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The optimal refined instrumental variable method for the estimation
of the Box–Jenkins (BJ) model is modified so that it functions as
an optimal filter and state-estimation algorithm. In contrast to the pre-
viously developed minimal and non-minimal state-space (NMSS)
forms for an Auto-Regressive Moving Average with eXogenous
variables (ARMAX) model, the new algorithm requires the introduc-
tion of a novel extended NMSS form. This facilitates representation
of the more general noise component of the BJ model. The
approach can be used for adaptive filtering and state variable feedback
control.
Introduction: The interesting links between state and parameter esti-
mation have been commented on ever since the publication of
Kalman’s seminal work [1–3]. Young [4], for example shows how the
state-space Kalman filter representation of a discrete-time system can
be converted, in the asymptotic case, into the transfer function form.
The refined instrumental variable (RIV) method of recursive parameter
estimation is used to estimate the coefficients of this model [5] and
hence, following some manipulation, generate the optimal filtered
output ŷk and states x̂k . Among several important improvements in
recent years, the latest RIV methods (e.g. [6], [2] pp. 200–212, [7]
pp 218–226) facilitate the estimation of the following Box–Jenkins
(BJ) model, expressed here in single-input uk , single-output yk form
for brevity

yk = B(z−1)

A(z−1)
uk + D(z−1)

C(z−1)
ek (1)

where ek = N (0, s2), A(z−1) = 1+ a1z−1 + · · · + anz−n, B(z−1) =
b1z−1 + · · · + bmz−m, C(z−1) = 1+ c1z−1 + · · · + cpz−p and D(z−1) =
1+ d1z−1 + · · · + dqz−q, in which z−1 is the backward shift operator,
i.e. z−1yk = yk−1. Although the associated ‘RIVBJ’ algorithm is rela-
tively computationally expensive, for some estimation problems it
proves essential (see references above for examples).

However, the minimal canonical state space form utilised to
implement the Kalman filter in [4], always yields an Auto-Regressive
Moving Average eXogenous variables (ARMAX) model, i.e. similar
to (1) but constrained by C(z−1) = A(z−1). Furthermore, while Taylor
et al. [7], and other prior work cited within, use a non-minimal state-
space (NMSS) model for generalised digital control, including linear
quadratic Gaussian (LQG) design with a Kalman filter, it is similarly
limited to the ARMAX model form. Hence, this Letter develops a
novel extended stochastic NMSS representation for the more general
system in (1). This result completes the link between the latest RIVBJ
estimation algorithm and adaptive optimal filtering and can be con-
veniently exploited for practical control system design.

Background: Consider the following stochastic state-space model:

xk = Fxk−1 + guk−1 + wk , yk = hxk + ek (2)

where wk = N (0, N) and ek = N (0, s2) represent state disturbances
and measurement noise respectively, and N is a positive semi-definite
covariance matrix. The Kalman filter representation is

x̂k = Fx̂k−1 + guk−1 + Lkek−1, yk = hx̂k + ek (3)

where ek are the innovations, with ek = N (0, s2). Introducing z−1 to (3)
and assuming Lk converges to L, yields

yk = qgz−1uk + qLz−1 + 1
( )

ek where q = h(I − Fz−1)−1 (4)

The non-minimal state vector most typically associated with (2) is

xk = [ yk · · · yk−n+1 uk−1 · · · uk−m+1 ]
′ (5)

for which F, g
{ }

are fully defined in many earlier articles [7]. In this
case, (4) is equivalent to an ARMAX model [7, 8]. A similar result is
stated by Young [4] for a minimal observable canonical form.

Proposition: To express the ‘full’ BJ model (1) in stochastic state-space
form, the NMSS state vector is extended as follows:

xk = yk yk−1 · · · y(k−N+1) uk−1 uk−2 · · · uk−M+1

[ ]
(6)
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where N = n+ p and M = m+ p. Evaluating A(z−1)C(z−1) =
1+ a1z−1 + · · · + aN z−N and B(z−1)C(z−1) = b1z

−1 + · · · + bMz−M,
the state matrices in (2) are

F =

−a1 −a2 · · · −aN−1 −aN b2 b3 · · · bM−1 bM
1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 · · · 0 0 0 0 · · · 1 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

g = [b1 0 · · · 0 0 1 0 · · · 0 0 ]′ (8)

h = [ 1 0 · · · 0 0 0 0 · · · 0 0 ] (9)

The equivalence between the polynomial representation (1) and the
state-space model based on (6) is demonstrated in the following.

