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Preface

The present thesis consists of two parts. The first part, which is going to appear
in the Journal de Théorie des Nombres de Bordeaux, is inspired by the work of
Dvornicich and Zannier [9]. They proved that for a prime p, a number field k,
and a torus T of dimension n over k, if n < max{3,2(p — 1)} then the torus T
enjoys a “local-global divisibility principle”, i.e. if P € T (k) is such that for
almost all places v there exists D, € T (k,) with pD, = P, then there exists
D € T(k) with pD = P.

Dvornicich and Zannier also showed that, when p # 2, the following condi-
tion is sufficient for the local-global divisibility:

for every p-group G in SL,,(Z) the natural map

p: H'(G,Fy) — [[H'(C,Fp)
C

where C' runs through the cyclic subgroups of G, is injective.

In this thesis we prove that for any prime p # 2 and any p-group G of
matrices in SL,, (Z) with n < 3(p — 1) such injectivity automatically holds, thus
extending the result of Dvornicich and Zannier. Furthermore, we prove that our
result is optimal, in the sense that for p # 2 and n > 3(p — 1) one can always
build an example where ¢ is not injective.

The second part is a joint work with Yuri Bilu and is inspired by his work [6].
Let X be a projective curve defined over a number field k and j a non-constant
element of k(X). Further, let K be a finite extension of k, let S be a finite
set of places on K (which includes all the infinite places), and Og the ring
of S-integers of the field K. The celebrated theorem of Siegel states that
if either g(X) > 1 or j has at least 3 poles then the set of S-integral points
X(0g,j) ={P € X(K) | j(P) € Og} is finite. A couple (X,j) which satisfies
these hypotesis is called “Siegelian”.

The proof of Siegel’s theorem does not provide any upper bound on the size
of the S-integral points P of X, i.e. on the height of j(P). Nonetheless, in
some special cases there have been obtained “effective” versions of this theorem,
which provide effective upper bounds in terms of K, S, and (X, j).

Bilu [5, 6] proved effective Siegel’s theorem for some classes of modular
curves, namely for (Xr, j) when I is one of the classical subgroupsT'(N), I'1 (N),
T'o(N), provided the corresponding pair (Xr, j) is Siegelian.

In this thesis we prove effective Siegel’s theorem for (Xr,j) when T is “al-
most every” congruence subgroup. In the prime power level our result is nearly
best possible: our methods cover all but one case, up to equivalence. In the gen-
eral case we prove effective Siegel’s theorem for every Siegelian couple (Xr, j),
provided the level of I does not divide a certain integer.



Prefazione

Questa tesi si divide in due parti. La prima parte, che comparira nel Journal
de Théorie des Nombres de Bordeaux, é ispirata da un lavoro di Dvornicich e
Zannier [9]. Loro hanno provato che per un primo p, un campo di numeri k ed
un toro 7 di dimensione n su k, se n < max{3,2(p — 1)} allora il toro T gode
di un “principio di divisibilita locale-globale”, cioifjse P € T (k) é tale che per
quasi tutti i posti v esiste D, € T (k,) con pD, = P, allora esiste D € T (k) con
pD = P.

Dvornicich e Zannier hanno anche mostrato che, per p # 2, la condizione
seguente é sufficiente per la divisibilita locale-globale:

per ogni p-gruppo G in SL,,(Z) Papplicazione naturale

p: H'(G,Fp) — [[H'(C,Fy)
C

dove C varia tra i sottogruppi ciclici di G, é iniettiva.

In questa tesi dimostriamo che per ogni primo p # 2 ed ogni p-gruppo G
di matrici in SL,(Z) con n < 3(p — 1) tale iniettivita vale automaticamente,
estendendo dunque il risultato di Dvornicich e Zannier. Inoltre, mostriamo che
il nostro risultato é ottimale, nel senso che per p#2 e n > 3(p—1) si pud
sempre costruire un esempio per cui ¢ non sia iniettiva.

La seconda parte é un lavoro scritto con Yuri Bilu ed é ispirato dal suo
lavoro [6]. Sia X una curva proiettiva definita su un campo di numeri k
e sia j un elemento non costante di k(X). Siano inoltre K un’estensione
finita di k, S un insieme finito di posti su K (che includa i posti infiniti)
e Og lanello degli S-interi sul campo K. Il noto teorema di Siegel afferma
che se g(X) > 1, o se j ha almeno 3 poli, allora Iinsieme dei punti S-interi
X(0g,j)={P € X(K) | j(P) € Og} é finito. Una coppia (X,j) che soddisfa
queste ipotesi é detta “Siegeliana’.

La dimostrazione del teorema di Siegel non fornisce alcun controllo sulla
taglia dei punti S-interi P di X, cioé sull’altezza di j(P). Cionondimeno, in
alcuni casi particolari sono state ottenute delle versioni “effettive” del teorema,
che forniscono limiti superiori in termini di K, S e (X, j).

Bilu [5, 6] ha provato un teorema di Siegel effettivo per alcune classi di curve
modulari, ovvero per (Xr, j) doveI" é uno dei sottogruppi classici I'(N), I'1 (N),
I'o(N), posto che la corrispondente coppia (Xr, j) sia Siegeliana.

In questa tesi dimostriamo un teorema di Siegel effettivo per (Xr,j) dove T
é “quasi ogni” sottogruppo di congruenza. Nel livello potenza di primo il nostro
risultato é quasi il migliore possibile: i nostri metodi trattano tutti i casi tranne
uno, salvo equivalenza. Nel caso generale dimostriamo un teorema di Siegel
effettivo per ogni coppia Siegeliana (Xr, j), posto che il livello di T non divida
un certo intero.

ii



Préface

Cette thése se compose de deux parties. La premiére partie, qui paraitra dans
le Journal de Théorie des Nombres de Bordeaux, est inspirée du travail de
Dvornicich et Zannier [9]. 1ls ont montré que pour un nombre premier p, un corps
de nombres k et un tore T de dimension n sur k, sin < max{3,2(p — 1)} alors le
tore T jouit du “principe de divisibilité locale-globale”, c’est & dire si P € T (k)
est tel que pour presque toute place v il existe D, € T (k,) avec pD,, = P, alors
il existe D € T (k) avec pD = P.

Dvornicich et Zannier ont aussi montré que, quand p # 2, la condition sui-
vante est suffisante pour la divisibilité locale-globale:

pour tout p-groupe G dans SL,,(Z) Papplication naturelle

p: H'(G,Fy) — [[H'(C,Fp)
C

ou C se deplace entre le sous-groupes cycliques de GG, est injective.

Dans cette thése nous montrons que pour chaque premier p # 2 et chaque
p-groupe G de matrices dans SL,,(Z) avec n < 3(p — 1) linjectivité est automa-
tique, en étendant aussi le resultat de Dvornicich et Zannier. En plus, nous mon-
trons que notre resultat est optimal, dans le sens que pour p # 2 etn > 3(p — 1)
on peut construire un example oill p n’est pas injective.

La deuxiéme partie est le resulté d’une collaboration avec Yuri Bilu et est
inspirée de son travail [6]. Soit X une courbe projective définie sur un corps
de nombres k et soit j un élément non constant de k(X). De plus, soit K une
extension finie di k, soit S un ensemble fini de places sur K (qui contient tous
les places infinis) et soit Og anneau des S-entiers sur le corps K. Le bien
connu théoréme de Siegel dit que si soit g(X) > 1 soit j a au moins 3 poles
alors 'ensemble des points S-entiers X (Og,j) = {P € X(K) | j(P) € Og} est
fini. Une paire (X, j) qui satisfait ces hypothéses est appelée “Siegelienne”.

La démonstration du théoréme de Siegel ne donne pas des bornes du haut sur
la taille des points S-entiers P de X, c’est & dire sur la hauteur de j(P). Néan-
moins, dans des cas speciaux on a obtenu des versions “effectives” du théoréme,
qui donnent des bornes effectives en termes de K, S et (X, 7).

Bilu [5, 6] a démontré un théoréme de Siegel effectif pour certaines classes de
courbes modulaires, c’est 4 dire pour (Xr,j) quand T est I'un des sous-groupes
classiques T'(N), T'1 (IV), T'g(N), pourvu que la paire correspondante (Xr, j) soit
Siegelienne.

Dans cette thése nous démontrons un théoréme de Siegel effectif pour (Xr, j)
quand T est “presque quelconque” sous-groupe de congruence. Dans le niveau
puissance d’un premier notre resultat est presque le meilleur possible: nos méth-
odes couvrent tous les cas sauf un, a équivalence prés. Dans le cas général nous
démontrons un théoréme de Siegel effectif pour toute paire Siegelienne (X, j),
pourvu que le niveau de I" ne divise pas un certain entier.
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Chapter 1

Introduction

1.1 Algebraic tori

We briefly recall some definitions and notations concerning algebraic tori.

The multiplicative group G,, is an algebraic group whose k-rational points,
for every field k, have the group structure of the multiplicative group of the field
itself, i.e. G, (k) = k*. For every integer n the product G of n copies of the
multiplicative group has a natural embedding in the affine space A"*! as the
variety (1 - ...z, -y = 1) endowed with the group structure of componentwise
multiplication. The group of automorphisms of G}, is isomorphic to the group
of integral matrices GL,(Z): in multiindex notation ¥ = z* - ... zJ", to ev-
ery automorphism ¢ € Aut(G?,) there corresponds a matrix M € GL,,(Z) such
that ¢(z?) = 2M? for every vector v € Z". With abuse of notation, we shall
identify Aut(G},) with GL,(Z). Note that this isomorphism is not canonical,
but corresponds to the choice of a Z-basis for the lattice Z".

An algebraic torus of dimension n is an algebraic group defined over a number
field k, isomorphic to G, over a fixed algebraic closure k of k. The isomorphism
: G — T is defined over some finite field extension K /k, which we can assume
to be normal, with Galois group ¥ = Gal(K/k). Every automorphism o in the
absolute Galois group G = Gal(k/k) of k gives an isomorphism “p: G?, — T;
by composition we obtain an element v)(c) = ¢! 0 7 inAut(G?,). Since every
automorphism of G}, is invariant under Galois action, the map v: Gy, — G, (Z)
is actually a homomorphism. The kernel of 1/ contains Gal(k/K ), and its image
is A = ¢(X). Thus every k-torus 7 defines a homomorphism 1 from G}, onto a
finite subgroup A of Aut(G},) = GL,(Z).

Note that two k-algebraic tori 7 and 7’ whose isomorphisms ¢: G, — 7
and ¢': G, — 7' define the same homomorphisms Gj — GL,(Z) are isomor-
phic over k. Indeed, consider the map & = ¢’ o p~!; for every o € Gy the
equation ¢! 07y’ = ¢! 0 7 implies 7¢ = £. It follows that the isomorphism
&: T — T’ is defined over the base field k.

Note also that the choice of a different model for G, gives rise to a group A’
which is SL,,(Z)-conjugate to A: for any automorphism w of G?,, the isomor-
phism ¢’ = p o w gives ¥'(0) = w11 (o)w for every o € 3.

Conversely, given a normal extension K/k with Galois group ¥ = Gal(K/k)
and a homomorphism 9: ¥ — A < GL,(Z), there exist a k-torus 7 of dimen-



sion n and an isomorphism ¢: G? — 7 defined over K such that ¢=! 0 ¢ = (o)
for every o € 3.

For instance, such a torus can be constructed by defining for every 6 € K
and every v € Z™ the polynomials

Sou(x) = Z o 1)V ),

oc€Gal(K/k)

which satisfy the equation Sy y(»)0 = S5(9),» for any o € 3. Let 61,...,0, be
a basis of K over k and let eq,...,e, be the canonical basis of Z". Then the
polynomyals Sp, ., define a map ¢ of G, in A™, and we may define 7 as
the variety ¢(G,) endowed with the composition law inherited from GI,; by
construction we have ¢ o 1)(c) = ¢ for every o € X, and it can be easily verified
that ¢ is injective and that 7 is actually defined over k.

Consider for instance the affine variety (473 + 2s3 + 3 — 6rst = 4) endowed
with the composition map

s1ty | 1182 t1to
rire + N + 5 0 T152 + 8172 + 5 rita + 8182 + 1172 | .

It is an algebraic torus 7 of dimension 2 defined over Q. Over the normal exten-
sion K = Q(a,w) of Q, where o = v/2 and w = ¢*™/3, we have an isomorphism
¢: G2, — T defined by

2

« o
Serwy+oely ™), Satelytealy ™),

1 o
play) = (5+y+e Yyh),

w

Note that every o € Gal(K/Q) acts on ¢ as a permutation of the variables
x,y,x~'y~1; in particular, the representation of Gal(K/Q) = §3 as a group of

permutation matrices in GL3(Z) contains the representation ¢ of order 2.

1.2 The local-global problem

Let A be a commutative and connected algebraic group, with additive notation
for the composition, defined over a number field k, and let m be a positive
integer. We consider the following local-global divisibility problem.

Problem (m,k, A) Let P € A(k) be such that for almost all' completions k,
of k there exists a point D,, € A(k,) such that mD, = P. Does there exist a
point D € A(k) such that mD = P?

When A is the affine group A", there is a well-defined k-rational map
P %P and the local-global divisibility problem has a trivially positive an-
swer. A strong form of the classical Hasse principle asserts that the local global
divisibility by m = 2 holds on the multiplicative group A = G,,, for any num-
ber field k. Another example where the local-global divisibility problem has a
positive answer is the case when A = £ is an elliptic curve and m = p is a prime.

On the other hand, the problem can have a negative answer already when A
is the multiplicative group G,,, for instance with £ = Q, m = 8, and P = 16.

1By “almost all” we mean “all except possibly a finite number”.



Although the problem could be put with the stronger condition that the
hypothesis hold for all completions k, of k, this set-up allows us to drop the
conditions for any further finite set of places v. Obviously, if the thesis of the
problem hold then its hypothesis hold for all places v.

Dvornicich and Zannier showed in [9] that the local-global divisibility prob-
lem has a positive answer if a certain map of Galois cohomology is injective.
In their subsequent paper [10], they proved that this sufficient condition is also
necessary if one is allowed to enlarge the base field. We shall come back in the
following chapters to these results, explaining them with more detail.

