Verlag as: Distributed Local 2-Connectivity Test of Graphs and Applications,
with B. Le Saec and M. Mosbah.

A partial result of Chapter 7 was presented in the Workshop on Graph Computation Mod-
els(GCM06) as: B. Hamid, DistributedMaintenance of Spanning TreesUsing GraphRelabeling
Systems, 2006. The result of Section 7.8.3, related to the message passing model, is accepted
for publication at the VECOS 2007 proceeding as: Simple Distributed Algorithm for the Main-
tenance of a Spanning Tree, with B. Le Saec and M. Mosbah.

Some of the results in this thesis that are not yet been published are:

• Section 2.7 is in preparation as: Self-stabilizing Distributed Algorithm For Resolving
Conflicts, with M. Mosbah and A. Zemmari.

• An extended version of the result of Section 6.3 is invited for possible publication in one
of WASET’s journals.

• The result of Section 7.8.3 related to the local computations model is in preparation as:
DistributedMaintenance of a Spanning Tree of k-Connected Graphs, with B. Le Saec and
M. Mosbah.
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Introduction

A distributed system is a system which involves several computers, processors or processes
which cooperate in some way to do some task. However, such systems raise several issues
not found in single processor systems. The main difficulty arises when faults occur. Faults
may be hardware defects (link failures, crashes) but also they can refer to (software) errors
which prevent a system to continue functioning in a correct manner. While in the past, it has
been considered acceptable for services to be unavailable because of failures, this is rapidly
changing because our society becomes more dependent on computer technology, and there-
fore the requirement for high reliability and availability for systems is continually increasing.
The rising popularity of distributed systems and their applications in many domains (such as
finance, booking, telecommunication) have increased the importance of developing methods
to both detect and handle faults.

There are two principal approaches to improve the reliability of a system. The first is called
fault prevention [Lap92] and the second approach is fault-tolerance [Sch90, AG93, AAE04]. The
aim of these approaches is to provide a service in spite of the presence of faults in the sys-
tem. Several research works refer to the paradigm of fault-tolerance as the ability of a system
to recover, in a finite time, to reach a desired computation. Most existing fault-tolerance im-
plementations in the literature propose global solutions which require to involve the entire
system. As networks grow fast, detecting and correcting errors globally is no longer feasible.
The solutions that deal with local detection and correction are rather essential because they
are scalable and can be deployed even for large and evolving networks. Note, however, that
in this case it is useful to have the correct (non faulty) parts of the network operating normally
while recovering locally the faulty components.

Fault-tolerance and dependable systems research covers a wide spectrum of applications
ranging across embedded real/time systems, commercial transaction systems, transportation
systems, and military/space systems. The supporting research includes system architecture,
design techniques, coding theory, testing, validation, proof of correctness, modeling, software re-
liability, operating systems, parallel processing and real/time processing. These areas often
involve widely diverse core expertise including formal logic, mathematics, stochastic modeling,
graph theory, hardware design and software engineering.

Usually, a distributed system is composed of two types of components: Processors (or ma-
chines) and communication channels between the processors. Distributed computing studies
the computational activities performed on these systems. Such systems are subject to some
paradigms including coordination due to the absence of centralization, and to much uncer-
tainly result of failures: Processors may crash, information (knowledge) may be corrupted,
lost or duplicated during the transmission and son forth. Fault-tolerant computing deals with
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the study of reliable distributed systems that tolerate such uncertainly. Informally, a fault-
tolerant algorithm ensures that after any failure, it converges from a faulty state to a correct
one. It is equivalent to say that the system will automatically recover to reach a correct state
in a finite time. Therefore, an algorithm is called fault-tolerant if it eventually starts to behave
correctly regardless of the configuration with fault components.

When we study distributed computing, often we use models to denote some abstract rep-
resentation (environment) of a distributed system. A distributed system (or network) is rep-
resented as a connected, undirected graphG denoted by (V,E). A node in V represents a pro-
cess and an edge in E represents a bidirectional communication link. To encode distributed
algorithms in such systems, we studied message passing model [Lyn96, AW98, Tel00] and lo-
cal computations model [LMS99, BMMS02]. In the former model, the nodes have only local
vision of the graph and communicate only with their neighbors by messages. The program
executed at each node consists of a set of variables (state) and a finite set of actions. A node
can write to its own variables, send and/or receive messages from its neighbors. In the lat-
ter model, the local state of a process (resp. link) is encoded by some labels attached to the
corresponding vertex (resp. edge). A distributed algorithm is therefore encoded by means of
local rewritings. Moreover, in both models, such algorithms can be implemented in a unified
way on a platform called Visidia [BMMS01]. However, it has been assumed that components
of such a system do not fail.

Because the paradigm of designing fault-tolerant distributed algorithms is challenging and
exciting, we are interested in studying and designing fault-tolerant algorithms in our frame-
work: Local computations model [LMS99]. The motivations of this thesis are on the one hand
to formulate the properties of fault-tolerant algorithms by using those of rewriting systems
yielding simple and formal proofs. On the other hand, as locality is an important feature of
distributed computing, it is important to understand how to carry on local computations in
the presence of faults. In this thesis, we present a modular approach based on graph trans-
formations to deal with faults within the framework of local computations. Then, we show
the possible implementation of such solutions in the message passing model. For efficiency
reasons, we study the impact of some graph structure to our methodology, and then we take
advantage to improve our solutions. Most of the presented protocols are implemented and
tested on the Visidia software, requiring in some cases extension of the existing platform.

Before we embark on discussing any aspect of fault-tolerant systems, we have to define
and sometimes to recall what we mean by a system, error, fault, failure and fault-tolerance.
These terms have been used in a variety of ways in different contexts and terms fault, failure
and error have often been used interchangeably. Here we adopt the same use of such terms.
We start this thesis by a system presentation to describe the context of our study, to give some
terminology and techniques. The remainder of this part provides an overview of these goals,
including the scope, methodology, and contributions developed herein.

0.1 Distributed Computing Systems

Typically, a distributed system is a collection of multiple processes, running on different hosts,
working to achieve a common goal. Then, distributed computing refers to the execution of
distributed algorithms on distributed systems. A distributed algorithm executes as a collection
of sequential processes, all executing their part of the algorithm without centralized control.
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To coordinate their works, they use communications through some links. Such an algorithm
receives, manipulates and outputs distributed data. A configuration of the system is a vector
of the states of all processes together with messages in transit on all links.

In the sequential models, determinism is implied. It means that given a set of inputs, we
can predict the execution of a deterministic algorithm. Nevertheless, determinism is not re-
quired in the execution of distributed algorithms. Since, processors may have different speeds
and links may have different delays, the different runs of the same algorithm on the same
set of inputs will have different executions. So, it is a hard task to predict the execution of
a distributed algorithm. Still, many paradigms in distributed computing system including:
Election, naming, broadcast, mutual exclusion, synchronization and fault-tolerance.

In distributed computing systems, the network is associated with some assumptions about
the knowledge of its size, its topology, if the nodes are identified and so on. These information
may be computed in a sequential manner and then diffused in order to be shared. That is, us-
ing pre-processing tasks for example. In addition, the computing system is characterized by
some constraints about its communication system. In such systems, a problem is often formal-
ized following some properties (specifications) as fairness, liveness, termination, closure and
convergence. To prove the correctness of a given solution, we must prove that the correspond-
ing algorithm satisfies all the corresponding properties under the system’s assumptions. By
contrast, to prove that some problem is unsolvable, it suffices to prove that for all its potential
solutions, it is impossible to satisfy at least one of its properties. In this case, we relax some
properties of the problem and/or assumptions about the distributed system.

The first classification of the distributed systems is based on the clock and the message
transfer delays, we can find three principal classes:

• Synchronous system: the system is equipped with a total clock which controls the stages
of calculations of each process. The speed of processes and the message transfer delays
are bounded (known bounds).

• Asynchronous system: the system does not have a total clock. No knowledge is specified
on the speed of processes nor on message transfer delays.

• Partially synchronous system: it is an asynchronous system which converges to a syn-
chronous one.

0.2 Fault-tolerance

The growth of the distributed systems, mainly the use of a great number of computation units,
increases the probability that some of these units break down during the execution of dis-
tributed algorithm leading to inconsistent executions. Algorithms which continue to function
even after failure of some of the components must be implemented to guarantee the coherence
of the system and to avoid the restarting of the treatments after each failure. These algorithms
are qualified as fault-tolerant algorithms. Now, we give some terminology and techniques
related to fault-tolerant computing.

0.2.1 Terminology

Here, we present the basic concepts related to processing failures [TS02].
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Availability. Is the ability of a system to be used immediately. Such a property refers to the
probability that the system is operating correctly at any given instant in time. Then, a system
is said to be highly available if it is working almost usually.

Reliability. A system is said to be reliable if it can run continuously without failure. Com-
pared to the availability property, the reliability property is related to some time interval in-
stead of an instant in time. If a system breaks down for one millisecond every hour, it has
an availability of over 99.9999 percent, but it still highly unreliable. For a system that never
crashes but breaks down for two weeks every August, its reliability is high but its availability
is only 96 percent.

Resilience. Such a factor deals with the degradation of the performances.

Dynamic Adaptability. To increase the availability of the system, it must be able to adapt
itself to changes.

Safety. Deals with the ability of a system to operate correctly in the situation when it failed
temporarily. For example, control systems such as those used to control nuclear power plants,
are required to provide a high degree of safety.

Maintainability. This property refers to how easy a failed system can be repaired. That is
when failures can be detected and repaired automatically. Such systems satisfy a high degree
of availability.

Note, however, that the attribute of most significance for fault-tolerance is reliability and
to some extent availability. In this thesis, we consider such attributes and in some way main-
tainability.

0.2.2 Fault-tolerance Techniques

A system is said to be failed when it cannot satisfy its tasks. For a distributed system devoted
to provide some services, such a system fails if one or more of those services cannot be com-
pletely furnished. Since finding out the causes of a failure, then removing such failures is an
important field in distributed computing systems, it is subject to much research in computer
science. That is strongly related to what are called dependable systems. Building these kind
of systems requires techniques to control faults. In [Lap92], a distinction between preventing,
removing and forecasting faults is given. In this thesis, we will be interested in fault-tolerance
issue. A system is said to be fault-tolerant if it can provide its services even in the presence of
faults. Most works in the literature use the following techniques to improve the reliability of
distributed computing systems.

Failure Models. In unsafe networks, we need to clarify some properties not used in a safe
network sometimes referred as dynamic properties. Generally one can distinguish three types
of failures in a distributed system:
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• Final failure (crash,permanent): In this case, the process stops definitively functioning
(physical breakdown).

• Byzantine failure(arbitrary): In this case, the process is carried out but moved away from
the specifications (virus).

• Transient failure (temporary): In this case, the process stops its correct functioning due
to a crash or byzantine failure and becomes correct again in a finite time: Physical crash
followed by a repair, disconnection followed by a connection.

After determining the type of the fault that may occur, which is a difficult task, we need to
adapt the specification of the problem to be solved in the presence of such faults. Byzantine
faults are not considered in this thesis.

In an asynchronous system various problems remain extremely difficult or unresolved in
the presence of crashes. One of the significant results, commonly called impossibility of Fischer,
Lynch and Paterson [FLP85] about the consensus problem: ’ There exists n processes with each one
an unspecified initial value. These processes must agree on a common value ’. Initially, input values
are held from some known set of values and output values are undefined. The specifications
of this problem are as follows:

• Termination: any correct process must end up deciding,

• Validity: if a process decides a value Val, then Val is the initial value of the one of the
processes,

• Agreement: two correct processes cannot decide on a different value.

The result of FLP , is expressed as follows: ’there is no any deterministic 1 algorithm which
solves the consensus in an asynchronous message passing system with one crash failure of a process’.
This impossibility is explained mainly by the fact that in an asynchronous message passing
system, it is impossible to distinguish between a crashed process and an only very slow one.
This problem presents a great importance in the distributed systems since of much of other
problems are reducible to this problem [MW87]. The basic approaches to solve this problem
consist in introducing some weak forms of synchrony [FLM85, CT96].

Redundancy. The well-known strategy to design reliable systems, composed of multiple
components, is the replication of all its components or just some of them. In fact, the key
technique for masking faults is to use redundancy. Three types of redundancy are possible
[Joh96, TS02]: Information redundancy, time redundancy and physical redundancy. For the
first one, extra bits are added to recover from altered bits. For the second one, an action is
performed, and then, if required, it is performed again. The use of transactions is an example
of this technique. For the last one, extra material are added to make the system able to tolerate
the break down or the malfunctioning of some components. This is the well-known technique.
Intuitively, the increasing of the replication degree improves the reliability of the system but
the cost of maintaining of such replications is expensive.

1Here, determinism is used instead of not probabilistic
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Self-stabilization. Self-stabilizing [Dij74] algorithms ensure that starting from any configu-
rations of the system, they converge to a legitimate state (configuration) in a finite time and
remain in a legitimate state forever. Let faults that are bounded in time. Consequently, up
to some time, which may be unknown but finite, the system may behave arbitrarily and end
up in an arbitrary state. After that, the system behaves normally forever. In this case, we can
say that self-stabilization protects against such failures, commonly named transient failures.
In fact, we can consider the end up arbitrarily state as a started configuration for a given self-
stabilizing algorithm. Thus, such an algorithm converges from a possibly erroneous state to
a legitimate state. However, no further failures are allowed after the stabilization time. As
stated, self-stabilization is fault-tolerance against faults that occur only at the beginning and
their duration is limited.

Failure Detectors. Failure detectors have been introduced in the seminal paper of Chandra
and Toueg [CT96] as an approved tool to solve the consensus problem [FLP85]. Informally,
a failure detector is an oracle associated with each process that gives this process its mind,
whether another process may have crashed or not. To solve the consensus problem the re-
quired failure detectors may make mistakes: They are named unreliable failure detectors. How-
ever, the use of failure detectors does not break the FLP impossibility. That is, their implemen-
tations require some synchrony from the system while the algorithm using their minds may
be totally asynchronous. In other words, the use of failure detectors provides an abstraction of
the needed synchrony. In addition, one of the main advantages of the use of failure detectors
is that an application is not concerned how the failure detector is implemented.

Fault Containment. Fault containment has been cited as a technique for fault-tolerance
[Nel90, Abb90]. Thereafter, it is introduced by [GG96, GGHP96, HH04] as an approach to en-
sure that the system is self-stabilizing and during recovery from a single transient fault, only a
small number of processes will be allowed to execute recovery actions. The author presented
examples to illustrate the possibility to design efficient fault-containment self-stabilizing pro-
tocols. Such algorithms contain the effects of limited transient faults while retaining the prop-
erty of self-stabilization. Thus, fault containment aims to minimize the fault impact in order
to reduce as much as possible their failure scope which can be any computational problem
subject. As we shall see, the failure locality refines such a scope.

Local Fault-tolerance. The goal of local fault-tolerance is to isolate the scope of faults to min-
imal neighborhoods of impact. This is an alternative to avoid the use of redundancywhich can
be prohibitively expensive for some distributed systems andmay be computationally impossi-
ble to achieve for others. Failure locality becomes a property of algorithms [CS92, CS96, KP00].
That is, an algorithm has a failure locality l, if the failure of any node v only affects nodes with
distance at most l from v. Formally, this is equivalent to fix the radius of the set of processes
possibly disrupted by a given fault to l and then such a radius can be viewed as a metric to
quantify the degree of fault-tolerance [PS04].
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0.3 Focus and Scopes of this Thesis

The focus of this thesis is to design distributed algorithms which run on an unreliable net-
work and tolerate the processes failure using local knowledge. The motivation for this study
is that the solution found in such an environment would be easily translated in other more
environments with simple changes.

In this thesis we study the following aspects:

• Models/Algorithms: We start the study of a fault-tolerance in a distributed computing
with the use of a local computations model and particularly graph relabeling systems.
We give formalizations of a different faults classes in this model and we propose algo-
rithms to solve some problems, including the spanning tree computations, resolving of
conflicts. Since, the most known models to deal with failures are time-based models and
communications play a great role in the design of protocols for these models, we intro-
duce the failure detectors module to mask the abstraction of such notions in the local
computations model. For the maintenance application, we propose both protocols in
local computations and message passing models.

• Experimentation: We deal with three phases. First, we are interested to show interac-
tively the execution of self-stabilizing distributed algorithms encoded by means of local
computations. Second, Visidia is improved by an unreliable failure detector. So, some
tests and measures are realized to determine the power of such a protocol and its pos-
sible use. Third, the improved platform allows us to design fault-tolerant distributed
algorithms and to prototype distributed applications. Most of algorithms presented in
this thesis are implemented.

• Graph Structure: Since the structure of the network especially its connectivity is a factor
of its reliability, we propose a protocol to test the 2-vertex connectivity of a graph. Then,
we extend such a protocol to compute a structure to deal with the maintenance of a forest
of spanning trees in the presence of crash failures. The second use of a graph structure
is to help us to design efficient algorithms. We begin by the use a cover of free-triangle
graphs to improve the implementation of the self-stabilizing resolving of conflicts algo-
rithm. Then, we exploit the connectivity knowledge to implement an efficient algorithm
to maintain a spanning tree for k-connected graph in the presence of k − 1 consecutive
failures.
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Chapter 1

Technical Frameworks and Tools

MOdels are used to denote some abstract representation of distributed computing
systems. Specifically, we need models to represent the network, models to encode
distributed algorithms and software platforms to test, to simulate and to validate

the proposed solutions. Accordingly, comprehension, study and analysis of distributed al-
gorithms require the seek of models which make as easy as possible to express them and to
encode them with the following characteristics:

• Intuitive: to develop them and teach them,

• Formal: to prove their correctness using mathematical tools,

• Practical: to test and validate them by a simple implementation.

As a benefit, the study of some problems in high models allows us to deduce some prop-
erties on other less abstract models.

A distributed system (network) is often represented as a connected, undirected graph G
denoted by (V,E): A node in V represents a process and an edge in E represents a bidirec-
tional communication link. In addition, some assumptions are given on the structure of the
graph and on the functioning of its components. In general, many studies deal with complete
graphs, rings and trees, they consider anonymous or identified networks, they deal with the
knowledge of each node about the size and/or the diameter of the network to name a few.
Beyond this, these systems are based on the cooperation of multiple components, thus much
attentions are gained on the mechanisms used to coordinate the work of such components.
In particular, we consider communications that are fully and clearly expressed or not. The
relevant literature consists of works that use two types of models:

• Models using abstract communications: Graph relabeling systems [LMS99] and state
model [Dij74].

• Models using explicit communications: Message passing model [AW98, Tel00] and
shared memory [Lyn96].

In this thesis, we will use: The graph relabeling systems and the message passing model.
In both models, a distributed algorithm for a collection V = {v1, · · · , vN} of processes is a
collection of local algorithms (or programs), one for each process in V. To avoid confusion

9
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between the states of a single process and the states of the entire algorithm, commonly named
the global state, the latter will from now on be called configurations.

These sections present elements of the formal frameworks and some tools we will use
to construct fault-tolerant distributed algorithms. In Section 1.1, we give definitions about
the graph theory. Section 1.2 contains the basic definitions and terminology used to describe
graph relabeling systems as the first model used to encode distributed algorithms presented
in this thesis. In section 1.3, we describe the second model which is the asynchronous message
passing model. We show in Section 1.4 what means comparing complexities of algorithms in
different models. In section 1.5, we give the place of the used models regardless of the timing
in distributed computing systems. Section 1.6 presents briefly Visidia, a software tool used to
validate some results of the thesis.

Reader already familiar with these concepts and definitions may safely proceed to subse-
quent chapters and consult the definitions and notations herein only as needed.

1.1 Graphs

We introduce some terminologies and definitions about graphs. A graph is a collection of
points called the nodes of the graph where some of them are connected by lines (adjacent)
called the edges.

In each class of graphs we can use the following structure (V,E) to design a graphG, where
V is the set of nodes and E ⊆ {{u, v} such that u, v ∈ V and u 6= v} is the set of edges. For a
graph G = (V,E), we use sometimes the notations VG, EG to denote respectively the set of
nodes of G and the set of edges of G.

In the sequel we will use graphs to model computational systems. The nodes of a graph
represent the computers (or processors) and the edges correspond to the communication links
between pairs of processors. Since our formalizations are based on undirected graphs, we use
(u, v) instead of {u, v} to denote an edge. So, the notations (u, v) and (v, u) are equivalent.
Let (u, v) ∈ EG, we say that u is a neighbor of v.

For any setA, we write 2A to denote the set of all finite subsets ofA. We use #M to denote
the cardinality (or the size) of the set M.

Definition 1.1.1 A path p inG is a sequence (v0, ...., vl) of nodes such that for each i < l, (vi, vi+1) ∈

E. The integer l is called the length of p. Then, a path p = (v0, v1, ..., vk) of non-zero length through

the graph such that v0 = vk, is called a cycle. A path P = (v0, ...., vl) is simple if it does not contain

cycles.

Definition 1.1.2 The set of neighbors of a node u is denoted by NG(u) = {v ∈ V/(u, v) ∈ E}. The

degree of a node u, denoted deg(u), is the number of neighbors of u. Then, deg(u) = #{{u, v} ∈ E

such that v ∈ V }. The degree of G is deg(G) = max{deg(v) such that v ∈ V }.

Definition 1.1.3 The l-neighborhood function NGl(u) is the set of nodes reachable within at most l

hops of node u. For l > 0, this function can be defined recursively as follows:

• NG1(u) = NG(u),

• NGl+1(u) = NGl(u) ∪ {∀v ∈ V : ∃w ∈ NGl(u) and (v, w) ∈ E}.
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Definition 1.1.4 A ball centered on u with radius l is the set Bl(u) = {u} ∪ {vj ∈ V/ there exists

a path (v0, ...., vj) in G with v0 = u and j ≤ l}. Formally, this is equivalent to say that v ∈ V is a

l−neighbor of u if v is in Bl(u). For simplicity, we will write B(u) to mean the ball centered on u

with radius 1.

Definition 1.1.5 We use dist(u, v) to denote the length of the shortest path in G between u and v.
Then, the diameter of a graph G, denoted by diam(G) is the longest distance among all pairs of nodes
in G. Formally, diam(G) = max{dist(u, v) such that u, v ∈ VG}.

Definition 1.1.6 We say that the graph G′ = (V ′, E′) is a sub-graph of the graph G = (V,E), if

V ′ ⊆ V and E′ ⊆ E.

Let V ′ ⊆ V , we denote byG|V ′ the restriction ofG to the sub-graph (V ′, {(u, v) ∈ E∩V ′ 2}).

We also denote by G \V ′ the graph G|(V \V ′) 1. When V ′ is a singleton V = {v}, by abuse,
we will use the notations G|v and G \ v.

Definition 1.1.7 A graph G = (V,E) is a complete graph iff E = V 2. In this case, we say that G

is a fully connected graph. Otherwise, it is sparse.

Definition 1.1.8 A graph is connected if for any pair of its nodes, there exists a path between them.

Definition 1.1.9 We denote by KG the connectivity of a graph G = (V,E) which is the minimum

size of any set V ′ = {v1, ....., vk} ⊆ V such thatG \ V ′ is not connected.

Theorem 1.1.10 (Menger) a graphG = (V,E) is a k-connected graph if for any pair u, v ∈ V there

exists k disjoint paths linking u and v.

Definitions 1.1.11

• A tree T = (VT , ET ) is a connected graph that have no cycle and a chosen node v0 called the

root.

• As usual, we associate with a tree, a partial order ≤ on VT defined by u ≤ v iff there exists a

simple path v0, v1 · · · , vl in T such that u = vi and v = vj with i ≤ j. If j = i+ 1, u is

the “Father” of v and v is a son of u.

• We denote by Sons(u) the set of the sons of u. In the sequel, we assume that the list “Sons” of

u is ordered.

• A node u ∈ VT with no son is called a leaf of T.

• Then, a spanning tree T = (VT , ET ) of a graph G is a tree such that VT = VG and ET ⊆ EG.

The tree can be defined also by T (Father, Sons).

Definition 1.1.12 A graph morphism ϕ between two graphs G = (V,E) and G′ = (V ′, E′) is a

surjective mapping ϕ : V → V ′ such that ∀ (u, v) ∈ E: (ϕ(u), ϕ(v)) ∈ E′ and ∀ (u′, v′) ∈

E′, ∃(u, v) ∈ E such that u′ = ϕ(u) and v′ = ϕ(v).

1“\” denotes the difference between two sets



12 CHAPTER 1. TECHNICAL FRAMEWORKS AND TOOLS

1.2 Graph Relabeling Systems (GRS)

A labeled graph is a natural model to study computer networks. Nodes of graph correspond to
computers or processors, its edges stand for communication links, and its labeling represents
the network state. In [LMS99], the authors proposed a powerful model to encode distributed
algorithms. This model is based on the use of graph relabeling systems. It offers general tools
to encode distributed algorithms, to prove their correctness and to understand their powers.
In this thesis, we will use some restricted version of this model. At any time we specify the
kind of the rewritings that we will use.

1.2.1 The Model

Here we present some fundamental basis of the graph relabeling systems and how we can use
them to encode distributed algorithms.

Definitions 1.2.1 Let Σ be an alphabet.

• A labeled graph is a couple (G,L) where G is a graph and L is a labeling function i.e. a
mapping from VG ∪ EG to Σ.

• We denote by GL the set of all labeled graphs (G,L).

• The labeled graph (H,L′) is a sub-labeled graph of (G,L) , ifH is a sub-graph ofG and L′ is the

restriction of L to VH ∪ EH .

In the sequel, unless stated otherwise, we assume that all the used labeling functions share
the same alphabet.

Definitions 1.2.2

• A labeled graph morphism ϕ: (G,L) −→ (G′, L′) is a graph morphism from G to G′ which

preserves the labeling, that is, for any x ∈ VG, L
′(ϕ(x)) = L(x).

• A labeled sub-graph (G′, L′) of (G,L) is an occurrence of (H,LH) in (G,L) if there exists an

isomorphism 2 ϕ between H and G′ such that ∀x ∈ VH , LH(x) = L′(ϕ(x)).

Definition 1.2.3 A graph relabeling rule is a triple R = (H,L′, LH) such that (H,L′) and (H,LH)

are two labeled graphs. The labeled graph (H,L′) is the precondition part of R and the labeled graph
(H,LH) is its relabeling part.

Definitions 1.2.4 Given a labeled graph (G, Li),

• An algorithmR is a finite set of relabeling rules.

• An R-computing step is a couple of label functions (Li, Li+1) such that there exists a sub-

labeled graph (G′, L′) of (G,Li) and a rule R = (H,L′, LH) ∈ R satisfying : (G′, L′) is an

occurrence of (H,LH) in (G,Li), ∀x ∈ VG \VH , Li+1(x) = Li(x) and ∀x ∈ VH , Li+1(x) =

LH(x). In other words, the labeling Li+1 is obtained from Li by modifying all the labels of

the elements of G′ according to the labeling LH . Such a computing step will be denoted by

Li −→
R
Li+1.

2An isomorphism is a bijective morphism.
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We say that the computations in G are local if a node u ∈ VG can only act on the set of its
l−neighbors in a ball of a fixed radius l . Formally, this is equivalent to fix the diameter of the
graph H of the relabeling rules R ∈ R to 2l.

Any computation in G is a relabeling sequence (L0, L1, · · · , Ln) such that ∀ 0 ≤ i <

n, (Li, Li+1) is a computing step. We use the notation L −−−→
R,p

L′ to say that there exists a

local computation of length p starting from the label L to the label L′ i.e. there exists a
computation (L0, L1, · · ·Lp) such that L0 = L, Lp = L′. If the number p is not known, we
will use L −−−→

R,∗
L′. The labeled graphs (G,Li) denote the configuration or the global state of

the system at this stage of computation. Usually, (G,L0) is called initial configuration.

The computation stops when the graph is labeled in such a way that no relabeling rule can
be applied. A labeled graph (G,L) is said to be R−irreducible (or irreducible when it is clear
from the context) if there exists no occurrence of (GR, LR) in (G,L) for every relabeling rule R
inR.

Definition 1.2.5 A computation in G is terminated if no relabeling rule can be applied on the current
labeling. In this case, the corresponding labeled graph (G,L′) is a result of the algorithm. We denote

by RESR(G) the set of all the results of the algorithmR(G).

For a sake of clarity, we will denote a graph relabeling system R using the following
notation: R = (Σ, I,P), where Σ is an alphabet for the used labels, I is s subset of Σ to
denote the required initialization labeling and P is the set of the R -relabeling rules.

A graph relabeling systemwith priorities is a 4-tupleR = (Σ, I,P ,≻) such that (Σ, I,P) is a
graph relabeling system and> is a partial order defined on the set P called the priority relation.
A R-relabeling step is then defined as a 5-tuple (G,L,R, ϕ, L′) such that R is a relabeling rule
in P and ϕ is both an occurrence of (GR, LR) in (G,L) and an occurrence of (GR, L

′
R) in (G,L′)

and there exists no occurrence ϕ′ of a relabeling rule R′ in P with R′ ≻ R such that ϕ(GR) and
ϕ(GR′ ) intersect in G.

Let (G,L) be a labeled graph. A context of (G,L) is a triple (H,µ, ψ) such thatH(N,L, µ) is
a labeling graph and ψ an occurrence of (G,L) in H(N,L, µ). A relabeling rule with forbidden
contexts is a 4-tuple R = (GR, LR, L

′
R, FR) such that (GR, LR, L

′
R) is a relabeling rule and FR

is a finite set of contexts of (GR, LR).

A graph relabeling system with forbidden contexts is a triple R = (Σ, I,P) defined as
a graph relabeling system except that the set P is a set of relabeling rules with forbidden
contexts. A R-relabeling step is a 5-tuple (G,L,R, ϕ, L′) such that R is a relabeling rule with
forbidden contexts in P and ϕ is both an occurrence of (GR, LR) in (G,L) and an occurrence
of (GR, L

′
R) in (G,L′), and for every context (Hi, µi, ψi) of (GR, LR), there is no occurrence ϕi

of Hi(Ni, Li, µi) in (G,L) such that ϕi(ψi(GR)) = ϕ(GR).

For more formal definitions and examples on relabeling systems, the reader is referred to
[LMS99]: They proved that for each relabeling system with forbidden context we can asso-
ciate an equivalent relabeling system with priority. Note, however, that a forbidden context is
usually used to encode a control structure part of an algorithm.
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1.2.2 The Program

In this thesis, we consider only relabeling between neighbors. That is, each one of them may
change its label according to rules depending only on its own labels, the labels of its neigh-
bors and the labels of its corresponding edges. We assume that each node distinguishes its
neighbors and knows their labels.

The program is encoded with graph relabeling system R = (Σ, I,P). The labels of each
process represent the value of its variables. Each rule in the set P is an action which has the
following form:

R1 : RuleN{Precondition}{Relabeling}

The label R1 is the number of the rule and the label RuleN is the name of the rule. The
component Precondition of a rule in the program of v0 is a Boolean expression involving the
local labels of v0. The Relabeling component of a rule of v0 updates one or more labels its local
labels. A rule can be executed only if its precondition evaluates true. The rules are atomically
executed, meaning that the evaluation of a precondition and the execution of a corresponding
relabeling, if the precondition is true, are done in one atomic step.

Often the notion of relabeling sequences corresponds to a sequential execution. For a local
computations model we can define equivalent parallel rewritings, when two consecutive rela-
beling steps concerning non-overlapping balls may be applied in any order. They also can be
applied concurrently.

1.2.3 Proof Techniques

Graph relabeling systems provide a formal model to express distributed algorithms. The aim
of this section is to show that this model is suitable to study and to prove properties of dis-
tributed algorithms.

Termination. A graph relabeling system R = (Σ, I,P) is noetherian if there is no infinite
R-relabeling sequence starting from a graph with initial labels in I. Thus, if a distributed
algorithm is encoded by a noetherian graph relabeling system then this algorithm always
terminates. In order to prove that a given system is noetherian we generally use the following
technique.

Let (S,<) be a partially ordered set with no infinite decreasing chain (that is every decreas-
ing chain x1 > x2 > · · · > xn > . . . in S is finite). Then, we say that < is a noetherian order. It
is compatible withR if there exists a mapping f from GL to S such that for everyR-relabeling
step (G,L) → (G,L′)we have f(G,L) > f(G,L′).

It is not difficult to see that if such an order exists then the system R is noetherian: since
there is no infinite decreasing chain in S, there cannot exist any infiniteR-relabeling sequence.
For our examples, the set S will be a set N

p where p is an integer and the ordering relation
is defined by (x1, . . . , xp) >p (y1, . . . , yp) which means that there exists an integer j such that
x1 = y1, . . . , xj−1 = yj−1, and xj > yj .

Correctness. In order to prove the correctness of a graph relabeling system, that is the cor-
rectness of an algorithm encoded by such a system, it is useful to exhibit (i) some invariant
properties associated with the system (by invariant property, we mean here some property of
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the graph labeling that is satisfied by the initial labeling and that is preserved by the applica-
tion of every relabeling rule) and (ii) some properties of irreducible graphs. These properties
generally allow to derive the correctness of the system.

1.2.4 Complexity Measures

The execution time of a computation is the length of the corresponding relabeling sequence.
Thus, a measure of the time complexity of a distributed algorithm, or of a graph relabeling
system, will be the execution time of the longest computation of the algorithm. A measure of
a space complexity of a distributed algorithm is the size of the label of a node of the graph.
Obviously, the used concrete memory is the size of all the labels in the graph.

1.2.5 Implementation

Let G = (V,E) be a graph, v a vertex in V and l some positive integer. We say that v is locally
elected in Bl(v) if there is a way to distinguish v from all the other vertices of Bl(v). This
property is necessary if we need to ensure that no two vertices in a distance less or equal to
l change their labels simultaneously. In this work we will use randomized procedures from
[YM02] to obtain this property in balls of radius 1.

Randomized local elections are used to ensure that no two adjacent processes change si-
multaneously their states. In fact, the model of distributed computation is an asynchronous
distributed network of processes which communicate by exchanging messages. To overcome
the problem of certain non-deterministic distributed algorithms as well as to have efficient
and easy implementations, we use randomization [BGS94, Tel00, HMRAR98]. General con-
siderations about randomized distributed algorithms may be found in [Tel00] and some tech-
niques used in the design and for the analysis of randomized algorithms are presented in
[MR95, HMRAR98, BGS94].

In [MSZ00, YM02], the authors have investigated randomized algorithms to implement
distributed algorithms specified by local computations and graph relabeling systems. Intu-
itively, each process tries at random to synchronize with one of its neighbors or with all of its
neighbors depending on the model we choose, then once synchronized, local computations
can be done.

As we shall see, we use these randomized procedures to analyze and to implement an
algorithm for resolving conflicts in the context of self-stabilizing systems. We use them also to
implement distributed algorithms using the Visidia software.

There are three types of local computations. The implementation of these local compu-
tation in an asynchronous message passing system is based on the use of randomized syn-
chronizations. A randomized synchronization procedure is associated with each type of local
computation given in the following:

• Rv (Rendezvous) :

– Synchronization : There is a rendezvous between vertex v and its neighbor c(v), we
say that v and c(v) are synchronized.

– Computation : Then v and c(v) exchange messages and the labels attached to
nodes of H2 (the complete graph with 2 nodes) are modified according to some
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rules depending on the labels appearing on K2.

• Lc1 (local computation 1) :

– Synchronization : The vertex v is elected in the star centered on v denoted bv.

– Computation : The computation is allowed on bv : the center v collects the labels
of its neighbors and changes its label. The label attached to the center of a ball is
modified according to some rules depending on the labels of the ball, labels of the
leaves are not modified.

• Lc2 (local computation 2) :

– Synchronization : The vertex v is elected in the star centered on v of radius 2

denoted bv.

– Computation: The computation is allowed on bv : The nodes of bv exchange
their labels, and the center updates its state and the states of its neighbors. The
labels attached to the center and to the leaves of a ball may be modified according
to some rules depending on the labels of the ball.

When a distributed algorithm is implemented using such procedures, its time complexity
may be measured in terms of the needed synchronizations (or local elections).

1.2.6 Example of a Distributed Spanning tree Computation

Let us illustrate the use of graph relabeling systems for the computation of a spanning tree
in a network with a pre-chosen root. Consider the following graph relabeling system used to
compute a distributed spanning tree of a given graph G = (V,E). Every node u ∈ V has for
label the triplet:

• Span(u): the state of u that can have only 2 values: A to mean that v has been included
in the tree or N when it is not yet in the tree,

• Father(u): is the father of u in the spanning-tree.

• Sons(u): the ordered list of its sons in the tree.

For the label Father, it may be seen as a port number. In this case, each node u is equipped
with ports numbered from 1 to deg(u). Further, we write Father(u) = ⊥ to mean that v has
no defined father. When starting the algorithm, we choose a node v0 as the root of the tree. The
initial label function L0 is defined by :

• Span(v0) = A, Father(v0) =⊥, Sons(v0) = ∅,

• ∀u 6= v0, Span(u) = N, Sons(u) = ∅, Father(u) =⊥,

The algorithm is described by a relabeling system R with one rule R1 defined on Σ =

{{N,A} × {1 · · ·deg(G) ∪ {⊥}} × 2deg(G)} :

At any step of the computation, when a N -labeled node u finds a neighbor v with
Span(v) = A , this node u may decide to include itself in the tree by changing Span(u)

to A. Moreover, Father(u) is set to v and the node v adds u in its sons list. So at each
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Algorithm 1 Distributed spanning tree algorithm in the local computations model

R1 : Spanning rule acting on 2 nodes v, u

Precondition :

– Span(u) = N

– ∃ v ∈ B(u), Span(v) = A

Relabeling :

– Span(u) := A

– Father(u) := v

– u is added to Sons(v)

computation step, the number of N -labeled nodes decreases by 1. The computation finishes
when all the nodes v are such that Span(v) = A. And obviously we have a spanning tree of
G rooted at v0 defined by the second components (or the third components) of the labels of
the nodes.

To prove that the result is a spanning tree of a graph G, it suffices to prove the following
invariants:

Lemma 1.2.6 Let (G,L) be an initial labeled graph. Let (G′, L′) be the graph obtained after the ap-

plication of a finite number of relabeling steps of system R. Then, (G′, L′) satisfies the following

properties:

(I1) allN -labeled nodes are ⊥-parent.

(I2) each parent is an A-labeled node.

(I3) the sub-graph induced by the node-father edges is a tree.

(I4) each graph in the set RESR(G) is a spanning tree.

Proof.

(I1) Let us prove this property by induction on the size of the relabeling sequence. Initially
the property is true. Now assume that the property is true for a graph (G,L) obtained
from the initial graph after k applications of the rule R1, we will show that the property
remains true at step k + 1. In the kth step, all the N -labeled nodes are ⊥-parent. If we
apply R1 on one of such nodes, we can apply it to change both the labels Span and
Father. That is, when a node changes its Father from ⊥ to another value, it changes in
the same time its label Span from N into A. Hence, the property is still true.

(I2) A the beginning, the property is true since there is only one vertex labeled A without
parent(the root). Suppose the property is true after k relabeling steps. We will prove that
the property remains true at the (k+1)th step. In the kth step, all vertices labeledA have
their parent labeledA. We cannot apply any rules between nodes labeledN . If we apply
R1 on the vertex labeled N , it will be labeled A changing its parent: It will be connected
to a A-labeled vertex as its parent. Thus the property remains true.

(I3) By (I2), theA-labeled vertex, except the root, is connected exactlywith one vertex labeled
A by a marked edge. So the sub-graph induced by the A-labeled nodes, the root which
is labeled A and the marked edges has no cycle.
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(I4) By (I1), there exists only one vertex labeled A with undefined parent. By (I2), all its
neighbors labeled A and connected to it by a marked edge are labeled also A. We can
apply R1 on the other N -labeled vertices to obtain vertices which check (I2) and then
(I3). So, if G′ is an irreducible graph obtained from a graph G, then all its nodes are
labeledA, it contains exactly one node with undefined father and all others have exactly
one parent.

2

To prove that the algorithm finishes, it suffices to see that at each computation step, the
number of N -labeled nodes decreases by 1 to reach 0. That is, to prove the termination of
a graph relabeling system and then the termination of the distributed algorithm it encodes it
suffices to prove that it is noetherien [LMS99].

The following property follows from the previous results:

Property 1.2.7 Given a graph G = (V,E) and a chosen node v0. A spanning tree of G rooted at v0

can be computed by applying #V − 1 rules.

1.3 Message Passing Model (MPS)

For the designers of distributed applications, the message passing model is the more natural
model to encode distributed algorithms. This section presents the formal model for message
passing model [AW98, Tel00]. Then, we show the pseudo-code conventions for describing
message passing algorithms and finally we define the basic complexity measures.

1.3.1 The Model

The system is modeled by a connected simple graph where each node represents an au-
tonomous entity of computation (e.g. thread, process, machine) and each edge a commu-
nication channel. An edge is present between two nodes if their corresponding processors
may communicate by sending messages over this edge.

Since the processor is identified with a particular node in the graph, edges incident to u

are labeled using arbitrary set of numbers in the set 1 · · · r where r is the degree of u. That is,

Definition 1.3.1 Each node u is equipped with ports, numbered from 1 to deg(u), which will be

used to distinguish between and to communicate with neighbors. The attribution of these numbers is

completely arbitrary and does not depend on the identities of the neighboring nodes.

The local program at each node consists of a set of variables (state) and a finite set of local
actions that a node may make. They include modification of local variables, send messages to
and receive messages from each of its neighbors in the corresponding graph topology.

More formally, each node u is modeled using a set of states. Node u’s action takes as input
a value of some states of u, messages sent by the neighbors. Then, it produces as output a
new value of some states and also at most one message for each link between 1 · · ·deg(u).

Messages previously sent by u and not yet delivered cannot influence u current step.

Definition 1.3.2 At any time, a configuration or a global state of the system is a vector C composed
of the states of all the processors together with m sets- one set of every link- of messages in transit on
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that link at this time. An initial configuration is a vector of the initial states of all the processors when

all the links are free.

Definition 1.3.3 The system is said to be asynchronous if processes operate at arbitrary rates and
message transfer delays are unbounded, unpredictable but finite.

Definition 1.3.4 A computation σ = σ1σ2.... of an algorithm R is a finite or infinite sequence of

configurations C1, C2, .... with: For i = 1, 2, ... the configuration Ci+1 is reached from Ci by the

computation step σi.

Note, however, that during a computation step, one or more processors execute one action.
When σ is finite and I denotes an initial configuration, the resulting configuration σ(I) is said
to be reachable from I and is said to be accessible.

To model a computation in a message passing system, we introduce two kinds of events.

Definition 1.3.5 The computation event, representing a computation step of a processor u in which
it applies action to its current accessible states.