Demonstration: Defining R = N +M− 1, and substituting (7) and
(9) into q in (4), yields q = 1 q1 · · · qR

[ ]
, where

qj = 1

1+∑N
i=1 aiz−i

1 if j = 1

−
∑N
i=j

aiz
−(i−j+1) if 2 ≤ j ≤ N

∑M
i=j−N+1

biz
−(i−j+N ) if N + 1 ≤ j ≤ R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Resolving the output equation in (4) yields

qgz−1 = b1z
−1 + · · · + bMz−M

1+ a1z−1 + · · · + aN z−N = B(z−1)C(z−1)

A(z−1)C(z−1)
= B(z−1)

A(z−1)
(10)

and

qLz−1 + 1 =
l1 − l2

∑N
i=2 aiz−(i−1) · · · − lnaN z−1

( )
z−1 + 1+∑N

i=1 aiz−i

1+∑N
i=1 aiz−i

= 1+ f1z−1 + · · · + fN z−N

1+ a1z−1 + · · · + aN z−N = F(z−1)

A(z−1)C(z−1)

with F(z−1) an appropriately defined polynomial and

fj =
l1 + a1 if j = 1

aj −
∑N
i=j

li−(j−2)ai otherwise

⎧⎪⎪⎨
⎪⎪⎩

Since past values of the control input are known exactly, the Kalman
gain vector associated with (3) is defined L = [ l1 l2 · · ·
lN 0 · · · 0]′. Here, l1 · · · lN are conventionally determined by specify-
ing s2, N

{ }
in some manner and exploiting the matrix Riccati equations

[3, 7]. In this Letter, however, the model structure can alternatively be
selected by the modeller or identified from data (see below) in order
to define the noise transfer function, and the gains follow directly
from this. For example, specifying F(z−1) = A(z−1) yields an auto-
regressive noise model type, i.e. qLz−1 + 1 = 1/C(z−1), while
F(z−1) = A(z−1)D(z−1) yields qLz−1 + 1 = D(z−1)/C(z−1). In the
latter case, (4) is equivalent to the BJ model (1).

Estimated output: Using the innovations ek = yk − hx̂k from (3) and
the BJ model (1), the optimal estimate of the output ŷk = hx̂k is

ŷk = D(z−1)− C(z−1)

D(z−1)
yk + B(z−1)C(z−1)

A(z−1)D(z−1)
uk (11)

The RIV algorithm [2] can be used to identify the order and estimate the
parameters of the polynomials A(z−1), B(z−1), C(z−1) and D(z−1) either
off–line (en block solution) or adaptively (recursive mode), with ŷk sub-
sequently determined using (11) and, for example used for state variable
feedback control. Alternatively, in the RIV algorithm, the measured
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input uk and output yk signals are filtered by adaptive prefilters and the
outputs of these filters (denoted u∗k and y∗k ) can be used to estimate ŷk
directly. The adaptive RIV prefilters used for the BJ model (1) have
the form C(z−1)/(A(z−1)D(z−1)) (see [2, 7] and the references therein),
hence ŷk = B(z−1)u∗k − A(z−1)y∗k + yk .

Example: The system model in this example is based on (1) with n =
m = p = q = 2. Using the demonstration above, this system is equiva-
lently described by (6)–(9), with L = [ l1 l2 l3 l4 0 0 0 ] and

l1 = d1 − c1, l2 = 1

c2
c2 − d2( )

l3 = 1

a4
a3 − l2a3 − d1a2 − d2a1( )

l4 = 1

a4
a2 − l2a2 − l3a3 − a1d1 − d2 − a2( )

The optimal estimate of the output can be determined using the poly-
nomial or state-space forms shown in Fig. 1, or within the RIV algor-
ithm by means of the prefilters.
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Fig. 1 State estimation based on

a Polynomial B-J transfer function model
b State-space Kalman filter representation

Control design: The extended state-space model (6)–(9) is not fully
controllable. This result is transparent from the deterministic component
of (4), i.e. yk = qgz−1uk , for which (10) highlights pole-zero cancella-
tions. More formally, the state vector has length n+ m+ 2p, while
the maximum rank of the associated controllability matrix is
n+ m+ p. However, this observation does not limit the application of
state variable feedback control, since a conventional controllable
NMSS form, based on (5), can still be utilised for state variable feedback
design [7]. Exploiting the separation theorem as usual, the resulting
control law is applied to the estimated state, i.e. uk = −kx̂k , where k
is the control gain vector. Here, an integral-of-error state, based on the
estimated ŷk or measured yk output, or sometimes an ad-hoc hybrid of
ELECTRONICS LETTERS 2
these [8], is usually included to ensure Type 1 servomechanism per-
formance. Although such extensions are beyond the scope of this
Letter, the authors are presently investigating their utility in the
context of the new NMSS form.

Conclusions: A novel stochastic NMSS form that enables represen-
tation of a general BJ transfer function model was presented. This
Letter points out that the approach can be used for both adaptive
optimal filtering and state variable feedback control. The new result
immediately facilitates representation of a more general noise
model for NMSS design than hitherto, and hence facilitates further
research into the RIV parameter estimation, LQG optimal control and
adaptive filtering in this context. For brevity, this Letter was limited
to the single-input, single-output case but multi-input models are also
possible.
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