Note that the problem on the triple (m, k, .A) can be studied by investigating
all cases when m is a prime power; the first natural step in this direction is the
case when m = p is a prime.

In [9] Dvornicich and Zannier also studied the special case when m =p is a
prime and A =7 is an algebraic torus of dimension n defined over a number
field k; they gave a positive answer to the local-global divisibility problem on
(p, k, T) under a condition expressed in terms of p and n only, regardless of the
base field k or of the precise structure of 7.

Theorem 1.2.1 Let p be a prime and let 7 be an algebraic torus of dimen-
sion n < max{3,2(p — 1)} defined over a number field k. Let P € T (k); if for
almost all completions k, of k there exists a D, € T (k,) with pD, = P, then
there exists a D € T (k) such that pD = P. O

For p # 2 and with n as above, they reduced the proof of this theorem to a
result on group cohomology.

Proposition 1.2.2 Letp # 2 be a prime, let n < 2(p — 1) be a positive integer,
and let G be a p-group in SL,,(Z). Then the natural map of cohomology groups

HY(G,A) — H'(C, A),
where C runs among all cyclic subgroups of G and A = Z/(p)™, is injective. O]

Dvornicich and Zannier suggested that this proposition could hold with less
restraints on n, so to give more precise answers to the following problem of
local-global divisibility on algebraic tori.

Problem (p,n) Let p be a prime and n be a positive integer. Under which
conditions on p and n does the local-global divisibility by p hold on every alge-
braic torus 7 of dimension n defined over a number field k?

Note that the problem does not involve any condition on the number field k.
It simply asks whenever, for fixed p and n, there exists or not an algebraic point
on some algebraic torus that provides a counterexample for the local-global
divisibility by p.

As Dvornicich and Zannier pointed out in [10], this problem is not trivial,
i.e. some condition on the dimension of the torus is actually necessary.

Theorem 1.2.3 Let p be a prime and let n > p* — p? + 1 be an integer. There
exist an algebraic torus T of dimension n defined over a number field k and
a point P € T (k) such that for almost all completions k, of k there exists a
D, € T(k,) with pD, = P, yet there exist no D € T (k) with pD = P. O



The results of Theorems 1.2.1 and 1.2.3 provide a partial answer to the above
problem: the local-global divisibility by a prime p holds on every torus whose
dimension is ‘small enough’, namely n < max{3,2(p — 1)}, but fails for at least
one torus of ‘higher’ dimension, i.e. n = p* —p? + 1. Nonetheless, for a torus
of ‘intermediate’ dimension, these theorems do not provide any information for
the local-global divisibility by p, leaving a gap of uncertainty on n.

1.3 Main results

In this part of the thesis we completely answer the question on (p,n) of local-
global divisibility on algebraic tori when p # 2, namely we determine the precise
bound: for any odd prime p, every algebraic torus which does not enjoy the local-
global divisibility by p over some number field has dimension n > 3(p — 1), and
the equality is attained in at least one case.

Theorem 1.3.1 Let p # 2 be a prime and let 7 be an algebraic torus of dimen-
sion n < 3(p — 1) defined over a number field k. Let P € T (k); if for almost all
completions k,, of k there exists a D, € T (k,) with pD,, = P, then there exists
a D € T (k) such that pD = P.

Theorem 1.3.2 Let p # 2 be a prime and let n > 3(p — 1) be an integer. There
exist an algebraic torus T of dimension n defined over a number field k and a
point P € T (k) such that the equation pD = P has a solution D, € T (k,) for
almost all completions k, of k, but no solution D € T (k).

More precisely, exploiting some results of Dvornicich and Zannier from [9]
and [10], we find more precise conditions under which the thesis of Proposi-
tion 1.2.2 holds. We determine a weaker condition on the positive integer n in
terms of the odd prime p.

Theorem 1.3.3 Let p # 2 be a prime and let n < 3(p — 1) be a positive integer.
For every finite p-group G in SL,,(Z) the map H'(G, A) — [[ H*(C, A), where
A =T and the product is taken over all cyclic subgroups C' of G, is injective.

We also show that our condition on 7 is ‘best possible’.

Theorem 1.3.4 Let p # 2 be a prime and n > 3(p — 1) be an integer. There
exists a finite p-group G in SL,,(Z) such that the map H'(G, A) — [[ H'(C, A),
where A = ) and the product is taken over all cyclic subgroups C' of G, is not
injective.

In Chapter 2 we repeat some of the arguments of [9], showing that Theo-
rem 1.3.1 follows from Theorem 1.3.3, which we subsequently prove using some
results from the geometry of numbers and from the theory of linear representa-
tions.

In Chapter 3 we briefly resume some results from [9] and [10], showing that
Theorem 1.3.2 is inferred by Theorem 1.3.4; we prove the latter by constructing
a counterexample in the case n = 3(p — 1), obtaining the general case by means
of a direct sum with the trivial representation of dimension n — 3(p — 1).

Throughout this thesis we shall denote by I the identity matrix and by O
the null matrix, whenever their orders are known.



Chapter 2
Local-global divisibility

In this chapter we prove Theorem 1.3.1. We first show how to reduce it to
Theorem 1.3.3, then we prove the latter. Although the first step is described
in full detail in [9], for the sake of completeness we shall briefly resume the
arguments and prove the results that are applied in both this and the following
chapter.

2.1 Group cohomology and divisibility

Since the arguments we shall describe involve some (first level) group cohomol-
ogy, we begin by recalling some definitions for the reader’s convenience.

Let A be an abelian group and let G be a group acting on A; for any g € G
and any a € A we denote the image of a under the action of g by g-a = g(a). A
cocycle (for the pair (G, A)) isamap f: G — A that satisfies the cocycle relation
f(gh) = f(g)+g- f(h) for any g,h € G, and a coborder is a map f: G — A
such that there exists some a € A with f(g) =¢-a— a for any g € G. Every
coborder satisfies the cocycle relation and actually the (additive) group B(G, A)
of all coborders is a subgroup of the group Z!(G, A) of all cocycles, and their
quotient H(G, A) = ZY(G, A)/Z*(G, A) is the (first) cohomology group of the
pair (G, A).

Keeping our notations consistent with [9], we say that a cocycle f satis-
fies the local conditions if for every g € G there exists an a, € A such that
f(g) =g-ay — ag; we also denote by H (G, A) the image of all such cocycles
in H'(G, A). Note that H]. (G, A) is the kernel of the natural map

loc
HY(G,A) — [[H'(C. A),

defined as the product of the restriction maps H'(G, A) — H'(C, A), where C
runs among all cyclic subgroups C of G; in other words, H} (G, A) is the
intersection of the kernels of all such maps.

Now, let us come back to the local-global divisibility problem in its general-
ity: let m be an integer, let k£ be a number field, and let 4 be a commutative
and connected algebraic group defined over k, with additive notation for the
composition. We consider the (finite) set A = A[m] of all m-torsion points in A
and the field K = k(A), generated over k by all points in A. Note that K/k is
a normal extension; we denote by ¥ = Gal(K/k) its Galois group.



Proposition 2.1.1 With the above notation, to every point P € A(k) there
corresponds an element cp € H*(X, A) with the properties:

i) P satisfies the assumptions of the local-global divisibility problem (m, k, A)
if and only if cp € H (2, A);

ii) P satisfies the conclusion of the local-global divisibility problem (m, k, A)
if and only if cp = 0.

This proposition implies that the condition H,..(X, A) =0 ensures a positive
solution to the local global divisibility problem (m,k,.A). More precisely it
can be shown that, when m = p°¢ is a prime power, a sufficient condition is
H} . (%,,A) =0, where ¥, is the p-Sylow subgroup of X.

On the contrary, the condition H (X, A) # 0 does not necessarily ensure
the existence of a k-rational point P with c¢p # 0, i.e. the existence of a coun-
terexample to the local-global divisibility by m on A over k. In Chapter 3 we
shall see how the condition H (¥, A) # 0 can be exploited in order to obtain
some counterexample to the local-global divisibility.

We present a proof of the above proposition, referring the reader to [9] for
further details.

Proof of Proposition 2.1.1 — Let D € A(k) be any solution to mD = P and let
L = K(D) be the field generated by D over K; it is a finite normal extension
of k, with Galois group X = Gal(L/k).

Note that any other solution D’ € A(k) to mD’ = P differs from D by an
m-torsion point, i.e. D' — D € A. In particular, all solutions D’ lie in A(L).
Moreover, since P is a k-rational point, for every o € ¥, we mo(D) = P, which
implies that o(D) — D € A.

We define a map Z from X, to A as

Z, =o(D) - D;

it is immediately verified that Z is a (X1, A)-cocycle: for every o,7 € ¥ we
have
Zor =01(D) —0(D)+0(D)—D =0(Z;)+ Z,.

Note that by choosing in place of D any other solution D' = D + E to
mD’ = P, where E € A, we would have defined a different map Z! = o(D’) — D'.
Nonetheless, in this case we would have

7 —Z,=0(D' —D)— (D' — D) =0o(E) - E,
where o(F) — FE is a (X1, A)-coborder. This implies that the residue class
cp =[Z] in H'(0, A) depends only on P, and that the map P — cp is well-
defined. Actually, every cocycle in the class [Z] is obtained from some solu-
tion D’ to mD’' = P.

Since all points in A are K-rational, the action on A of the absolute Galois
group G}, = Gal(k/k) of k factors through ¥.. This implies that for any (G, A)-
cocycle f and any two automorphisms o, 7 € G, which extend the same element
of ¥, we have f(c) = f(7); in particular, we can identify the groups H' (X, A)
and H'(X, A).

We remark that, by definition of cp, we have cp = 0 if and only if there
exists some D’ € A(L) which satisfies mD’ = P and which is invariant under



the Galois action of X7, i.e. a k-rational solution D’ in A to mD’ = P. This
proves the second part of the proposition.

Let now v be any place on k which does not ramify in L; we can embed L
in a finite extension L., of k,, where w is a place of L lying above v. The
group C,, = Gal(L,,/k,) is cyclic, generated by a Frobenius automorphism of v
relative to the field extension L/k, and it is a subgroup of X;. By the same
arguments as above, the existence of a k,-rational point D, on A such that
mD, = P is equivalent to the vanishing of the restriction of cp to H(C,, A).

By Cebotarev theorem, as v runs among almost all unramified places v of k,
the group Gal(L,,/k,) varies among all cyclic subgroups of Xj. This implies
that P satisfies the hypotesis of the local-global divisibility problem if and only
if for every cyclic subgroup C of ¥, the restriction of cp to H'(C, A) vanishes,
i.e. if and only if cp € H. (X1, A). As we have seen, this happens precisely
when cp belongs to H (G, A). O

When restricting ourselves to the special case when m = p # 2 is a prime
and A = 7 is an algebraic torus of dimension n, we can exploit the isomorphism
¢: Gy, — T, which induces a group isomorphism 7 [p| = G}, [p] = F}. More
precisely, we shall read the action of the absolute Galois group G = Gal(k/k)
of k on T [p] as an action on Fy. We recall that the map ¢(¢) = ¢! o “¢ defines
a homomorphism from G}, to a subgroup G of SL,(Z) = Aut(G},). Letting
X: G — F,, be the character defined by °(¢ = ¢X(@) | where ¢ is any primitive
p-th root of 1, the action of any o € G on 7 [p] corresponds to the action on F};

v = x(o)y(o)v.
Let now &: G — GL,(F,) be the homomorphism defined by

o x(o)y(o) (mod p);

the kernel of ¢ has fixed field K = k(7 [p]). We denote by A = £(G},) its image.

By Proposition 2.1.1 and the following remarks, the local-global divisibility
by p on T holds if Hy, (A, F)) =0, where A, is the p-Sylow subgroup of A,
i.e. it is a p-group in GL, (F,). We can actually obtain a stronger result.

Let us consider the normal extension k() of k, where ( is a primitive p-th
root of 1, and its absolute Galois group Gy ). Restricting to G) we obtain
a normal subgroup G’ = ¥(Gy(¢)) of G and a normal subgroup A" = &(Gc))
of A. Moreover, the restriction of x to Gy¢) is identically 1, so that G’ and A’
are isomorphic,! and so are their p-Sylow subgroups. Since [k(() : k] is coprime
with p, then so are [G : G'] and [A : A']; in particular, the p-Sylow subgroups G,
of G and A, of A are isomorphic. This implies that the local-global divisibility
by p on 7 is ensured by the vanishing of Hy, (G, Fy), where G, is some p-group
in SL,,(Z).

This result allows us to obtain some information for the local-global divisi-
bility problem on (p, k,7") by considering any possible candidate for Gy.

Proposition 2.1.2 Let p # 2 be a prime and let n be a positive integer. If
H} (G, F) = 0 for every p-group Gy, in SLy,(Z), then the local-global divisi-
bility by p holds on every algebraic torus T of dimension n.

1Under the condition p # 2: for p =2 the projection A’ — G’ modulo p could have a
non-trivial kernel.
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Conversely, the existence of a p-group G, in SL,(Z) with Hy (G,,Fy) #0
allows us to construct a torus 7, as we have seen in Chapter 1, such that
HL (3, A) #0. As we have said, this does not necessarily imply the existence
of a k-rational point P in 7 which contradicts the local-global divisibility by p.
Nonetheless, in Chapter 3 we shall use this torus to obtain a counterexample.

Dvornicich and Zannier proved the above proposition in [9] in order to infer
Theorem 1.2.1 from Proposition 1.2.2. We use it to reduce Theorem 1.3.1 to
Theorem 1.3.3.

2.2 Proof of Theorem 1.3.3

In this section we prove Theorem 1.3.3. We can drop every notation on fields
and tori, for we shall exclusively work with p-groups of matrices acting on vector
spaces.

Since the groups of matrices involved by Proposition 2.1.2 are defined over Z,
and not only modulo p, we have more restraints on their structure. We begin
with the following result, which is slightly more general than needed.

Lemma 2.2.1 Let p be a prime and let G be a p-group of matrices in SL,,(Q).
Ifn < p(p—1) then G is isomorphic to (Z/pZ)®, for some b < n/(p —1).