Definition 1.3.6 The delivery event responsible of the deliverance of message m from processor u to
processor v.

Definition 1.3.7 An execution segment α of a asynchronous message passing system is a finite or
infinite sequence of the following form:

C0, φ1, C1, φ2, C2, φ3, · · ·

where Ci is a configuration and φj is an event for all i ≥ 0 and j ≥ 1.

So an execution shows the behavior of a system, which is a set of sequence of configurations
and events. Such sequences depend of the task assigned to the system being modeled. Thus,
they must satisfy some properties according to the tasks.

To define the termination of the distributed algorithm, we assume that each node’s states
includes a subset of states to denote terminated states. After the reach of such states, actions of
the program maps terminated states only to terminated states. Thus,

Definition 1.3.8 We say that the algorithm has terminated when all nodes are in the terminated states
and all messages are delivered.

In this thesis, we assume that, for a couple of neighboring vertices, the order of sending
messages is the same as that of receiving them (FIFO).

1.3.2 Program

We will specify an algorithm in the message passing model as a “pseudo-code”. That is, for
each process algorithm will be described in an interrupt-driven fashion. The effect of each
message is described individually, and each process handles the pending messages one by
one in some arbitrary order. Some processes may also take some action even if no message is
received. Actions that are listed are only actions that cause sending messages and/or states
changes. The computation associated with each process done within a computation will be
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described in style closed to typical pseudo-code for sequential algorithms. Some reserved
words may be used to indicate some specific states.

In the pseudo-code, the local state variables of processor vi will not necessary sub-scripted
with i; but used in some proofs and discussion to avoid ambiguity. Comments will begin with
/∗ and end with ∗/.

In the following we give an example of a spanning tree computation algorithm described
in pseudo-code. For a sake of clarity, in the explanation of the algorithms encoded in the
message passing model we refer to a node instead of its corresponding port number.

1.3.3 Complexity Measures

Complexity measures in the message passing model are related to the number of messages
and the amount of time. As the local computations model, we will focus on the worst-case.
Such measures depend on the notion of the algorithm terminating or when algorithm reaches
some specific configuration.

Themessage complexity of an algorithm encoded in the message passingmodel is themax-
imum of the total number of message sent during the all possible executions of this algorithm.
For the time complexity, we approve the common approach assuming that the maximummes-
sage delay in any execution is one unit of time. Note, however, that such a measure is not used
to prove the correctness of such algorithms. Then, to calculate the time complexity of an algo-
rithm it suffices to take the running time until the termination.

A measure of a space complexity of a distributed algorithm is the size of the variables at a
node of the graph. Obviously, the concrete memory used is the size of all the variables in the
graph.

1.3.4 Example of a Distributed Spanning Tree Computation

Consider the following algorithm used to compute a distributed spanning tree of a given
graph G = (V,E). When starting the algorithm, we choose a node v0 as the root of the tree.

Here, Father(u) =⊥ means that v has no defined father. At any step of the computation,
when a node u, not yet in the tree (in-tree(u) = false) receives a <tok > message from its
neighbor v, node u includes itself in the tree by changing its in-tree to true. Moreover, in the
same time, Father(u) is set to v and u informs v to add it in its set of sons sending <son>
message. At the reception of such a message, v adds u in its set of sons. So at each execution
of the rule T (1), the number of nodes not yet in the tree decreases by 1. The computation
finishes when all the nodes u are such that in-tree(u) = true and all the messages are treated.
And obviously we have a spanning tree of G rooted at v0 defined by the components Father
(or the components Sons) of the variables of the nodes. The root of the spanning tree is then
the unique node with its father equal to ⊥ .

Property 1.3.9 Given a graph G = (V,E) and a chosen node v0. A spanning tree of G rooted at

v0 can be computed by exchanging (2#E − (#V − 1)) <tok> messages and (#V − 1) <son>
messages.
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Algorithm 2 Distributed spanning tree algorithm in the message passing model.

var Father : integer init ⊥;

in-tree : Boolean init false;

Sons : set of integer init emptyset;

i, q : integer;

I : {For the root v0 only, execute once:}

in-tree(v0) := true;

for (i := 1 to deg(r)) do send<tok> via port i

T : {A message<tok> has arrived at u from port q}

1: if (not in-tree(u))

Father(u) := q;

in-tree(u) := true;

send<son> via port q;

for (i := 1 to deg(u)) do send<tok> via port i

S : {A message<son> has arrived at u from port q}

Sons(u) := Sons(u) ∪ {q}

1.4 Comparing Complexities and Models

It’s important to take caution when comparing complexities of algorithms in differentmodels.
So, it’s often not significant to compare time complexity of an algorithm encoded in the local
computations model with an algorithm to solve the same problem and encoded in the message
passing model for example. The problems are structured differently on these twomodels. But,
it’s meaningful to start to encode an algorithm in high model, to understand its power and to
deduce some properties to help us to design it on othermodels. On another hand, it is practical
to show that the efficiency in these models is not violated.

1.5 Timing in Distributed Computing Systems

There are two basic models of timing in distributed computing system : Synchronous and Asyn-
chronous. In the synchronous model, the existence of a global clock is assumed, each process
executes simultaneously one step of its program in each time step. In the asynchronous model,
processes execute their programs at different speeds. In this model, the difference between the
speeds of the processes is simulated with the use of a scheduler (daemon). This mechanism al-
lows us to explicit some synchronization constraints. At each step the scheduler activates
one, all or a subset of enabled processes (their states are such that they can perform a step of
their program). Thereby, the GRS model is asynchronous since several relabeling steps may
be applied at the same time but we do not require that all of them have to be performed. For
the MPS model, a system is said to be asynchronous if there is no fixed upper bound on the
duration of both computation and delivery events.

In spite of many distributed applications use usual upper bounds on message delays and
processor step times, it is often suitable to design algorithms that are independent of any
particular timing parameters, namely asynchronous algorithms.
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Algorithms

GUI Communications
Simulator

Figure 2: Visidia architecture

In the asynchronous message passing model, an execution is said to be admissible if each
processor may take an infinite number of computations events, and every message sent is
eventually delivered. Such requirements model the fact that processors do not fail and com-
munication links are also reliable. It does not imply that the processors programsmust contain
an infinite loop. In this point of view, the termination of an algorithm is reached when actions
don’t change the processor states after a certain point.

1.6 Visidia, A Tool to Implement, to Visualize and to Simulate

Distributed Algorithms

Visidia [MS, BMMS01] is a tool to implement, to simulate, to test and to visualize dis-
tributed algorithms. It is motivated by the important theoretical results on the use of
graph relabeling systems to encode distributed algorithms and to prove their correctness
[LMS99, Sel04, Oss05, Der06, Cha06]. Visidia provides a library together with an easy interface
to implement distributed algorithms described bymeans of local computations. This platform
is written in Java language. The distributed system of Visidia is based on asynchronous mes-
sage passing system. In this tool the processes are simulated by Java threads. As such, a stage
of computation is carried out after some synchronization achieved using probabilistic proce-
dures [MSZ00]. As shown in Figure 2, Visidia is composed of three parts:

• The graphical interface part (GUI) to visualize the execution of the distributed algo-
rithms,

• The Algorithm part where the distributed algorithms are executed,

• The Simulator part which ensures the visualization of the state of the distributed algo-
rithm execution on the GUI.

Specifically, Visidia allows to construct a network as a graph where nodes represent pro-
cesses and edges represent communication channels. Data and status of processes are encoded
using labels which are displayed on the screen.

There are two implementations of Visidia. The first one is implemented in a single machine.
In this version, the threads representing the processes of the computation are created on the
same machine. As a thread is an independent execution flow, the execution of the algorithm
is actually distributed. Each thread communicates with the simulator which transfers the
events to the visualizer. The second one is an implementation on a network of machines. In
this version, the threads are executed on a network of machines. One or several threads are
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assigned to each physical machine participating in the computation. The visualization is done
on the local host of the user. In such a model, there is no simulator. In fact, a node can send a
message to a neighbor by itself.

To implement a relabeling system, Visidia provides high level primitives including the
synchronization procedures and communication actions. Especially, three functions:
rendezV ous(), starSynchro1(), starSynchro2() implementing the previous synchronizations.
Moreover, two actions to express the communication between two neighborhood processes
u, v : If u wants to send a message “msg” to v, it executes the action sendTo(v,msg). On the
other hand, the process v executes the action receiveFrom(u) to get the message “msg”.

We sketch in the following an implementation of the relabeling system given in Section
1.2.6, to encode a distributed computation of a spanning tree, using Visidia software. The
presented program is based on the Java code used in the Visidia platform.

Algorithm 3 Encoding of algorithm 1 in the Visidia Software
while (run){

// start of a synchronization
neighbor = rendezVous();

// exchange of states
sendTo(neighbor,mySpan);
neighborSpan = receiveFrom(neighbor);
//execution of one rule
if ((mySpan ==’N’) && (neighborSpan ==’A’)){

mySpan =’A’;
myFather = neighbor;

}
else

if ((mySpan ==’A’) && (neighborSpan ==’N’)){
mySons[neighbor] = true;

}
// end of a synchronization
breakSynchro();

}

As illustrated in this program, each process tries to reach a synchronization with one of
its neighbors. Note, however, that a node can try to reach synchronization with all its neigh-
bors according to the type of the local computations presented above. A process v which
is synchronized, executes a rule. That is, v exchanges its labels with its neighbor, checks if
its labels and those of its neighbors verify one precondition among the rules composing the
algorithm. If so, it updates its labels according to the relabeling part of the found rule. Then,
the synchronization is broken and v and its neighbor can retry new synchronizations.

This tool can be used to visualize and experiment distributed algorithms, and therefore
helps in their design and their validation. Several distributed algorithms have been already
implemented and can be directly animated. However, it has been assumed that components
of such a system do not fail.
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Chapter 2

Self-stabilization and Local
Computations

SElf-stabilization was introduced by E.Dijkstra [Dij74] as the property of a distributed
system to recover by itself to reach one of its desired configurations in a finite number
of steps, regardless of the initial system configuration. Consequently, in the context of

self-stabilization, all configurations are initial configurations.

As a desirable feature of a computation in distributed systems is fault-tolerance. Specifi-
cally, transient error may be caused by message corruption, sensor malfunctioning, incorrect
read/write that transforms configuration of a system to illegal configuration. That is, tran-
sient failures can potentially put the system into an illegal configuration which may continue
indefinitely unless external measures are taken including the restart of the computation for
example. Self-stabilization guarantees that a system can recover to reach a legal configuration
in a finite number of steps. That is, every execution of a self-stabilizing algorithm reaches a
“correct” configuration. Thus, self-stabilization becomes a particularly suitable approach to
deal with fault-tolerance [Sch93, Dol00, Tel00]. This is one of its advantages. More advantages
include robustness for dynamic topologies changes and straightforward initialization.

As locality is an important feature of distributed computing, it is important to understand
how to carry on local computations without a specified initial states. In this chapter, we con-
sider the problem of designing self-stabilizing algorithms using only local knowledge. In the
other hand, we formulate the properties of these algorithms using those of rewriting systems
yielding a simple and formal proofs [LMS99]. A self-stabilizing system guarantees that it will
eventually reach a legal configuration when started from an arbitrary initial configuration.
This behavior is called Convergence. After the reach of a legal configuration, the system gen-
erates only legal configurations for the rest of the execution. This behavior is called Closure.
Most interests are given to the study of these properties according to two aspects:

1. Locality: Convergence will occur with a short distance from the illegal configuration.

2. Stabilization time: Convergence will occur after a short time.

The developed formal framework [HM05a, HM06b] allows to design and prove such al-
gorithms. We introduce correction rules in order to self repair the possible illegal states. Such
rules have higher priorities than the rules of the main algorithm which ensure that the illegal

25
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states are repaired before continuing on the computation. Of course, we deal only with pre-
defined illegal local configurations. Further, we have presented some techniques to transform
an algorithm in a self-stabilizing one using local correction rules. Various examples are given
to illustrate this method. Particularly, the problem of resolving conflicts is studied in more
details. A we will see, a complete analysis is presented when its required synchronizations are
achieved using randomized local election procedures.

The rest of this chapter is organized as follows. In Section 2.1, we describe the token cir-
culation algorithm as presented in the seminal paper by E.W. Dijkstra [Dij74]. Section 2.2
surveys the various facets of stabilization. Then, in section 2.3 we give the model of comput-
ing, the definitions and terminology that we will use. Sections 2.4 and 2.5 are the heart of
the chapter. In the first one, we present our formalization of the illegal configurations. In the
second one, we deal with local stabilization in the local computations model. Section 2.6 de-
scribes the methodology proposed to design local self-stabilizing distributed algorithms. Such
a technique is illustrated with some algorithms including SSP [SSP85], enumeration protocol
[Maz97]. Then, in Section 2.7 we study the problem of resolving conflicts in the presence of
transient failures. The proposed solution is implemented using synchronization based on ran-
domized local elections and then analyzed. Section 2.8 presents an optimal schedule of the
resolving conflicts algorithm for free triangle graphs. Finally, section 2.9 recaps our findings
and presents some possible extensions.

2.1 Dijkstra Stabilization

Now we recall the Dijkstra’s toking ring algorithm. For the first time in [Dij74], the notion of
self-stabilization was introduced using a state machine model. This novel notion is studied
through an algorithm devoted to deal with mutual exclusion problem in a directed ring.

Let v0, · · · , vN−1 be a set of N processes which dispute the critical section. Here a process
that can enter the critical section is named “privileged”. Any algorithm which solves this
problem has to ensure the following properties :

• in every configuration at most one process is privileged,

• if a process u asks to have an access to the critical section, u must end by obtaining
this access. It means that no process remains privileged for ever and u will eventually
become privileged.

The Dijkstra’s algorithm encodes the token circulation in a logical oriented ring with an
elected process called the Top, denoted in the following by v0. Each process is labeled with
label St to denote its state during the execution of the algorithm. Such a label is defined under
an alphabet ΣD = {0, · · · ,K − 1}. Each process can read only the state of its predecessor
and changes its own state. The function Pred(v) gives the predecessor neighbor of v. Note,
however, that this function implements only the network’s orientation.

As stated previously, the acquiring and the loss of privilege follows:

• v0 is privileged if St(v0) = St(Pred(v0)).

• vi where 0 < i < N is privileged if St(vi) 6= St(Pred(vi)),

That is, we distinguish between two rules:
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Figure 3: Example of a Dijkstra’s token ring.

1. The Top process:
If St(Top) = St(Pred(Top)) Then
St(Top) := St(Top) + 1mod K

2. The non Top process v :

If St(v) 6= St(Pred(v)) Then
St(v) := St(Pred(v))

Each privileged process is allowed to change its state, causing the loss of its privilege and
thus moving the system in a new configuration. The presented algorithm stabilizes as we shall
see forK ≥ N. That is, starting from any configuration, each execution reaches a configuration
where mutual exclusion is satisfied.

Let us illustrate this algorithm for a system composed of 4 machines and K = 4 states for
each one (see Figure 3). The Top machine is the one in the circle. The left part of the figure is
considered as the initial configuration. Here, an “enabled” process 1 is shown by a bold ↑. It
is easy to see that the algorithm stabilizes as illustrated in the middle and in the right parts of
the figure.

Theorem 2.1.1 If K ≥ N, then Dijkstra’s token ring algorithm stabilizes.

The proof may be found in [Tel00].

2.2 Related Works

In this section, we focus our attention on various facets of stabilization.

As stated before, self-stabilization is an attractive approach to deal with fault-tolerance
in distributed computing. Originally proposed by Dijkstra for oriented ring topology with a
distinguished node [Dij74, Dol00, Tel00], stabilization was later generalized to other prob-
lems and to arbitrary graphs. Several algorithms exist in the self-stabilization literature
[APSV91, AKM+93, AS96, PV00, CDPV01]. They allow to solve very general problems that
appear frequently as sub-tasks in the design of distributed systems. These elementary tasks
include broadcasting of information, election of a leader, mutual exclusion, spanning tree con-
struction, etc.

Particularly, many self-stabilizing algorithms have been already designed to deal with
the problem of depth-first token circulation and the propagation of information with feedback (PIF)
[Cha82]. For the first one, the protocols presented in [PV99, PV00] are devoted to trees and

1A process has privilege.



28 CHAPTER 2. SELF-STABILIZATION AND LOCAL COMPUTATIONS

those of [DJPV98, Pet01] are for arbitrary graphs. For the second one, in [BDPV99] an optimal
state snap-stabilizing PIF in tree networks is proposed. In [CDPV01], the authors propose a
self-stabilizing PIF algorithm for arbitrary network and in [CDPV02] a snap-Stabilizing ver-
sion of this algorithm is studied. Note that snap-stabilization is related to the stabilization
time optimality.

However, most of these works propose global solutions which require to involve the en-
tire system. As networks grow fast, detecting and correcting errors globally is no longer
feasible. The solutions that deal locally with detection and correction are rather essential
because they are scalable and can be deployed even for large and evolving networks. A
few general approaches providing local solutions to self-stabilization have been proposed in
[APSV91, AS96, AD97, AKY97, BH02]. These approaches study the possible refinements of
self-stabilization. Hence, stabilizing systems may be refined to be fault-containing, so that the
errors are corrected with cost proportional to their context [GGHP96, GG96, HH04].

Since it is expensive to design self-stabilizing algorithms, we can reduce the system require-
ments. To overcome this weakness, in [Dol00] the author proposed the pseudo-stabilization.

Most researches use the state model [Dij74] to study self-stabilization. In such a model, a
process has access instantaneously to the states of its neighbors. What happens in the models
with explicit communications like shared memory and message passing models ? There has
been a general belief that stabilization and termination are not-satisfiable in the asynchronous
message passing model [GM91, Dol00, AN01]. In these models, “termination” is formalized
in various ways and a “timeout” mechanism is used to avoid lockout. In a recent initiative,
[S.G00] proposes the use of mobile agent to deal with self-stabilization. Few works use such a
model of computing as [S.G01, BHS01, HM01].

While many self-stabilizing protocols have been designed, still few works propose gen-
eral techniques for self-stabilization. In [KP93], they showed how to compile an arbitrary
asynchronous protocol into a self-stabilizing one. Unfortunately, such a transformation is ex-
pensive and the resulted protocol involves an important extra cost in the number of messages
transmissions. In [APSV91], techniques to transform any locally check-able protocol into a sta-
bilizing one is given. In [BBFM99], a new rewrite method for proving convergence of self-
stabilizing systems was proposed. However, such an approach is applied only for protocols
that are locally check-able. By contrast, [Var00] proposed a technique called counter flushing
applied to more general set of protocols.

Fortunately, we can refer the reader to several resources which will compensate our omis-
sions. Fine surveys of the self-stabilization area have been proposed in [Sch93, Dol00, Tel00].
Unfortunately, if the system cannot tolerate time required for stabilization self-stabilization
does not help fault-tolerance. Another problem is the maximum allowed critical steps needed
before system is in a legal state.

2.3 The System Model

A distributed system is modeled by a graph G = (V,E), where V is a set of nodes and E is
the set of edges. Nodes represent processes and edges represent bidirectional communication
links. Processes communicate and synchronize by sending and receiving messages through
the links. There is no assumption about the relative speed of processes or message transfer
delay, the networks are asynchronous. The topology is unknown and each node communicates
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only with its neighbors. The links are reliable and the process can fail and recover in a finite
time. The failures that are tolerated in such a system are the transient failures of processes.

To encode distributed algorithms we use local computations model as presented in Section
1.2. In this model, the local state of a processor (resp. link) is encoded by the labels attached
to the corresponding vertex (resp. edge). The computation in such a model is simulated by
a sequence of rewritings. This model is asynchronous since several relabeling steps may be
applied at the same time but we do not require that all of them have to be performed. At each
step of the computation, labels are modified for a given ball composed of some node and the
set of its neighbors. The modification is given according to rules depending only on the labels
of nodes composing this ball. Two sequential relabeling steps can be applied in any order or
even concurrently on disjoint sub-graphs.

Here we use relabeling on nodes and edges in a ball of radius 1. That is, each node in this
ball may change its label and the label of its edges according to rules depending only on its
own label, the label of its neighbor and the label of its corresponding edges. We assume that
each node distinguishes its neighbors and knows their labels. We use the following notations:

• L(u) : the labels of node u,

• L(u, v) : the labels of the edge connecting the node u and the node v,

• B(u) : the ball centered on u of radius 1which is an input data.

Abstractly, let S be a distributed system and let C be a component of S. Then,

Definitions 2.3.1

• The local state of C, called the local configuration of the component, is composed of the complete

state knowledge of C,

• The global state of S, called the global configuration of the system, is the list of the local states of

all the components in the system S,

• A set of legal configurations is a subset of all the possible configurations of S. This is a set of

desired configurations in which the system S is supposed to be accorded to the design goals.

Thus, in our framework local computations we deal with:

Definitions 2.3.2

• We denote by (G,Li) a configuration of a distributed computation at some stage of computation

i,

• A local configuration is then denoted by (Bl(u), Li) which is the restriction of Li to the nodes

composing the ball centered on u with radius l,

• A configuration (G,L′) is reachable from the configuration (G,L) during the execution of the

algorithm R iff ∃ p ≥ 0 such that L −−−→
R,p

L′.
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2.4 Graph Relabeling System with Illegitimate Configura-

tions

Local configurations will be defined on balls of radius 1 (the corresponding node and the set
of its neighbors). A star-graph is a rooted tree where all nodes except perhaps the root have
degree 1. The root will be called the center of the star-graph. Since any ball of radius 1 is iso-
morphic to a star-graph, illegitimate configurations will be described through their supports
(the labeled star-graphs). More precisely, an illegal configuration f is a labeled star-graph, say
(Bf , Lf ), where Bf is a star-graph and Lf a labeling function defined on it. Sometimes, it
is useful to express such a configuration by a predicate on the edges, nodes and labels of the
corresponding star-graph. For instance, a graph consisting of two nodes, u labeled A and v
labeled B which are connected by an edge labeled C will be written:

L(v) = A and ∃ u ∈ B(v) : L(u, v) = C and L(u) = B

Definition 2.4.1 The term “illegal” is related to some specification expressed using a set of predicates
on the properties satisfied by the system states. We say that the configuration is legal iff it verifies the

specifications. Then, the global configuration of a system S is legal iff the corresponding local state

of each component C in the system S is legal. For a set of desired labeled graphs (G,L), denoted

Gl, we say that a local configuration f = (Bf , Lf) is illegal for GL if for all (G,L) ∈ GL there is

no sub-graph in (G,L) which is isomorphic to f . In other words, there is no ball (neither sub-ball) of

radius 1 in G which has the same labeling as f . This will be denoted by GL 6⊢ f.

Moreover, if F is a set of illegal configurations, we extend the latter notations to GL 6⊢ F

meaning that each element of F is an illegal configuration. A graph relabeling system with
illegitimate configuration is a quadruple R = (Σ, I,P ,F) where Σ is a set of labels, I is a
subset of Σ called the set of initial labels, P is a finite set of relabeling rules and F is a set of
illegitimate configurations. Let us give two examples of illegitimate configurations. Consider
the following graph relabeling system given to encode a distributed spanning tree.

Assume that a unique given process is in an “active” state (encoded by the label A), all
other processes being in some “neutral” state (labelN) and that all links are in some “passive”
state (label 0). The tree initially contains the unique active vertex. At any step of the compu-
tation, an active vertex may activate one of its neutral neighbors and mark the corresponding
link which gets the new label 1. This computation stops as soon as all the processes have been
activated. The spanning tree is then obtained by considering all the links with label 1.

An elementary step in this computation may be depicted as a relabeling step by means of
the relabeling rule RSPAN1, given in the following, which describes the corresponding label
modifications (remember that labels describe process states):

RSPAN1 : The spanning rule

Precondition :

– L(v) = A

– ∃ u ∈ B(v), L(u) = N

Relabeling :

– L(u) := A

– L(v, u) := 1
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Figure 5: Examples of Illegitimate configurations

Whenever an A-labeled node is linked by a 0-labeled edge to an N-labeled node, then the
corresponding sub-graph may rewrite itself according to the rule.

A sample computation using this rule is given in Figure 4. Relabeling steps may occur
concurrently on disjoint parts on the graph. When the graph is irreducible, i.e no rule can be
applied, a spanning tree, consisting of the edges labeled 1, is computed.

The previous algorithm can be encoded by the relabeling systemR1 = (Σ1, I1,P1) defined
by Σ1 = {N,A, 0, 1}, I1 = {N,A, 0} and P1 = {RSPAN1}.

Clearly, we distinguish two illegitimate configurations. On the one hand, an edge labeled
1 must be incident to two nodes labeled A, as shown in the graph on the left of Figure 5. On
the other hand, a node labeled A cannot be incident only to edges labeled 0, as given in the
right graph. Formally, we deal with the following set Fs1

= {f1, f2}where f1 and f2 are:

1. f1 : L(v) = N and ∃ u ∈ B(v) : L(v, u) = 1

2. f2 : L(v) = A and ∀ u ∈ B(v) : L(v, u) = 0

2.5 Local Stabilizing Graph Relabeling Systems (LSGRS)

In this section we propose our formalization of self-stabilization using means of local compu-
tations and particularly we study their properties using those of rewriting systems yielding
simple and formal proofs [LMS99]. On the other hand, as locality is an important feature of
distributed computing, it is important to understand how to carry on local computations with-
out a specified initial states. Before describing such properties, we first define the stabilization
and what means stabilization time in our model.

Definition 2.5.1

• Let CRS be a set of configurations. An algorithm R stabilizes to reach some configuration in

CRS if the following holds: In each relabeling chain induced by the execution of R, there is a

finite suffix after which all the configurations reached are in CRS.
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• The stabilization time is the length of the relabeling sequence corresponding to this suffix. So a

measure of the stabilization time complexity of a distributed algorithm, or of a graph relabeling

system, will be the stabilization time of the longest suffix of the algorithm.

Fact 2.5.2 Let CRS be a set of configurations. Starting from any configuration in CRS an algorithm

R stabilizes to CRS in 0 time.

Let GL be a set of configurations corresponding to the execution of an algorithm R on a
system S. Let GLD be a set of desired configurations such that GLD ⊆ GL. An algorithm R

is self-stabilizing for GL iff it satisfies the two following properties:

Property 2.5.3

1. Closure: ∀ (G,L) ∈ GLD , ∀ (G,L′) such that (G,L) −−→
R,∗

(G,L′), (G,L′) ∈ GLD.

2. Convergence: ∀ (G,L) ∈ GL, ∃ an integer p ≥ 0 such that (G,L) −−→
R,p

(G,L′) and (G,L′) ∈

GLD.

As for self-stabilizing algorithms, the closure property stipulates that a computation begin-
ning from a configuration without illegal configurations remains without such configurations
during the whole execution. The convergence however provides the ability of the relabeling
system to recover automatically within a finite time (finite sequence of relabeling steps) to
reach a configuration without illegal configurations.

In practice, the “stabilization phase” may involve the entire components of the system. For
large systems, it is suitable to reduce as much as possible the components participating to this
phase. In other words, it is interesting to involve only components nearest to the component
subject to illegal local configuration. This is the goal of the local stabilization design.

A local stabilizing graph relabeling system is a triple R = (Σ,P ,F) where Σ is a set of
labels, P a finite set of relabeling rules and F is a set of illegitimate local configurations.

As we shall see, the set of relabeling rules P is composed by the set of relabeling rules P
used for the computation and some correction rules Pc. The rules of the set Pc are introduced
in order to eliminate the illegitimate configurations. The latter rules have higher priority than
the former in order to eliminate faults before continuing computation.

Theorem 2.5.4 IfR = (Σ, I,P ,F) is a graph relabeling system with illegitimate configurations (GR-

SIC) then it can be transformed into an equivalent local stabilizing graph relabeling system (LSGRS)

Rs = (Σs,Ps,Fs).

Proof. We will show how to construct Rs = (Σs,Ps,Fs). It is a relabeling system with pri-
orities. To each illegitimate local configuration (Bf , Lf ) ∈ Fs, we add to the set of relabeling
rules the rule Rc = (Bf , Lf , Li) where Li is a relabeling function associating an initial label
with each node and edge of Bf . This relabeling function depends on the application; for ex-
ample, the initial value of a node label is N in general, and the label of an edge is 0. The rule
Rc is, in fact, a correction rule. Thus the set Ps consists of the set P to which is added the set
of all correction rules (one rule for each illegitimate configuration). Finally, we give a higher
priority to the correction rules than those of P , in order to correct the configurations before
applying the rules of the main algorithm. It remains to prove that it is a stabilizing system.
The proof is equivalent to the proof of the two following lemmas.
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Lemma 2.5.5 The systemRs = (Σs,Ps,Fs) satisfies the closure property.

Proof. Let (G,L) 6⊢ F . If (G,L′) is an irreducible graph obtained from (G,L) by applying only
the rule of P , then (G,L′) does not contain an illegitimate configuration. This can be shown
by induction on the sequences of relabeling steps [LMS99, MMS02]. 2

Lemma 2.5.6 The systemRs = (Σs,Ps,Fs) satisfies the convergence property.

Proof. Let GL be the set of labeled graphs (G,L) and h : GL −→ N be an application associating
with each labeled graph (G,L), the number of its illegitimate configurations, then for a graph
(G,L), we have the following properties:

• The application of a correction rule decreases h(G,L).

• The application of a rule in P does not increase h(G,L).

Since, the correction rules have higher priority than the rules in P , and since the function
h is decreasing, then it will reach 0 after a finite number of relabeling steps. Note that the
last property of convergence can also be proved by using the fact that the relabeling system
induced by the correction rules is noetherian. 2

Let us note that the correction rules depend on the application. While the proofs above are
based on the local reset (to the initial state) which can be heavy because it may induce a global
reset by erasing all the computations, it is more efficient for particular applications to choose
suitable corrections as we shall see in the sequel.

2.5.1 Spanning Tree Computations

We present in the sequel a spanning tree computation encoded with a local stabilizing relabel-
ing system. We start by defining some illegitimate configurations to construct a set Fs, then
we improve the system by adding the correction rules to detect and eliminate these configu-
rations. For the present system, we deal with the set Fs1

defined above. Thus, the correction
rules are deduced from the previous configuration as follows:

RS_SPAN1 : The correction rule 1

Precondition :

– L(v0) = A

– ∃ vi ∈ B(v0), L(vi) = N , L(v0, vi) = 1

Relabeling :

– L(v0, vi) := 0

RS_SPAN2 : The correction rule 2

Precondition :

– L(v0) = A

– ∃ vi ∈ B(v0), L(vi) = A, L(v0, vi) = 0

– ∀ vj 6= vi ∈ B(v0), L(v0, vj) = 0

Relabeling :

– L(v0, vi) := 1

We assume in this system the existence of a distinguished node which is initially labeled
A and which is usually correct. We define the relabeling system Rs1

= (Σs1
,Ps1

,Fs1
),

where Σs1
= {N,A, 0, 1} and Ps1

= {RSPAN1, RS_SPAN1, RS_SPAN2} such that
RS_SPAN1, RS_SPAN2 ≻ RSPAN1. We now state the main result.

Theorem 2.5.7 The relabeling system Rs1
is local stabilizing. It encodes a self-stabilizing distributed

algorithm to compute a spanning tree.
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Proof. The proof of local stabilizing results from Theorem 2.5.4. To show that the result is a
spanning tree, we use the following invariants which can be proved by induction on the size
of the relabeling sequences:

(I1) All edges incident to anN -labeled node have labels 0.

(I2) Each edge which is labeled 1 is incident to two nodes labeled A.

(I3) The sub-graph induced by the edges labeled 1 is a tree.

(I4) The obtained tree of the irreducible graph is a spanning tree.

2.6 Automatic Generation of Local Stabilizing Algorithms

Here, we apply the developed framework to deal with self-stabilization. The method is based
on two phases. The first one consists of defining the set of illegitimate configurations (GRSIC).
The second phase allows to construct some local correction rules to eliminate the illegitimate
configurations. Then the graph relabeling system composed of the initial graph rewriting
system improved with the correction rules is a self-stabilizing system (LSGRS). We illustrate
our approach by various self-stabilizing algorithms.

2.6.1 The SSP’s Algorithm

In this section we present the local stabilizing SSP’s algorithm [SSP85]. We consider a dis-
tributed algorithm which terminates when all processes reach their local termination condi-
tions. Each process is able to determine only its own termination condition. The SSP’s algo-
rithm detects an instant in which the entire computation is achieved.

Let G be a graph. Each node v is associated with a predicate p(v) and an integer a(v).
Initially p(v) is false and a(v) is equal to −1. Transformations of the value of a(v) are defined
by the following rules.

Each local computation updates the integer a(v0) associated with the vertex v0; the new
value of a(v0) depends on values associated with the neighbors of v0. More precisely, let v0 be
a vertex and let {v1, · · · , vd} be the set of vertices adjacent to v0.

• If p(v0) = false then a(v0) = −1;

• if p(v0) = true then a(v0) = 1 +Min{a(vk) | 0 ≤ k ≤ d}.

We consider in this section the following assumption. For each node v, the value p(v)
eventually becomes true and remains true forever.

We define a relabeling function L associating with each vertex v the value L(v) =

(p(v), a(v)). The SSP’s algorithm can be encoded by a relabeling system which rules are :

RSSP1 : The SSP rule

Precondition :

– p(v0) = true

– a(v0) − 1 6= Min{a(vi)|vi ∈ B(v0)}.

Relabeling :
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T1
T2

T3

(true, 4) (true, 4) (false,−1) (true, 5) (true, 4) (false, 0)

(true, 4) (true, 0)
(true, 6) (true, 5) (true, 0)(true, 5)

Figure 6: Example of SSP

– a(v0) := 1 + Min{a(vi)|vi ∈ B(v0)}.

Let us define some illegitimate configurations to construct a set Fs2
, then we improve

the system by adding some correction rules to detect and eliminate these configurations. The
predicate p(v) is maintained by an underlying protocol and each given value is correct. Hence,
we assume that the predicate p is never false. Consider the set Fs2

= {f1} where f1 is: f1 :
a(v) ≥ 0 and p(v) = false

The correction rule is defined as follows:

RS_SSP1 : The correction rule 1

Precondition :

– a(v) ≥ 0

– p(v0) = false

Relabeling :

– a(v0) := −1.

We define the relabeling system Rs2
= (Σs2

,Ps2
,Fs2

), where Σs2
= {{false, true} ×

[−1, diam(G)]}, and Ps2
= {RSSP1, RS_SSP1}where RS_SSP1 ≻ RSSP1.

If we consider Figure 6, assume that during the execution of the SSP’s algorithm, some
node (see the node in the circle) has changed incorrectly its state from (false,−1) to (false, 0)

(after step T1). In this case, this node is in the illegal configuration f1, and the rule RS_SSP1

will be applied as it has higher priority than the main rule (step T2). Note that the correction
is done immediately and locally. We now state the main result:

Theorem 2.6.1 The relabeling systemRs2
is local stabilizing. It encodes a self-stabilizing SSP’s algo-

rithm.

Proof. The proof of local stabilizing results from Theorem 2.5.4. To show that the result is
correct, we use the following invariants which can be proved by induction on the size of the
relabeling sequences:

(I1) If p(v0) = false, then a(v0) = −1

(I2) If p(v0) = true, then a(v0) := 1 +Min{a(vi)|vi ∈ B(v0)}.

2
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2.6.2 Enumeration Protocol

An enumeration algorithm on a graph G = (V,E) is a distributed algorithm such that the
result of any computation is a labeling of the nodes that is a bijection from VG to 1, 2, · · · ,#V .

First, we give a description of the initial enumeration algorithm [Maz97]. Every node attempts
to get its own name, which shall be an integer between 1 and#V.

The Mazurkiewicz’s Enumeration Algorithm. A node chooses a name and broadcasts it
with its neighbor-hood (i.e. the list of the name of its neighbors) all over the network. If a
node u discovers the existence of another node v with the same name, then it compares its
local view, i.e. the labeled ball of center u, with the local view of its rival v. If the local view of
v is “Stronger”, then u chooses another name. Each new name is broadcasted with the local
view again over the network. At the end of the computation it is not guaranteed that every
node has a unique name, unless the graph is non ambiguous [Maz97]. However, all nodes
with the same name will have the same local view.

The crucial property of the algorithm is based on a total order on local views such that the
“Strength” of the local view of any node cannot decrease during the computation. To describe
this local view we use the following notation: If v has degree d and its neighbors have names
n1, n2, · · ·nd with n1 ≥ · · · ≥ nd, then LV (v), the local view, is the d-tuple (n1, n2, · · ·nd). Let
LV be the set of such ordered tuples. The alphabetic order defines a total order � on LV . The
nodes v are labeled by triples of the form (n,LV,GV ) representing during the computation:

• n(v) ∈ N is the name of the node v,

• LV (v) ∈ LV is the latest view of v,

• GV (v) ⊂ N×LV is the mailbox of v and contains all the information received at this step
of the computation. We call this set the global view of v.

The initial labels of each node are (0, φ, φ) and as presented in the previous, the algorithm
is composed of two rules: (1) transmitting rule, and (2) renaming rule.

A Local Stabilizing Enumeration Algorithm. We briefly present in the sequel a new enu-
meration algorithm encoded by local stabilizing relabeling systems. This protocol is optimal
compared to the version presented in [God02].

In a correct behavior, when a name of v0 is already chosen by another node vi, v0 (resp. vi)
will receive this information and change its name if the local view of v0 (resp. vi) contains the
older modifications.

In a corrupted behavior, when a name of v0 is corrupted, it detects this corruption, changes
its name to−1 and initializes its states, then one of its neighbors vi detects this change, corrects
the state of v0. After that, v0 chooses another number to rename itself.

We start by defining some illegitimate configurations to construct a set F , then we improve
the system by adding the correction rules to detect and to eliminate these configurations. The
node v0 is said to be corrupted or in the illegitimate configuration, if one of its components is
changed using extra relabeling. This relabeling does not correspond to those of the previous
rules. We can define the following kind of corrupted behaviors:

1. Corruption of the name,
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2. Corruption of the local view,

3. Corruption of the global view.

Such configurations are expressed using predicates in order to build the set of illegitimate
configurations. Therefore, a set of correction rules are added to the system to encode the local
detection and correction of these configurations.

This protocol is easy to understand and its translation from the initial algorithm requires
little changes. The proof is decomposed into two steps. First the proof of self-stabilization
which is based on our developed framework. Second the proof that this protocol does its
expected task which is based on the same as [Maz97]. For the complexity study, we show that
our protocol is better than [God02]. In this work, we had also shown that self-stabilization
meets global detection of termination such as [AN01]. For an in-depth description of this
protocol and its proof of correctness, we refer the reader to the original papers [Maz97, God02]
and to our contributions [HM06b, HM06a].

2.7 Self-stabilizing Distributed Resolving of Conflicts

In this section, we investigate the problem of resolving conflicts in a distributed environment
in the presence of transient failures using only local knowledge. The stabilization time is
computed in terms of computation steps as the previous section, then approximated according
to the needed synchronizations.

Several papers investigate the mutual exclusion problem. In [Lam74], the author has given
a simple solution to this problem in spite of failures in a complete graph. That is, a validating
and checking approach. The probabilistic (or randomized) approach had been introduced in
[LR81] for resolving the dining philosophers problem. This algorithm is the base of many
studies such that of [DFP02]. Randomization is used to cope the case of asynchronous and
anonymous networks [Her90, KY97]. The work closest to our is [MSZ06]. The main difference
between our work and [MSZ06] is: Here we present a self-stabilizing solution.

Resolving conflicts problems in distributed systems has been active more than three
decades. In fact, when a group of processors, composing the system, needs access or uses
some resource that cannot be used simultaneously by more than one processor, for example
some output device, the system must ensure some properties to manage such conflicts be-
tween processors. Here, we study such a problem in distributed environment. Resources
subject to conflicts are called critical resources and by extension the use of such resources is
named critical section.

We consider the case when a process needs to have access to all its resources to do any
computation. This problem is named drinking philosophers problem and was introduced by
Chandy and Misra in [CM84] as a generalization of the dining philosophers problem [Dij72],
one of the famous paradigms in distributed computing. In a generalization of the drinking
philosophers problem, a philosopher can choose one or many bottles and not only all of them
[LW93, BBF01]. In this paper, we consider a network of processes sharing a set of resources.
The resources are placed on the edges of the underlying graph. Any algorithm which solves
this problem has to ensure the following properties :

• no shared resource is accessed by two processes at the same time, that is, the algorithm
ensures the mutual exclusion on shared resources,
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• if two processes p1 and p2 do not share a resource, and hence are not adjacent in the
underlying graph, then they can access their resources independently, and possibly at
the same time, that is, the algorithm ensures the concurrency property,

• if a resource is asked by two processes p1 and p2 and if p1 formulates its request before
p2 then it must enter the resource before p2, this is called the ordering property,

• if a process p asks to have an access to all the resources it needs, pmust end by obtaining
this access, this is called liveness property.

In our graph the resources are placed on the edges, node u is a neighbor of node v if u and v
potentially share a resource. A process can perform its computation if all its needed resources
are allocated to it. Each node v is labeled L(v) = (St(v), Ord(v)), where St(v) denotes the
current state of v : tranquil, thirsty or drinking. These states will be respectively encoded by the
labels T , Th or D. The label Ord(v) is an integer to manage the order of process requests.

For a sake of clarity and in order to make easier the comparison of our work with some
relevant literature, we use the term abnormal instead of illegitimate.

Description of the Algorithm in a Normal Behavior [MSZ06]. Initially all the vertices of
the graph are tranquil (this is encoded by the label (T,−1)). At each step of the computation,
an (T,−1)-labeled vertex umay ask to enter the “CS”, instead of critical section, which means
that it becomes thirsty. In this case u changes its label to (Th, i) where i = Max{Ord(v)|v ∈

B(u)} + 1. So, the order of u is the most of its neighbors. In a complete graph, this order can
be seen as a universal time since only one node can change its label to Th at the same time.

If a vertex u, with a label (Th, i), has no neighbor in the critical section (labeled (D,−1))
and no neighbor with a label (Th, j) where j < i (it has the lowest rank of its neighbors), the
vertex u can enter the critical section. That is, uwill have the label (D,−1).

Once, the vertex in the critical section had terminated its work, it changes its label to
(T,−1).

2.7.1 Our Algorithm

Clearly, all the computations starting from configurations where all nodes are (T,−1) using a
scheme as the normal behavior are without abnormal configurations. Since self-stabilization
deals with computations starting from any configuration, we will consider in our design the
fact that some abnormal configurations appear in the started configuration. The goal of the
self-stabilization is to ensure that after a finite time, such configurations will disappear. We
consider the following abnormal configurations:

• When a node u labeled St(u) = Th has a neighbor v labeled St(v) = St(u) and
Ord(u) = Ord(v). We denote this configuration by f1.