Proof — Note that any non-trivial element g of G is a matrix of multiplicative
order p™, for some positive integer m. This implies that at least one of the
eigenvalues of g is a p”*-th primitive root of unity; recalling that g is defined
over Q, we obtain that also any other p™-th primitive root of unity must be
an eigenvalue of g. Then the number of eigenvalues of g, bounded by its order
n < p(p—1), is at least ¢ (p™) = p™(p — 1). It follows that m = 1, i.e. that g
has order p. Thus G has exponent p.

Let now K be (Z/pZ)*; we say that two elements, g and h, of G are K-
conjugate if there exists a k € K such that ¢g* and h are conjugate by an element
of G. By the theory of characters for finite representations (see [14, Section
12.3]), the number of representations of G which are irreducible over Q is equal
to the number of K-conjugacy classes of G. It is also well-known that the number
of C-irreducible representations of G is equal to the number of conjugacy classes
of GG, and that these representations can all be realized over the p-th cyclotomic
field Q(¢p).

We first enumerate the number of K-conjugacy classes of G, with respect to
the number of its conjugacy classes. Assume that a non-trivial element g of G is
conjugate to g*, for some k € K. This means that there exists an element h in G
such that conjugation by h maps g to ¢g*. In this case conjugation by h” maps g
to g*° = ¢¥, since g has order p; on the other hand h” is the neuter element,
thus ¢g* = ¢g. This shows that any two distinct powers of a same element are not
conjugate, and that every K-conjugacy class of G (apart from the class of the
identity element) is the union of p — 1 distinct conjugacy classes of G. In other
words, every Q-irreducible representation of G is equivalent to the direct sum
of the distinct conjugates of some C-irreducible representation of G.

Now, if the group G was non-commutative, its faithful representation G
would contain an irreducible representation of degree d > 1, with d dividing the
order of GG, i.e. with d > p. If this was the case, then G would also contain
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a Q-irreducible representation of degree (p — 1)d > (p — 1)p > n, which is not
possible. This implies that G is an abelian group.

By the classification of abelian groups, we obtain that G is isomorphic to the
direct product of b copies of Z/pZ, for some integer b. Note that any faithful
representation of G over C has order at least b, and that any faithful represen-
tation of G over Q has order at least b(p — 1). Then b < n/(p — 1). O

For the rest of this chapter, we shall assume the hypotesis of Theorem 1.3.3.
Thus p # 2 will be a prime number, n < 3(p — 1) will be an integer, and G will
be a p-group of integer matrices in SL,,(Z).

We remark that, when G is a cyclic group, the theorem is trivially true.
Applying Lemma 2.2.1, we obtain that the group G is cyclic (and the theorem
is proved), unless 2(p — 1) < n < 3(p—1) and G X Z/pZ x Z/pZ. Let us put
ourselves in this case.

Note that the proof of Lemma 2.2.1 shows that the representation G is
the direct sum of two distinct Q-irreducible representations of order p — 1 and
(n —2(p—1)) copies of the trivial representation.

We remark that, extending constants to the p-th cyclotomic field Q(¢,) and
after a base-change, the representation G could be written in diagonal form, as a
direct sum of its irreducible subrepresentations. Also, extending constants to Q
and after a base-change, the representation G could be written as a direct sum
of its Q-irreducible subrepresentations. Since we are dealing with the action
of G on F}}, though, we shall restrict to base-changes to Z, which are preserved
under reduction modulo p.

Consider the lattice N = Z". It contains a sublattice M = N¢ which is fixed
by G: it is the intersection of N with the subspace (Q")¢ of vectors which are
invariant by G. We fix a Z-basis for M and we apply a result on lattices (see [7,
Cor. 3 to Thm. 1, Ch. 1]) to extend it to a basis of N: in this way we split the
lattice as N =M & L. Now, let p be one of the two non-trivial, Q-irreducible
subrepresentations of G, and let H be its kernel. Repeating the above argument
on the restriction of H to L and on the sublattice L, we determine a basis for Z"
that allows us to write N in the form N @ N®) @ N©®). Using this new basis,
we can assume that every element g of G is of the form

I A, B,
g=10 M, C4|,
O O N,

where g — M, and g — N, are the two Q-irreducible representations of G of
order p — 1. In particular, we can choose generators o and 7 for G of the forms

I A, Bs I A, B;
c=10 M C,]|; =10 I C;]|. (2.1)
O 0 I O O N

Note that the eigenvalues of M are the p — 1 distinct p-th roots of unity.
This implies that the minimal polynomial of M is (2P — 1)/(x — 1) and that the
determinant of M — I is p.

Over F,, the matrix M solves the polynomial (z — 1)?~1, and its minimal
polynomial is thus of the form (z —1)%, for some s < p. This implies that
(M —I)® has all entries in pZ, so that p divides every column of (M — I)*.
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Then pP~! divides its determinant, det(M — I)* = p*, which implies s > p — 1.
It follows that, over F,,, the minimal polynomial of M is (z — 1)?~! and that
the Jordan form of M is a Jordan block. In particular we deduce the following
proposition.

Proposition 2.2.2 Let M be as above. For every two non-negative integers i
and j with i +j = p — 1, the image of (M — I) is the kernel of (M — I), i.e.
for every vector A in ZP~!

(M —I1PA=0 (modp) <= IBcZ\ ' |A=(M—1I)'B (mod p)
and
A M -1 =0 (mod p) +—= IBcZP ' | A' = B* (M —I)" (mod p).
The same holds using N in place of M. O

Note that this proposition trivially applies also to integer matrices m x (p — 1),
for every positive integer m.
We can now prove our theorem.

Proof of Theorem 1.8.3 — As in the above discussion, by Lemma 2.2.1 we can
assume 2(p— 1) <n<3(p—1) and G =2Z/(p) x Z/(p). Let also o and 7 be
generators for G as in (2.1). A direct computation of o7 = 7o gives

I A, *
ctr=10 M C,+C;
O O N

and the relations
A, =0, (M -1)C; =—C,(N —1), B,=A,(M-1)"'C,. (2.2)

Let now Z be a (G,Fy)-cocycle that satisfies the local conditions, i.e. for
every g in G there exists a W, in [} such that Z, = gW, — W,. We choose
representants W, of W, in Z" and we define Z, = gW, — W, for every g in G.
Note that Z, = Z, (mod p) for every g in G.

Modulo a coboundary, we can assume Z, = O (mod p). By the cocycle
relation, this implies Z,, = Z, + 0Z; = Z, (mod p). By definition, Z, and Z,,
are of the form:

A% AW 4+ B,w

7z = - w1 o,w®

7% 0

7 *

722 | = | M =W + (Co+ Cwi? |
zs; (N = Ws?

where W2, W, w2, and W2 all lie in ZP.
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Since 2% = z{¥ (mod p), we obtain (N — I) B =0 (mod p); by Propo-
sition 2.2.2 this implies WY = (N —I)’»"2R (mod p), for some R with entries
in F,. It follows that, modulo p, the vector (M — I)P~2Z (T) is of the form

(M — DP*W® (M - 1)P~2(C, + C,)(N — I)P72R.

We apply the second relation from (2.2) and the fact that both M and N
solve (x — 1)?~! modulo p, obtaining (M — I)p_QZ,(,QT) = O (mod p). Applying
Proposition 2.2.2 to Z5” we obtain Z%%) = (M —~I)§ (mod p), for some S with
entries in F,. Let S be any representant of S over Z; since the entries of
Zs 2 — (M —I)S are all divisible by p and since (M — I) has determinant p, we
may assume that S satisfies Z%°) = (M —1)S. Thus

ZW = A, (M -1)"1Z? = 4,8.

In particular, we have

0 A, B,\ (O zM O 0 B 0
O M—1 C,||sS]|=1z%], [0 o o, =|o
o o o0)\o 7 O O N-1I o)

This implies that Z, = oV —V and Z, =7V —V (mod p), with V = (

OO'JO

and, since up to a coboundary Z vanishes on the generators o and 7 of G,
that Z itself is a (G, [} )-coboundary.

By the arbitrarity of the choice of Z, this proves that on the pair (G,Fp) any
cocycle which satisfies the local condltlons is a coborder, i.e. that HI{)C(G, Fy
is trivial, concluding the proof of Theorem 1.3.3.

o
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Chapter 3

A counterexample

In this chapter we prove Theorem 1.3.2. We show how to apply the arguments
of Dvornicich and Zannier from [9] (mainly appearing in the previous chapter)
and [10] in order to reduce it to Theorem 1.3.4, then we construct an explicit
example for the latter, in the case n = 3(p — 1); we recall that the general case
can be obtained by means of a direct sum with the trivial representation of
dimension n — 3(p — 1).

Once again, for the sake of completeness we shall reproduce here some ar-
guments from the above articles, referring the reader to them for more precise
statements and more complete proofs.

We shall also refer to the previous chapter for some results and notations.

3.1 Construction

We recall that in Proposition 2.1.1 we considered an integer m and a commu-
tative and connected algebraic group A defined over a number field k, express-
ing a sufficient condition for the local-global divisibility by m on A over k as
H (2, A4) =0, where A = Alm], K = k(A), and ¥ = Gal(K/k).

As we have anticipated in the previous chapter, the condition H!(X, A) # 0
does not necessarily ensure the existence of a counterexample to the local-global
divisibility by p on A over k, i.e. of a k-rational point P on .4 such that the
equation mD = P has a k,-rational solution in A for almost all completions k,
of k, but not k-rational solutions.

As Dvornicich and Zannier pointed out in [9], this could be the case under
other conditions, for instance if H!(X, A(K)) = 0: in this case let Z be a (%, A)-
cocycle which is not a (X, A)-coborder but satisfies the local conditions; then we
have Z € Z1(3, A(K)) = B1(Z, A(K)), i.e. there exists some D € A(K) such
that Z, = o(D) — D for every o € ¥; as Z has values in A, for every o € 3 we
have o(mD) = mD, which implies that P = mD is a k-rational point and that
it provides us the counterexample we seek.

Another case when we can exploit the non-vanishing of H!(X, A) is if we
are allowed to enlarge the base field k. More precisely, Dvornicich and Zannier
proved in [10] that under this condition we can find a finite extension L of k such
that the local-global divisibility problem on (m, L, A) has a negative answer.
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Theorem 3.1.1 With the above notation, if H*(X, A) # 0 then there exist a
number field L such that L N K = k and a point P € A(L) such that for almost
all places w of L there exists an L.,-rational solution D,, on A to mD,, = P,
but there exist no L-rational solution D on A to mD = P.

It goes beyond the scopes of this thesis to give a complete proof of this
theorem. We shall nevertheless show how it can be deduced from the following
result, which Dvornicich and Zannier proved by applying Hilbert’s irreducibility
theorem to a previous result of Lang and Tate.

Proposition 3.1.2 Let Z be a (X, A)-cocycle which satisfies the local condi-
tions. There exists infinitely many finite extensions L of k with L N K = k such
that Z vanishes in H' (%, A(LK)). Moreover, one can choose infinitely many L
such that the extension LK /L is unramified. O

Proof of Theorem 3.1.1 — Let L be a field as in the proposition. Then we can
identify ¥’ = Gal(K'L/L) with ¥ = Gal(K/k). Let v be any place in k which
does not ramify in K; then it does not ramify in L nor in K L. Denoting by w
a place in KL over v and the intermediate places in K and in L, we can also
identify the local Galois groups Gal((KL).,/L,) and Gal(K/w).

We have now H (¥, A) # 0, but this time Z vanishes in H' (X', A(LK)).
As in the above discussion, we conclude the existence of an L-rational point P

on A as required. O

Now, assume that Theorem 1.3.4 holds for some prime p # 2 and some pos-
itive integer n. As we have recalled in Chapter 1, for any normal field extension
K /k and any surjective homomorphism ¢: Gal(K/k) — ¥ we can construct an
algebraic torus 7 of dimension n, defined over k. By the arguments in Chap-
ter 2, this allows us to read the condition Hy,.(G,Fy) # 0 as Hy,. (X, A) # 0.
Possibly enlarging the base field k, we obtain a counterexample to the local-
global divisibility problem (p,%,7). This proves Theorem 1.3.2. (Note that
in the theorem we are not interested in the number field k, but only in the
dimension n of 7, with respect to p.)

3.2 Proof of Theorem 1.3.4

In this section we prove Theorem 1.3.4, completing the proof of Theorem 1.3.2.
Thus, let p # 2 be a prime and let n > 3(p — 1) be an integer. We will construct
a p-group G of matrices in SL,(Z) and a (G,Fy)-cocycle Z that satisfies the
local conditions without being a coboundary.

We recall that any example in the case n = 3(p — 1) can be extended to the
general case by means of a direct sum with a trivial representation of dimension
n—3(p—1). We can thus assume n = 3(p — 1).

Let M € SL,_1(Z) be any matrix with minimal polynomial (2 — 1)/(z — 1),
for instance, the Frobenius matrix of this polynomial. Note that M satisfies
Proposition 2.2.2. Let now u and v be vectors in Z”~! such that

uz O (mod p), vZ0O (mod p);
(M-—TIu=0 (mod p), vi(M —I) =0 (mod p).
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We define the matrix X := %u x vt with entries in Q. Note that it is not an in-
teger matrix. We also define the matrices A := (M — I)X and B := X(I — M),
with entries in Z.

Let G be the group generated by the matrices ¢ and 7 defined as

M O A I O B
o= M A, T = M A+ B]|;
I M

it is easily verified that G is a subgroup of SL,,(Z) and that the map

o M? 0] MX — X M7
(i,5) w o'1m'= Mi+i MiHIX — XM
MI

provides an isomorphism G = Z/pZ x Z/pZ.

Lemma 3.2.1 There exist vectorsr, s and t in ZP~! such that:

Bt=(M—-Ir#0 (mod p),
(M —I)Bt=0 (mod p),
(A+B)t= (M —I)s (mod p).

Proof — Assume B(M — I)?=2 # O (mod p). By Proposition 2.2.2 there exists
an integer matrix Xy with B = Xo(M — I) (mod p); since (M — I) has deter-
minant p, this implies that X = B(M — I)~! is an integer matrix. As X is
not an integer matrix, this shows B(M — I)?~2 # O (mod p). In particular,
there exists a vector to in ZP~! such that B(M — I)?=2tg # O (mod p). Let
t = (M — I)P~2tq, so that Bt # O (mod p).