• When a node u labeled St(u) = D has a neighbor v labeled St(v) = St(u). We denote
this configuration by f2.

Node satisfying the abnormal configuration f2 is called f2ab. Node satisfying f1 is called
f1ab. Other nodes are called f0ab. Let (G,L) be any configuration. Let GL be the set of labeled
graphs (G,L) and AB : GL×{f1, f2} −→ N be an application associating to each labeled graph
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(G,L), the number of its abnormal configurations. We write AB(L, f) to denote the number of
abnormal configurations f which appears in L. At each step of the computation, we consider
the following cases: In the first case, AB(L, f1) > 0 and AB(L, f2) = 0. It means that there are
f1ab nodes and f0ab nodes. Nodes labeled (T,−1), (Th, i), (D,−1) that are not f1ab nodes
behave as described in the normal behavior. Each f1ab node labeled (Th, i) such that it has
neighbor also labeled (Th, i) updates its label to (Th, j)where j = Max{Ord(v)|v ∈ B(u)}+1.
So, the order of u is the most of its neighbors. For the second case, AB(L, f1) = 0 and
AB(L, f2) > 0. Each of the f0ab nodes follows the same behavior as the normal behavior. If
a node u is a f2ab node, it changes its label to (Th, i) where i = Max{Ord(v)|v ∈ B(u)} + 1.
Finally, the third case AB(L, f1) > 0 and AB(L, f2) > 0. Nodes that are neither f1ab or f2ab
nodes follow the normal behavior. Both f1ab and f2ab nodes change their labels to (Th, i)

where i = Max{Ord(v)|v ∈ B(u)} + 1.

The algorithm may be encoded by the following graph relabeling system. In the sequel, it
is referred as the SRC algorithm.

Algorithm 4 Self-stabilizing algorithm for resolving conflicts (SRC algorithm)

RS_CONF1 : The node u becomes thirsty, it forms its request
to enter in the “CS”

Precondition :

– St(u) = T

Relabeling :

– St(u) := Th

– Ord(u) := Max{Ord(v), ∀v ∈ B(u)}+
1

RS_CONF2 : Node u is elected in its local ball, so it enters in
the “CS”

Precondition :

– St(u) = Th

– ¬∃v ∈ B(u) such that St(v) = D

– Ord(u) = Min{Ord(v), ∀v ∈ B(u)}

Relabeling :

– St(u) := D

– Ord(u) := −1

RS_CONF3 : Node u terminates its use of the “CR”, then it
leaves the critical section

Precondition :

– St(u) = D

Relabeling :

– St(u) := T

RS_CONF4 : Thirsty node u finds one of its neighbor also
thirsty with the same order, so it changes its order

Precondition :

– St(u) = Th

– ∃v ∈ B(u) such that St(v) = Th and
Ord(u) = Ord(v)

Relabeling :

– Ord(u) := Max{Ord(w), ∀w ∈
B(u)} + 1

RS_CONF5 : Node u in the “CS” finds one of its neighbor also
in the “CS”

Precondition :

– St(u) = D

– ∃v ∈ B(u) such that St(v) = D

Relabeling :

– St(u) := Th

– Ord(u) := Max{Ord(w), ∀w ∈
B(u)} + 1

2.7.2 Proof of Correctness and Analysis

We will prove that the SRC algorithm satisfies the closure and the convergence properties
assuming that the correction rules (RS_CONF4, RS_CONF5) have highest priority than
those of RS_CONF1, RS_CONF2, RS_CONF3. Then, we compute the stabilization time
in terms of relabeling steps.

Lemma 2.7.1 Starting from a configuration (G, λ) without abnormal configuration, all the configu-

rations reached during an SRC -computation remains without abnormal configurations.
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Proof. The correctness proof is by induction on the size of the relabeling sequence.
Suppose (G,L0) is such that AB(L0,F) = 0. The only rules possibly applied are
RS_CONF1, RS_CONF2, RS_CONF3. The application of such rules does not generate ab-
normal configuration. So, ∀(G,L1), (G,L2), (G,L3) such that (G,L)

RS_CONF1
−−−−−−−−−−−→

SCR
(G,L1),

(G,L)
RS_CONF2

−−−−−−−−−−−→
SCR

(G,L2), (G,L)
RS_CONF3

−−−−−−−−−−−→
SCR

(G,L3), are such as AB(L1,F) =

AB(L2,F) = AB(L3,F) = 0. Thus the algorithm operates correctly in this case. Now, we
suppose that the algorithm works correctly for all relabeling sequences with size k − 1. Con-
sider applying the algorithm on a configuration reached after any computation of size k − 1.

We denote such a configuration (G,Lk−1). Since AB(Lk−1,F) = 0 it suffices to consider
(G,Lk−1) as (G,L0). In fact, according to the first case (“trivial case”) the property holds. 2

Lemma 2.7.2 Starting from a configuration (G,L) with abnormal configuration, there is a finite

suffix of the SRC -computation after which all the reached configurations are without abnormal con-

figurations.

Proof. The goal is to show that after a finite number of relabeling steps, the number of ab-
normal configurations decreases to reach 0. We will use an induction on the number of the
abnormal configurations. Let (G,L) be a started configuration. The case of AB(L,F) = 0

corresponds to the closure property. Suppose that AB(L,F) = 1, and let node u be the abnor-
mal node. Node u applies RS_CONF4 (resp. RS_CONF5 ) if it is a f1ab node (resp. if it is
a f2ab node). So after the application of such a rule, the number of abnormal configurations
in the resulting labeled graph is equal to 0. Now suppose that starting from any labeled graph
(G,Lx) such that AB(Lx−1,F) = x−1, after the application of a finite relabeling rules denoted
by f(x − 1) the resulting labeled graph is without abnormal configurations. We consider an
application of the algorithm on a labeled graph (G,Lx) such that AB(Lx,F) = x. Let (H, γ)

be a sub-labeled graph of (G,L) such that AB(γ,F) = x − 1. From the hypothesis, after a
finite number of relabeling rules, (H, γ) becomes without abnormal nodes. We denote such a
configuration, in the graph H, (H, γ′). Then, it suffices to consider the “trivial” case of one
abnormal node applied to the resulting labeled graph (G,L′) composed of (H, γ′). Hence,
the lemma holds. 2

For the time complexity requirements of our algorithm we deal with the worst case of the
convergence time. In other words, the cost of the algorithm is the number of steps involved
by the algorithm to reach a configuration without any abnormal configuration. We use the
following properties to give the stabilization time of our algorithm:

1. Each node applies one rule in the set of correction rules to correct itself.

2. The application of the correction rules does not add abnormal configurations.

3. In the worst case, for n1 D-abnormal nodes and n2 Th-abnormal nodes, the nodes apply
n1 + n2 correction rules.

For the space requirements, each node v is labeled L(v) using the three following compo-
nents: (1) B(v), (2) Ord(v) and (3) St(v). Thus, to encode the first component of a label, every
node needs to know the set of its neighbors. So, every node v requires (deg(v) × log deg(v))
bits to store this component 2, where deg(v) is the degree of v. For the second component,

2We use log x to denote log2 x.
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to avoid the use of the unbounded value of the order (or∞) we assume that an upper bound
of the possible value taken by the variable Ord is known. Let N be such a value. Note
that such a bound is used only for analysis: It is not required for the proof of correctness
of the algorithm. Then, the computation of the label Ord(v) will be based on this knowl-
edge: Ord(v) := (Max{Ord(v)|v ∈ B(u)} + 1) mod N , where mod is an abbreviation
of modulo defined as: Given two numbers a and b, a modulo b is the remainder, on divi-
sion of a by b. Note that such a knowledge is not used to prove the correctness of our algo-
rithm. By taking into account the last component, we can claim that the space requirement is
O(deg(G) × log deg(G) + logN ) bits per node.

The following result shows our first contribution.

Theorem 2.7.3 The SRC algorithm encodes a distributed self-stabilizing algorithm for resolving

conflicts. When the SRC algorithm is applied on a graph G = (V,E), its time complexity is in

O(#V ) steps and its space complexity is in O(deg(G)× log deg(G)+ logN ) bits per node. For some

upper bound of the possible value of the order N .

2.7.3 Implementation Using Randomized Synchronizations

Now, we present some results related to the implementation of the SRC algorithm using
synchronizations based on a randomized local election. We will show that, starting from any
configuration, the protocol converges to satisfy its specifications and after that, it satisfies such
specifications for ever.

To implement the GRS, and hence the algorithm it encodes, we need a procedure to ensure
that at any step, no two adjacent vertices apply one of the rules at the same time. To do so, we
use a randomized procedure studied in [YM02] and used to implement local computations: In
a round, a vertex chooses a random real value and then sends it to all its neighbors. When a
vertex v receives all the messages, it compares its value to those sent by its neighbors. If v has
the maximum value, then it knows that it is elected in the ball of center v and of radius 1 (and
then can perform a step of the GRS). Otherwise, it keeps standing until the next round where
it will try again to be locally elected, this local election is called LE1. In [YM02], the authors
show that if d is the degree of v then the expected waiting time for v to be locally elected is
d+ 1.

We show an example of a randomized procedurewhich implements the local election algo-
rithm LE1. This procedure may be used to implement the local computation Lc1 as presented
in Section 1.2.5. We refer to the ball of radius 1 as a synchronized star, or simply a star. Two
results can be obtained by this function:

• starCenter : is the center vertex of the local synchronized star. It receives from its neigh-
bors their labels and it changes its label.

• starBorder : is a vertex neighbor of a starCenter. Note that a vertex can belong to more
than one synchronized stars.

Figure 7 shows an example of this synchronization. The LE1 procedure is implemented by
the following algorithm:

Before proving the correctness of the algorithm, let us recall some properties of the graph
relabeling system we described in the last section.
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elected nodes

no elected nodes
synchronized balls

Figure 7: Example of the used local election procedure

Algorithm 5 Local synchronization procedure 1 (LE1)
myNumber = RandomNumber();//Choose a random number
sendAll(myNumber);//Send my number to all my neighbours
for (door=0;door<arity;door++){

neighborNumber[door] = receiveFrom(door);
}
maxNumber=Max(neighborNumber);//Compute the max number of the neighbors
if(myNumber>maxNumber){ //My number is the greater

sendAll(center);
return starCenter;

}
else
if (receive()==center){

return starBorder;
}

Let (G,L) be a labeled graph. Let (G,L′) be a labeled graph such that: (G,L)
∗

−−−−→
SRC

(G,L′). Then the graph (G,L′) satisfies the following properties:

Properties 2.7.4

1. Each node uwith label (T,−1), which wants to enter the critical sections (CS), changes its label to

(Th, n+ 1), where n = Max{Ord(v)|v ∈ B(u) and L′(v) = (X,Ord(v)), X ∈ {T, Th,D}}.

2. To change its label to (D,−1), a (Th, i)-labeled node must not have a neighbor with the label

(D,−1) or with the label (Th, j) where j < i.

3. Each thirsty node u with label (Th, i) connected with a node v labeled also (Th, i), updates

its label to (Th, n + 1), where n = Max{Ord(v)|v ∈ B(u) and L′(v) = (X,Ord(v)), X ∈

{T, Th,D}}.

4. Each node u supposed in the “CS” (labeled St(u) = D ) which finds one of its neighbor v also

supposed in the “CS”, sets its label to (Th, n + 1), where n = Max{Ord(v)|v ∈ B(u) and

L′(v) = (X,Ord(v)), X ∈ {T, Th,D}}.

Concerning the concurrency property, in [YM02], it is proved that if a vertex v is locally
elected in a ball B(v) then there is no other vertices locally elected in B(v), meaning that v
can perform its action (v can apply a rule of the GRS) without influence in the behavior of the
vertices at a distance greater than 1 from v. That is :

Lemma 2.7.5 The concurrency property is verified by the algorithm.

To capture the worst cases of the abnormal configurations, we will use the following defi-
nition:
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Definition 2.7.6 Let a > 0 be an integer and let ABa denote the set of abnormal vertices, including

f1ab, f2ab vertices, in G at the a
th step of the algorithm.

1. Let Pk = (v0, v1, · · · , vk−1) be a path in ABa. Each of the nodes v0 and vk−1 is called the

end-path node. Then,

(a) Pk is a D-abnormal path if ∀ j ∈ [0..k − 1], L(vj) = (D,−1).

(b) Pk is a Th-abnormal path if ∀j ∈ [0..k − 2], if L(vj) = (Th, i) then L(vj+1) = (Th, i).

2. Let P be a set of paths Pk that covers ABa. In other words, P covers the set of all abnormal

vertices.

To prove the mutual exclusion we will be interested to study the possible construction and
destruction of theD-abnormal configurations and for the liveness property we consider the Th-
abnormal configurations. In both studies we consider the abnormal set of paths that covers the
set of all abnormal vertices.

To eliminate a D-abnormal node v0 it suffices that v0 changes its label to (Th, i). That is,
we focused on the expected time necessary for v0 to change its label to (Th, i). When a vertex
v is labeled (D,−1), it needs to become locally elected to change its label to (Th, i). Recall that
from [YM02], the expected waiting time for a vertex v to become elected in a ball B(v) is

µ(v) = deg(v) + 1. (1)

Where deg(v) is the degree of the vertex v.

Now, we deal with abnormal paths as Definition 3. Let PD be a cover composed of
D-abnormal paths, so PD = {P 1

i , P
2
j , · · ·P

l
k}. The worst case corresponds to the elimina-

tion of the abnormal paths one by one. We will study the longest D-abnormal paths be-
cause they influence the needed time to achieve the mutual exclusion property. Indeed, if
Pk = (v0, v1, · · · , vk−1) is such a path, it is clear that the application of the rule RS_CONF5

by v0 or vk−1 decreases the length of the path by 1. However, the application of the same rule
by other nodes decreases the length by 2. The worst case corresponds to the application of the
RS_CONF5 by the end-path nodes. We consider the case when v0, v1, · · · , vk−1 are elected
locally in that order.

Lemma 2.7.7 Let Pk = (v0, v1, · · · , vk−1) be a D-abnormal path of length k. If τDk denotes the time

to obtain local elections on v0,v1, · · · and vk−1 in that order then

E(τDk) =

k−1∑

i=0

(deg(vi) + 1). (2)

Proof. Let ti denotes the random variable defined by : ti = 1 if vi is locally elected, and ti = 0

otherwise. It is easy to see that τDk =
∑k−1

i=0 ti. By the linearity of the expectation, we have

E(τDk) =
k−1∑

i=0

E(ti) =
k−1∑

i=0

µ(vi) (3)

then by (1), this ends the proof. 2

Lemma 2.7.8 Eventually, after a finite time the mutual exclusion property is verified by the algorithm.



44 CHAPTER 2. SELF-STABILIZATION AND LOCAL COMPUTATIONS

Proof. The goal of this lemma is to show that after a finite time the computation will reach
a configuration deprived of f2ab nodes. So we are interested to study the worst case or the
upper bounds. That is, the case of a PD. From the previous, the expected waiting time to
destroy aD-abnormal path corresponds to the expected waiting time for each of its vertices to
become locally elected. Thus, the expected waiting time to destroy a PD cover corresponds to
the expected waiting time to destroy each of its D-abnormal paths. According to (2) and (3), if
τD denotes the time to obtain local elections on v0, and then local elections in its D -abnormal
paths P0, · · · and Pdeg(v0)−1 in that order then we deduce:

E(τD) ≤ #PD

diam(G)−1∑

i=0

(deg(vi) + 1). (4)

Where#PD denotes the number of D-abnormal paths in PD. 2

From the previous Lemmas and Properties 2, the following holds:

Theorem 2.7.9 Eventually, after a finite time the mutual exclusion property is verified by the algo-
rithm and then both ordering and mutual exclusion properties are verified for ever.

To prove that the computation reaches a configuration satisfying the liveness property,
we use the same reasoning as the previous. First, to eliminate all the Th-abnormal nodes it
suffices that each of them changes its label to (Th,max_ord) such that its order becomes the
most of its neighbors. In fact, we study the expected time necessary for a vertex v0 to change
its label to (Th,max_ord). To do this, v0 must become locally elected to change its label (1).
For the liveness property we consider Th-abnormal paths in the sense of Definition 3. In fact,
if Pk = (v0, v1, · · · , vk−1) is such a path, it is clear that the application of the rule RS_CONF4

by v0 or vk−1 decreases the length of the path by 1. However, the application of the same rule
by other nodes decreases the length by 2. The worst case corresponds to the application of the
RS_CONF4 successively by the end-path nodes. We consider the case when v0, v1, · · · , vk−1

apply the rule RS_CONF4 in that order. The proof of the following lemma is the same as the
lemma used to show that the D-abnormal paths will be destroyed in a finite time.

Lemma 2.7.10 Let Pk = (v0, v1, · · · , vk−1) be a Th-abnormal path of length k. If τThk denotes the

time to obtain local elections on v0,v1, · · · and vk−1 in that order, then

E(τThk) =

k−1∑

i=0

(deg(vi) + 1). (5)

The goal of the next lemma is to show that after a finite time the computation will reach a
configuration deprived of f1ab nodes. We consider the case of Th-abnormal cover denoted
by PTh. Using the same reasoning of the D -abnormal configurations, the expected waiting
time to destroy all the Th-abnormal nodes corresponds to the expectedwaiting time to destroy
each of the Th-abnormal paths in PTh. According to (1) and (5), we deduce:

E(τTh) ≤ #PTh

diam(G)−1∑

i=0

(deg(vi) + 1). (6)

Then,

Lemma 2.7.11 Eventually, after a finite time the liveness property is verified by the algorithm.
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After the reach of a configuration satisfying the liveness property, it remains to prove that
the liveness property is satisfied for ever. We need to start by proving some lemmas verified
by the GRS which encodes the algorithm.

Definition 2.7.12 Let a > 0 be an integer and let Ha denotes the set of vertices labeled (Th, i) in G

at the ath step of the algorithm. Let Pk = (v0, v1, · · · , vk−1) be a path inHa.

Pk is a consecutive path if ∀j ∈ [0..k−2], if L(vj) = (Th, i) and L(vj+1) = (Th, l) then l = i+1.

We are interested on the investigations on the consecutive paths because they are the worst
cases for our algorithm. Indeed, if Pk = (v0, v1, · · · , vk−1) is such a path, it is clear that vk−1

will not be allowed to change its label to (D,−1) until all the vertices v0, v1,· · · , and vk−2 have
changed their labels in that order.

A vertex which is labeled (T,−1) must become locally elected a first time to change its
label to (Th, i), and a second time to verify that it has the lowest rank of its neighbors and
then changes its label to (D,−1). So, if at a step s, a consecutive path Pk = (v0, v1, · · · , vk−1)

is formed, this means that v0, v1, · · · , and vk−1 were elected in that order. Using the same
reasoning, it is easy to see that the vertex vk−1 will change its label to (D,−1) if the vertices v0,
v1, · · · , and then vk−1 were elected again in that order.

That is, in this section, we focus on the expected time necessary for v = vk−1 to change its
label to (D,−1) since it is equal to the expected time for Pk to be constructed.

When a vertex is labeled (Th, i), it needs to become locally elected to change its label to
(D,−1). But, the time it will take for the vertex vk−1 to become able to change its label to
(D,−1)will be the time for the vertices v0, v1, · · · , vk−2 to become locally elected respectively.
It follows the following lemma proved using the same technique as Lemma 4.

Lemma 2.7.13 Let Pk = (v0, v1, · · · , vk−1) be a consecutive path of length k. If τk denotes the time

to obtain local elections on v0, v1,... and vk−1 in that order, then

E(τk) =

k−1∑

i=0

(deg(vi) + 1). (7)

Corollary 2.7.14 The upper bound of the E(τk) corresponds to the case of complete graph. Since

2k − 2 ≤ E(τk) ≤ 2m+ k. (8)

Wherem denotes the number of edges. Let n be the number of vertices. Hence, we have

E(τk) ≤
n(n+ 1)

2
+ n− 1. (9)

The aim of the next lemmas is to show that the use of a randomized procedure ensures that
the probability of obtaining a long consecutive path is small.

Lemma 2.7.15 Let v be a vertex and let P = (v0 = v, v1, · · · , vk−1) be a consecutive path of length

k. Then with probability 1 − deg(v)+1
α , we have k ≤ α, ∀α > dmax + 1, where dmax is the maximum

degree of G.

Proof. Suppose that L(v) = (Th, i), L(v1) = (Th, i+ 1), · · · , L(vk−1) = (Th, i+ k− 1). Having
such a path in our graph means that there were local elections on v0, v1, . . . , and then vk−1 in
that order, and v has not been locally elected during at least k rounds.
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Let t be the random variable which counts the number of rounds it takes for v to be locally
elected. Using the Markov inequality [Fel60] and (1), we have

Pr(t > α) ≤
µ(v)

α
=
deg(v) + 1

α
, ∀α > deg(G) + 1.

2

Corollary 2.7.16 For graphs where the degree is bounded, mainly if it is inO(log n), it suffices to take

α = logn to obtain that with probability 1−O( 1
log n ), there is no consecutive path of length more than

logn.

That is we have the expected theorem:

Theorem 2.7.17 Eventually, after a finite time the liveness property is verified by the algorithm and
then it remains verified for ever.

Remark. As mentioned above, it is possible to destroy an abnormal path in one round. Nev-
ertheless, a straightforward computation insures that this happens with a small probability.
Indeed, this probability can be upper bounded by 1

2
k
2

for any path of length k.

2.8 Optimal Schedules of the Self-stabilizing Resolving of

Conflicts

This section tries to answer the following question: Is the activation of a subset of the set of
abnormal nodes suffices to destroy all the abnormal configurations? As mentioned above,
the use of the randomized procedure allows that the probability that the stabilization follows
the “scheme” of abnormal paths as shown in the previous is small. It corresponds to the
upper bounds. We study the behavior of our algorithm when it is applied to some graph
structure: We propose a class of graphs for which the stabilization time is optimal regardless
of the number of abnormal configurations. To characterize such graphs, we use the following
definitions.

Definitions 2.8.1 Let G = (V,E) be a graph. Then,

1. We say that G is “triangle-free” iff ∀(u, v), (u,w) ∈ E, (v, w) 6∈ E.

2. We say that a set of nodes C(V ), such that C(v) ⊆ V, is a cover of G iff the following holds:

∀u ∈ V, ∃v ∈ C(V ) such that (u, v) ∈ E.

3. Let C(V) be the set of all covers of G = (V,E). The set of node c(v) is a minimal-cover of G

iff #c(v) = Min{#C(v), ∀C(v) ⊆ C(V)}.

Figure 8 gives a sample schedule starting from a configuration with 3 abnormal nodes,
as shown in the dashed square. The cover of the graph is the set of nodes in the square.
Therefore, to destroy all the abnormal configurations it suffices to activate the minimal-cover
of the corresponding network. This means that the synchronization procedures will take into
account such knowledge. In this case, the stabilization is achieved in one round.
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Figure 8: Example of an optimal behavior with 3 abnormal nodes

2.9 Status and Future Works

We presented a formal method to design self-stabilizing algorithms by using graph rewriting
systems (GRS). This method is based on two phases. The first phase consists of defining the
set of illegitimate configurations (GRSIC). The second phase allows to construct some local
correction rules to eliminate the illegitimate configurations. Then the graph relabeling system
composed of the initial graph rewriting system improved with the addition of the correction
rules is a self-stabilizing system (LSGRS). We obtain a general approach to deal with fault-
tolerance in distributed computing: The self-stabilizing protocol can be used to implement a
system which tolerates transient failures.

This study shows the powerful of this formal model to deal with self-stabilization. The
method allows us to transform an algorithm into a self-stabilizing one with a minimum
changes since the added correction rules are able to detect and to correct transient failures.
We have investigated many examples including spanning tree, SSP’s algorithm, enumeration,
token circulation on the ring [Dij74]. As we shall see in Chapter 5, all the algorithms presented
in this chapter can be implemented and tested on the Visidia platform.

The stabilization time of these algorithms is computed in terms of the number of steps or
applied rules to reach legal configuration. To measure the “real” stabilization time, we have
studied the problem of resolving conflicts. We first use our approach to design self-stabilizing
algorithm for resolving conflicts. The proofs that the presented algorithm converges to satisfy
its specifications in a finite time is given. Then, we propose one possible implementation of the
needed synchronizations using local election randomized procedures. That is, the stabilization
time is approximated. The upper bounds computed during the analysis match the size of the
relabeling sequence used to prove the convergence of the algorithm.

In what follows we plane several possible extensions.

1. We are interested to optimize the stabilization time which is omitted in this work.

2. The in-depth study of snap-stabilization [BDPV99, CDPV02] using graph relabeling sys-
tems. We hope that our framework allows to build elegant snap-stabilizing algorithms.

3. How to implement self-stabilizing algorithms with constraints. For example, algorithms
which doesn’t violate the safety properties during the stabilization phase.

4. All algorithms encoded by local computations verifying the termination detection prop-
erty can be transformed into a self-stabilizing algorithms. What happen in the message
passing model. The border between local computations model and the message passing
model in the context of stabilization.
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5. How to transform a local stabilizing algorithm to (global) self-stabilizing algorithm.

6. Assumptions about the detection mechanism, reliable or unreliable [APSV91, AKY97].

7. Code stabilization [FG05].

8. Stabilization using mobile agents.



Chapter 3

Local Failures Detection

UNreliable failure detectors were formalized for the first time by Chandra and Toueg in
their seminal paper [CT96] with the consensus problem [FLP85] as motivating ex-
ample. A failure detector is a local module attached to every process. Its role is to

give information about the status of all other processes in the system. Typically, a failure de-
tector maintains a list of processes that it suspects to have crashed. A failure detector canmake
mistakes by incorrectly suspecting a correct process, nevertheless, whenever a failure detector
discovers that some process was incorrectly suspected, it can change its mind. Consequently,
they are named unreliable failure detectors.

As locality is an important feature of distributed computing, it is essential to understand
how to carry on computations based on local knowledge in the presence of crash failures.
Works presented by [CS96, AKY97] introduce the notion of failure locality which they com-
bined with the number of faults to measure the degree of fault-detection. Therefore, fault-detection
becomes a monitoring task. We will focus in this chapter rather on the implementation of the
failure detectors and investigate it by means of local computations. We exhibit a set of local
computation rules to describe failure detectors. The resulted algorithm is then implemented
and analyzed in the partially synchronous system. Thereby, under such assumptions our pro-
tocol is intended to implement an eventually perfect failure detector ♦P [CT96]. Then, the
protocol is extended to detect when a system component at distance l has failed and notifies
the application of this state.

The method proposed to detect failures uses classical techniques to determine locally the
set of faulty processes by constructing lists of suspected processes. Such a set, called the syn-
drome, is designed through a two-phase procedure: The test phase where processes are tested
locally by their neighbors, followed by the diffusion phase where test results are exchanged
among fault-free processes. Each process tries to gather information about the status of all
other processes by trusting non-faulty processes. Moreover, we have developed an interface
based on the Visidia library to simulate faults through a graphical user interface and visu-
alize the dynamic execution of the failure detector algorithm. This can be implemented by
equipping each process by a local failure detector module that monitors adjacent processors
and maintains a set of those that it currently suspects to have crashed. Of course, the failure
detector module can make mistakes by not suspecting a crashed process or by erroneously
adding processes to its set of suspects. If it later believes that suspecting a given process was a
mistake, it can update its set of suspects. Thus, each module may repeatedly add and remove

49
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processes from its set of suspects.

The rest of the chapter is organized as follows. In Section 3.1, we recall some properties of
failure detectors. In Section 3.2, we briefly review the existing implementations of failure de-
tectors. The system model and assumptions used here are explained in Section 3.3. In Section
3.4, we describe our solution to implement failure detection based on local computations. An
implementation and an analysis of this solution in the message passing system is proposed in
Section 3.5. In Section 3.6, we present experimental results to evaluate the performance of our
failure detector using Visidia platform. Then, in Section 3.7 we extend the protocol of Section
3.4 to deal with ball of radius l. Finally, Section 3.8 concludes the chapter with some open
issues.

3.1 Unreliable Failure Detectors

Chandra and Toueg [CT96] gave the first formalization and classification of the unreliable fail-
ure detectors. A failure detector is a local module attached to every process. Its role is to give
information about the status of all other processes in the system. Typically, a failure detec-
tor maintains a list of processes that it suspects to have crashed. A failure detector can make
mistakes by incorrectly suspecting a correct process, nevertheless, whenever a failure detector
discovers that some process was incorrectly suspected, it can change its mind. The authors
have defined some classes of failure detectors that are very useful for solving fundamental
problems in fault-tolerant distributed computing. The classification is based on specifying the
completeness and accuracy properties that failure detectors in this class must satisfy. Complete-
ness restricts the kinds of false positives, while accuracy restricts the kinds of false negatives.
Each of these properties is either weak or strong; Moreover, accuracy is either perpetual or even-
tual. Altogether, there are eight distinct classes of failure detectors. In this chapter, we present
an algorithm to implement an eventually perfect failure detector ♦P which is characterized
by strong completeness and eventually strong accuracy:

• Strong completeness: there is a time after which every process that crashes is perma-
nently suspected by every correct process.

• Eventually strong accuracy: there is a time after which correct processes are not sus-
pected by any correct process.

The most popular strategies for implementing failure detectors are Heartbeat and interroga-
tion.

• The heartbeat strategy: each process vj periodically sends ’I am alive’ messages to the
processes in charge of detecting its failure. This implementation is defined by two pa-
rameters: The heartbeat period δ and the time-out delay called To (see Figure 9).

• The interrogation strategy: a process vi handles a process vj by sending periodically
’Are you alive?’ messages to vj . When a process vj receives such a message, it replies
’Yes’. This implementation is also defined by two parameters: The interrogation period
δ and the time-out delay To (see Figure 10).
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Figure 9: Heartbeat strategy
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Figure 10: Interrogation strategy

3.2 Related Works

Failure detectors have been introduced in the seminal paper of Chandra and Toueg [CT96] as
an approved tool to solve the consensus problem [FLP85]. In this work, they discussed the
possible solutions of the consensus problem and defined the weaker family of failure detec-
tors required to achieve this. Note, however, that the use of failure detectors don’t break
the FLP impossibility. That is, the implementation of the failure detector of this family re-
quires some synchrony from the system while the algorithm using their minds may be totally
asynchronous. Since then, many protocols have been already designed to implement failure
detectors in different models of systems. Here we surveys some of these works.

[DFGO99] describes an interesting implementation of failure detection service which is
a composition that mixes push and pull failure monitoring. Such a monitoring is similar to
the heartbeat and the interrogation strategies. Further, [MMR02] proposed an implementa-
tion based on a query/response mechanism, and assume that the exchanged query/response
messages obey a pattern where the processes-query responses arrive among the (n-f) first
exchanged query/response messages, where n denotes the total number of processes and f
denotes the maximum number of them who can crash, with 1≤f<n.

Thereafter, some attention will focus on efficiency and adaptability. Thus, [FRT01] pre-
sented a protocol which is different from previous protocols: The number of failure detection
exchanged messages is reduced. In fact, it uses control messages only when no application
messages is sent by the monitoring process to the observed process. [BMS02] proposed an
implementation of an eventually perfect failure detector ♦P, which is a variant of heartbeat
failure detector adaptable to the application scalability. The implementation is based on a basic
estimation of expected arrival of ’ I am alive’ messages and an heuristic to adapt the sending
period of this messages. Similarly, many implementations of failure detection services have
been proposed for specific networks. [CHK02] identifies some of the problems raised in the
context of implementing failure detectors in the Grid System.
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In an alternative view, many works investigate randomized failure detector implementa-
tions. The protocol proposed in [CGG01] uses two parameters: A protocol period T (in time
units) and an integer k, which is the size of failure detection subgroup. The protocol steps
are initiated by a member Mi, during one protocol period T. Member Mi selects at random
a member Mj in the same subgroup and sends to it a ping message. If Mi does not receive a
reply within the time-out delay, it selects k members at random and sends to each of them a
ping-reqmessage. Each of the non-faulty members among these k,which receives the ping-req
message subsequently, pingsMj and forwards toMi the ack received fromMj , if any. Other
implementation [ACT02] includes a comprehensive set of parameters to define some metrics
that characterize the quality of service of a failure detector and then its performances. In this
protocol, process u sends heartbeat messages m1,m2, · · · to v periodically every θ time like a
simple heartbeat mechanism. To determine whether to suspect u, v uses a sequence t1, t2, · · ·
of freshness points, obtained by shifting the sending time of the heartbeat messages by fixed
parameter δ. Then, ti = ei + δ, where ei is the time when mi is sent. For any time t, let i be
such that t ∈ [ti, ti+1], then v trusts u at time t if and only if v received heartbeatmi or higher.
For the parameters, we just give a survey of these metrics since there are not applied for our
system. The model of the system used there assumes that messages get lost on a link with a
given message lost probability and the message delay is given by a random variable T with
finite expected value E(T) and variance var (T). They define three primary metrics: detection
time, mistake recurrence time and mistake duration.

Another issue is to consider failure detection in the context of self-stabilization. The first
self-stabilization failure detector implementations were introduced in [BKM97]. Their imple-
mentations send messages with every clock tick. These algorithms satisfy the failure detector
semantics and stabilize within finite time. In a recent initiative [HW05b, HW05a], a possible
implementation of unreliable failure detector using self-stabilization for message-driven sys-
tems is proposed. A protocol is said to be message-driven if a process executes its actions
(sends messages, modifies its state) only at the reception of a message. From this point of
view, the implementations of [BKM97] are time-driven and not message-driven. Note, how-
ever, that the works of [HW05b, HW05a] are for partially synchronous systems.

Themeasures introduced in [CT96] and themost relevant protocols are global. In [HW05b],
the authors formalized some characterization of the local failure detectors and gave definitions
of local completeness and local accuracy. The failure detector which satisfies these two prop-
erties is self-stabilizing depending on the number of processes that may fail permanently and
the timing model used. The measures are local and reduced to the neighbors. These local
failure detectors are devoted for sparse networks.

Unfortunately, most of the presented works are for complete graphs, use processes identi-
ties and uses some synchrony requirements according to the desired goals. Further, they are
adapted for some applications, but not for other. Which contradicts the first advantages of the
use of failure detectors as detection mechanism for applications that are not concerned how
the failure detector is implemented.

3.3 The System Model

Our system comprises a set of identified processes denoted v1, v2 · · · vn. The network is mod-
eled by a graph G = (V,E), where V is the set of processes. An edge (vi, vj) in E stands
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for an unidirectional link from vi to vj . Processes communicate and synchronize by sending
and receiving messages through the links. A process can fail by crashing, i.e. by permanently
halting. We assume that at most η ≤ #V processes can crash. Communication links are as-
sumed to be reliable. As stated in the previous section, there is no way but to use a time
based model to implement distributed failure detectors. In our case we use the following. For
the assumption about the relative speed of processes or message transfer delay, we consider
the partially synchronous model used in [CT96, BMS02, HW05b, HW05a]. Here, we abstain
from a formal definition of this timing model. In general, in this model, it is supposed that,
for every execution, there are bounds on process speeds and on message transmission delays.
However these parameters are not known and they hold only after some unknown time GST
(Global Stabilization Time). We denote Ωmsg the maximum message transmission delay of all
messages sent after GST .

A path between u and v is denoted P (u, v) = (v0 = u, v1, · · · , vl = v) such that ∀i ∈ [0, l−1],
vi ∈ V and (vi, vi+1) ∈ E. The length of a path is its number of edges, we denote this length by
Lp(u, v) and then LP (G) stands for the longest path of G. The set of distinct paths of length
less or equal to l between u and v is denoted by DPl(u, v). We use MDPl(u) to denote the
minimum number of distinct paths of distance less or equal to l between u and each node of
the set NGl(u). Formally,MDPl(u) = Min{#DPl(u, vi), such that vi ∈ NGl(u)}.

Since the graph changes with time, we use the following assumptions. The graph required
to remain connected over the whole execution. That is, we allow at most (k − 1) processes
failing at the same time in the k − connected graphs. Consequently, (locally) this means that
∀ uMDPl(u) ≥ η + 1.

To encode distributed algorithms, we use both relabeling systems model and message
passing model. The first one is used as a high level to describe failure detection mechanisms
using relabeling rules. Here, we consider relabeling on nodes in a ball of radius 1. That is, a
center of a ball may change its label according to rules depending only on its own label and
the label of its neighbors. The proposed algorithms are then implemented and analyzed in the
second model as described in Section 1.3.

3.4 Failure Detector Protocol Based on Local Computations

Our goal is to describe and implement the failure detector only by performing local computa-
tions, that is between adjacent processes. We assume that each process has an updated list of
the states of its neighbors. More precisely, for each process vi, we let hi be the following set
: hi = {(cj , sj)}, where vj is a neighbor of vi, cj is its time-stamp and sj a Boolean value
standing for its suspicious state about vj . The time-stamp can be viewed as a local clock of
process vj , which is a counter, associated with vj and with its state. The state sj is set to
true if vj is suspected and to false otherwise. The set hi can be also considered as a label of
vertex vi representing the process vi. Note that hi is a subset of #V × {0, 1}. The Boolean
value 1 means that the process is suspected of being crashed and 0 means that it is not. For
simplicity, we will use the notations (c, s)j or hi(j) instead of (cj , sj).

Now, we define the lists of the states of all processes maintained by every processes as
the following local vector labeling. To each process vi, we associate the vector Γ(i) =

((c, s)1, (c, s)2, . . . , (c, s)n). In fact, this vector is the current knowledge of the process vi

about the states of all other processes. We will denote the value of the jth component of
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the vector Γ(i) by Γ(i)[j]. Each vector is updated by performing the following local compu-
tation. Let vi0 be a process whose neighbors are vi1 , vi2 , . . . , vil

. We use the Max function
which is defined by considering the following partial order: (c, s) > (c′, s′) if c > c′ or
(c = c′ and s = 0 and s′ = 1). The initial value of Γ(i)[j] is (0, 0) for all i, j ∈ [1, n].

Clearly, each process updates its vector by taking the most recent state of each process already
known by the neighbors. The computation is performed locally in the ball of radius 1. The
purpose of using both hi and Γ(i) is to separate the local mechanism to detect failures of
neighbors (stored by the hi ’s) from the global lists broadcast through the network (stored by
the Γ(i) ’s). As we shall detail in the next section, the former can be implemented by heartbeat
or interrogation technique. Let vi0 be the vertex representing vi0 and whose neighbors are
vi1 , vi2 , . . . , vil

. We use the function fi(t) to denote the set of processes that have been sus-
pected to be crashed by the process vi0 at the time t. Our failure detector protocol is defined
by :

Algorithm 6 Local failure detector for local computations model

FD1 : Detection rule

Precondition :

– ∃ vij
∈ B(vi0

), vij
∈ fi(t)

Relabeling :

– hi(j) := (t, 1)

– Γ(i0)[j] := hi(j)

FD2 : Renaming rule

Precondition :

– If vij
∈ B(vi0

)

Relabeling :

– Γ(i0)[j] := Max(hi0
(j), Γ(ik)[j]), 0 ≤ k ≤ l

FD3 : Diffusion rule

Precondition :

– If vij
6∈ B(vi0

)

Relabeling :

– Γ(i0)[j] := Max(Γ(ik)[j]), 0 ≤ k ≤ l

Each failure detector executes the three rules. The rule FD1 detects suspected neighbors.
We use a function f which will be implemented in the next section by a heartbeat strategy.
The rule FD2 updates the local knowledge of the detector about its neighbors. Finally, the rule
FD3 updates the knowledge of the detector about other processes.

3.5 Implementation and Analysis in a Message Passing Sys-

tem

We will give in this section an implementation of the failure detector in a distributed system
where processes communicate only by exchanging messages with neighbors as explained in
Section 3.3. To do so, we will translate the rules given in the previous section into algorithm
using the model presented in Section 1.3. Then we will study its properties.
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3.5.1 Failure Detector Algorithm

We present in this section an implementation of our protocol where f(t) is accomplished by
the heartbeatmechanism. The algorithmmaintains the list of suspected processes as described
previously. Every processes vi periodically broadcast amessage ’I am alive’ to all its neighbors.
If a process vi reaches a time-out on some process neighbor vj , it adds vj to its list of
suspected processes. To achieve these tasks, two parameters characterize this failure detector:
The heartbeat period (interval) HBI and the time-out delay HBWD instead of heartbeat
waiting delay. The implementation of the algorithm is based on three lists. The list suspected
maintains the state of the processes, it is composed of couples (count,susp): susp is a Boolean
which is set to true if the process is suspected and count contains the number of the last
heartbeat received. The lists lastHbeat and msgR respectively contain the time (of the local
clock) of reception of the last message heartbeat and its sequence number. Each process vi is
equipped with a local clock in order to time-stamp incoming (and outgoing) messages. Two
types of messages are exchanged in the network, the heartbeatmessages and lists of suspected
processes messages.

The “Suspected” list is updated either by the mechanism of heartbeat, or after reception of
a list from a neighbor. In this case the update is carried out in the following way: the state of
a process is determined by the greatest number of the heartbeat as explained above.

Each process vi executes the following algorithm, refereed to in the following as FD, using
its local clock. In the pseudo-code, the local state variables of process vi will not necessary
sub-scripted with i; But used in some proofs and discussion to avoid ambiguity.

Algorithm 7 is a direct implementation of the local computations one presented in Section
3.4. It is composed of mainly three phases. The first one is the initialization (F1). The second
one manages the heartbeat implementation (F2 and F3). The last one deals with the broadcast
of the lists of suspected processes (F4).

3.5.2 Properties of the Detector

We show in this section that FD algorithm implements a failure detector of class ♦P in
a system model as defined in Section 1.3. We consider a partially synchronous system S as
explained in [CT96]. For every run of S there is aGST after which there are bounds on process
speeds and on message transmission time. However, the GST and this bound are not known.

A failure detector of class♦P must verify the two properties described by Lemma 3.5.1 and
Lemma 3.5.2 stated as follows. Let crashed be the set of crashed processes and let correct(t)
be the set of correct processes at time t.

Lemma 3.5.1 (Strong Completeness) The failure detection algorithm described above implements
a failure detector which satisfies the following property: Eventually, each process that crashes is per-

manently suspected by all correct processes, ∃ tc such that ∀t ≥ tc, ∀ vi ∈ correct(t), ∀vj ∈

crashed, Suspectedi[j] =< seq, true > .

Proof. Let vi and vj be two neighbors. Assume that vj crashes at time tcrash. It stops sending
messages <I am alive> to its neighbors. Since we suppose a bound Ωmsg on the delay of
message transmission, vi will no longer receive any message from vj after tcrash + Ωmsg.

The list lastHbeati[j] contains the moment of the last message from vj received by vi and
msgRi[j] this sequence number. Let tci be the time after which vi suspects permanently vj .
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Algorithm 7 Local failure detector algorithm in the message passing model
var FBI /*Heartbeat interval*/;

HBWD /*Time Out, Heartbeat waiting delay*/;

Suspected /*List of processes which are suspected by vi; */

F1 : {Initialization(T1)}

msgS = 0 /*msgS is an integer*/;

Suspected[j] = 〈0, false〉 for all j = 1, · · ·#V ;

lastHbeat[j] = −1 for all vj ∈ NG(vi) ; /*NG(vi) is the set of neighbors of vi */

msgR[j] = 0 for all vj ∈ NG(vi);

F2 : {Heartbeat message sending:}

at time t = HBI ∗ msgSi do

send<I am alive> to all vj ∈ NG(vi);

msgS := msgS + 1;

F3 : {A message<I am alive> has arrived at vi from vj }

tmax := lastHbeat[j] + HBWD /*The maximum time of waiting*/;

/* now is the local time of process vi corresponding to the reception of the message*/

1: if (now ≤ tmax)

lastHbeat[j] := now;

msgR[j] := msgRi[j] + 1;

Suspected[j] := < msgR[j], false >;

2: else

Suspected[j] := < msgR[j] + 1, true >; /* time out*/

3: send<Suspected> to all vj ∈ NG(vi);

F4 : {A message<Suspected> has arrived at vi from vj }

Suspected[k] := Max((c, s), (c, s)j) For all k in V ;

send<Suspected> to all vj ∈ NG(vi);
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We will study two cases:

• Case1: If tcrash + Ωmsg < lastHbeati[j] +HBWD then tci = tcrash + Ωmsg +HBWD.

• Case2: Otherwise, tci = tcrash + Ωmsg.

From these two cases, it suffices to take tci = tcrash + Ωmsg +HBWD. The other correct
processes will detect it after the diffusion (F3(1) and F3(2)). The time required for every
correct process to suspect permanently vj is bounded by tcrash+HBWD+(LP (G)+1)×Ωmsg.

In fact, the traversal of a message in the graph requires at most LP (G) steps, where LP (G) is
the longest path in G. Let us mention that the graph remains connected since it is k-connected
and at most (k − 1) processes are supposed to crash at the same time. Therefore, the longest
path is still defined and is finite. The value of tc can be set to tcrash +HBWD + (LP (G) +

1) × Ωmsg. 2

Lemma 3.5.2 (Eventually strong accuracy) The failure detection algorithm described above imple-
ments a failure detector which satisfies the following property: There is a time after which no correct

process is suspected, ∃ta such that ∀t ≥ ta, ∀vi, vj ∈ correct(t), Suspectedi[j] =< seq, false > .

Proof. Suppose that vj is a correct process and that it is suspected by process vi, i.e. vi does
not receive the kth heartbeat message of vj . In such a case, vi marks the jth component of
the list Suspectedi as true, that is, Suspectedi[j] = < msgRi[j] + 1, true > . There are two
cases, depending on whether some neighbor of vj has received the kth heartbeat message or
not.

• Case1: There is at least one neighbor vl of vj which receives the kth heartbeat message
sent by vj ( vl may not be a neighbor of vi ), vi carries out (F3(2)), starts by suspecting
vj and diffuses its list to all its neighbors which in their turns diffuse it to their neighbors
and so on. Therefore, processes who had received the list sent by vi and not yet that
sent by vl suspect vj (F4). But, vl executes (F3(1)), it diffuses its list in a similar way
as vi. At the end, all the processes even those which already received the list of vi will
update their lists (F4) and thus each correct process will no longer suspect the correct
process vj . We denote by td the time of correction or diffusion of the correct suspected
list, td = LP (G)×Ωmsg. It suffices to take ta = GST + td, where LP (G) is the longest
path of G.

• Case2: Otherwise, no neighbor receives the kth heartbeatmessage fromprocess vj , all the
neighbors suspect the correct process vj and will diffuse these incorrect information. At
least, a process neighbor vl will receive such a message from vj (F3(1)) with a possible
delay bounded by Ωmsg. The time ta is bounded by GST + Ωmsg + td.

In both cases, after ta = GST + (LP (G) + 1) × Ωmsg no correct process is suspected. 2

According to the previous Lemmas, the following theorem holds:

Theorem 3.5.3 The failure detection algorithm described above implements an eventually perfect fail-
ure detector ♦P.
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Figure 11: Network improved by failure detectors

3.6 Implementation on the Visidia Tool

To allow Visidia to detect failures, we have implemented the protocol described in Section
3.5.1. The failure detector module is implemented as a java thread which is attached to each
node of the graph and which executes FD algorithm. As shown in Figure 11, the main
algorithm is executed by the process computing unit, and that the detector module is executed
independently. However, the suspected lists maintained by the failure detector is accessible
by both.

3.6.1 Initial Implementation

This implementation allows the user to customize the tool in order to run the main algorithm
alone (safe mode), the detectors alone or both at the same time. We will focus in this section
rather on the implementation of the failure detector. In Chapter 5, we propose a method to
simulate and to to design fault-tolerant distributed algorithms.

When the failure detectors are running, the user can observe the animation of the execu-
tion of the detectors during run-time. Dynamic traffic of messages, including <I am alive >
monitoring messages and lists of suspected processes, are displayed on the screen. Moreover,
the user can simulate the crash of a process by selecting and marking the corresponding node
by a cross. For instance, the Figure 12 shows a screen shot where the process corresponding to
node 4 has been set to a crashed state. Similarly, the process of node 5 is set to a crashed state.
Of course, these simulations can be done during run-time. Now, the user can visualize the
current suspected lists at any node of the graph. For example, the list of suspected processes
computed by node 3 shows that nodes 4 and 5 are suspected (their status are set to 1) as given
in Figure 13.

3.6.2 Stability

Algorithm 7 has been implemented and initial tests show that it works correctly regardless
of its expected task. The main issue now is stability, as raised in [ADGFT01], to reach better
precision. The next step is therefore to test it as low level to notify applications about the status
of the network components, but are not in the context of this thesis.

The goal of the tests realized here was to reach a maximum stability length. Stability is
reached when the suspicion list corresponds to the real machine state. Every node holds a
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Figure 12: The simulation of crashes in Visidia

Figure 13: The suspected list computed by node 3
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Figure 14: (a) Network to be tested, (b) Parameters of the experiences

suspicion list that describes the state of other nodes. As shown in the left part of Figure 14,
node 2 crashed and the observations were done on the node 3 list. The right part of Figure 14
gives the parameters of the proposed experiences. At last, tests should reveal a global stability
period if which all suspicion lists are stables. This is in order to define a maximum time during
which processes can be ran with a total knowledge of the machine states.

The tests was to enhance Visidia with new features. Offering a homogeneous failure detec-
tion system, Visidia now offers a heterogeneous one. This heterogeneous failure detection sys-
tem is based on the Heartbeat protocol and configures the detection parameters more deeply.
Parameters no longer have to be the same for everymachine of the network. Tests were carried
on in order to approximate some stability intervals by putting the right parameters to some
detector threads. Tests showed some global stability phases but mostly only local stability.

3.7 (f, l)-Failure Detection

In this section, we extend the previous protocol to deal with balls of radius more than 1. Such
failure detector performs only local computations, as there are at most η processes that can
crash. That is, between adjacent processes based on failure locality f ≤ η and l as the radius
of balls. In the sequel, the proposed protocol will be called FD(f, l) algorithm. Each process
has the following variables:

• Suspected(u) : a vector of suspected neighbors at distance l,

• Qresp : a set of processes that response the query,

• Path : a set of processes.

To simplify discussions, let Push(pth, i) (resp. Pull(pth) ) denotes the function to add the
process i at the end of the path pth (resp. to remove the end element of the path pth) and let
high(pth) denotes the function to give the number of processes in the path pth.

Initially, each node is labeled (φ, φ, φ). Starting from an initial configuration, each node u
sends message <query> to all its neighbors at each round. When v a neighbor of u, receives
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Experiments Results
1 There is a global stability at the end of the first 3messages.

After, two states alternates for the suspicion list:
- Suspicion of all the entities.
- Stability on the level of the neighbors
The period of this local stability is ten messages.

2 Same results as in the first experiment but the local stability
are longer and lasts 14messages. Still no global stability.

3 After 15messages, total stability is reached.
Later, first the node 0 is suspected and then after 66messages
the node 1 is suspected. Results for this case are better than for the 1)
and the 2) because there is an increase in the period of stability.

4 Results are better. The global stability is longer,
the node 0 is suspected after 185messages and the node 1 after 358.
This is due to the fact that the node 5 updates its suspicion list before
the others do and sends it to the node 3.

5 The node 0 is always suspected.
6 The nodes 0 and 1 are suspected very early.

Figure 15: Results of the experiences using parameters of Figure 14(b)

such a message, it responses by sending message <ok> and forwards the query of u to its
neighbors except u if there is other processes at distance l ( high(pth) < (l − 1) ). If w which
is not a neighbor of u receives a query about u from v, it responses to v and v forwards the
response to u. When u receives #NGl(u) − η distinct responses, it starts to suspect the other
η processes

3.7.1 Implementation in a Message Passing System

Here, we present an implementation of the FD(f, l) algorithm in the message passing system.
We introduce the following variables:

• round(u) : gives the current round of the process u. Initialized to 0 and each process in-
creases its variable round after the reception of #NG(u)−η messages from its neighbors
in the ball of radius l,

• chrono : a local clock to implement a waiting procedure.

We consider a timing model near the partially synchronous system as explained in [CT96].
For every run of a distributed computing under a system as described in Section 1.3, there is a
global stabilization time GST after which there is an upper bound τ < ∞ on message trans-
mission delay. In the following, we present the failure detector protocol. Each failure detector
executes four actions. Action Fl1 sends message <query> each round to all its neighbors and
the action Fl2 receives a response <ok> for such a message. Action Fl3 responses message
<query> and sends it to all other processes in the ball of radius l. Finally, the action Fl4 starts
to suspect the processes which do not respond and initiates a new round. In the worst case,
the <query>message takes lτ time from an initiator to the most distant neighbor in the ball
of radius l. Therefore, it suffices to use 2lτ as the time to detect the failures which is the time
to send a query and to receive a response from the most distant neighbors.
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Algorithm 8 (f, l) Local failure detector algorithm in the message passing model
var round : integer init 1; chrono: integer init 0;

Susp,Qresp, path : set of labeled edges init φ;

Fl1 : {At each round, v0 executes:}

for (vi INNG(v0)) do

send<(query,φ)> via ei

Fl2 : {A message<(ok,path,el)> arrived at v0 from ej }

if (el 6∈ Qresp)

Qresp := Qresp ∪ {el};

if (high(path) = 0)

chrono := chrono + 1;

else / ∗ high(path) > 0 ∗ /

send<(ok,path,el)> via Pull(path)

Fl3 : {A message<(query,path)> arrived at v0 from ej }

send<(ok,path,e0)> via ej

if (high(path) < (l − 1) andNG(v0) 6= ej )

for (vi INNG(v0, 1)\{vj}) do

send<(query,push(path,ej))> via ei

Fl4 : {On chrono ≥ 2lτ and#Qresp ≥ #NGl(v0) − η /*end of chrono*/}

Susp := NGl(v0) − Qresp;

round := round + 1;

(Qresp, chrono) := (φ, 0);

3.7.2 Analysis

To do the algorithm’s analysis, we redefine some of the concepts introduced above, these
definitions are given using the time.

Definitions 3.7.1 The following notations are used in the sequel:

1. round(u, t) is the value of variable round of u at time t,

2. Suspected(u, t) is the set of processes that are suspected by u at time t,

3. q(u, t) denotes the last query invoked by u that has terminated at or before t,

4. Query-resp(u, t) is the set of #NGl(u)− η processes from which u has received the responses

<ok> to q(u, t).

We denote by ♦P(f,l) the class of eventually perfect l-local f -failure detectors which satisfy
l-local completeness and eventually l-local accuracy properties. These definitions are given in
the following:

Definition 3.7.2 (l-Local Completeness) Let v be any node in the graph. If v is correct, then every
node that crashes in the ball NGl(v) is eventually suspected by v.

Definition 3.7.3 (Eventually l-Local Accuracy) Let v be any node in the graph. If v is correct, then
every node that is correct in the ball NGl(v) is not eventually suspected by v.

From the fact that MDPl(u) ≥ η + 1, ∀ u ∈ V, it results that the graph is η + 1-connected,
meaning that ∀ (u, v) ∈ V 2, there is at least η + 1 different paths. Let v be any node in the
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graph G, we denote by Val(u, l) the set of nodes in NGl(u) such that ∀ v ∈ Val(u, l), there is
at least a correct path P = (v0 = u, v1, · · · , vl = v) such that ∀ i ∈ [1, l − 1], vi is correct and
vi ∈ NGl(u). Formally,

Val(u, l) = {v ∈ NGl(u) | ∃ P = (v0 = u, v1, · · · , vl = v)

s.t. ∀ i ∈ [1, l − 1], vi is correct and vi ∈ NGl(u)}

In the following, we will just deal with nodes of the sets Val called valid nodes.

Lemma 3.7.4 The FD(f, l) algorithm verifies l-local completeness property.

Proof. Let u be a correct node, and v a node in Val(u, l). From the discussion above, there is
at least one correct path P from u to v such that all the nodes in P are correct and belong to
NGl(u). Let w be a crashed node in NGl(u). From the action Fl4 uwill receive #NGl(u) − η

responses to its query, then we distinguish two cases. If node w crashes after the send of its
response and the case of it crashes before the send of the response. For the first case, u will
start to suspect in the next round. For the second case, u start to suspect w in the current round
(action Fl4). 2

Lemma 3.7.5 The FD(f, l) algorithm verifies eventually l-local accuracy property.

Proof. Let u and v be two nodes such that v ∈ NGl(u). From the algorithm, u will start to
suspect v after 2lτ time and when #Query− resp(v) = #NGl(u)−η. Once each correct valid
path P = (v0 = u, v1, · · · , vl = v) is of length l less than l, uwill never start to suspect v. 2

From the two previous Lemmas, we state the following result:

Theorem 3.7.6 The FD(f, l) algorithm implements an eventually perfect l-local f -failure detector

denoted by ♦P(f,l).

3.8 Status and Future Works

This chapter deals with the problem of crash failures and investigate it by means of local
computations. We are interested here rather in the detection phase. Thus, we exhibit a set
of local computations rules to describe failure detectors and then we propose an encoding of
such a protocol in the message passing model. Therefore, its implementation is done in the
Visidia platform.

We have presented a failure detection algorithm for local computations. The protocol de-
signed has a two-phase procedure: A test phase where processes are tested locally by their
neighbors using a heartbeat strategy (note that the interrogation can be also used), followed
by a diffusion phase where test results are exchanged among fault-free processes.

The impossibility to implement reliable failure detection protocol in asynchronous dis-
tributed systems may be reduced to the impossibility of a consensus problem [FLP85, CT96].
Hence, there is no way but to use a time based model. Therefore, we relax the model using a
partial synchrony model. The previous protocol is implemented and analyzed in the message
passing model using such a timing assumption. It is an eventually perfect failure detector ♦P
[CT96]. Specifically, we prove that if the failures are permanent, it takes the longest path of the
underlying graph for the failure detector to maintain the same suspected processes. Thus, in
some way we can consider this distance as the time complexity of the failure detector.
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The second contribution consists in the extension of this protocol to deal with ball of radius
l ≥ 1. So we extends the properties to capture such structures. The proposed protocol imple-
ments an eventually perfect l-local failure detector denoted by ♦P(f,l). This work generalizes
previous work of [HW05b, HW05a] and encodes those of [CT96]. We hope that our ♦P(f,l)

protocol will be used to capture faults in balls of radius l.

The failure detection service is integrated to Visidia. Thus, this tool is expected to yield
an homogeneous and general environment to implement and test fault-tolerant distributed
algorithms. The reliability of such algorithms depends on the used failure detector while the
locality is not violated. As we shall see in Chapter 5 the presented protocols are suitable to de-
sign fault-tolerant applications. During the test phases, we proposed the use of heterogeneous
failure detector instead of homogeneous one. Particularly, we investigate the notion of local
and global stability of the used failure detectors. In fact, for some applications needing a reli-
able network during the execution of their critical transactions (routing updates, maintenance
of distributed database, ...) the search of a global stability interval would be useful to produce
the required quality of services.

Unreliable failure detectors are characterized by the kinds of mistakes they can make: (1)
not suspecting a crashed process, (2) incorrectly suspecting a correct process. Then, unreliable
failure detectors from a given class are characterized by properties about their completeness
and their accuracy. Currently, we investigate another view of failure detectors measures ac-
cording to the number of times they change their suspicion value about all or some processes.
We need two procedures: First an algorithm to detect (or suspect) failure which allow to each
process to compute its mind. Second, a mechanism to update or to consolidate such a mind.
To encode the first procedure, we can use the FD algorithm presented above. For the second
one, we propose to use an algorithm such as SSP algorithm [SSP85] already presented in the
previous Chapter. We plan to implement such a protocol and then to propose a framework to
reconfigure it in order to simulate the failure detectors of [CT96].

Using this new view, we hope that we can formulate questions like “what is the number
of failure detectors of some classes required to solve a give problem” which are not directly
expressible in conventional models to encode distributed algorithms in unreliable networks.



Chapter 4

Local Fault-tolerance

FAult-tolerance and particularly local fault-tolerance is an attractive field in distributed
computing. In fact, fault-tolerance research covers a wide spectrum of applications
ranging across embedded real/time systems, commercial transaction systems, trans-

portation systems, andmilitary/space systems, to name a few. On the other hand, as networks
grow fast, dealing with fault-tolerance globally is no longer feasible. The solutions that deal
with local fault-tolerance are rather essential because they are scalable and can be deployed
even for large and evolving networks efficiently. A system which continues to function even
after failure of some of its components is qualified as fault-tolerant system, or commonly “re-
liable system”.

From the literature, we can distinguish between two principal approaches to improve the
reliability of a system. The first is called fault prevention [Lap92] and the second approach is
fault-tolerance [AG93, Sch90, AAE04]. The aim of the last approach is to provide a service in
spite of the presence of faults in the system. We will be interested in this approach. In an other
point of view, we agree with G. Tel [Tel00] about the distinction between two approaches to
deal with faults in distributed computing systems: Self-stabilization and robustness. So the
first one will applied to deal with transient failures and the second one, as we will see, will
be applied with some refinements for crash failures. Robust algorithms provide their func-
tionality even in the presence of faults. Note, however, that the class and the number of faults
usually have to be known and limited in order to build system satisfying the required proper-
ties. As stated in Chapter 2, self-stabilization is able to recover from arbitrary system in spite
of error state in finite time. Thus, self-stabilization allows to tolerate transient failures. Unfor-
tunately, in such a system the service is only guaranteed during stable periods corresponding
to the periods without new state corruption occurrence.

In this chapter, we study permanent failures, called also crash failures, and we investigates
them in our framework: Local computations model [LMS99]. That is, processes may fail by
crashing, i.e., they stop executing their local program permanently. We use fault-tolerance in-
stead of methods and techniques to build robust algorithms. Failure detectors are usually
studied and used for robust algorithms. Thus, we belief that the combining of self-stabilization
and unreliable failure detectors improve fault-tolerance following three aspects: First, it makes
easier the design of such protocols, second the designed protocols become not dependent from
the kind and the number of failures, third the designed protocols are more robust and efficient
regardless of the frequency of failure occurrence.

65
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We deal with the problem of designing algorithms encoded by local computations on a dis-
tributed computing with crash faults. With this purpose in mind, we present a formal method
based on graph rewriting systems for the specifications and the proofs of fault-tolerant dis-
tributed algorithms. In our approach, the properties of the program in the absence of faults
are encoded by a rewriting system, and the fault-tolerance properties of the program are de-
scribed with the behavior of the program when some faults occur. The faults are specified as
a set of illegitimate configurations that disturb the state of the program after crashes of some
component. We propose an operational and practical methodology to construct fault-tolerant
protocols. This methodology is illustrated by an example of a distributed spanning tree con-
struction. This example showed that the proposed method is more efficient, in the worst case
equivalent, to the general method to correct the distributed system based on the reset of the
entire system after a crash fault is detected [AG90].

Our purpose to deal with fault-tolerance in distributed computing using means of local
computations is to propose an homogeneous method and framework to deal with such envi-
ronment. Thus, as we shall see in the next Chapter the designed algorithms are implementable
and testable in visidia software. The method proposed here completes the unreliability of fail-
ure detection service by the self-stabilization property of the algorithms. Since many methods
are based on the initialization of the computation after each failure occurrence: Our frame-
work uses locality because we would like to preserve as much as possible some computations
that are for example far from the regions of the faults. So the initialization concerns only the
balls closed to the faults.

The outline of the chapter is as follows. Section 4.1 starts with a presentation of the well-
known impossibility of the consensus problem in asynchronous distributed computing sys-
tems. In Section 4.2, we briefly survey the existing solutions. In Section 4.3, we present the sys-
tem model and assumptions required to our considerations. Section 4.4 describes our method
to design fault-tolerant systems using local computations with illegitimate configurations, an
extending model to represent the faulty processes. Then, Section 4.5 presents example of fault-
tolerant spanning tree with termination detection algorithm, an application of our approach.
Section 4.6 summarizes the chapter including our findings and some further researches.

4.1 Impossibility of the Distributed Consensus

In this section we present briefly one of the problem which remains unsolvable in the most
model of distributed computing systems. As introduced in Section 0.2.2, the well-known result
about the impossibility of a distributed consensus with one crashed process in asynchronous
message passing model is given in [FLP85]. Since that, this problem has gained much atten-
tion in distributed computing since in one hand many other problems may be reduced to such
a problem and in the other hand this problem is the base on many more complicated proto-
cols as distributed data bases. The work of [AAL87] extends the same result of [FLP85] in
shared memory model. Recently [V0̈4] presents a new formalization of the consensus prob-
lemwithout using the notion of bivalency: A configuration is said to be bivalent if two different
final configurations may be reached from the same initial configuration. The work of [V0̈4] is
given also in asynchronous message passing model. The proofs given in all of these works
are based on the intuition that in asynchronous network, a crashed process cannot be reliably
distinguished from one which is merely slow.
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Most existing solutions for the consensus problem have included randomization, synchro-
nizations, and failure detectors. For those using the last method, the well-known solutions
are often built using the rotating coordinator. In [CT96], they proposed various implementa-
tions of failure detectors to solve the consensus problem. Along these propositions, we briefly
review the basis of an algorithm using an eventual strong failure detector ♦S. Let n, f de-
notes respectively the total number of processes and the maximum number of them who can
crash. The algorithm works as follows. In every round r processes u = (r mod n) + 1 is the
coordinator. All processes send their estimate to the current coordinator and wait either for
answer or that failure detector suspects the coordinator. The coordinator waits for (n + 1)/2

(the majority of correct process is needed: f < n/2) estimates, carefully selects one of them
and broadcast this value back to all processes. In a second acknowledgment phase the coor-
dinator detects whether agreement has been achieved or not and in case, reliably broadcasts
the decision value. Other works including those of [ADGFT03, MOZ05] proceed similarly ex-
cept that the coordinator does not rotate but is always the current leader ( which is changed
when is need, in other words when the current leader crashes). In all the coordinator based
approaches, eventually every process trusts a coordinator. In this case, the agreement can be
done. Note, however, that the perpetual failure detector proposed in [CT96] can be used to
solve the consensus problem for f < n crashes. The algorithm proceeds in asynchronous
rounds, where the failure detector is used to avoid that process waits infinitely long a crashed
process. The solution built there is based on the exchanges of a vector of estimates of the initial
values of the processes for f + 1 rounds.

Note, however, that the proposed solutions are for complete communication network and
processes have identities.

4.2 Related Works

As presented in [Tel00], robust algorithms are designed in order to provide their services even
in the presence of crash faults. Before the introduction and the formalization of the failure de-
tectors, the general method to correct the distributed system was the reset of the entire system
after a crash fault is detected [AG90]. This approach allows to solve very general problems
that appear frequently as sub-tasks in the design of distributed systems. These elementary
tasks include broadcasting of information, election of a leader, mutual exclusion, spanning
tree construction, etc. The basic techniques that followed are to limit the number of crashes as
used in [LSP82] or to introduce some weak forms of synchrony as defined in [FLM85].

As stated previously, the use of a weak forms of synchrony has formalized and abstracted
in the failure detectors oracle as presented in [CT96]. For this system, the consensus problem
can be solved in a fault-tolerant manner. Such a construction may be seen as a gap between
the synchronous of the system and the failure detector information.

In [AG93], a formalization of fault-tolerance is investigated through simple examples. It is
based on convergence and closure properties. Still, the two basic approaches to design fault-
tolerant systems can be characterized as either restricting the system (the kind of faults, their
number and duration) or extending the model (timing model, synchronous, failure detection)
as given in [Sch90, JL99, LM94, AAE04]. Further, most of the works proposed in the litera-
ture [AH93, Gar99, Por99, AK00] propose global solutions which require to involve the entire
system.
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Failure locality is introduced in [CS92, CS96] as a fault-tolerance algorithm metric which
quantifies the concept as the maximum radius of impact caused by a given fault. This is an
attractive method to improve fault-tolerance. In this area, we try to isolate the side-effects of
faults within local neighborhoods of impact. The first consideration of failure locality was for
dining algorithms [CS92]. The proposed algorithm used various doorway mechanisms to en-
sure progress and to improve the failure locality and the lower bound of 2 is established for
asynchronous dining. In a recent initiative, [PS04] investigated the dining philosophers prob-
lem and proposed general and efficient solutions. They improved the system by an eventually
perfect failure detector (see Section 3.5.1) to construct an algorithm with crash locality 1. Note,
however, that the implementation of such failure detector requires partial synchrony. Still, this
algorithm matches the lower bound of [CS92, CS96] for asynchronous system. In these works
([CS92, CS96, PS04]), the failure locality is formalized using the two classical properties related
to the dinning problems: Safety and progress. Specifically, in [PS04] a pseudo-transformation is
started to express these properties and then the failure locality in terms of closure and conver-
gence as stated in [AG93].

In an other hand, in [KP95] the notion of fault local mending was suggested to design fault
tolerant algorithms that scale to large networks. Rather, for a fault handling mechanism to
scale to large networks, its cost must depend only on the number of failed nodes. Moreover, it
should allow the non-faulty regions of the networks to continue their functioning even during
the recovery of the faulty parts. That is, for such algorithms the complexity of recovering is
proportional to the number of faults. We believe that this work is the first introduction to the
concept of fault-local algorithms. Note, however, that this work is motivated with the design
of algorithms whose cost depends only on the number of faults, which may be unknown. The
demonstration of the feasibility of this approach is showed via developing algorithms for a
number of key problems, including MIS. Then, in [KP00] this notion (fault local mending) is
refined using the concept of tight fault locality to deal with problems whose complexity (in the
absence of faults) is sub-linear in the size of the network. For a function whose complexity
on an n-node network is f(n), a tightly fault local algorithm recovers a legal global state in
O(f(x)) time when the (unknown) number of faults is x.

To summarize this brief review, as networks grow fast, detecting and correcting errors
globally is no longer feasible. The solutions that deal with local detection and correction are
rather essential because they are scalable and can be deployed even for large and evolving
networks. However, it is useful to have the correct (non faulty) parts of the network operating
normally while recovering locally the faulty components. Consequently, it becomes intrinsi-
cally difficult to implement localizing techniques accurately. Thus, most related works in the
literature suffer from poor failure locality. Additionally, it will be enjoyable to build methods
which make as much as possible to keep a part of the calculations already carried, contrary to
the use of methods of initialization. Moreover, few works consider the combination of failure
detection service and self-stabilizing algorithms. Thus many topics are still not studied in this
field.

4.3 The System Model

The distributed system (network) is a set of processes and communication links. Processes (or
nodes) communicate and synchronize by sending and receiving messages through the links
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(instead of edges). The graph modeling the network is unspecified and each node commu-
nicates only with its neighbors. Two nodes are considered as neighbors if and only if there
is a link (channel) between the corresponding processes. We deal exclusively with connected
topologies. A process can fail by crashing, i.e. by permanently halting. Communication links
are assumed to be reliable. The notions of crash failure and correct process are similar to those
given in the previous Chapter. Here, the system is improved by failure detector modules.
Thus, after a node fails, an underlying protocol, implemented using this modules, notifies all
neighbors of this node about the failure.

In our approach, the properties of the program in the absence of faults are encoded by a
rewriting system, and the fault-tolerance properties of the program are described with the be-
havior of the program when some faults occur. The faults are specified as a set of illegitimate
configurations that perturb the state of the program [AG93]. A fault-tolerant distributed sys-
tem is thus the composition of two rewriting systems: The first one is the system which codes
the application in a reliable system (without faults). The second one is that making it possible
to code some correction rules. Here we use relabeling on nodes in a ball of radius 1. That is,
each node in this ball may change its label according to rules depending only on its own label
and the labels of its neighbors.

In this chapter, processes may fail by crashing, i.e., they stop executing their local program
permanently. In order to capture this fact, we introduce the following:

Definitions 4.3.1

• The crash failure of some process vi in the local computations model is modeled using a rule

crashi. After the execution of such a rule, process vi stops all its tasks(it does not execute any

other rules) and prevents other processes to evaluate its states. These knowledge are used only to

define failure in this model, but don’t affect any other processes and the resulting state of process

vi is indistinguishable.

• A process vi is said to be correct if it does not execute crashi rule.

As before, processes cannot crash at will, but only as the result of a crash fault action.
Note, however, that the network is partially synchronous regardless of the implementation of
the failure detection service and asynchronous for the algorithm. Furthermore, the network
is identified for the first implementation and is semi-anonymous for the studied algorithms:
Only the root of the spanning tree needs to be identified.

Here, we motivate our study on the construction of a spanning tree of a graph model-
ing an unreliable network. Therefore, we assume the existence of a distinguished node (the
root) which is usually not crashed. The graph required is assumed to remain connected dur-
ing the whole execution, we allow at most (k − 1) failing processes at the same time in the
k − connected graphs. Such assumption is not a loss of generality, since it is not useful to con-
struct a spanning tree for the non connected graph. Examples given in this Chapter are such
requiring connectedness of the graph: We are interested to study the fault-tolerant distributed
algorithms where the connection of the graph guarantees the existence of solution. Then, the
parameter (k − 1) is in some way the only required fault-tolerance degree [AH93] of these
algorithms.
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4.4 Local Fault-tolerance

After the crashes of some components in the distributed system, some other components be-
come temporarily faulty: Incoherence is introduced in the execution of the algorithm because
of both the failure of some components and the mistakes caused by their corresponding failure
detectors.

Definitions 4.4.1 We use the following definitions:

• Crashed process: a process permanently stops its execution after a crash. It does not follow its

algorithm.

• Faulty process: a process which is contaminated by a crashed process. It follows its algorithm but

may deviate from that prescribed by its algorithm.

• Correct process: a process which does not belong to the set of crashed processes nor to the set of

faulty processes. It follows its algorithm.

From previous definitions, fault-tolerance is the mechanism to recover the faults (errors)
introduced after the crash of some components during the computation in the distributed
systems. The contaminated processes are the processes which do not respect the specification
of the system after the crashes occur. These processes are the neighbors of crashed processes
and we are interested to eliminate locally these bad (illegitimate) configurations.

4.4.1 A Model to Encode Fault-tolerant Distributed Algorithms

A local configuration of a process is composed of its state, the states of its neighbors and the
states of its corresponding edges. In this work, we will be interested in local illegitimate con-
figurations. Recall from Chapter 3 that a graph relabeling system with illegitimate configura-
tion (GRSIC) is a quadruple R = (Σ, I,P ,F), where Σ is a set of labels, I is a subset of Σ
called the set of initial labels, P is a finite set of relabeling rules and F is a set of illegitimate
configurations.

Let us give an examples of illegitimate configuration. Consider the following graph
relabeling system given to encode a distributed spanning tree. Every node vi is labeled
L(vi) = (span(vi), par(vi)) and then it maintains the two following variables:

• span(vi): is a variable which can have two values:

– A: vi is in the tree

– N : vi is not yet in the tree

• par(vi): is the port number of the parent of vi in the spanning tree, i.e the node which
causes the inclusion of vi in the tree.

An elementary step in this computation may be depicted as a relabeling step by means of
the relabeling rule RST1, given in the following, which describes the corresponding label
modifications (remember that labels describe process status):
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Figure 16: Example of a distributed spanning tree’s computation without faults
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Figure 17: The faulty process with the crashed process

RST1 : Spanning rule

Precondition :

– span(v0) = N

– ∃ vi ∈ B(v0), span(vi) = A

Relabeling :

– span(v0) := A

– par(v0) := vi

Initially, all the nodes are labeled (N,⊥) except one chosen node (the root) labeled (A,⊥).

Whenever a N -labeled node finds one of its neighbors labeled A, then the corresponding sub-
graph may rewrite itself according to the rule. After the application of the relabeling rule,
node v0 labeled (N,⊥) changes its label to (A, vi)where vi is its neighbor labeled A. A sample
computation using this rule is given in Figure 16. In this figure, the value of the variable
span(u) is the label associated with the node. The value of the variable par(u) is shown by
↑. Relabeling steps may occur concurrently on disjoint parts on the graph. The set Em is the
set of edges (vi, par(vi)) ∀ vi ∈ V . When the graph is irreducible, i.e no rule can be applied,
a spanning tree of a graph G = (V,E) is computed. This tree is the graph Gt = (V,Em)

consisting of the nodes of G and the set of the marked edges.

The previous algorithm can be encoded by the relabeling systemR1 = (Σ1, I1,P1) defined
by Σ1 = {{N,A} × {1 · · ·deg(G) ∪ {⊥}}, I1 = {{N} × {⊥}} and P1 = {RST 1}.

Clearly, a node labeled Amust have a parent, if span(vi) = A and vi is not root, then there
exists at least one neighbor of vi labeledA, or a parent of vi is crashed and vi is a faulty process
as shown in Figure 17. Formally, we deal with the following predicate f1 : span(v) = A, v 6=

root and ¬∃ u ∈ B(v) : span(u) = A.
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4.4.2 Local Fault-tolerant Graph Relabeling Systems (LFTGRS)

A local fault-tolerant graph relabeling system is a triple R = (Σ,P ,F) where Σ is a set of
labels, P a finite set of relabeling rules and F is a set of illegitimate local configurations. A
local fault-tolerant graph relabeling system must satisfy the two following properties:

• Closure: ∀(G,L) ∈ GL, if (G,L)¬ ⊢ F then ∀(G,L′), such that (G,L) −−→
R,∗

(G,L′), then

(G,L′)¬ ⊢ F .

• Convergence: ∀(G,L) ∈ GL, ∃ an integer l such that (G,L) −−→
R,l

(G,L′) and (G,L′)¬ ⊢ F .

As for fault-tolerant algorithms, the closure property stipulates the correctness of the rela-
beling system. A computation beginning in a correct state remains correct until the terminal
state. The convergence however provides the ability of the relabeling system to recover auto-
matically within a finite time (finite sequence of relabeling steps). As we shall see, the set of
relabeling rules P is composed by the set of relabeling rules P used for the computation and
some correction rules Pc that are introduced in order to eliminate the illegitimate configura-
tions. The latter rules have higher priority than the former in order to eliminate faults before
continuing computation.

As we shall see, the set of relabeling rules P is composed by the set of relabeling rules P
used for the computation and some correction rulesPc that are introduced in order to eliminate
the illegitimate configurations. The latter rules have higher priority than the former in order
to eliminate faults before continuing computation.

Theorem 4.4.2 If R = (Σ, I,P ,F) is a graph relabeling system with illegitimate configurations

(GRSIC) then it can be transformed into an equivalent local fault-tolerant graph relabeling system

(LFTGRS) Rs = (Σ,Ps,F).

Proof. We will show how to construct Rf = (Σf ,Ps,Ff ). It is a relabeling system with pri-
orities. To each illegitimate local configuration (Bf , Lf ) ∈ Ff , we add to the set of relabeling
rules the rule Rc = (Bf , Lf , Li) where Li is a relabeling function associating an initial label
with each node and edge of Bf . The last relabeling function depends on the application; for
example, the initial value of a node label is N in general, and the label of an edge is 0. The
rule Rc is, in fact, a correction rule. Thus the set of Pf consists of the set P to which is added
the set of all correction rules (one rule for each illegitimate configuration). Finally, we give a
higher priority to the correction rules than those of P , in order to correct the configurations
before applying the rules of the main algorithm. It remains to prove that it is a fault-tolerant
system.

1. Closure: Let (G,L)¬ ⊢ Ff . If (G,L′) is an irreducible graph obtained from (G,L) by
applying only the rule of P , then (G,L′) does not contain an illegitimate configuration.
This can be shown by induction on the sequences of relabeling steps [MMS02, LMS99].

2. Convergence: Let GL be the set of graphsG and h : GL −→ N be an application associating
with each graphG, the number of its illegitimate configurations, then for a graph (G,L),
we have the following properties:

• The application of a correction rule decreases h(G).

• The application of a rule in P does not increase h(G).
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Since, the correction rules have higher priority than the rules in P , and since the function
h is decreasing, then it will reach 0 after a finite number of relabeling steps.

Note that the last property of convergence can also be proved by using the fact that the
relabeling system induced by the correction rules is noetherian. Let us note that the correction
rules depend on the application. While the proofs above are based on the local reset (to the
initial state) which can be heavy because it may induce a global reset by erasing all the com-
putations, it is more efficient for particular applications to choose suitable corrections as we
shall see in the following examples.

We present in the sequel a spanning tree computed by a local fault-tolerant graph relabel-
ing system. In order to define the set of illegitimate configurations to construct a set Ff , we
propose the following definition:

Definition 4.4.3 (correct node (faulty)) A node v is correct (resp. faulty) if it satisfies one (resp. it
satisfies none) of the following properties:

1. if v is labeled (A,⊥) then v = root,

2. if v is labeled (A, u) then there exists one node u labeled (A,w),

3. if v is labeled (N,⊥) then there does not exist node u labeled (A, v).

Thus, for the present system we deal with the following set: Ff1
= {f1, f2}, where f1 and

f2 are defined as:

1. f1 : ∃ v0 6= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A.

2. f2 : ∃ v0, span(v0) = A, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations. Therefore, we obtain
the following algorithm:

Algorithm 9 Local fault-tolerant computation of a spanning tree

RST1 : Spanning rule

Precondition :

– span(v0) = N

– ∃ vi ∈ B(v0), span(vi) = A

Relabeling :

– span(v0) := A

– par(v0) := vi

RF_ST1 : Crash of a parent rule

Precondition :

– v0 6= root
– span(v0) = A

– ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) = A

Relabeling :

– span(v0) := N

– par(v0) :=⊥

RF_ST2 : Cleaning rule

Precondition :

– span(v0) = A

– par(v0) = vi

– span(vi) = N

Relabeling :

– span(v0) := N

– par(v0) :=⊥

We assume in this system the existence of a distinguished node called the root which is
initially labeled A and which is usually correct. The graph to which the algorithm is applied
is k-connected and at most (k − 1) failures may occur. We define the relabeling system Rf1

=

(Σf1
,Pf1

,Ff1
), where Pf1

= {RST 1, RF_ST 1, RF_ST 2} such that RF_ST 1, RF_ST 2 ≻

RST 1. We now state the main result.
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Figure 18: Example of fault-tolerant spanning tree algorithm execution

Theorem 4.4.4 The relabeling system Rf1
is locally fault-tolerant. It encodes a fault-tolerant dis-

tributed algorithm to compute a spanning tree.

Proof. The proof of fault-tolerance results from Theorem 4.4.2. To show that the result is a
spanning tree, we use the following invariants which can be proved by induction on the size
of the relabeling sequences:

(I1) AllN -labeled nodes are ⊥-parent.

(I2) Each parent is a A-labeled node.

(I3) The sub-graph induced by the node-parent edges is a tree.

(I4) The obtained tree of the irreducible graph is a spanning tree.

Figure 18 gives a sample computation of a spanning tree with a crash of a process after
the step T4. The steps T1, T2 and T3 represent the application of the main rule RST 1. The
process corresponding to the node shown by a star crashes after the step T4, and remains in
a faulty state until the end of the execution. Since the edge incident to this node belongs to
the spanning tree (bold edge), it must be deleted from the tree and the adjacent node will be
labeled N . That is done in step T5 which is an application of RF_ST 1 by the node in the
square. Now, the latter node labeled N is a parent of a node labeled A. In step T6, the node
in the square applies the rule RF_ST 2 by relabeling itself to N . Note that since RF_ST 1

and RF_ST 2 have highest priority, it will be applied on the context of the faulty node before
RST 1. Then, in step T7, T8, T9, the rule RST 1 is applied allowing to continue the computation
of the spanning tree by avoiding the crashed node.

4.5 Computation of a Spanning Tree with Termination Detec-

tion

Let us illustrate fault-tolerant distributed algorithm which computes a spanning tree of a net-
work with termination detection. We start with an algorithm in a network without crashes.
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Assume that a unique given process called the “root” is in an “active” state (encoded by
label (A,⊥)), all other processes being in some “neutral” state (label (N,0)). The tree initially
contains the unique active node. At any step of the computation, an active node may acti-
vate one of its neutral neighbors. Then the neutral neighbor becomes active and marks with
the variable par its activated neighbor. When node v0 cannot activate any neighbor because
all of them have already been activated by some other nodes, v0 transforms its state into a
“feedback” state. When all the activated nodes(“sons”) of v0 are in the “feedback” state, it
transforms its state into a “feedback” state. The root detects the termination of the algorithm
when it is in the “feedback” state. Every process vi maintains two variables:

• span(vi): is a variable which takes three values:

– N : vi is not yet in the tree

– A: vi is in the tree

– F : vi is in the feedback state, it finds all its neighbors in the tree and all its sons in
the feedback state

– T : the termination detection at the root

• par(vi): is the number of the port connected vi to its activated neighbors

We consider the following relabeling system which encodes a distributed algo-
rithm computing a spanning tree with termination detection, Rf2

= (Σf2
, If2

,Pf2
) de-

fined as Σf2
= {{N,A, F, T } × {1 · · ·deg(G) ∪ {⊥}}, If2

= {{N} × {⊥}}, Pf2
=

{RSTT 1, RSTT 2, RSTT3, RSTT4}. Now we present the set of rules:

Algorithm 10 Computation of a spanning tree with termination detection

RSTT1 : Root diffusion rule

Precondition :

– v0 =root

– span(vi) = N

Relabeling :

– span(v0) := A

RSTT2 : Node diffusion rule

Precondition :

– span(v0) = N

– ∃ vi ∈ B(v0), span(vi) = A

Relabeling :

– span(v0) := A

– par(v0) := vi

RSTT3 : Node feedback rule

Precondition :

– v0 6= root
– span(v0) = A

– ∀ vi ∈ B(v0) : (span(vi) 6= N) and
(par(vi) 6= v0 or span(vi) = F )

Relabeling :

– span(v0) := F

RSTT4 : Root detection of termination rule

Precondition :

– v0 = root
– span(v0) = A

– ∀ vi ∈ B(v0) : span(vi) = F

Relabeling :

– span(v0) := T

We present in the sequel a spanning tree with termination detection computed by a lo-
cal fault-tolerant relabeling system. We start by defining some illegitimate configurations to
construct a set Ff2

, then we improve the system by adding the correction rules to detect and
eliminate these configurations.
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Note that we distinguish crashed node and faulty node as explained in the previous sec-
tion. A faulty node should be viewed as one which has to reconstruct the computation because
of the crash of some other nodes.