By definition of A and B we have (M — I)B = —A(M — I). Together with
(M —I)»=1 =0 (mod p), this implies (M — I[)B(M — I)?~? = O (mod p) and
(M —1)P72A(M —I) = O (mod p). Tt follows that (M — I)Bt = O (mod p)
and (M — I)?72(A+ B)t = O (mod p); we conclude by Proposition 2.2.2. [J

Proposition 3.2.2 The vectors Z5') = O and 2" = Bt define a (G, F7)-cocycle
@
Z = (Zg ) (mod p) that is not a (G, F}})-coboundary.

Proof — To show that Z is a cocycle we only need to verify, on Z(1), the cocycle
conditions derived from the relations ¢? = I, 7? = I and o7 = 70:

723 -2V =t M+ Dz =0 (mod p);
70 -z =pz0 =0 (mod p);
zW - z0 =M -1)2M =0 (mod p).

If Z was a coboundary, then there would exist a vector W in Z™ such that
Zg=(g—I)W (mod p) for every ¢g in G; computing Z, and Z., we would
obtain

Z,(;2) = (M _ I)W(2) 4 AW®) (mod p)7
zM = Bw®) (mod p),
Z? = (M- DHW® + AW + Bw®) (mod p),

17



which is absurd, since 2 = 2 = 0 (mod p) and z4 # O (mod p). O

We can now prove our theorem.

Proof of Theorem 1.3.4 — Let G and Z be as above. Then [Z] is a non-
trivial element of H'(G,Fy). We can prove Hy, (G, F;) # 0 by showing that [Z]
belongs to H (G, ), i.e. that for every g in G there exists a W, in F) such
that Z, = (g — I)W, (mod p).

Over 7 we have

o) o 0 B 0) zM
(r—-I|-s|=|0 M-I A+B -s|l=1 0 (mod p)
t 0] O M-—1 t 0

For every i € I, we have ZSZ_ =iz 1 7V =Bt (mod p); then

_ ir M-I % <\ [ir z0,
(o' =1)1O| = 0 * % Ool=1| o (mod p)
0 0 O «/ \O @)

Since 7 and the o7! with i € F,, are the generators of all non-trivial cyclic

subgroups of G, this shows that Z satisfies the local conditions. This completes

the proof. O
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Part 11

Effective Diophantine
Analysis on Modular Curves



Chapter 4

Introduction

4.1 Modular curves

We briefly recall a few definitions and notations concerning congruence sub-
groups and modular curves. For all missing details one may consult, for in-
stance, [16].

Every matrix M = (%) € SLy(Z) acts on the projective space P'(C) as
M(z) = %ig. The two matrices + M have the same action, so that, actually, the
action is given by matrices in PSLy(Z). We have the stable sets QU{occ} C P!(R)
and H={z=xz+vyi|y>0}.

Every finite index subgroup T" of SLy(Z) acts on

H=HUQU {oo};

the quotient set I'\'H, supplied with the properly defined topology and analytic
structure, give a Riemann surface Xp; by the Riemann existence theorem, Xp
is a complex algebraic curve, known as modular curve. We shall usually assume
that I' contains the matrix —I; this will enable us to consider it as the pull-back

There are some algebraic invariants of I' (or Xr), i.e. invariants by conjuga-
tion in PSLy(Z). Let us see them.

e The genus g of the modular curve Xp.

e The index p = [PSLy(Z): T.

e The number of cusps, Voo = |T'\(Q U {oo})|.

e The numbers v, of 2-elliptic points and v3 of 3-elliptic points.

A non-cuspidal point P € Xt is called elliptic if for some 2 € H represent-
ing P (or, equivalently, for any such z) the stabilizer ', (which is always finite)
is non-trivial. It is known that every non-trivial finite subgroup of PSLy(Z) is

cyclic of order 2 or 3. Hence the stabilizer can only be a cyclic group of order 2
or 3, which gives rise to 2-elliptic points or 3-elliptic points, respectively.
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Remark 1 A non-trivial finite order element of PSLo(Z) is called elliptic; thus,
we have 2-elliptic and 3-elliptic elements. All the 2-elliptic elements are PSLy(Z)-
conjugate; for the 3-elliptic elements, there are 2 conjugacy classes; if M is
3-elliptic, then, one class is that of M and the other that of M?.

An element of SLy(7Z) is 2- (respectively, 3-) elliptic if its image in PSLy(7Z)
is 2- (respectively, 3-) elliptic. The 2-elliptic elements of SLy(Z) are of order 4
and trace 0. The 3-elliptic elements of SL2(Z) are of order 3 or 6 and trace —1
or 1, respectively.

The invariants defined above are connected by the celebrated Hurwitz for-
mula:

The classical j-invariant function, defined on H by the familiar relation
§(z) = ¢~ + 744 4+ 196844 + . . .,

where ¢ = €2™%* is SLy(Z)-automorphic; hence it is I-automorphic for any
I' <SLy(Z). It follows that j defines a function on Xp, which can be shown to
be meromorphic, with poles exactly at the cusps. We have j(P)=0if P is a
2-elliptic point, and j(P) = 1728 if P is a 3-elliptic point.

The field C(j) is a subfield of C(Xr) of index p = u(I"). In other words, j
defines a covering Xt — P! of degree u. This covering is unramified over
P!\ {0,1728, c}.

So far we defined the modular curve Xt as a complex algebraic curve,
and j as an element of C(Xr). It turns out that, for any finite index sub-
group I' < SL4(Z) the curve Xr is definable over some number field k, in the
way that j becomes an element of k(Xr). This is the “easy” part of the cele-
brated theorem of Belyi [15, page 71], which asserts that for a complex algebraic
curve X the following three conditions are equivalent:

e X is C-isomorphic to X for some I' < SLq(Z);
e X admits a finite covering of P!, unramified outside the points 0, 1 and oo;
e X can be defined over a number field.

Finally, remark that the curve Xt can be defined effectively in the following
sense. There exists a number field &, and a polynomial f(T,Y) € k[T, Y] such
that the following holds.

e The degree and discriminant of k, as well as the degree and the height!
of f are bounded effectively in terms of u(T').

e The curve Xt is definable over k and j € k(Xr).

e There exists y € k(Xr) such that k&(Xr) = k(j, y) and the functions j and y
satisfy the polynomial equation f(j,y) = 0.

This is well-known and may be viewed as a particular case of the “effective
Riemann existence theorem”, as in [4, Chapter 3]. A totally explicit version of
this statement will appear in the forthcoming thesis of M. Strambi [17].

1By the height of a (non-zero) polynomial we mean the projective Weil height of the vector
of its coefficients.
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Congruence subgroups

Everything above is true for any finite index subgroup I' of SLy(Z). However,
in this thesis we mainly deal with the congruence subgroups. Recall that the
principal congruence subgroup I'(n) of SL2(Z) is the kernel of the reduction map
SLo(Z) — SLa(Z/(n)). We say that a subgroup I' of SL2(Z) is a congruence
subgroup of level n if T contains I'(n). The minimal n with this property will
be called the ezact level of T'; it divides every other level of T'.

For every positive integer n, there are two classical congruence subgroups of
exact level n:

Fl(n){MESLQ(Z)|M<(1) j) (modn)};
Fo(n)z{MESLg(ZHME(S *) (modn)}.

*

The modular curves corresponding to the groups I'(n), I'1(n), and Tg(n) are
usually denoted by X (n), X;(n), and Xo(n) respectively.

For congruence subgroups, the above mentioned definability of the modular
curve over a number field can be made very explicit. For instance, the curve
X (n) can be defined over the cyclotomic field Q(¢,), and the same is true for
any Xp with T" of level n. In some special cases even more can be said: for
instance, Xo(n) can be defined over Q. (See, for instance, [12].)

Similarly, in the congruence case one can give explicit defining equations for
the corresponding modular curves (“modular equations”). See [12] for such an
equation for the curve Xy(n).

4.2 The theorem of Siegel

To describe our problem, we recall the classical theorem of Siegel. Let X be
a projective curve defined over a number field k£ and j a non-constant element
of k(X) (a “coordinate”). Further, let K be a finite extension of k, let S be a
finite set of places on K (which includes all the infinite places), and Og the ring
of S-integers of the field K. We define the set of S-integral points on X with
respect to the coordinate j as follows:

X(0s,j) = {P e X(K)|j(P) € Os}.

Theorem 4.2.1 (Siegel) Assume that either g(X) > 1 or j has at least 3
poles. Then for any K and S as above, the set X (Og, j) is finite.

For a modern proof of this theorem, one may consult [15].

A pair (X,j) satisfying the assumption of this theorem (that is, either
g(X) > 1 or j has at least 3 poles) will be called Siegelian. Thus, Siegel’s the-
orem asserts that for a Siegelian pair (X j), the set of S-integral points on X
with respect to j is finite.

Remark that the converse statement is also true: if the set X (Og, j) is finite
for all K and S as above, then the pair (X, j) is Siegelian. For a non-Siegelian
pair, the set X(Og,j) can be finite or infinite; see [1] for a finiteness criterion
for non-Siegelian pairs.
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Siegel’s theorem states that the set of integral points on X is finite, but,
unfortunately, its proof does not imply any upper bound on the size of integral
points. (By the size of a point P € X (Og, j) we mean the height of the algebraic
number j(P).)

Starting from pioneering work of A. Baker, there have been obtained effective
versions for some cases of this theorem; see [5, 6] for the history of the subject
and further references. For instance, the following is known.

Theorem 4.2.2 Siegel’s theorem is effective for (X, j) if
1. (folklore) g(X) = 0 and j has at least 3 poles, or
2. (Baker and Coates [2]) g(X) =1, or

3. (Bilu [3], Dvornicich and Zannier [8]) g(X) > 1 and k(X)/k(j) is a Galois
extension.

We say that Siegel’s theorem is effective for the Siegelian pair (X, j) if for
any K and S as above, the sizes of points from X (Og, j) are effectively bounded
in terms of K, S and (X, j). Here effectively bounded in terms of K and S means
bounded by a constant explicitly depending on the degree and discriminant of K,
and the maximal (finite) prime number below S. Further, effectively bounded in
terms of (X, j) means bounded by a constant which can be explicitly expressed
in terms of the degree and the height of the defining equation of some plane
model of X, such that j is one of the coordinates of this model. (As we have
seen in the previous section, for the pair (Xr, j) such a model can be effectively
determined.)

For the modular curves the following effective results have been established
in [5, 6].

Theorem 4.2.3 Let I' be a finite index subgroup of SLo(Z) and j be the j-
invariant. Siegel’s theorem is effective for the pair (Xr, j) if one of the following
conditions is satisfied.

1. The group I is a congruence subgroup and Xt has at least 3 cusps.
2. The group I" has no elliptic elements.

Bilu [5, 6] also proved effective Siegel’s theorem for (Xr,j) when I' is one
of the classical congruence subgroups I'(V), I'1(N) and T'o(N), provided the
corresponding pair is Siegelian, that is (see [6, Corollary 9 and Theorem 10])

e for (X (n),7), when n > 2;
e for (X1(n),j), when n > 4;
e for (Xo(n),j), when n ¢ {1,2,3,5,7,13}.

4.3 Main results

In this thesis we establish effective Siegel’s theorem for (Xr, j) where I is “almost
every” congruence subgroup. In the prime power level our result is nearly best
possible (see Chapters 6 and 7).
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Theorem 4.3.1 Let I' be a congruence subgroup of the exact prime power
level p™. Assume that p™ # 25. Then either Siegel’s theorem is effective for the
pair (Xr,j), or this pair is non-Siegelian.

Actually, we obtain much more precise statements. In particular, we ex-
plicitly exhibit the “nasty” subgroup of level 25 for which our method does not
work. Also, we classify all T" of the prime power level for which the pair (Xr, )
is not Siegelian.

In the general case we prove the following (see Chapter 8).

Theorem 4.3.2 Let ' be a congruence subgroup of (exact) level not dividing
221.37.53.72.11-13. Then Siegel’s theorem is effective for the pair (Xr, ).

Again, more precise statements are available.
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Chapter 5

Counting cusps and elliptic
points

This chapter is of technical nature. We describe here some tools for enumerating
cusps and elliptic points of a modular curve.

Let T" be a congruence subgroup of level dividing n, containing —I. We
consider its projection modulo n, the group G, < SLa(Z/(n)) isomorphic to
I'/T(n), and its image G,, = G/{£I} in PSLy(Z/(n)). For n fixed we shall
write G = G,, and G = G,,.

In this section we show how the numbers of cusps and of elliptic points, the
index, and therefore the genus of the modular curve Xr can be obtained via the
finite groups G and G.

For instance, the index u(T") is

u(T) = [SL(Z) : T] = [SLa(Z/(n)) : G] = [PSLa(Z/(n)) : ).

Most or even all of the statement in this section are certainly well-known,
but we include the proofs for completeness.

5.1 Enumerating the cusps

Let M,, be the set of elements of the exact order n (i.e. of the maximal possible
order) in the abelian group Z/(n) x Z/(n). In this section we shall prove the
following result.

Theorem 5.1.1 Let I be a congruence subgroup of level dividing n and con-
taining —I, and let G be the projection of I' modulo n. Then the num-
ber vs(I') equals the number of G-orbits of M,,. In other words, we have
Voo (I') = #(G\My,).

We recall that, by definition, v (') is the number of I'-orbits of the set
QU {cc} = P}(Q). Let M be the set of couples of coprime integers (x,%), and
note that the projection modulo n maps M onto M,,.

Proposition 5.1.2 Let T' be a subgroup of SLa(Z) containing —I. Then the
map f: M — PYQ) given by f(z,y) = < defines a bijection between I'\M and

N\PH(Q).
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Proof — The action of SLy(Z) on P!(Q) is induced by the natural action of
SLo(Z) on Z x Z, and f is a 2-to-1 surjective map. In particular, f defines an
SLy(Z)-equivariant bijection between {+I}\ M and P!(Q). Whence the result.
([l

Proposition 5.1.3 Let () € M be a pull-back of (}) € M,,. Then there
exists an element N € T'(n) such that N({) = ().