Definition 4.5.1 (correct node (faulty)) A node v is correct (resp. faulty) if it satisfies one (resp. it
satisfies none) of the following properties:

1. if span(v) ∈ {A,F, T } and par(v) =⊥ then v = root,

2. if v is labeled (A, u) then there exists one node u labeled (A,w),

3. if v is labeled (F, u) then there exists one node u labeled (X,w), where X ∈ {A,F},

4. if v is labeled (N,⊥) then there does not exist node u labeled (X, v), where X ∈ {A,F}.

For the present system, we deal with the following set Ff2
= {f1, f2, f3} where f1, f2 and

f3 are:

1. f1 : ∃ v0 6= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A.

2. f2 : ∃ v0 6= root, span(v0) = F and ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) ∈ {A,F}.

3. f3 : ∃ v0, span(v0) ∈ {A,F}, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations:

RF_STT1 : Crash of a parent rule 1

Precondition :

– v0 6= root

– span(v0) = A

– ¬∃ vi ∈ B(v0) : par(v0) = vi and

span(vi) = A

Relabeling :

– span(v0) := N

– par(v0) :=⊥

RF_STT2 : Crash of a parent rule 2

Precondition :

– v0 6= root

– span(v0) = F

– ¬∃ vi ∈ B(v0) : par(v0) = vi and

span(vi) ∈ {A, F, T}

Relabeling :

– span(v0) := N

– par(v0) :=⊥

RF_STT3 : Cleaning rule

Precondition :

– span(v0) ∈ {A, F}

– par(v0) = vi

– span(vi) = N

Relabeling :

– span(v0) := N

– par(v0) :=⊥

We assume in this system that the “root” is usually correct. We define the relabeling sys-
tem Rf2

= (Σf2
,Pf2

,Ff2
), where Σf2

= {{N,A, F, T } × {1 · · ·deg(G) ∪ {⊥}} and Pf2
=

{RSTT 1, RSTT 2, RSTT3, RF_STT 1, RF_STT 2, RF_STT 3} such thatRF_STTj ≻ RSTT i.
We now state the main result:

Theorem 4.5.2 The relabeling system Rf2
is locally fault-tolerant. It encodes a fault-tolerant dis-

tributed algorithm to compute a spanning tree with termination detection.

Proof. The proof of local fault-tolerant results from Theorem 4.4.2. To show that the result is a
spanning tree, we use the following invariants:

(I1) AllN -labeled nodes are ⊥-parent.
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(I2) Node v0 which is labeled (A, vi) has one neighbor vi which is labeled (A, vj) or (A,⊥) if
vi is the root.

(I3) Node v0 which is labeled (F, vi) has its neighbor vi labeled either (F, vj) or (A, vj). If vi

is the root, then vi is labeled either (A,⊥) or (T,⊥).

(I4) Node v0 which is labeled (F, vi) has no (A, v0)-labeled node as a neighbor.

(I5) The sub-graph induced by nodes vi that are labeled (A, vj), the root which is labeled
(A,⊥) and the node-parent edges has no cycle.

(I6) If G′ is an irreducible graph obtained from graph G, then it contains exactly one (T,⊥)-
labeled node and all others are labeled (F, vi).

(I7) The obtained tree of the irreducible graph is a spanning tree.

4.6 Status and Future Works

As presented along this thesis, local computations model is a high level model to encode dis-
tributed computing systems. Algorithms encoded and proved in such a model give some
intuitions to simplify their design in other models such as asynchronous message passing sys-
tem. To capture and encode the concept of faults in this model, we introduce the crash action.
This fail step is used as an internal action. When some process vf executes this action, it stops
all its tasks. The effect of such changes could never be communicated to any other processes.
The stop event is used only for formalization. Contrary, in the synchronous systems, the fail
stop actions are detected by other processes. When we consider other models of computation,
we must introduce some artificial mechanisms to avoid that the states of failure processes are
communicated to other processes. That is, the resulting label after such action is not distin-
guishable by its neighbors or all other processes.

To circumvent impossibility implementation of fault-tolerant algorithms in asynchronous
networks, there is a solution when we relax some constraints as states changes detection. In
such a way we can introduce failure detector objects [CT96] in our formalization. Then, self-
stabilization becomes fault-tolerance algorithm property. Along the motivation of our inter-
est is the fact that few works consider the combination of failure detection service and self-
stabilizing algorithms. Thus, we have presented a method to design fault-tolerant algorithms
encoded by local computations. The method consists of specifying a set of illegitimate config-
urations to describe the faults that can occur during the computation, then adding local cor-
rection rules to the corresponding algorithm which is designed in a safe mode. These specific
rules are of high priority and are performed in order to eliminate the faults that are detected
locally. The proposed framework combines the failure detector implementation and the self-
stabilization yielding a unified and simple framework to describe and study fault-tolerant al-
gorithms. Hence, we can transform an intolerant algorithm into a local fault-tolerant one sim-
ply by using our developed framework. We demonstrate the feasibility of our approach via
developing such algorithms for a distributed spanning tree algorithms in k-connected graph
in the presence of at most (k − 1) crashed processes.

Our approach can be applied in practical applications as a generic and automatic method
to deal with faults in distributed systems. Particularly, under an asynchronous message pass-
ing system which notifies the faults. For instance, in a very large network, assume that the
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diffusion of messages between sites is performed using a spanning tree of the network. Now,
if some central node crashes, then our method allows to find a solution to continue the dif-
fusion service. We are currently working on applying our solution to particular architectures
and mainly web services.

As introduced in the previous Chapter, in the future we will be interested to study the pos-
sibility to use heterogeneous failure detectors to design local fault-tolerant algorithms. The
goal is to respond to the following question: ” how many failure detectors following their classes
are necessary to solve such problems in unreliable networks ? “. The important design corresponds
to the minimum of weaker failure detectors combined to the minimum of higher failure de-
tectors. For example, let [1]-Failure Detectors be a class characterized with the fact that each
of failure detector may change its mind about some monitored process at most one. It means
that its suspicion value may become true and remains true forever. The first step is how to
implement such a protocol which is the expected work as given in Chapter 3. The second step
is to study analytically or experimentally the number of failure detectors of such class required
to solve some problem in spite of crash failures.



Chapter 5

A Tool to Prototype Fault-tolerant
Distributed Algorithms

DEvelopment of distributed applications in dynamic networks in which nodes can fail,
move or switch off is a hard task. In such environments the procedure requires
many stages with independent requirements of each one. The protocols must be

well specified and proved. The implementation that follows remains not trivial since often
validation and debugging of a distributed system is a very complicated task. As distributed
algorithms may involve a large amount of data encoding local state of components in the
system and complex communications between them. In unreliable networks, the possible
executions of algorithms increase and the involved processes and messages become larger
over a period of time. Consequently, it is often very difficult (and sometimes impossible) to
understand their control flow and their performance and behavior only from a code (relabeling
systems or pseud-code) describing this kind of algorithms or from their execution traces. Thus,
it is suitable to develop softwarewhich offer tools to deal with such applications. In particular,
the use of visualization and animation to illuminate the key ideas (intuitions) of distributed
protocols and algorithms.

In this chapter, we present amethod to build an homogeneous and interactive visualization
of fault-tolerant distributed algorithms including self-stabilizing algorithms encoded in the
local computations model. The approach developed in this work unifies two levels. First,
the formal framework presented in the both Chapters 2 and 4 as a high level to encode fault-
tolerant distributed algorithms. Second, Visidia platform improved by the unreliable failure
detector studied in Section 3.5.1 as a notification service. Therefore, this unification allows to
automatically derive and prototype algorithms in distributed environments with failures. The
resulting tool offers an interface to select some processes and change their states to simulate
both transient and crash failures. Then, the animation allows to see the different possible
executions of a distributed algorithm and failure detectors. This part of the thesis gives a set
of techniques to demonstrate the functionalities of the algorithms and their behavior under an
asynchronous distributed systemmodel with failures. We illustrate the advantages of our tool
by an example of a distributed algorithm to compute a spanning tree.

The rest of the chapter is organized as follows. In Section 5.1, we review some related
works. The proposed method to deal with transient failures on the Visidia platform is given
in Section 5.2. Then, we present in Section 5.3 the new version of Visidia platform devoted to
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deal with crash failures. Section 5.4 gives an example of a possible implementation of a fault-
tolerant spanning tree construction. Section 5.5 introduces an expected tool to help the design
of distributed applications in a environment with crash failures. Finally Section 5.6 concludes
the chapter with short discussions about extended works.

5.1 Related Works

Simulation and visualization of distributed algorithms are very important since their under-
standing and teaching are arduous. Several platforms have been proposed to help the de-
signers of distributed applications [EH91, Sta95, FKTV99, KSV00, BHR+00]. They include
debuggers, performance measurements and simulation runs.

In an alternative view, research efforts focus in the development of generic tools to vi-
sualize distributed algorithms execution [BHSZ95, Sta95]. Specifically, [BHSZ95] proposed a
parallel programing language with a visual interface. Alternatively, in [Sta95] the motivations
are to reveal concurrent programs and to provide a set of optional views corresponding to
some specific aspects of the execution of the program (e.g. messages being transferred, local
states, etc). Thus, the user monitors the program execution through selected views. Still, the
case of execution containing a large amount of data. In this case, such information is given as
a group of streams exploited via an animation program.

For sequential (centralized) programing, a very successful example is suggested in [MN99].
This software is composed of a library of data structures and algorithms for which is added
visualization and drawing features. It is used as educational tool, as well as a prototyping tool
in industry.

In [PT98], they described an integrated library devoted to education, such as for teaching
distributed algorithms, communication protocols, and operating systems. For the protocols
and the data objects implementation part, a simulation platforms for network and multipro-
cessor systems is implemented. To create network, a nice graphical editor was used based on
a set of drawing algorithms. For the animation part, an appropriate and a powerful toolkit
is used which supports many different architectures such as the simulation platforms. Re-
cently, in [KPT03], they evaluated a distributed system assignment in which students used the
platform of [PT98] to implement their algorithms. The feedback received gives valuable infor-
mation about what the simulation-visualization environments must provide to be successfully
taught and assimilated. Thus, the students are able to improve the performance of such a tool
and help them to acknowledge the wealth of tools they are provided.

As stated before in Section 1.6, Visidia [MS, BMMS01, BM03] is a tool to implement, to
simulate, to test and to visualize distributed algorithms encoded in both local computations
(see Section 1.2) and message passing (see Section 1.3) models. The distributed system of
Visidia is based on asynchronous message passing system. Figure 2 shows the components
of Visidia. This tool is an unified framework for designing, implementing and visualizing
distributed algorithms.

However, very few studies have shown conclusively that they are effective and may be
used to deal with failures [Sta95, FKTV99, KNT05]. Erlang is a distributed functional language
used to build reliable telecommunications systems. In [KNT05], they investigated the poten-
tial of this language to deliver robust distributed telecoms software. Its evaluation is based
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on a typical non-trivial distributed telecoms application, a Dis-patch Call Controller (DCC). Dis-
patch call processing is an important feature of many wireless communication systems. Since,
the system components in such environments grows, and works are dynamically affected re-
gardless of the resources available, it is usefulness to manage the call processing as distributed
applications. The investigations of [KNT05] showed that the Erlang implementation meets the
DCC’s resource reclamation and soft real-time requirements. The presented analysis concerns
some reliability properties including those presented in Section 0.2.1. As a consequence, the
fault tolerance model of Erlang is low cost, parameterizable and generic. Moreover, Erlang
DCC is less than a quarter of the size of a similar C++/CORBA implementation, the product
development in Erlang should be fast, and the code maintainable.

5.2 Simulation and Visualization of Self-stabilizing Dis-

tributed Algorithms

In this section, we present a method to build a homogeneous and interactive visualization of
self-stabilizing distributed algorithms using the Visidia platform. This method allows a simu-
lation of the transient failures and their corrective mechanisms. Local computations have been
used to encode self-stabilizing algorithms such as the distributed algorithms implemented
in Visidia. Although the resulting interface is able to select some processes and incorrectly
change their states to show the transient failures, the system detects and corrects these failures
by applying correction rules. Many self-stabilizing distributed algorithms are implemented
and tested. We illustrate the advantages of our approach by two examples of distributed ap-
plications based on self-stabilizing algorithms.

The interface developed is based on the formal framework proposed in Chapter 2 [HM05a]
and on the Visidia platform. The graph relabeling system encoding the self-stabilizing dis-
tributed algorithm is implemented by high level primitives of Visidia. An interface allows
the user to change the state of the processes to simulate transient failures. In [HM05c], we
illustrated our methodology by examples of spanning tree computation and an algorithm to
propagate information with acknowledgment. Then, we apply the later algorithm [HM], of-
ten called a PIF algorithm, to design applications in distributed environment with transient
failures. We use such an algorithm as a basic protocol to implement both an automatic mail
system to broadcast a lot of messages and a maintaining of a common data system for dis-
tributed sites. Thus, our approach can be applied in practical applications as a generic and
automatic method to deal with transient failures in distributed systems.

5.2.1 Self-stabilizing Algorithms on Visidia

The start-up and the configuration of the simulation is achieved using an interactive interface.
The designer may change the labels, and then the data of the specified process. Then, the new
values are applied to the data of such a process. It is possible to visualize the content of such
data by means of display views. A break-point ability of the execution of the algorithm is
available.

In the presence of transients failures, the self-stabilizing property of the designed applica-
tion allows to maintain correct behaviors. The user can simulate a transient failure of a process
with the graphical user interface before the start of the simulation or during the simulation.
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Figure 19: Error introduced by the user to simulate a transient failure

Using the mouse through the graphical user interface, the designer chooses a process by se-
lecting its corresponding node and changes its status to a corrupted one:

• By starting the execution of the algorithm with a randomized value of the variables of
the program (labels). This is possible because a local stabilizing graph relabeling system
can have any initial configuration.

• By using the mouse through a graphical user interface. After the suspension of the ex-
ecution the user can simulate the failure of a process by selecting a node of the graph
representing the network. In Figure 19, at step (1) the user selects the node in which
the transient fault will be introduced. In step (2), the user opens the view to change the
state of the selected node. Step (3) changes the state and step (4) validates this operation.
Then, it may continue the suspended execution.

5.2.2 Examples of Applications

There are many applications that are based on the knowledge of a special structure of graphs.
For the routing applications [CW04] each nodemaintains some subset of the network topology
and uses this subset to perform adequate routing. An important measure in these routing
schemes is the number of nodes to be updated upon a topology change. So, it is necessary
to collect information about the network state, e.g., nodes and links operational status, to
update the routing tables. It is suitable to investigate the usefulness of maintenance of a special
structure in the design of efficient routing schemes.

Since data and the status of processes are encoded using labels, properties involving the
values of some data, such as counters for example, can now be checked. Above it’s only
checked in theory because the number of possible configurations and then local states is very
prohibitive. In the presence of failures, the tool takes into account the correction behaviors
envisaged during the design of algorithms. Then, the corresponding scenario will be able to
be replayed immediately at the simulator screen. Thus, the debugging time is significantly
reduced and the proposed interface allows a constructive methodology with the designers.
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Figure 20: Visidia architecture improved by failure detectors

Broadcast with feedback scheme has been used extensively in distributed computing to solve
a wide class of problems, e.g., spanning tree construction, snapshot, termination detection,
and synchronization. In [HM], we presented two possible applications of the self-stabilizing
PIF algorithm.

5.3 Visidia Platform to Simulate Fault-tolerant Distributed

Algorithms

Here we present our methodology devoted to help the designing of fault-tolerant distributed
applications. Our technique is based on the use of failure detector objects on each node to
ensure failure detection service. The unreliability of such services is completed by some cor-
rection rules executed on each node to correct themselves as proposed in the previous Chapter.
Correction rules are defined according to suitable behaviors of the algorithms themselves.

Each process of the distributed application to be simulated has an associated “Visidia algo-
rithm thread”, “Visidia failure detector thread” and “list of suspected” object placed between
the two previous “threads” as shown in Figure 20.

5.3.1 Architecture of Visidia

The communications primitives of Visidia are improved adding sending and receiving failure
detections messages. Moreover, the existing primitives are extended to tack into account the
waiting delay. Some subroutines are also defined to implement the failure detection notifica-
tion service. Recall from Chapter 3 and Chapter 4 that the synchrony is required for the failure
detector implementation and the algorithm is still implemented in asynchronous mode. Thus,
we distinguish between the failure detector communication mechanisms and those of the al-
gorithm. In the following we present a short description of the main added and modified
subroutines:

1. receiveFrom(intdoor, longtimeOut) :
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Figure 21: Visidia Platform to simulate fault-tolerant distributed algorithms

2. suspected(intdoor) :

3. suspectedId(intid) :

4. existFDMessage() :

5. existFDMessageFrom(intdoor) :

6. getState(intidautre) :

7. putState(intidautre, intsusp, intcount) :

8. getSuspected() :

As shown in Figure 20 and more precisely in Figure 21, the simulator component multi-
plexes messages coming from the different “threads” based on the message type 1. All of the
“algorithm”, the “failure detector” and the “suspected list” have an associated objects in the
three components or layers of Visidia.

In the following, we present an implementation of an unreliable failure detector based on
the “heartbeat” mechanism. Then, we show the main contribution of this chapter.

5.3.2 Implementation of a Failure Detector

Recall fromChapter 3, the method proposed to detect failures in the local computations model
and its corresponding implementation in the message passing model. The failure detector
module is implemented by a Java thread to execute Algorithm 7. As shown in Figure 20, the
main algorithm is executed by the process computing unit, and that the detector module is
executed independently. However, the suspected lists maintained by the failure detector are
accessible by both. Each failure detector communicates with the simulator which transfers the
events to the visualizer. The simulator uses a filter to distinguish between failure detectors
messages and those of algorithms as explained above.

The start-up and the configuration of the failure detector is achieved using an interactive
interface. The designer may change the parameters of the specified failure detector, including
the “heartbeat” interval, the “waiting delay” and the failure detector messages. Then, the
parameters are applied to all the failure detectors. Remember that the only task achieved by

1At the reception of messages, the simulator demultiplexes them.
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the failure detector is the maintaining of its corresponding suspected list. It is possible to
visualize the content of such lists by means of display views. A break-point capability of the
failure detector execution is available such as that of the algorithm execution.

5.3.3 Implementation of Fault-tolerant Distributed Algorithms

To implement fault-tolerant algorithms, Visidia platform is improved by an unreliable failure
detector to assure the suspicion service of the crashed processes. Thereafter, if the system is
notified by the failure detector that some processes crashed, the correction rules are applied.
Whenever a receiveFrom action is invoked by some process, it waits until the reception of
a message. To avoid the “deadlock waiting”, each receiveFrom(u) action executed by every
process v will be replaced by action of the format: receiveFrom(u) OR u ∈ Suspected(v).

Thus, when Visidia is used to simulate unreliable applications, the receiving actions will be
implemented using Algorithm 11. So, the action receiveFromFree and the set Suspected(v)
are added to Visidia. The latter denotes the set of processes that are suspected by v.

Assume that each local computation and its needed synchronizations are atomic steps. It
means that failures occur before the start of a local computation or after its ending (see Al-
gorithm 12). The synchronization procedures are assumed to be failure free. We will base
our methodology on the suspected lists exchanged between correct processes and on the cor-
rection rules introduced in the algorithms. The service guaranteed by the failure detector is
unreliable, therefore the algorithms must correct themselves. Synchronization procedures and
local computations will use suspected lists via the function suspected(door). It returns true if
the neighbor corresponding to the port door is suspected and false otherwise. This function
implements an “internal communication” service between the failure detector 2 object and the
algorithm3.

Algorithm 11 receiveFromFree
msg = receiveFrom(door,TIME_OUT_FIRST);
while ((!suspected(door))&&(msg==null)){

msg = receiveFrom(door,TIME_OUT_SUSP);
}

return msg;

In the presence of crash failures, the fault-tolerant property of the designed algorithms al-
lows to maintain correct behaviors. The user can simulate the crash failure of a process with
the graphical user interface before the start of the simulation or during the simulation. Using
the mouse through the graphical user interface, the designer chooses a process by selecting its
corresponding node and changes its status to crash one. After this step, both threads of the
algorithm and of the failure detector corresponding to this node are halted as shown in the
right part of Figure 22. In the example given in Algorithm 12, the sub-tasks “synchroniza-
tionFree()” and “computationFree()” denotes respectively a synchronization procedure and a
local computation. Both of these sub-tasks use Algorithm 11 to implement their communica-
tion actions.

2 Read \ Write.
3 Read.



86 CHAPTER 5. A TOOL TO PROTOTYPE FAULT-TOLERANT DISTRIBUTED ALGORITHMS

Algorithm 12 Example of execution of one rule
while (run) {

//start of an atomic step
synchronizationFree() ; // start of a synchronization
computationFree();
breakSynchro(); //end of a synchronization
//end of an atomic step

}

5.4 Example of Distributed Computation of a Spanning tree

Now, we show the power of the presented methodology with its use to simulate distributed
algorithms on unreliable networks. We deal with an example of a spanning tree computation.

We consider a graph relabeling system to encode a distributed computation of a spanning
tree using labeled function L. Each node u is labeled using three components ( L(u) =

(span(u), par(u), Susp(u)) ). First, span(u) ∈ {N,A} to mean that u is included in the on-
building tree (label A) or is not yet in the tree (labelN ). Second, par(u) ∈ {1 · · ·deg(u)}∪ {⊥}

to denote the number of the process which activated u, or simply the port number linking
u to this node. We say that v is a parent of u and u is a son of v. Third, the set Susp(u)
composed of neighbors suspected by u. When a node detects the faulty of its neighbors,
it applies corresponding correction rules to become in a correct state. The spanning tree is
defined using marked edges. As the graph required must remain connected during the whole
execution, in the k − connected graph at most (k − 1) failing processes at the same time is
permitted 4.

Algorithm 13 Complete implementation of the local fault-tolerant distributed algorithm

R1 : Node v includes itself in the tree

Precondition :

– span(u) = N

– ∃ v ∈ B(u), span(v) = A

Relabeling :

– span(u) := A

– par(u) := v

– L(u, v) := 1 /* visualization of the edges
of the tree */

RC1 : Node u suspects one of its sons

Precondition :

– span(u) = A

– ∃ v ∈ B(u), par(v) = u, v ∈ Susp(u)
and L(u, v) = 1 /* the list of suspected
processes may be shown via views */

Relabeling :

– L(u, v) := 0

RC2 : Node v suspects its parent

Precondition :

– span(u) = A

– ∃ v ∈ B(u), par(v) = u and v ∈
Susp(u)

Relabeling :

– span(u) := N

– par(u) := 0

RC3 : Node v has an incorrect state

Precondition :

– span(u) = A

– par(u) = u and span(v) = N

Relabeling :

– span(u) := N

– par(u) := 0

Now, we investigate an execution of the previous algorithm on our tool. Left part of Figure
22 exhibits some state of the computation without crashes. As mentioned above, status, labels
and messages exchanged between processes and between failure detectors are displayed on
the screen. Using the interface, process of node 3 has been set in the crash status as shown in
the right part of Figure 22. Thereafter, failure detectors corresponding to the neighbors of the

4A graph admits a spanning tree iff it is connected.
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Figure 22: Error introduced by the user to simulate a crash failure

Figure 23: Execution of corrections rules until spanning tree is computed

crashed node eventually detects this status. Thus, neighbors of node 3 apply adequate correc-
tion rules to correct themselves. Left part of Figure 22 illustrates the execution of correction
rule RC1 by node 5 and correction rule RC2 by node 4. Correction rules are executed until the
correction of all the infected part in the graph. In the right part of Figure 22, we have a new
computation of a spanning tree without the crashed node.

5.5 Fault-tolerant Distributed Applications

This section focuses on the design and validation of reliable applications in distributed en-
vironments. Our interests include the simulation of the hardware and software architecture
of the system, of the communication infrastructure in such environments, and the behavior
of algorithms in order to determine and measure the dependability impact of various failure
scenarios, identify critical components, and suggest improvements.

Our goal is to help the design and implementation of software environments to provide
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adaptive levels of fault tolerance. The proposed approach address methods for ensuring pre-
dictable dependability and responsiveness in network environments, including both homo-
geneous and heterogeneous systems components. Validation of protocols in such approach
includes the tests of high-performance, networked configurations that must deliver high-
availability services under heterogeneous operating systems, computer platforms, and switch-
ing technologies.

We believe that system architectures such as shown in Figure 24 ( for the DCC [KNT05])
are treatable in Visidia platform. We will illustrate one of the possible deployment. For the
creation of the network we proceed in two phases: (1) The set of workers is described as
usual nodes, (2) and the other components are described also in the same way using differ-
ent graphical representations. The encoding of the corresponding protocols is similar to the
example studied in the previous section except here we add some control layers to allow the
execution of the different part of the algorithms simultaneously.

5.6 Status and Future Works

Simulation and visualization of distributed algorithms are very important since their under-
standing and teaching are arduous. That is, seeing that each execution of such algorithms
involves many processes and a large quantity of messages. In fact, animation of a distributed
algorithm graphically shows one of its possible executions. Therefore, such interfaces make
easier its understanding and its study. In this way, software visualization systems seem useful
to teach and to software development.

In this chapter, we have presented a powerfulmethod to build an homogeneous interactive
visualization of fault-tolerant distributed algorithms. The resulting interface offers views to
select some processes and change their states to simulate the failures. This method will help
the study and the complexity analysis of such algorithms.

For the transient failures, the resulting interface is able to select some processes and incor-
rectly change their states to simulate such failures. Then, the system detects and corrects these
failures by applying correction rules as presented in the formal framework. The tool benefits
from the support of formal methods, that allow the automation of generation of self-stabilizing
distributed applications. The unification, between the formal model to encode self-stabilizing
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applications and the visualization approach, presented here may be extended to be used as a
previous phase to design self-repairing and self-organizing distributed applications. The sim-
ple examples described in this work show its capacity to develop a specific protocol to encode
a certain behavior of distributed applications, to maintain such a behavior and recover in a
finite time to this behavior in the presence of transient failures.

For the crash failures, the platform is improved by unreliable failure detector objects. Such
objects implement a service to notifies the system when it detects failures. After that, the
execution of the algorithm in the nearest part of the crashed processes is restricted to the ap-
plication of the corresponding correction rules. Such rules are applied until the elimination of
all the incorrect behaviors.

The center of interest of Visidia is the design of prototypes. So, this tool helps designers
to do some measurements in terms of messages exchanged and to understand the all possible
executions of the distributed algorithms. Consequently, this tool may be used for verifying
and for proving the correctness of distributed algorithms. These verifications are particularly
useful during both the dimensioning of the network and the development of new protocols
interacting with protocols already developed. The proof of the expected properties of the
prototyped protocols, using our tool, offers a powerful mechanism to validate such applica-
tions. Many real networks are based on the use of “Java sockets”, the communications are
implemented using “IP” addresses and the port number of the processes involved in the com-
putation. It’s possible to use our tool to simulate an unreliable message delivery protocols.
Moreover, many parameters related to the used protocols on the specified networks may be
experimentally computed as “the round-trip time”. We believe that the result of this chapter
is of practical interest. Basically, our framework and the resulted platform, aid to illuminate
the key ideas to augment asynchronous systems with appropriate failure detectors.

As well-known, distributed algorithms can be difficult to understand as well as to teach.
Thus, we hope that Visidia will very helpful for educational purposes, such as for teaching
fault-tolerance in distributed computing, in communication protocols, in operating systems.
For example, it is easy to show that different execution of the same algorithm, even if they
start from the same initial system configuration, may not result in the same result, due to
the synchrony (in-determinism). Since the most part of the implementation of Visidia was
achieved with students, they are able to improve the performance of such tool and help them
to acknowledge the wealth of tools they are provided. Still, we expect additional educational
benefits from Visidia in the future.

Now, we are interested in extending our approach to deal with problems related to real
networks including web services. More generally, the well-know strategy to design reliable
systems, composed of multiple components, is the replication of its all or some components.
The increasing of the replication degree improves the reliability of the system but the cost of
maintaining such replications is expensive. As implicitly mentioned in this work, we pre-
ferred an autonomous and local correction of failures after their detection. In this case we
assume that corruptions infect data that are generated using usual correct programs. On other
hand, when the exchanged data include part of program it’s useful to study the behavior of
the validated protocols in such environments. We will add to Visidia an interface to select
the desired code program to execute, and the possibility to select corrupted version of such
programs. We expect that these improvements allow us to understand and to design easily
fault-tolerant data and code distributed applications. Thus, the costs of such implementations
will be significantly minimized.
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We plan also to study the possibility to use our platform to present an easier way to un-
derstand and to prove some impossibility computations. For example, an alternative proof of
the well known consensus problem [FLP85] using our platformmay be done using the follow-
ing: We consider a simple star network composed of a specified node and a set of neighbors.
All nodes are initialized with some labels from the set {0, 1}. The goal of such an application
is to choose the same value from the initialization values using only exchange of messages
without any assumption about the message transfer delay. We have two configurations: First,
without using failure detection service and second we run the same application using a previ-
ous failure detection service. The platform allows us to modulate globally the failure detector
parameters. The parameters are used to regulate and to measure the performances of such a
service. Running experiments with some process failure under the first configuration shows
that the application does not terminate. The number of exchanged messages exploded and
the used machine is not able to do this task. Under the second configuration, the choice of the
failure detector parameters needed to terminate the computation in a correct manner is a hard
or an impossible task.



Chapter 6

Distributed Local Test of 2-Vertex
Connectivity

VErtex connectivity of a graph is the smallest number of vertices whose deletion sep-
arates the graph or makes it trivial. In general, graphs offer a suitable abstraction
for problems in many areas. For instance, when a communication network is repre-

sented as a graph, the measure of its connection is the same as the k-connectivity of the graph.
An undirected graph is connected if there is a path between every pair of its nodes. In fact,
the quality of the reachability of any couple of nodes in an unreliable network, and hence their
communication, will depend on the number of paths between these nodes. The number of dis-
joint paths is the connectivity. Since it has numerous applications in dynamic and unreliable
networks, distributed connectivity test of a graph has gained much attention recently. Indeed,
many distributed applications such as routing or message diffusion assume that the under-
lying network is connected [BHM02, CW04, Tel00, Wes01]. Connectivity information is also
useful as a measure of network reliability. This information can be used to design distributed
applications on unreliable networks. For example, testing and then preserving k-connectivity
of a wireless network is a desirable property to tolerate failures and avoid network partition
[BHM02].

Here, we investigate the problem of the test of the 2-vertex connectivity of a graph G, or
simply 2-connectivity. That is, we deal with the problem of testing whetherG is 2-connected or
not. A protocol that solves such a problem responds to the question: The number of nodes that
must be deleted in order to disconnect a graph is at least 2. Furthermore, we study this prob-
lem in distributed setting using only local knowledge. This means that each node “communi-
cates”, or exchanges information, only between neighboring nodes and each computation acts
on the states of neighbors. In this chapter, we propose a general and a constructive approach
based on local knowledge to test whether a given graph modeling a network is 2-connected in
a distributed environment. Therefore, our work may be used as a core of protocols using the
connectivity as input information.

Now, we present briefly the main idea of our approach. Let G be a graph with a distin-
guished node v0 and let T be a spanning tree of G rooted at v0. It is known that for a
graph with a distinguished node, a distributed computation of a spanning tree can be easily
performed [MMS02]. Therefore, the assumption of a pre-constructed spanning tree is not a
loss of generality. The vertex connectivity test algorithms presented here have the following
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characteristics: Each of them is based on a pre-constructed spanning tree and uses only local
knowledge. That is, to perform a computing step, only information related to the states of
the neighbors is required. Especially, each node knows its neighbors in G and in the current
spanning tree T the “position” of a node is done by its father except for the root, and a set of
ordered sons. The algorithms make a traversal of the tree starting from the root. Each visited
node v computes the set of its sons not reached by the root in the graph G deprived of v. So
each node checks if all its sons are reached by the root in the sub-graph induced by its dele-
tion. The graph is 2-connected iff all the checks are positive. In the opposite case, the graph is
not 2-connected. Our algorithms work without any more assumption for any node except the
root. Moreover, this protocol does not need a completely identified network. Only the root
needs to be identified: The network is semi-anonymous. To take into account the particular case
of the root, one of its son is chosen to check if all the other sons are reached by such a son in
the graph deprived of the root.

The rest of the chapter is organized as follows. In Section 6.1, we review most related
works. The distributed system model, including the notion of procedure in our models using
example of a spanning tree computation, is explained in Section 6.2. Then, we present our
approach to design formal procedures dealing with the problem of the 2-vertex connectivity
test of graphs in Section 6.3. Section 6.4 is devoted to the encoding of our protocol in the local
computations model. The proof of its correctness and its complexity analysis are also given.
In Section 6.5 we propose an implementation of this protocol in the asynchronous message
passing model. We show that the proofs and the complexities analysis may be deduced from
the previous encoding using simple changes. Then in Section 6.6 we conclude the chapter and
we discuss some of its possible extensions.

6.1 Related Works

In the late 1920s, Menger [Wes01] studied the connectivity problem and some related proper-
ties. Since then many results have been obtained in this area. The best known works about the
k-vertex connectivity test problemmay be summarized in [Wes01, Tar72, ET75, EH84, HRG00,
Gab00]. The above list of references is not complete.

Given a graph G = (V,E), we denote by N the size of the node set and by M the
number of edges. The maximum degree of G is denoted by ∆. In [Tar72] an algorithm to test
the 2-connectivity of graphs is given. This is a depth first search based algorithm with a time
complexity of O(M + N). Thereafter, the computation of the vertex connectivity is reduced
to solve a number of max-flow problems. For the first time this approach was applied in
[ET75]. The computation of the maximum flow is used as a basic procedure to test the vertex
connectivity. The above algorithm makes O(k(N − ∆ − 1)) calls to max-flow procedure.

The remaining works try to reduce the number of calls to max-flow procedure using some
knowledge about the structure of the graph. The time complexity of the presented algorithms
is bounded by O(k ×N ×M).

The work of [EH84] reduces the number of calls to max-flow procedure using some knowl-
edge about the structure of the graph. The number of calls the algorithm requires, is bounded
byO(N−∆−1+ ∆(∆−1)

2 ). The algorithm given in [HRG00] to compute the vertex connectivity
k , combines two previous vertex connectivity algorithms [ET75, GGT89] and a generalization
of the preflow-push of [HO94]. The time required for a digraph is O(min{k3 + n, kN}M);
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for an undirected graph the term M can be replaced by kN. A randomized version is also
presented which finds k with error probability 1/2 in time O(NM). The approach of [Gab00]
uses expander graphs to find vertex connectivity. This structure allows to exploit nesting
properties of certain separation triples. The time complexity of the presented algorithm is
O((n +min{k5/2, kN3/2})M) for digraphs and replacing M by kN for undirected graphs.

Note, however, that all of these works are presented in a centralized setting assuming
global knowledge about the graph to be examined.

6.2 The System Model

The distributed system (network) is modeled by a graph G = (V,E) model. Thus the con-
nectivity of the network means the connectivity of the graph modeling it. The network is
modeled by a graphG = (V,E), where V is the set of processes. An edge (u, v) in E stands for
an unidirectional link from u to v. Processes communicate and synchronize by sending and
receiving messages through the links. Processes and links are assumed to be reliable.

To encode distributed algorithms, we consider both graph relabeling systems model and
asynchronous message passing model. For the first one, we use only relabeling between two
neighbors. That is, each one of themmay change its label according to rules depending only on
its own label and the label of its neighbor. We assume that each node distinguishes its neigh-
bors and knows their labels. In the sequel we use the set B(v) to denote the set of (locally)
ordered immediate neighbors of v which is an input data. For the second one, each process
(node of the graph) has its own local memory, with no shared global memory. Processes com-
municate by sending and receiving messages through existing communication links (edges of
the graph). Networks are asynchronous in the sense that processes operate at arbitrary rates
and messages transfer delay are unbounded, unpredictable but finite. However, we assume
that messages order are preserved. Furthermore, the network is semi-anonymous: Only the root
needs to be identified.

Here, the term “local computations model” is used instead of “graph relabeling systems
model”. For a sake of clarity, we will use “encoding” (resp. “implementation”) when we
use the local computations model (resp. the message passing model) to encode distributed
algorithms. In both models, we use the term label (and sometimes variable), attached to each
node or process, instead of the own data manipulated by each of the program at this process.

As we will see, some of the algorithms presented in this chapter will be used later in the
rest of the thesis as building blocks for other, more complex, algorithms. Thus, we introduce
the notion of procedure and we illustrate this notion with an example of a spanning tree com-
putation in both these models, see the next subsection.

In this work we use the following conventions and notations:

1. To encode information stored at each node, we use labels (resp. variables) in the local
computations model (resp. in the message passing model).

2. The steps executed by each node are described as rules (resp. actions) in the local com-
putations model (resp. in the message passing model).

3. The rules are tagged by R (resp. A ) in the local computations model (resp. in the
message passing model).
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4. The names of algorithms are suffixed by GRS (resp. MPS in the local computations
model (resp. in the message passing model).

For a sake of clarity, in the explanation of the algorithms encoded in the message passing
model we refer to a node instead of its corresponding port number. Note, however, that in our
solution the identities of nodes are not required.

We propose the following fact and definitions that we will use in the following:

Fact 6.2.1 Let T be a spanning tree of G with v0 as root. Let v′0 ∈ VT and let p = (v0, v1, · · · vl)

be the simple path in T where vl = v′0 then the tree T
′ with v′0 as root, associates with the partial

order ≤ defined by :

• ∀v, v′ 6∈ {v0, v1, · · · vl}, v ≤ v′ ⇐⇒ v ≤ v′

• ∀v, v′ ∈ {v0, v1, · · · vl}, v ≤ v′ ⇐⇒ v′ ≤ v

is also a spanning tree of G.

Definitions 6.2.2

• We denote by Tr a tree with root r. Formally, ∀ v ∈ VTr
, v ≤ r.

• We denote by T (v) \ r the maximal sub-tree of T that contains the node v, but not r.

Definition 6.2.3 A vertex v of a connected graph G is a cut-node iff G \ v is not connected.

Correction and Termination Proofs To make easier the understanding of the run and the
power of the presented algorithms, we use operational proofs rather than formal proofs. Note,
however, that the formal proofs may be done as the spanning tree procedure presented in Section
1.2.6 for example. For the proofs of termination, here they are encapsulated in the complexity
analysis. Similarly, they can achieved using the formal technique introduced in Section 1.2.

On another hand, the correction and termination proofs of an algorithm composed of a set
of procedures is based on those of its procedures. That is, we assume that when the procedures
are executed in the relabeling part of some rule, they are executed as atomic steps with the two
following consequences:

• Each procedure achieves its expected task,

• Each procedure terminates during the execution of the rule referencing it.

6.2.1 Spanning Tree Procedure

We present here a distributed algorithm to compute a spanning tree T of a graph G

[Tel00, MMWG01], encoded in both the local computations and the message passing mod-
els. Since it will be used by our algorithm, it is presented as a “procedure” with parameters.
This notion of procedure is similar to the “interacting components” used in [PLL97]. The span-
ning tree procedure is referenced as follows:
STP_GRS(G,T;v0;Stage,X,Y;Father;Sons), where G is the treated graph and the pro-
cedure builds a spanning tree T rooted at v0. The structure of T is stored locally in each
node using the labels Father and Sons described previously. Initially, all the nodes v have
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their labels Stage valued to X. At the end of the computation, each node v will be labeled
Stage(v) = Y. The following graph relabeling system describes an encoding of the spanning
tree procedure.

Algorithm 14 Spanning tree procedure (STP_GRS(G, T ; v0;Stage,X, Y ;Father;Sons))
• Input : A graph G = (V, E) and v0 the chosen root.

– Labels:

∗ B(v): the set of (locally) ordered immediate neighbors of v which is an initial data,
∗ Stage(v): the state of v can take many values. The only used in this procedure is: “X” as the initial value,
“WA” to mean that v has been included in the tree and “Y ” to mean that v finished locally its computation.

∗ Father(v): is the father of v in the on-building spanning tree.
∗ Sons(v): an ordered list of the sons of v in the previous tree.
∗ Included(v) : the set of v ’s neighbors included for the first time in the on-building spanning tree.
∗ Terminated(v) : the set of v ’s neighbors that finished locally the computation of the spanning tree.

– Initialization:

∗ ∀v ∈ V, Stage(v) = X.

• Results: A spanning tree T = (V, ET ) of G with root v0 such that ∀v ∈ V, Stage(v) = Y.

• Rules:

STR1 : The node v0 starts the computation

Precondition :

∗ Stage(v0) = X

Relabeling :

∗ Stage(v0) := WA

∗ Father(v0) := ⊥

∗ Sons(v0) := ∅

∗ Included(v0) := ∅

∗ Terminated(v0) := ∅

STR2 : Spanning rule acting on 2 nodes v, w where w
is not yet in the on-building tree

Precondition :

∗ Stage(w) 6= WA

∗ v ∈ B(w) and Stage(v) = WA

Relabeling :

∗ Stage(w) := WA

∗ Father(w) := v

∗ Sons(w) := ∅

∗ Terminated(w) := ∅

∗ Sons(v) := Sons(v) ∪ {w}

∗ Included(v) := Included(v) ∪ {w}

∗ Included(w) := {v}

STR3 : Node v discovers its neighbors already included
in the tree

Precondition :

∗ Stage(v) = WA

∗ w ∈ B(v), Stage(w) = WA and
w 6∈ Included(v)

Relabeling :

∗ Included(v ) := Included(v) ∪ {w}

∗ Included(w) := Included(w) ∪ {v}

STR4 : Node v finishes locally the computation of a span-
ning tree

Precondition :

∗ Stage(v) = WA

∗ Included(v) = B(v) and
Terminated(v) = Sons(v)

Relabeling :

∗ Stage(v) := Y

∗ if (Father(v) 6=⊥)Terminated(Father(v)) :=
Terminated(Father(v)) ∪ {v}

Here, Father(v) = ⊥ means that v has no defined father. First, v0 the root of T
applies the rule STR1 to initialize the computation. At any computation step based on the
application of the rule STR2, when a node w not yet in the tree, finds a neighbor v in T

labeled Stage(v) = WA, this node (w) includes itself in the tree by changing its Stage to WA.

Moreover, at the same time, Father(w) is set to v and w is added to the sons list of v. So at
each execution of the rule STR2, the number of nodes not yet in the tree decreases by 1. When
v finds all its neighbors already included in the tree (rule STR3), it applies the rule STR4 .
This means that v has locally terminated its computation, then it informs its father. Note that
this rule is executed firstly by the leaves. The computation finishes when Stage(v0) = Y. In
this case, all the nodes v also satisfy Stage(v) = Y. Obviously we have a spanning tree of
G rooted at v0 defined by the third components and the fourth components of the labels of
the nodes. The root of the spanning tree is then the unique node with its father equal to ⊥ .

Therefore, we claim the following fact:
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Fact 6.2.4

1. The rule STR1 is applied once,

2. The rule STR2 is applied #V − 1 times,

3. The rule STR3 is applied #E − (V − 1) times,

4. The rule STR4 is applied #V times.

Then, the following property states the effect and the cost of the execution of the spanning
tree procedure on a graph G to build a spanning tree T rooted at v0 where initial labels are
X and resulting labels are Y.

Property 6.2.5 For a graph G = (V,E), when a distinguished node v0 is labeled Stage(v0) = Y,

(#E+#V +1) rules have been applied. Then, the spanning tree T of G rooted at v0 has been built.

In the sequel, we will need to define some procedures to encode our algorithms. For the
sake of uniformity, procedures will use the following standard header format.

name (struct0, · · · structi;node0, · · ·nodej; lab0,val0,val
′
0; · · · ; labl,vall,val

′
l)

The header of the procedure is composed of its name and a set of optional parameters. Each
of the sets is separated using the character “;”. The first set of parameters is the structures of
the manipulated graphs, the second is the set of the distinguished nodes. The rest is related to
used labels, their required initialization values and their expected values.

To implement procedures in the local computations model, each of them is composed of
three parts. First, the input part to describe the set of the used labels and their required ini-
tialization. Second, the result expected after the execution of such a procedure in terms of
labels. Finally, the set of relabeling rules to specify the task of such a procedure. With each
procedure, we associate some properties, maintained using invariants, to prove the correct-
ness, to show the behavior and to measure the complexity of such a procedure. Invariants
may be proved using induction on the size of the relabeling sequences as given in [LMS99].
Therefore, the correctness of an algorithm using such procedures results from those of these
procedures. The complexity is based on those of the procedures and the number of their in-
vocations in the designed application. Since procedures are executed as atomic actions in the
relabeling part of the rules, the power of local computations model is not altered. Atomic
execution of procedures is possible in our local computations model since the sub-graphs on
which the procedures are applied simultaneously are disjoint.

To make easier the readability of the analysis, we define the function COST (A, α) to give
the cost of the application of the given procedure (or algorithm) A in terms of complexity
specified by the parameter α. For example, for a given graph G = (V,E) :

COST (STP_GRS(G, T ; v0;Stage,X, Y ;Father;Sons), time) = #E + #V + 1.

As depicted in Algorithm 15, the same extension is added to the message passing model:
Here we give an example of the previous algorithm implemented in this model.

Here the variable Father is set to ⊥ to mean that the corresponding node has no defined
father. At any step of the computation, when a node v, not yet in the tree (Stage(v) 6= WA)
receives a <st_tok > message from its neighbor w, node v includes itself in the tree by
changing its Stage to WA. Moreover, in the same time, Father(v) is set to w, set “Included”
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Algorithm 15 Spanning tree procedure (STP_MPS(G, T ; v0;Stage,X, Y ;Father;Sons))
• Input : A graph G = (V, E) and v0 the chosen root.

– Variables:

∗ B(v): the set of (locally) ordered immediate neighbors of v which is an initial data,
∗ Stage(v): the state of v can take many values. The only used in this procedure is: “X” as the initial value,
“WA” to mean that v has been included in the tree and “Y ” to mean that v finished locally its computation;

∗ Father(v): is the father of v in the on-building spanning tree;
∗ Sons(v): an ordered list of the sons of v in the previous tree;
∗ Included(v) : the set of v ’s neighbors included for the first time in the on-building spanning tree;
∗ Terminated(v) : the set of v ’s neighbors that finished locally the computation of the spanning tree;
∗ i, p, q : integer;

– Initialization:

∗ ∀v ∈ V, Stage(v) = X.

• Results: A spanning tree T = (V, ET ) of G with root v0 such that ∀v ∈ V, Stage(v) = Y.

• Actions:

STA1 : {For the initiator v0 only, execute once:}
Stage(v0) := WA;
Father(v0) := ⊥;
Sons(v0) := ∅;
Included(v0) := ∅;
Terminated(v0) := ∅;
for i := 1 to deg(v0) do send<st_tok> via port i;

STA2 : {A message<st_tok> has arrived at v from port q}
1: if (Stage(v) 6= WA)

Stage(v) := WA;
Father(v) := q;
Sons(v) := ∅;
Included(v) := {q};
Terminated(v) := ∅;
send<st_son> via port q;

2: if (deg(v) = 1)
Stage(v) := Y ;
send<st_back> via port q;

3: else
for i := 1 to deg(v) do

4: if (i 6= q) send<st_tok> via port i;
5: else

Included(v) := Included(v) ∪ {q};
6: if (Included(v) = B(v) and Sons(v) = ∅) send<st_back> via port Father(v);

STA3 : {A message<st_son> has arrived at v from port q}
Sons(v) := Sons(v) ∪ {q};
Included(v) := Included(v) ∪ {q};

STA4 : {A message<st_back> has arrived at v from port q}
Terminated(v) := Terminated(v) ∪ {q};

1: if (Included(v) = B(v) and Terminated(v) = Sons(v))
Stage(v) := Y

2: if (Father(v) 6=⊥)
send<st_back> via port Father;
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is now composed of w and set “Terminated” is initialized to ∅. Finally, v informs w to add
it in its set of sons sending a <st_son>message. At the reception of such a message, w adds
v in both its sets of sons and in the set of nodes that are included in the tree (“Included”).
So at each execution of the rule STA2(1), the number of nodes not yet in the tree decreases
by 1. When v finds all its neighbors already included in the tree, it applies either the action
STA2(2), STA2(6) or STA4(1) . So it means that v has locally terminated its computation,
then it informs its father STA4(2).

The computation finishes when all the nodes v are such that Stage(v) = Y. And obviously
we have a spanning tree of G rooted at v0 defined by the third components (or the fourth
components) of the variables of the nodes. The root of the spanning tree is then the unique
node with its father equal to ⊥ .

First, we claim the following fact:

Fact 6.2.6

1. The actions STA1 and STA2(4) use (2#E − (#V − 1)) <st_tok>messages,

2. The actions STA2(6) and STA4(2) use (#V − 1) <st_back>messages,

3. The action STA2(2) uses (V − 1) <st_son> messages.

Then, the following property holds:

Property 6.2.7 Given a graph G = (V,E) and a chosen node v0. The STP_MPS builds a spanning

tree of G rooted at v0 using (2#E + #V − 1) messages.

6.3 The 2-Vertex Connectivity Test Protocol

In this section we present a protocol to test whether a given graph G is 2-connected. We will
use an immediate application of the Menger theorem [Wes01] :

Proposition 6.3.1 Let T be a spanning tree of a graph G.

Then the graph G is 2-connected iff ∀v ∈ VG, ∃ E ⊆ EG \ ET such that (VG\v, ET\v ∪ E) is a

spanning tree of (VG\v, EG\v) with #E ≤ #SON(v).

Our protocol uses the following definition:

Definitions 6.3.2 Let G = (V,E) be a connected graph and T (Father, Sons) be a spanning tree of

G rooted at v0. For each pair of nodes u, v in G, we say that u is reached by v in G iff there is a

path in G linking v to u. Thus, we say that v is a succorer son of vd iff the following holds:

1. v ∈ Sons(vd),

2. if v 6= v0 then v is not reached by v0 in G \ vd,

3. ¬∃ u ∈ Sons(vd) such that u < v and v is reached by u in G \ vd.

Then, the label Suc(v)[vd] is set to true. Otherwise it is set to false.
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From this definition, we propose and prove the following theoremwhich is the base of our
protocol:

Theorem 6.3.3 Let G = (V,E) be a connected graph. Then G is 2-connected iff ∀ T a spanning

tree of G rooted at some node v0 then only v0 admits a succorer son.

Proof. The correctness proof is by induction of the number of nodes in G. Suppose that
G = (V,E) is connected and #V = 2. Let V = {u, v} and let T be a spanning tree of G
rooted at u. So, the property is trivially verified. Now, we suppose that #V = 3. The only
possible 2-connected graph composed of three nodes is its corresponding complete graph. Let
G3 = (V3, E3) be such a graph and Let V3 = {u, v, w}. We suppose that T is a spanning tree
of G rooted at u. Let v be a succorer son of u. Since G3 is complete, v reaches w in G3 \ u,

u reaches v (resp. w ) in G3 \w (resp. in G3 \ v). So only u admits a succorer son. It is clear
that for the opposite case, for example when v admits w as its succorer son, this means that
w is not reached by u in G3 \ v and then G3 is not 2-connected.

Now suppose that the property is verified for all connected graphs with n − 1 nodes.
Consider a graph Gn = (Vn, En) where #Vn = n. We denote by Gn−1 = (Vn−1, En−1) a
sub-graph of Gn where #Vn−1 = n − 1. In other words, there is some node vn such that
Gn−1 = Gn \ vn.

Let Tn−1 be a spanning tree of Gn−1 rooted at u and let Tn be a spanning tree of Gn

rooted at u. We have two cases: Gn−1 is 2-connected or not.

For the first case, this means that all the sons of each node v in Tn−1 are reached by the
root u in Gn−1 \ v. This is equivalent to say that all the sons of each node v in Tn \ vn are
reached by the root u in G \ {v, vn}. That is, if the sons of vn in Tn are reached by u in
Gn \ vn then Gn is 2-connected, otherwise it’s not 2-connected.

To deal with the second case, we denote by w 6= u a node which admits a succorer son in
Tn−1. It suffices to check if such a node admits a succorer son in Tn. In Gn−1, there is some
son w′ of w in Tn−1 not reached by u. This means that there is only one path linking such a
son to the root in Gn−1 and it is over w. In G, we have two possibilities: Node vn is reached
by the root in G \w and w′ is also reached by vn in G \w then, such a son will be necessary
reached by the root. It means that there exists two paths linking such a son to the root: One
over w and the other over u. Otherwise, the son of w remains not reached by the root in
G \ w. This means that G is not 2-connected. 2

6.3.1 Our Protocol

We now present an overview of our distributed test protocol. Along this description, we will
give the main keys to understand why our protocol is based on a general and a constructive
approach. It consists of the following phases: (1) the computation of the spanning tree called
Investigation tree, denoted by Inv_T, of G with root v0, (2) exploration of Inv_T to compute
the succorer sons of each node of G.

In phase one, we use an algorithm as described in the previous section. This procedure
constructs a spanning tree Inv_T of a given graph G rooted at v0 with local detection of
the global termination. It means that v0 detects the end of the spanning tree computation of
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Figure 25: The 2-vertex connectivity test protocol (a,b,c)

G. In phase two, the tree Inv_T is explored using “depth-first trip” [Tel00]. When the trip
reaches a node vd, vd does the following:

1. disconnects. Node vd disconnects itself as shown in Figure 25.b.

2. disconnected node vd is the root.

(a) configures. An auxiliary spanning tree T of G, where v0 is disconnected, is built.

(b) computes the first succorer son. Node v0 chooses its first son as its first succorer son.
Let r be such a son. It will become the chosen root.

(c) maximal tree construction. Node r is in charge to build a spanning tree T ′ of G \ vd

rooted at itself.

3. disconnected node vd is not the root.

(a) propagates. Node vd informs the root v0 of the Inv_T about its disconnection (see
Figure 25.c).

(b) configures. An auxiliary tree T of G, where vd is disconnected, is built.

(c) maximal tree construction. The root of T starts the computation of its maximal tree
T ′ of G \ vd as depicted in Figure 26.d.

(d) responds. Eventually, v0 constructs its maximal tree, so it responds to vd (see Figure
26.e).

4. succorer sons computation. As shown in Figure 26.f, node vd looks in its sons if there is
some node not included in the maximal tree.

i. If there exists such a son, and vd = v0 : Node v0 stops the treatment and states that
G is not 2-connected.

ii. If there exists such a son, and vd 6= v0 : Node vd stops the exploration informing
the root v0 which states that G is not 2-connected.

iii. Otherwise, node vd continues the exploration on Inv_T.

The algorithm terminates according to the following cases: (i) if the root admits more than
one succorer son, (ii) if some node admits a succorer son, (iii) after the exploration of all nodes
of G without the two previous cases. In the last case, there is only one succorer son which
is the first son of v0 the root of the chosen spanning tree Inv_T. Then, v0 states that G is
2-connected. As we shall see, the aim of the configuration step represented above as configures
is to prepare the application of the succorer sons computation of some node vd. So, this phase
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Figure 26: The 2-vertex connectivity test protocol (d,e,f)

initializes the set of labels erasing the trace of the last succorer sons computation. This phase
is achieved by the root v0 which updates an auxiliary tree T of G adding the simulation of
the disconnection of the current explored node vd

1.

The maximal tree construction procedure is applied on the node r which is in charge to build
and to mark its maximal tree of G\vd. It works as follows: Let T be a spanning tree of G. We
denote by T ′ the “on-building” tree of G \ vd. This procedure is composed of the following
steps:

1. computes the base of the tree. This base of T ′ is the sub-tree of T \ vd rooted at r. It is
identified using a marking procedure (see below).

2. search extension. Using a “depth-first trip” [Tel00] on T ′ each node v is visited until one
of the neighbor of v is not yet included in the current tree T ′.

3. connection is found. The visited node v finds a neighbor u that is not in the “on-building”
tree. Such a node is called a connection entry and v is named a connection node. Therefore,
the edge (u, v) is added to T ′. The sub-tree of T containing u is reorganized in such
a way that u becomes its root using the root changing procedure (see below). Then, this
sub-tree is included in T ′ and its nodes are marked as nodes of T ′. Now, the search of
isolated sub-trees is restarted on the extended T ′.

Finally, r detects that it had extended as much as possible its tree and the procedure is
terminated.

6.3.2 Example of Running

For instance, we consider a graph G with a spanning tree T with root vd as shown in the first
part of Figure 27. The numbers and names are only used to help the comments. So, the node
vd admits the node r, “gray” node, as its succorer son and the “white” nodes ( 1, 2, 3, 4 ) as
other sons. Now we suppose that node r starts the execution of the maximal tree construction
procedure in order to build a spanning tree of G \ vd rooted at r. As shown in the second
part of Figure 27, Tr includes both sub-trees T1 and T2 because there is a path linking r, 1

and 2 without vd. Whereas the sub-trees T3 and T4 are not included in Tr since the only
path linking r, 3 and 4 contains vd. Figure 28 shows an example of a run when vd is not
a cut-node. That’s, after its deletion r succeeds to build a spanning tree of G \ vd. All the
sub-trees ( 1, 2, 3, 4 ) are included in Tr.

1Sons of vd become “orphan nodes” or without “father”.
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Figure 27: Example of the maximal tree construction procedure running when vd is a cut-node
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Figure 28: Example of the maximal tree construction procedure running when vd is not a cut-node
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In the sequel we propose an encoding of the protocol in the local computations model and
an implementation in the message passing model. For each of them, we give the proofs of the
correctness and a complexity analysis.

6.4 Encoding of our Protocol

In this section we propose an encoding of our protocol using graph relabeling systems as
described in Section 1.2. So, the needed procedures are encoded in the same model and the
analysis is done according to the given assumptions of such a model. We start by describing
its main procedure: The maximal tree construction procedure. This procedure is composed of five
rules and uses two procedures: The marking procedure and the root changing procedure. In the
sequel we present a short description of these two procedures. The maximal tree construction
procedure is more detailed.

Marking Procedure (MP_GRS(T ; v0;Stage,X, Y )) This procedure is based on a broadcast
algorithm on a tree T [Tel00]. The goal of this procedure is to transform the labels of each
node v from Stage(v) = X into Stage(v) = Y. More precisely, assuming that each node is
labeled X in T. The node v0, which is the root of T, starts the marking procedure relabeling
itself Stage(v0) = W. If v is labeled Stage(v) = W and finds one of its sons w labeled X,

then w sets its label W. When v is labeled Stage(v) = W and it has no son or all its sons are
marked, it marks itself (label “Y”) and informs its father. Then, the father of such a node adds
this son to its list of marked sons. The end of this procedure is detected by the root when all
its sons are marked.

Property 6.4.1 Given a tree T = (V,E) rooted at v0. Starting at v0, the MP_GRS changes the

labels of all the nodes in T fromX into Y applying 2#V steps.

Root Changing Procedure (RCP_GRS(T ; r;Treated)) If a node r requests to replace the
root v0 of T, the nodes “between” 2 v0 and r have to reorganize their lists of sons and their
fathers. The node r starts the procedure relabeling itself W. If the node v finds its father
w in the “old tree” 3 labeled A, it changes the label of w from A to W. This process will
be applied for all the nodes in the “to be modified path”. When v0 is attained from w, its
son in the “old tree”, such that w is also in the “to be modified path”, it will be relabeled A

and sets its father to w. Then, the process is applied reversibly to all the nodes in the “to be
modified path”. Finally, node r detects the end of the last process when its “old” father has
been treated.

Property 6.4.2 Let T = (V,E) be a tree rooted at v0 and let r be a node in T. The RCP_GRS

changes the original root of T with r applying, in worst case, 2#V steps.

Maximal Tree Construction Procedure (MTCP_GRS(G, T, T ′; vd, r)) Given a node vd of a
spanning tree T of a graph G, this procedure builds amaximal tree T ′ of G\vd rooted at r.We
propose an encoding of this procedure using means of local computations, then we present an
example of its run and its analysis. As we shall see, the algorithm is based on “depth first-trip”

2The nodes on the simple path linking v0 and v.
3The sub-tree rooted at v0
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and uses the marking procedure to encode phase 1. The needed reorganization of phase 3 uses
both root changing procedure and marking procedure.

Algorithm 16Maximal tree construction procedure (MTCP_GRS(G, T, T ′; vd, r))
• Input: A graph G = (V, E) with a spanning tree T = (V, ET ), and a chosen node r.

– Labels:

∗ Stage(v) ∈ {A, D, Ended, F, SC, W}, Father(v), Sons(v), B(v),

∗ To_Explore(v), Potential(v), To_Ignore(v).

– Initialization:

∗ ∀ v ∈ V \ {vd}, Stage(v) = A,

∗ ∀ v ∈ Sons(vd), Father(v) = ⊥,

∗ ∀ v ∈ V, To_Explore(v) = Sons(v),

∗ ∀ v ∈ V, Potential(v) = ∅,

∗ ∀ v ∈ V, To_Ignore(v) = ∅.

• Result: A maximal tree T ′ of G \ vd with root r. In this case, r is labeled Ended.

• Rules:

MTR1 : Node r labels the nodes of its sub-tree to F and
starts the attempt of reconnection

Precondition :

∗ Stage(r) = A

Relabeling :

∗ Potential(r) := B(r) \ (Sons(r) ∪
To_Ignore(r))

∗ MP_GRS(Tr; r;Stage, A, F)

∗ Stage(r) := SC

MTR2 : Node v is a connection node

Precondition :

∗ Stage(v) = SC

∗ u ∈ Potential(v)

∗ Stage(u) = A

Relabeling :

∗ RCP_GRS(T(u) \ vd;u)

∗ MP_GRS(Tu;u;Stage, A, F)

∗ Father(u) := v

∗ Sons(v) := Sons(v) ∪ {u}

∗ To_Explore(v) := To_Explore(v) ∪
{u}

MTR3 : Node u is labeled F

Precondition :

∗ Stage(u) = F

∗ u ∈ B(v) and u ∈ Potential(v)

Relabeling :

∗ Potential(v) := Potential(v) \ {u}

∗ To_Ignore(u) := To_Ignore(u)∪{v}

MTR4 : Node v is not a connection node, it delegates the
reconnection search to one of its sons u

Precondition :

∗ Stage(v) = SC

∗ Potential(v) = ∅

∗ u ∈ To_Explore(v)

Relabeling :

∗ To_Explore(v) := To_Explore(v) \
{u}

∗ Potential(u) := B(u) \ (Son(u) ∪
{v} ∪ To_Ignore(u))

∗ Stage(u) := SC

∗ Stage(v) := W

MTR5 : The sub-tree with root v does not contain connec-
tion node

Precondition :

∗ Stage(v) = SC

∗ Stage(Father(v)) = W /* This condi-
tion is not necessary, but clarifies the rule.
*/

∗ Potential(v) = ∅

∗ To_Explore(v) = ∅

Relabeling :

∗ Stage(v) := Ended

∗ if (Father(v) 6=⊥)Stage(Father(v)) :=
SC

After the initialization, ∀v ∈ V \ vd, Stage(v) = A. The chosen node r initiates the
computation (see Figure 29.b): It is the only one that executes the rule MTR1. So r executes
themarking procedure as shown in Figure 29.c. When r finishes the execution of this procedure,
its sub-tree Tr in T is labeled F. It means that this sub-tree is included in the on-building tree.
Node r switches to the “searching connection” phase (Stage(r) = SC, see Figure 30.d). Then,
step by step, a tree Tr rooted at r is extended. At any time there is only one node labeled SC
and this node is in charge to extend the tree it belongs to.

If a node v labeled SC finds a neighbor u labeled A (a connection entry, see Figure 30.e)
in its “Potential” set, it executes the rule MTR2 to extend Tr : The sub-tree containing u is
reorganized in such a way that u becomes its root and then this sub-tree is added to Tr using
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Figure 29: Maximal tree construction procedure (a,b,c)
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the edge (v, u). Let T (u)\vd be the tree that contains the connection entry u. Node u starts the
execution of the root changing procedure as shown in Figure 30.f. The marking procedure is then
applied to the tree rooted at u in order to relabel its nodes to F (see Figure 31.g). Now, u is
added to Tr, label Father of u is set to v and u is added in both Sons(v) and To_Explore(v)
(see Figure 31.h).

In parallel, the rule MTR3 is used by a node w to update the lists “Potential” and to
prepare their computations using the lists “To_Ignore”. If a node w is labeled F, then it
cannot be a candidate for reconnection. Since it is yet in the tree, it must be avoided from the
lists “Potential” of its neighbors. Moreover, the neighbors of w yet in the tree (they are labeled
F ,W , or SC) have to be ignored in its “Potential”. When a node v labeled SC has an empty
list “Potential” (this happens when it has no neighbor labeled A and when all it neighbors
labeled F have avoided themselves from its list “Potential”), v executes the rule MTR4 to
indicate that it does not succeed to find an extension for Tr. So it transfers the label SC to
one of its sons that restarts the process of reconnection.

Eventually, node v in Tr has extended as much as possible Tr. Then, it informs with
rule MTR5 its father (Stage(v) = Ended). Now, this last node can proceed with the extension
search from one of its other sons. When Stage(r) = Ended, one of the largest tree rooted at r
of G\vd has been computed. Thus, r detects the end of themaximal tree construction procedure.

Now we propose a lemma which shows the tasks invoked by the execution of the maximal
tree construction procedurewhen applied to a graph G about one of its node vd.

Lemma 6.4.3 After the execution of MTCP_GRS on a graph G = (V,E), node r constructs a

maximal tree including all the nodes reached by r in G \ vd.

Proof. To prove this lemma we proceed by contradiction. Assume that after the execution of
the maximal tree construction procedure there is some node u, a son of vd, reached by the root r
in G \ vd with label A. It means that it is not included in the constructed tree. Now we show
that such a behavior happens when there is no path linking u to r in G\vd which contradicts
the fact that u is reached by r in G \ vd. At the start of the execution of this procedure all the
nodes of G \ vd are labeled A. Since our algorithm is based on a “depth-first” exploration of
the base of the tree and then on a “depth-first” exploration of the building tree, all the nodes
linked to the root are explored (rules MTR4, MTR5, MTR2) and labeled Ended. Thus, at
the end of the execution of this procedure, a node which remains with label A is the only one
not linked to the root and then not reached by the root. 2

For the time complexity, the worst case running time of the maximal tree construction proce-
dure corresponds to the following:

1. The rule MTR1 can only be applied once. So its cost is due to the application of the
marking procedure to the nodes of the sub-tree rooted at r : At most 2#V rules.

2. The rule MTR2 can only be also applied once for each sub-tree rooted at some son of vd

different from r. So its cost is due to the application of themarking procedure to each sub-
tree rooted at the sons of vd except r augmented by the cost of the root changing procedure.
Then, the cost of both rules MTR1 and MTR2 is 4(#V − 1 − size(r)) + 2 size(r),

where size(r) is the size of the sub-tree on which the rule MTR1 is applied. So the cost
of MTR1 and MTR2 is bounded by 4#V.
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3. The rule MTR3 is applied once by each node to update its “To_Ignore” and the “Po-
tential” of its neighbors not in the tree. So, a priory, the cost of the application of this
rule is 2#E, but since we use the list “To_Ignore” only #E, applications are necessary.
Moreover, the edges of the tree have not to be taken into account and also the sons of vd.

Finally, the cost of the use of MTR3 is #E − (#V − 2).

4. Each of the rules MTR4 and MTR5 is applied, in the worst case, #V − 2 times to
encode the “depth-first trip” mechanism.

Then,

Lemma 6.4.4 The MTCP_GRS requires at most the application of #E + 4#V rules.

6.4.1 2-Vertex Connectivity Test Algorithm

In this part we present an encoding of our protocol referred to in the following as 2VCT _GRS

algorithm. This algorithm uses nine rules and three procedures: The spanning tree construction
procedure to construct the investigation tree, the simple path propagator procedure to encode phase
3(a) and its reversible version to encode phase 3(d) and the configuration procedure to encode
both phases 2(a) and 3(b). Phases 2(c) and 3(c) are achieved using themaximal tree construction
procedure presented above. Now, we present a short description of the two new procedures.
Then, we give a full description of the algorithm and an example of its run.

Simple Path Propagator Procedure (SPPP_GRS(T ; v;Traversed,X, Y )) The aim of this
procedure is to propagate an information along a simple path linking some node v to the
root of the tree T = (V,ET ). Wewill introduce the label Traversed to notice the expected dis-
tinguished simple path. Initially, all the nodes u are labeled Traversed(u) = X. At the end of
the application of this procedure, each node u in the simple path is labeled Traversed(u) = Y.

To encode this procedure one can use the first part of the root changing procedure augmented by
the update of the label Traversed.

Property 6.4.5 Given a tree T = (V,E) rooted at v0. Let v be a node in T. By executing the

SPPP_GRS, if v sends a message to v0, then this message will be received by v0 applying, in the

worst case, #V steps.

Configuration Procedure (CP_GRS(Inv_T, T ; v0, vd;Stage,X, Y ;Required)) This proce-
dure allows to do the required initializations of the maximal tree construction procedure in order
to compute the succorer sons. So this procedure is executed by the root before to start the
application of the MTCP_GRS about vd removing the trace of the last computations. Node
v0, which is, the root of the tree T executes a cycle involving all the nodes of the graph to
initialize the labels used in the MTCP_GRS. The initialization cycle may be encoded using
an extension of themarking procedurewithout adding extra operations. Moreover, vd prepares
its disconnection, so each of its sons sets its label “Father” to ⊥ .

Property 6.4.6 Let G = (V,E) be a graph. Let Inv_T be a spanning tree of G rooted at v0 and let vd

be a node in G. Starting at v0, the CP_GRS configures T as a spanning tree of G using Inv_T and

disconnects vd. The cost of this module is only the one of the MP_GRS which is O(#V ) steps.
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Now, we give the required initializations to encode our distributed protocol to test the
2-vertex connectivity of a graph. Such initializations concern the following labels:

Father(v), Sons(v), Potential(v), T o_Ignore(v), T o_Explore(v), T reated(v), T raversed(v).
So, we denote by Required_CP these labels and their required initialization. In other words,
the use of the term Required_CP in the relabeling part of the rewriting rule is equivalent to:

1. Father(v) := InvFather(v)

2. Sons(v) := InvSons(v)

3. Potential(v) := ∅

4. To_Ignore(v) := ∅

5. To_Explore(v) := Sons(v)

6. Treated(v) := ∅

7. Traversed(v) := 0

To encode efficiently our protocol, we propose an extension of the root changing procedure
as follows. This procedure changes the root of the sub-trees after the disconnection of some
node vd. Alternatively, to collect the state of the sons of vd after its test to compute the set
of its succorer sons, we propose to do this in the root changing procedure. So we add the label
Treated as the set of sons of vd included in the current maximal tree. When v the son of vd

is attained during the execution of this procedure, the following is done:

Treated(InvFather(v)) := Treated(InvFather(v)) ∪ {v}.

That is, this procedure does not cost extra time because it is incorporated in the other
procedures.

As depicted in Algorithm 17, let G = (V,E) be a graph and v0 ∈ V be a node to launch
and supervise the test algorithm. We have ∀v ∈ V, InvStage(v) = N. The node v0 starts the
computation: It builds a spanning tree Inv_T of G rooted at v0 (V CTR1). Subsequently, all
the vertices of G are such that InvStage = A.

Since the test scheme is based on the use of a “depth-first trip” exploration on the tree
Inv_T, the root v0 is the only one able to start the trip with the rule V CTR2 . For the
particular case of v0, it is examined as follows: First, it chooses one of its son as its succorer
son. This son is in charge to build a maximal tree of G \ v0 after the configuration phase. For
each other nodes, when it is ready to be examined it switches its label to D (V CTR5).

The examination phase of the node vd consists on the test if for a given spanning tree T of
G deprived of vd, v0 is able to build a maximal tree T ′ of G \ vd including the sons of vd in
T. It proceeds as follows: The node vd informs v0 about its attention to compute its succorer
sons applying the SPPP_GRS (V CTR5). Then v0 configures the labels using the CP_GRS
which cleans the spanning tree T ′ of G rooted at v0 and disconnecting vd (Stage(vd) = D,

all the sons of vd set their fathers to ⊥). At the end of the configuration procedure, v0 starts
to build, if possible, its maximal tree T ′ of G \ vd using the MTCP_GRS presented above
(V CTR6).

Eventually v0 constructs such a tree and responds to vd using a reversible version of the
SPPP_GRS.When vd receives the information from v0, it looks in the set “Treated” computed
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Algorithm 17 2-Vertex connectivity test algorithm (2VCT _GRS)
• Input: A graph G = (V, E) and a node v0 ∈ V.

• Labels:

– Stage(v), B(v), Treated(v),

– InvStage(v) ∈ {A, D, KO, N, OK, Over, W},

– Traversed(v) ∈ {O, 1},

– InvFather(v), InvSons(v).

• Initialization:

– ∀v ∈ V, InvStage(v) = N, Treated(v) = ∅ and Traversed(v) = 0,

– ∀ v ∈ V,∀u ∈ B(v) SUC(v)[u] = false.

• Result: Two possible results :

– InvStage(v0) = Over to mean that the graph G is 2-connected.

– InvStage(v0) = KO to mean that the graph G is not 2-connected.

• Rules:

V CTR1 : Node v0 starts to build the tree
Inv_T (InvFather, InvSons)

Precondition :

∗ InvStage(v0) = N

Relabeling :

∗ STP_GRS(G, Inv_T;v0;
InvStage,N, A; InvFather; InvSons)
/*all the nodes v satisfy : InvStage(v) =
A.*/

V CTR2 : Node v0 initializes the test Inv_T (InvFather, InvSons)
/*v0 is the only node such that InvFather(v0) =⊥
4*/

Precondition :

∗ InvStage(v0) = A

∗ InvFather(v0) = ⊥

∗ r ∈ Sons(vd)

Relabeling :

∗ InvStage(v0) := D

∗ CP_GRS(Inv_T, T;v0, v0;
Stage,N, A;Required_CP)

∗ Suc(r)[v0] := true

∗ MTCP_GRS(G,T, Tr;v0, r)

V CTR3 : Node vd has not found a succorer son

Precondition :

∗ InvStage(vd) = D

∗ Traversed(vd) = 0

∗ Treated(vd) = Sons(vd)

Relabeling :

∗ InvStage(vd) := OK

V CTR4 : Node vd finds a succorer son

Precondition :

∗ InvStage(vd) = D

∗ Traversed(vd) = 0

∗ v ∈ Sons(vd)

∗ Stage(v) = A

Relabeling :

∗ InvStage(vd) := KO

V CTR5 : Node v ends the computation of its succorers
sons, one of its son will become activated

Precondition :

∗ InvStage(v) = OK

∗ vd ∈ InvSons(v)

Relabeling :

∗ InvSon(v) := InvSon(v) \ {vd}

∗ InvStage(v) := W

∗ InvStage(vd) := D

∗ Traversed(vd) := 1

∗ SPPP_GRS(Inv_T;vd;Traversed, 0, 1)

V CTR6 : Node v0 is informed about the activation of
some node vd , it computes its maximal tree and then
informs vd.

Precondition :

∗ InvFather(v0) = ⊥

∗ Traversed = 1

Relabeling :

∗ CP_GRS(Inv_T, T;v0, vd;
Stage,Ended, A; Required_CP)

∗ MTCP_GRS(G,T, Tv0
;v0)

∗ SPPP_GRS−1(Inv_T;v0; Traversed,1, 0)

V CTR7 : Node v ends the examination of its sub-tree

Precondition :

∗ InvStage(v) = OK

∗ InvSons(v) = ∅

∗ InvFather(v) 6= ⊥

Relabeling :

∗ InvStage(v) := Over

∗ InvSons(InvFather(v)) :=
InvSons(InvFather(v)) \ {v}

∗ InvStage(InvFather(v)) := OK

V CTR8 : Node v0 detects the end and the success of the
test algorithm

Precondition :

∗ InvStage(v) = OK

∗ InvSons(v) = ∅

∗ InvFather(v) = ⊥

Relabeling :

∗ InvStage(v) := Over

V CTR9 : The information about the failure of the test is
transferred to the root v0

Precondition :

∗ InvStage(vd) = KO

∗ InvFather(vd) 6= ⊥

Relabeling :

∗ InvStage(vd) := Over

∗ InvStage(Father(vd)) := KO
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during the execution of the RCP_GRS induced by the execution of the MTCP_GRS, if all
its sons in T are included in T ′. For the particular case of the root (v0 = vd), it detects itself
the end of the work of its chosen succorer son. Then, it does the same work as the other nodes.

If vd finds at least one son v labeled Stage(v) = A : The test fails (V CTR4) and then stops.
The current node vd will be labeled InvStage(vd) = KO. There are two possibilities: If vd 6= v0

then it informs its father in Inv_T applying the rule V CTR9 until the root v0. Second, if the
test fails about the root v0 (V CTR4), then v0 stops the test procedure (InvStage(vd) = KO).
In the two cases, v0 states that the graph G is not 2-connected.

In the other case(“Treated=Sons”), vd continues the exploration (V CTR3, V CTR5) choos-
ing one of its not yet observed son. It transfers the label D to such a son.

Eventually a node vd finishes the exploration of all the nodes in its sub-tree (InvSons(vd) =

∅). So it informs its father that the computation is over (V CTR7). Now vd is removed from the
list InvSons of its father which then can continue the exploration choosing one of its not yet
observed son. Furthermore, only the root v0 detects the end of the “trip” when all its sons are
over. It means that all the nodes are examined and succeeded. So v0 applies the rule V CTR8

to affirm that the graph G is 2-connected.

6.4.2 Overall Proofs and Complexities Analysis of the 2VCT _GRS

Now, we show the correctness of the 2VCT _GRS algorithm using a scheme based on the
procedures properties as explained in the section about the system model. Then, the analysis
is closed with time and space complexity measures.

Theorem 6.4.7 The 2VCT _GRS algorithm presented above implements a distributed test of the 2-

vertex connectivity of a graph.

Proof. First, we show that all the nodes will be observed: Since G is connected, the inves-
tigation tree will necessary include all the nodes of G, and since the exploration follows a
“depth-first trip” on the investigation tree all the nodes will be visited and observed. Second,
the correctness proof is by induction on the number of nodes in G.

Suppose that G = (V,E) is connected and #V = 2. The algorithm terminates after testing
G as follows. Let V = {u, v} and let u be the root of the investigation tree. It applies the
rule V CTR1 to build an investigation tree. Then, it starts the test (V CTR2). Node u is
disconnected, then its first succorer son v builds a spanning tree of G \ v applying the rule
V CTR2. It’s composed only of v. So u is labeled InvStage(u) = OK. Then v is examined
(V CTR5 ). Then u applies the rule V CTR6 to construct its maximal tree and then informs
v. Now v has no son, then it informs its father u about this. Finally, u applies rule V CTR8.

Thus the algorithm operates correctly in this case.

Now, we suppose that #V = 3. The only possible 2-connected graph composed of three
nodes is its corresponding complete graph. Let G3 be such a graph, such that V3 = {u, v, w}.

Let u be the root of its corresponding investigation tree. If the investigation tree has two leaves
the test is restricted to u.

Since G3 is complete, the succorer son of u reconnects the third node. During the obser-
vation of v(resp. w), u succeeds to reconnect w(resp. u). So u affirms that G3 is 2-connected.
For a connected but not complete graph of three nodes, one of them fails the test. So the root
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affirms that such a graph is not 2-connected.

Now suppose that the algorithmworks correctly on all connected graphs with n−1 nodes.
Consider applying the algorithm on a connected graph G = (V,E) where #V = n. We denote
by G′ = (V ′, E′) the sub-graph of G composed of the first (n− 1)th yet observed nodes and
let u the last node to be tested. In other words, G′ = G \ u. We have two cases:

First, there is some node w which has a son not reached by the root in G′ \w. This means
that there is only one path linking such a son to the root in G′ and it is over w. In G, we
have two possibilities: u is reached by the root in G \w and a son of w is also reached by u
in G \w then, such a son will be necessary reached by the root. It means that there exists two
paths linking such a son to the root: One over w and the other over u. Otherwise, the son of
w remains not reached by the root in G \ w.

Second, since we would like to prove the property for any graph and then for any investi-
gation tree, the position of u in the investigation tree is not a priory fixed as a leaf for example.
From the hypothesis, G′ = G \ u is 2-connected. We must show whether G is 2-connected.
We have two possibilities: u is observed positively or not.

For the first one, this means that all the sons of u are reached by the root in G \ u. From
the hypothesis, for each node v ∈ G′, the sons of v are reached by the root in G′ \ v and then
reached by the root in G \ v. Thus, for each node w ∈ G, the sons of w are reached by the
root in G \ w. Therefore, G is 2-connected.

For the second one, this means that there is some son of u not reached by the root in G\u :

So the algorithm stops and G is not 2-connected. 2

For the time complexity, we will show an example of the running of the test algorithm
when the maximal tree construction procedure succeeds for every node. That is the worst case.

1. The rule V CTR1 is applied once. Its cost is due to the application of the spanning tree
procedure to the graph G.

2. The configuration procedure and themaximal tree construction procedure are applied for each
node in the investigation tree to compute its succorer sons. For the root, the computation
is done by the rules V CTR2. For the other nodes, the computation is augmented by the
use of the simple path propagator procedure and its reversible version. So the computation
is done using the rules V CTR5 and V CTR6. Then, the cost of the application of the
rules V CTR2, V CTR5, V CTR6 is due to the application of such procedures.

3. The rule V CTR3 is applied by each node in the investigation tree which succeeds the
test procedure.

4. The rules V CTR7, V CTR8 are used to implement the “depth-first trip” on the tree
Inv_T = (V,ET ). So, the cost of such exploration is 2#V − 1 rules.

Without loss of generality we denote by V the set of the nodes and by E the set of edges
of all the graphs structures used in all the procedures. From the previous, we can claim the
following:

• COST (STP_GRS(G, T ; v0;Father;Sons;Stage,X, Y ), time) = #E+#V +1 (see Prop-
erty 6.2.5).
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• COST (MTCP_GRS(G, T, T ′; vd, r), time) = #E + 4#V (see Lemma 6.4.4).

• COST (CP_GRS(Inv_T, T ; v0, vd;Stage,X, Y ;Required), time) = 2#V (see Property
6.4.6).

• COST (SPPP_GRS(T ; v;Traversed,X, Y ), time) = #V (see Property 6.4.5).

• COST (SPPP−1_GRS(T ; v;Traversed,X, Y ), time) = #V (see Property 6.4.5).

Then,

COST (2VCT _GRS(G), time) = (#V + 1) × #E + 8#V 2 + 2#V. Therefore, the time
requirement of the 2VCT _GRS algorithm is in O(deg(G) × #V 2).

Thus,

Lemma 6.4.8 Given a graph G = (V,E). The 2VCT _GRS algorithm tests the 2-vertex connectivity

of G in O(deg(G) × #V 2) time.

Lemma 6.4.9 The space complexity requirement of the 2VCT _GRS algorithm is in O(deg(G) ×

log deg(G)) bits per node 5.

Proof. Each node v is labeled L(v) using the two following components:

1. B(v), Included(v), T erminated(v), Sons(v), F eedbacks(v),

T o_Explore(v), Potential(v), T o_Ignore, T reated(v), InvSons(v).

2. Stage(v), Father(v), InvStage(v), InvFather(v), T raversed(v), SUC(v)

Thus, to encode the first component of a label, every node needs to maintain subsets of its
neighbors as descendants, for the set of sons for example. So, every node v needs 10 deg(v)×

log deg(v) bits to store this component. By taking into account the other labels used in the
second component of labels, we can claim that COST (2VCT _GRS(G), bits) = 10 deg(G) ×

log deg(G) + 2 log 7 + (3 + deg(G)) log 2. 2

The following result completes the analysis.

Theorem 6.4.10 The 2VCT _GRS algorithm encodes a distributed computation of the 2-vertex con-

nectivity test of a graph. When the 2VCT _GRS is applied to a graph G = (V,E), its time complexity

is in O(deg(G) × #V 2) and its space complexity is in O(deg(G) × log deg(G)) bits per node.

6.5 Implementation of our Protocol

Now, we present an implementation of our protocol in the message passing model as given
in Section 1.3. So, the used procedures are encoded in the same model and the analysis is
achieved according to the given assumptions of such a model. We start by describing its main
procedure: maximal tree construction procedure. This procedure is composed of thirteen actions
and uses two procedures: The marking procedure and the root changing procedure. Now, we
present a short description of these two procedures. Then, we give a description of the main
procedure.