Proof — Since x and y are coprime, there exist integers uw and t such that
zu—yt = 1. The matrix N = (§ ;=7 ) lies in I'(n) and satisfies the required
relation. 0

Proposition 5.1.4 Let I" be a congruence subgroup of level dividing n, and
let G 2T /T'(n) be its image modulo n. Then the projection modulo n defines
a bijection between T\ M and G\ M,,.

Proof — The projection map 7, : M — M,, induces an action of SL(Z) on M,,,
which factors through I'/T'(n) & G. By Proposition 5.1.3, the group I'(n) acts
transitively on the fiber 717! ({); since SLy(Z) acts transitively on M, and since
I'(n) is a normal subgroup of SLy(Z), then I'(n) acts transitively on the fiber of
every element of M,,. Thus 7, defines an SLy(Z)-equivariant bijection between
I'(n)\M and M,,. Whence the result. O

Proof of Theorem 5.1.1 — Immediately from Propositions 5.1.2 and 5.1.4. [

Recall that we are interested in the congruence groups I' with at most 2
cusps. The following propositions will give us some helpful information.

Proposition 5.1.5 Let I' be a congruence subgroup of level n containing —1
and let G be its image in SLo(Z/(n)). Assume that ' has at most 2 cusps. Then
#G > HM, /2.

Proof — This is an immediate consequence of Theorem 5.1.1. O

Proposition 5.1.6 The set M,, has cardinality

#M’n = n2H (1 _p_2) ’

pln

the product being taken over all primes p that divide n.

Proof — By the Chinese Remainder Theorem, the function f(n) = #M,, is mul-
tiplicative, and for n = p* the statement is obvious. (I
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5.2 Enumerating the elliptic points

Let & and &3 be the sets of 2- and 3-elliptic elements of PSL2(Z), and let E2(n)
and &3(n) be their projections in PSL2(Z/(n)). In this section we shall prove
the following result.

Theorem 5.2.1 Let I' be a congruence subgroup of level dividing n and con-
taining —I, and let G = T'/(—I,T(n)) be its image in PSLy(Z/(n)). There exist
functions f, and fs, depending only on n, such that

#(G N &(n)) #(G N &(n))
#G #G

Let [ = I'/{+1I} be the image of I in PSLy(Z). We recall that, by definition,
v5(T") and v3(T") are the numbers of distinct T-conjugacy classes of elements of
exact order 2 and 3 of T'; the elements of exact order 2 are the traceless elements,
and the elements of order 3 are those of trace +1.

Let H be a group acting on a set X. We denote by = the H-orbit of any
element x of X. Let also NV be a normal subgroup of H; we denote by a tilde
the quotient modulo N.

va(l) = fa(n); v3(I') = fs(n).

Proposition 5.2.2 Let H be a group and let N be a normal subgroup of finite
index of H. Consider the action of H on itself by conjugacy. If the centralizer
in H of an element x is Zy(x) = (x), then the conjugacy class of x in H is union
of #ﬁ /ord(T) many N-conjugacy classes.

Proof — The conjugacy class 2 of z in H is a finite union z&¥ U... Uz of

distinct N-conjugacy classes. The action of H on z*! induces an action on the
set {zd,..., 2V}, which factors thorugh H. Since any z; is conjugate to x, its

rr

stabilizer in H is (z;). O

Proposition 5.2.3 Let H be a group, let N be a normal subgroup of finite
index of H, and let X be a non-empty union of H-conjugacy classes of elements
whose images in H have the same exact order r. For every subgroup K of H
containing N, we denote by nyx the number of distinct K-conjugacy classes in
Xk =XNK. If for every x in X, the centralizer of x in H is (x), then the
number

does not depend on K.

Proof — By the above proposition, the numbers of N-orbits in X and in Xk are
respectively ngy#H /k and nx# K /k. By the same proposition, for every z in X,
the number of distinct /N-orbits in X N z/N does not depend on x. This implies
that the ratio among the numbers of N-orbits in Xx and in X is #Xx/X.

Thus we have N "
#Xx  ng#K

#X  np#H'
which completes the proof. (I
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Proof of Theorem 5.2.1 — In the above proposition, let H = PSLy(Z), K = r,
and N =T(n) = (I, —=I)/{£I}. Taking either X = & or X = &;, we obtain
that the functions

_ #G
R = g@nemy
. #G
fam) =vs D) gy
depend only on n. O

We recall that the elements of £, C PSLy(Z) are characterized by their order,
or by their trace, and so are the elements of &3 C PSL3(Z). Considering conju-
gacy classes in SLy(Z/(n)), we obtain the following partial characterization of
the sets £(n) and E5(n) when n is a prime power.

Proposition 5.2.4 Let n = p° is a prime power and let M be an element of
SLs(Z/(n)). For p # 2 the following properties are equivalent:

M € & (n); ord(M) = 2; Tr(M) = 0.
For p # 3 the following properties are equivalent:
M € &(n); ord(M) = 3; |Tr(M)| = 1.
O

Taking I' = SLy(Z) in Theorem 5.2.1, we can compute explicit values of f;
and fs.

Proposition 5.2.5 The functions fa(n) and 2fs3(n) are multiplicative on n.
For any prime p we have:

p° ifp=2,

fo(p?) =4 p*(1—p~") ifp=1 (mod4),
p’(L+p~Y)  ifp=-1 (mod 4);
p° if p=3,

2f3(p°) =< p(1—p 1) ifp=1 (mod 3),
p’(l+p7t)  ifp=-1 (mod 3).

28



Chapter 6

The prime level case

6.1 Special groups
In this chapter we prove the following result.

Theorem 6.1.1 Let I" be a congruence subgroup of the (exact) level equal to 1
or to a prime number. Then Siegel’s theorem is effective for the pair (Xr,j)
whenever this pair is Siegelian.

All the T' (up to conjugacy) of level 1 or prime, for which the pair (Xr, j) is
non-Siegelian, are listed in Tables 6.1 and 6.2.

Here we collect basic properties of the special linear group SLo(F),).
The following property is well-known but we sketch a proof for the sake of
completeness.

Proposition 6.1.2 The order of an element of SLy(F),) is either 2p or at most
p+ 1. When p # 2, the order of an element of PSLy(IF,,) is either p or at most

(p+1)/2.

Proof — A matrix from SLy(F}) is either similar over F), to ( é i) with A = +1 or

similar over IF,> to (g‘ 9, ) with o € Fp2. In the first case the order divides 2p.
(07

In the second case either o € F,,, in which case the order divides p — 1, or « is
in the kernel of the norm map I, — [, in which case the order divides p + 1. [J

We shall systematically use the classification of semi-simple subgroups of
PSLy(F,). Actually, a classification of PGL2(F),) is available, see [13, Proposi-
tion 16].

Proposition 6.1.3 Let G be a proper subgroup of PGLy(F,) of order not di-
visible by p. Then G is isomorphic to one of the following groups:

e C,,, the n-th cyclic group;
e D, the n-th dihedral group;
e Ay, the fourth alternated group;

e Sy, the fourth symmetric group;
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o As, the fifth alternated group (this only happens when p = +1 (mod 5)).

In the unipotent case, one has the following, see [13, Proposition 15].

Proposition 6.1.4 Let G be a subgroup of GLy(F,) of order divisible by p.
Then G either contains SLa(F),) or is contained in a Borel subgroup of GLa(F),).

(A Borel subgroup of GL2(F,) is any conjugate of the subgroup GT2(F,) of the
upper-triangular matrices.)

Proposition 6.1.5 Let H be a subgroup of SLy(F,), conjugate to STo(F,),
and let G be a subgroup of H, with vo.(G) < 2. Then G = H.

Proof - If G were a proper subgroup of H, then its cardinality would be at most
half the cardinality of H. Then

p? —p=#STo(Fp) = #H = 2#G > voo (G)#G = # M, = p* — 1,

which is absurd. O

Theorem 6.1.6 Let I" be a congruence subgroup of exact level p, with at most 2
cusps.

e Ifp does not divide the cardinality of G then we are in one of the following 8
cases.

—p=2and G=C3=7/(3);
—p=3and G=Cy =7/ (2)
—p=3and G=Dy=7/(2) x Z/(2);
— p=>5and G = Ds;
—p="5and G = Ay;
—p="7and G = Ay;
— p="7and G = Sy
— p=11and G = As;

?

e If p divides the cardinality of G' then G is conjugate to STs(F,) and
Voo (T') = 2.

Proof — When p does not divide the cardinality of G, we apply Proposition 6.1.3
and Proposition 6.1.2, which provide a bound for the cardinality of G; Proposi-
tion 5.1.5 does the rest. The cases follow.

First, the case p = 2. We have PSLy(F2) & SLy(F2) = S3. Its proper sub-
groups are cyclic, with order 1, 2, or 3. We exclude the index 1 by counting the
orbits, and the index 3 by divisibility.

We now deal with the other cases, applying the formula v, (I')#G > p? — 1.

When G 22 C,,, we have #G = 2n < p + 1. Then we obtain p < 3, i.e. p = 3.

When G 2 D,,, we have #G = 4n < 2(p + 1). This gives p < 5, i.e. p = 3,5.
Fromn = $#G > 3 (p? — 1) we obtain that p = 3 implies n = 1,2 and p® implies
n = 3.
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When G = Ay, we have p? — 1 < 4#G = 48, i.e. p < 7. Since 3 divides #G,
we obtain p =5, 7.

When G = Sy, we have p? — 1 <4#G = 96, i.e. p < 10. Since #S, = 24
does not divide neither #PSLy(F3) = 12 nor #PSLy(F5) = 60, we have p = 7.

Finally, when G = A5 we have p = +1 (mod 5) and p? — 1 < 4#G = 240,
ie. p=11.

When p divides the order of G, by Proposition 6.1.4 either G = SLy(F},) or G
is conjugate to a subgroup of ST2(F,). In the first case we have that I is the
whole SLy(Z), against our assumption on its level. In the second case we apply
Proposition 6.1.5. O

Consider the 8 cases where p does not divide the order of G. We remark
that in the first five cases (with p < 5) the group I' is uniquely defined up to
conjugacy, and that in each of the last three cases (with p > 7) the group I' can
belong to two distinct conjugacy classes.

6.2 The 8 special cases

In this section we shall show that the 8 cases when p does not divide the car-
dinality of G listed in Theorem 6.1.6 all have genus g = 0 and therefore do not
satisfy the hypothesis of Siegel’s theorem.

With the aid of Theorems 5.1.1 and 5.2.1, we obtain the invariants of the
modular curve X by the isomorphism class of G.

Table 6.1: Non-Siegelian modular curves of prime level: the semi-simple case

|G [ [ plve[re]vs]g]l |
G=Cs 27210270
G=Cy ||3]6] 2 |2]01]0
G=Dy|| 33| 1|3]0]0
G2Ds || 510 2 |2]1]0
G=A || 5|51 |1]2]0
G2A || 7114] 2 | 2| 2|0/ 2groups
G=Sy || 7| 7|1 |3]|1]0]| 2groups
G=As||11 11| 1 | 3] 2 |0 | 2groups

Remark that in all the above cases we have v (G)#G = #M,,.

In the first five lines of Table 6.1 the corresponding group I' is well-defined
up to SLy(Z)-conjugation. In every of the last three lines there are 2 conjugacy
classes of I'. Thus, Table 6.1 describes 11 possible I' up to conjugacy.

6.3 The groups with order divisible by p
In this section we study the groups I' for which p divides the cardinality of G
and poo(I') < 2. As we have seen in Theorem 6.1.6, in this case G is either

conjugate to STo(F,) or is SLo(F),) itself. In both cases we can assume, up to
conjugacy, I = I'g(n), for some positive integer n. (Note that I'g(1) = SLy(Z).)
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A complete study on effectivity for this case is due to Bilu (see [6, Theo-
rem 10]).

Theorem 6.3.1 Either Siegel’s theorem is effective for (Xo(n), j) or the couple
(Xo(n), j) is non-Siegelian. The latter case is verified precisely when n is in the
set {1,2,3,5,7,13). O

Table 6.2: Non-Siegelian modular curves of level dividing a prime: the case
I'= FO (n)

LG [level || p [voe [1o w5 [ ]
SLo(F,) | L 1] 1] 1] 1]o0
STo(Fy) | 2 [ 3| 2] 1] 0]o0
STy(Fs) | 3 [ 4| 2] 0] 1]0
STo(Fs) | 5 || 6| 2] 2] 0]o0
STo(F7) | 7 || 8| 2] 0] 20
STy(Fi3) | 13 [[14| 2] 2| 20
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Chapter 7

The prime power level case

7.1 Introduction

In this chapter we study groups of prime power level. Our ultimate goal is the
following theorem.

Theorem 7.1.1 Let T' be a subgroup of SLa(7Z) of prime power level, distinct
from 25. Then either the pair (Xr,j) is non-Siegelian, or Siegel’s theorem is
effective for (Xr,j).

In level 25 there is a subgroup I', defined below, for which the curve Xt is
of genus 2 and for which our methods fail.

As in the prime case, our main tool will be “three cusps criterion” (Theo-
rem 4.2.3) in the following refined form, see [6, Proposition 12].

Theorem 7.1.2 Let I have a subgroup I" satisfying the following:
e 1" is a congruence subgroup;
e I contains all elliptic elements of T';

e X1/ has at least 3 cusps.

Then Siegel’s theorem is effective for (Xr, j).

We obtain a complete classification, up to conjugacy, of the groups I' of
prime power level, containing — I, satisfying the following two conditions:

e [ has at most two cusps, and

e [' is generated by its elliptic elements.

We call T unipotent if its image in SLo(Z/(p)) has an element of order p.
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7.2 Projections

Let p be a prime, ¢ = p°® be a power of p, and I" be a congruence subgroup of
exact level ¢; this means that ¢ is the smallest positive integer m such that I"
contains the kernel I'(m) of the projection SLs(Z) — SLo(Z/(m)).