5We use log x to denote log2 x.
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Marking Procedure (MP_MPS(T ; v0;Stage,X, Y )) After the execution of the algorithm,
the label of each node v has been changed into Stage(v) = Y. More precisely, assuming
that each node has its variable “Stage” set to X in T. The node v0 starts the procedure. It
modifies its stage: Stage(v0) = W. At any time, a node v with “Stage” equal toW broadcasts
a <m_tok>message to all its sons in T. If v receives such a message, its stage will be set to
W if it has sons. Otherwise, if it has no son or all its sons are marked: It marks itself Y and
informs its father about this change sending a <m_back>message. Then, when the father of
such a node receives such a message, it adds this son to its list of marked sons. The end of this
procedure is detected by the root when it receives a <m_back>message from each of its sons
in T.

Property 6.5.1 Given a tree T = (V,E) rooted at v0. Starting at v0, theMP_MPS marks T using

(#V − 1) <m_tok> messages and (#V − 1) <m_back>messages.

Root Changing Procedure (RCP_MPS(T ; r)) This procedure will be used to change the
root of a tree T. So if a node r has to replace the root v0, it starts the procedure: It sets
its variable “Stage” to W and sends a <rc_tok> message to its father in the “old tree” 6. At
the reception of such a message by v 6= v0, it changes its stage from A to W and sends a
<rc_tok>message to its father in the “old tree”. When v0, is attained from w, its son in the
“old tree”, v0 sets its stage to A and its father to w and sends a <rc_son> message to w.

Then, the process is applied reversibly to all the nodes in the “to be modified path”.

Property 6.5.2 Given a tree T = (V,E) rooted at v0. Let r be a node in T. TheRCP_MPS replaces

the original root with r using at most (2#V − 2) messages.

Maximal Tree Construction Procedure (MTCP_MPS(G, T, T ′; vd, r)) Given a node vd of
a spanning tree T of a graph G, the maximal tree construction procedure builds, if possible, a
spanning tree T ′ of G \ vd rooted at r. In the following, we propose an implementation
of this procedure in the message passing model. For a sake of clarity, we also present an
example of its run. Then, we propose two lemmas to exhibit its task and to analyze its cost.
The algorithm is based on “depth first-trip” and uses both the marking procedure and the root
changing procedure presented above.

As described in Algorithm 18, let G = (V,E) be a graph and let T = (V,ET ) be a spanning
tree of G. We consider a node vd as a disconnected node and r a chosen node (often the
root) to build the maximal tree of G \ vd. When we start the algorithm all the nodes v of V
have their variables Stage valued A except vd which is valued D. The node r initiates the
computation: It is the only one that executes the action MTA1. So, r executes the marking
procedure. When r finishes the execution of this procedure, its sub-tree in T is marked F.

It means that this sub-tree is included in the on-building tree T ′. Node r switches to the
“searching connection” phase (Stage(r) = SC). At any time there is only one node this phase
and this node is in charge to extend the construction of the tree it belongs to.

Node v where Stage(v) = SC and with no empty “Potential” set starts the search of
connection sending a <mt_sc>message via one of its potential port (sub-action MTA2(1)). If
a node u labeled A (a connection entry) receives such a message, it executes action MTA3(1)

to extend T ′. So its sub-tree is added to T ′ after a reorganization.

6The sub-tree rooted at v0
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Algorithm 18Maximal tree construction procedure (MTCP_MPS(G, T, T ′; vd, r))
• Input: A graph G = (V, E) with a spanning tree T = (V, ET ), and a chosen node r.

– Variables:

∗ Stage(v) ∈ {A, D, Ended, F, SC, W}, Father(v), Sons(v), B(v),

∗ To_Explore(v), Potential(v), To_Ignore(v).

– Initialization:

∗ ∀ v ∈ V \ {vd}, Stage(v) = A

∗ ∀ v ∈ Sons(vd), Father(v) = ⊥,

∗ ∀ v ∈ V, To_Explore(v) = Sons(v),

∗ ∀ v ∈ V, Potential(v) = ∅,

∗ ∀ v ∈ V, To_Ignore(v) = ∅.

• Result: A maximal tree T ′ of G \ vd with root r. In this case, r is labeled Ended.

• Actions:

MTA1 : {For the initiator r only, execute once:}
Potential(r) := B(r) \ Sons(r);
MP_MPS(Tr; r;Stage, A, F);
Stage(r) := SC;

MTA2 : {For each node v such that Stage(v) = SC , execute once:}
1: if (Potential(v) 6= ∅)

Stage(v) := W ;
Let p be a port number in Potential(v);
Potential(v) := Potential(v) \ {p};
send<mt_sc> via port p;

else
2: if (To_Explore(v) 6= ∅)

Stage(v) := W ;
Let p be a port number in To_Explore(v);
To_Explore(v) := To_Explore(v) \ {p};
send<mt_deleg> via port p;

3: else
Stage(v) := Ended;
send<mt_ended> via port Father(v);

MTA3 : {A message<mt_sc> has arrived at v from port q}
1: if (Stage(v) = A)

Stage(v) := CE;
RCP_MPS(T(v) \ vd;v);
MP_MPS(Tv; v;Stage, A, F);
Father(v) := q;
send<mt_son> via port q;

2: else
To_Ignore(v) := To_Ignore(v) \ {q};
send<mt_fail> via port q;

MTA4 : {A message<mt_son> has arrived at v from port q}
Stage(v) := SC;
Sons(v) := Sons(v) ∪ {q};
To_Explore(v) := To_Explore(v) ∪ {q};

MTA5 : {For each node v such that Stage(v) = F or Stage(v) = D, execute once:}
for i := 1 to deg(v) do
if (i 6∈ To_Ignore(v)) send<mt_included> via port i;

MTA6 : {A message<mt_included> has arrived at v from port q }
To_Ignore(v) := To_Ignore(v) ∪ {p};

MTA7 : {A message<mt_fail> has arrived at v from port q}
Stage(v) := SC;

MTA8 : {A message<mt_deleg> has arrived at v from port q}
Potential(v) := Potential(v) \ (Sons(v) ∪ To_Ignore(v));
Stage(v) := SC;

MTA9 : {A message<mt_ended> has arrived at v from port q}
1: if (To_Explore(v) 6= ∅)

Let p be a port number in To_Explore(v);
To_Explore(v) := To_Explore(v) \ {p};
send<mt_deleg> via port p;

2: else
Stage(v) := Ended;

3: if (Father(v) 6=⊥)
send<mt_ended> via port Father(v);
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Let T (u)\ vd be a tree that contains the connection entry u. Node u starts the execution of
the root changing procedure. The marking procedure is then applied to the tree rooted at u. Now,
u is ready to include the tree T ′, labels Father of u is set to v and a <mt_son> message
is sent to v. When a <mt_son>message has arrived at v from u, node u is added in both
Sons(v) and To_Explored(v) (action MTA4). It is now ready to start the search of another
connection entry.

At any time, actions MTA5 and MTA6 are used to update the lists “Potential” and
to prepare their computations using the lists “To_Ignore”. These actions may be executed
concurrently with the other actions. If a node v is labeled F or D then it cannot be a
candidate for reconnection since, either it is yet in the tree and so it must be avoided from the
lists “Potential” of its neighbors or it is the node vd. Moreover, the neighbors of v yet in the
tree (they are labeled F,W, SC) have to be ignored in its “Potential”.

When a node v labeled SC has an empty list “Potential”, which arises when it has no
neighbor labeled A and all its neighbors are labeled F have avoided themselves from its
list “Potential”, v executes the actions MAT 2(2) to mean that it does not succeed to find
an extension for T ′. So it transfers the label SC to one of its sons sending the <mt_deleg>
message. The list of the candidate nodes to a reconnection from the “chosen” son is computed
(“Potential”) executing action MTA8 followed by action MTA2 .

Eventually, some node v in T ′ has extended its sub-tree as much as possible (Stage(v) =

Ended), it informs, with action MTA2(3) (or MTA9(3)), its father sending the <mt_ended>
message. The father which receives such a message can proceed to the extension search from
one of its other sons executing action MTA9.

Furthermore, only r detects the end of the extension search ( Father(r) =⊥ ). When
Stage(r) = Ended one of the largest tree rooted at r in G \ vd has been built.

Lemma 6.5.3 After the execution of MTCP_MPS on a graph G = (V,E), node r constructs a

maximal tree including all the nodes reached by r in G \ vd.

Proof. The proof is the same as such used for the proof of the lemma about the MTCP_GRS.
The algorithm is based on a “depth-first search” of the on building tree. Thus, all the nodes
linked to the root are explored using actions: MTA2(2), MTA2(3), MTA8 and MTA9. At
the end all the nodes reached by the root set their variables “Stage” to Ended. 2

Lemma 6.5.4 Given a graph G = (V,E). The MTCP_MPS uses at most 4(#E+#V ) messages.

Proof. To prove this lemma, we show an example of the run of the MTCP_MPS in the worst
case.

1. The action MTA1 can only be applied once. So its cost is due to the application of the
marking procedure to the nodes of the sub-tree rooted at r : Atmost (2#VTr

−2)messages.

2. The action MTA2 is applied by each node of the graph G \ vd such that its “Stage”
variable is set to SC . The application of this action involves, in the worst case, c1
<mt_sc> messages, c2 <mt_deleg> messages, such that c1 + c2 = ∆ − 1, and one
<mt_ended>message. So, in the worst case, the total cost of the action MTA2 is 2#E

messages.
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3. The action MTA3 can be also applied only once for each node of the sub-trees rooted at
the sons of vd different from r. So its cost is due to the application of the marking proce-
dure to each of these sub-trees augmented by the cost of the root changing procedure. The
number of calls of this procedures is exactly the number of sons of vd. The procedures
cost is at most (

∑#Sons(vd)
i=1 (4#VTvi

− 4)) where vi ∈ Sons(vd) : Adding the cost of
MTA1, this part of the action is bounded by 4#V − 4#Sons(vd). At each reconnection
one <mt_son>message will be sent, otherwise one <mt_fail>will be sent if the recon-
nection failed. At most the action MTA3 uses (4#V − 4#Sons(vd)) + (#Sons(vd) −

1) + (#E − #V − 2 − #Sons(vd)) messages.

4. The action MTA4 does not involve messages.

5. The action MTA5 is applied once by each node to update the “To_Ignore” and the
“Potential” sets of its neighbors not in the tree. So, a priory, the cost of application of
this action is 2#E, but since we use the list “To_Ignore” only #E, applications are
necessary. Moreover, the edges of the tree have not to be taken into account and also the
sons of vd. Finally, the cost of the use of MTA5 is #E−#V −2−#Sons(vd) messages.

6. Both the actions MTA7, MTA8 do not involve messages.

7. The action MTA9 sends one<mt_deleg>message and one<mt_ended>message over
the edges of the tree without vd (induced by the use of the “depth-first trip”). Thus, this
action involves at most 2(#V − 2 − #Sons(vd)) messages.

2

6.5.1 2VCT _MPS Algorithm

Now, we present an implementation of our protocol referred to in the following as
2VCT _MPS algorithm. This algorithm uses nine actions and three procedures: The span-
ning tree construction procedure to construct the investigation tree, the simple path propagator
procedure, the configuration procedure and the maximal tree construction procedure. Such proce-
dures allow the implementation of phases composing the algorithm. Now, we present a short
description of the two new procedures.

Simple Path Propagator Procedure (SPPP_MPS(T ; v;Traversed,X, Y )) The aim of this
procedure is to propagate an information along a simple path linking node v to the root
of a tree T = (V,ET ). We will introduce the label Traversed to notice the expected distin-
guished simple path. Initially, all the nodes have their variables “Traversed” valued X. At
the end of the application of this procedure each node u in the simple path has its variable
“Traversed” set to Y. This procedure is implemented using the first part of the root changing
procedure.

Property 6.5.5 Let T = (V,E) be a tree rooted at v0. Let v be a node in T. By executing the

SPPP_MPS, if v sends an information to v0, then this information will be received by v0 using at

most#V messages.
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Configuration Procedure (CP_MPS(Inv_T, T ; v0, vd;Stage,X, Y ;Required)) This proce-
dure allows us to achieve the required initializations of the maximal tree construction procedure
and the computation of the succorer sons removing the trace of the last computations.
So this procedure is executed by the root v0 of a tree T involving all the nodes of the
graph to initialize the variables used in the MTCP_MPS. The initialization cycle may be
implemented using an extension of the marking procedure without adding extra operations.
Moreover, vd prepares its disconnection, so each of its sons sets its variable “Father” to ⊥ .

Property 6.5.6 Let vd be a chosen node in the graph G = (V,E) and let Inv_T be a spanning tree

of G rooted at v0. Starting at v0, the CP_MPS configures T as a spanning tree of G using Inv_T

and disconnects vd. The cost of this procedure is due to the application of the marking procedure adding

#Sons(vd) <c_tokD> messages and #Sons(vd) <c_backD>messages.

For our case, the required initializations of the configuration procedure concern the following
variables:

Father(v), Sons(v), Potential(v), T o_Ignore(v), T o_Explore(v), T reated(v), T raversed(v).
So, we denote by Required_CP the modification to be included in the corresponding action.
In other words, the use of the term Required_CP in some action is equivalent to:

1. Father(v) := InvFather(v);

2. Sons(v) := InvSons(v);

3. Potential(v) := ∅;

4. To_Ignore(v) := ∅;

5. To_Explore(v) := Sons(v);

6. Treated(v) := ∅;

7. Traversed(v) := 0;

As mentioned above, to implement efficiently our protocol, we do the same extension of
the root changing procedure as the one used in the local computations model. This change allows
us to compute the set “Treated” during the execution of this procedure. Recall that for some
disconnected node vd, this set contains its sons included in the current maximal tree. So
during the execution of RCP_MPS, at each inclusion of some node v which is son of vd, v

informs vd sending a <rc_included>message in order to update its set “Treated” as follows:

Treated(vd) := Treated(vd) ∪ {q};

This induces that the cost of the RCP_MPS is augmented by #Sons(vd) messages for
each tested node vd. Then the MTCP_MPS is extended, in the worst case, by 2#E messages
when applied to a graph G = (V,E).

Let a network modeled by a graph G = (V,E) such that ∀v ∈ V, InvStage(v) = N. The
node v0 starts the computation: It builds a spanning tree Inv_T of G rooted at v0 (V CTA1).

Now, all the vertices of G are such that InvStage = A. Since the test scheme is based on
the use of a “depth-first trip” exploration on the tree Inv_T, the root v0 is the only one able
to start the trip with the action V CTA2 . Each node ready to be examined switches its label to
D ( V CTA1(1), V CTA6(1) ).
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Algorithm 19 2-Vertex connectivity test algorithm (2VCT _MPS)
• Input: A graph G = (V, E) and a node v0 ∈ V.

• Variables:

– Stage(v), B(v), Treated(v),

– InvStage(v) ∈ {A, D, KO, N, OK, Over, W},

– Traversed(v) ∈ {0, 1},

– InvFather(v), InvSons(v).

• Initialization:

– ∀v ∈ V, InvStage(v) = N, Treated(v) = ∅ and Traversed(v) := 0,

– ∀ v ∈ V,∀u ∈ B(v) SUC(v)[u] = false

• Result: Two possible results :

– InvStage(v0) = Over to mean that the graph G is 2-connected.

– InvStage(v0) = KO to mean that the graph G is not 2-connected.

• Actions:

VCTA1 : {Node v0 starts to build the tree Inv_T (InvFather, InvSons) }
STP_MPS(G, Inv_T;v0; InvStage,N, A; InvFather; InvSons);

1: if (InvSons(v0) 6= ∅)
InvStage(v0) := D;
CP_MPS(Inv_T, T;v0, v0;Stage, N, A; Required_CP);
Traversed(v0) := 1;
Let p be a first son of v0;
send<vct_disc> via port p;

VCTA2 : {A message<vct_disc> has arrived at r from port q}
Suc(r)[v0] := true;
MTCP_MPS(G,T, Tr;v0, r);
send<vct_max> via port InvFather

VCTA3 : {A message<vct_max> has arrived at v0 from port q}
Traversed(v0) := 0;

VCTA4 : {For each node vd such that Stage(vd) = D, Traversed(vd) = 0 and Treated(v) = Sons(vd)
execute once:}
1: if (InvSons(vd) 6= ∅)

InvStage(vd) := W ;
Let p be a port number in InvSons(vd);
InvSons(vd) := InvSons(vd) \ {p};
send<vct_tok> via port p;

2: else
InvStage(vd) := OK;
send<vct_ok> via port InvFather(vd);

VCTA5 : {For each node vd such that Stage(vd) = D, Traversed(vd) = 0 and Treated(v) 6= Sons(vd)
execute once:}

InvStage(vd) := KO;
send<vct_ko> via port InvFather(vd);

VCTA6 : {A message<vct_tok> has arrived at vd from port q}
1: if (InvSons(vd) 6= ∅)

InvStage(vd) := D;
Traversed(vd) := 1
SPPP_MPS(Inv_T;vd;Traversed,0, 1);

2: else
InvStage(vd) := OK;
send<vct_ok> via port InvFather(vd);

VCTA7 : {For each the root v0, such that Traversed(v) = 1, execute once:}
CP_MPS(Inv_T, T;v0, vd;Stage, Ended, A;Required_CP;
MTCP_MPS(G,T, Tv0

;v0);

SPPP_MPS−1(Inv_T;v0;Traversed,1, 0);

VCTA8 : {A message<vct_ok> has arrived at v from port q}
1: if (InvSons(v) 6= ∅)

InvStage(vd) := W ;
Let p be a port number in InvSons(v);
InvSons(v) := InvSons(v) \ {p};
send<vct_tok> via port p;

else
InvStage(vd) := OK;

2: if (InvFather(v) 6=⊥)
send<vct_ok> via port InvFather(v);

VCTA9 : {A message<vct_ko> has arrived at v from port q}
InvStage(v) := KO;

1: if (InvFather(v) 6=⊥)
send<vct_ko> via port InvFather(v);
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The examination phase of the node vd consists on the check if such a node admits a succorer
son (see Theorem 6.3.3). For the particular case of the root v0, v0 sets its variable “InvStage”
to D and applies CP_MPS to build an auxiliary tree T. Then, it chooses one of its son r

in Inv_T as its succorer son and sends a <vct_disc>message to such a son(V CTA1). When
a node r receives a <vct_disc>message from its father v0, it sets its corresponding variable
“SUC” to true and starts to build a maximal tree of G \ v0 applying the MTCP_MPS.

For the other cases, each node proceeds as follows (action V CTA6(1)): The node vd labeled
D informs the root of the investigation tree about its attention applying the SPPP_MPS.

When the root is informed, it applies action V CTA7 : It configures an auxiliary tree T which is
the same as the investigation tree with the disconnection of vd. Then, it builds a maximal tree
of G \ vd applying the MTCP_MPS. When the root v0 built its maximal tree, it responds to
vd applying the SPPP−1_MPS. For the particular case of the root, the chosen son r informs
v0 that it has extended its tree as much as possible sending a <vct_max>message.

When vd receives such a response, it starts to compute its succorer sons: It is based on the
set “Treated” computed during the execution of the RCP_MPS induced by the execution of
the MTCP_MPS. There are two possibilities.

First, node vd finds one of its sons not included in the constructed maximal tree(action
V CTA5). So, vd fails its test and sets its variable “InvStage” to KO sending a <vct_ko>
message to its father in Inv_T. At the reception of such a message, node v propagates this
message to the root applying the action V CTA9(1). When v0 receives such a message, it
states that G is not 2-connected.

Otherwise, node vd discovers that all its sons are included in the maximal tree of the
root (or of the chosen son of the particular case of the root). Then, it continues the trip, if
possible, sending a <vct_tok>message to one of its not yet explored son in the investigation
tree (V CTA4(1)). Otherwise, it detects that all the nodes in its sub-tree are visited. In this case,
it sets its variable “InvStage” to OK and informs its father sending a <vct_ok> message to
continue the exploration (V CTA4(2)).

A node which receives a <vct_tok>message becomes the node to be examined(V CTA6).
A node which receives a <vct_ok>message looks in its sons if there is a not yet explored son
applying the action V CTA8. Furthermore, only the root v0 detects the end of the “trip” when
it receives a <vct_ok> message from its last son: In this case, it affirms that the graph G is
2-connected.

6.5.2 Overall Proofs and Complexities Analysis of the 2VCT _MPS

Now, we show the correctness of the 2VCT _MPS algorithm using a scheme based on the
procedures properties as explained in the section about the system model. The analysis is
closed with time complexity measures.

Theorem 6.5.7 The 2VCT _MPS algorithm presented above implements a distributed test of the

2-vertex connectivity of a graph.

Proof. The proof follows the run presented above and use the same scheme as the one used to
prove the 2VCT _GRSS algorithm. 2
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Lemma 6.5.8 Given a graph G = (V,E). The 2VCT _MPS algorithm tests the 2-vertex connectivity

of G using at most O(deg(g) × #V 2) messages.

Proof. The worst case of the test algorithm corresponds to the case when the maximal tree
construction procedure is applied for all the nodes. So we will detail the run of the 2VCT _MPS

algorithm for this case.

1. The action V CTA1 is applied once. Its cost is due to the application of the spanning
tree procedure to the graph G to build the investigation tree Inv_T, followed by the
configuration procedure to build an auxiliary tree T to test v0 and the sending of a message
to its succorer son.

2. The action V CTA2 is applied once by the succorer son to build its maximal tree in spite
of the disconnection of the root. Its cost is due to the application of the MTCP_MPS

plus one message.

3. The action V CTA3 does not involve messages.

4. The action V CTA7 is applied by the root one time for each tested node. It involves the
execution of the CP_MPS, MTCP_MPS and SPPP−1_MPS.

5. The actions V CTA4, V CTA6, V CTA8 are used to implement the “depth-first trip” on
the tree Inv_T = (V,ET ). So, the cost of such an exploration is 2#V − 2 messages. In
addition, the action V CTA6 involves the application of the SPPP_MPS.

Without loss of generality we denote by V the set of the nodes and by E the set of edges
of all the graphs structures used in all the procedures. From the previous, we can claim the
following:

• COST (STP_MPS(G, T ; v0;Father;Sons;Stage,X, Y ),messages) = 2#E + #V − 1

(see Property 6.2.7).

• COST (MTCP_MPS(T ; r),messages) = 6#E + 4#V (see Lemma 6.5.4).

• COST (CP_MPS(G, T ),messages) = 2#V − 2 (see Property 6.5.6).

• COST (SPPP_MPS(T ; v;Traversed,X, Y ),messages) = #V − 1 (see Property 6.5.5).

• COST (SPPP−1_MPS(T ; v;Traversed,X, Y ),messages) = #V −1 (see Property 6.5.5).

Therefore, the total number of messages exchanged during the execution of the
2VCT _MPS algorithm is at most 2#E(3#V + 1) + 7#V 2 + V − 2 messages. Then, the
message requirement of the 2VCT _MPS algorithm is in O(deg(G) × #V 2). 2

For the space complexity, we used the same data as those used to encode the 2VCT _GRS,

then we claim the following:

Lemma 6.5.9 The space requirement of 2VCT _MPS algorithm is in O(deg(G)× log deg(G)) bits

per node when the algorithm is applied to a graph G = (V,E).
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6.5.3 Time Complexity

To analyze the time complexity of algorithms based on graph exploration on asynchronous
networks, we use a level number and a diameter defined in Section 2.1 to help us in the proofs
of the worst case bound. We associate with leaves of a tree T level l0 = 0 and the level of each
node is the maximum level number of its sons plus 1. This number will be computed during
the construction of the investigation tree. So the message <st_back> is replaced by the level
number. We introduce the function To_number(msg) (resp. To_message(level) ) to convert
the <st_back> message (resp. the level number) to a level number (resp. to a <st_back>
message). Thus, actions STA2 and STA4 of the spanning tree procedure are modified such as :

• The level number level(v) is initialized to 0 in STA2(1). Then, the message To_message(level(v)) is used as a substitute
for<st_back>message.

• STA4 : {A message<st_back> has arrived at v from port q}
Terminated(v) := Terminated(v) ∪ {q};
level(v) := max(level(v), To_number(st_back);

1: if (Included(v) = B(v) and Terminated(v) = Sons(v))
Stage(v) := Y
level(v) := level(v) + 1;

2: if (Father(v) 6=⊥)
send<To_message(level(v))> via port Father(v);

The two following lemmas follow the definition and the computation of the level:

Lemma 6.5.10 Given a graph G with diameter diam(G), the maximum node level number assigned

during the execution of the STP_MPS is bounded by diam(G).

Proof. Initially, let T0 be the tree containing the leaves of the tree to be build. Every leaf node
vl has level level(vl) = 0. At this step, the leaves are discovered (action STA2 ). The tree Tl

is obtained after the local termination of the nodes of level l − 1. This step involves the send
of their level numbers (action STA4(2) ). So, we can do this at most diam(G) times before we
get a spanning tree of G. Thus, the maximum level number obtained is diam(G). 2

Lemma 6.5.11 During the execution of the STP_MPS on the graph G, the node at level l will

have sent a st_backmessage within diam(G) + l time.

Proof. Let t0 be the time at which all the nodes of G are included in the on-building tree T
(labeledWA). Now, by induction we show that for each node v at level l in the graph, v will
sent a <st_back>message within t0 + l time.

For the case of l = 0,we observe that the nodes (leaves) at level 0 have sent their<st_back>
message either before or at time t0. Since at time t0 all the nodes are already included in the
on-building tree T, the lemma is true. Let u be a leaf of the tree T. If u is included before t0,
it has already sent its <st_back>message. If u is included at time t0 (the worst case), then
the<st_back>message is sent immediately after its inclusion (action STA4(2) ). Therefore, it
is true that a node at level 0 will have sent its <st_back>message within time t0 + l, where
l is the level number of the node.

Now, we suppose that the lemma is true for level number l− 1. It means that all the nodes
at level l− 1 have sent their<st_back>messages either before or at time t0 + l− 1. Now, we
show that all the nodes at level l will have sent their <st_back>messages within time t0 + l.
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During the construction of the spanning tree, each included node has only one defined father.
A node at level l must have at least one neighbor (son) at level l− 1. Let u be a node at level
l. From the induction hypothesis, all the neighbors (sons) of u at level l − 1 or less had sent
their<st_back>messages within time t0 + l−1. According to the assumption about the time
complexity, which stipulates that the message delay is at most one time unit, the <st_back>
messages from the sons of u at levels ≤ l − 1 will arrive at u within time (t0 + l − 1) + 1.

Since u has at most one neighbor at level ≥ l (father), now u is ready to send its <st_back>
message when it receives such a message from all its sons at level ≤ l− 1. Therefore, node u
at level l will have sent its <st_back>message within time t0 + l. 2

From the two previous lemmas, we deduce:

Lemma 6.5.12 The execution of the STP_MPS on the graph G uses at most 2diam(G) time.

Using the same proofs techniques, we claim the following:

Lemma 6.5.13 Given a tree T = (V,E) with diameter diam(T ), the MP_MPS on T uses at

most 2diam(T ) time.

Lemma 6.5.14 The execution of the RCP_MPS on a tree T with diameter diam(T ), requires at

most 2diam(T ) time.

Now, we study the time complexity of the main procedure: MTCP_MPS. We use the
same reasoning as such used for the message complexity.

Lemma 6.5.15 Given a spanning tree T = (V,ET ) of a graph G = (V,E) rooted at v0. Let vd be a

node in G, then the maximal tree construction procedure uses at most 6#V − 2#VTv0
time to build,

if possible, a spanning tree of G \ vd, where Tv0
is the sub-tree rooted at v0, at the beginning of the

MTCP_MPS.

Proof. First, v0 applies the MP_MPS to construct the base of the “on-building” tree. Second,
we know that each sub-tree resulting after the disconnection of vd is traversed sequentially
because of the use of the “depth first” exploration technique. So without loss of generality,
each sub-tree applies one time the RCP_MPS followed by the MP_MPS. Let u be a son of
vd. The number of traversed edges is bounded by 2(#V −2) for the reconnection phase. Thus,
the total time used by the MTCP_MPS is a priory bounded by 4(

∑#Sons(vd)
i=2 diam(Tvi

)) +

2diam(Tr) + 2(#V − 2), such that vi ∈ Sons(vd). The sum of the diameters of all the sub-
trees is bounded by #V, then, the maximal tree construction procedure requires time bounded
by 6#V − 2#VTr

− 4. 2

Lemma 6.5.16 Given a tree Inv_T = (V,EInv_T ), the “depth first trip” on Inv_T uses at most

2(#V − 1) time.

Proof. Since each edge of the tree is traversed two times and #EInv_T = #V − 1, the total
time required to traverse a tree T using “depth first trip” technique is 2(#V − 1). 2

The following result summarizes the complexity analysis.
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Theorem 6.5.17 Given a graph G = (V,E). The distributed algorithm presented above computes

the test of the 2-vertex connectivity of G in O(#V 2) time using O(deg(G) × #V 2) messages and

O(deg(G)) bits per node.

6.6 Status and Future Works

This work deals with the test of the 2-vertex connectivity of graphs in a distributed setting
using local knowledge. We present a new formalization of such a problem using the notion
of succorer sons. This notion is defined under an arbitrary pre-constructed spanning tree,
of the graph to be tested, called the investigation tree. So using a constructive approach we
compute the set of succorer sons of all the nodes. Therefore, to check whether a given graph
is 2-connected it suffices that the only node which admits a succorer son is the root of the
investigation tree.

The protocol is encoded in the local computations model and implemented in the message
passing model using a set of procedures. Given a graph G = (V,E) with degree ∆ and N

nodes: The first algorithm requires O(∆ × N2) steps and O(deg(G) × log deg(G)) bits per
node. For the second one, tacking into account the extra actions used to call the procedures, to
collect the result of the computation and without combining some phases to reach better some
constants, the distributed algorithm presented above achieves correctly the test of the 2-vertex
connectivity of G in O(N2) time using O(∆ ×N2) messages and O(deg(G) × log deg(G))

bits per node.

Furthermore, our work has an extra benefit: Algorithms encoded in the used version of
local computations model may be implemented in the asynchronous message passing model
with a transformation including simple changes. Furthermore, the transformation guarantees
the following: (1) the proofs used in the first one allows to deduce the proofs for the second
one, (2) the complexity measures may be also deduced.

Now, we propose some further research to extend our works. For the use of the proce-
dures to encode distributed algorithms: They simplify their design and their study. But the
assumptions about their atomic applications may violate the performances of the designed
applications. So it is useful to propose a general methodology for proving their “correctness
calls” without such assumptions. This is itself a research topic and the present work is a moti-
vating example.

For the k-vertex connectivity test, to our knowledge there is no distributed algorithm based
on local knowledge to deal with this problem. So, we propose two possible implementations:
First, we can imagine the definition of a total ordering on vertices, based on a spanning tree
with an ordering on outgoing edges; and then a systematic enumeration of k-tuples of vertices,
to check whether they separate. This would not be efficient, but would indicate a theoretical
possibility. Second, we conjecture that we can use the previous procedures to generalize our
algorithm to test the k-vertex connectivity of graphs in polynomial time. Intuitively, we can
reduce this problem to the case of k = 2 followed by an incremental test procedure.

One interesting application of the distributed k-vertex connectivity test is the measure of
a network fault-tolerance in a decentralized environment ( for example an ad hoc network
without a GPS satellite). In fact, the quality of the reachability of any couple of nodes in
an unreliable network, and hence their communication, will depend on the number of paths
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between these nodes. This number of paths is the connectivity. If such paths are already com-
puted, it is essential to maintain the reachability between nodes while crash or disconnection
of certain nodes occurs.

We can also determine by an appropriate labeling the 2-connected components: For each
2-connected component, choose a “leader edge”, and encode procedures that for any edge will
say who is the leader of its 2-connected component. Then, for 2 edges determine whether they
belong to the same component. If they are not, another procedure should determine a path
from one to the other. In this way, we can construct the tree of 2-connected components. Note
that the problem of finding k connected sub-graph with minimum cost is known to be NP−
hard. For more examples the reader is referred to [BHM02, CW04, Wes01].



Chapter 7

Distributed Maintenance of
Spanning Trees

MAintainability refers to how easy a failed system can be repaired. Many applica-
tions in distributed environments are based on the network topology or structure
knowledge. The designed protocols often used this knowledge as input informa-

tion. In our case, the knowledge is the vertex connectivity applied to design protocols on
unreliable networks modeled by graphs. For the routing applications [CW04], each node uses
information about its neighborhood to update the routing tables when the topology changes.
So, it is suitable to maintain dedicated structures to guarantee the perennity of the routing.
An important measure in this routing schemes is the number of nodes (or processors) to be
updated upon a topology change. In our context, we use a spanning tree of the network
described as a graph: A distributed system is represented as a connected, undirected graph
denoted by G = (V,E) where a node in V represents a process and an edge in E represents
bidirectional communication link. Let M denotes the number of its edges, N denotes the
number of its nodes and ∆ denotes its degree.

The studied spanning tree maintenance problem is stated as follows. After the crash of
a node v, we have to rebuild another spanning tree of G deprived of v with a minimum
of changes. Obviously, if G becomes disconnected this fails. In this case, the graph model-
ing the network is splited into a multiple connected components. Therefore, we consider a
maintenance of a forest of a spanning trees. That is, how to associate a spanning tree with
each of these components. It is assumed that a crash detection service is implemented using
unreliable failure detectors [CT96, HM05b], satisfying: After the crash of some node, the crash
detection service reaches a stable state and then all the neighbors are informed about the crash.
The stability of the crash detection service is assumed to be reached in a finite time after the
stability of its failure detectors. We consider a decentralized setting where nodes may crash
by permanently halting and can perform only computations based on local knowledge.

In this chapter we propose a new formalization of the problem of the maintenance of a
forest of spanning trees, as a general occurrence, and the spanning tree maintenance for k-
connected graphs as a specific occurrence. At each step of maintenance executed by our pro-
tocol after each failure occurrence, we would like to preserve the maximal possible structure of
the existing spanning trees. That is, in order to minimize the number of nodes to be changed.
We extend the notion of succorer sons introduced in Chapter 6. Here, such information will be

125
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used as a basic local knowledge used by the processes to take local decisions in order to main-
tain a desired structure of a graph in the presence of crash failures. Recall that a succorer son
of a node v in T is a son which is able to build a spanning tree of some connected component
after the deletion of v.

After the crash of some node, if the graph remains connected then it suffices to activate
its succorer son to rebuild a spanning tree. In the opposite case, the graph is decomposed
in multiple components. Thus, our protocol uses succorer sons information associated with
each node achieved using a pre-processing task to identify the set of sons to be activated. The
protocol is divided into three distinct parts: (1) the detection and the propagation of the failure
information, (2) maintenance of a spanning tree of each resulted connected components and
(3) update of the succorer sons information. For a given graph G, using the local computations
model: To deal with each failure occurrence, without taking into account the delay caused by
the used failure detection service, the first part usesO(N) time. The second part usesO(∆×N)

steps and the last part takes O(∆×N2) steps. The space complexity is in O(∆× log ∆) bits per
node. The protocol is applied concurrently to each of the resulted disconnected component.
As we will see, we proposed also an optimal version of this protocol for k-connected graph in
the presence of at most k − 1 failure occurrences.

The outline of the chapter is as follows. We start with a few survey of existing solutions in
Section 7.1. In Section 7.2, we describe our system model including the set of procedures that
we will use in our formalization. Section 7.3 presents our approach to deal with the problem
of maintaining of a forest of spanning trees using the notion of succorer sons. Then, Section
7.4 shows a method to compute the succorer sons labeling of a graph. Section 7.5 discusses the
update of such a labeling after crash failure occurrence. In Section 7.6 we present an encoding
of the proposed protocol in the local computations model. An overall proofs of its correctness
and its analysis is given in Section 7.7. Then, in Section 7.8 we focus on efficiency: We show
how it is possible to profit from the network topology. Section 7.9 concludes the chapter with
the presentation of our findings and a short discussion about extended works.

7.1 Related Works

The specific protocols devoted to maintain a spanning tree are proposed in [ACK90, AS97,
Por99, RSW05, GA05]. In [ACK90], the authors studied the tree maintenance problem as the
graph’s topological changes after edge failures. The maintained spanning tree is obtained
using incremental update procedures, the time complexity of their solution is O(∆ logM+N).

In [AS97], an an algorithm to maintain a common data in a communication network is
presented. It operates in a communication network where nodes are arranged in a chain. The
solution is an improvement of some previous solutions including those based on Full Broadcast
and on Broadcast with Partial Knowledge [ACK+91]. The time complexity in both algorithms is
O(N +M).

Therefore, the solution presented in [AS97] solved the Broadcast with Partial Knowledge
problem in O((M +N) log3M). The protocol presented in [Por99] is composed of iterations to
rebuild a spanning tree of a maximal connected component when an edge fails. The time com-
plexity of such a protocol is in O(“actual size′′) of the biggest connected component adding
an extra polylogarithmic time.

Nevertheless these algorithms, either use complete networks, or use identities for nodes
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and deal with edge failures. Moreover, the notification service of failures are assumed to
be reliable. In [RSW05], the last assumption is not taken into account and node failures are
considered. They, as described previously, use stable failure detectors. In order to encode
such an algorithm, a structure called “expander graph” is implemented. This structure is
more expensive than a simple spanning tree construction.

[GA05] presented a protocol based on the use of Nevilles’s code tomaintain a spanning tree
of a complete graph. In this work, the maintenance task is formalized as a set of constraints to
be checked. For the complexity analysis, they assume that a node can perform operations on
O(N) variables in O(1) time. So the algorithm is in O(N). Such assumption steels very far
from the real behaviors in distributed environments. Most of these works are presented in a
centralized setting or assuming global knowledge about the graph to be examined.

7.2 The System Model

In this chapter, we consider node failures in arbitrary network modeled by a graph. When
starting our protocol the graph is assumed to be connected. Our protocol uses only local
knowledge. That is, to perform a computing step, only information related to the states of
the neighbors is required. Especially, each node knows its neighbors in G and in the current
spanning tree T the “position” of a node is done by its father except for the root, and a set
of ordered sons. Furthermore, the studied network is semi-anonymous: Only the root needs to
be identified. Moreover, we investigate some applications that can use our protocol.

Here, processes communicate and synchronize by sending and receivingmessages through
the links. There is no assumption about the relative speed of processes or message transfer de-
lay, the network is asynchronous. Each node communicates only with its neighbors. The links
are reliable and the processes may fail by crashing. To encode our algorithms, we will use
mainly graph relabeling systems model. The message passing model will be used to demon-
strate that the designed protocol is general. For the main model, we consider only relabeling
between two neighbors. That is, each one of them may change its label according to rules
depending only on its own label and the label of its neighbor.

Now we give the list of formal procedures that we will use to build our protocol. Except
the first one which will be described below, the others are already detailed in Chapter 6.

1. crash detection procedure (CDM_GRS(G;Crashed))

2. spanning tree procedure (STP_GRS(G, T ; v0;Stage,X, Y ;Father;Sons))

3. marking procedure (MM_GRS(T ; v0;Stage,X, Y ))

4. root changing procedure (RCM_GRS(T ; r))

5. simple path propagator procedure (SPPM_GRS(T ; v;Traversed,X, Y ))

6. maximal tree construction procedure (MTCM_GRS(G, T, T ′; vd, r))

7. configuration procedure (CM_GRS(Inv_T, T ; v0, vd;Stage,X, Y ;Required))
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Figure 32: Succorer sons(a,b)

7.2.1 Crash Detection Procedure (CDP (G; Crashed))

The crash detection procedure is based on an unreliable failure detection service. Such a ser-
vice may be implemented in asynchronous distributed systems using timeout and heartbeat
strategy for example (see Section 3.4 or for more details [CT96, HM05b]). The CDP informs,
only after the stability of its corresponding failure detector, each node about the possible crash
of one of its neighbors: The failure detector of any non crashed node v has detected all the
crashed neighbors which are now stored in a list of crashed neighbors Crashed(v). Moreover,
all the sets used in the labels will be devoted from crashed processes. For example, if the father
of a node v is in Crashed(v), then it is set to ⊥ . Thus, we denote by GST 1 the time after
which the failure detectors of all nodes stabilize. We assume that the execution of one rule
requires one time unit as the time unit to measure the failure detector stability. Therefore, the
cost of the CDM is in O(GST + deg(G)) for each failure occurrence.

7.3 Maintenance of a Forest of Trees

As the connectivity of a network might change over time, the graph modeling it may be dis-
connected. In fact, after the deletion of some nodes, results of failures, the network may be-
come splited and partitioned into many components (see Figure 32.b). It would be desirable
to maintain a dynamic structure of trees in any graphs. In this section, we deal with the main-
tenance of a forest of trees of a graph which is initially k-connected where k ≥ 1 and any
number of failures. That is, each component computes its spanning tree. Therefore, we need
to give to each node the label SUC to encode its ability to construct a spanning tree of its
component after the failure of its father. Thus, such a labeling increases the degree of the
parallelism during the computation. Indeed, succorer sons update the spanning tree of their
components concurrently. As shown in Figure 32.b, the crashed node is the one in the star and
its succorer son is the one in the circle.

7.3.1 The Labeling

To describe the label SUC we use the following notations: If u has degree d, we denote by
v1, v2, · · · vd, its neighbors such that v1 < v2 < · · · < vd, then SUC is a vector of Boolean
and to encode the information that u has about vi we use SUC(u)[vi]. Now we present a
definition that we will use to specify the properties that the labeling SUC must satisfy.

1GST for Global Stabilization Time.
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Definitions 7.3.1 Let G = (V,E) be a connected graph and T be a spanning tree of G rooted at v0.

For each pair of nodes u, v in G, we say that u is reached by v in G iff there is a path in G linking

v to u. After the deletion of a node vf in V, G is splited into DC disconnected components. Recall

that in T, the set Sons(vf ) denotes the set of ordered sons of vf . Then,

1. We say that v is a succorer son of vf iff the following holds:

(a) v ∈ Sons(vf ),

(b) if vf 6= v0 then v is not reached by v0 in G \ vf ,

(c) ¬∃ u ∈ Sons(vf ) such that u < v and v is reached by u in G \ vf .

Then, a label SUC(v)[vf ] is set to true. Otherwise it is set to false.

2. Each of the succorer sons of a node vf , and the root of the current spanning tree of G in the case

of vf 6= v0, is called a maintainer node.

3. We say that a protocol P succors G using a labeling SUC iff P rebuilds a forest of trees of

G \ vf . That is, P constructs a spanning tree of each one of the DC component. Then, SUC

is called a succorer labeling of G.