For the moment we shall deal with the general framework, but in due time
we shall make the further assumptions:

I contains — I and the curve X1 has at most two cusps.  (7.1)

For every positive integer s the projection SLo(Z) — SLao(Z/(p®)) factors
through SL2(Z/(p**™1)). This gives the chain of surjective projections

I'»Ge—» Geoqg —» - = G —» Gy,

where G, is a subgroup of SLa(Z/(p®)), for every s. Denoting by T’y the pre-
image in SLy(Z) of Gy, i.e. T's :=T -T'(p®), we obtain the chain of inclusions

F:F6§F671C~~~CF2CF1,

where every I'y is a congruence subgroup of level dividing p°; in particular, I'y
is a congruence subgroup of level dividing p. Note that if T’ satisfies (7.1) then
so does every I'y; in particular, I'; belongs to the finite set of groups that we
have determined in the previous chapter.

In this section we will show how to determine all the congruence subgroups
I's4+1 that project on a given I's; in other words, all groups Gsy1 that project
on a fixed G5. This will allow us, in the subsequent sections, to determine by
induction in the exponent s all congruence subgroups of level dividing p*®, which
satisfy (7.1).

7.2.1 The kernel

Let Gs11 be a subgroup of SLy(Z/(p**1)), let 7, denote the projection mod-
ulo p°, and let Gy = 7,(Gs41) and Ko = Ker(ms|a,,,). As usual, let slo(IF,)
be the set of all traceless 2 x 2 matrices with entries in [F),.

In the sequel we shall use, without special reference, the formula

det(A — aI) = 2% — 2Tr(A) + det(A).

We are going now to define a map ¢;: slo(F,) — SL2(Z/(p**™1)) that will
play a crucial role in what follows. Given M € sly(F,), we pick a matrix M with
entries in Z whose reduction modulo p is M, and we define @, (M) = I + p*M.
Clearly, ps(M) is independent of the particular choice of M; slightly abusing
the notation, we shall often write 1 + p°M instead of I + pSM .

The following property is obvious.

Proposition 7.2.1 We have a short exact sequence

sy

sly(Fp) == SLy(Z/(p*+1)) —= SLa(Z/(p*)). (7.2)
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Note that, by restriction to the subgroup Gs.1 of SL2(Z/(p**!)) we obtain
a short exact sequence

Ts

Ps
V; C Gs+1

G, (7.3)

where V; = ;1 (K,11) is a subspace of sla(F,).

Consider the chain of projections G5y —- Gs_1 — ... —» G2 —» G1. It pro-
duces a sequence Vi_1, ..., Vo, Vi of subspaces of sly(FF,). We shall now see
some relations among them.

Proposition 7.2.2 If p® # 2 then V, C Viqq. If pP =2and -1 €T then I € ;
and Vi C Vo + (I).

Proof — Let M be an element of Vy, so that Gsy1 contains the element I + p*M.
By surjectivity of the projection ms11: Gsy2 — Gsy1, there exists a matrix N
with entries in Z/(p?) such that I + p*N € G4 projects to I + p*M; obviously,
N =M (mod p). In G412 the p-th power of I + p*N is

(I+p*N)P = <§> I+ <71’> PN+ <§> P N? = [+p*! (M - (’2’) p“MQ) :

implying that M + (5)p*~*M? lies in V1.

If p# 2 or s > 1, then p divides (5)p*~! and therefore M € V ;.

If p=2and s = 1 then M + M?, thatis M + I det(M), liesin V5. Note that,
for p = 2, the assumption —I € I" implies I + 2] = —I € G5, so that I € V;. O

Corollary 7.2.3 Let ' be a congruence subgroup of the exact level p¢. If
Vs = sla(F,) for some s, then e < s.

Proof — It suffices to show that V, = sly(F,) implies Vi1 = slo(F,). This follows
from the above proposition if p* > 2, and it is verified by inspection for p* = 2. [J

Let us denote by v4 the conjugation y4(M)= A"'MA by an invertible
matrix A. Since the trace of a matrix is invariant under conjugation, -y defines
an action of G on sly(F,).

Proposition 7.2.4 The space V; is G1-stable.

Proof — Since p(Vs) = K41 is a normal subgroup of Gs41, the space V5 is Ggy1-
stable. We conclude by surjectivity of the projection G411 — Gj. O

Summarizing the above results, the kernels K1 of the subsequent projec-
tions Gs11 — G5 correspond, with the possible exception of Ky when p = 2,
to a nested chain of G-stable subspaces of slo(F,). Note that sly(F,) has di-
mension 3 over F,; thus any nested chain of subspaces of sl»(F,) can contain no
more than two distinct non-trivial proper elements.

Under the requirements of (7.1), we can give a restriction on V.

Proposition 7.2.5 If T satisfies (7.1), then #G2 > (p* — p?)/2 and V; # (O).
If moreover [SLy(F,) : G1] > 2, then dim(V;) > 2.
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Proof — Let p be the index of Gy in SLa(F,). Then G; has cardinality

#G1 = #SLa(F,) /1 = (p° — p)/ 1.
Under the condition (7.1), Propositions 5.1.5 and 5.1.6 imply
#Go > #My2 /2 = (p' = p?)/2;
then V] & Ky = (G2 /G; has cardinality

W - )2
LAyt

For p > 2 we have pu/2 > 1, while for p = 2 we have V] 3 I by Proposition 7.2.2;
in both cases V1 # (O).
If moreover p > 2 then pu/2 > p and dim(V;) > 1. O

We conclude this subsection with yet another relation between the spaces V.

Proposition 7.2.6 Let M, and M- be elements of V. Then MMy — MsM;
lies in V.

Proof — For i=1,2 we fix an integer matrix N;, defined modulo p*!,
such that X; =1+ p°N; € Gos41 projects to I+ p°M; € G411; obviously,
N; = M; (mod p). Note that

X1Xs — Xo X1 = p** (N1 Ny — NoNy) (mod p***1).
Then the commutator of X; and X, is
X1Xo(Xo X))t =T+ p?*(N1 Ny — NoNy),

which concludes the proof. O

7.2.2 The lifting

We want to determine all possible groups G511 projecting on some fixed Gs.
In this subsection we describe our strategy in general terms. In the subsequent
sections we apply it in concrete situations.

As we have seen, the possible kernels K,; are described by special sub-
spaces Vs of slo(Fp); fix one of them. We also fix a set {X} of generators of the
group Gs.

By choosing a lifting X in SLy(Z/(p**")) for every generator X from the
fixed set of generators, and by taking the smallest group that contains all of these
liftings and K11 we obtain a candidate G, for Gs+1. This group will project
on Gy, but the kernel of the projection can possibly be larger than K.

Now let w be a word over the fixed set of generators {X}. It represents an
element R,, in G; it also represents, replacing every X with the corresponding
lifting X, an element R, in' G, = ({X}, K.;1), which projects onto R,,. The

INotice that RJU depends on the word w, not only on the element R, ; we may well have
Ry, = Rw, and Ruw; # Ruw,.
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kernel of the projection G, — Gy is K1 if and only if Ry, € K41 for every w
such that R, = I.

For every X in G we fix, once and for all, a lifting X’. Then any other lift-
ing X of X (a“variable” lifting) is of the form X = X'(I + p*My) for some? Mx
in sly(F,). Any word w now represents an element R,, € G5 and two liftings
of R,, namely R, e ({X'}) and R, € ({X}); note that R, is of the form
Ry = R.,(I + p*M,,), for some® M,, € slz(F,). Denoting by 4 the conjugation
map M — A"'MA for A in G, we can explicitly write every M, in terms of
the Mx (and of the X) by recursion on the length of w, via the cocycle relation

My,w, = YRuwy (Mwl) + My, .

For every word w such that R,, = I we compute the corresponding Riu, which
lies in* ¢, (sl2(Fp)); then the condition R,, € K. y1 = ¢s(Vs) can be written as

@gl(éiu)jLMw € Vs. (7.4)

Note that, since Ksi1 = ¢s(Vs), the group G, = <{X},K5+1> is determined
by the cosets Mx + V5 and (7.4) becomes an equation over sly(FF,)/Vs in the
unknowns Mx + V.

Now let W be a set of words such that the group G is defined by the fixed
set of generators {X} and the relations from W. Then it suffices to verify
condition (7.4) only for the words w € W. In the concrete examples below, we
shall choose the sets of generators and relations in the most convenient way.

With as abuse of notation, we shall often denote by the same letter both a
generator X of G, and its fixed lifting X'.

We are now ready to begin our inspection of groups of prime power level.
From time to time, the requirement (7.1) will provide more restrictions. We
shall begin with the groups such that p # 2 divides the order of G, then turn
to those such that p # 2 does not divide the order of G, and finally consider
the case p = 2.

We fix for sly(F,) the basis

A=( %), B=(83), ¢=(19) (7.5)

7.3 The triangular case

Throughout this and the following section we shall assume p # 2. In this section
we consider groups G that satisfy (7.1) and such that p divides the order of G.

As we have seen in the previous chapter, G; is either SLo(F,) or conjugate
to ST2(F,). In the latter case we can assume G = ST (FF,) and consider only
the cases p = 3,5,7,13, due to the requirements of (7.1).

We begin by studying the adjoint representations of STs(F,) and SLa(F,),
in order to find the subspaces of sly(F,) that are stable under their action.

Fix a generator g of the multiplicative group F, and consider the matrices

S=(%%4),T=({1),and X = (961 o) in SLy(Fp). The element T generates

2The notation My is slightly abusive; in fact Mx depends on the variable lifting X, so it
would be more correct to write M .

3Again M,, depends not only on w but also on the variable lifting.

4See Subsection 7.2.1 for the definition of ;.
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the maximal unipotent group {( 1 *{)}; the elements 7" and X, together, generate
the special triangular group ST (F,); the three elements S, T', and X generate
the special linear group® SLo(F,).

We use the notation (7.5). Recall that in this section we assume that p > 2.

Proposition 7.3.1 The only non-trivial STy (F),)-invariant subspaces of sla(F,,)
are (B) and (A, B). There are no non-trivial, SLo(F,)-invariant subspaces of
S12 (Fp)

Proof — We consider the basis
€1 = 4B, €y = 2A, €3 = —A— 2C

for sly(F,,). In this basis, the conjugation map M — T~'MT has the matrix
1 10
0 1 1
0 0 1

Hence the non-trivial T-invariant subspaces of slp(F,) are (e;) = (B) and
(e1,e2) = (A, B). Since both are also X-invariant, they are ST(F,)-invariant,
and there are no other. Since none of them is S-invariant, the group SLa(F,)
has no non-trivial invariant subspaces in sla(F,). O

This proposition allows us to settle the case G1 = SLa(F,,) (when p > 2).

Corollary 7.3.2 If T satisfies (7.1) and G1 = SLy(F),), then I' = SLo(Z).

Proof — Straightforward from Proposition 7.2.5. O

We consider now a group G2 < SL2(Z/(p?)) that satisfies (7.1) and that
projects on G1 = ST3(F,), for some prime p > 2. The index of ST(F,) in
SLy(F,) is p; using Proposition 7.2.5 we obtain that V; has dimension at least 2,
i.e. that V; is either (A, B) or sly(F,). In the second case, I" would have exact
level p, which is treated in the previous chapter. Hence V; = (A, B).

The group G1 = ST2(F,) is generated by T and X, with the relations

R =T =1, Ry = XP~1 =1, Ry = X"'TXT9 =1,

where g is the generator of F,, fixed in the beginning of this sectionS. Fix a lifting
of g in Z/(p?)*; by abuse of notation, we denote it as g as well. We also fix in
SL2(Z/(p*)) the liftings T = ({ 1) and X = (981 o) The group G? is generated

by I 4+ pA, I 4+ pB, T =T(I + ptC), and X = X (I 4 pzC), for some t and z in
F,.
We shall prove the following proposition.

Proposition 7.3.3 Let p # 2 be a prime and let I be a congruence subgroup
of exact level p°, with s > 1, which satisfies (7.1) and with Gy, Ka, and G»

5 Actually, already S and T generate SL2(Fp), but it is more convenient for us to include X
in the set of generators.

6Since TP = 1, the matrix 7-9° is well-defined.
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as above. Then p is either 3 or 5. For p=3 we have x =0 and t # 0, and
the groups G defined by t =1 and t = —1 are non-conjugate in SL2(Z/(9)).
For p =5 we have t # 0, and the groups G2 defined by x and by t # 0 lie in 4
distinct conjugacy classes, depending only on the choice of t. Moreover, any
proper subgroup of Gy has at least 3 orbits in M.

Proof — Over sla(F),)/(A, B) = (C) the action of T is trivial and the action
of X corresponds to multiplication by g~2. Note that conjugation by (I + pC')
maps T into TK> and maps X to X (I 4 p(1 —g=2)C); up to conjugation we
can thus assume z = 0 when g?> Z 1 (mod p), i.e. when p # 3.

We now compute the liftings in G5 of the relations of G;. All three Ry = T?,
Ry = XP~! and Ry = X 'TXT~9" lie in K»; we need to verify that Mg, , Mg, ,
and Mp, lie in (A, B). Modulo (A, B) we have

Mg, =({t+...+t)C =ptC = O;
Mp, = (4972 +...+ g 2P P)aC;
Mg, = (97 — g*)tC.

The condition Mg, € (A, B) is always true. The condition Mg, = O is satisfied
if =0, as is the case when p # 3, and implies x = 0 when p = 3; in any case
we obtain X = X. The condition M Rr; = O implies t = 0, unless the order of ¢
in Z/(p)* divides 4, i.e. unless p is either 3 or 5.

The group Gi = ST»(F,) has two orbits in M,, namely the orbits of (§)
and of (9); their stabilizers are (T') and {I} respectively. This implies that the
group G2 has at least two orbits; there are precisely two of them if and only if
the pull-back in G'3 of the stabilizer of an element of M), acts transitively on the
pull-back in M2 of that element. We have

(I+plad +bB)) (plz) _ (1 ;Zpa)’ (T + paA + bB)) ((1)) _ (1 J]ibpa) ,

implying that the kernel K> acts transitively on the pull-back of (), but has p
distinct orbits in the pull-back of (}), corresponding to the elements (. ), with
z € Fp; the action of 7' on these elements is

7 1y  (1+pz+pt
pz)  \ pz+pt )’
This implies that G has two orbits on M. if and only if ¢ # 0. As we have

seen, this implies that p is either 3 or 5.
We conclude by inspection. O

We are now left with the cases p = 3,5, where the values ¢t # 0 correspond
to the distinct conjugacy classes of Go. When p = 3 we have x = 0, while when
p =5 we can choose any .

Proposition 7.3.4 Let I' be a congruence subgroup of exact level 5°, for some
s > 1, that projects modulo 5 on STo(FF5). Then Siegel’s theorem is effective for
the couple (Xr, j).
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Proof — By Proposition 7.3.3 and Theorem 7.1.2 it will suffice to show that G
has a proper subgroup containing all elements of order at most 4.

The group Gy = ST»(F5) is generated by 7'= (} 1) and X = (2 9), with
the relations 7° = I, X2 = —I, and (XT)? = —1. It contains no elements of
trace —1 and its traceless elements are of the form + X7, for any a € F5.

We fix T=(}1) and X = (79) in SLy(Z/(25)). The group G, is gen-
erated by M =I1+5A, N=1+5B, T =T(I +5tC), and X = X(I 4 52C),
where we can choose z = t. The relation 7° = N shows that the generator N
is redundant.

In G, there can be no elements of trace —1, since there are none in GG, while
the traceless elements of Gy must be of the form +X7*M?, for some a € Z/(25)
and b € F5. By means of direct computation we obtain that an element of the
form XT*M® = XT° + 5bXT*A has trace 15b. This implies that the set of ele-
ments of G od order at most 4 is {X7T*}; by the relations 725 = I, X2 = —1I,
and (XT)? = —I, this set generates a proper subgroup of Ga, as required. [J

Proposition 7.3.5 Let I be a congruence subgroup of exact level 3°, for some
s > 1, that projects modulo 3 on ST9(F3). Assume that T' satisfies (7.1) and
that there exists no congruence subgroup I'' C T" of exact level 3° that contains
all elliptic elements of I". Then s < 3 and the conjugacy class of I' is uniquely
determined by s. For s = 3 the curve Xr is of genus 1 (which implies Siegel’s
effectiveness by Theorem 4.2.2). For s =2 the corresponding (Xr,j) is non-
Siegelian.

Proof - We fix T = (}1) in SL2(Z/(9). By Proposition 7.3.3 the group G is
generated by M =1 +3A4, N=1+3B, and —-T = —T(I 4 3tC), where t is
either 1 or —1.

In G there is no traceless element, since there is none in G; = ST3(FF3); the
elements of G with trace —1 must be of the form (TM*N®)*!. By means of
direct computation we obtain

Tr(TM“Nb):TrT—&—BTrT((Z ba) =2+43(a+t—a)=—1+3(t+1),

which implies that in G5 there are neither traceless elements nor elements with
trace —1, unless ¢ = —1. Since no congruence subgroup I C I' contains all
elliptic elements of I', we have t = —1 and 7' = (3 | ). Note that T-'NT = N
and T-'MT = MN~!, and that G, is stable under conjugation by I + 3C =
(39)-

We now consider G3. Since Vo = V; = (A, B), the kernel K3 of m3: G3 — G2
is generated by I +9A and I+9B. We fix T=(231), M= (%), and
N = (§3) in SLy(Z/(27)). The group G is generated by I + 94, I + 9B and,
for some m, n, and t in F,,, by the elements

M = M(I +9mC), N = N(I +9n0C), —T = —T(I +9tC).

We have the relations M3 =T +9A4 and N3 = I +9B. Up to conjugation by
(é (1)) we may assume m = 0, and by a direct computation we obtain that

NM=T-'MT € K implies n = 0, i.e. N = N. Further computations on the
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relations and on the elements with trace —1 show that Gs = (M, N,—-T) is
unique up to conjugacy. We also have the relation NM = M N*.

We now fix M = () %) and N = (} ;) in SL2(Z/(81)). Consider the
matrices M = M(I +27mC) and N = N(I + 27nC), with m and n in F,. For
any choice of m and n we have

M™INTMN*=1-27C ¢ (I +27A,I+27B),

which implies that any subgroup G4 of SL2(Z/(81)) that projects on G contains
the kernel of the projection 75: SLa(Z/(81)) — SLa2(Z/(27)).

We conclude by a direct computation on the invariants for s = 2 and for
s=3. O

We can summarize the results of this section as follows.

Proposition 7.3.6 Let " be a congruence subgroup of exact level p* with s > 1
and p # 2, containing —I and whose projection Gy has order divisible by p (i.e. T
is unipotent). Then Siegel’s theorem is effective for (Xr, j), with the exception
of one (up to conjugacy) subgroup of level 9, for which (Xr, 7) is non-Siegelian.

Proof — By Theorem 4.2.3 Siegel’s theorem is effective for (Xr, ) if X1 has at
least 3 cusps. As we have seen in the previous chapter this is the case unless
G1 = SLy(F,) or G1 = ST (F,), up to conjugacy. In the former case by Corol-
lary 7.3.2 the curve Xt has at least 3 cusps and we conclude. In the latter
case we have either p =3 or p =5 by Proposition 7.3.3, and we conclude by
Propositions 7.3.4 and 7.3.5. O

7.4 The special cases

As in the previous section, we assume p # 2. In this section we consider
groups G that satisfy (7.1) and such that p does not divide the order of G.
As we have seen in the previous chapter, up to conjugacy there are ten possible
groups G for p # 2.

Note that the index of Gy in SLy(F)) is at least p > 2; by Proposition 7.2.5
this implies dim(V;) > 2.

We shall need a simple lemma, that will be used for n = 3, but we state the
general case. It is certainly well-known, but we include a proof for the sake of
completeness.

Lemma 7.4.1 Let A be an algebra over a field of characteristic distinct from 2,
and let X1, ..., X, be invertible pairwise anti-commuting elements of A. Then
X1,...,X,, are linearly independent over the base field.

Proof — Let S =, a; X; be a linear combination of the X;, with a; in the base
field. If S = 0 then for every 7 we have

0=X;S+5X;, = ai(X;X; + X;X;) + 20, X] = 20, X
J#i
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Since X; is invertible in A and 2 is invertible in the base field, this implies that
every coefficient a; is 0. O

Now we have the following property, which allows us to immediately exclude
seven of the ten cases referred to in the beginning of this section.

Proposition 7.4.2 Let G be a subgroup of SLy(F,) and let G be its image
in PSLy(F,). If G contains a subgroup H isomorphic to Z/(2) x Z/(2), then a
base of sl2(FF,,) can be given by three elements of G.

If G contains a subgroup isomorphic to the alternating group A4, then there
are no non-trivial G-stable subspaces of sla(F)).

Proof — Let X and Y be generators of H = Z/(2) x Z/(2) and let £X and +Y
be their pullbacks in G. Since the elements X, Y, and XY are traceless, they
belong to slz(F,). The relations
X%?=—1, Y2 =1, (XY)? =1,
show that X, Y, and XY are pairwise anti-commutative; by the lemma above,
they form a basis of sly(F),).
In this basis, the conjugation maps by X, Y, and XY have the matrices

1 0 0 -1 0 O -1 0 0
=10 -1 0], w=([(0 1 0|, w»y=(0 -1 0
0O 0 -1 0 0 -1 0 0 1

This implies that the G-invariant subspaces of sla(IF,) are generated by subsets
of {X,Y,XY}.

Let now G contain a subgroup isomorphic to Ay; in turn, this will contain
a subgroup H isomorphic to the Klein group 7 = Z/(2) x Z/(2), and an ele-
ment R that cycles, by conjugation, the non-trivial elements of H. Taking a
basis X, Y, and XY of sly(F,) as above, the pullback R of R in G cycles the
spaces (X), (Y), and (XY). Thus the only G-invariant subspaces of sly(F,) are
trivial. O

The above proposition enables us to exclude from our search the last four
lines in the table of Section 6.2 (recall that A4 is both a subgroup of As and
of S4). We are now left with three groups.

Proposition 7.4.3 Let I" be a congruence subgroup of exact level 5° with s > 1,
that satisfies (7.1), and whose projection G in PSLy(F5) is isomorphic to the
dyhedral group D3. Then s =2 and T' is unique up to conjugacy. The couple
(Xr,J) is Siegelian, but T' is generated by its elliptic elements and Xr has 2
cusps.

Proof — Applying a suitable conjugation, we may assume that G contains the
elements S = (% §), R= (9 2),and SR = ({ Z}), which satisfy the relations

S? =1, R =1, (SR)* = —1I.

We also put X = SR — SRS = (7'1).
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It is verified by inspection that the only non-trivial G;-invariant subspaces
of slo(F5) are (S,SR) and (X). By Proposition 7.2.5 we have dim(V;) > 2,
thus V4 = (S, SR). Further, since X = S(SR) — (SR)S, we have X € V5 by
Proposition 7.2.6. This implies V5 = sl (F,) and s < 2.

We fix S = (° §) and R= (9 7)) in SLy(Z/(25)). They satisfy

S% =1, R =1, (SR)* = —1I.

The group Gy is generated by S = S(I 4+ 5tX), R= R(I +5rX), M =1+ 58S,
and N = I + 5SR, for some ¢ and r in F5. Up to conjugacy by I + 5X we may
assume ¢t = 0, and since

R} =T1+15rX,

we also have r = 0. Thus S = S and R = R.
It is verified by inspection that I' is generated by its elliptic elements and
that Xr is of genus 2 and has 2 cusps. O

Proposition 7.4.4 Let I be a congruence subgroup of exact level 3° with s > 1,
that satisfies (7.1) and whose projection Gy < SLo(F3) has cardinality not di-
visible by 3. Then s = 2 and I" contains no 3-elliptic elements. If there exists no
congruence subgroup I' C T" that contains all elliptic elements of T, then T is
uniquely defined by G up to conjugacy and the couple (Xr, j) is non-Siegelian.

Proof — As we have seen in the preceeding chapter, G is isomorphic either to
the cyclic group Cy = Z/(2) or to the dyhedral group Dy 2 Z/(2) x Z/(2). We
take R=(114),5=(%%),and T=RS = (7' ]) in SLy(F3); they satisfy

R?=—1I, S? =1, T? = —1.

Up to conjugacy we can assume that either G; = (S) or G; = (R, S).
By Proposition 7.4.2, the elements R, S, and T are a basis of slo(F3). By
inspection, the 2-dimensional S-invariant subspaces of sly(F3) are:

(S, R), (S,T), (R,T), (S,R+T), (S,R—TY);

among these only (S, R), (S,T), and (R,T) are also R-invariant.

Since I satisfies (7.1) the group G2 has at most 2 orbit in Moy; if G1 = (S)
this implies #Mg = 2#G5, thus the stabilizer of any element in My is trivial.
The equations

show that V4 cannot be neither (S, R+ T) nor (S,R—1T).

Thus V; is one of (S, R), (S,T), or (R,T), for any G;. Up to conjugacy
we can assume (R, S) C V4. Since T'= SR — RS, by Proposition 7.2.6 we have
T € V,. Then V3 = sly(F3) and s < 2.

We conclude by inspection. O

We can summarize the results of this section as follows.
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Proposition 7.4.5 Let I' be a congruence subgroup of exact level p* with s > 1
and p # 2, containing —I and whose projection G1 modulo p has cardinality not
divisible by p. Then either Siegel’s theorem is effective on (X, j) or the couple
(Xr,j) is non-Siegelian, with the exception of a group of level 25 which (up to
conjugacy) projects onto

a (00T (5 D ()

Proof — By the results of the previous chapter, Siegel’s theorem is effective for
(Xr,J) unless G is one of ten groups, up to conjugacy.

Asume p = 3. By Proposition 7.4.4 if s > 2 then X has at least 3 cusps;
if s = 2 and IV contains all elliptic elements of ' (i.e. 2-elliptic elements), then
either X/ has at least 3 cusps, or I' =T and (Xr,j) is one of the two non-
Siegelian curves described in Proposition 7.4.4. We conclude by Theorem 7.1.2.

If p =5 and G = D3, we conclude by Proposition 7.4.3 and Theorem 4.2.3.

If GG; is one of the remaining seven groups then it contains a subgroup isomor-
phic to the fourth alternating group A4. By Proposition 7.4.2 we have V; = (O)
since s > 1; by Proposition 7.2.5 X1 has at least 3 cusps, and we conclude by
Theorem 4.2.3. O

7.5 The case p =2

In this section we assume p = 2. Then G is a subgroup of SLy(F3) 22 S3. Some
proposition in this section are proved by inspection.

We take R = (1}) and S = (9}) in SLa(F2), with 7= RS = ({ }). Note
that SLo(FF3) is generated by R and S, with the relations

R} =1, S%=1, T? =1.
The following results are proved by inspection.

Proposition 7.5.1 The elements I, S, and T are a basis for sly(F3). The
non-trivial S-invariant subspaces of sla(F2) are:

(I), (), {I+5), (LS), (I.5), {I+T,5).
The non-trivial R-invariant subspaces of sla(F2) are (I) and (S, T). O

Proposition 7.5.2 Let M € V,. Then M + M? € Vs. O

Up to conjugacy, we may assume that G; is one of (R), (S), and SLy(Fs).

Proposition 7.5.3 Let I' be a congruence subgroup of exact order 2° with
s > 1, whose projection modulo 2 is a group of order 2. Assume that " satis-
fies (7.1), as well as any congruence subgroup I C T which contains all elliptic
elements of I'. Then s <5 and T' is uniquely determined by s up to conju-
gacy. For s =5 the curve Xr has genus 1 (which implies Siegel’s effectiveness
by Theorem 4.2.2). For 2 < s < 4 the couple (X, j) is non-Siegelian.
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Proof — We can assume G; = (S). By Proposition 7.2.2 we have I € V; and
by Proposition 7.2.5 we have dim(V;) > 2, since [SL2(F3) : G1] = 3. By Propo-
sition 7.5.1 and Corollary 7.2.3 this implies V4, = (I, .S). Since S € V; we have
S2 4+ 8 =1+ S € V, by Proposition 7.5.2. Propositions 5.1.5 and 5.1.6 imply
#G3 > #Msg/2 = 24, and since #G2 = 8 we have dim(V2) > 2. By Proposi-
tion 7.5.1 this implies Vo = (I, 5).