In the following, each of nodes in charge to update the forest of trees after the deletion of
any node is called maintainer node. Thus, each of the succorer sons of a node v becomes a
maintainer node after the deletion of v. Now, we present our distributed algorithm to deal
with the maintenance of a forest of trees.

7.3.2 Maintenance of a Forest of Trees Algorithm (MOFST )

We present an informal description of our distributed protocol dedicated to maintain a forest
of spanning trees for any connected graphs. Then we give an implementation of the algorithm
using means of local computations, the proof of its correctness and some complexity measure-
ments. During the design of our algorithm we added the constraint to preserve as much as
possible the existing spanning trees. For a sake of clarity, our protocol is divided into two
parts: (a) the pre-processing task and (b) the maintenance invoked at each failure occurrence.
To carry out the first part (a) we use the following phases:

1. succorer sons computation. Nodes of G compute their succorer sons. This is based on a
simulation of failure.

2. cleaning. To deal with the failure occurrence using the same procedures and labels as
those used during the simulation. For example, all the nodes will set their labels Stage
to A and so on.

In phase one, we use a pre-processing task to compute a labeling that will be used by the
protocol to compute a spanning tree of each component. Having such a labeling, the protocol
is ready to work correctly for one failure occurrence. To use the same task as used during the
previous phase, phase two allows us to do required initializations of the used labels in each
phase as that used in phase one.

The second part (b) is more delicate, it is composed of the following:
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1. detection of a crash. Neighbors of the crashed node are informed that the node vf is
crashed.

2. propagation. Father of the crashed node, if it exists, informs the root of the tree that some
node in its descendant is crashed.

3. spanning tree maintenance. Node u, a spanning tree maintainer, starts the updating of the
spanning tree and the succorer labels of its component.

4. cleaning. To deal with the next failure occur using the previous five phases, the used
labels require some initialization in each connected component. This is the same phase
as phase 2.

5. succorer sons computations.

6. cleaning.

For part (b), phase one is done using a crash detection procedure as described previously.
After each failure occurrence, phase two is invoked to activate the root of the tree, if its exists.
In this case, it is considered as a spanning tree maintainer. Now, all the maintainer nodes may
work concurrently to update (or to maintain) the spanning trees of their components in phase
three. In order to compute the new succorer sons to treat the next failure occurrence, phase
four and phase five are applied to each of the resulted components. Then, phase six is used
to clean the used data to treat the current failure occurrence. Note that part (b) is performed
concurrently in each of the resulted connected components.

7.4 Succorer Sons Computation

We propose an algorithm to compute the vector SUC for each node of a graph G. In the
sequel this task is realized using an algorithm referred to as a SUC algorithm. As we shall
see, in spite of its cost, such a task does not violate the performance of our algorithm since it is
considered as a pre-processing task. That is, it allows to compute vital information pertaining
to the update of the spanning tree after the network changes. Our distributed computation
of succorer vectors algorithm consists of the following phases: (1) the computation of the
spanning tree called Investigation tree, denoted by Inv_T, of G with root v0, (2) exploration
of Inv_T to compute succorer sons of all the nodes of G.

In phase one, we use an algorithm as described in the previous section. This procedure
constructs a spanning tree Inv_T of a given graph G rooted at v0 with local detection of
the global termination. It means that v0 detects the end of the spanning tree computation of
G. In phase two, we explore the tree Inv_T using “depth-first trip” [Tel00] . When the trip
reaches a node vd, vd does the following:

1. configures. The aim of this phase is to prepare the application of the succorer sons com-
putation of some node vd. So, this phase initializes the set of labels erasing the trace of
the last succorer computation. This phase is done using the configuration procedure (see
bellow).

2. disconnects itself. Node vd disconnects itself, it will be labeled Stage(vd) = D.
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3. computes the set of its succorer sons. After the execution of the two previous phases, node
vd is ready to compute its succorer sons. So, vd applies the succorer node procedure that
we will detail in the following.

Succorer Node Procedure (SNM(G, T ; vd)). This procedure is applied by each observed
node vd in order to compute its succorer sons. Since we will use such information to up-
date the spanning trees after some failures occur and we would like to preserve the maximal
possible structure of the existing spanning trees, the trees rooted at the “old” roots are pre-
served. So, each of the updating spanning trees will use such a tree as a base for its possible
extension. The computation of the succorer sons is composed of the following phases:

1. disconnected node vd is not the root

(a) propagates. Node vd informs the root of the actual tree T about its disconnection.

(b) maximal tree construction. When the root v0 is informed, it starts the computation of
its maximal tree.

(c) responds. Eventually, v0 constructs its maximal tree, so it responds to vd.

2. succorer sons computation. Node vd starts the computation of its succorer sons: It chooses
one of its son r not included in the maximal tree constructed by the root to become its
succorer son. Then, each chosen node does the following:

(a) new succorer son. Node r is a succorer son of vd. So it updates its labeling: SUC(r)[vd]

is set to true.

(b) maximal tree construction. Chosen node r is in charge to construct and to mark its
maximal tree including all the nodes not reached by the above marking using the
same computations as the root of T.

(c) all the sons of vd are marked. Node vd finds that all its sons are included in some
constructed trees. Therefore, the computation of its succorer sons is terminated.

(d) some son of vd is not marked. Node vd detects the end of the current maximal tree
construction such that there is some son of vd not yet included. It chooses such a son
as its newly chosen son to become its next succorer son and so on the computation
follows.

7.5 Updating After Some Failure

In this section, we discuss the incremental maintenance of a forest of spanning trees and the
update of the succorer sons information in dynamic networks. We consider the changes that
are the results of the deletion of some node which may cause G to become disconnected. As
mentioned above, when the MOFST is introduced, each of the maintainer nodes is able to
rebuild a spanning tree of its component. Recall that, after the crash of a node vf , the set
of maintainer nodes is composed of the set of the succorer sons of vf augmented with the
root, if it’s not vf . We denote with maintenance procedure the algorithm based on maximal tree
construction procedure. Therefore, for a graph G, after the detection of a crash of vf it suffices
that each corresponding maintainer node applies the maintenance procedure to maintain the
forest of trees of G \ vf . One way to update the set of succorer sons is the re-application of the
SUC algorithm on each component.
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7.6 Encoding of the MOFST Algorithm

In this section we propose an encoding of the MOFST using graph relabeling systems de-
scribed in Section 1.2. So, the needed procedures are encoded in the same model and the
analysis is done according to the given assumptions of such a model. We start by describing
its main phase: The succorer sons computations.

7.6.1 Succorer Sons Computation

Now, we present an implementation of the SUC algorithm using six relabeling rules and
invoking the two procedures: configuration procedure described in the previous Chapter, and
succorer node procedure which we will describe below. Since this algorithm uses some proce-
dures, the proof of its correctness and its complexity measures are differed after the study of
the used procedures.

Succorer Node Procedure (SNP_GRS(G, T ; vd)) Now, we present an implementation of the
succorer node procedure. As we shall see, this procedure use the simple path propagator procedure
to implement the phase 1.(a) and its reversible version to implement 1.(c). The phase 1.(b)

and 2.(b) are achieved using the maximal tree construction procedure presented above.

Let G = (V,E) be a graph and let T = (V,ET ) be a spanning tree of G. We consider a
node vd as the observed node. Initially, ∀v ∈ V (G), Stage(v) = A. The node vd initiates the
computation : since in G it is the only one that executes the rule SNR1. It informs the root
v0 about its attention to compute its succorer sons applying the SPPP_GRS (SNR2 .) Then,
node vd waits the response from v0. For the particular case of the root, the information phase
becomes short (SNR2 ). So, in all cases node vd will relabel itself Stage(vd) = Again (SNR1

or SNR3). Then vd looks in its sons if there is at least one node r labeled Stage(r) = A. While
there is such a node, vd orders to r to construct its maximal tree, rooted at itself, of the graph
G \ vd (SNR4 ). We denote this tree Tr. This work will be achieved using the MTCP_GRS.
The first succorer son r of vd starts the execution of the MTCP_GRS and vd waits the result
of such a procedure. Eventually, r will build its maximal tree Tr, then r updates with rule
SNR5 the set of succorer sons of vd. So, r will be considered as a succorer son of vd.Moreover,
r informs vd which then can proceed to order another son not included in Tr. Furthermore,
vd collects the states of its sons to know each of them are already included in some maximal
trees. Recall that after the execution of the MTCP_GRS, all the nodes included in Tr are
labeled Ended. So, the observed node vd updates its set Treated to include such nodes (Rule
SNR6 ). Finally, vd detects the end of the succorer labeling computation when all its sons are
included in some trees (labeled Over ). When Stage(vd) = Over maximal trees of G \ vd

rooted at succorer sons of vd have been computed ( SNR7 ).

Lemma 7.6.1 Let G = (V,E) be a connected graph and let T be a spanning tree of G rooted at v0.

The succorer node procedure ( SNP_GRS ) computes correctly the succorer sons of any node of G.

Proof. We must prove the following property. For any node v, all its sons ui such that
SUC(ui)[v] = true constructs a maximal tree and the union of such trees and the tree of the
root, if v 6= v0, includes all the nodes of G \ v. We prove this property by induction on the
number of succorer sons of v. We denote by SUCS(v) the ordered set of sons u such that
SUC(u)[v] = true. By induction on the size of the set SUCS(v). For the case of #SUCS(v) =
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Algorithm 20 Succorer node procedure (SNP_GRS(G, T ; vd))
• Input: A graph G = (V, E) with a spanning tree T = (V, ET ), a node vd to be disconnected and observed.

– Labels:

∗ Stage(v) ∈ {A, D, Ended, F, KO, OK, Over, SC, W}, Father(v), Sons(v), B(v)

∗ To_Explore(v), Potential(v), Treated(v)

∗ SUC(v)

– Initialization:

∗ ∀ v ∈ V \ {vd}, Stage(v) = A.

∗ Stage(vd) = D.

∗ Sons(Father(vd)) = Sons(Father(vd)) \ {vd}.

∗ ∀ v ∈ Sons(vd), Father(v) = ⊥ .

∗ ∀ v ∈ V, To_Explore(v) = Sons(v).

∗ ∀ v ∈ V, Potential(v) = ∅.

∗ ∀ v ∈ V, To_Ignore(v) = ∅.

∗ ∀ v ∈ V, Treated(v) = ∅.

∗ ∀ v ∈ V,∀u ∈ B(v), SUC(v)[u] = false.

• Results: The set of succorer sons of vd is computed. It is composed of the sons u of vd such that SUC(u)[vd] = true.

• Rules:

SNR1 : Node vd starts the computation 2

Precondition :

∗ Stage(vd) = A

Relabeling :

∗ if ( Father(vd) 6=⊥ )
SPPP_GRS(T;vd;Traversed, 0,1)
Stage(v0) := W

∗ else Stage(vd) = Again

SNR2 : Node v0 , the root, starts its computation and
marking of its maximal tree, and then it informs vd

Precondition :

∗ Stage(v0) = W

∗ Father(v0) = ⊥

Relabeling :

∗ MTCP_GRS(G,T;vd, v0)

∗ SPPP_GRS−1(T;v0;Traversed, 1,0)

SNR3 : Node vd, is informed that v0 has built and
marked its maximal tree

Precondition :

∗ Father(vd) = v

∗ Traversed(v) = 0

Relabeling :

∗ Stage(vd) := Again

SNR4 : Node vd looks if its has a son not yet included in
the “on-building tree”

Precondition :

∗ Stage(vd) = Again

∗ r ∈ Sons(vd)

∗ Stage(r) = A

Relabeling :

∗ Stage(vd) = W

∗ MTCP_GRS(G,T;vd, r)

SNR5 : Node r informs vd that it has built the maximal
connected tree Tr of G \ vd.

Precondition :

∗ Stage(r) = Ended

Relabeling :

∗ Stage(vd) := Again

∗ SUC(r)[vd] := true

SNR6 : Node vd is informed that its son v is labeled
Ended

Precondition :

∗ Stage(vd) = Again

∗ v ∈ Sons(vd)

∗ Stage(v) = Ended

Relabeling :

∗ Treated(vd) := Treated(vd) ∪ {v}

∗ Stage(v) := Over

SNR7 : Succorer sons of vd among the set of sons has
been computed

Precondition :

∗ Stage(vd) = Again

∗ #Treated(vd) = # Sons(vd)

Relabeling :

∗ Stage(vd) := Over
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1, trivially verified. We suppose that the property is correct for #SUCS(v) = l − 1, we must
prove that the property remains correct for #SUCS(v) = l. Let ul be the lth succorer son
of v. From the hypothesis, all the succorer sons except ul may built a spanning tree of their
components. We denote by Pl−1 the sub-graph induced by the connected components of
SUCS(v) \ ul. There are neighbors of v including ul not in Pl−1. It suffices to consider the
graph G \Pl−1, so in this graph v has exactly one succorer son ul, which is like a trivial case.
Hence the property is also verified. 2

Lemma 7.6.2 The succorer node procedure requires time bounded by t1deg(G) × #V + t2 time for

some constants t1, t2 when applied to some node vd of a graph G.

Proof. The cost of the application of the SNP_GRS is the cost of an exploration using a
“depth-first trip” on a tree and the cost of the following procedures are applied on the graph
G = (V,E), their cost are:

1. SPPP_GRS and SPPP_GRS−1 are both in O(#V ),

2. CP_GRS is in O(#V ),

3. MTCP_GRS is in O(deg(G) × #V ),

Then, the SNP_GRS time complexity is bounded by t1deg(G) × #V + t2 where t1, t2 are
constants. 2

Succorer Algorithm (SUC ) Now we present an encoding and an example of the succorer
algorithm. As we shall see, that is an extended version of the algorithm given in the previous
Chapter to deal with the test of the 2-vertex connectivity. Here, the investigation will continue
in spite of the meet of cut-nodes.

Let G = (V,E) be a graph G = (V,E) and let v0 be a node in VG. We denote by (G,L)

a labeled graph where ∀v ∈ VG, InvStage(v) = N. The node v0 starts the computation: It
builds a spanning tree Inv_T of G rooted at v0 ( SUC1 ). Initially, all the vertices of G
are such that InvStage = A. Since the test scheme is based on the use of a “depth-first trip”
exploration on the tree Inv_T, the root v0 is the only one able to start the trip with the rule
SUC2 . Each node ready to be examined switches its label to “ On_Test ” ( SUC2, SUC4 ).
The examination phase of the node vd consists on the computation of the set of its succorer
sons using the procedure SNP_GRS which we will present in the following. It proceeds as
follows. The node vd labeled “On_Test ” does the required initializations of the SNP_GRS
using the configuration procedure presented shortly below. At the end of this procedure, vd is
labeled Stage(vd) = D and now vd is ready to start the computation of its succorer sons
(SUC3 ). As we shall see in the following, eventually the set of the succorer sons of vd will be
computed. If vd is not a leaf node in Inv_T, it transfers the label “On_Test” to one of its sons.
Eventually some node v finishes the test of all the nodes in its sub-tree ( InvSons(v) = ∅ ).
So it informs its father that the computation is over ( SUC5 ). Now v is avoided from the list
“InvSons“ of its father which then can continue the exploration choosing one of its not yet
tested son. Furthermore, only the root v0 detects the end of the “trip” when all its sons are
over. It means that all the nodes are tested and their succorer sons list are computed. Then, v0
applies the rule SUC6 to affirm the end of the computation of the algorithm.
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Algorithm 21 Succorer computation algorithm (SUC)
• Input: A graph G = (V, E) and a node v0 ∈ V.

• Labels:

– Stage(v), B(v)

– InvStage(v) ∈ {A, KO, KO_ST, N, OK, OK_ST On_Test, Over, Tested}

– InvFather(v), InvSons(v)

• Initialization:

– ∀v ∈ V, InvStage(v) = N,

– ∀ v ∈ V, SUC(v) = ∅

• Result: A resulted labeling function SUC is a succorer labeling of G.

• Rules:

SUC1 : Node v0 starts to build the tree
Inv_T (InvFather, InvSons)

Precondition :

∗ InvStage(v0) = N

Relabeling :

∗ STM_GRS(G, Inv_T;v0; InvStage,N, A;
InvFather; InvSons) /*all the nodes v
satisfy : InvStage(v) = A.*/

SUC2 : Node v0 initializes the test Inv_T (InvFather, InvSons)
/*v0 is the only node such that InvFather(v0) =⊥
3*/

Precondition :

∗ InvStage(v0) = A

∗ InvFather(v0) = ⊥

∗ InvSons(v0) 6= ∅

Relabeling :

∗ InvStage(v0) := On_Test

SUC3 : Node vd is ready to be tested

Precondition :

∗ InvStage(vd) = On_Test

Relabeling :

∗ CP_GRS(G, Inv_T; vd)

∗ Stage(vd) := D

∗ SNP_GRS(G, Inv_T; vd)

∗ InvStage(vd) := Tested

SUC4 : Node vd is tested, its “SUC ” is computed, one of
its son will become the tested node

Precondition :

∗ InvStage(vd) = Tested

∗ u ∈ InvSons(vd)

Relabeling :

∗ InvSon(vd) := InvSon(vd) \ {w}

∗ InvStage(vd) := W

∗ InvStage(w) := On_Test

SUC5 : Node v ends the test of its sub-tree

Precondition :

∗ InvStage(v) = Tested

∗ InvSons(v) = ∅

∗ InvFather(v) 6= ⊥

Relabeling :

∗ InvStage(v) := Over

∗ InvSons(InvFather(v)) :=
InvSons(InvFather(v)) \ {v}

∗ InvStage(InvFather(v)) := Tested

SUC6 : Node v0 detects the end of the succorers computa-
tion

Precondition :

∗ InvStage(v) = Tested

∗ InvSons(v) = ∅

∗ InvFather(v) = ⊥

Relabeling :

∗ InvStage(v) := Over
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7.7 Overall Proofs and Complexities Analysis

In this section, we propose some lemmas and theorems to prove the correctness of the
MOFST algorithm. We start by proving that the labeling SUC computed using the SUC

algorithm succors G. Then, we show that such a labeling is preserved in spite of failures.
Finally, we present a short complexity analysis.

Lemma 7.7.1 The SUC algorithm presented above computes succorer sons for a graph G.

Proof. The aim of this lemma is only to prove that the SUC algorithm computes the succorer
sons of all the nodes of the given connected graph G. The first phase of the algorithm uses
a STM_GRS procedure, so it computes correctly a spanning tree of G. Since the second
phase is based on a “depth-first trip” exploration, it may be easily proved by induction of the
number of nodes in G that all the nodes will be reached by such an exploration. 2

Then, according to Lemma 7.6.1 and Lemma 7.7.1 we claim the following:

Theorem 7.7.2 Let G = (V,E) be a connected graph and SUC be the labeling obtained after the

execution of the SUC algorithm. Then, SUC is a succorer labeling of G.

For the time complexity, the SUC algorithm is based on the application of the SNP_GRS
to all the nodes, except the leaves. That is,

1. The rule SUC1 is applied once. Its cost is due to the application of the spanning tree
procedure to the graph G. So, its cost is in O(deg(G) × #V ).

2. The rule SUC2 is applied once.

3. The configuration procedure and the succorer node procedure are applied for each node in
the investigation tree. Then, the cost of the application of rule SUC3 is due to the
application of such procedures.

4. The rules SUC4, SUC5 and SUC6 are used to implement the “depth-first trip” on the
tree Inv_T = (V,ET ). So, the cost of such exploration is 2#V − 1 rules.

Then,

Lemma 7.7.3 The SUC algorithm requires time bounded by t3deg(G) × #V 2 + t4 time for some

constants t3, t4 when applied to a graph G = (V,E).

Theorem 7.7.4 Let G = (V,E) be a graph associated with a succorer labeling SUC. If the crash of

a node vf disconnects G into P connected components, then the MOFST algorithm maintains a

forest of spanning trees of the resulting components and updates correctly the succorer sons of any non

crashed node.

Proof. We will prove this lemma by induction on the number of failures denoted by f. For
the first case of f = 1, the correction follows the identification of the set of maintainer nodes
corresponding to the crashed node vf using the pre-processing task ( SUC algorithm) and
the correction of the maintenance procedure (see Lemma 6.4.3). We suppose that the algorithm
works correctly for f −1 consecutive failures occur. Now, we will show that ’s also correct for
f failure. To do this it suffices to apply the algorithm on the connected components resulting
of the f − 1 failures. It is similar to the case of f = 1. Thus, the theorem holds. 2

Then,
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Theorem 7.7.5 TheMOFST algorithm requires time complexity bounded by t5deg(G)×#V + t6,

for some constants t5, t6 when applied on a graph G = (V,E).

For the space complexity, each node v is labeled L(v) using the two following components:

1. B(v), Included(v), T erminated(v), Sons(v), F eedbacks(v),

T o_Explore(v), Potential(v), T o_Ignore, T reated(v), InvSons(v), SUC(v).

2. Stage(v), Father(v), InvStage(v), InvFather(v).

Thus, to encode the first component of a label, every node needs to maintain subsets of its
neighbors as descendants, for the set of sons for example. So, every node v needs 11deg(v)×

log deg(v) bits to store this component, where deg(v) is the degree of v. By taking into
account the other variables used in the second component of labels, we can claim that the
space complexity of MOFST algorithm is in O(deg(G) × log deg(G)) bits per node. Then,

Theorem 7.7.6 The MOFST algorithm requires space bounded by t7 + t8deg(G) × log deg(G)

bits per node, for some constants t7, t8. when applied to a graph G.

The following result completes the complexity analysis.

Theorem 7.7.7 Let G = (V,E) be a graph associated with succorer labeling. After any failure, the

MOFST algorithm maintains a forest of spanning trees of the resulting components and updates the

succorer sons in O(deg(G)#V 2) steps and requires space complexity in O(deg(G) × log deg(G))

bits per node.

According to the schema used to construct the set of succorer sons, we claim:

Property 7.7.8 Let G be a graph and let T be a spanning tree of G rooted at r. Let v be any node in
the graph admitting the set of nodes {u1 · · ·ul} as its succorer sons. Then, the maximal trees computed

by r, u1 · · ·ul are disjoint.

As stated in the introduction, the following result makes the brdige between the vertex
connectivity test and the maintenance of a spanning tree.

Corollary 7.7.9 Let G be a connected graph and let T be a spanning tree of G rooted at v0. Then, if
G is a 2-connected graph, only v0 admits one succorer son. The other nodes don’t admit any succorer

son. It means that to test if some graph G is 2-connected, it suffices to check this property.

7.8 Maintenance of a Spanning tree For k-Connected Graphs

To design an efficient algorithm we are interested to minimize the number of succorer sons to
be updated. So, we would like to do the update of the spanning tree and the succorer labeling
of each of the disconnected components in the same phase. Therefore, the application of the
SUC algorithm is either restricted to G as a pre-processing task or does not required.

The main module of the MOFST algorithm is called maintenance-update module. It is
invoked after the detection of some crashed node achieved using the crash detection module. In
this section we present a graph structure of which the protocol presented bellow operates with
optimal requirements.
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7.8.1 Protocol for 2-Connected Graphs and One Failure

We consider a 2-connected graph in the presence of one failure. Our algorithm starts with a
spanning tree of the graph G associated with the network. Such a tree has been obtained as
in the previous section. As we will see, this part may be seen as an occurrence of the Menger’s
theorem as stated in Property 6.3.1.

We consider a graph G with a spanning tree T rooted at v0. When a node vf crashes,
using the crash detection module, the neighbors of v know this crash. In this case when vf is not
the root v0 this information is propagated to v0. Then, v0 is in charge to rebuild a spanning
tree of G \ vf . In the particular case of a crash of v0, a pre-chosen son of v0 called a “succorer
son” will assure this charge. So during the construction a spanning tree T of G, the root v0
chooses locally one of its son as its succorer son. We will use a label Suc to encode such a
relation. In T, there is only one node with Suc is equal to true. In the sequel, the node in
charge of the construction of the new spanning tree will be called the “maintainer node”.

Now, we will first present an overview of our algorithm, referred to as MOST algorithm
in the rest of the paper. Then, we describe the three steps of the algorithm in more detail,
proving their correctness and analyzing their complexities using assumptions related to the
message passing model. Let vf be a crashed node.

1. detection of a crash. Neighbors of the crashed node detect that node vf is crashed.

2. propagation. Father of the crashed node, if it exists, informs the root of the tree that some
node in its sons is crashed.

3. maintenance. Maintainer updates the spanning tree of G \ vf .

The first step is achieved using the crash detection module explained above. Step two can be
very short if it is the root that has crashed: The succorer son of the root becomes the maintainer
node. If vf is not the root of T, the father of vf generates an information to be propagated
along the simple path linking it to v0. Then v0 becomes the maintainer node. Such a task is
done using a simple path propagatormodule (see bellow). The third and last step is more delicate.
It corresponds to the maintenance module detailed in the sequel.

7.8.2 Maintenance of a Spanning tree of k-Connected Graphs and (k − 1)
Failures

Nowwe propose an extension of our protocol to deal with k-connected graphs. Thus, we pro-
pose a protocol to tolerate at most k− 1 consecutive failures. That is, if a graph is k-connected,
the previous algorithm would be applied iteratively to treat each failure occurrence. As pre-
sented above, the algorithm works correctly without any more assumption except the infor-
mation about the succorer son after each failure occurrence: The succorer son of the actual tree
resulting after this crash. So, adding an update of the succorer son of such a tree, the proto-
col may be extended to deal maintain a spanning tree of k-connected graph tolerating k − 1

consecutive failures.

To treat each failure occurrence, our distributed algorithm, referred to as MOST k algo-
rithm, consists on the following phases:

1. detection of the crash. Applying the crash detection module.
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2. propagation. Applying the simple path propagatormodule if the crashed node is not the root.

3. extended maintenance. Maintainer node starts the execution of the maintenance update
phase.

4. cleaning. To deal with the next failure occurrence using the previous three phases, the
used labels require some initialization. For example, all the nodes will set their labels
Stage to A an so on. It is possible using an extended version of the marking module
without adding extra complexity.

The extension proposed concerns the maintenance module. That is, for a graph G, at each
step 4, the EMSTM builds a spanning tree of G deprived of the crashed node. Then the
new root checks if it has a succorer son. If the root is newly defined, it needs to choose one
of its sons to become its succorer son and it deactivates its status as the succorer son. If the
crashed node is a succorer son, then the root chooses, if it’s possible, another son to become
its succorer son. Otherwise, the maintenance module doesn’t update the succorer son. Such a
module is denoted EMSTM for extended version of the MSTM.

Remark. Our algorithm works correctly for complete graphs tolerating any number of fail-
ures, since the graph remains connected.

7.8.3 Implementation

For a 2-connected graph, in the presence of at most one failure the pre-processing is not neces-
sary. Our algorithm works without any more assumption for any node failure except the root.
To take into account the particular case of a root failure, we just need to have an extra infor-
mation: A son of the root has been chosen as its “‘succorer son” to start the algorithm. Such a
computation may be achieved during the computation of a spanning tree. For a k-connected
graph, in the presence of at most k − 1 consecutive failures, adding to the maintenance pro-
cedure, the protocol computes locally the new succorer son in the case of its deletion and in
the case of the root deletion. For the other node failure, the update of the succorer son is not
required.

To validate such optimizations, we give two possible implementation of this protocol in
distributed environment: Using local computations model (GRS) with implicit communica-
tions and using message passing model (MPS) with explicit communications. For a given
k-connected graph G, where M is the number of its edges, N the number of its nodes
and ∆ is its degree: In the presence of at most k − 1 consecutive failures, to deal with each
failure occurrence, our GRS algorithm needs the following requirements: O(∆×N) steps and
O(∆ log ∆) bits per node. Our MPS algorithm needs the following requirements: O(M +N)

messages, O(N) time and O(∆ × log ∆) bits per node.

7.9 Status and Future Works

This work deals with the problem of maintaining a forest of spanning trees of a graph in a
distributed setting using local knowledge. To present easily our contribution, we divided our
protocol on a set of phases achieved using a set of procedures. This part of the thesis has three

4The step denotes a failure occurrence.
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major contributions. First, we present a new formalization of such a problem using the notion
of succorer sons. Then, we propose an encoding of a protocol to deal with the maintenance
of a forest of spanning tree as an incremental computation of a set of succorer sons and the
maintenance of a forest after each failure occurrence. The protocol is encoded in the local
computations model. Given a graph G = (V,E) with degree ∆ and N nodes, our algorithm
requires O(∆×N2) steps and O(∆× log ∆) bits per node. Note, however, that the protocol is
applied concurrently to each of the resulted disconnected component. Moreover, this protocol
does not need a completely identified network.

The last contribution shows an optimal schedules of our protocol when applied to k-
connected graphs. Therefore, a bridge is dressed between our formalization and an occur-
rence of the Menger’s theorem. That is an implementation of its relation with the possible
construction of a spanning tree. To validate the last contribution, we propose an encoding of
the resulted algorithm in both local computations model and asynchronous message passing
model. The algorithm tolerates k−1 consecutive failureswhen applied to a k-connected graph.
It’s based on an incremental application of the maintenance procedure. So at any step, this pro-
cedure is responsible for both maintaining of the spanning tree and for updating the succorer
son. For a given graph G = (V,E), after each failure occurrence, our algorithm maintains
a spanning tree of the resulted graph and computes its corresponding succorer using the fol-
lowing requirements: For the one encoded in the local computations model, it uses O(∆×N)

steps and O(∆× log∆) bits per node. For the one implemented in the asynchronous message
passing system, it takes O(N) time and uses O(M +N) messages and O(∆× log ∆) bits per
node.

Now, we propose some further research to extend our works. To improve our solution,
rather than to recompute the succorer labeling from scratch each time of the failure occur,
it is desirable to include in the maintenance procedure the update of the succorer labeling. To
design an efficient algorithm we are interested to minimize the number of succorer vectors
to be updated. Therefore, the application of the SUC algorithm is restricted to G as a pre-
processing task. Here, we proposed to use graph structure to help us to design an efficient
solution. In the future we hope to find solution for arbitrary graphs in the presence of any
number of failure.

Our approach assumes that each process is equipped with an unreliable local failure de-
tector, with a minimum required properties to solve a consensus problem [CT96, DGFG+04].
Even, such failure detectors guarantee the reach of “stable” periods: During such periods, the
failure detectors are accurate. Thus, our applications work during these periods and such as-
sumption may only make our applications delayed. Another extension is to deal with the case
of unreliable failure detectors without assumptions. Thereafter, protocol to maintain spanning
tree starts before the reach of the stabilization periods. We are interested to design approxima-
tion algorithms to deal with the maintenance problem with errors.



Summary and Further Research

Goals of our work is the study of fault-tolerance in distributed computing based on local
knowledge. Our study uses two general models: graph relabeling systems and message pass-
ing system. For each of the models, we propose formalization to express faults, then the fault-
tolerance are encoded as properties to be satisfied by the algorithms. The investigation pre-
sented here includes the different mechanisms used in the literature: Self-stabilization, failure
detection and local fault-tolerance. Since connectivity is used as a measure of fault-tolerance
degree in networks, we studied the problem of vertex connectivity testing. The proposed pro-
tocol may be used as a pre-processing task for applications running in unreliable networks.
An interface to simulate fault-tolerant distributed algorithms is proposed based on the Visidia
software. Several examples of distributed algorithms are given, implemented in Visidia, to
validate the proposed approaches. Much attention is associated with some specific problems
especially resolving conflicts in the context of self-stabilization, maintenance of spanning tree
in the presence of crash failures.

Self-stabilization is a suitable approach to deal with transient failures in distributed com-
puting systems. A system that is designed to be self-stabilizing automatically recovers from
an arbitrary state, which is a state reached due, for example, to unexpected failures. Such a
property (self-stabilization) is not tied to replications as other well studied fault tolerance tech-
niques and models. We present a formal tool to design and prove self-stabilizing algorithms
in the local computations model. A technique to transform an algorithm to a self-stabilizing
one is discussed. It is based on two phases. The first phase consists of defining the set of ille-
gitimate configurations (GRSIC). The second phase allows to construct some local correction
rules to eliminate the illegitimate configurations. Then the graph relabeling system composed
of the initial graph rewriting system improved with the addition of the correction rules is
a self-stabilizing system (LSGRS). The transformation is done with a minimum changes since
the added correction rules are able to detect and to correct illegitimate configurations and then
transient failures locally. The stabilization time of these algorithms is computed in terms of the
number of steps or applied rules to reach legal configuration. To measure the “real” stabiliza-
tion time, we have studied the problem of resolving conflicts. Thus, we propose one possible
implementation of the needed synchronizations using local election randomized procedures.
That is, the stabilization time is approximated in terms of the required synchronizations.

Unreliable failure detector can be viewed as a distributed oracle that can be asked for in-
formation about crashes. Each process has access to its own local detector module which com-
putes the set of processes currently suspected of having crashed. Unreliable failure detectors
are characterized by the kinds and the number of mistakes they can make. We have presented
a failure detection algorithm for local computations model. The protocol designed has a two-
phase procedure : a test phase where processes are tested locally by their neighbors using a
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heartbeat strategy (note that the interrogation can be also used), followed by a diffusion phase
where test results are exchanged among fault-free processes. Then, the protocol is extended
to deal with balls of radius more than 1. The impossibility to implement reliable failure de-
tection protocol in asynchronous distributed systems may be reduced to the impossibility of
a consensus problem. Hence, there is no way but to use a time based model. Therefore, we
relax the model using a small timing model to implement both an eventually perfect failure
detector ♦P and eventually perfect k-local failure detector ♦P(f,k). The module is integrated
to Visidia in order to design fault-tolerant algorithms whose reliability depends on our failure
detector.

As presented along this thesis, that local computations is a high level model to encode
distributed computing systems. Here we investigate fault-tolerant distributed algorithms in
such a model. Fault tolerance is typically defined according to a particular fault class and a
particular tolerance metric. Thus we deal with crash failures as fault class and locality as our
tolerance metric. We have presented a method to design fault-tolerant algorithms encoded by
local computations. The method consists of specifying a set of illegitimate configurations to
describe the faults that can occur during the computation, then adding local correction rules to
the corresponding algorithmwhich is designed in a safe mode. These specific rules are of high
priority and are performed in order to eliminate the faults that are detected locally. The result-
ing algorithm can be implemented under an asynchronous message passing system which
notifies the faults using failure detection service for example. It is similar to say that our ap-
proach completes the unreliability of failure detection service by the self-stabilization property
of the algorithms. Wemotivate our study by the ability of our designed algorithms to preserve
as much as possible some computations that are far from the regions of the faults. Compared
with methods based on the initialization of the whole computation after each failure occur-
rence, our framework uses locality and the initialization concerns only the balls closed to the
faults

Especially the latter seems to be an interesting combination of the two flavors of fault-
tolerance: Failure detection and self-stabilization which has not been addressed sufficiently in
the literature.

In unreliable networks, the possible executions of algorithms increase and the involved
processes and messages become larger over a period of time. Thus it is useful to design soft-
ware to help the designers of such applications to do tests, measurements and then prototyp-
ing behind the development. We have presented a powerful method to build an homogeneous
interactive visualization of fault-tolerant distributed algorithms based on Visidia software im-
proved by unreliable failure detectors. An interface offers views to select some processes and
change their states to simulate their failures. Then, the executions of self-stabilizing and fault-
tolerant graph relabeling systems implemented on Visidia show the behavior of these kinds
of algorithms. The developed tool helps designers to do some measurements in terms of
messages exchanged, to study the complexity analysis, and to understand the possible execu-
tions of the distributed algorithms. Furthermore, the tested algorithms can be parametrized
through the power of the used failure detection service to achieve an average failure locality
better than those studied in the expected case.

The reachability between processes, or the number of paths linking them, is usually used
as a metric to measure the fault-tolerance degree of the corresponding network. Since most
of the network protocols use graphs to model the network, the metric is in some way the
connectivity of the graph. It is useful to design protocols to deal with the test of connectivity
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of graphs problem. Indeed, such protocols may be used as a pre-processing task and bricks
for algorithms using the connectivity information as input data. Here we deal with the test of
the 2-vertex connectivity of graphs in a distributed setting using local knowledge. We present
a new formalization of such a problem using the notion of succorer sons: Given a spanning
tree of graph G = (V,E), a succorer son of some node v in G is a son which is able to build a
spanning tree of G\v. Thus, we propose a constructive and a general approach to test whether
a given graph is 2-connected. Furthermore, the protocol is encoded in the local computations
model and implemented in the message passing model using a set of procedures. The proofs
and the complexities analysis for the second implementation are deduced from the first one
with simple changes. Thus, a pseudo-bridge is built between the two models. For the k-vertex
connectivity test, to our knowledge there is no distributed algorithm based on local knowledge
to deal with this problem. Intuitively, we can reduce this problem to the case of k = 2 followed
by an incremental test procedure.

In addition to the topological properties of the graph modeling the network, some special
structures can be used for control purpose in distributed systems. In fact, the use of a span-
ning tree structure is useful in communication networks because it guarantees the reachability
of the network and it minimizes the total communication cost. If such structure is already
computed, it is essential to maintain it while crash or disconnection of certain nodes occurs.
Here we deal with the problem of maintaining of a forest of spanning trees of a graph in a dis-
tributed setting using local knowledge. Using the notion of succorer sons introduced above,
we propose a protocol to maintain a forest of spanning trees which is an incremental compu-
tations of a set of succorer sons and the maintenance of a forest after each failure occurrence.
The protocol is encoded and analyzed in the local computations model. Then, we propose an
efficient version of this protocol when applied to k-connected graphs. In this case, our for-
malization may be seen as an occurrence of the Menger’s theorem. The resulted algorithm is
implemented in both local computations model and asynchronous message passing model.
The algorithm tolerates k − 1 consecutive failures when applied to a k-connected graph.

As presented in this thesis, we hope to use simple graph structure to obtain efficient solu-
tions. In fact, our work may be used behind the development of distributed applications in
unreliable networks then efficient solutions are easy to be simulated, tested and prototyped
rather than complicated solutions in spite of their general application. Now, we propose some
further research to extend our works.

Local Computations with Procedures. To give some elegance to the presentation of algo-
rithms presented in our work, we introduce the notion of procedure. Thus, that is opened
to us new research field: The use of a procedures or local computations unit (rewriting unit)
in the local computations framework as brick to build more complicated algorithms. This al-
lows in first to clarify the encoding of protocols handling a considered number of relabeling
rules and labels. What then improve the local computations model without altering its power.
The proof of an algorithm using these units is based on the properties of such units. Its com-
plexities measurements are also derived from those of the procedure and the calls. For the
use of the procedures to encode distributed algorithms: They simplify their design and their
study. But the assumptions about their atomic applications may violate the performances of
the designed applications. So it is useful to propose a general methodology for proving their
“correctness calls” without such assumptions. This is itself a research topic and the present
work is a motivating example.
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Graph Relabeling SystemsWith capabilities. It is essential to introduces a new formaliza-
tion of computations with degradation information using graph relabeling systems. Each
components is associated with a capability to measure and to signify its ability to execute
its corresponding task.

We deal with static and dynamic capacity distributions. In this model, the capability is the
ability of some process to execute (possibly) incorrectly some rule. Indeed, it is a property
about the correctness of the rule application about the states changes. We can consider this
property as a probability to change the states. This is a small generalization of the previous
model. Thus, this model may be we applied to capture and to simulate failures. An interesting
study consists on developing a framework to encode and to prove fault-tolerant distributed
algorithms. It is desirable to apply such a tool as a natural and intuitive model to prove
impossibility results in distributed computing systems.

Fault-tolerance in Mobile Agents Systems. Mobile agents are programs that are dispatched
from a source computer and run among a set of networked computers until they are able to
accomplish their expected task. That is, they can migrate autonomously from a computer to
a computer. In this system model, faults may happen on the computer, it may also happen
during the network communication. Thus, it is important to deal with fault-tolerant mobile
agents. Our purpose is to seek models in which errors can be detected and recovered. Further,
one of the motivation is the multiple distributed applications based on such a model and the
fact that Visidia with mobile agents is now available and also improved by some API to deal
with fault handling.

Security. Because of the open and best-effort of the Internet, the used infrastructures like
telecommunication systems or grid computing have become increasingly vulnerable both to
faults and malicious attacks [PCC97]. This implies that not only fault-tolerance, but also secu-
rity should be a real concern [EK01].

Avoid all the attacks in the Internet is an illusion. It is also impossible to treat and then
to destroy all the vulnerabilities of a system to support the availability and the survivability
of distributed systems. That is, some attacks will succeed and then produce “intrusions”. So
it is necessary to deal with the problem of intrusion tolerance. Indeed, when the intrusion
is in some part of the system it doesn’t affect its security. We would like to apply the same
techniques of fault-tolerance to deal with this problem. The principal differences are: (1) if an
attacker succeeds to enter in one part of the system, the difficulties to enter in other parts is not
similar. Indeed, the vulnerabilities associated with each part are not necessary the same. (2)
It must avoid that a single intrusion in some part of the system informs the attacker about its
confidentiality. When the confidentiality is not required, in the sense that it is not considered
as a critical information, classical techniques of fault-tolerance may be used: Failure detection
and correction and faults masking. Thus, error detection may be based on intrusion detection
techniques or on the comparison between diversified executions. Then, the correction consists
on the restarting of a system from a correct configuration. Errorsmasking consists on the avail-
ability of the necessary copies of the data and the executions to be able to correct any damage
caused by some intrusion. Although, several techniques studied the problem of distributed
intrusion detection which may contribute to intrusion tolerance, it is also the preferred target
of the attackers. It must be tolerate intrusion itself.

Most works in the literature addresses the combined treatment of both fault-tolerance and
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security [MM98]. However, these works do not deal with new issues about a unified treat-
ment of fault-tolerance and security in protocol design. Moreover, the proposed solutions are
devoted to some specific infrastructures and do not scale very well to other systems, either
because they consider global knowledge (in contrast with the use of local knowledge), or be-
cause they do not consider all the possible attacks. Instead the level of fault-tolerance should
be comparable to the strength of the security measures, and should therefore be expressed in
terms of the security properties. However, the byzantine failure model assumes that an ad-
versary has unlimited computing resources and can alter or modify any messages sent by the
processes. Consequently, this would defy any cryptographic security protection, for example.
For these reasons, using approaches to specify the fault-tolerance and security open new chal-
lenges to their formal verification since security tools are usually considered as black boxes
that are offer absolute security. We think that it is useful to seek models to study, to design and
to proof distributed algorithms that must be both fault-tolerant and secure.

Simulation and Experimentation. We intend to continue our effort of development of tools
establishing our methods and our techniques of validation. Thus, the Visidia tool will be
extended to other models, date structures, and techniques to design distributed applications
combining abstraction and analyzes methodologies. We also hope to confront our techniques
and our tools with significant case studies to help the designers of distributed applications.
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