We verify by inspection that G is generated, for s = 3,4,5, by S = (% {),
M= (1,22),and N = ( % 75). For s = 6 and for any choice of m,n € F; the
matrices M = M (I + 32mT) and N = N(I 4 32nT) in SLy(Z/(64)) satisfy

M=°N"'MN®=T+32(1+T),

which implies I + T € V5. Since Vo = (I, S) C V5 by Proposition 7.2.2, we ob-
tain Vs = sly(F2) and s < 5.
We conclude by inspection on the genus and the number of cusps of Xp. [J

Proposition 7.5.4 Let I" be a congruence subgroup of exact level 2° with s > 0,
whose projection modulo 2 is a group of order 3. Assume that T satisfies (7.1),
as well as any congurence subgroup I' C T which contains all elliptic elements
of I'. Then s < 4 and T is uniquely determined by s up to conjugacy. Moreover
the couple (Xr, j) is non-Siegelian.

Proof — We can assume G; = (R). By Proposition 7.2.2 we have —I € Vi; by
Proposition 7.5.1 and Corollary 7.2.3 this implies V4 = (I). Propositions 5.1.5
and 5.1.6 imply #G35 > #Msg/2 = 24, and since #G2 = 6 we have dim(V3) > 2.
By Proposition 7.5.1 this implies V5 = (S, T'). Finally, V, contains ST —T'S = I
by Proposition 7.2.6; since V2 = (S, T) C V4 by Proposition 7.2.2, this implies
Vi = sly(F2) and s < 4.

We conclude by inspection. O

Proposition 7.5.5 Let I' be a congruence subgroup of exact level 2°, for some
s > 1, that projects modulo 2 on SLo(FF3) and that satisfies (7.1). Then s < 4
and ' belongs to one of eight distinct conjugacy classes. Moreover the couple
(X, j) is non-Siegelian.

Proof - We have G; = SLy(F2) = (R, S). By Proposition 7.2.5 we have —I € V7,
which implies V4 = (I) by Proposition 7.5.1 and Corollary 7.2.3. Proposi-
tions 5.1.5 and 5.1.6 imply #G5 > #Msg/2 = 24, and since #G2 = 12 we have
dim(V3) > 1. By Proposition 7.5.1 this implies either Vo = (I) or Vo = (S, T').

If Vo =(I) then #G3 = 24, and since Propositions 5.1.5 and 5.1.6 imply
#Gy > #Mi6/2 = 96 we obtain dim(V3) > 2. By Proposition 7.5.1 this implies
(S,T) C V3, and since (I) = V2 C V3 by Proposition 7.2.2 we obtain V3 = sl»(F,)
and s < 3.

If Vo = (S, T) then Proposition 7.2.6 implies I = ST — TS € V4, and since
V2 C V4 by Proposition 7.2.2, we obtain Vj; = sly(F2) and s < 4. (In this case G5
can belong to two distinct conjugacy classes in SL2(Z/(8)) and G4 can belong
to four distinct conjugacy classes in SLo(Z/(16)).)

We conclude by inspection. O

We summarize the results of this section.
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Proposition 7.5.6 Let I" be a congruence subgroup of exact level 2° with s > 1,
containing —I. Then either Siegel’s theorem is effective on (Xr, j) or the couple
(X1, j) is non-Siegelian.

Proof — If ' does not satisfy the hypotesis of any of the Propositions 7.5.3,
7.5.4, or 7.5.5, then there exists a congruence subgroup I C I" that contains
the elliptic elements of I' and such that Xy has at least 3 cusps. We conclude
by Theorem 7.1.2. O

Table 7.1: Non-Siegelian modular curves Xt of pure prime power level p®

Gs P U Ve Vo U3 &
Gy1 |4 6 2 2 0 0
Gg:1 |8 12 2 4 0 0
Gi1 |16 24 2 8 0 0
Gio |4 8 2 0 2 0
Ggo |8 16 2 0 4 0
Gz |16 32 2 0 8 0
Gizs |4 4 1 2 1 0
Gss' |8 8 1 2 2 0]2groups
Gis' |16 16 1 2 4 0|4 groups
Gsy |8 16 2 4 1 0
Gopa |9 12 2 0 3 0
Goo |9 18 2 6 0 0
Gos |9 9 1 5 0 0
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Chapter 8

The mixed level case

8.1 Introduction

In this chapter we study groups of mixed level. We shall prove the following
result.

Theorem 8.1.1 Let I be a congruence subgroup of level not dividing the num-
ber 221.37.52.72.11-13. Then Siegel’s theorem is effective for the pair (Xr, j).

Let I" be a congruence subgroup of exact level n, and let the factorization
of n be n =[[;c; ¢ = [I;c; pi*, where the p; are distinct primes and e; > 0 for
every 1 € 1.

For every positive integer d we denote by I'y the composite group I'- I'(d),
of level dividing d, and by G4 < SL2(Z/(d)) its projection modulo d. Note that
if Siegel’s theorem is effective for (Xr,,j) then it is effective also for (Xr, 7).

The group SLz(Z/(n)) is isomorphic to the direct product [ [, ; SL2(Z/(q:));
this allows us to consider G = G, as a subgroup of the direct product [[,c; Gy,

Remark 2 Probably, the assumption on the level in Theorem 8.1.1 can be
relaxed, but at the moment, the methods of the present thesis do not allow
treatment of all possible Siegelian modular curves of mixed level. Consider, for
instance, two congruence subgroups I's and I'; of exact levels 5 and 7, whose
projections in PSLo(F,) (see Table 6.1) are isomorphic to the fourth alternating
group Ay and to the fourth symmetric group Sy, respectively; their intersection
I's N T'; is a congruence subgroup I of the exact level 35, generated by its elliptic
elements and such that Xr has genus 2 and only one cusp. The couple (Xr,j)
is non-Siegelian, but eludes our methods.

8.2 Proof of Theorem 8.1.1

We begin with the following useful observation.

Proposition 8.2.1 Let {S;}ics be a finite family of finite groups S; and let T

be a subgroup of the (formal) direct product S = [],.; Si. For every J C I we
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have a natural projection wy: S — S; and a natural embedding vj: S; — S,
where S; = [[,c; Si- Let Ty and U; be the subgroups of S; defined by
TJZT(‘J(T), LJ(UJ):TQLJ(SJ).

Then U, is a normal subgroup of T;. Let also r; be the index of Uy, in Tyy.
Then r; divides [ [, ;i for every j € I.

Proof —Let {J, K} be a partition of I. The group ¢;(U;) = Ker(mk|r) is normal
in T'; then Uy = 75 015(Uy) is a normal subgroup of Ty = 7;(T). The compos-
ite map T — Ty — T;/U; has kernel U; x Uk and induces an isomorphism
T/(Uy x Uk) 2 Ty/Uy, which proves Ty /U; = Tk /Uk.

Now note that
H U{i} <Urg <Tg < H T{i}.
ieK €K
This implies that #(Tx/Ux) divides #([[;cx Tiy)/ (U Lick Ugiy) = [ icx 7i-
Taking J = {j} and K =1 —J we obtain T(;}/U;; = Tk /Uk, hence the re-
sult. O
Applying the above proposition to the group G < [[,.; G; we immediately
obtain the following result.

icl

Corollary 8.2.2 Let I' be a congruence subgroup of exact level n = [],c; ¢.
Then for every i € I the congruence subgroup (I' NT'(n/q;)) - T'(q;) of exact
level g; projects modulo ¢; onto a normal subgroup H,, of G, of index r;,
and r; divides [ [, ;i for every j € I. O

The following result is certainly well-known, but we include a proof for the
sake of completeness.

Proposition 8.2.3 Let p be a prime and let H; be a normal subgroup of
SLo(Z/(p®)) for some integer s > 0. If Hy # SLy(Z/(p®)) then p divides the
index of H,.

Proof — When s = 1, the normal subgroup H = H; of SLy(FF,) is union of con-
jugacy classes. It is easily verified that all elements with fixed trace ¢ # +2 lie
in the same class. If p does not divide the index of H then p divides the cardi-
nality of H, which contains a cyclic subgroup of order p conjugate to ((§1)).
Since ((41)) and ((17)) are conjugate, it follows that for every z,y € F, the

matrix (, %, ) of trace 2 + xy lies in H, as all their conjugates. We conclude
H — SLy(F, ).

For s > 1, we the projection of H, modulo p*~! is a normal subgroup H,_;
of SLy(Z/(p*~1)). We have

[SL2(Z/(p%)) : Hy] = p*[SLa(Z/(p°™1)) + Hs1]

for some a > 0. We conclude by induction. O
We immediately deduce the following result.

Proposition 8.2.4 Let I' be congruence subgroup of exact level n and let p > 3
be the largest prime appearing in the factorization of n. Then G, # SLo(F),).
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Proof — Let ¢ =p°, G4, and H, be as in Corollary 8.2.2. Since p does not
divide #SLo(Z/(p'¢)) = (p' + 1)(p' — 1)p¢' =2 for any prime p’ < p, it cannot
divide [G, : Hq] by Corollary 8.2.2. By the above proposition, this implies that
if G, = SLy(FF,) then H, = Gy, but in this case p would not divide n. O

Corollary 8.2.5 Let I" be congruence subgroup of exact level n and let p > 13
be the largest prime appearing in the factorization of n. Then Siegel’s theorem
is effective for (Xr,j).

Proof — Consider the congruence subgroup I'y, of level dividing p > 13. As we
have seen in the previous chapters, either Siegel’s theorem is effective for (Xt , j)
or G, = SLy(FF,). We exclude the latter case by the above proposition. O

The following result is obvious.

Proposition 8.2.6 LetI', be a congruence subgroup of exact level p¢ and let F;
be a congruence subgroup of exact level pe/ with I'), < F;, where e > ¢/ > 0 are
integers and p is a prime. Then the index [, : T',] divides p*' ~2(p + 1)(p — 1)
and is divisible by p*=¢ . O

Proof of Theorem 8.1.1 — Let T be a subgroup of exact level n = [ p°. If the
set of primes p is not contained in {2,3,5,7,11,13} then we conclude by the
above corollary. Assume now that n factors in the primes 2,3,5,7,11,13.

By Corollary 8.2.2 for every prime p the congruence subgroups I';, = I" - I'(p®»)
andI', = (I'NIT(n/p)) - T'(p°?) of exact levels p and p® respectively project
modulo p® on subgroups Gper and Hyer of SLa(Z/(p®r)), with Hper <1 Gpen.

If Siegel’s theorem is effective for (Xt , ) then it is effective for (Xr, j), too.
Otherwise, by the results of the previous chapter, we have e}, < 4, e, et < 2, and
el elq,€el3 < 1. Applying the above proposition together with Corollary 8.2.2
we obtain that n divides 22!-37.53.72.11-13. O
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ILLENGO MARCO — DIOPHANTINE ANALYSIS AND LINEAR GROUPS

La premiére partie de cette thése est inspirée d’un travail de Dvornicich et Zan-
nier et cherche a connaitre un “principe de divisibilité locale-globale” sur les tores
algébriques.

Dvornicich et Zannier ont montré que, etant donné un nombre premier p, pour tout
n < max{3,2(p — 1)} le principe ci-dessus vaut, mais que pour tout n > p* — p> + 1 on
trouve des contre-exemples. Dans leur preuve ils reduisent le probléme & une certaine
condition en termes de cohomologie de groupes: un p-groupe de matrices entiéres
agissant sur un F,-espace vectoriel.

En suivant leur approche, dans cette thése nous montrons que le principe de di-
visibilité locale-globale vaut pour chaque premier p # 2 et chaque tore de dimension
n < 3(p — 1). Nous montrons aussi que pour p # 2 et n > 3(p — 1) il existe au moins
un tore qui ne jouit pas de ce principe.

La deuxiéme partie de cette thése est le resulté d’une collaboration avec Bilu et
est inspirée d’un son travail sur 'effectivité du théoréme de Siegel, c’est & dire sur la
recherche des bornes du haut sur la taille des points S-entiers d’une courbe algébrique
“Siegelienne”.

Bilu a démontré un théoréme de Siegel effectif pour certaines classes de courbes
modulaires, c’est & dire pour (Xr,j) quand I' est 'un des sous-groupes classiques
T'(N), '1(N), T'o(N), pourvu que la paire correspondante (Xr,j) soit Siegelienne.

Dans cette thése nous démontrons un théoréme de Siegel effectif pour (Xr,j)
quand I est “presque quelconque” sous-groupe de congruence. Dans le niveau puissance
d’un premier notre resultat est presque le meilleur possible: nos méthodes couvrent
tous les cas sauf un, & équivalence prés. Dans le cas général nous démontrons un
théoréme de Siegel effectif pour toute paire Siegelienne (Xr, j), pourvu que le niveau
de I' ne divise pas un certain entier.

The first part of this thesis is inspired by a work of Dvornicich and Zannier and
investigates a “local-global divisibility principle” on algebraic tori.

Dvornicich and Zannier proved that, given any prime p, for any n < max{3,2(p — 1)}
the above principle holds, but that for any n > p* — p> + 1 there exist counterexam-
ples. In their proof they reduce the problem to a certain condition in terms of group
cohomology, where a p-group of integer matrices acts on an F,-vector space.

Following their approach, in this thesis we prove that the local-global divisibility
principle holds for any prime p # 2 and any torus of dimension n < 3(p — 1). We also
prove that for p # 2 and n > 3(p — 1) there exists a torus which does not enjoy this
principle.

The second part of this thesis is a joint work with Bilu and is inspired by his
previous work on the effectivity of the theorem of Siegel, i.e. on the search for higher
bounds for the heights of S-integer points of a “Siegelian” algebraic curve.

Bilu proved effective Siegel’s theorem for some classes of modular curves, namely
for (Xr,j) when I is one of the classical subgroups (I'(N), I'1(N), (I'o(NN), provided
the corresponding pair is Siegelian.

In this thesis we prove effective Siegel’s theorem for (Xr, j) when I'is “almost every”
congruence subgroup. In the prime power level our result is nearly best possible: our
methods cover all but one case, up to equivalence. In the general case we prove effective
Siegel’s theorem for every Siegelian couple (Xr,j), provided the level of I' does not
divide a certain integer.

Keywords: Algebraic group, Cohomology, Effective, Local-global, Modular curve,
Siegel, Siegelian, Torus
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